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Definition. Matching (match) on a graph 𝐺(𝑉, 𝐸) is a 
subset of edges 𝑀 ⊆ 𝐸 such that no two share a vertex.
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• Definition. Perfect matching is a matching that covers all 
vertices of the graph. A vertex is called covered by an edge if 
they are incident.

• Definition. A matching is called maximal if the graph has no 
matching with greater cardinality (number of edges).

It is evident that any perfect 

matching is maximal, but the

converse is not true in general.
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Let 𝑀 be a matching on the graph 𝐺(𝑉, 𝐸).

• Definition. An alternating path for 𝑀 is a path that 
alternates between edges in 𝑀 and edges not in M.

• Definition. Vertex 𝑣 is called matched (saturated), if 
it is incident to some edge in 𝑀, and is called 
unmatched (exposed) otherwise.

• Definition. An alternating path is called an 
augmenting path iff both of it’s endpoints are 
unmatched.

NB: all these notions are with respect to the given M.
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Statement. An augmenting path contains odd number of edges, and 
the number of matched edges is 1 greater than the number of 
unmatched edges.
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Let 𝑀 be a matching on graph 𝐺(𝑉, 𝐸).

Theorem. Matching 𝑀 is maximal for 𝐺 iff 𝐺 has no augmenting path 
for 𝑀.

Proof

 Let 𝑀 be a maximal matching. Suppose, 𝐺 has an augmenting path
𝜋. Let us build a new matching 𝑀′ such that it coincides with 𝑀 beyond 
𝜋 and is a complement to 𝑀 on edges of 𝜋.



Matchings

7

Due to the previous statement, 𝑀′ = 𝑀 + 1. So, we have a contradiction, 
and 𝑀 is not a maximal matching.
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 Let 𝐺 has no augmenting path for 𝑀. 

Let 𝑀∗be a maximal matching.

Let us consider 𝐺′ which is the partial graph made by the edge set
𝑀∆𝑀∗, where ∆ stands for the symmetric difference (𝑀∆𝑀∗ =
𝑀 ∪𝑀∗ \(𝑀 ∩𝑀∗)).

Each vertex on 𝐺′ has degree not greater than 2. Thus, each connected 
component of 𝐺′ is either an isolated vertex or a path or a cycle.

It is evident that 𝐺′ cannot contain a cycle with odd number of edges, 
because either 𝑀 or 𝑀∗ would not be a matching.
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Let us consider possible types of paths on 𝐺′.

Path of type (b) is augmenting for 𝑀, path of type (d) is augmenting for 𝑀∗.
Thus, 𝐺′ cannot contain such paths.
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Thus, 𝐺′ is composed of alternating cycles of even length and 
alternating paths of even length. This implies 𝑀 = 𝑀∗ . 

Thus, 𝑀 is a maximal matching.

Q.E.D.

The part «» of the proof contains description of the procedure for 
building a new matching with an augmenting path, and the new 
matching has 1 edge greater than the current matching.
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Edmonds’ algorithm for building a maximal matching

Idea of the algorithm:

1) Build the initial matching 𝑀. We can use some kind of greedy algorithm to build 
such matching.

2) Iterationally increase the size of the current matching while this is possible:

• Build an augmenting path.

• Use this augmenting path to increase the matching.

How can we build an augmenting path?
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To build an augmenting path, we can use alternating / augmenting paths and trees.

Building an alternating tree:

1) Select an arbitrary unmatched vertex as a starting vertex. This vertex becomes 
the root of the tree and is classified as an outer vertex.

2) Expand the tree by adding new edges to the leaves, following the rule:
a) If the leaf is an outer vertex, add all incident unmatched edges and their 

endpoints (if they are not in the tree yet). The newly added vertices 
become inner vertices.

b) If the leaf is an inner vertex and it is matched, add the incident matched 
edge and the endpoint of this edge. The newly added vertex becomes an 
outer vertex.
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Black vertices are inner and while vertices are outer. Matched edges are shown in blue.
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Within this procedure the following situations can occur:

1) We added the tree an inner vertex which is unmatched. In this case, an 
augmenting path is found; this path starts at the tree root and finished at 
this unmatched vertex.
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2) At step (2a) we found an edge connecting the current outer vertex with 
an inner vertex. In this case, an even length cycle is found. Continue the 
procedure.
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2) At step (2a) we found an edge connecting two outer vertices of the tree. 
In this case, an odd length cycle is found. (This case cannot occur for 
bipartite graphs!)
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To be more precise, a blossom is found. A blossom is a cycle of odd (2𝑘 +
1) length with 𝑘 inner vertices and 𝑘 + 1 outer vertices and one of the outer 
vertices is connected to the alternating tree’s root with an alternating path.

In this case, we should shrink the blossom. This operation means that we 
contract all vertices of the blossom into a new quasivertex 𝑣′; all vertices of 
the graph that were adjacent to the blossom’s vertices, become neighbours
of the new vertex 𝑣′. Shrinking the blossom results in the new graph 𝐺′ and 
the new matching 𝑀′ on it.

Theorem. There is an augmenting path for 𝑀 on 𝐺  there is an 
augmenting path for 𝑀′ on 𝐺′.

(without proof).
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4) The algorithm cannot expand the alternating tree any longer. This means 
that all leaves of the tree are outer vertices adjacent to the inner vertices 
of the tree. But not all vertices of the graph are in the tree. Such tree is 
called Hungarian. Такое дерево называется венгерским.

In this case, select a new unmatched vertex as a root of the new 
alternating tree and run the procedure again.
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In the end of the algorithm, either an augmenting path is found, or the graph 
is split into a set of alternating trees connected with edges. In the latter case, 
the current matching is maximal.

If some blossoms were shrinked, we must expand them to restore the initial 
graph and build the maximal matching on it.

To expand a blossom, we replace the quasivertex with an initial cycle. Since 
the cycle has odd (2𝑘 + 1) length, we always can add 𝑘 edges of the cycle 
to the current matching to build a valid augmented matching for the initial 
graph.



Matchings

20



Matchings

21



Matchings

22



Matchings

23

Let us evaluate the time complexity of the algorithm.

• To find an augmenting path, without considering blossom shrinking, takes
time 𝑂 𝑚 = 𝑂(𝑛2).

• A naïve implementation of shrinking one blossom takes time 𝑂 𝑚 =
𝑂 𝑛2 . The number of recurrent shrinkings can be as much as 𝑂(𝑛). 

• Thus, the overall time complexity of finding one augmenting path is 𝑂(𝑛3).

• We can need up to 𝑂 𝑛 of iterations of finding an augmenting path + 
applying the found path to augment the current matching.

Thus, the overall time complexity of the algorithm is 𝑂(𝑛4).
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If we use a smarter implementation of the blossom shrinking (keep and 
process the differences between 𝐺′ and 𝐺, not the whole 𝐺′), the overall time 
complexity of the Edmonds’ algorithm is 𝑂(𝑛3).

The fastest algorithm for building maximal matching is an improved version 
of the Edmonds’ algorithm and has time complexity 𝑂( 𝑛 ⋅ 𝑚).
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