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Let  𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠
to 𝑣 which contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The pseudocode of the algorithm:

// Vertices are identified with 

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞
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// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] 

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.
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In the next lecture we will explore more issues related to 
shortest path problem:

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).
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Besides calculating distances, for many applications we need 
to build the shortest paths themselves.

Due to the principle of optimality, the shortest paths from a 
given source vertex to all other vertices make the shortest 
path tree.

We can build the shortest path to 𝑣 by augmenting the path 
to some other previously processed vertex (the predecessor of 
𝑣).
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The principal idea is similar to the BFS-based version of 
the algorithm: during the run of the algorithm we keep 
the predecessors for all vertices in an array 𝑝[0. . 𝑛 − 1].

Vertex 𝑢 is the predecessor of the vertex 𝑣 iff we update 
𝑑[𝑣] while processing the edge (𝑢, 𝑣).
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// Vertices are identified with 

// their indices, 0..n-1

Create matrices d[0..n-1], p[0..n-1].

// Initialization

d[s] = 0; p[s] = NULL;

for v = 0 to n-1:

if v != s then 

d[v] = ∞; p[v] = NULL;
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Dijkstra’s algorithm for the general case:

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v];

p[v] = u;
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Dijkstra’s algorithm for the case of non-negative edges:
While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then 

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

p[v] = u;
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Building a shortest path from 𝑠 to 
𝑣: start from 𝑣 and reconstruct 
the path backward to 𝑠. We move 
from a current vertex 𝑢

to 𝑥 = 𝑝 𝑢 , then to 𝑦 = 𝑝 𝑥 ,… , 
until we get 𝑠.

The shortest 𝑠 ⇝ 𝑎 path is:
𝑠 ⟶ 𝑓 ⟶ 𝑏 ⟶ 𝑎
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Problem 3: Find distances and the shortest paths from 𝑠 to 𝑡 for all pairs of 
vertices.

The result we need: distance matrix 𝐷 = {𝑑[𝑖, 𝑗]}, where 𝑑 𝑖, 𝑗 is the 
distance from 𝑖 to 𝑗.

An obvious way to solve this problem: for each 𝑣 ∈ 𝑉 find the shortest 
paths from 𝑣 (as a source vertex 𝑠) to all other vertices. The overall 
complexity:

• 𝑂 𝑛𝑚 ⋅ log 𝑛 for non-negative weights’ case;

• 𝑂 𝑛4 for the general case.
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Let us try to apply the dynamic programming approach 
to this problem. (We still consider the case of graphs 
without negative cycles.)

At first we write the recurrence for this problem. 

We will apply the approach which differs from that of 
Dijkstra’s algorithm.
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Let us number the vertices from 1 to 𝑛, the order does 
not matter.

Let 𝜋(𝑢, 𝑣, 𝑟) denote the shortest path from 𝑢 to 𝑣 that 
passes through only vertices numbered at most 𝑟. That 
is, the intermediate vertices of 𝜋(𝑢, 𝑣, 𝑟) should have 
numbers at most 𝑟.



All-to-all shortest paths problem

16

• The path 𝜋(𝑢, 𝑣, 0) cannot pass through any intermediate vertices, so 
it must be the edge from u to v. If 𝑢 and 𝑣 are not adjacent, 𝜋(𝑢, 𝑣, 0)
is undefined.

• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it 
doesn’t.
o If 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r, it consists of a subpath from u to r, 

followed by a subpath from r to v. Both of those subpaths pass through only 
vertices numbered at most 𝑟 − 1. Moreover, those subpaths are as short 
(have as little weight) as possible with this restriction. So the two subpaths
must be 𝜋(𝑢, 𝑟, 𝑟 − 1) and 𝜋(𝑟, 𝑣, 𝑟 − 1).
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• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it 
doesn’t.
• …

• On the other hand, if 𝜋(𝑢, 𝑣, 𝑟) does not pass through vertex r, then it passes 
through only vertices numbered at most 𝑟 − 1, and it must be the shortest 
path with this restriction. So in this case, we must have 𝜋 𝑢, 𝑣, 𝑟 =
𝜋(𝑢, 𝑣, 𝑟 − 1).
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Hence, the following recurrence holds for the distances:

𝛿 𝑢, 𝑣, 𝑟 = ൞

𝑤 𝑢, 𝑣 , 𝑖𝑓 𝑟 = 0

min
𝛿 𝑢, 𝑣, 𝑟 − 1 ,

𝛿 𝑢, 𝑟, 𝑟 − 1 + 𝛿 𝑟, 𝑣, 𝑟 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

All we need is to implement this recurrence in code.
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// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1] 
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// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1] 

We do not need the 3rd dimention for D.

The order is arbitrary, in fact.
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Floyd-Warshall algorithm:
// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v] // We just copy matrix: D = W

// Fill in matrix D

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

Time complexity: 𝑂(𝑛3).
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To build the shortest paths, we trace the maximum 

number of intermediate vertices on the shortest path: 

p[u,v].

Update these values every time we update d[u,v].
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// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v]

p[u,v] = NULL

// Fill in matrices D and P

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

p[u,v] = r
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Building a shortest path from 𝑢 to 𝑣: start 
from the pair of the endpoints: 𝑢, 𝑣 and 
iteratively fill in the intermediate vertices 
according to 𝑝[. , . ]. 

The process of building the shortest 𝑠 ⇝ 𝑎
path:

𝑠, 𝑎; 𝑝 𝑠, 𝑎 = 𝑓

𝑠, 𝑓, 𝑎; 𝑝 𝑠, 𝑓 = 𝑁𝑈𝐿𝐿, 𝑝 𝑓, 𝑎 = 𝑏;

𝑠, 𝑓, 𝑏, 𝑎.


