
Algorithms on Graphs

Module 3

Lecture 11
Matchings

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

Matchings

2

Definition. Matching (match) on a graph 𝐺(𝑉, 𝐸) is a
subset of edges 𝑀 ⊆ 𝐸 such that no two share a vertex.

Matchings

3

• Definition. Perfect matching is a matching that covers all
vertices of the graph. A vertex is called covered by an edge if
they are incident.

• Definition. A matching is called maximal if the graph has no
matching with greater cardinality (number of edges).

It is evident that any perfect

matching is maximal, but the

converse is not true in general.

Matchings

4

Let 𝑀 be a matching on the graph 𝐺(𝑉, 𝐸).

• Definition. An alternating path for 𝑀 is a path that
alternates between edges in 𝑀 and edges not in M.

• Definition. Vertex 𝑣 is called matched (saturated), if
it is incident to some edge in 𝑀, and is called
unmatched (exposed) otherwise.

• Definition. An alternating path is called an
augmenting path iff both of it’s endpoints are
unmatched.

NB: all these notions are with respect to the given M.

Matchings

5

Statement. An augmenting path contains odd number of edges, and
the number of matched edges is 1 greater than the number of
unmatched edges.

Matchings

6

Let 𝑀 be a matching on graph 𝐺(𝑉, 𝐸).

Theorem. Matching 𝑀 is maximal for 𝐺 iff 𝐺 has no augmenting path
for 𝑀.

Proof

 Let 𝑀 be a maximal matching. Suppose, 𝐺 has an augmenting path
𝜋. Let us build a new matching 𝑀′ such that it coincides with 𝑀 beyond
𝜋 and is a complement to 𝑀 on edges of 𝜋.

Matchings

7

Due to the previous statement, 𝑀′ = 𝑀 + 1. So, we have a contradiction,
and 𝑀 is not a maximal matching.

Matchings

8

 Let 𝐺 has no augmenting path for 𝑀.

Let 𝑀∗be a maximal matching.

Let us consider 𝐺′ which is the partial graph made by the edge set
𝑀∆𝑀∗, where ∆ stands for the symmetric difference (𝑀∆𝑀∗ =
𝑀 ∪𝑀∗ \(𝑀 ∩𝑀∗)).

Each vertex on 𝐺′ has degree not greater than 2. Thus, each connected
component of 𝐺′ is either an isolated vertex or a path or a cycle.

It is evident that 𝐺′ cannot contain a cycle with odd number of edges,
because either 𝑀 or 𝑀∗ would not be a matching.

Matchings

9

Let us consider possible types of paths on 𝐺′.

Path of type (b) is augmenting for 𝑀, path of type (d) is augmenting for 𝑀∗.
Thus, 𝐺′ cannot contain such paths.

Matchings

10

Thus, 𝐺′ is composed of alternating cycles of even length and
alternating paths of even length. This implies 𝑀 = 𝑀∗ .

Thus, 𝑀 is a maximal matching.

Q.E.D.

The part «» of the proof contains description of the procedure for
building a new matching with an augmenting path, and the new
matching has 1 edge greater than the current matching.

Matchings

11

Edmonds’ algorithm for building a maximal matching

Idea of the algorithm:

1) Build the initial matching 𝑀. We can use some kind of greedy algorithm to build
such matching.

2) Iterationally increase the size of the current matching while this is possible:

• Build an augmenting path.

• Use this augmenting path to increase the matching.

How can we build an augmenting path?

Matchings

12

To build an augmenting path, we can use alternating / augmenting paths and trees.

Building an alternating tree:

1) Select an arbitrary unmatched vertex as a starting vertex. This vertex becomes
the root of the tree and is classified as an outer vertex.

2) Expand the tree by adding new edges to the leaves, following the rule:
a) If the leaf is an outer vertex, add all incident unmatched edges and their

endpoints (if they are not in the tree yet). The newly added vertices
become inner vertices.

b) If the leaf is an inner vertex and it is matched, add the incident matched
edge and the endpoint of this edge. The newly added vertex becomes an
outer vertex.

Matchings

13
Black vertices are inner and while vertices are outer. Matched edges are shown in blue.

Matchings

14

Within this procedure the following situations can occur:

1) We added the tree an inner vertex which is unmatched. In this case, an
augmenting path is found; this path starts at the tree root and finished at
this unmatched vertex.

Matchings

15

2) At step (2a) we found an edge connecting the current outer vertex with
an inner vertex. In this case, an even length cycle is found. Continue the
procedure.

Matchings

16

2) At step (2a) we found an edge connecting two outer vertices of the tree.
In this case, an odd length cycle is found. (This case cannot occur for
bipartite graphs!)

Matchings

17

To be more precise, a blossom is found. A blossom is a cycle of odd (2𝑘 +
1) length with 𝑘 inner vertices and 𝑘 + 1 outer vertices and one of the outer
vertices is connected to the alternating tree’s root with an alternating path.

In this case, we should shrink the blossom. This operation means that we
contract all vertices of the blossom into a new quasivertex 𝑣′; all vertices of
the graph that were adjacent to the blossom’s vertices, become neighbours
of the new vertex 𝑣′. Shrinking the blossom results in the new graph 𝐺′ and
the new matching 𝑀′ on it.

Theorem. There is an augmenting path for 𝑀 on 𝐺  there is an
augmenting path for 𝑀′ on 𝐺′.

(without proof).

Matchings

18

4) The algorithm cannot expand the alternating tree any longer. This means
that all leaves of the tree are outer vertices adjacent to the inner vertices
of the tree. But not all vertices of the graph are in the tree. Such tree is
called Hungarian. Такое дерево называется венгерским.

In this case, select a new unmatched vertex as a root of the new
alternating tree and run the procedure again.

Matchings

19

In the end of the algorithm, either an augmenting path is found, or the graph
is split into a set of alternating trees connected with edges. In the latter case,
the current matching is maximal.

If some blossoms were shrinked, we must expand them to restore the initial
graph and build the maximal matching on it.

To expand a blossom, we replace the quasivertex with an initial cycle. Since
the cycle has odd (2𝑘 + 1) length, we always can add 𝑘 edges of the cycle
to the current matching to build a valid augmented matching for the initial
graph.

Matchings

20

Matchings

21

Matchings

22

Matchings

23

Let us evaluate the time complexity of the algorithm.

• To find an augmenting path, without considering blossom shrinking, takes
time 𝑂 𝑚 = 𝑂(𝑛2).

• A naïve implementation of shrinking one blossom takes time 𝑂 𝑚 =
𝑂 𝑛2 . The number of recurrent shrinkings can be as much as 𝑂(𝑛).

• Thus, the overall time complexity of finding one augmenting path is 𝑂(𝑛3).

• We can need up to 𝑂 𝑛 of iterations of finding an augmenting path +
applying the found path to augment the current matching.

Thus, the overall time complexity of the algorithm is 𝑂(𝑛4).

Matchings

24

If we use a smarter implementation of the blossom shrinking (keep and
process the differences between 𝐺′ and 𝐺, not the whole 𝐺′), the overall time
complexity of the Edmonds’ algorithm is 𝑂(𝑛3).

The fastest algorithm for building maximal matching is an improved version
of the Edmonds’ algorithm and has time complexity 𝑂(𝑛 ⋅ 𝑚).

	Слайд 1, Algorithms on Graphs Module 3 Lecture 11 Matchings
	Слайд 2, Matchings
	Слайд 3, Matchings
	Слайд 4, Matchings
	Слайд 5, Matchings
	Слайд 6, Matchings
	Слайд 7, Matchings
	Слайд 8, Matchings
	Слайд 9, Matchings
	Слайд 10, Matchings
	Слайд 11, Matchings
	Слайд 12, Matchings
	Слайд 13, Matchings
	Слайд 14, Matchings
	Слайд 15, Matchings
	Слайд 16, Matchings
	Слайд 17, Matchings
	Слайд 18, Matchings
	Слайд 19, Matchings
	Слайд 20, Matchings
	Слайд 21, Matchings
	Слайд 22, Matchings
	Слайд 23, Matchings
	Слайд 24, Matchings

