Basic distributions and properties			
Discrete distributions	Formation of a random variable (r.v.)	Examples of real features having this distribution	
Bernoulli			
$P(X = x) = p^{x}(1-p)^{1-x}, x = 0, 1; 0 \le p \le 1$			
$\mathbb{E}\left(X\right) = p$			
var(X) = p(1-p)			
Binomial $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1,, n; 0 \le p \le 1$	r.v. – the appearance of success in a sequence of n independent trials;	1) the number n of defective products in a batch of volume produced in stationary mode;	
$\mathbb{E}(X) = np$ $\operatorname{var}(X) = np(1-p)$	p – is the probability of success in the outcome of the experiment	2) the number of objects with a given combination of properties they are among n randomly selected from the general population	
Geometric $P(X=x)=p(1-p)^{x-1}, x=1,2,; 0 \leq p \leq 1$ $\mathbb{E}(X)=\frac{1}{p}$ $\mathrm{var}(X)=\frac{1-p}{p^2}$	this distribution allows us to find the probability that the first occurrence of success requires <i>x</i> independent trials, each with a probability of success p.	1) the probability that success will not follow x times (medicine will not help, a specific value on the cube will not fall out, etc.)	
Multinomial $P(X_{1} = x_{1}, X_{2} = x_{2},, X_{m} = x_{m}) = \frac{n!}{x_{1}!x_{2}! \cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}$ $x_{1} + \cdots + x_{m} = n;$ $p_{1} + \cdots + p_{m} = 1$ $\mathbb{E}(X_{i}) = p_{i}$ $var(X_{i}) = np_{i}(1 - p_{i})$ $cov(X_{i}, X_{j}) = -np_{i}p_{j}$	The number of x_1 , x_2 ,, x_m occurrences of interesting, mutually incompatible events A_1 , A_2 ,, A_m , forming a complete system of events An example?	Polynomial: A set of numbers that defines the distribution of n objects by m specified properties when they are independently extracted from the general population, while the probability of an event A_j is constant and equal to p_j	

Negative Binomial		1) The durability of the system (in the
$P(X = x) = \frac{\Gamma(r+x)}{x!\Gamma(r)}p^r(1-p)^{x-1}, x = 0, 1, 2,; 0 \le p \le 1$	independent experiments that	number of cycles of operation), having r-1 backup (automatically connected)
$x!\Gamma(r)$ $\Gamma(r)$ $\Gamma(r)$ $\Gamma(r)$	anticipation of a given	elements
$\mathbb{E}(X) = \frac{r(1-p)}{n} , \text{var}(X) = \frac{r(1-p)}{n^2}$	number r of the occurrence of	
$\frac{12}{p}(X) = \frac{1}{p} \qquad \text{val}(X) = \frac{p^2}{p^2}$	the event of interest to us, p –	2) The sample size required to obtain r
	the probability of success in one test.	objects with the specified properties when they are randomly extracted from
	one test.	the general population
Poisson	(rare events)	1) the number of failures of debugged
$P(X = x) = \frac{\exp(-\lambda) \lambda^x}{x!}, x = 0, 1, 2,, \lambda > 0$	r.v. – the number of occurrence of an event per	production in unit time
$\mathbb{E}\left(X\right) = \lambda$	unit of time in stationary	2) The number of accidents or deaths
$\operatorname{var}(X) = \lambda$	mode (previous events do not	from rare diseases per unit of time in
	affect subsequent ones!)	this population
		3) the number of requests received per
		unit of time in the queuing system (no
Continuous distributions		longer!)
Beta		a wide class of investigated features, the
-()		possible values of which are enclosed in
$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, 0 \le x \le 1; \alpha > 0, \ \beta > 0$		the interval (0,1), for example, by
$\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta}, \text{var}(X) = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$		expert means certain probabilities of the event of interest to us
Cauchy		The ratio of two independent normal
$f(x) = \frac{1}{\pi (1 + x^2)}, -\infty < x < \infty$		random variables with zero mean and unit variance
$\mathbb{E}(X)$ not defined		
$\operatorname{var}(X) = \infty$		

Exponential	A random time interval	1) device maintenance time
$f(x) = \frac{1}{\theta} \exp\left(\frac{x}{\theta}\right), 0 \le x < \infty; \theta > 0$	between two Poisson-type events	2) product durability (normal operation mode)
$\mathbb{E}X = \theta$, $\operatorname{var}(X) = \theta^2$		3) the duration of the technological operation
		4) the time interval between consecutive failures
Logistic	artificial distribution	
$f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}, -\infty < x < \infty;$		
$\mathbb{E}(X) = 0, \text{var}(X) = \frac{\pi^2}{3}$		
Lognormal $f(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\log x - \mu)^2}{2\sigma^2}\right), 0 \le x < \infty; \sigma > 0$	influence of a large number of independent factors, each	 wages in the aggregate of all employees average per capita income in a set of
$\mathbb{E}(X) = \exp\left(\mu + \sigma^2/2\right)$	over the others, but the nature of the impact is	families of a given size
$var(X) = \exp(2\mu + 2\sigma^2) - \exp(2\mu + \sigma^2)$	1	3) particle size and volume during crushing
Pareto $f(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, \alpha \le x < \infty, \alpha > 0, \beta > 0$		Distribution of the average per capita total income of families with an income of at least a given α
$\mathbb{E}(X) = \frac{\beta \alpha}{\beta - 1}, \ \beta > 1$	which all elements, that do not exceed the threshold are extracted in advance α	
$\operatorname{var}(X) = \frac{\beta \alpha^2}{(\beta - 1)^2 (\beta - 2)}, \qquad \beta > 2$		

Uniform	r.v. is formed in such a way	1) rounding error of calculations with a
$f(x) = \frac{1}{b-a}, \qquad a \le x \le b$	that the probability of getting an observation in the vicinity	fixed number of decimal places
$\mathbb{E}(X) = \frac{a+b}{2}, \text{var}(X) = \frac{(b-a)^2}{12}$	of a given range [a,b] depends only on its width	2) waiting time for maintenance with exactly periodic activation (arrival) of the device (application)
Weibull	1) durability tests in the case	1) The durability of the system or
$f(x) = \frac{\gamma}{\beta} x^{\gamma - 1} \exp\left(-\frac{x^{\gamma}}{\beta}\right), \qquad 0 \le x < \infty; \qquad \gamma > 0, \ \beta > 0$	when the failure rate function (the "mortality" coefficient)	product operating in the run-in mode $\gamma \in (0,1)$, normal operation $\gamma = 1$ or wear
$\mathbb{E}(X) = \beta^{1/\gamma} \Gamma\left(1 + \frac{1}{\gamma}\right)$	belongs to the class of power dependencies	and aging $\gamma > 1$
$var(X) = \beta^{2/\gamma} \left(\Gamma \left(1 + \frac{2}{\gamma} \right) - \Gamma^2 \left(1 + \frac{1}{\gamma} \right) \right)$	2) the distributions of the smallest values in large	2) the number of cycles until the moment of destruction of the sample
	samples extracted from	3) A minimum (for a number of years)
	general population (bounded on the left) are described.	of a certain amount consumed per year (for example, water during droughts)
Gamma	theoretical distribution	
$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha - 1} \exp\left(-\frac{x}{\theta}\right), 0 \le x < \infty; \alpha > 0, \ \theta > 0$		
$\mathbb{E}(X) = \alpha \theta$, $\operatorname{var}(X) = \alpha \theta^2$		
Chi-Square	by definition	1) estimation of variance (normalized)
$f(x) = \frac{1}{\Gamma(r/2)2^{r/2}} x^{r/2-1} \exp\left(-\frac{x}{2}\right), 0 \le x < \infty; r > 0$		2) measure of deviation of the empirical distribution from the hypothetical one
$\mathbb{E}(X) = r , \text{var}(X) = 2r$		
Normal	r.v. is formed under the influence of a large number	1) deviation from the nominal value in the values of the parameters of products
$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty < x < \infty; -\infty < \mu < \infty, \sigma^2$	of independent factors, each of which does not prevail	of mass stationary production
$\mathbb{E}(X) = \mu$, $\operatorname{var}(X) = \sigma^2$	over the others	2) measurement error
		3) error when shooting at the target

Student t	by definition	1) a normalized measure of the
$\Gamma\left(\frac{r+1}{2}\right) \qquad \qquad$		discrepancy between two sample
$f(x) = \frac{\Gamma\left(\frac{1}{2}\right)}{\sqrt{r\pi}\Gamma\left(\frac{r}{2}\right)} \left(1 + \frac{x^2}{r}\right) \qquad -\infty < x < \infty; r > 0$		averages
$\mathbb{E}(X) = 0 \text{ if } r > 1, \text{var}(X) = \frac{r}{r-2} \text{ if } r > 2$		2) deviation of the sample average from the hypothetical one