Algorithms on graphs
Module 1

Lecture 2
 Graph traversals: depth-first search, breadth-first search and their applications. Part 1

Adigeev Mikhail Georgievich mgadigeev@sfedu.ru

Graph traversals

Graph G=(V,E).
A graph traversal: start at a certain vertex and visit other vertices of G in a specific order.
Traversals let us explore the graph and discover its structure.

- Depth-first traversal (DFS)
- Breadth-first traversal (BFS)

Graph traversals

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Graph connectivity

Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
A path (walk) is a sequence of edges $\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$ such that for each i the end-point vertex of e_{i} is a start-point of e_{i+1}.
Alternative representation: a sequence of vertices $\left\{v_{1}, v_{2}, \ldots, v_{l+1}\right\}$. The number of edges = length of the path.

(7)

Graph connectivity

- A path $\left\{v_{1}, v_{2}, \ldots, v_{l+1}\right\}$ is a cycle iff $v_{1}=v_{i+1}$.
- A vertex v is reachable from the vertex u on G iff there is a path on G from u to v.

(7)

Graph connectivity

- A graph is called (strongly) connected iff for each pair of vertices $\{u, v\}$ there is a path between u and v.
- The maximally connected subgraphs of G are called (strong) connected components.

(7)

Graph connectivity

Problem

Given a graph $G(V, E)$, detect all its connected components.

1. $\{0,1,2,3,4\}$
2. $\{5,6\}$
3. $\{7\}$

Graph connectivity

Solution

1. Mark all vertices as 'unvisited'.

2. While there is an unvisited vertex s :
3. Initialize a new component C_{k}.
4. Start DFS/BFS from s.
5. Visiting a vertex, put it into C_{k}.

DFS: Depth-First Search

Visiting a vertex v, recursively visit (start DFS) each of its unvisited neighbors.

DFS (v)
Mark v as 'visited'
For each u in Adj(v):
if u is unvisited:
DFS (u)

https://en.wikipedia.org/wiki/Depth-first_search

DFS: Depth-First Search

Visiting a vertex v, recursively visit (start DFS) each of its unvisited neighbors.

DFS (v)
Mark v as 'visited'
For each u in Adj(v):
if u is unvisited:
DFS (u)

https://en.wikipedia.org/wiki/Depth-first_search

DFS: Depth-First Search

For graph exploration, we often need to perform some processing before / after recursive DFS.

DFS (v)
PreVisit(v)
Mark v as 'visited'
For each u in Adj(v):
if u is unvisited: DFS(u)
PostVisit(v)

DFS: explicit stack implementation

```
StackDFS(G)
Select s\inV
Push(s)
While (stack is not empty):
    v = Pop()
    if v is unvisited:
    Mark v as 'visited'
    For each u in Adj(v):
    Push(u)
```

DFS: example

BFS: Breadth-First Search

Visiting a vertex v, visit each of its unvisited neighbors, then neighbors of the neighbors, etc.

BFS: Breadth-First Search

For keeping this order of visiting, we need to store neighbor vertices until we get them for processing.

We need a queue.

https://en.wikipedia.org/wiki/Breadth-first_search

BFS: queue-based implementation

```
BFS (G)
Select }s\in
Enqueue (s)
While (Queue is not empty):
    v = Dequeue()
    if v is unvisited:
    Mark v as 'visited'
    For each u in Adj (v):
                        Enqueue (u)
```


BFS: applications

1) Detecting connected components.
2) Calculating distances.

Principal idea: visiting a vertex v, visit each of its unvisited neighbors, then neighbors of the neighbors, etc.

BFS: applications

Graph G=(V,E).
A distance between vertices u and v is the minimum length of the path between u and v. $\operatorname{dist}(\mathrm{A}, \mathrm{E})=2$

BFS: applications

Weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), w: E \rightarrow R$
A distance between vertices u and v is the minimum weight (=sum of edges' weights) of the path between u and v.

$$
\operatorname{dist}(\mathrm{A}, \mathrm{E})=18
$$

BFS: applications

For unweighted graphs distances from $s \in V$ to all other vertices can be calculated using BFS.
For weighted graphs: Dijkstra's algorithm works like BFS and calculates distances (from $s \in V$ to all other vertices) on a graph.

