

ИНСТИТУТ
МАТЕМАТИКИ
МЕХАНИКИ
КОМПЬЮТЕРНЫХ
НАУК

Regression model

Kurbatova Natalia Victorovna
nvkurbatova@sfedu.ru

Linear Regression

Definition: Let X - random variable depends on random variable or vector; Z -values are given or observed.

Denote by $f(t)$ the function of dependence the average value of X on Z : $E(X|Z=t) = f(t)$,

$f(t)$ – is called **regression line**

$x=f(t)$ – **regression equation**

Experiment:

Under the condition of n values of Z : t_1, t_2, \dots, t_n , observed values: X_1, X_2, \dots, X_n ; introduce $\varepsilon_i \equiv X_i - E(X|z=t_i) = X_i - f(t_i)$ – difference between the **observed** random variables in i -th experiment and **expectation of X** provided that $Z=t_i$.

About joint distribution ε_i it is assumed, that vector ε consists of **independent, normally distributed random variables with zero mean**:

$$E(\varepsilon_i) = E(X_i) - f(t_i) = E(X|Z=t_i) - E(X|X=t_i) = 0$$

Goal: To determine (estimate) $f(t)$;

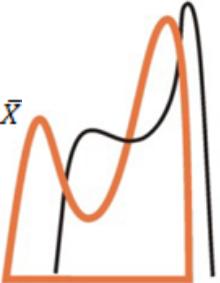
Known: t_i – are not random; ε_i, X_i – are random

Family function: in general, we need to decide (not only theoretical) which class of functions $f(t)$ belongs to! This determines k - length of θ .

Strategy: use the most appropriate function class since the function is uniquely determined by the parameters $\theta = (\theta_1, \theta_2, \dots, \theta_k)$

Idea: based on maximization likelihood function depends on the sample $X = (X_1, X_2, \dots, X_n)$

How?



Likelihood method.

The basic assumption

The basic assumption:

- a) ε_i – independent, identically distributed
- b) distribution $h(x)$ – symmetrical
- c) family of distribution has zero mean and unknown variance (Normal, Students, ...)

So X_i have density function $h(x-f(t_i))$ and likelihood function is:

$f(X, \theta_1, \theta_2, \dots, \theta_k) = \prod_{i=1, n} h(X_i - f(t_i)) = h(\varepsilon_1) \cdot h(\varepsilon_2) \cdot \dots \cdot h(\varepsilon_k) \rightarrow \theta \max$

Assumption: $\varepsilon_i \in N(0, \sigma^2)$, ε_i - independent

Likelihood method is connected with Least square method:

$$\begin{aligned} f(\vec{X}, \boldsymbol{\theta}) &= \prod \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{(X_i - f(t_i))^2}{2\sigma^2} \right\} = \\ &= \frac{1}{\sigma^n (2\pi)^{n/2}} \exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - f(t_i))^2 \right\} \rightarrow \max \end{aligned}$$

?

achieves at a minimum of the sum squares:

$$\sum_{i=1}^n (X_i - f(t_i))^2 = \sum \varepsilon_i^2, \quad \sum_{i=1}^n (X_i - f(t_i))^2 \rightarrow \min$$

$$X_i = \theta_1 + t_i \theta_2, \quad i = 1, \dots, n$$

$$L \equiv \sum \varepsilon_i^2 = \sum (x_i - \theta_1 - t_i \theta_2)^2 \rightarrow \min$$

Here, unknown parameter θ_1, θ_2 , are determined by solving the linear system:

$$\left\{ \frac{\partial L}{\partial \theta_1} = 0, \quad \frac{\partial L}{\partial \theta_2} = 0 \right\}$$

the points suspicious (suspicious [səs'pɪʃəs] – подозрительный) of an extremum:

$$\left\{ \hat{\theta}_1 = \bar{X} - \bar{t} \hat{\theta}_2, \quad \hat{\theta}_2 = \frac{\frac{1}{n} \sum X_i t_i - \bar{X} \bar{t}}{\frac{1}{n} \sum (t_i - \bar{t})^2} \right\}$$

What about $\hat{\theta}_1, \hat{\theta}_2$ for centering data $\{X_i\}$ and $\{t_i\}$?

$\text{var}(t) = D(t) = E(t^2) - (E(t))^2$

Sample correlation coefficient:

$$\rho = \frac{\left(\frac{1}{n} \sum (X_i - \bar{X})(t_i - \bar{t}) \right)}{\sqrt{\frac{1}{n} \sum (t_i - \bar{t})^2 \frac{1}{n} (X_i - \bar{X})^2}}$$

is the measure of linear dependence between X_1, X_2, \dots, X_n and t_1, t_2, \dots, t_n .

Let (ξ, η) – two-dimensional random vector. η – dependent variable, ξ – independent

There are n trials of ξ ; value of η is recorded in experiments.

$\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n$ – is the sample of trials (ξ, η) ; on it's basis is required construct the linear regression.

Linear model without free term ?

$$f = \theta_1 x + \theta_0$$

Let's consider experiments in matrix form \mathbf{X} , \mathbf{Y} , θ :

$$\mathbf{X} = \begin{pmatrix} 1 & x_1 - \bar{x} \\ 1 & x_2 - \bar{x} \\ \dots & \dots \\ 1 & x_n - \bar{x} \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} y_1 - \bar{y} \\ y_2 - \bar{y} \\ \dots \\ y_n - \bar{y} \end{pmatrix}, \boldsymbol{\theta} = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix},$$

here \bar{x} , \bar{y} – empirical average (mean)

Models, for chosen class-function may be present as matrix equation:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta}$$

equivalent
transformations

Least square solution

$$\mathbf{X}'\mathbf{Y} = (\mathbf{X}'\mathbf{X})\boldsymbol{\theta},$$

here

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} \sum_i (x_i - \bar{x})^2 & \sum_i (x_i - \bar{x}) \\ \sum_i (x_i - \bar{x}) & n \end{pmatrix}, \mathbf{X}'\mathbf{Y} = \begin{pmatrix} \sum_i (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_i (y_i - \bar{y}) \end{pmatrix}$$

by using $\sum_i (y_i - \bar{y}) = \sum_i (x_i - \bar{x}) = 0$,

$$\mathbf{X}'\mathbf{X} = \begin{pmatrix} \sum_i (x_i - \bar{x})^2 & 0 \\ 0 & n \end{pmatrix}, \mathbf{X}'\mathbf{Y} = \begin{pmatrix} \sum_i (x_i - \bar{x})(y_i - \bar{y}) \\ 0 \end{pmatrix},$$

Value of parameters follows from equality:

$$\begin{pmatrix} \theta_1 \sum_i (x_i - \bar{x})^2 \\ \theta_0 n \end{pmatrix} = \begin{pmatrix} \sum_i (x_i - \bar{x})(y_i - \bar{y}) \\ 0 \end{pmatrix}$$

if

$$\theta_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sum_i (x_i - \bar{x})^2} = \frac{\text{cov}(X, Y) \sigma_Y}{\sigma_X^2 \sigma_Y} = \frac{\rho_{XY} \sigma_Y}{\sigma_X}, \quad \theta_0 = 0.$$

Conclusion: *Regression for centering data has not free term!*

Let σ – empirical standard deviation, then

$$Y = X\theta, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}, \xrightarrow{\text{equivalent transformations}} X'Y = (X'X)\theta,$$

$$X = \begin{pmatrix} 1 & (x_1 - \bar{x})/\sigma_x \\ 1 & (x_2 - \bar{x})/\sigma_x \\ \dots & \dots \\ 1 & (x_n - \bar{x})/\sigma_x \end{pmatrix}, Y = \begin{pmatrix} (y_1 - \bar{y})/\sigma_y \\ (y_2 - \bar{y})/\sigma_y \\ \dots \\ (y_n - \bar{y})/\sigma_y \end{pmatrix}.$$

Regression coefficients for standardized data are:

$$\theta_1 = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})/(\sigma_x \sigma_y)}{\sum_i (x_i - \bar{x})^2 / \sigma_x^2} = \rho_{X,Y}, \quad \theta_0 = 0,$$

here $\rho_{X,Y}$ – coefficients of correlation of X, Y .

Regression coefficients for standardized data
are called β -coefficients.

Pairwise regression; the basic dispersion relation:

$$\sum_i (y_i - \bar{y})^2 = \sum_i (f(x_i) - \bar{y})^2 + \sum_i (f(x_i) - y_i)^2,$$

or

$$\sigma_y^2 = \sigma_f^2 + \sigma_{res}^2$$

σ_y^2 – $\{y_i\}$ variance; σ_f^2 – is explained by regression and σ_{res}^2 – residual between observed in trials and expected according to regression model

Measure (strength links) is coefficient of determination :

$$R^2 = 1 - \frac{\sigma_{res}^2}{\sigma_y^2}$$

The high value (is near one) of R^2 and small σ_{res}^2 is interpreted regression as almost functional dependence.

interpret [in'təprit]

When do coefficients of regression are equal to coefficients of correlation ?

Coefficients of correlation – function of random variables:

The evaluation of the model do by means statistical criteria:

- $\xi, \eta \in N(0, 1)$ Normal distributed $E(\xi) = \mu = 0, D(\xi) = 1, E(\eta) = \mu = 0, D(\eta) = 1,$
- Null hypotheses: factors is not correlated ($H_0: \rho = 0$),
- Criterion statistic : $t_{n-2} = \sqrt{(n-2)} \frac{r}{\sqrt{(1-r^2)}}$
 r – empirical coefficients of correlation
- t – has Student distribution with $n - 2$ degree of freedom

Matrixes X , θ convert to next kind:

$$X = \begin{pmatrix} 1 & (x_1^{(1)} - \bar{x}^{(1)})/\sigma_x^{(1)}, \dots, (x_1^{(m)} - \bar{x}^{(m)})/\sigma_x^{(m)} \\ 1 & (x_2^{(1)} - \bar{x}^{(1)})/\sigma_x^{(1)}, \dots, (x_2^{(m)} - \bar{x}^{(m)})/\sigma_x^{(m)} \\ \dots & \dots \\ 1 & (x_n^{(1)} - \bar{x}^{(1)})/\sigma_x^{(1)}, \dots, (x_n^{(m)} - \bar{x}^{(m)})/\sigma_x^{(m)} \end{pmatrix},$$

Y – standardaized.

$$\theta_0 = 0, \text{ coefficients of regression: } \theta = \frac{X'Y}{X'X},$$

For centering data expression of θ_k is equal to

$$\theta_k = \frac{\sum_i (x_i^{(k)} - \bar{x}^{(k)})(y_i - \bar{y})}{\|X'X\|} = \frac{\text{cov}(X^{(k)}, Y)}{\sum_{X,X}},$$

here $\sum_{X,X}$ – matrix of multiple correlation

Model adequacy

Let y – response to \mathbf{X} (m -dimensional) vector of factors

$$R^2 = \frac{\frac{1}{n-m-1} \sum_i (f(\mathbf{X}_i) - \bar{y})^2}{\frac{1}{n} \sum_i (y_i - \bar{y})^2}$$

Analysis of coefficient of determination imply model modification:
reduce number of factors, if it needs

The way of factors adding is sequential:

- if value of R^2 at the current step becomes greater then current factor is included to model
- if value of R^2 is unchanged then the current variable (factor) is excluded from model

Adequacy of the model is proved by normal distributed residuals with zero mean - *need to check!*

Let $\vec{Z} = (Z_1, Z_2, \dots, Z_k)^T$ – random regression factors (object properties or variables),
 $\beta = (\beta_1, \beta_2, \dots, \beta_k)^T$ – unknown linear regression parameters and

$E(X|\vec{Z}) = f(\vec{z}) = \beta_1 Z_1 + \dots + \beta_k Z_k$, here $Z^{(i)} = (Z_1^{(i)}, Z_2^{(i)}, \dots, Z_k^{(i)})$ – i -th experiment.

Results of n experiments, $n \gg k$, with responses $\vec{X} = (X_1, X_2, \dots, X_n)^T$

are represented by this system:

$$\begin{cases} X_1 = \beta_1 Z_1^{(1)} + \dots + \beta_k Z_k^{(1)} + \varepsilon_1 \\ X_2 = \beta_1 Z_1^{(2)} + \dots + \beta_k Z_k^{(2)} + \varepsilon_2 \\ \dots \dots \dots \dots \dots \dots \\ X_n = \beta_1 Z_1^{(n)} + \dots + \beta_k Z_k^{(n)} + \varepsilon_n \end{cases},$$

ε_i - they are implicitly represented in the system, are contained in the experimental data

it is form of multivariate regression or by matrix notations :

$$\vec{X} = \vec{Z} * \vec{\beta} + \vec{\varepsilon} \quad (*)$$

$$Z = \begin{pmatrix} Z_1^{(1)} & \dots & Z_k^{(1)} \\ \dots & \dots & \dots \\ Z_1^{(n)} & \dots & Z_k^{(n)} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \equiv \begin{pmatrix} \vec{Z}^{(1)} \\ \vdots \\ \vec{Z}^{(n)} \end{pmatrix}$$

Lemma1

If Z has rank k , i.e. all column independent then $A = Z^T * Z$ – positive matrix (p.m.).

Proof

- According to definition of (p.m.)

$$\vec{t}^T A \vec{t} \geq 0 \text{ for } \forall \vec{t} = (t_1, t_2, \dots, t_n) \in R^n \text{ and } \vec{t}^T A \vec{t} = 0 \Leftrightarrow \vec{t} = \vec{0}$$

$$[\text{as for } u = (u_1, \dots, u_n)^T, \| \vec{u} \|^2 = \vec{u}^T \cdot \vec{u} = \sum u_i^2 \geq 0, \| \vec{u} \|^2 = 0 \Leftrightarrow \vec{u} = \vec{0}].$$

- A – symmetrical,

$$A^T = A: \vec{t}^T A \vec{t} = \vec{t}^T [Z^T Z] \vec{t} = (Z \vec{t})^T Z \vec{t} = \| Z \vec{t} \|^2 \geq 0 \text{ and } \| Z \vec{t} \|^2 = \vec{0} \text{ if } Z \vec{t} = \vec{0},$$

but $\text{rank}(Z)=k \Rightarrow \vec{t} = \vec{0}$, this is contradiction because of \vec{t} – an arbitrary vector,

$\vec{t} \in R^n$, so A – positive matrix.

Positive definiteness and symmetry of matrix A imply the existence of \sqrt{A} is a real symmetric matrix such that $\sqrt{A} \sqrt{A} = A$. Lemma2

Proof

For any positive and symmetrical matrix factorization $A = Q^T D Q$ exists, here D – diagonal matrix (with eigenvalues on diagonal, eigenvalues > 0) and Q – orthogonal (consists of eigenvectors).

$$A = \boxed{Q^T \sqrt{D}} \sqrt{D} Q = \boxed{(\sqrt{D} Q)^T} \sqrt{D} Q \Rightarrow \sqrt{A} = \sqrt{D} Q, \quad \underline{\text{proven.}}$$

Let's find least squares estimation $\hat{\beta} = \vec{\beta}^*$, satisfying the following optimization problem (minimal solution exists):

$$S(\vec{\beta}) \rightarrow \min, \quad (1)$$

here

$$S(\vec{\beta}) = \sum_{i=1}^n \varepsilon_i^2 = \|\vec{\varepsilon}\|^2 = \|\vec{X} - Z\vec{\beta}\|^2 = (\vec{X} - Z\vec{\beta})^T (\vec{X} - Z\vec{\beta})$$

There are two approaches to find $\hat{\beta}$:

1. solving system $\left\{ \frac{\partial S(\vec{\beta})}{\partial \beta_1} = 0, \dots, \frac{\partial S(\vec{\beta})}{\partial \beta_k} = 0 \right\}$ to find extremum points - *considered before*
2. $S(\vec{\beta})$ – square of distance between points $\vec{X} \in R^n$ and $Z\vec{\beta}$, $(\cdot) Z\vec{\beta} \in \text{hyperplane}$ where $\forall Z\vec{t}, (\vec{t} \in R^k)$ lies.

$S(\vec{\beta}^*)$ – minimal distance, because of vector $\vec{X} - z\hat{\beta}$ is orthogonal to all vectors of hyper plane $Z\vec{t}$ ($\forall \vec{t} \in R^k$),
so $(Z\vec{t}, \vec{X} - Z\hat{\beta}) = (Z\vec{t})^T (\vec{X} - Z\hat{\beta}) = \vec{t}^T (Z^T \vec{X} - Z^T Z\hat{\beta}) = 0$ and for any $\vec{t}^T \neq 0$, f.e. basis vector $\vec{t}^T = (0 \ 0 \ 0 \ 1 \ 0 \dots 0) \in R^k$

\Rightarrow obtain *simple transformations*

$$Z^T \vec{X} - Z^T Z\hat{\beta} = 0 \quad \begin{matrix} \nearrow & \searrow \\ Z^T Z\hat{\beta} = Z^T \vec{X} \\ A\hat{\beta} = Z^T \vec{X} \end{matrix} \quad (2)$$

so least squares estimation – is solution of (2) According to Lemma 1 they have the same single solution

$$\hat{\beta} = \vec{\beta}^* = A^{-1} Z^T \vec{X} \quad (3)$$

If rectangle matrix Z size (n, k) has rank $= k$, $k \leq n$, both equation (2) is called normal equations.

Conclusion

If $\vec{\varepsilon}$ consists of independent r.v. $\forall \vec{\varepsilon}_i \in N(0, \sigma^2) \Rightarrow$ least squares estimation is the same as likelihood estimation for $\vec{\sigma}^2 = \frac{1}{n} \sum \hat{\varepsilon}_i^2 = \frac{1}{n} \|\vec{X} - Z\hat{\beta}\|^2 = \frac{1}{n} S(\hat{\beta})$

Properties of the least square estimation

① $\hat{\beta} - \vec{\beta} = A^{-1}Z^T \vec{\varepsilon}$ (4)

proof:

Substitute (3) in (4) and use (*) and equality $A = Z^T Z$, can obtain $A^{-1}Z^T \vec{X} - \vec{\beta} = A^{-1}Z^T(Z * \vec{\beta} + \vec{\varepsilon}) - \vec{\beta} = A^{-1}A * \vec{\beta} + A^{-1}Z^T \vec{\varepsilon} - \vec{\beta} = A^{-1}Z^T \varepsilon$, proven

② If $E \vec{\varepsilon} = 0$ then $\hat{\beta}$ – unbiased estimation for $\vec{\beta}$.

proof:

$$E \hat{\beta} =^{(p.1.)} \vec{\beta} + A^{-1}Z^T E \vec{\varepsilon} = \vec{\beta}. \quad \boxed{\text{proven}}$$

Matrix Z has rank=k and all columns of Z linear independent.

I. Vector $\vec{\varepsilon}$ consists of independent random values $\in N(0, \sigma^2)$.

Recall for any \vec{x} : $D\vec{x} = E(\vec{x} - E\vec{x})(\vec{x} - E\vec{x})^T$ – covariance matrix;

II. $\text{cov}(x_i, x_j) = E(x_i - Ex_i)(x_j - Ex_j)$ and $D\vec{\varepsilon} = \sigma^2 E_n$;

$E_n \equiv \text{eye}(n)$ – identity matrix size n , *ML notation*

3

Let I and II assumptions are true, then

$\sqrt{A} * \hat{\beta}$ has covariance matrix of diagonal type and equal to $\sigma^2 E_k$,

$(\sqrt{A} * \hat{\beta} = \sigma^2 E_k)$; it means that coordinates of $\sqrt{A} \hat{\beta}$ – uncorrelated

without proof

Theorem

Let I and II assumptions are true, then

1) Vector $\frac{1}{\sigma} \sqrt{A}(\hat{\beta} - \vec{\beta})$ has k-dimensional normal standard distribution

(consists of k independent random variables $\in N(0,1)$)

2) $n\hat{\sigma}^2/\sigma^2 = \|\vec{X} - Z\hat{\beta}\|^2/\sigma^2$ has χ^2_{n-k} distribution and doesn't depends on $\hat{\beta}$

(Interesting result!)

3) $(\sigma^2)^* = n\hat{\sigma}^2 = \frac{1}{n-k} \|\vec{X} - Z\hat{\beta}\|^2$ – unbiased estimation for σ^2

without proof

ИНСТИТУТ
МАТЕМАТИКИ
МЕХАНИКИ
КОМПЬЮТЕРНЫХ
НАУК

Thank you for your attention!

**DON'T FORGET TO DREAM - IT WILL
INCREASE YOUR HEALTH!**