
Algorithms and Data Structures

Module 2

Lecture 7
Minimum spanning trees: 

Prim’s algorithm

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru



Prim’s algorithm

2

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.
1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅
2. Array C[1..n], P[1..n].

• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).



Prim’s algorithm

3

Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):

𝐶 𝑢 = 𝑤(𝑣, 𝑢)

𝑃 𝑢 = 𝑣



Prim’s algorithm

4



Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.
1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅
2. Array C[1..n], P[1..n].

• 𝐶 𝑠 = 0; P[1..n]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).

Prim’s algorithm

5

n-1 iterations
???

O(1)

???



Prim’s algorithm

6

Let us evaluate the total complexity of Update_C&P
calls. Actually, we update C[] and P[] at most one 
time for each edge => the total complexity is 𝑂(𝑚).

The complexity of searching for the closest 𝑣 ∈ 𝑉\V𝑇
depends on the implementation.



Prim’s algorithm

7

1) Naïve implementation: scan 𝑉\V𝑇 and search for the 
minimum value of 𝐶[𝑣]. Each scan needs 𝑂(𝑛) time 
=> the total time complexity is 𝑂 𝑚 + 𝑛2 = 𝑂(𝑛2).

2) Use a priority queue for keeping 𝐶[𝑣] and getting the 
minimum value at each iteration. The total complexity 
depends on the priority queue implementation:
a) Binary heap: 𝑂 𝑚 log 𝑛

b) Fibonacci heap: 𝑂 𝑚 + 𝑛 log 𝑛



Priority queue: definition

• Priority queue is an abstract data structure which allows to 
efficiently append new items and select an item with the highest 
priority.

• ‘Priority’ means numeric values attached to items.

• ‘The highest’ means either ‘the maximum’ or ‘the minimum’ value 
of priority. Priority queue must be build as either ‘max’ or ‘min’ 
priority queue; for a max-priority queue one can select an item with 
the maximum priority and cannot select the minimum priority item, 
and vice versa.

• Priority queue is not a queue…

8



Priority queue: definition

Priority queue is an abstract data structure which efficiently implements 
operations:

• Init(n) – initialize an empty priority queue with n possible items.

• Build(S) – build priority queue containing items of S.

• Add(x, prior) – add item x with priority prior to the priority queue.

• GetMin() / GetMax() – get the item with the highest priority.

• DelMin() / DelMax() – delete the item with the highest priority.

▪ ChangePriority(x, new_prior) – change the priority of x to 
new_prior.

9



Priority queue: definition

For Prim’s algorithm we apply: 

• At the initialization phase:
✓ Add(x,prior) – n times

• At the main phase:
✓ GetMin() – n times

✓ ChangePriority(x,new_priority) – O(m) times.

10



Prim’s algorithm

11

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.
1. 𝑇 𝑉𝑇, 𝐸𝑇 : 𝑉𝑇 = {𝑠}, 𝐸𝑇 = ∅
2. Array C[1..n], P[1..n].

• 𝐶 𝑠 = 0; P[s]=s.
• For each 𝑣 ∈ 𝑉\V𝑇: 𝐶 𝑣 = 𝑤(𝑠, 𝑣); 𝑃 𝑣 = 𝑠

3. While 𝑉𝑇 ≠ 𝑉:
• Find 𝑣 ∈ 𝑉\V𝑇: 𝑣 has minimum 𝐶[𝑣]
• Add 𝑣 to V𝑇; add (𝑃 𝑣 , 𝑣) to 𝐸𝑇
• Update_C&P(v).



Prim’s algorithm

12

Update_C&P(v)
For each 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ 𝑉\V𝑇 and 𝐶 𝑢 > 𝑤(𝑣, 𝑢):

𝐶 𝑢 = 𝑤(𝑣, 𝑢)

𝑃 𝑢 = 𝑣

If we use a heap for storing 𝐶 𝑢 ,

the time complexity is 𝑂(𝑚 ⋅ log 𝑛) .



Trees

13

Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions 
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single 
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.



Prim’s algorithm

14

Definition. Let 𝐺′ be a spanning tree of 𝐺 and 
edge (𝑢, 𝑣) belongs to 𝐺′. If we delete (𝑢, 𝑣)
from 𝐺′, the tree 𝐺′ is split into 2 components
(p.3 from the theorem). Let 𝛿(𝐺′, 𝑢, 𝑣 ) denote 
the cut, i.e. the set of edges whose endpoints 
belong to different components of the forest.



Prim’s algorithm

15

Theorem (Cut Criterion).

A spanning tree 𝐺′ 𝑉′, 𝐸′ is 
minimal iff for each tree edge 
𝑢, 𝑣 ∈ 𝐸′ and any non-tree 

edge 𝑥, 𝑦 ∈ 𝛿(𝐺′, (𝑢, 𝑣)), the 
following condition holds: 
𝑤 𝑢, 𝑣 ≤ 𝑤(𝑥, 𝑦).



Prim’s algorithm

16

Theorem. Prim’s algorithm builds a minimum spanning tree.

Proof.

Let 𝐺′(𝑉, 𝐸′) be the result of Prim’s algorithm. The structure of the algorithm
guarantees that 𝐺′ is a spanning tree. Let us prove that 𝐺′ is a minimum
spanning tree.

Let us demonstrate that 𝐺′ satisfies the cut criterion of optimality. Let 𝑢, 𝑣 be
an arbitrary tree edge. Suppose the cut criterion is violated for 𝐺′. It means that

a non-tree edge 𝑥, 𝑦 ∈ 𝛿 𝐺′, 𝑢, 𝑣 exists such that 𝑤 𝑢, 𝑣 ≥ 𝑤(𝑥, 𝑦). But

it means that 𝑥, 𝑦 should be added to 𝐺′ instead of 𝑢, 𝑣 which makes a
contradiction. QED.


	Слайд 1, Algorithms and Data Structures  Module 2  Lecture 7 Minimum spanning trees:  Prim’s algorithm
	Слайд 2, Prim’s algorithm
	Слайд 3, Prim’s algorithm
	Слайд 4, Prim’s algorithm
	Слайд 5, Prim’s algorithm
	Слайд 6, Prim’s algorithm
	Слайд 7, Prim’s algorithm
	Слайд 8, Priority queue: definition
	Слайд 9, Priority queue: definition
	Слайд 10, Priority queue: definition
	Слайд 11, Prim’s algorithm
	Слайд 12, Prim’s algorithm
	Слайд 13, Trees
	Слайд 14, Prim’s algorithm
	Слайд 15, Prim’s algorithm
	Слайд 16, Prim’s algorithm

