
Модуль 3. NP-трудные задачи

Лекция 12

NP-трудные задачи.

Изоморфизм.

2

Сложность задачи

Для заданной задачи могут существовать
алгоритмы разной сложности.

? Сложность задачи = сложность самого быстрого
алгоритма, решающего эту задачу.

Теорема Блюма об ускорении: существует задача,
для которой любой решающий её алгоритм можно
экспоненциально ускорить.

3

Классы сложности

Класс сложности = множество задач, для каждой
из которых существует решающий её алгоритм,
имеющий указанную сложность.

P = множество задач, решаемых за
полиномиальное время.

К сожалению, для многих практически важных
задач пока не известны полиномиальные
алгоритмы. Это те самые вычислительно сложные
задачи.

4

NP-трудные задачи

Класс NP (Non-deterministic Polynomial)

– Распознавательные задачи, решаемые
недетерминированным алгоритмом за
полиномиальное время.

– Задачи, для которых решение может быть
проверено (детерминированным алгоритмом) за
полиномиальное время при наличии сертификата.

5

NP-трудные задачи

Полиномиальная сводимость

Задача R полиномиально сводится к

задаче Q <=> существует алгоритм AR ,

обращающийся к алгоритму AQ (алгоритм

для Q), и решающий задачу R за

полиномиальное время без учёта

времени работы AQ.

6

NP-трудные задачи

NP-трудные задачи

– Задача называется NP-трудной, если
к ней полиномиально сводится
любая задача Q  NP.

– Задача NP-полна, если она NP-
трудна и принадлежит классу NP.

7

NP-трудные задачи

• P  NP. P = NP ????

• Все NP-полные задачи полиномиально

эквивалентны, т. е. полиномиально сводятся друг к

другу.

• Ни для одной NP-полной задачи не известен

полиномиальный алгоритм. И маловероятно, что

будет обнаружен в обозримом будущем.

8

Что делать?

1) Решать долго (за экспоненциальное время)

2) Пытаться сократить время решения для входов, ожидаемых

на практике

— Полиномиальные в среднем алгоритмы

— Параметризованные алгоритмы

3) Решать приближённо

– С гарантированной оценкой точности

– Без гарантий, но как правило достаточно точно

– С некоторой вероятностью ошибки

9

Метод полного перебора

Полный перебор (Brute Force)

• Последовательно генерировать все
возможные решения

• Для каждого сгенерированного
решения х выполнять проверку на
допустимость / оптимальность:
Process(x)

10

Генерация перестановок

Задача: для заданного n сгенерировать и

обработать все перестановки степени n.

Решение:

1. Храним в массиве A[1..n].

2. Инициализация:  i A[i] := i.

3. Для всех k последовательно переставляем

A[k] с элементами в позициях 1,..., k-1.

11

Генерация перестановок

Вызов: ProcessPermutations(A,n)

ProcessPermutations(A,k)

if k = 1 then Process(A)

else

ProcessPermutations(A, k-1);

for i = k-1 downto 1 do

Поменять A[k] и A[i]

ProcessPermutations(A, k-1);

Поменять A[k] и A[i]

Изоморфизм графов

13

Изоморфизм графов

Определение. Графы 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2) равны,

если их множества вершин и множества рёбер

совпадают: 𝑉1 = 𝑉2, 𝐸1 = 𝐸2.

Равенство графов можно определить по матрице

смежности.

14

Изоморфизм графов

Более «мягкое» понятие сходства графов отражается

отношением изоморфизма графов.

Определение. Графы 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2)
изоморфны, если существует взаимно однозначное

отображение 𝜑: 𝑉1 → 𝑉2, такое, что 𝑢, 𝑣 ∈ 𝐸1 ⇔

𝜑 𝑢 , 𝜑 𝑣 ∈ 𝐸2.

15

Изоморфизм графов

Задача изоморфизма графов:

• Дано: два графа 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2).

• Вернуть: изоморфны ли графы 𝐺1и 𝐺2?

То есть, это распознавательная задача.

Стандартное обозначение изоморфизма графов:

𝐺1 ≅ 𝐺2.

16

Изоморфизм графов

Взаимно однозначное отображение конечного

множества – это аналог перестановки. Поэтому

проверить изоморфизм можно

полным перебором всех

перестановок из 𝑛(= |𝑉1|) элементов.

17

Изоморфизм графов

Сложность переборного алгоритма: 𝑂(𝑛!).
По формуле Стирлинга

𝑛! ∼ 2𝜋𝑛
𝑛

𝑒

𝑛

получаем временную сложность переборного

алгоритма: 𝑂(𝑛𝑛).

На текущий момент, для задачи проверки

изоморфизма графов не построен полиномиальный

алгоритм, но и не доказана её NP-полнота.

18

Изоморфизм подграфов

Задача изоморфизма подграфов:

• Дано: два графа 𝐺1(𝑉1, 𝐸1) и 𝐺2(𝑉2, 𝐸2), 𝑉1 > |𝑉2|.

• Вернуть:

1) Распознавательный вариант: содержит ли
𝐺1 подграф 𝐻, изоморфный ли графу 𝐺2 (𝐻 ≅ 𝐺2)?

2) Вычислительный вариант: найти в 𝐺1 подграф 𝐻,
изоморфный ли графу 𝐺2 (𝐻 ≅ 𝐺2), или сообщить,
что такого подграфа нет.

Задача изоморфизма подграфов является NP-

трудной.

