
Algorithms on Graphs

Module 2

Lecture 10
Shortest paths, part 3

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

Dijkstra’s algorithm

2

Let 𝛿(𝑖, 𝑣) denote the minimum weight of a path from 𝑠
to 𝑣 which contains at most 𝑖 edges.

𝛿 𝑖, 𝑣 =

0, 𝑖𝑓 𝑣 = 𝑠 𝑎𝑛𝑑 𝑖 = 0
∞, 𝑖𝑓 𝑣 ≠ 𝑠 𝑎𝑛𝑑 𝑖 = 0

min[
𝛿 𝑖 − 1, 𝑣 ,

min
𝑢,𝑣 ∈𝐸

𝛿 𝑖 − 1, 𝑢 + 𝑤 𝑢, 𝑣
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Dijkstra’s algorithm

3

The pseudocode of the algorithm:

// Vertices are identified with

// their indices, 0..n-1

Create matrix d[0..n-1].

// Initialization

d[s] = 0

for v = 0 to n-1:

if v != s then d[v] = ∞

Dijkstra’s algorithm

4

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v]

then d[v]=d[u]+w[u,v]

Time complexity: 𝑂 𝑛𝑚 , 𝑛 = 𝑉 ,𝑚 = |𝐸|.

Further issues

5

In the next lecture we will explore more issues related to
shortest path problem:

• Building the shortest paths, in addition to the distances.

• Problem 3 (all-to-all shortest paths problem).

Dijkstra’s algorithm: building paths

6

Besides calculating distances, for many applications we need
to build the shortest paths themselves.

Due to the principle of optimality, the shortest paths from a
given source vertex to all other vertices make the shortest
path tree.

We can build the shortest path to 𝑣 by augmenting the path
to some other previously processed vertex (the predecessor of
𝑣).

Dijkstra’s algorithm: building paths

7

Dijkstra’s algorithm: building paths

8

The principal idea is similar to the BFS-based version of
the algorithm: during the run of the algorithm we keep
the predecessors for all vertices in an array 𝑝[0. . 𝑛 − 1].

Vertex 𝑢 is the predecessor of the vertex 𝑣 iff we update
𝑑[𝑣] while processing the edge (𝑢, 𝑣).

Dijkstra’s algorithm: building paths

9

// Vertices are identified with

// their indices, 0..n-1

Create matrices d[0..n-1], p[0..n-1].

// Initialization

d[s] = 0; p[s] = NULL;

for v = 0 to n-1:

if v != s then

d[v] = ∞; p[v] = NULL;

Dijkstra’s algorithm: building paths

10

Dijkstra’s algorithm for the general case:

// Filling the table

for i=1 to n-1:

for each edge (u,v):

if d[u]+w[u,v]<d[v] then

d[v]=d[u]+w[u,v];

p[v] = u;

Dijkstra’s algorithm: building paths

11

Dijkstra’s algorithm for the case of non-negative edges:
While (Queue is not empty):

u = GetMin()

DelMin()

for each edge (u,v):

if d[u]+w[u,v]<d[v] then

d[v]=d[u]+w[u,v]

ChangePriority(v, d[v])

p[v] = u;

Dijkstra’s algorithm: building paths

12

Building a shortest path from 𝑠 to
𝑣: start from 𝑣 and reconstruct
the path backward to 𝑠. We move
from a current vertex 𝑢

to 𝑥 = 𝑝 𝑢 , then to 𝑦 = 𝑝 𝑥 ,… ,
until we get 𝑠.

The shortest 𝑠 ⇝ 𝑎 path is:
𝑠 ⟶ 𝑓 ⟶ 𝑏 ⟶ 𝑎

All-to-all shortest paths problem

13

Problem 3: Find distances and the shortest paths from 𝑠 to 𝑡 for all pairs of
vertices.

The result we need: distance matrix 𝐷 = {𝑑[𝑖, 𝑗]}, where 𝑑 𝑖, 𝑗 is the
distance from 𝑖 to 𝑗.

An obvious way to solve this problem: for each 𝑣 ∈ 𝑉 find the shortest
paths from 𝑣 (as a source vertex 𝑠) to all other vertices. The overall
complexity:

• 𝑂 𝑛𝑚 ⋅ log 𝑛 for non-negative weights’ case;

• 𝑂 𝑛4 for the general case.

All-to-all shortest paths problem

14

Let us try to apply the dynamic programming approach
to this problem. (We still consider the case of graphs
without negative cycles.)

At first we write the recurrence for this problem.

We will apply the approach which differs from that of
Dijkstra’s algorithm.

All-to-all shortest paths problem

15

Let us number the vertices from 1 to 𝑛, the order does
not matter.

Let 𝜋(𝑢, 𝑣, 𝑟) denote the shortest path from 𝑢 to 𝑣 that
passes through only vertices numbered at most 𝑟. That
is, the intermediate vertices of 𝜋(𝑢, 𝑣, 𝑟) should have
numbers at most 𝑟.

All-to-all shortest paths problem

16

• The path 𝜋(𝑢, 𝑣, 0) cannot pass through any intermediate vertices, so
it must be the edge from u to v. If 𝑢 and 𝑣 are not adjacent, 𝜋(𝑢, 𝑣, 0)
is undefined.

• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it
doesn’t.
o If 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r, it consists of a subpath from u to r,

followed by a subpath from r to v. Both of those subpaths pass through only
vertices numbered at most 𝑟 − 1. Moreover, those subpaths are as short
(have as little weight) as possible with this restriction. So the two subpaths
must be 𝜋(𝑢, 𝑟, 𝑟 − 1) and 𝜋(𝑟, 𝑣, 𝑟 − 1).

All-to-all shortest paths problem

17

• For any integer r > 0, either 𝜋(𝑢, 𝑣, 𝑟) passes through vertex r or it
doesn’t.
• …

• On the other hand, if 𝜋(𝑢, 𝑣, 𝑟) does not pass through vertex r, then it passes
through only vertices numbered at most 𝑟 − 1, and it must be the shortest
path with this restriction. So in this case, we must have 𝜋 𝑢, 𝑣, 𝑟 =
𝜋(𝑢, 𝑣, 𝑟 − 1).

All-to-all shortest paths problem

18

Hence, the following recurrence holds for the distances:

𝛿 𝑢, 𝑣, 𝑟 = ൞

𝑤 𝑢, 𝑣 , 𝑖𝑓 𝑟 = 0

min
𝛿 𝑢, 𝑣, 𝑟 − 1 ,

𝛿 𝑢, 𝑟, 𝑟 − 1 + 𝛿 𝑟, 𝑣, 𝑟 − 1
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

All we need is to implement this recurrence in code.

All-to-all shortest paths problem

19

// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1]

All-to-all shortest paths problem

20

// Initialization

for all vertices u:

for all vertices v:

d[u,v,0] = w[u,v]

// Fill in matrix D

for r from 1 to n:

for all vertices u:

for all vertices v:

if d[u,v,r-1] < d[u,r,r-1]+d[r,v,r-1] then

d[u,v,r] = d[u,v,r-1]

else

d[u,v,r] = d[u,r,r-1]+d[r,v,r-1]

We do not need the 3rd dimention for D.

The order is arbitrary, in fact.

Floyd-Warshall algorithm

21

Floyd-Warshall algorithm:
// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v] // We just copy matrix: D = W

// Fill in matrix D

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

Time complexity: 𝑂(𝑛3).

Floyd-Warshall algorithm: building paths

22

To build the shortest paths, we trace the maximum

number of intermediate vertices on the shortest path:

p[u,v].

Update these values every time we update d[u,v].

Floyd-Warshall algorithm

23

// Initialization

for all vertices u:

for all vertices v:

d[u,v] = w[u,v]

p[u,v] = NULL

// Fill in matrices D and P

for all vertices r:

for all vertices u:

for all vertices v:

if d[u,v] > d[u,r]+d[r,v] then

d[u,v] = d[u,r]+d[r,v]

p[u,v] = r

Floyd-Warshall algorithm

24

Building a shortest path from 𝑢 to 𝑣: start
from the pair of the endpoints: 𝑢, 𝑣 and
iteratively fill in the intermediate vertices
according to 𝑝[. , .].

The process of building the shortest 𝑠 ⇝ 𝑎
path:

𝑠, 𝑎; 𝑝 𝑠, 𝑎 = 𝑓

𝑠, 𝑓, 𝑎; 𝑝 𝑠, 𝑓 = 𝑁𝑈𝐿𝐿, 𝑝 𝑓, 𝑎 = 𝑏;

𝑠, 𝑓, 𝑏, 𝑎.

