Algorithms and Data Structures

Module 1

Lecture 3 Graph traversals: depth-first search, breadth-first search and their applications. Part 2

Adigeev Mikhail Georgievich

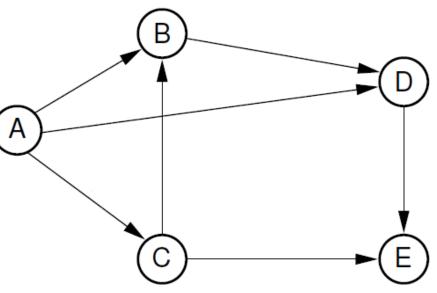
mgadigeev@sfedu.ru

BFS: calculating distances

Graph G=(V,E).

A *distance* between vertices *u* and *v* is the minimum length of the path between *u* and *v*.

dist(A,E) = 2



BFS: calculating distances

For unweighted graphs distances from $s \in V$ to all other vertices can be calculated using BFS.

Idea of the algorithm: BFS starts from s and traverses G with 'waves'. Each wave is formed in one iteration of the loop For each u in Adj(v)

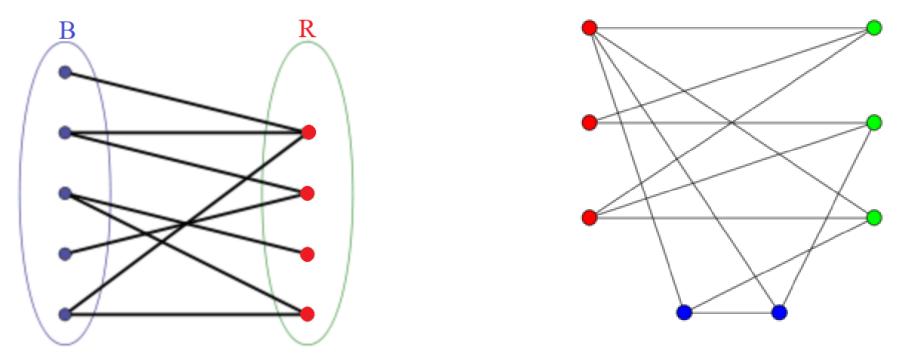
Wave number = distance from s to the vertex which was reached in this wave.

BFS: calculating distances

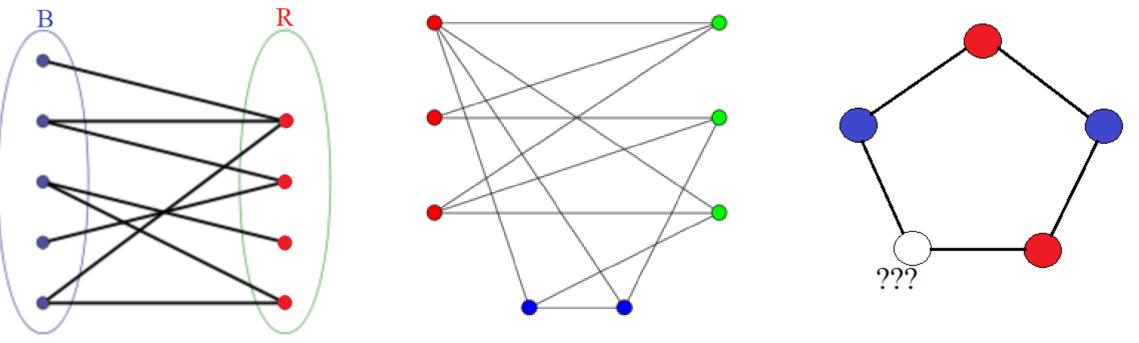
BFS Visit(s)

```
For each v \in V \setminus \{s\}: Dist[v] := +\infty;
Dist[s] := 0;
Queue.Enqueue(s);
While (!Queue.IsEmpty())
   v = Queue.Dequeue();
   For each u in Adj(v)
         If State[u] = `unvisited'
              State[u] := `visited';
              Pred[u] := v;
              Dist[u] := Dist[v]+1;
              Queue.Enqueue(u);
   State[v] := 'processed';
```

Graph G(V, E) is called *bipartite* iff its vertex set V can be partitioned into two disjoint subsets (*parts*): $V = B \cup R$ such that for each edge $e \in E$ the endpoints of e belong to different subsets.



<u>Theorem</u>. Graph G(V, E) is *bipartite* iff it has no cycles of odd length. <u>Corollary</u>: trees and forests are bipartite graphs.



Algorithm for bipartiteness check.

Let G(V, E) be a connected graph.

1. $R = B = \emptyset$

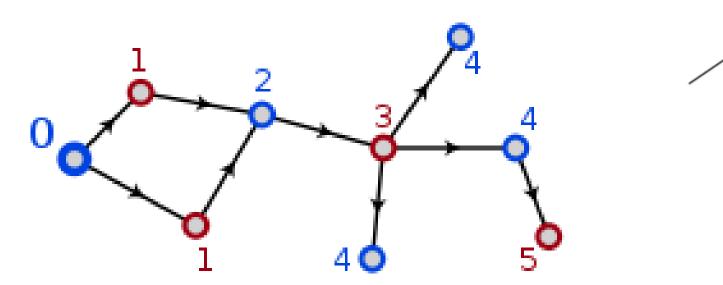
- 2. Select any $s \in V$. d[s]=0.
- 3. Calculate d[v] distances from s to all other vertices.
- 4. For each $v \in V$:

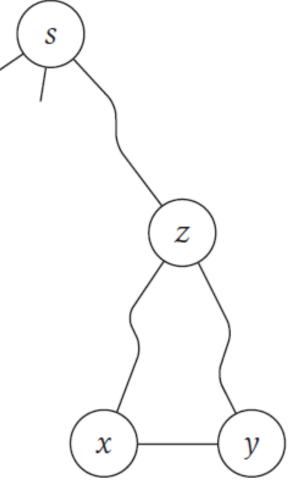
if d[v] is odd: $R = R \cup \{v\}$

else: $B = B \cup \{v\}$

5. Scan thru E and check whether the condition holds.

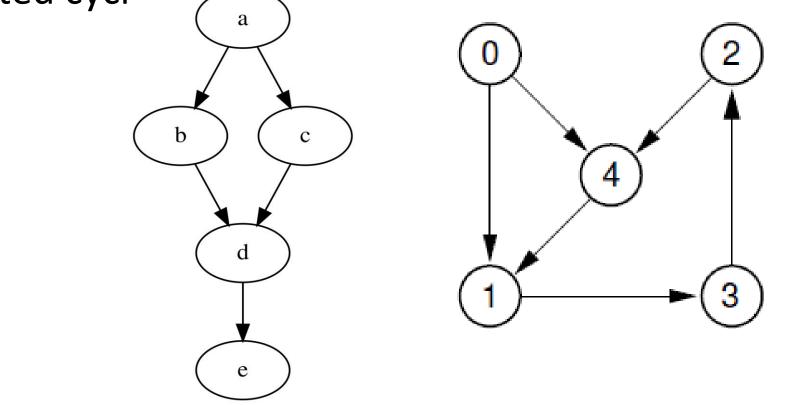
Time complexity: O(|V| + |E|)





DFS: Detecting cycles

DAG = directed acyclic graph = directed graph with no directed cycl



DFS: Detecting cycles

DFS(V)

Mark v as 'visited'

Mark v as 'active'

For each u in Adj(v):

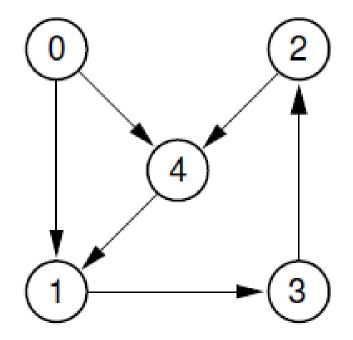
if *u* is unvisited:

DFS(u)

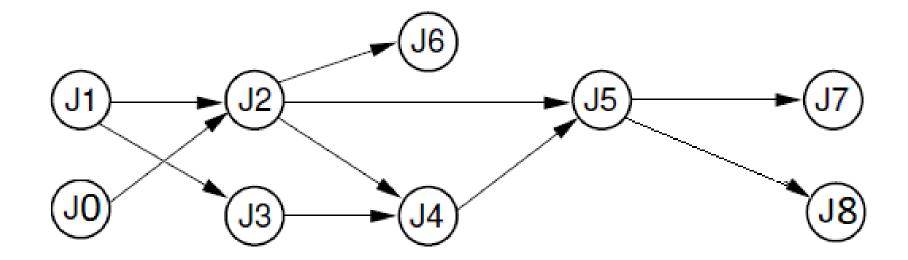
else if u is `active':

a cycle found!!!

Mark v as `inactive'



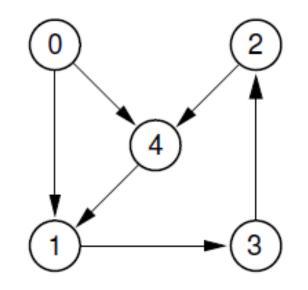
Topological ordering (sort) is vertex numbering $\tau: V \leftrightarrow \{1, ..., |V|\}$: there are no edges (u,v) in $G: \tau(u) > \tau(v)$.



Graphs: definition (lecture 01)

$v \in V$:

- ✓ deg(v) *degree* of vertex v = number of edges incident to v.
- ✓ outdeg(v) out-degree of vertex v = number of edges which start from v.
- ✓ indeg(v) in-degree of vertex v = number of edges which end at v.
- $\checkmark v$ is a *source* iff indeg(v) = 0
- $\checkmark v$ is a *sink* iff outdeg(v) = 0



Assign a vertex 'topological number' just before leaving this vertex: initialize CurTopNum with n = |V|, then run DFS:

DFS(v)

PreVisit(v)

Mark v as 'visited'

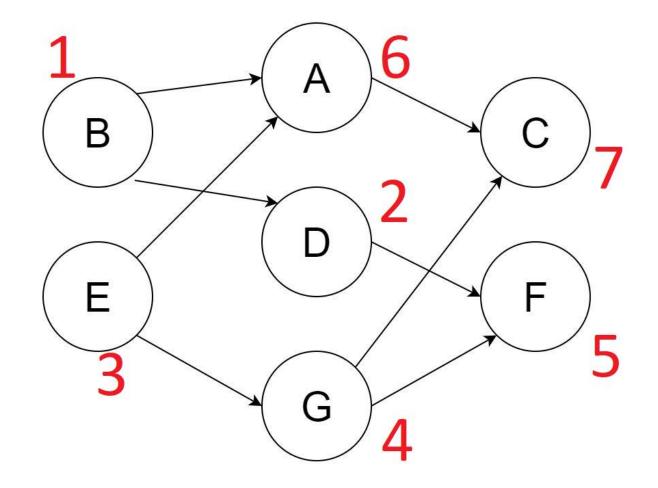
For each u in Adj(v):

<u>PostVisit(v)</u>

TopNum[v] = CurTopNum

CurTopNum--

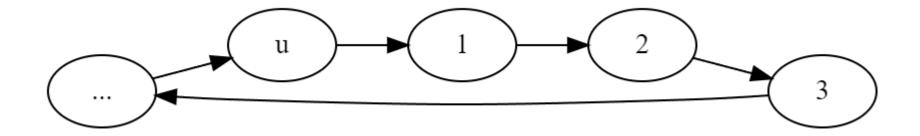
if u is unvisited: DFS(u)
PostVisit(v)



<u>Theorem</u>. A directed graph G has a topological sort iff G is a DAG. Proof

 \Rightarrow Suppose that G is not acyclic, i.e. it contains a directed cycle.

In this case, the vertices of the cycle cannot be numerated according the topological sort requirement.



 \Leftarrow Let G(V,E) be a DAG. Let us see, how topological sort for G can be built.

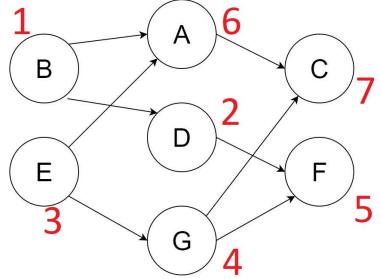
Statement. Any DAG has at least one source and at least one sink.

Algorithm for Topological sort based on sources:

- 1. Create counter and initialize it with 1.
- 2. While |V| > 0
 - Find a source and assign it the current counter value.
 - Remove this source from the graph.
 - Increase the counter by 1.

The resulting numeration is a topological sort.

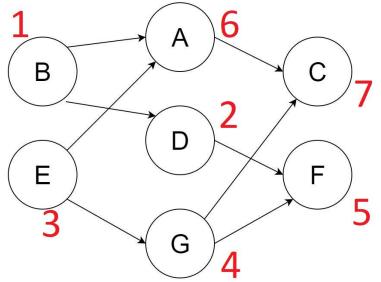
- 1) All vertices have numbers. This is due to the fact that after removing a source the graph is still a DAG, so the algorithm is running until all vertices are numbered.
- 2) For each arc, the number of the starting vertex is less than the number of the finishing vertex.



DFS can also be used for building topological sort.

- 1. Create counter and initialize it with the number of vertices (n = |V|).
- 2. Run depth-first-search. Before leaving a vertex, assign it the current counter value as the topological number; the counter is decreased by 1.

Complexity of the topological sort: O(n + m).



```
DFS TopSort(G)
For each v \in V:
   State[v] := `unvisited';
   Pred[v] := NULL;
   Time In[v] := NULL;
   Time Out[v] := NULL;
   TopNum[v] := NULL;
CurTime : = 0;
CurTopNum : = n;
For each v \in V:
   If State[v] = `unvisited'
        DFS TopSort Visit(v);
```

```
<u>DFS TopSort Visit(v)</u>
State[v] := `visited';
CurTime := CurTime + 1;
Time In[v] := CurTime;
For each u in Adj(v)
   If State[u] = `unvisited'
        Pred[u] := v;
        DFS Visit(u);
State[v] := 'processed';
CurTime := CurTime + 1;
Time Out[v] := CurTime;
TopNum[v] := CurTopNum;
CurTopNum := CurTopNum - 1;
```