Lecture 1

Modern optimization methods

Classical problem of optimization
methods

Mathematical programming problem:

f(x,y) = max

glx,y) <C
x,y =0

Examples of problems

1. Diet Problem (linear programming problem)

For medical reasons, a person is prescribed to follow a certain daily diet and ensure that the
amount of nutrients in the products meets medical requirements. There are three types of
products P1, P2, P3, which contain certain nutrients NUT1 and NUTZ2. The content of nutrients in
these products (mg) is known (a;;, where i is responsible for the i-th nutrient, j is for the j-th
product, i = 1,2; j = 1,2,3) and the minimum need of the body for nutrients (mg) (b;,i = 1,2).
The cost of one unit of each type of product is also known (cj,j =1,2,3).

It is necessary to draw up a person's nutrition plan as follows: all medical requirements must be
taken into account and the cost of the food basket must be the lowest. That is, to determine in
what quantity a particular product should be purchased, taking into account the existing
restrictions.

Examples of problems

2. The problem of optimal use of resources (linear programming problem)

A factory produces three types of products: P1, P2, P3 (for example, a furniture factory can
produce chairs, tables, sofas). Three different types of resources are spent on their production:
R1, R2, R3 (for example, wood, fabric, electricity). The resource stocks for this factory are known
by, b,, b;, where b;,i = 1,2,3 is the stock of the j-th type of resource. The number of units of each
type of raw material required for the production of each type of product a;;,i,j = 1,2,3 is also
known, that is, the number of units of the i-th type of resource required for the production of the
j-th type of product. The profit from the sale of the j-th type of product is known and equals
¢,j =1,2,3.

It is required to draw up a production plan that allows maximizing the enterprise's profit, taking
into account the existing constraints on resource stocks.

Examples of problems

3. Transport problem (linear programming problem)

The transportation problem is a linear programming problem and its purpose is to
determine the most economical plan for transporting homogeneous goods from
points of departure (warehouses) to points of destination (stores).

It is necessary to determine the minimum cost of transporting the entire goods

Examples of problems

4. The traveling salesman problem

In the theory of computational complexity, the travelling salesman problem (TSP)
asks the following question:

"Given a list of cities and the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once and returns to the origin
city?"

Examples of problems

5. Optimization algorithms on graphs

Algorithms for finding shortest paths; maximum flow problem (a flow defines a
way to transfer certain objects from one point to another).

Examples of problems

6. Modern optimization methods in machine learning

Optimization algorithms are the backbone of machine learning models as they
enable the modeling process to learn from a given data set. These algorithms are
used in order to find the minimum or maximum of an objective function which in
machine learning context stands for error or loss.

Types of functions used in optimization

1. Convex functions. Convex functions are functions that have one global minimum. A
function is called convex if the segment connecting any two points on its graph lies

entirely above the graph.

Convex

Types of functions used in optimization

2. Non-convex functions. Non-convex functions are functions that have several local
minima. The graph of a non-convex function has multiple local minima and/or maxima. It
is not guaranteed to have a single global minimum or maximum.

Not convex

Types of functions used in optimization

3. Limited functions. These functions are unique functions because they have
restrictions on their input variables. Limited functions are mathematical expressions that
are subject to certain restrictions or rules. These constraints can take the form of
equalities or inequalities that the function's inputs and outputs must satisfy.

Objective function = max f(z)

where f(x) = x‘% + x%
and |x1+ x| <6

Optimization algorithms

Optimization algorithms are methods used to find the optimal solution to an
optimization problem, which typically involves finding input values that minimize or

maximize an objective function.

There are different types of optimization algorithms, including those for convex, non-
convex, and constrained functions.

Optimization of convex functions

Convex optimization algorithms are used to solve problems with convex objectiv
functions. These methods are computationally efficient and can find the global
optimum.

Gradient descent. Gradient descent is an optimization approach that updates model
parameters based on the gradient of an objective function.

Newton's Method. Newton's method is an optimization algorithm used to find local
minima and maxima of a function. This is a second-order approach, which means that it
uses the gradient of the function and the Hessian to locally approximate the function
and find the best solution.

Optimization of non-convex functions

-used to solve problems with non-convex objective functions

-these algorithms cannot be guaranteed to achieve a global optimum, they can be used
to find good solutions.

Examples: The SGD, Momentum and Genetic algorithms.

Optimization of non-convex functions

Stochastic Gradient Descent (SGD). SGD is a version of gradient descent that update
parameters using a random subset of the training data, called a mini-batch. This can help
speed up the optimization process and reduce the likelihood of hitting a local minimum.

Adagrad. Adagrad is an optimization method that adjusts the learning rate for each
parameter based on the previous gradient. This can help in the optimization process for
non-convex functions.

Genetic algorithm (GA). GA is a method based on the biological process of natural
selection. It uses the concepts of selection, crossover and mutation to develop new
solutions and determine which one is best.

Optimization of limited functions

-used to solve problems with input variable constraints

-used to determine the best solution given the constraints

Examples: interior point approach, the simplex method, the Lagrange multiplier method,
and sequential quadratic programming.

Optimization of limited functions

Interior Point Method used to solve linear and nonlinear programming problems. It |
based on the idea of finding the best solution by choosing a path within a feasible zone

rather than along its boundary.

Simplex method used for solving linear programming problems. It is based on the
concept of moving from one plausible solution to another by making minor changes to

the current solution.

Optimization of limited functions

Lagrange Multiplier Method: used for determining local maxima and minima of
function subject to constraints. It is based on the introduction of a set of auxiliary
variables, known as Lagrange multipliers, which are used to express constraints.

Sequential Quadratic Programming (SQP): used to solve nonlinear programming
problems. It works by approximating a nonlinear objective function and constraints with
a quadratic function and then iteratively solving the resulting quadratic programming
problem.

Examples of problems solved by modern
optimization methods

Supply Chain Optimization: Companies use optimization algorithms to minimize co
and maximize efficiency in their supply chains. This includes optimizing inventory levels,
transportation routes, and production schedules.

Machine Learning Model Training: Optimization techniques, such as gradient descent,
are used to minimize the loss function in machine learning models, ensuring that
predictions are as accurate as possible.

Portfolio Optimization: In finance, optimization methods help investors select the best
portfolio of assets that maximizes returns for a given level of risk, often using methods
like the Markowitz Efficient Frontier.

Examples of problems solved by modern
optimization methods

Scheduling Problems: Various industries, including airlines and manufacturing, u

optimization to create efficient schedules for employees, machines, and flights, ensuring
that resources are utilized effectively.

Network Design: Telecommunications companies use optimization to design networks

that minimize costs while maximizing coverage and performance, balancing factors like
bandwidth and latency.

Energy Management: In renewable energy, optimization algorithms are used to manage

energy distribution, maximizing the use of renewable sources while minimizing costs and
emissions.

Examples of problems solved by modern
optimization methods

Transportation and Logistics: Companies like Uber and FedEx use route optimizat
algorithms to determine the most efficient paths for delivery and transportation,
reducing fuel costs and delivery times.

Healthcare Resource Allocation: Hospitals use optimization techniques to allocate
resources like staff and equipment effectively, improving patient care while controlling
costs.

Manufacturing Process Optimization: Factories apply optimization to streamline
production processes, reduce waste, and improve product quality by adjusting variables
such as machine settings and workforce allocation.

Urban Planning: City planners use optimization methods to design efficient public
transportation systems, optimize land use, and improve infrastructure, enhancing overall
urban living conditions.

Classical problem of optimization
methods

Mathematical programming problem:

f(x,y) = max

glx,y) <C
x,y =0

Nonlinear programming problems can be divided into two large classes:
unconditional optimization problems and conditional optimization problems.

Classical problem of optimization
methods

Vector x = (x4, X5, ..., X,,), satisfying the constraints of the problem is called a
feasible solution.

The set of feasible solutions to the problem is called the feasible region.

A feasible solution that provides the optimal value of the objective function is
called an optimal solution and is denoted by x~.

Unconstrained minimization problem

f(x) > min,x € S,S c R"

where f(x) is a function of several variables.

A point x* € S is called a point of global minimum of the function f(x) on the set
Sif f(x*) < f(x)forallx €S.

A point x* € S is called a point of strict global minimum of the function f(x) on
thesetSif f(x*) < f(x) forallx € S.

Unconstrained minimization problem

A point x* € s is called a point of local minimum of the function f(x) on the set S if
f(x*) < f(x) for all x e SNnV.(x*), where V.(x*) ={x € R™:||x —x*|| < &} is a ball of
radius £ > 0 with center at the point x* (the e-neighborhood of the point x™).

A point x* € s is called a point of strict local minimum of the function f(x) on the
set Sif f(x*) < f(x)forallx € SNV.(x*), where V,(x*) ={x € R™: ||lx — x™|| <
£} is a ball of radius € > 0 with center at the point x* (the e-neighborhood of the
point x7).

Unconstrained minimization problem

The gradient of a function f(x) is a vector f'(x) whose direction indicates the
direction of greatest increase of the function.

The Hessian matrix H(x) of a function f(x) that is twice continuously
differentiable at a point x is a symmetric square matrix that describes the
behavior of the function in the second order.

Unconstrained minimization problem

The Hessian matrix H(x) of a function f(x) that is twice continuously
differentiable at a point x is a symmetric square matrix that describes the

behavior of the function in the second order.

d%f d%f
5;? 0x10x,
% f % f
0x,0x4 5;3
0 d%f
\ 0x,0x; 0x,0x,

02 f

" 0x,0x,

02 f

" 0x,0x,

0%f
" 0x2

\

Unconstrained minimization problem

Theorem 1 (necessary condition for a local minimum). Let f(x) be a function
differentiable at a point x* € R™. If x™ is a local minimum point, then f'(x*) = 0.

Theorem 2 (sufficient condition for a local minimum). Let f(x) be a twice
differentiable function at a point x* € R™. If f'(x*) = 0 and the Hessian matrix H(x)
is positive definite, then x™ is a local minimum point.

Unconstrained minimization problem

Theorem 3 (Sylvester criterion). For a matrix to be positive definite, it is
necessary and sufficient that all leading principal minors of the matrix be positive.

Leading principal minor of order k is a determinant composed of elements of a
matrix of quadratic form located at the intersection of the first k rows and k
columns of the given matrix.

Example

fx) = x3 — 2x1% + X2 = 3%, — 2X;
1 2

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

fix)

7777

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

Example \

The first color value (yellow) corresponds to the smallest
the second (green) to the largest.

Example

fix) = xi +x3 = (x1+ Xx2)?

Find the local minimum of the function: L4l
f(x) = xf + x5 — (21 + x3)? A

140

120

fix)

100

Example

Find the local minimum of the function:
f(x) = xt + x5 — (x1 + x3)?

The first color value (yellow) corresponds to the

smallest value of the function, the second (green) to the

Example

fiX1, X2) = X3 — 2X1X2 + X3 — 3%, — 2X;

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

7777

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

Example \

The first color value (yellow) corresponds to the smallest
the second (green) to the largest.

Example (math). Python

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

1. Partial derivatives

import sympy as sp
X ¥V = Sp.symbnls('ﬁ F'}

df dx = sp.diff(f, x)

print(“Partial derivative o x:", df dx)

df dy = sp.diff(f, y)
print(“Partial derivative

to y:", df _dy)

Partial derivative with respect to x: 3*x**2 - 2%y - 3
Partial derivative with respect to y: -2%x + 2%y - 2

from scipy.optimize import fsolve from scipy.optimize import fsolve
import numpy as np import numpy as np
import sympy as sp import sympy as sp

- f(x, y): def f(x, y):
return x**3-2%*x*y4y**2-3*x-2%y return x*¥3-2*¥xFy+y**2-3*x-2%y

- df dx(x, y): def df dx(x, y):
return 3*x**%2 - 2%y - 3 return 3*x**2 - 2%y - 3

- df dy(x, y): def df dy(x, y):
return -2¥x + 2¥y - 2 return -2*x + 2%y - 2

- equations(p): def equations(p):
X, Y=p B Y=P
eql = df dx(x, y) eql = df _dx(x, y)
eq2 = df dy(x, y) eq2 = df dy(x, y)
return [eql, eq2] return [eql, eq2]

initial guess = [1, 1] initial guess = [-1, @]

solution = fsolve(equations, initial guess) solution = fsolve(equations, initial guess)

print(solution) print(solution)

[1.66666667 2.66666667 | [-1. eo.]

Example (math). Python

Find the local minimum of the function: Rk LR
3 2
f(X) = X1 — lexz + X2 — 3X1 R 2xZ X, y = sp.symbols('x y"')
2. Hessian matrix f = x*¥*3-2%x*ypy**) 3*x 2%y
hess xx = sp.diff(f, x, 2)

hess xy = hess yx = sp.diff(f, x, y)
hess yy = sp.diff(f, y, 2)

print(“Hessian matrix:")
sp.pprint(hessian matrix)

essian_matrix:
b-x -2

hessian matrix = sp.Matrix(|
hess xx, hess xy]|,
hess yx, hess yy

-2 2

Example (math). Python

Find the local minimum of the function:
f(x) = x3 —2x1%, + x5 — 3x; — 2%,

2. Hessian matrix in point (-1,0).

Eigenvalues of the matrix

essian matrix:
> \
-2 2

import numpy as np

matrix = np.array([[-6,-2], [-2,2]])
eigenvalues = np.linalg.eigvalsh(matrix)
if all(eigenvalues > @):

rint("The matrix is positive definite.")
else:

print("The matrix is not positive definite.™)

The matrix is not positive definite.

import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D

np.linspace(-5, 5, 50)
) np.linspace(-5, 5, 50)
, Y = np.meshgrid(x, y)

|
7 = XFFI_2FXFY4YF*2-3¥X-2%Y
Find the local minimum of the function: fig = plt.figure()
f(x) = xf — lexz + x% —_ 3x1 —_ sz ax = fig.add subplot(111, projection="'3d’

surf = ax.plot surface(X, Y, Z, cmap=plt.cm.coolwarm)

fig.colorbar(surf, shrink=e.5, aspect=180)

ax.set xlabel("X’
ax.set ylabel('Y’
ax.set zlabel('Z'

plt.show()

Example (SciPy). Python

Find the local minimum of the function: i]
4 . — T 200
f(x) = x]:? —_ lexz + x% — 3x1 — sz ' | | | < LT r 150'
1L [T 100
A S 100

T _50 | 0

I 100
4 I 300

Example (SciPy). Python

]
Find the local minimum of the function:

f(x) = x3 — 2xyx, + x5 — 3x; — 2x,

function wrapper(z):
=
return X*¥*3-2FXFY4+Y**2-3%X-2%Y

from scipy.optimize import minimize
x0 = np.array([1, 1])

res = minimize(function wrapper, x©, method="nelder-mead’,
options={'xtol': 1e-8, 'disp’: B

print(res.x)

Optimization terminated successfully.
Current function value: -7.481481
Iterations: 38
Function evaluations: 73
[1.66666233 2.66668387 |
<ipython-input-83-871759682f21>:7: OptimizeWarning: Unknown solver options: xtol
res = minimize(function wrapper, x®, method="nelder-mead’,

Example

Find the local minimum of the function:
f(x) = xt + x5 — (x1 + x3)?

The first color value (yellow) corresponds to the

smallest value of the function, the second (green) to the

import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D

= np.linspace(-5, 5, 50)

X
y = np.linspace(-5, 5, 50)
X, Y = np.meshgrid(x, y)

Z = XFFA4Y*F4- (X+Y) **2

fig = plt.figure() A&
ax = fig.add subplot(111, projection="3d")) ,}120
{1 100(()F» 1000
r 800 | 800
surf = ax.plot surface(X, Y, Z, cmap=plt.cm.coolwarm) L 600
L 400 | [600
- 200 - 400
fig.colorbar(surf, shrink=0.5, aspect=10) 0

l 200
0

ax.set xlabel('x")
ax.set ylabel('Y")
ax.set zlabel('Z")

plt.show()

Example

function wrapper(z):
X, Y =12
return X*¥*4+Y**4- (X+Y)**2

from scipy.optimize import minimize
X0 = np.array([1, 1])
res = minimize(function wrapper, x©, method="nelder-mead’,

options={'xtol': 1e-8, 'disp’: 1)
print(res.x)

Optimization terminated successfully.
Current function value: -2.000000
Iterations: 20
Function evaluations: 41
[1. 1.]
<ipython-1input-85-3f8dbddeeea2>:7: OptimizeWarning: Unknown solver options: xtol
res = minimize(function wrapper, x0, method='nelder-mead’,

Constrained minimization problem

Let us consider the problem of nonlinear programming in general form:
f(x) - min(max)
gi(x)<0,i=1,..,m
hi(.X) = O,l = 1, ,k

For example, task:
f(x) = x¢ + x2 — 4x, > min
xf+x5<9
xt+4x; + x5 +4x, <5
\ X1 — Xy = 1

A

Constrained minimization problem.
Graphic solution

In the case of two variables, the problem can be solved , .
graphically. It is necessary to show the constraints and level o /

lines of the objective function A

vvvvvv

Constrained minimization problem.
Graphic solution

f(x) = x% + x2 > min

(x1x2S4 -
X1+x225 <
X1S7 .a"/
XZS6 /
. x=0 /

. -

Convex functions. Testing a function for

convexity

Nonlinear programming problems with convex functions are well studied and
belong to the section of convex programming, so let's start with the concept of a

convex function.

In mathematics, a real-valued function is called convex
if the line segment between any two distinct points on
the graph of the function lies above or on the graph
between the two points

A

f(b) |-====mmmmmmmmmmmmeeees

Convex functions. Testing a function for
convexity

Algorithm for checking a function for convexity.

1. Construct the Hessian matrix for the function in question.

2. Calculate the principal minors of the Hessian matrix. If all principal minors are
non-negative, then conclude that the function is convex.

The principal minor of the k-th order is the determinant composed of elements of
a matrix of quadratic form located at the intersection of k rows and k columns of
the given matrix with the same numbers.

Convex programming problem

f(x) » min

gi(x)<0,i=1,..,m
x =0

where f(x) and g;(x),i = 1, ..., m are convex

The Lagrange function of a convex programm;r[\g problem is the function

Ly) = F@) +) gi(OA
=1

wherel;,i = 1, ..., m — Lagrange multipliers

Convex programming problem

A point (x*,A%),x* = 0,4 = 0 is called a saddle point of the Lagrange function
if:

L(x*, 1) < L(x* 1) < (x,A"),vx,A=>0

1st Kuhn-Tucker theorem. If (x*, %) is a saddle point of the Lagrange function,
then x™ is an optimal solution to the convex programming problem.

2nd Kuhn-Tucker theorem. For any optimal solution x™ of a regular convex
programming problem, there exists a vector of Lagrange multipliers 1*: (x*, A¥) is
a saddle point of the Lagrange function.

Classification of optimization problems

Classification of optimization problems:

-Unconstrained optimization;

-LP (linear programming);

-MILP (mixed integer linear programming);
-NLP (nonlinear programming);

-MINLP (mixed integer nonlinear programming)

SciPy

Contains a large set of functions for scientific computing, including tools for
solving optimization problems, which are located in the scipy.optimize module.

This module provides methods for solving both nonlinear programming (NLP) and

linear programming (LP) problems, including mixed integer linear programming
(MILP) problems.

SciPy

scipy.optimize module includes the implementation of the following routines:

-Constrained and unconstrained minimization of scalar functions of several variables

(minim) using various algorithms (Nelder-Mead simplex, BFGS, conjugate gradient
Newton, COBYLA and SLSQP);

-Global optimization (e.g.: basinhopping, diff_evolution);

-Minimization of residuals of least squares (least_squares) and nonlinear curve fitting
algorithms of least squares (curve_fit);

-Minimization of scalar functions of one variable (minim_scalar) and root finding
(root_scalar);

-Multivariate solvers of a system of equations (root) using various algorithms (hybrid
Powell, Levenberg-Marquardt or large-scale methods such as Newton-Krylov).

SciPy. Solving the MILP problem

To solve linear programming problems, the optimize submodule has a linprog
function. HiGHS is used by default as a solver for LP(MILP) — it implements the
simplex method (highs-ds) and the interior point method (highs-ipm). When
starting the solution, one of the methods is selected by default; the ability to
force a method is also present.

f(x) =3x; + 3x, = min
x;+x, <8
le_xz = 1

X, —2x, <2

SciPy. Solving the MILP problem xz0x=0

scipy.optimize import linprog

np.array([3., 3.])
A ub = np.array([[1., 1.],[-2., 1.
b ub = np.array([8.0,-1.9,2.0])

bounds = [(®, np.inf), (®, np.inf)]

res milp = linprog(c=c, A ub=A ub, b ub=b ub, bounds=bounds, method="highs")

print(f"solution: x = {list(np.round(res milp['x"'], 2))}, f = {-res milp["fun']}, {res milp['message’]|}")

Solution: x = [3.0, 5.0], ¥ = 24.0, Optimization terminated successfully. (H1GHS Status 7: Optimal)

SciPy. Solving the MILP problem

The scipy.optimize.linprog library provides several methods for solving linear programming problems. Each of them has its own
features, advantages, and limitations. Here are the main methods:

1. ‘highs’

Advantages:

High performance.

Suitable for large and complex problems.

Supports both minimization and maximization problems.

Disadvantages:

Requires installation of additional dependencies (included in the standard scipy package since version 1.6.0).

Recommendations: Use this method by default if you have a modern version of scipy.

SciPy. Solving the MILP problem

2. 'simplex’

Description: The classic simplex method implemented in scipy. This is one of the first methods available in linprog.
Advantages:

Simple and robust.

Works well for small problems.

Disadvantages:

Slower than modern methods (e.g. highs).

May not handle large problems.

Recommendation: Use for small problems or when a classical approach is required.

SciPy. Solving the MILP problem

3. 'interior-point’

Description: The interior point method. This method solves a linear programming problem by approaching the optimal solution
from within a feasible region.

Advantages:

Fast convergence for large problems.

Works well for problems with many variables and constraints.
Disadvantages:

May be less accurate for problems with singular solutions.
Requires more memory than the simplex method.

Recommendation: Use for large problems where speed is important.

SciPy. Solving the MILP problem

4. 'revised simplex’

Description:

An improved version of the simplex method that uses more efficient computational approaches.
Advantages:

More efficient than the classic simplex method.

Suitable for medium-sized problem:s.

Disadvantages:

Slower than the interior point method for large problems.

Recommendations: Use for medium-sized problems where accuracy is important.

Conditional optimization
method="trust-constr"”

The trust-constr method in the minimize function of the scipy.optimize library is
a constrained optimization method based on trust-regions. It is designed to solve

optimization problems with constraints (both linear and nonlinear) and can work
with both continuous and discrete variables.

Conditional optimization
method="trust-constr"”

Main features of the trust-constr method:

Support for constraints.

The method can work with constraints of different types

Suitable for problems with both smooth and non-smooth functions.
Can work with a large number of variables and constraints.

The method provides high accuracy of the solution, especially for problems with
non-linear constraints.

Conditional optimization
method="trust-constr”

f(x) =3x; + 3x, » min
X1 +x, <8
2x; —x, =1
X, —2x, < 2

x; =20,x, =20

f(x) = 3x; + 3x, = min
Xy +x, <8
2x;1 —x, 21

Conditional optimization vy =2, < 2
method="trust-constr" X, > 0,x, > 0

from scipy.optimize import Bounds
bounds = Bounds ([@, 1e9], [0, 1e9])
import numpy as np

from scipy.optimize import minimize

from scipy.optimize import LinearConstraint
linear constraint = LinearConstraint ([[1,1], [-2,1],[1,-2]], [8,-1,2])

[38] objective(x):
x1l, X2 = x
return 3 * x1 + 3 * x2

X0 = np.array([e.5, @])

res = minimize(objective, x@, method='trust-constr’,
constraints=[linear constraint],
options={'verbose': 1}, bounds=bounds)

print(res.x)

Number of iterations: 360, function evaluations: 1077, CG iterations: 350, optimality: 2.65e-14, constraint violation: 1.80e+09, execution time: ©.49 s.
[1.49999979 2.9411815 |

CVXPY. Overview

CVXPY - this package was implemented to solve convex optimization problems. To
solve the problem, it is necessary to perform several steps: define variables, set
the objective function and constraints to form the object of the optimization
problem. After the problem is formulated, before running the solver, the
convexity of the objective function and constraints is checked using the DCP
(Disciplined Convex Programming) rules.

f(x) = xf 4+ x5 —2x; > min
x{+4xs —4dx; —4x, <0

import cvxpy as cp

X = cp.Variable()

y = cp.Variable() X1 + X5 > 4
x =0

objective = cp.Minimize(x**2 + y**2-2%x)

constraints = |
X¥EQpAFY*R) _A¥x-A*y <= 0,
Xty >= 4,
X > 0

assert objective.is dcp(), "Objective function is not convex®
for constraint in constraints:
assert constraint.is dcp(), "Constraint is not convex”

problem = cp.Problem(objective, constraints)
problem.solve()

print("Minimal value:", problem.value)

print(“Optimal x and y:", x.value, y.value)

Minimal value: 3.500000000367045
Optimal x and y: 2.5000000056865748 1.4999999944357738

Transport problem

The transportation problem is a linear programming problem and its purpose is to determine the
most economical plan for transporting goods from points of departure (warehouses) to points of
destination (stores).

Let there be m warehouses 44, 4A,, ..., A,,, from which goods should be transported to n stores
B1,By, ...,By. Let ¢;j,i =1,..,m,j = 1,...,n be the cost of transporting one unit of cargo from
the i-th warehouse to the j-th store (transportation tariff). Let a;,i = 1, ..., m be the cargo stock at
the i-th warehouse; bj,j = 1,...,n — be the cargo demand at the j-th store; Xij,l=1,..,m,j =
1,...,n — be the number of cargo units transported from the i-th departure point to the j-th
destination point. The matrix X = (X;;)mxn is called the transportation plan. The matrix
C = (Cij)mxn is called the tariff matrix.

Transport problem

As the optimality criterion, we will choose the minimum cost of transporting the entire cargo.
Thus, to solve the transport problem is to determine the transportation plan x;;,i =1,..,m,j =
1, ...,n, that is, the amount of cargo that should be transported from the i-th departure point to
the j-th destination point so that all departure points get rid of cargo reserves, and all destination
points receive the required amount of cargo, and at the same time the cost of transporting the
entire cargo is the lowest.

Transport problem

The mathematical model of the transport problem will take the form:

LS T
F = ZZE i Xij — min

i=1j=1

xij = j.,j = 1, vy 1L

Transport problem. Example

Warehouses Stores Stocks

B, B, B; B,

Ay 2 3 4 2 140
X11 X12 X13 X14

A, 8 4 1 4 160
X21 X22 X23 X24

As 9 7 3 6 120
X31 X32 X33 X34
Needs 150 90 100 80

Warehouses

Stores

Stocks

2 140

160

Optimal solution:
Optimal value of the objective function: 1370.0

[140.

0.

0.

90.

70.

result

from scipy.optimize import linprog

stocks = [140, 160,
A ub = [

[1, 1, 1,

(@, @, 9,

linprog(c, A ub=A ub, b ub=stocks, A eg=A eq, b eqg=needs)

print("Optimal value of

print("Optimal solution:™, result.x)

the objective function:™, result.fun)

	Слайд 1, Lecture 1
	Слайд 2, Classical problem of optimization methods
	Слайд 3, Examples of problems
	Слайд 4, Examples of problems
	Слайд 5, Examples of problems
	Слайд 6, Examples of problems
	Слайд 7, Examples of problems
	Слайд 8, Examples of problems
	Слайд 9, Types of functions used in optimization
	Слайд 10, Types of functions used in optimization
	Слайд 11, Types of functions used in optimization
	Слайд 12, Optimization algorithms
	Слайд 13, Optimization of convex functions
	Слайд 14, Optimization of non-convex functions
	Слайд 15, Optimization of non-convex functions
	Слайд 16, Optimization of limited functions
	Слайд 17, Optimization of limited functions
	Слайд 18, Optimization of limited functions
	Слайд 19, Examples of problems solved by modern optimization methods
	Слайд 20, Examples of problems solved by modern optimization methods
	Слайд 21, Examples of problems solved by modern optimization methods
	Слайд 22, Classical problem of optimization methods
	Слайд 23, Classical problem of optimization methods
	Слайд 24, Unconstrained minimization problem
	Слайд 25, Unconstrained minimization problem
	Слайд 26, Unconstrained minimization problem
	Слайд 27, Unconstrained minimization problem
	Слайд 28, Unconstrained minimization problem
	Слайд 29, Unconstrained minimization problem
	Слайд 30, Example
	Слайд 31, Example
	Слайд 32, Example
	Слайд 33, Example
	Слайд 34, Example
	Слайд 35, Example
	Слайд 36, Example (math). Python
	Слайд 37
	Слайд 38, Example (math). Python
	Слайд 39, Example (math). Python
	Слайд 40
	Слайд 41, Example (SciPy). Python
	Слайд 42, Example (SciPy). Python
	Слайд 43, Example
	Слайд 44
	Слайд 45, Example
	Слайд 46, Сonstrained minimization problem
	Слайд 47, Сonstrained minimization problem. Graphic solution
	Слайд 48, Сonstrained minimization problem. Graphic solution
	Слайд 49, Convex functions. Testing a function for convexity
	Слайд 50, Convex functions. Testing a function for convexity
	Слайд 51, Convex programming problem
	Слайд 52, Convex programming problem
	Слайд 53, Classification of optimization problems
	Слайд 54, SciPy
	Слайд 55, SciPy
	Слайд 56, SciPy. Solving the MILP problem
	Слайд 57, SciPy. Solving the MILP problem
	Слайд 58, SciPy. Solving the MILP problem
	Слайд 59, SciPy. Solving the MILP problem
	Слайд 60, SciPy. Solving the MILP problem
	Слайд 61, SciPy. Solving the MILP problem
	Слайд 62, Conditional optimization method="trust-constr"
	Слайд 63, Conditional optimization method="trust-constr"
	Слайд 64, Conditional optimization method="trust-constr"
	Слайд 65, Conditional optimization method="trust-constr"
	Слайд 66, CVXPY. Overview
	Слайд 67
	Слайд 68, Transport problem
	Слайд 69, Transport problem
	Слайд 70, Transport problem
	Слайд 71, Transport problem. Example
	Слайд 72

