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Dijkstra’s* algorithm solves the Single Source Shortest Path 
problem (SSSP), i.e. problems 1 and 2 from slide 5.

For simplicity, we will consider the case of directed graphs.

This algorithm can be constructed as a kind of dynamic 
programming.

* See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the historical survey and the discussion about 
the titles of algorithms.

http://jeffe.cs.illinois.edu/teaching/algorithms/
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Let us start from a recursive expression for the value to 
be calculated, i.e. distance.

Let 𝛿(𝑣) denote the distance (= the weight of the 
shortest path) from the given source vertex 𝑠 to a certain 
vertex 𝑣.
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A naïve way to define 𝛿(𝑣) is this:

𝛿 𝑣 = ൝
0, 𝑣 = 𝑠

min
𝑢,𝑣 ∈𝐸

{𝛿 𝑢 + 𝑤(𝑢, 𝑣)} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

But this recurrence is valid for DAGs only. If the graph 
contains a directed cycle, we cannot use this recurrence 
directly.
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To overcome this issue, we introduce the second parameter 𝑖. Let  
𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠 to 𝑣 which 
contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The pseudocode of the algorithm:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n, 0..n-1].

// Initialization

d[0,s] = 0

for v = 0 to n-1:

if v != s then d[0,v] = ∞
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]
Each edge is processed exactly once.
The order does not matter!
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]
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// Filling the table

for i=1 to n-1:

for each vertex v:

d[i,v] = d[i-1,v]

for each edge (u,v):

if d[i-1,u]+w[u,v]<d[i,v] 

then d[i,v]=d[i-1,u]+w[u,v]

We can omit index i !!!



Dijkstra’s algorithm

11

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.
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Let us see at the Dijkstra’s algorithm for the general case.

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

For the case of non-negative edges, we can organize calculations in 
a way that each edge is processed at most once.
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For the case of non-negative edges, we can organize 
calculations in a way that each edge is processed at most 
once.

In order to get such improvement we need to analyze and 
process vertices in the order of increasing their distances from 
𝑠. We select an unprocessed vertex 𝑣 with the minimum 
tentative distance from 𝑠 and build the shortest path to 𝑣 by 
augmenting the path to some other previously processed 
vertex (the predecessor of 𝑣).



Dijkstra’s algorithm: non-negative edges

14

The initialization is essentially the same:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞
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But we will use a priority queue similar to BFS. The keys 
will be the tentative distances from 𝑠 to all other vertices

for v = 0 to n-1: Enqueue(v,d[v]);

Then we iteratively process vertices; at each iteration we 
select the vertex with the minimum tentative distance.
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While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

Each vertex is extracted from the priority queue only once. Hence, each 
edge is processed at most once. Hence, time complexity: 𝑂 𝑚 ⋅ log 𝑛 , 
where 𝑚 is the quantity of edges, 𝑂 log 𝑛 is the complexity of a priority 
queue operation. Time complexity of the general version: 𝑂 𝑛𝑚
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In the next lecture we will explore more issues related to the 
shortest path problem:

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).


