
Модуль 3. NP-трудные задачи

Лекция 12

NP-трудные задачи. 

Изоморфизм.
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Сложность задачи

Для заданной задачи могут существовать 
алгоритмы разной сложности.

? Сложность задачи = сложность самого быстрого 
алгоритма, решающего эту задачу.

Теорема Блюма об ускорении: существует задача, 
для которой любой решающий её алгоритм можно 
экспоненциально ускорить.
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Классы сложности

Класс сложности = множество задач, для каждой 
из которых существует решающий её алгоритм, 
имеющий указанную сложность.

P = множество задач, решаемых за 
полиномиальное время.

К сожалению, для многих практически важных 
задач пока не известны полиномиальные 
алгоритмы. Это те самые вычислительно сложные 
задачи.
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NP-трудные задачи

Класс NP (Non-deterministic Polynomial)

– Распознавательные задачи, решаемые 
недетерминированным алгоритмом за 
полиномиальное время.

– Задачи, для которых решение может быть 
проверено (детерминированным алгоритмом) за 
полиномиальное время при наличии сертификата.
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NP-трудные задачи

Полиномиальная сводимость

Задача R полиномиально сводится к 

задаче Q <=> существует алгоритм AR , 

обращающийся к алгоритму AQ (алгоритм 

для Q), и  решающий задачу R за 

полиномиальное время без учёта 

времени работы AQ.
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NP-трудные задачи

NP-трудные задачи

– Задача называется NP-трудной, если 
к ней полиномиально сводится 
любая задача Q  NP.

– Задача NP-полна, если она NP-
трудна и принадлежит классу NP.
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NP-трудные задачи

• P  NP.       P = NP ????

• Все NP-полные задачи полиномиально

эквивалентны, т. е. полиномиально сводятся друг к 

другу.

• Ни для одной NP-полной задачи не известен 

полиномиальный алгоритм. И маловероятно, что 

будет обнаружен в обозримом будущем.
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Что делать?

1) Решать долго (за экспоненциальное время)

2) Пытаться сократить время решения для входов, ожидаемых 

на практике

— Полиномиальные в среднем алгоритмы

— Параметризованные алгоритмы

3) Решать приближённо

– С гарантированной оценкой точности

– Без гарантий, но как правило достаточно точно

– С некоторой вероятностью ошибки
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Метод полного перебора

Полный перебор (Brute Force)

• Последовательно генерировать все 
возможные решения

• Для каждого сгенерированного 
решения х выполнять проверку на 
допустимость / оптимальность: 
Process(x)
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Генерация перестановок

Задача: для заданного n сгенерировать и 

обработать все перестановки степени n.

Решение:

1. Храним в массиве A[1..n].

2. Инициализация:  i A[i] := i.

3. Для всех k последовательно переставляем 

A[k] с элементами в позициях 1,..., k-1.
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Генерация перестановок

Вызов: ProcessPermutations(A,n)

ProcessPermutations(A,k)

if k = 1 then Process(A)

else

ProcessPermutations(A, k-1);

for i = k-1 downto 1 do

Поменять A[k] и A[i]

ProcessPermutations(A, k-1);

Поменять A[k] и A[i]



Изоморфизм графов
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Изоморфизм графов

Определение. Графы 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2) равны, 

если их множества вершин и множества рёбер 

совпадают: 𝑉1 = 𝑉2, 𝐸1 = 𝐸2. 

Равенство графов можно определить по матрице 

смежности.
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Изоморфизм графов

Более «мягкое» понятие сходства графов отражается 

отношением изоморфизма графов.

Определение. Графы 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2)
изоморфны, если существует взаимно однозначное 

отображение 𝜑: 𝑉1 → 𝑉2, такое, что 𝑢, 𝑣 ∈ 𝐸1 ⇔

𝜑 𝑢 , 𝜑 𝑣 ∈ 𝐸2. 
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Изоморфизм графов

Задача изоморфизма графов:

• Дано: два графа 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2).

• Вернуть: изоморфны ли графы 𝐺1и 𝐺2?

То есть, это распознавательная задача.

Стандартное обозначение изоморфизма графов: 

𝐺1 ≅ 𝐺2.
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Изоморфизм графов

Взаимно однозначное отображение конечного 

множества – это аналог перестановки. Поэтому 

проверить изоморфизм можно

полным перебором всех 

перестановок из 𝑛(= |𝑉1|) элементов.
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Изоморфизм графов

Сложность переборного алгоритма: 𝑂(𝑛!).
По формуле Стирлинга

𝑛! ∼ 2𝜋𝑛
𝑛

𝑒

𝑛

получаем временную сложность переборного 

алгоритма: 𝑂(𝑛𝑛).

На текущий момент, для задачи проверки 

изоморфизма графов не построен полиномиальный 

алгоритм, но и не доказана её NP-полнота.
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Изоморфизм подграфов

Задача изоморфизма подграфов:

• Дано: два графа 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2), 𝑉1 > |𝑉2|.

• Вернуть: 

1) Распознавательный вариант: содержит ли 
𝐺1 подграф 𝐻, изоморфный ли графу 𝐺2 (𝐻 ≅ 𝐺2)?

2) Вычислительный вариант: найти в 𝐺1 подграф 𝐻, 
изоморфный ли графу 𝐺2 (𝐻 ≅ 𝐺2), или сообщить, 
что такого подграфа нет.

Задача изоморфизма подграфов является NP-

трудной.


