
Algorithms on Graphs

Module 2

Lecture 9
Shortest paths, part 2

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

Dijkstra’s algorithm

2

Dijkstra’s* algorithm solves the Single Source Shortest Path
problem (SSSP), i.e. problems 1 and 2 from slide 5.

For simplicity, we will consider the case of directed graphs.

This algorithm can be constructed as a kind of dynamic
programming.

* See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the historical survey and the discussion about
the titles of algorithms.

http://jeffe.cs.illinois.edu/teaching/algorithms/

Dijkstra’s algorithm

3

Let us start from a recursive expression for the value to
be calculated, i.e. distance.

Let 𝛿(𝑣) denote the distance (= the weight of the
shortest path) from the given source vertex 𝑠 to a certain
vertex 𝑣.

Dijkstra’s algorithm

4

A naïve way to define 𝛿(𝑣) is this:

𝛿 𝑣 = ൝
0, 𝑣 = 𝑠

min
𝑢,𝑣 ∈𝐸

{𝛿 𝑢 + 𝑤(𝑢, 𝑣)} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

But this recurrence is valid for DAGs only. If the graph
contains a directed cycle, we cannot use this recurrence
directly.

Dijkstra’s algorithm

5

To overcome this issue, we introduce the second parameter 𝑖. Let
𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠 to 𝑣 which
contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dijkstra’s algorithm

6

The pseudocode of the algorithm:

// Vertices are identified with

// their indices, 0..n-1

Create matrix d[0..n, 0..n-1].

// Initialization

d[0,s] = 0

for v = 0 to n-1:

if v != s then d[0,v] = ∞

Dijkstra’s algorithm

7

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

Dijkstra’s algorithm

8

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]
Each edge is processed exactly once.
The order does not matter!

Dijkstra’s algorithm

9

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

Dijkstra’s algorithm

10

// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v]

then d[i,v]=d[i-1,u]+w[u,v]

We can omit index i !!!

Dijkstra’s algorithm

11

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v]

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.

Dijkstra’s algorithm: non-negative edges

12

Let us see at the Dijkstra’s algorithm for the general case.

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v]

then d[v]=d[u]+w[u,v]

For the case of non-negative edges, we can organize calculations in
a way that each edge is processed at most once.

Dijkstra’s algorithm: non-negative edges

13

For the case of non-negative edges, we can organize
calculations in a way that each edge is processed at most
once.

In order to get such improvement we need to analyze and
process vertices in the order of increasing their distances from
𝑠. We select an unprocessed vertex 𝑣 with the minimum
tentative distance from 𝑠 and build the shortest path to 𝑣 by
augmenting the path to some other previously processed
vertex (the predecessor of 𝑣).

Dijkstra’s algorithm: non-negative edges

14

The initialization is essentially the same:

// Vertices are identified with

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞

Dijkstra’s algorithm: non-negative edges

15

But we will use a priority queue similar to BFS. The keys
will be the tentative distances from 𝑠 to all other vertices

for v = 0 to n-1: Enqueue(v,d[v]);

Then we iteratively process vertices; at each iteration we
select the vertex with the minimum tentative distance.

Dijkstra’s algorithm: non-negative edges

16

While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

Each vertex is extracted from the priority queue only once. Hence, each
edge is processed at most once. Hence, time complexity: 𝑂 𝑚 ⋅ log 𝑛 ,
where 𝑚 is the quantity of edges, 𝑂 log 𝑛 is the complexity of a priority
queue operation. Time complexity of the general version: 𝑂 𝑛𝑚

Further issues

17

In the next lecture we will explore more issues related to the
shortest path problem:

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).

