
Лекция 11. 
Малые языковые модели (Small 

Language Models, SLM) как будущее 
агентного ИИ
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SLM как будущее агентного ИИ
• Агентный ИИ

• SLM

• Преимущества SLM

• Альтернативный подход

Основано на статье
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Агентный ИИ
Агентный ИИ (Agentic AI) — это искусственный интеллект, который действует как
автономный агент: он не просто отвечает на запросы, а сам ставит цели, планирует,
принимает решения, выполняет действия и учится на результатах, чтобы достичь заданной
задачи с минимальным вмешательством человека.

Ключевые характеристики агентного ИИ:

• Автономность

• Целеполагание

• Планирование и рассуждение

• Действие

• Память и контекст

• Адаптивность
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Агентный ИИ
Примеры задач для агентного ИИ:

Полный цикл исследований: «Проанализируй последние статьи о сверхпроводимости,
найди противоречия, напиши сводный отчет и презентацию».

Управление бизнес-процессами: «Следи за моей почтой, выделяй срочные запросы от
клиентов, согласовывай время встреч в календаре и готовь первые варианты ответов».

Сложный анализ данных: «Загрузи эти датасеты, почисти их, проведи сравнительный
анализ, построй прогнозную модель и визуализируй ключевые инсайты».

Создание таких агентов на основе гигантских моделей (LLM вроде GPT-4) очень дорого и
медленно для массового применения. Малые модели (SLM), будучи меньше, быстрее и
дешевле, идеально подходят для создания множества специализированных агентов,
каждый из которых отлично выполняет свою конкретную задачу.
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Агентный ИИ. Развитие
• Более половины крупных ИТ-компаний активно используют агентов ИИ, причём 21%
внедрили их только в течение последнего года

• Помимо пользователей, рынки также видят значительную экономическую ценность в
агентах ИИ: по состоянию на конец 2024 года сектор агентного ИИ получил более 2 млрд
долларов США в виде стартапного финансирования, был оценен в 5,2 млрд долларов США
и, как ожидается, вырастет почти до 200 млрд долларов США к 2034 году
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Малая языковая модель (SLM)
Малая языковая модель (Small Language Model, SLM) — это языковая модель, которая
может быть размещена на обычном потребительском электронном устройстве и выполнять
вывод (инференс) с достаточно низкой задержкой, чтобы быть практичной при обработке
агентных запросов одного пользователя.

Модели размером менее 10 млрд параметров будем считать SLM:

• достаточно мощны, чтобы справляться с задачами языкового моделирования в агентных
приложениях;

• более операционно пригодны для использования в агентных системах, чем крупные
модели (LLM);

• более экономичны для подавляющего большинства случаев использования языковых
моделей в агентных системах, чем их универсальные крупные аналоги (LLM)
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Малая языковая модель (SLM)
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Примеры преимуществ SLM
• SLM достаточно мощны, чтобы занять место LLM в агентных системах

• Серия Microsoft Phi. Phi-2 (2.7 млрд параметров) демонстрирует результаты в тестах на
здравый смысл и генерацию кода, сопоставимые с моделями на 30 млрд параметров, при
этом работая примерно в 15 раз быстрее. Phi-3 small (7 млрд параметров) демонстрирует
понимание языка и здравый смысл на уровне, сопоставимом с моделями того же
поколения на 70 млрд параметров.

• Семейство NVIDIA Nemotron-H. Гибридные модели Mamba-Transformer на 2/4/8/9 млрд
параметров демонстрируют точность в следовании инструкциям и генерации кода,
сравнимую с LLM того же поколения на 30 млрд параметров, при на порядок
меньших затратах FLOP.

• Серия Hugging Face SmoILM2. Каждая демонстрирует производительность в понимании
языка, вызове инструментов и следовании инструкциям на уровне современных моделей
на 14 млрд параметров, достигая уровня моделей на 70 млрд параметров двухлетней
давности.
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Примеры преимуществ SLM
• NVIDIA Hymba-1.5B. Эта гибридная SLM с архитектурой Mamba и механизмом внимания
(attention) демонстрирует наилучшую точность следования инструкциям и в 3.5
раза большую пропускную способность по токенам, чем трансформерные модели
сопоставимого размера.

• Серия DeepSeek-R1-Distill. Это семейство рассуждающих моделей размером от 1.5 до 8
млрд параметров, обученных на сэмплах, сгенерированных моделью DeepSeek-R1. Они
демонстрируют выдающиеся способности к логическому и здравому рассуждению.

• DeepMini RETRO-7.5B. Это модель на 7.5 млрд параметров, расширенная за счет
обширной внешней текстовой базы данных. Она достигает производительности,
сопоставимой с GPT-3 (175 млрд параметров), в языковом моделировании, используя при
этом в 25 раз меньше параметров.
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Примеры преимуществ SLM
• SLM более экономичны в агентных системах

• Эффективность инференса. Обслуживание SLM на 7 млрд параметров обходится в 10–30
раз дешевле, чем обслуживание LLM на 70–175 млрд параметров.

• Адаптивность дообучения (Fine-tuning agility). Дообучение SLM требуют всего несколько
GPU-часов, что позволяет добавлять, исправлять или специализировать поведение
моделей за одну ночь, а не за недели.

• Периферийное развертывание (Edge deployment). Локальное выполнение SLM на
потребительских GPU, обеспечивая работу агентов в реальном времени и офлайн с более
низкой задержкой и более строгим контролем над данными.

• Эффективность использования пространства параметров и эмбеддингов. SLM могут быть
принципиально более эффективными, поскольку меньшая доля их параметров вносит
вклад в стоимость инференса без заметного влияния на результат.
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Примеры преимуществ SLM
• SLM обладают большей операционной гибкостью по сравнению с LLM.

• SLM по своей природе более гибки, чем их крупные аналоги, при использовании в
агентных системах.

• Демократизация создания агентов.

• Агенты раскрывают лишь очень узкий функционал языковой модели

• Агентное взаимодействие требует точного соответствия поведения

Важно, чтобы сгенерированный вызов инструмента или выходные данные строго
соответствовали формату, который диктуется порядком, типизацией и природой
параметров инструмента или ожиданиями кода, вызывающего модель, соответственно.

• Гетерогенность агентных систем

• Агентные взаимодействия — естественный путь для сбора данных для будущего
улучшения
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Модульный агентный ИИ

12



Недостатки SLM
• Ограниченная универсальность. SLM хорошо справляются с задачами в своих доменах, но
за их пределами становятся менее эффективными.

• Зависимость от качества данных. Если обучающие данные плохие, модель начнет
ошибаться. А в случае SLM это особенно чувствительно: даже немного «шумные» примеры
могут сильно ухудшить работу.

• Узкая база знаний. SLM не обладают широким пониманием языка и мира вокруг нас. Это
плохо в задачах, требующих более глубокого понимания различных тем и доменов.

• Потенциальная предвзятость в конкретных доменах. Даже при хорошей выборке SLM
могут «унаследовать» предвзятости, если они присутствуют в исходных данных.
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Преимущества LLM
• Универсальность. LLM могут справляться с задачами самого разного типа без
специальной донастройки, что делает их адаптируемыми к различным приложениям.

•Глубокое понимание языка. Из-за широты и разнообразия обучающих данных такие
модели «чувствуют язык», структуру текста и общий контекст. Это помогает им решать
сложные языковые задачи.

• Генеративные возможности. LLM превосходно справляются с созданием креативного
контента, такого как рассказы, стихи или компьютерный код.

• Возможности дообучения. LLM могут быть дообучены для выполнения конкретных задач
или работы в определенных доменах, предлагая адаптированные ответы, которые могут
быть более точными или специфичными для домена, что полезно для
специализированных приложений.
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Недостатки LLM
• Ресурсоемкость. Их нужно обучать и запускать на дорогом оборудовании с мощными GPU
и большим объемом памяти. В большинстве случаев их нельзя развернуть локально —
только использовать через API.

• Проблемы предвзятости и справедливости. LLM учатся на «всем интернете», где много
предвзятых или устаревших данных. Из-за этого они могут непреднамеренно
воспроизводить стереотипы.

• Чувствительность к вводу. LLM очень чувствительны к получаемому вводу, так
называемым промптам. Небольшое изменение во входной фразе — и результат может
быть совсем другим, что может повлиять на согласованность и предсказуемость их
ответов.

• Отсутствие глубокого понимания. Несмотря на обширные знания и языковые
возможности, LLM не обладают истинным пониманием мира, особенно в специфических,
профессиональных темах.
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Альтернативный подход
LLM будут иметь преимущество в более общем понимании языка

• Существует немало эмпирических свидетельств превосходства крупных языковых моделей
в общем понимании языка над малыми моделями того же поколения. LLM приобретают
свои способности к пониманию языка в соответствии с законами масштабирования.
Утверждать обратное — значит противоречить законам масштабирования языковых
моделей.

• Недавние исследования утверждают, что LLM обладают механизмом «семантического
хаба» (semantic hub), который позволяет им обобщённым образом интегрировать и
абстрагировать семантическую информацию из различных модальностей и языков.

Из этого можно сделать вывод, что LLM-генералисты всегда будут сохранять
преимущество универсально лучшей производительности на языковых задачах, как бы
узко они ни были определены, по сравнению с малыми языковыми моделями того же
поколения. Это должно быть их преимуществом над SLM при развертывании в агентных
приложениях.

17



Почему всё же SLM
• Популярные исследования законов масштабирования предполагают, что архитектура
модели остается постоянной в пределах одного поколения, тогда как последние работы по
обучению малых языковых моделей демонстрируют явные преимущества в
производительности при использовании разных архитектур для моделей разных размеров.

• Гибкость малых языковых моделей.

• Способность к сложным рассуждениям (что традиционно было сильной стороной
огромных LLM) теперь может быть достигнута и малыми моделями (SLM), если во время их
работы (инференса) применить специальные техники, требующие дополнительных
вычислительных ресурсов.

• Полезность предполагаемого «семантического хаба» проявляется, когда задачи или
входные данные, которые должна обработать модель, являются сложными.
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Препятствия для внедрения
• Значительные первоначальные инвестиции в централизованную инфраструктуру для
инференса LLM.

• Использование генералистских бенчмарков при обучении, проектировании и оценке SLM.

• Недостаток популярной осведомленности.
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Алгоритм конвертации LLM-агента в 
SLM-агента

• Организация сбора данных об использовании.

• Курирование и фильтрация данных.

• Кластеризация задач.

• Выбор SLM.

• Специализированное дообучение (Fine-tuning) SLM.

• Итерация и уточнение.
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