


Python GUI Programming

with Tkinter

Second Edition

Design and build functional and user-

friendly GUI applications Alan D. Moore

BIRMINGHAM—MUMBAI

Python GUI Programming with

Tkinter Second Edition

Copyright © 2021 Packt Publishing All rights reserved. No

part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means,

without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical

articles or reviews.



Every effort has been made in the preparation of this book

to ensure the accuracy of the information presented.

However, the information contained in this book is sold

without warranty, either express or implied. Neither the

author, nor Packt Publishing or its dealers and distributors,

will be held liable for any damages caused or alleged to

have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark

information about all of the companies and products

mentioned in this book by the appropriate use of capitals.

However, Packt Publishing cannot guarantee the accuracy

of this information.

Producer: Tushar Gupta Acquisition Editor – Peer

Reviews: Suresh Jain Project Editor: Namrata Katare

Content Development Editor: Lucy Wan Copy Editor:

Safis Editing Technical Editor: Karan Sonawane

Proofreader: Safis Editing Indexer: Subalakshmi

Govindhan Presentation Designer: Ganesh Bhadwalkar

First published: May 2018 Second edition: October 2021

Production reference: 1261021

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-592-5

www.packt.com

http://www.packt.com/


Contributors

About the author

Alan D. Moore has been coding in Python since 2005. He

lives in Franklin, Tennessee, where he develops database

apps for the local government. His technical interests

include Python, JavaScript, Linux, and analog electronics.

In his free time, he publishes coding videos on the YouTube

channel Alan D Moore Codes, makes music, builds guitar

effects, volunteers at his church and scout troop, and helps

his wife raise their five children.

Profound thanks to Lucy and Alejandro, without whom this

book would be riddled with errors; to Cara and the kids for

their support and encouragement; and to the Python and

Tcl/Tk communities for providing such great software. God

bless you all!

About the reviewer

Alejandro Rodas de Paz is a computer engineer from

Seville, Spain. He has developed several professional and

academic Python projects, from artificial intelligence

algorithms to DevOps scripting.

Prior to this publication, Alejandro wrote the Packt titles

Python Game Development by Example and Tkinter GUI

Application Development Cookbook. He also collaborated



as a technical reviewer on the book Tkinter GUI Application

Development Hotshot.

I would like to thank and dedicate this work to my sister

Belen, whose next year will be the beginning of a long and

joyful journey. Wish you all the best on this next chapter of

life.



Contents

Preface

Who this book is for

What this book covers

To get the most out of this book

Get in touch

1. Introduction to Tkinter

Introducing Tkinter and Tk

Choosing Tkinter

Installing Tkinter

Installing Python 3.9 on Windows

Installing Python 3 on macOS

Installing Python 3 and Tkinter on Linux

Introducing IDLE

Using the shell mode of IDLE

Using the editor mode of IDLE

IDLE as a Tkinter example

Creating a Tkinter Hello World

An overview of basic Tkinter

Building a GUI with Tkinter widgets

Arranging our widgets with geometry managers

Making the form actually do something

Handling data with Tkinter control variables

Using control variables in a callback function

The importance of control variables

Summary

2. Designing GUI Applications

Analyzing a problem at ABQ AgriLabs

Assessing the problem

Gathering information about the problem

Interviewing the interested parties

Analyzing what we've found out

Information from the data originators



Information from the users of the application

Information from technical support

Information from the data consumer

Documenting specification requirements

Contents of a simple specification

Writing the ABQ data entry program

specification

Designing the application

Deciding on input widgets

Grouping our fields

Laying out the form

Laying out the application

Evaluating technology options

Summary

3. Creating Basic Forms with Tkinter and Ttk Widgets

The Ttk widget set

The Label widget

The Entry widget

The Spinbox widget

The Checkbutton widget

The Radiobutton widget

The Combobox widget

The Text widget

Text widget indices

The Button widget

The LabelFrame widget

Implementing the application

First steps

Building the data record form

The Record Information section

The Environment Data section

The Plant Data section

Finishing the GUI

Writing the callback functions

The Reset function

The Save callback



Finishing up and testing

Summary

4. Organizing Our Code with Classes

A primer on Python classes

The advantages of using classes

Classes are an integral part of Python

Classes make relationships between data

and functions explicit

Classes help create reusable code

Syntax of class creation

Attributes and methods

Magic attributes and methods

Public, private, and protected members

Inheritance and subclasses

Using classes with Tkinter

Improving Tkinter classes

Creating compound widgets

Building encapsulated components

Subclassing Tk

Rewriting our application using classes

Adding a StringVar to the Text widget

Passing in a variable

Synchronizing the widget to the variable

Synchronizing the variable to the widget

Creating a more advanced LabelInput()

Creating a form class

Creating an application class

Summary

5. Reducing User Error with Validation and Automation

Validating user input

Strategies to prevent data errors

Validation in Tkinter

The validate argument

The validatecommand argument

The invalidcommand argument

Creating validated widget classes



Creating a Date field

Implementing validated widgets in our GUI

Introducing the power of multiple inheritance

Building a validating mixin class

Building validating input widgets with

ValidatedMixin

Requiring data

Creating a Date widget

A better Combobox widget

A range-limited Spinbox widget

Validating Radiobutton widgets

Updating our form with validated widgets

Implementing validation interaction between

form widgets

Dynamically updating the Spinbox range

Dynamic disabling of fields

Displaying errors

Preventing form submission on error

Automating input

Date automation

Automating Plot, Lab, Time, and Technician

Summary

6. Planning for the Expansion of Our Application

Separating concerns

The MVC pattern

What is a model?

What is a view?

What is a controller?

Why complicate our design?

Structuring our application directory

Basic directory structure

The abq_data_entry.py file

The README.rst file

Populating the docs folder

Making a Python package

Splitting our application into multiple files



Creating the models module

Moving the widgets

Moving the views

Removing redundancy in our view logic

Using custom events to remove tight

coupling

Creating the application file

Running the application

Using version control software

A super-quick guide to using Git

Initializing and configuring a Git repository

Adding and committing code

Viewing and using our commits

Summary

7. Creating Menus with Menu and Tkinter Dialogs

Solving problems in our application

Planning solutions to the issues

Implementing Tkinter dialogs

Error dialogs with the Tkinter messagebox

Showing error dialogs in ABQ Data Entry

Using filedialog

Using simpledialog and creating a custom dialog

Creating a Login dialog using simpledialog

Incorporating the LoginDialog in our class

Designing the application menu

The Tkinter Menu widget

Using Checkbutton and Radiobutton items

Implementing the ABQ application menu

Adding a Help menu

Adding a File menu

Adding a settings menu

Finishing the menu

Persisting settings

Building a model for settings persistence

Using the settings model in our application

Summary



8. Navigating Records with Treeview and Notebook

Implementing read and update in the model

Adding read and update to the CSVModel class

Implementing get_all_records()

Implementing get_record()

Adding update capability to save_record()

The Ttk Treeview

Anatomy of a Treeview

Building a file browser

Creating and configuring a Treeview

Populating a Treeview with data

Sorting Treeview records

Using Treeview virtual events

Implementing a record list with Treeview

Creating the RecordList class

Configuring a Treeview widget

Adding a scrollbar for the Treeview

Populating the Treeview

Adding the record list to the application

Modifying the record form for read and update

Adding a current record property

Adding a label to show what is being edited

Adding a load_record() method

Updating the application layout

The Ttk Notebook widget

Adding a notebook to our application

Adding and updating application callbacks

The _show_recordlist() method

The _populate_recordlist() method

The _new_record() method

The _open_record() method

The _on_save() method

Main menu changes

Testing our program

Summary

9. Improving the Look with Styles and Themes



Working with images in Tkinter

Tkinter PhotoImage

PhotoImage and variable scope

Using Pillow for extended image support

Adding the company logo to ABQ Data Entry

Dealing with the image path problem

Setting a window icon

Adding icons to buttons and menus

Using BitmapImage

Styling Tkinter widgets

Widget color properties

Using widget properties on the MainMenu

Styling widget content with tags

Styling our record list with tags

Working with fonts in Tkinter

Configuring Tkinter fonts

Configuring fonts with strings and tuples

The font module

Giving users font options in ABQ Data Entry

Styling Ttk widgets

TTk styling breakdown

Exploring a Ttk widget

Using themes

Adding some color to ABQ Data Entry

Adding styles to individual form widgets

Fixing the error colors

Styling input widgets on error

Setting themes

Building a theme selector

Summary

10. Maintaining Cross-Platform Compatibility

Writing cross-platform Python

Filenames and file paths across platforms

Path separators and drives

Case sensitivity

Symbolic links



Path variables

Inconsistent library and feature support

Python's platform-limited libraries

Checking low-level function compatibility

The dangers of the subprocess module

Text file encodings and formats

Graphical and console modes

Writing code that changes according to the

platform

Writing cross-platform Tkinter

Tkinter version differences across platforms

Application menus across platforms

Menu widget capabilities

Menu guidelines and standards

Menus and accelerator keys

Cross-platform fonts

Cross-platform theme support

Window zoomed state

Improving our application's cross-platform

compatibility

Storing preferences correctly

Specifying an encoding for our CSV file

Making platform-appropriate menus

Preparing our MainMenu class

Adding accelerators

Building the Windows menu

Building the Linux menu

Building the macOS menu

Creating and using our selector function

Summary

11. Creating Automated Tests with unittest

Automated testing basics

A simple unit test

The unittest module

Writing a test case

TestCase assertion methods



Fixtures

Using Mock and patch

Running multiple unit tests

Testing Tkinter code

Managing asynchronous code

Simulating user actions

Specifying an event sequence

Managing focus and grab

Getting widget information

Writing tests for our application

Testing the data model

Testing file reading in get_all_records()

Testing file saving in save_record()

More tests on the models

Testing our Application object

Testing our widgets

Unit testing the ValidatedSpinbox widget

Integration testing the ValidatedSpinbox

widget

Testing our mixin class

Summary

12. Improving Data Storage with SQL

PostgreSQL

Installing and configuring PostgreSQL

Configuring PostgreSQL using the GUI utility

Configuring PostgreSQL using the command

line

Modeling relational data

Primary keys

Using surrogate primary keys

Normalization

First normal form

Second normal form

Third normal form

More normalization forms

Entity-relationship diagrams



Assigning data types

Creating the ABQ database

Creating our tables

Creating the lookup tables

The lab_checks table

The plot_checks table

Creating a view

Populating the lookup tables

Connecting to PostgreSQL with psycopg2

psycopg2 basics

Parameterized queries

Special cursor classes

Integrating SQL into our application

Creating a new model

Saving data

Getting the current seed sample for the plot

Adjusting the Application class for the SQL

backend

Implementing SQL logins

Updating the Application._on_save() method

Removing file-based code

Adjusting the DataRecordForm for SQL data

Reordering fields

Fixing the load_record() method

Improving auto-fill

Updating the RecordList for the SQLModel

We're done!

Summary

13. Connecting to the Cloud

HTTP using urllib

HTTP transaction fundamentals

HTTP status codes

Basic downloading with urllib.request

Generating POST requests

Downloading weather data to ABQ Data Entry

Creating a weather data model



Parsing the XML weather data

Implementing weather data storage

Adding the GUI elements for weather download

RESTful HTTP using requests

Understanding RESTful web services

The Python requests library

Installing and using requests

Interacting with authenticated sites using

Session

The requests.Response object

Implementing a REST backend

The authenticate() method

The upload_file() method

The check_file() method

The get_file() method

Integrating REST upload into the application

Creating a CSV extract

Creating the upload callback

Finishing up

SFTP using paramiko

Setting up SSH services for testing

Installing and using paramiko

Using paramiko

Inspecting our connection

Using SFTP

Implementing an SFTP model

Uploading files

Checking a file's existence

Using SFTPModel in our application

Finishing up

Summary

14. Asynchronous Programming with Thread and Queue

Tkinter's event queue

Event queue control

The update() methods

The after() methods



Common uses of event queue control

Smoothing out display changes

Mitigating GUI freezes

Running code in the background with threads

The threading module

Tkinter and thread safety

Converting our network functions to threaded

execution

Using the threaded uploader

Passing messages using a queue

The Queue object

Using queues to communicate between

threads

Adding a communication queue to our threaded

uploader

Creating a communications protocol

Sending messages from the uploader

Handling queue messages

Using locks to protect shared resources

Understanding the Lock object

Using a Lock object to prevent concurrent

uploads

Threading and the GIL

Summary

15. Visualizing Data Using the Canvas Widget

Drawing and animation with Tkinter's Canvas

Drawing on the Canvas

Rectangles and squares

Ovals, circles, and arcs

Lines

Polygons

Text

Images

Tkinter widgets

Canvas items and state

Canvas object methods



Scrolling the Canvas

Animating Canvas objects

Setting up the playing field

Setting our players

Animating the racers

Running the game loop and detecting a win

condition

Creating simple graphs using Canvas

Creating the model method

Creating the chart view

Updating the application

Advanced graphs using Matplotlib

Data model method

Creating the bubble chart view

Updating the Application class

Summary

16. Packaging with setuptools and cxFreeze

Creating distributable packages with setuptools

Preparing our package for distribution

Creating a requirements.txt file

Creating a pyproject.toml file

Adding a license file

Making our package executable

Configuring a setup.py script

Basic metadata arguments

Packages and dependencies

Adding extra files

Defining commands

Testing the configuration

Creating and using source distributions

Testing our source distribution

Building a wheel distribution

Creating executables with cx_Freeze

First steps with cx_Freeze

The build_exe options

Including external files



Building executables

Cleaning up the build

Building Windows executables with cx_Freeze

Building a Windows installer file

Building macOS executables with cx_Freeze

Building macOS application bundles

Building macOS .dmg files

Summary

Appendices

A: A Quick Primer on reStructuredText

The reStructuredText markup language

Document structure

Lists

Character styles

Blocks and quotes

Tables

Converting RST to other formats

Other ways to render RST

B: A Quick SQL Tutorial

SQL concepts

Syntax differences from Python

SQL operations and syntax

Defining tables and inserting data

Retrieving data from tables

Updating rows, deleting rows, and more WHERE

clauses

Subqueries

Joining tables

Managing transactions

Learning more

Other Books You May Enjoy

Index



Preface

Writing a book involves much more than the application of

grammar and punctuation rules. In the same way,

developing an application requires more than a knowledge

of programming languages and library APIs. A mere

mastery of syntax rules and function calls is not in itself

sufficient for designing applications that empower users to

perform work, safeguard valuable data, and produce

flawless output. As programmers, we also need to be able

to interpret user requests and expectations into effective

interface designs and pick the best technologies to

implement them. We need to be able to organize large code

bases, test them, and maintain them in a way that keeps

them manageable and free from careless errors.

This book aims to be much more than a reference manual

for a particular GUI toolkit. As we walk through a fictitious

workplace scenario, you will get a taste of what it's like to

be an application programmer in a small office

environment. In addition to learning Tkinter and a few

other useful libraries, you will learn many of the skills you

need to move from being a writer of short scripts to a

writer of fully-featured graphical applications. By the time

you've finished the book, you should feel confident that you

can develop a simple but useful data-oriented application

for a working environment.



Who this book is for

This book is for beginners who have learned the basics of

Python but haven't written much beyond simple scripts.

We'll walk you step-by-step through designing and creating

a larger application, and we'll introduce you to skills that

will help you advance as a programmer.

It's also aimed at those who have used Python for data

science, web development, or system administration, but

who now want to branch out into creating GUI applications.

We'll go through the knowledge and skills required to

create local GUI applications.

Finally, this book may also be useful for experienced Python

programmers who just want to learn Tkinter, as much of

the book details the finer points of using the Tkinter library.



What this book covers

Chapter 1, Introduction to Tkinter, introduces you to the

basics of the Tkinter library and walks you through

creating a basic Tkinter application. It will also introduce

you to IDLE as an example of a Tkinter application.

Chapter 2, Designing GUI Applications, goes through the

process of turning a set of user requirements into a design

that we can implement.

Chapter 3, Creating Basic Forms with Tkinter and Ttk

Widgets, shows you how to create a basic data entry

application that appends entered data to a CSV file.

Chapter 4, Organizing Our Code with Classes, will

introduce you to general object-oriented programming

techniques as well as Tkinter-specific uses for classes that

will make our GUI programs more maintainable and

understandable.

Chapter 5, Reducing User Error with Validation and

Automation, demonstrates how to automatically populate

and validate data in our form's inputs.

Chapter 6, Planning for the Expansion of Our Application,

familiarizes you with how to break a single-file script

intelligently into multiple files, how to build a Python

module that you can import, and how to separate the

concerns of a large codebase to make it more manageable.

Chapter 7, Creating Menus with Menu and Tkinter Dialogs,

outlines the creation of a main menu using Tkinter. It will



also show the use of several built-in dialog types to

implement common menu functionality.

Chapter 8, Navigating Records with Treeview and

Notebook, details the construction of a data record

navigation system using the Ttk Treeview and Notebook, as

well as the conversion of our application from append-only

to full read, write, and update capabilities.

Chapter 9, Improving the Look with Styles and Themes,

informs you of how to change the colors, fonts, and widget

styles of your application, and how to use them to make

your application more usable and attractive.

Chapter 10, Maintaining Cross-Platform Compatibility,

goes over Python and Tkinter techniques to keep your

application running smoothly across Windows, macOS, and

Linux systems.

Chapter 11, Creating Automated Tests with unittest,

discusses how to verify your code with automated unit tests

and integration tests.

Chapter 12, Improving Data Storage with SQL, takes you

through the conversion of our application from CSV flat-file

storage to SQL database storage. You'll learn all about SQL

and relational data models as well.

Chapter 13, Connecting to the Cloud, covers how to work

with network resources such as HTTP servers, REST

services, and SFTP servers. You'll learn to interact with

these services to download and upload data and files.

Chapter 14, Asynchronous Programming with Thread and

Queue, explains how to use asynchronous and

multithreaded programming to keep our application

responsive during long-running processes.



Chapter 15, Visualizing Data Using the Canvas Widget,

teaches you how to work with the Tkinter Canvas widget to

create visualizations and animations. You'll also learn how

to integrate Matplotlib charts and build a simple game.

Chapter 16, Packaging with setuptools and cxFreeze,

explores preparing your Python application for distribution

as a Python package or a standalone executable.

To get the most out of this

book

This book expects that you know the basics of Python 3.

You should know how to write and run simple scripts using

built-in types and functions, how to define your own

functions, and how to import modules from the standard

library.

You can follow this book on a computer running a current

version of Microsoft Windows, Apple macOS, or a

distribution of GNU/Linux. Ensure that you have Python 3

and Tcl/Tk installed (Chapter 1, Introduction to Tkinter,

contains instructions for Windows, macOS, and Linux) and

that you have a code editing environment with which you

are comfortable (we suggest IDLE since it comes with

Python and uses Tkinter. We do not recommend the use of

Jupyter, Spyder, or similar environments aimed at analytical

Python rather than application development). In the later

chapters, you'll need access to the internet so that you can

install Python packages and the PostgreSQL database.



Download the example code files

The code bundle for the book is also hosted on GitHub at

https://github.com/PacktPublishing/Python-GUI-

Programming-with-Tkinter-2E. We also have other code

bundles from our rich catalog of books and videos available

at https://github.com/PacktPublishing/. Check them

out!

Download the color images

We also provide a PDF file that has color images of the

screenshots/diagrams used in this book. You can download

it here: https://static.packt-

cdn.com/downloads/9781801815925_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout

this book.

CodeInText : Indicates code words in text, database table

names, folder names, filenames, file extensions, pathnames,

dummy URLs, user input, and Twitter handles. For

example: "Save the code in solve_the_worlds_problems.py  and

execute it by typing python solve_the_worlds_problems.py  at a

terminal prompt."

A block of code is set as follows:

import tkinter as tk 

root = tk.TK() 

def solve(): 

  raise NotImplemented("Sorry!") 

tk.Button( 

https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter-2E
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801815925_ColorImages.pdf


  root, text="Solve the world's problems", command=solve 

).pack() 

root.mainloop() 

When we wish to draw your attention to a particular part of

a code block, especially to indicate changes to existing

code, the relevant lines or items are set in bold:

import tkinter as tk 

from tkinter import messagebox 

root = tk.TK() 

def solve(): 

  messagebox.showinfo('The answer?', 'Bananas?') 

tk.Button( 

  root, text="Solve the world's problems", command=solve 

).pack() 

root.mainloop() 

Note that all Python code in the book uses 2-space indents

rather than the conventional 4-space indents.

Any command-line input or output is written with a $

indicating the prompt, as follows:

$ mkdir Bananas 

$ cp plantains.txt Bananas/ 

Command line input intended for the Python shell or REPL

is printed with a prompt of >>> , like so:

>>> print('This should be run in a Python shell') 

'This should be run in a Python shell' 

Expected output from the shell is printed on a line with no

prompt.



Bold: Indicates a new term, an important word, or words

that you see on the screen, for example, in menus or dialog

boxes. For example: "Select System info from the

Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Executing Python and pip

When we need to instruct the reader to execute a Python

script in this book, we indicate a command line such as the

following:

$ python myscript.py 

Depending on your operating system or Python

configuration, the python  command may execute Python 2.x

rather than Python 3.x. You can verify this by running the

following command:

$ python --version 

Python 3.9.7 

If this command outputs Python 2 rather than 3 on your

system, you will need to alter any python  commands so that

your code is executed in Python 3. Typically, that means

using the python3  command instead, like so:

$ python3 myscript.py 



The same caveat applies to the pip  command used to

install libraries from the Python Package Index. You may

need to use the pip3  command instead to install libraries to

your Python 3 environment, for example:

$ pip3 install --user requests 

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com , and

mention the book's title in the subject of your message. If

you have questions about any aspect of this book, please

email us at questions@packtpub.com .

Errata: Although we have taken every care to ensure the

accuracy of our content, mistakes do happen. If you have

found a mistake in this book, we would be grateful if you

would report this to us. Please visit

http://www.packtpub.com/submit-errata, selecting your

book, clicking on the Errata Submission Form link, and

entering the details.

Piracy: If you come across any illegal copies of our works

in any form on the Internet, we would be grateful if you

would provide us with the location address or website

name. Please contact us at copyright@packtpub.com  with a link

to the material.

If you are interested in becoming an author: If there is

a topic that you have expertise in and you are interested in

http://www.packtpub.com/submit-errata


either writing or contributing to a book, please visit

http://authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this

book, why not leave a review on the site that you purchased

it from? Potential readers can then see and use your

unbiased opinion to make purchase decisions, we at Packt

can understand what you think about our products, and our

authors can see your feedback on their book. Thank you!

For more information about Packt, please visit

packtpub.com.

Share Your Thoughts

Once you've read Python GUI Programming with Tkinter,

Second Edition, we'd love to hear your thoughts! Please

click here to go straight to the Amazon review

page for this book and share your feedback.

Your review is important to us and the tech community and

will help us make sure we're delivering excellent quality

content.

https://authors.packtpub.com/
http://packtpub.com/
https://www.packtpub.com/


1

Introduction to Tkinter

Welcome, Python coder! If you've learned the basics of

Python and want to start designing powerful GUI

applications, this book is for you.

By now, you have no doubt experienced the power and

simplicity of Python. Perhaps you've written web services,

performed data analysis, or administered servers. Perhaps

you've written a game, automated routine tasks, or simply

played around with code. But now you're ready to tackle

the GUI.

With so much emphasis on web, mobile, and server-side

programming, the development of simple desktop GUI

applications seems increasingly like a lost art; many

otherwise experienced developers have never learned to

create one. What a tragedy! Desktop computers still play a

vital role in work and home computing, and the ability to

build simple, functional applications for this ubiquitous

platform should be a part of every software developer's

toolbox. Fortunately, for Python coders, that ability is well

within reach thanks to Tkinter.

In this chapter, you will cover the following topics:

In Introducing Tkinter and Tk, you'll learn about

Tkinter, a fast, fun, easy-to-learn GUI library built in to

the Python Standard Library; and IDLE, an editor and

development environment written in Tkinter.



In An overview of basic Tkinter, you'll learn the basics

of Tkinter with a "Hello World" program and create a

Survey application.

Introducing Tkinter and Tk

The Tk widget library originates from the Tool Command

Language (Tcl) programming language. Tcl and Tk were

created by John Ousterhout while he was a professor at

Berkeley in the late 1980s as an easier way to program the

engineering tools being used at the university. Because of

its speed and relative simplicity, Tcl/Tk rapidly grew in

popularity among academic, engineering, and Unix

programmers. Much like Python itself, Tcl/Tk originated on

the Unix platform and only later migrated to macOS and

Windows. Tk's practical intent and Unix roots still inform

its design today, and its simplicity compared to other

toolkits is still a major strength.

Tkinter is a Python interface to the Tk GUI library and has

been a part of the Python standard library since 1994 with

the release of Python version 1.1, making it the de-facto

GUI library for Python. Documentation for Tkinter, along

with links for further study, can be found in the standard

library documentation at

https://docs.python.org/3/library/tkinter.html.

Choosing Tkinter

Python coders who want to build a GUI have several toolkit

options to choose from; unfortunately, Tkinter is often

maligned or ignored as a legacy option. To be fair, it's not a

https://docs.python.org/3/library/tkinter.html


glamorous technology that you can describe in trendy

buzzwords and glowing hype. However, Tkinter is not only

adequate for a wide variety of applications but also has

some advantages that can't be ignored:

Tkinter is in the standard library: With few

exceptions, Tkinter is available wherever Python is

available. There is no need to install pip, create virtual

environments, compile binaries, or search the web for

installation packages. For simple projects that need to

be done quickly, this is a clear advantage.

Tkinter is stable: While Tkinter development has not

stopped, it is slow and evolutionary. The API has been

stable for years, the changes mainly being additional

functionality and bug fixes. Your Tkinter code will likely

run unaltered for years or decades to come.

Tkinter is only a GUI toolkit: Unlike some other GUI

libraries, Tkinter doesn't have its own threading library,

network stack, or filesystem API. It relies on regular

Python libraries for such things, so it's perfect for

applying a GUI to existing Python code.

Tkinter is simple and no-nonsense: Tkinter is very

basic and to-the-point; it can be used effectively in both

procedural and object-oriented GUI designs. To use

Tkinter, you don't have to learn hundreds of widget

classes, a markup or templating language, a new

programming paradigm, client-server technologies, or a

different programming language.

Tkinter is not perfect, of course. It also has some

disadvantages:

Tkinter's default look and feel is dated: Tkinter's

default appearance has long lagged behind current

trends, and it still bears a few artifacts from the 1990s



Unix world. While it lacks niceties like animated

widgets, gradients, or scalable graphics, it has

nevertheless improved a great deal in the last few

years, thanks to updates in Tk itself and the addition of

themed widget libraries. We'll learn how to fix or avoid

some of Tkinter's more archaic defaults throughout the

book.

Tkinter lacks more complex widgets: Tkinter is

missing advanced widgets like rich text editors, 3D

graphics embedding, HTML viewers, or specialized

input widgets. As we'll see later in this book, Tkinter

gives us the ability to create complex widgets by

customizing and combining its simple ones.

Tkinter might be the wrong choice for a game UI or slick

commercial application; however, for data-driven

applications, simple utilities, configuration dialogs, and

other business logic applications, Tkinter offers all that is

needed and more. In this book we're going to be working

through the development of data entry application for a

workplace environment, something that Tkinter can handle

admirably.

Installing Tkinter

Tkinter is included in the Python standard library for the

Windows and macOS distributions. So, if you have installed

Python on these platforms using the official installers, you

don't need to do anything to install Tkinter.

However, we're going to be exclusively focused on Python

3.9 for this book; so, you need to make sure that you have

this version or later installed.



Installing Python 3.9 on Windows

You can obtain Python 3 installers for Windows from the

python.org website by performing the following steps:

1. Go to https://www.python.org/downloads/windows.

2. Select the latest Python 3 release. At the time of

writing, the latest version is 3.9.2.

3. Under the Files section, select the Windows executable

installer appropriate to your system's architecture (x86

for 32-bit Windows, x86-64 for 64-bit Windows; if you're

unsure, x86 will work on either).

4. Launch the downloaded installer.

5. Click on Customize installation. Make sure the tcl/tk

and IDLE option is checked (it should be by default).

6. Continue through the installer with all defaults.

Installing Python 3 on macOS

As of this writing, macOS ships with Python 2.7 built in.

However, Python 2 was officially deprecated in 2020, and

the code in this book will not work with it, so macOS users

will need to install Python 3 to follow this book.

Follow this procedure to install Python3 on macOS:

1. Go to https://www.python.org/downloads/mac-osx/.

2. Select the latest Python 3 release. At the time of

writing, the latest version is 3.9.2.

3. Under the Files section, select and download the

macOS 64-bit/32-bit installer.

4. Launch the .pkg  file that you've downloaded and follow

the steps of the install wizard, selecting defaults.

http://python.org/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/mac-osx/


Installing Python 3 and Tkinter on Linux

Most Linux distributions include both Python 2 and Python

3; however, Tkinter is not always bundled with it or

installed by default. To find out if Tkinter is installed, open

a Terminal and try the following command:

$ python3 -m tkinter 

This should open a simple window showing some

information about Tkinter. If you get ModuleNotFoundError

instead, you will need to use your package manager to

install your distribution's Tkinter package for Python 3. In

most major distributions, including Debian, Ubuntu,

Fedora, and openSUSE, this package is called python3-tk .

Introducing IDLE

IDLE is an integrated development environment that is

bundled with the official Python software distributions for

Windows and macOS (it's readily available in most Linux

distributions as well, usually as idle  or idle3 ).

IDLE is written in Python using Tkinter, and it provides us

with not only an editing environment for Python but also a

great example of Tkinter in action. So, while IDLE's

rudimentary feature set may not be considered professional

grade by experienced Python coders, and while you may

already have a preferred environment for writing Python

code, I encourage you to spend some time using IDLE as

you go through this book.

IDLE has two primary modes: shell mode and editor mode.

We'll take a look at those in this section.



Using the shell mode of IDLE

When you launch IDLE, you begin in shell mode, which is

simply a Python Read-Evaluate-Print-Loop (REPL)

similar to what you get when you type python  in a Terminal

window.

You can see IDLE's shell mode in this screenshot:

Figure 1.1: IDLE's shell mode

IDLE's shell has some nice features that you don't get from

the command-line REPL, like syntax highlighting and tab

completion. The REPL is essential to the Python

development process, as it gives you the ability to test code

in real time and inspect classes and APIs without having to

write complete scripts. We'll use the shell mode in later

chapters to explore the features and behaviors of modules.

If you don't have a shell window open, you can open one by

clicking on Run | Python Shell in the IDLE menu.

Using the editor mode of IDLE

Editor mode is for creating Python script files, which you

can later run. When the book tells you to create a new file,

this is the mode you'll use. To open a new file in the editor

mode, simply navigate to File | New File in the menu or hit

Ctrl + N on the keyboard.

This image shows IDLE's file editor:



Figure 1.2: IDLE's file editor

You can run your script without leaving IDLE by hitting the

F5 key in the editor mode; IDLE will open a shell-mode

window to execute the script and display the output.

IDLE as a Tkinter example

Before we start coding with Tkinter, let's take a quick look

at what you can do with it by inspecting some of IDLE's UI.

Navigate to Options | Configure IDLE from the main

menu to open IDLE's configuration settings. Here you can

change IDLE's fonts, colors and theme, keyboard shortcuts,

and default behaviors, as shown in this screenshot:



Figure 1.3: IDLE configuration settings

Consider some of the following components that make up

this user interface:

There are drop-down menus that allow you to select

between large sets of options.

There are checkable buttons that allow you to select

between small sets of options.

There are many push buttons that you can click on to

execute actions.

There is a text window that can display multi-colored

text.

There are labeled frames that contain groups of

components.



There are tabs across the top of the screen to select

different sections of the configuration.

In Tkinter (as in most GUI libraries), each of these

components is known as a widget; we're going to meet

these widgets and more throughout this book and learn

how to use them as they've been used here. We'll begin,

however, with something much simpler.

Creating a Tkinter Hello World

One of the grand traditions in any programming language

or library is to create a "Hello World" program: that is, a

program that displays Hello World  and exits. Let's walk

through creating a "Hello World" application for Tkinter

and talk about the pieces of it along the way.

First, create a new file called hello_tkinter.py  in IDLE or

your favorite editor, and enter the following code:

"""Hello World application for Tkinter"""

import tkinter as tk 

The first line is called a docstring, and every Python script

should start with one. At a minimum, it should give the

name of the program but can also include details about

how to use it, who wrote it, and what it requires.

The second line imports the tkinter  module into our

program. Although Tkinter is in the standard library, we

have to import it before we can use any of its classes or

functions.

Sometimes, you may see this import written as from tkinter

import * . That approach is called a wildcard import, and it



results in all the objects being brought into the global

namespace. While popular in tutorials for its simplicity, it's

a bad idea in actual code as there is a possibility of a

collision between our own variable names and all names in

the tkinter  module, which can cause subtle bugs.

To avoid this, we're going to keep tkinter  in its own

namespace; however, to keep the code concise, we'll alias

tkinter  to tk . This convention will be used throughout the

book.

Every Tkinter program must have exactly one root

window, which represents both the top-level window of our

application, and the application itself. Let's create our root

window, like so:

root = Tk() 

The root  window is an instance of the Tk  class. We create

it by calling Tk()  as we've done here. This object must exist

before we can create any other Tkinter objects, and when it

is destroyed, the application quits.

Now, let's create a widget to put in our window:

label = Label(root, text="Hello World") 

This is a Label  widget, which is just a panel that can display

some text. The first argument to any Tkinter widget is

always the parent widget (sometimes called master

widget); in this case, we've passed in a reference to our

root window. The parent widget is the widget on which our

Label  will be placed, so this Label  will be directly on the

root window of the application. Widgets in a Tkinter GUI



are arranged in a hierarchy, each widget being contained

by another all the way up to the root window.

We've also passed in a keyword argument, text . This

argument, of course, defines the text that will be placed on

the widget. For most Tkinter widgets, the majority of

configuration is done using keyword arguments like this.

Now that we've created a widget, we need to actually place

it on the GUI:

label.pack() 

The pack()  method of the Label  widget is called a

geometry manager method. Its job is to determine how

the widget will be attached to its parent widget, and to

draw it there. Without this call, your widget would exist but

you wouldn't see it anywhere on the window. pack()  is one

of three geometry managers, which we'll learn more about

in the next section.

The last line of our program looks like this:

root.mainloop() 

This line starts our application's event loop. The event

loop is an infinite loop that continually processes any

events that happen during the execution of the program.

Events can be things like keystrokes, mouse clicks, or other

user-generated activity. This loop runs until the program

exits, so any code after this line will not be run until the

main window is closed. For this reason, this line is usually

the last one in any Tkinter program.



Run the program in IDLE by hitting F5, or in your Terminal

by typing the following command:

$ python hello_tkinter.py 

You should see a very tiny window pop up with the text

Hello World as shown here:

Figure 1.4: Our "Hello World" application

Feel free to play around with this script by adding more

widgets before the root.mainloop()  call. You can add more

Label  objects, or try some Button  (which creates a clickable

button) or Entry  (which creates a text field) widgets. Just

like Label , these widgets are initialized with a parent object

(use root ) and a text  parameter. Don't forget to call pack()

on each widget to place them on the root window.

Example code for all chapters in this book can be

downloaded from

https://github.com/PacktPublishing/Python-GUI-

Programming-with-Tkinter-2E. You may want to download

these now so you can follow along.

When you're ready, move on to the next section where we'll

create a more interesting application.

https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter-2E


An overview of basic

Tkinter

As exciting as it may be to see that first GUI window pop up

on the screen, "Hello World" is not a terribly interesting

application. Let's start again and dig a little deeper into

Tkinter as we build a slightly larger program. Since the

next chapter will see you landing a job at a fictitious

agricultural laboratory studying fruit plants, let's create a

little program to gauge your opinions about bananas.

Building a GUI with Tkinter widgets

Start a new file in your editor called banana_survey.py , and

begin by importing tkinter  like so:

As with hello_tkinter.py , we need to create a root  window

before we can create any widgets or other Tkinter objects:

root = tk.Tk() 

Once again, we've called this object root . The root  window

can be configured in various ways; for example, we can

give it a window title or set its size like so:

# set the title 

root.title('Banana interest survey') 

# set the root window size 

# banana_survey.py

"""A banana preferences survey written in Python with Tkinter"""

import tkinter as tk 



root.geometry('640x480+300+300') 

root.resizable(False, False) 

The title()  method sets our window title (that is, the name

that shows up in the task manager and in the window

decorations), while geometry()  sets the window size. In this

case, we're telling the root window to be 640 by 480 pixels.

The +300+300  sets the position of the window on the screen

— in this case, 300 pixels from the top and 300 pixels from

the left (the position portion is optional, if you only care

about the size). Notice that the argument to geometry()  is a

string. In Tcl/Tk, every argument is treated as a string.

Since Tkinter is just a wrapper that passes arguments on to

Tcl/Tk, we'll often find that strings are used to configure

Tkinter objects – even when we might expect to use

integers or floats.

The resizable()  method sets whether or not our window can

be resized horizontally and vertically, respectively. True

means the window can be resized in that direction, False

means its dimension is fixed. In this case, we want to

prevent the resizing of the window so that we don't have to

worry about making the layout flexible to window size

changes.

Now let's start adding widgets to our survey. We've already

met the Label  widget, so let's add one:

title = tk.Label( 

  root, 

  text='Please take the survey', 

  font=('Arial 16 bold'), 

  bg='brown', 

  fg='#FF0' 

) 



As we saw in our "Hello World" example, the first argument

passed to any Tkinter widget is the parent widget on which

the new widget will be placed. In this case, we'll be placing

this Label  widget on the root  window. The remaining

arguments to a widget are specified as keyword arguments.

Here, we've specified the following:

text , which is the text the label will display.

font , which specifies the family, size, and weight of the

font used to display the text. Notice again that the font

settings are specified as a simple string, just as our

geometry  settings were.

bg , which sets the background color for the widget.

We've used a color name here; Tkinter recognizes a

great many color names, similar to those used by CSS

or X11.

fg , which sets the foreground (text) color for the

widget. In this case, we've specified a short

hexadecimal string, in which the three characters

represent the red, green, and blue values respectively.

We can also use a six-character hex string (for example,

#FFE812 ) for finer-grained control over the color.

In Chapter 9, Improving the Look with Styles and Themes,

we'll learn more sophisticated ways to set up fonts and

colors, but this will work just fine for now.

Tkinter has many interactive widgets for data entry, of

course, the simplest being the Entry  widget:

name_label = tk.Label(root, text='What is your name?') 

name_inp = tk.Entry(root) 

The Entry  widget is just a simple text-input box designed

for a single line of text. Most input widgets in Tkinter do



not include a label of any kind, so we've added one to make

it clear to our user what the entry box is for.

One exception to that is the Checkbutton  widget, which we'll

create next:

eater_inp = tk.Checkbutton( 

  root, 

  text='Check this box if you eat bananas' 

) 

A Checkbutton  creates a check box input; it includes a label

that sits next to the box, and we can set its text using the

text  argument.

For entering numbers, Tkinter provides the Spinbox  widget.

Let's add one:

num_label = tk.Label( 

  root, 

  text='How many bananas do you eat per day?' 

) 

num_inp = tk.Spinbox(root, from_=0, to=1000, increment=1) 

A Spinbox  is like an Entry , but features arrow buttons that

can increment and decrement the number in the box. We've

used several arguments to configure it here:

The from_  and to  arguments set the minimum and

maximum values that the buttons will decrement or

increment to, respectively. Notice that from_  has an

extra underscore at the end; this is not a typo! Since

from  is a Python keyword (used in importing modules),

it can't be used as a variable name, so the Tkinter

authors chose to use from_  instead.

The increment  argument sets how much the arrow

buttons will increase or decrease the number.



Tkinter has several widgets that allow you to choose from

preset selection values; one of the simplest is Listbox ,

which looks like this:

The Listbox  takes a height  argument that specifies how

many lines are visible; by default the box is big enough to

show all the options. We've changed that to 1  so that only

the currently selected option is visible. The others can be

accessed using the arrow keys.

To add options to the box, we need to call its insert()

method and add each option one at a time. We've done that

here using a for  loop to save repetitive coding. The first

argument to insert  specifies where we want to insert the

option; note that we've used a special constant provided

by tkinter , tk.END . This is one of many special constants

defined in Tkinter for certain configuration values. In this

case, tk.END  means the end of the widget, so that each

choice that we insert will be placed at the end.

Another way to let a user select between a small number of

options is the Radiobutton  widget; these are like Checkbutton

widgets, but, similar to the mechanical preset buttons in

(very, very old) car radios, they only allow one to be

checked at a time. Let's create a few Radiobutton  widgets:

color_label = tk.Label( 

  root, 

  text='What is the best color for a banana?' 

) 

color_inp = tk.Listbox(root, height=1)  # Only show selected ite

# add choices 

color_choices = ( 

  'Any', 'Green', 'Green-Yellow', 

  'Yellow', 'Brown Spotted', 'Black' 

  ) 

for choice in color_choices: 

  color_inp.insert(tk.END, choice) 



Notice what we've done here with plantain_frame : we've

created a Frame  object and used it as the parent widget for

each of the Radiobutton  widgets. A Frame  is simply a blank

panel with nothing on it, and it's useful for organizing our

layout hierarchically. We'll use Frame  widgets quite often in

this book for keeping groups of widgets together.

Entry  widgets work fine for single-line strings, but how

about multi-line strings? For those, Tkinter offers us the

Text  widget, which we create like this:

banana_haiku_label = tk.Label( 

  root,  

  text='Write a haiku about bananas' 

) 

banana_haiku_inp = tk.Text(root, height=3) 

The Text  widget is capable of much more than just multi-

line text, and we'll explore a few of its more advanced

capabilities in Chapter 9, Improving the Look with Styles

and Themes. For now, though, we'll just use it for text.

Our GUI would not be complete without a submit button for

our survey, which is provided by the Button  class, like so:

submit_btn = tk.Button(root, text='Submit Survey') 

We'll use this button to submit the survey and display some

output. What widget could we use to display that output? It

turns out that Label  objects are useful for more than just

plantain_label = tk.Label(root, text='Do you eat plantains?') 

plantain_frame = tk.Frame(root) 

plantain_yes_inp = tk.Radiobutton(plantain_frame, text='Yes') 

plantain_no_inp = tk.Radiobutton(plantain_frame, text='Ewww, no!



static messages; we can use them to display messages at

runtime as well.

Let's add one for our program output:

Here we've created the Label  widget with no text (since we

have no output yet). We're also using a couple of additional

arguments for Label :

anchor  determines which side of the widget the text will

be stuck to if the widget is wider than the text. Tkinter

sometimes uses cardinal directions (North, South, East,

and West) abbreviated to their first letter whenever it

needs to specify a side of a widget; in this case, the

string 'w'  indicates the West (or left) side of the

widget.

justify  determines which side the text will align to

when there are multiple lines of code. Unlike anchor , it

uses conventional 'left' , 'right' , and 'center'  options.

anchor  and justify  may seem redundant, but they have

slightly different behavior. In a multiline text situation, the

text could be aligned to the center of each line, but the

whole collection of lines could be anchored to the west side

of the widget, for example. In other words, anchor  affects

the whole block of text with respect to the containing

widget, while justify  affects the individual lines of text

with respect to the other lines.

Tkinter has many more widgets, and we'll meet many of

them throughout the remainder of the book.

output_line = tk.Label(root, text='', anchor='w', justify='left'



Arranging our widgets with geometry

managers

If you were to add root.mainloop()  to this script and execute

it as-is, you would see… a blank window. Hmmm, what

happened to all those widgets we just created? Well, you

may remember from hello_tkinter.py  that we need to use a

geometry manager like pack()  to actually place them

somewhere on their parent widgets.

Tkinter has three geometry manager methods available:

pack()  is the oldest, and simply adds widgets to one of

the four sides of a window sequentially.

grid()  is newer and preferred, and allows you to place

widgets within a 2-dimensional grid table.

place()  is a third option, which allows you to put

widgets at specific pixel coordinates. It is not

recommended, as it responds poorly to changes in

window sizes, font sizes, and screen resolution, so we

won't be using it in this book.

While pack()  is certainly fine for simple layouts involving a

handful of widgets, it doesn't scale so well to more complex

layouts without an inordinate amount of Frame  widget

nesting. For this reason, most Tkinter programmers rely on

the more modern grid()  geometry manager. As the name

suggests, grid()  allows you to lay out widgets on a 2-

dimensional grid, much like a spreadsheet document or

HTML table. In this book, we'll focus primarily on grid() .

Let's start laying out the widgets of our GUI using grid() ,

beginning with the title  label:

title.grid() 



By default, a call to grid()  will place the widget in the first

column (column 0) of the next empty row. Thus, if we were

to simply call grid()  on the next widget, it would end up

directly under the first. However, we can also be explicit

about this using the row  and column  arguments, like so:

name_label.grid(row=1, column=0) 

Rows and columns count from the top-left corner of the

widget, starting with 0 . Thus, row=1, column=0  places the

widget in the second row at the first column. If we want an

additional column, all we need to do is place a widget in it,

like so:

name_inp.grid(row=1, column=1) 

The grid automatically expands whenever we add a widget

to a new row or column. If a widget is larger than the

current width of the column, or height of the row, all the

cells in that column or row are expanded to accommodate

it. We can tell a widget to span multiple columns or

multiple rows using the columnspan  and rowspan  arguments,

respectively. For example, it might be nice to have our title

span the width of the form, so let's amend it accordingly:

title.grid(columnspan=2) 

As columns and rows expand, the widgets do not expand

with them by default. If we want them to expand, we need

to use the sticky  argument, like this:

eater_inp.grid(row=2, columnspan=2, sticky='we') 



sticky  tells Tkinter to stick the sides of the widget to the

sides of its containing cell so that the widget will stretch as

the cell expands. Like the anchor  argument we learned

about above, sticky  takes cardinal directions: n , s , e , and

w . In this case we've specified West and East, which will

cause the widget to stretch horizontally if the column

expands further.

As an alternative to the strings, we can also use Tkinter's

constants as arguments to sticky :

num_label.grid(row=3, sticky=tk.W) 

num_inp.grid(row=3, column=1, sticky=(tk.W + tk.E)) 

There is no real difference between using constants and

string literals as far as Tkinter is concerned; however, the

advantage of using constants is that your editing software

can more easily identify if you've used a constant that

doesn't exist than an invalid string.

The grid()  method allows us to add padding to our widgets

as well, like so:

padx  and pady  indicate external padding – that is, they will

expand the containing cell, but not the widget. ipadx  and

ipady , on the other hand, indicate internal padding.

Specifying these arguments will expand the widget itself

(and consequently the containing cell).

color_label.grid(row=4, columnspan=2, sticky=tk.W, pady=10) 

color_inp.grid(row=5, columnspan=2, sticky=tk.W + tk.E, padx=25)



Figure 1.5: Internal padding (ipadx, ipady) versus external padding (padx,

pady)

Tkinter does not allow us to mix geometry managers on the

same parent widget; once we've called grid()  on any child

widget, a call to the pack()  or place()  method on a sibling

widget will generate an error, and vice versa.

We can, however, use a different geometry manager on the

sibling widget's children. For example, we can use pack()  to

place the child widgets on the plantain_frame  widgets, as

shown here:

The plantain_label  and plantain_frame  widgets, as children of

root , must be placed with grid() ; plantain_yes  and

plantain_no  are children of plantain_frame , though, so we can

choose to use pack()  (or place() ) on them if we wish. The

following diagram illustrates this:

plantain_yes_inp.pack(side='left', fill='x', ipadx=10, ipady=5) 

plantain_no_inp.pack(side='left', fill='x', ipadx=10, ipady=5) 

plantain_label.grid(row=6, columnspan=2, sticky=tk.W) 

plantain_frame.grid(row=7, columnspan=2, stick=tk.W) 



Figure 1.6: Each widget's children must use the same geometry manager

method

This ability to choose the geometry manager for each

container widget gives us enormous flexibility in how we

lay out a GUI. While the grid()  method is certainly capable

of specifying most layouts, there are times when the

semantics of pack()  or place()  make more sense for a piece

of our interface.

Although the pack()  geometry manager shares some

arguments with grid() , like padx  and pady , most of the

arguments are different. For example, the side  argument

used in the example determines which side widgets will be

packed from, and the fill  argument determines on which

axis the widget will expand.

Let's add the last few widgets to our window:

banana_haiku_label.grid(row=8, sticky=tk.W) 

banana_haiku_inp.grid(row=9, columnspan=2, sticky='NSEW') 



submit_btn.grid(row=99) 

output_line.grid(row=100, columnspan=2, sticky='NSEW') 

Note that we've stuck the Text  widget ( banana_haiku_inp ) to

all four sides of its container. This will cause it to expand

both vertically and horizontally as the grid is stretched.

Also notice that we've skipped to rows 99 and 100 for the

last two widgets. Remember that unused rows are

collapsed into nothing, so by skipping rows or columns we

can leave space for future expansion of our GUI.

By default, Tkinter will make our window just large enough

to contain all the widgets we place on it; but what happens

if our window (or containing frame) becomes larger than

the space required by our widgets? By default, the widgets

will remain as they are, stuck to the upper-left side of the

application. If we want the GUI to expand and fill the space

available, we have to tell the parent widget which columns

and rows of the grid will expand. We do this by using the

parent widget's columnconfigure()  and rowconfigure()

methods.

For example, if we want our second column (the one

containing most of the input widgets) to expand into

unused space, we can do this:

root.columnconfigure(1, weight=1) 

The first argument specifies which column (counting from

0) we want to affect. The keyword argument weight  takes

an integer which will determine how much of the extra

space the column will get. With only one column specified,

any value greater than 0 will cause that column to expand

into the leftover space.

The rowconfigure()  method works the same way:



root.rowconfigure(99, weight=2) 

root.rowconfigure(100, weight=1) 

This time, we've given two rows a weight  value, but note

that row 99  is given a weight of 2  while 100  is given a

weight of 1 . In this configuration, any extra vertical space

will be divided between rows 99  and 100 , but row 99  will

get twice as much of it as row 100 .

As you can see, using a combination of grid() , pack()  sub-

frames, and some careful planning, we can achieve

complex GUI layouts fairly easily in Tkinter.

Making the form actually do

something

We've got a nice form all laid out now, complete with a

submit button; so how do we make it actually do

something? If you have only written procedural code in the

past, you may be confused about how the flow of code

works in a GUI application. Unlike a procedural script, the

GUI cannot simply execute all the code from top to bottom.

Instead, it has to respond to user actions, such as a button

click or a keystroke, whenever and in whatever order they

happen. Such actions are known as events. To make the

program respond to an event, we need to bind the event to

a function, which we call a callback.

There are a few ways to bind events to callback functions in

Tkinter; for a button, the simplest is to configure its command

attribute, like so:

submit_btn.configure(command=on_submit) 



The command  argument can be specified when creating a

widget (for example, submit_btn = Button(root,

command=on_submit) ), or after creation of the widget using its

configure()  method. configure()  allows you to change a

widget's configuration after it's created, by passing in

arguments just as you would when creating the widget.

In either case, command  specifies a reference to a callback

function to be called when the button is clicked. Note that

we do not put parentheses after the function name here;

doing so would cause the function to be called and its

return value would be assigned to command . We only want a

reference to the function here.

The callback function needs to exist before we can pass it

to command . So, before the call to submit_btn.configure() , let's

create the on_submit()  function:

def on_submit(): 

  """To be run when the user submits the form""" 

  pass 

submit_btn.configure(command=on_submit) 

It is conventional to name callback functions in the format

on_<event_name>  when they are specifically created to

respond to a particular event. However, it's not required,

nor always appropriate (for example, if a function is a

callback for many events).

A more powerful method of binding events is to use the

widget's bind()  method, which we will discuss in more

detail in Chapter 6, Planning for the Expansion of Our

Application.

Our on_submit()  callback is rather boring at the moment, so

let's make it better. Remove the pass  statement and add in



this code:

def on_submit(): 

  """To be run when the user submits the form""" 

  name = name_inp.get() 

  number = num_inp.get() 

  selected_idx = color_inp.curselection() 

  if selected_idx: 

    color = color_inp.get(selected_idx) 

  else: 

    color = '' 

  haiku = banana_haiku_inp.get('1.0', tk.END) 

  message = ( 

    f'Thanks for taking the survey, {name}.\n' 

    f'Enjoy your {number} {color} bananas!' 

  ) 

  output_line.configure(text=message) 

  print(haiku) 

The first thing we'll do in this function is retrieve values

from some of the inputs. For many inputs, the get()  method

is used to retrieve the current value of the widget. Note

that this value will be returned as a string, even in the case

of our Spinbox .

For our list widget, color , things are more complicated. Its

get()  method requires an index number for a choice, and

returns the text for that index number. We can use the

widget's curselection()  method to get the selected index. If

there are no selections made, the selected index will be an

empty tuple. In that case, we'll just set color  to an empty

string. If there is a selection, we can pass the value to

get() .

Getting data from the Text  widget is again slightly

different. Its get()  method requires two values, one for a

starting location and another for an ending location. These

follow a special syntax (which we'll discuss in Chapter 3,

Creating Basic Forms with Tkinter and Ttk Widgets), but



basically 1.0  means the first character of the first line, and

tk.END  is a constant that represents the end of the Text

widget.

Retrieving data from our Checkbutton  and Radiobutton

is not possible without using Tkinter control variables,

which we'll talk about in the section below, Handling data

with Tkinter control variables.

Having gathered the data, our callback ends by updating

the text  property of the output Label  widget with a string

containing some of the entered data, then printing the

user's haiku to the console.

To make this script runnable, finish with this line:

root.mainloop() 

This executes the event loop of the script so that Tkinter

can begin responding to events. Save your script and

execute it, and you should see something like this:



Figure 1.7: Our banana survey application

Congratulations, your banana survey works! Well, kind of.

Let's see if we can get it fully working.

Handling data with Tkinter control

variables

We've got the GUI layout well in hand, but our GUI has

some problems. Retrieving data from our widgets is a bit of

a mess, and we have no idea how to even get the values of

the Checkbutton  or Radiobutton  widgets yet. In fact, if you try

to operate the Radiobutton  widgets, you'll see they are

broken altogether. It seems we're missing a big piece of the

puzzle.



What we're missing are Tkinter control variables. Control

variables are special Tkinter objects that allow us to store

data; there are four types of control variables:

StringVar: Used to store strings of any length

IntVar: Used to store integers

DoubleVar: Used to store floating-point values

BooleanVar: Used to store Boolean (True/False) values

But wait! Python already has variables that can store those

types of data and much more. Why do we need these

classes? Simply put, these variable classes have some

special abilities that regular Python variables lack, for

example:

We can create a two-way binding between a control

variable and a widget, so that if either the widget

contents are changed or the variable contents are

changed, both will be kept in sync.

We can set up a trace on the variable. A trace binds a

variable event (such as reading or updating the

variable) to a callback function. (Traces will be

discussed in Chapter 4, Organizing Our Code with

Classes.)

We can establish relationships between widgets. For

example, we can tell our two Radiobutton  widgets that

they're connected.

Let's look at how control variables can help our survey

application. Go back up to the top where the name input is

defined and let's add a variable:

name_var = tk.StringVar(root) 

name_label = tk.Label(root, text='What is your name?') 

name_inp = tk.Entry(root, textvariable=name_var) 



We can create a StringVar  object by calling StringVar() ; note

that we've passed in the root  window as the first argument.

Control variables require a reference to a root  window;

however, in almost every case, they can work this out for

themselves automatically, so it's rarely necessary to

actually specify the root  window here. It's important to

understand, though, that no control variable objects can be

created until a Tk object exists.

Once we have a StringVar  object, we can bind it to our

Entry  widget by passing it to the textvariable  argument. By

doing this, the contents of the name_inp  widget and the

name_var  variable are kept in sync. A call to the variable's

get()  method will return the current contents of the box,

like so:

print(name_var.get()) 

For a checkbox, a BooleanVar  is used:

This time, we've passed the variable to the Checkbutton

using the variable  argument. Button widgets will use the

keyword variable  to bind a control variable, while widgets

that you type into or that return string values typically use

the keyword textvariable .

Button widgets do take a textvariable  argument as well,

but it does not bind the value of the button; rather it binds

to the text of the button's label. This feature allows you to

dynamically update a button's text.

eater_var = tk.BooleanVar() 

eater_inp = tk.Checkbutton( 

  root, variable=eater_var, text='Check this box if you eat bana

) 



Variables can be initialized with a default value using the

value  argument, like this:

Here, we've created an integer variable using IntVar()  and

set its value to 3 ; when we launch the form, the num_inp

widget will be set to 3 . Notice that, even though we think

of the Spinbox  as a number entry, it uses the textvariable

argument to bind its control variable. A Spinbox  widget can

actually be used for more than just numbers, and as such

its data is internally stored as text. However, by binding an

IntVar  or DoubleVar  to it, the value retrieved will

automatically be converted into an integer or float.

The automatic conversion to integer or float done by

IntVar  and DoubleVar  can be a problem if users are able

to type letters, symbols, or other invalid characters into an

entry. Calling get()  on an integer or double variable

bound to a widget containing an invalid number string (for

example, '1.1.2'  or 'I like plantains' ) will raise an

exception, causing our application to crash. In Chapter 5,

Reducing User Error with Validation and Automation, we'll

learn how to address this problem.

Previously, we'd used Listbox  to display a list of options to

the user. Unfortunately, Listbox  doesn't work well with

control variables, but there is another widget, OptionMenu ,

that does.

Let's replace our color_inp  with an OptionMenu  widget:

num_var = tk.IntVar(value=3) 

num_label = tk.Label(text='How many bananas do you eat per day?'

num_inp = tk.Spinbox( 

  root, textvariable=num_var, from_=0, to=1000, increment=1 

) 



The OptionMenu  holds a list of options as strings, so we need

to create a StringVar  to bind to it. Note that, unlike the

ListBox  widget, the OptionMenu  allows us to specify the

options as we create it. The OptionMenu  constructor is also a

bit different from other Tkinter widget constructors in that

it takes the control variable and options as positional

arguments, like this:

# Example, don't add this to the program 

menu = tk.OptionMenu(parent, ctrl_var, opt1, opt2, ..., optN) 

In our survey code, we've added the options by using the

unpack operator ( * ) to expand our color_choices  list into

positional arguments. We could also have just listed them

explicitly, but doing it this way keeps our code a little

neater.

We're going to learn about a better option for a drop-down

list box when we discuss the Ttk widget set in Chapter 3,

Creating Basic Forms with Tkinter and Ttk Widgets.

The Radiobutton  widget handles variables slightly differently

from other widgets as well. To use Radiobutton  widgets

color_var = tk.StringVar(value='Any') 

color_label = tk.Label( 

  root,  

  text='What is the best color for a banana?' 

) 

color_choices = ( 

  'Any', 'Green', 'Green Yellow', 'Yellow', 'Brown Spotted', 'Bl

) 

color_inp = tk.OptionMenu(

  root, color_var, *color_choices

)



effectively, we bind all the buttons that are grouped

together to the same control variable, like this:

We can bind any kind of control variable to a Radiobutton

widget, but we have to make sure to give each widget a

value  that matches the variable type. In this case, we're

using the buttons for a True / False  question, so BooleanVar  is

appropriate; we use the value  argument to set one button

to True  and the other to False . When we call the variable's

get()  method, it will return the value  argument of the

selected button.

Unfortunately, not all Tkinter widgets work with control

variables. Notably, our Text  widget used for the

banana_haiku_inp  input cannot be bound to a variable, and

(unlike Listbox ) there is no alternative available. For the

time being, we'll have to handle the Text  entry widget as

we have already done.

The Tkinter Text  box does not support variables because

it is much more than just multi-line text; it can contain

images, rich text, and other objects that can't be

represented in a simple string. However, in Chapter 4,

Organizing Our Code with Classes, we'll implement a

workaround for this that will allow us to bind a variable to a

multi-line string widget.

plantain_var = tk.BooleanVar() 

plantain_yes_inp = tk.Radiobutton( 

  plantain_frame, text='Yes', value=True, variable=plantain_var 

) 

plantain_no_inp = tk.Radiobutton( 

  plantain_frame,  

  text='Ewww, no!',  

  value=False,  

  variable=plantain_var 

) 



Control variables are not just for binding to input widgets;

we can also use them to update strings in non-interactive

widgets like Label . For example:

output_var = tk.StringVar(value='') 

output_line = tk.Label( 

  root, textvariable=output_var, anchor='w', justify='left' 

) 

With the output_var  control variable bound to the

textvariable  argument of this Label  widget, we can alter the

text displayed by the label at runtime by updating

output_var .

Using control variables in a callback function

Now that we've created all these variables and bound them

to our widgets, what can we do with them? Skip down to

the callback function, on_submit() , and delete the code that

is in it. We will re-write it using our control variables.

Start with the name  value:

def on_submit(): 

  """To be run when the user submits the form""" 

  name = name_var.get() 

As mentioned earlier, the get()  method is used to retrieve a

variable's value. The data type returned by get()  depends

on the type of variable, as follows:

StringVar  returns a str

IntVar  returns an int

DoubleVar  returns a float

BooleanVar  returns a bool



Note that type conversion is performed whenever get()  is

called, so any incompatibility between what the widget

contains and what the variable expects will raise an

exception at this time. For example, if an IntVar  is bound to

an empty Spinbox , get()  will raise an exception because an

empty string cannot be cast to int .

For that reason, it is sometimes wise to put get()  in a

try/except  block, like so:

  try: 

    number = num_var.get() 

  except tk.TclError: 

    number = 10000

Contrary to what an experienced Python programmer

might expect, the exception raised for an invalid value is

not ValueError . The conversion is actually done in Tcl/Tk,

not in Python, so the exception raised is a tkinter.TclError .

Here, we've caught the TclError  and handled it by setting

the number of bananas to 10,000 .

TclError  exceptions are raised any time Tcl/Tk has

difficulty executing our translated Python calls, so to

properly handle them you may need to extract the actual

error string from the exception. This is a bit ugly and un-

Pythonic, but Tkinter doesn't leave us much choice.

Extracting the value of our OptionMenu , Checkbutton , and

Radiobutton  widgets is much cleaner now, as you can see

here:

  color = color_var.get() 

  banana_eater = eater_var.get() 

  plantain_eater = plantain_var.get() 



For the OptionMenu , get()  returns the selected string. For

Checkbutton , it returns True  if the button is checked, or

False  if it is not. For the Radiobutton  widgets, get()  returns

the value  of the selected widget. The nice thing about

control variables is that we don't have to know or care what

kind of widget they were bound to; simply calling get()  is

sufficient to retrieve the user's input.

The Text  widget, as mentioned before, doesn't support

control variables, so we have to get its content the old-

fashioned way:

  haiku = banana_haiku_inp.get('1.0', tk.END) 

Now that we have all that data, let's build a message string

for the survey taker:

    message = f'Thanks for taking the survey, {name}.\n' 

  if not banana_eater: 

    message += "Sorry you don't like bananas!\n" 

  else: 

    message += f'Enjoy your {number} {color} bananas!\n' 

  if plantain_eater: 

    message += 'Enjoy your plantains!' 

  else: 

    message += 'May you successfully avoid plantains!' 

  if haiku.strip(): 

    message += f'\n\nYour Haiku:\n{haiku}'

To display our message for the user, we need to update the

output_var  variable. This is done using its set()  method, like

so:

  output_var.set(message) 

The set()  method will update the control variable, which in

turn will update the Label  widget to which it is bound. This



way, we can dynamically update displayed messages,

widget labels, and other text in our application.

Remember to use set()  to change a control variable's

value! Using the assignment operator ( = ) will just

overwrite the control variable object with a different object

and you won't be able to work with it anymore. For

example, output_var = message  would just reassign the

name output_var  to the string object message , and the

control variable object currently bound to output_line

would become nameless.

The importance of control variables

Hopefully, you see that control variables are a powerful and

essential part of a Tkinter GUI. We will use them

extensively in our applications to store and communicate

data between Tkinter objects. In fact, once we've bound a

variable to a widget, it's often unnecessary to keep a

reference to our widget. For example, our survey code

would work just fine if we defined the output section like

this:

output_var = tk.StringVar(value='') 

# remove the call to output_line.grid() in the layout section! 

tk.Label( 

  root, textvariable=output_var, anchor='w', justify='left' 

).grid(row=100, columnspan=2, sticky="NSEW") 

Since we don't need to interact directly with the output

Label , we can just create it and place it all in one line,

without bothering to save a reference. Since the widget's

parent retains a reference to the object, Python won't

destroy the object, and we can retrieve its contents at any

time using the control variable. Of course, if we later want



to manipulate the widget in some way (changing its font

value, for example), we'll need to keep a reference to it.

Summary

In this chapter, you learned how to install Tkinter and

IDLE, and you've gotten a taste of how easy it is to start

building a GUI with Tkinter. You learned how to create

widgets, how to arrange them in the main window with the

grid()  geometry manager, and how to bind their contents

to control variables like StringVar  and BooleanVar . You also

learned how to bind events like button clicks to callback

functions, and how to retrieve and process widget data.

In the next chapter, you'll start your new job at ABQ

AgriLabs and be presented with a problem that will require

your GUI programming skills. You will learn how to dissect

this problem, develop a program specification, and design a

user-friendly application that will be part of the solution.



2

Designing GUI Applications

Software applications are developed in three repeating

phases: understanding a problem, designing a solution, and

implementing the solution. These phases repeat throughout

the life of an application as you add new features, refine

functionality, and update your application until it is either

optimal or obsolete. While many programmers want to

jump right into the implementation phase, putting away

your code editor and taking the time to work through the

first two phases will give you a better chance to develop an

application that solves the problem correctly.

In this chapter, we'll be introduced to a problem at your

new workplace and begin designing a solution to that

problem over the following topics:

In Analyzing a problem at ABQ AgriLabs, we'll learn

about an issue at your new job that you can help solve

with your coding skills.

In Documenting specification requirements, we'll

create a program specification that lays out the

requirements of our solution.

In Designing the application, we'll develop a design for

a GUI application that implements the solution.

In Evaluating technology options, we'll consider which

toolkit and language are most appropriate for our

project.



Analyzing a problem at

ABQ AgriLabs

Congratulations! Your Python skills have landed you a great

job as a data analyst at ABQ AgriLabs. So far, your job is

fairly simple: collating and doing simple data analysis on

the CSV files sent to you daily by the lab's data entry staff.

There is a problem, though. You've noted with frustration

that the quality of the CSV files from the lab is sadly

inconsistent. Data is missing, typos abound, and often the

files have to be re-entered in a time-consuming process.

The lab director has noticed this as well and, knowing that

you are a skilled Python programmer, she thinks you might

be able to help. You've been enlisted to program a solution

that will allow the data entry staff to enter lab data into a

CSV file with fewer mistakes. Your application needs to be

simple and allow as little room for error as possible.

Assessing the problem

Spreadsheets are often a first stop for computer users who

need to keep track of data. Their table-like layouts and

computational features seem to make them ideal for the

task.

However, as a set of data grows and is added to by multiple

users, the shortcomings of spreadsheets become apparent:

they don't enforce data integrity, their table-like layout can

be visually confusing when dealing with long rows of

sparse or ambiguous data, and users can easily delete or

overwrite data if they aren't being careful.



To improve this situation, you propose to implement a

simple GUI data entry form that appends data to a CSV file

in the format we need. Forms can help to improve data

integrity in several ways:

They can enforce the type of data to be entered (for

example, numbers or dates).

They can verify that entered data is within expected

ranges, matches expected patterns, or is within a valid

set of options.

They can auto-fill information such as current dates,

times, and usernames.

They can ensure that required data fields have not been

left empty.

By implementing a well-designed form, we can greatly

reduce the amount of human error from the data entry

staff. Where do we begin?

Gathering information about the

problem

To build a truly effective data entry application, you need to

do more than just throw some entry fields on a form. It's

important to understand the data and the workflow around

the data from all sides of the problem. It's also important to

understand the human and technological limitations that

you need to accommodate. To do that, we need to speak

with a few different parties:

The originators of the data for the application – in this

case, the lab technicians who check the plots in each

lab. They can help us understand the significance of the



data, the possible values, and the possible outlier

situations where the data might need special handling.

The users of our application – in this case, the data

entry staff. We need to understand what the data looks

like when they receive it, what their workflow is like for

entering the data, what practical or knowledge

limitations they face, and ultimately how our software

can make their job easier rather than harder.

The consumers of the data from the application – that

is, everyone who will use the CSV files (including you!).

What are their expectations for the output of this

application? How would they like outlier situations to

be handled? What are their goals in keeping and

analyzing the data?

The support staff who are involved with the systems

that will run or consume data from your application.

What sort of technologies need to be supported? What

technological limitations need to be accommodated?

What security concerns need to be addressed?

Sometimes these groups overlap, of course. In any case, it's

important to think through everyone whose job will be

affected by the data and the software, and take their needs

into consideration as you design your application. So,

before we start coding away, we're going to put together

some questions to help us gather these details.

Interviewing the interested parties

The first group you'll talk to are the lab technicians, from

whom you'll try find out more detail about the data being

recorded. This isn't always as easy as it sounds. Software

needs absolute, black-and-white rules when dealing with

data; people, on the other hand, tend to think in

generalities about their data, and they often don't consider



the exact details of limits or edge cases without some

prompting. As an application designer, it's your job to come

up with questions that will bring out the information you

need.

Here are some questions we can ask the lab technicians to

learn more about the data:

What values are acceptable for character fields? Are

any of them constrained to a discrete set of values?

What units are represented by each of the numeric

fields?

Are numeric fields truly number-only fields? Would they

ever need letters or symbols?

What range of numbers is acceptable for each numeric

field?

How is unavailable data (such as from an equipment

failure) notated?

Next, let's interview the users of the application. If we're

making a program to help reduce user error, we have to

understand those users and how they work. In the case of

this application, our users will be the data entry staff. We

need to ask them questions about their needs and workflow

so that we can create an application that works well for

them.

Here are some good questions we can ask the data entry

staff:

How is the data formatted when you receive it?

When is the data received and how soon is it entered?

When's the latest it might be entered?

Are there fields that could be automatically populated?

Should users be able to override the automatic values?



What's the overall technical ability of the users? Are

they strong typists, or would they prefer a mouse-

driven interface?

What do you like about the current solution? What do

you dislike?

Do any users have visual or manual impairments that

should be accommodated?

Listen to your users! When talking to users about an

application design, they may often put forward

requests or ideas that are impractical, that don't

follow best practice, or that seem frivolous. For

example, they may request that a button display an

animation under certain conditions, that a particular

field be yellow, or that a time field be represented as a

set of dropdowns for hours and minutes. Rather than

dismissing these ideas, try to understand the

reasoning behind them, or the problem that prompted

them. It will often uncover aspects of the data and the

workflow you did not understand before, and lead to a

better solution.

Once we have spoken with our users, it's time to talk to the

consumers of our data. In this case, that's you! You already

know a good deal about what you need and expect from the

data, but even so, it's important to reflect and consider how

you would ideally like to receive data from this application.

For example:

Is CSV really the best output format, or is that just

what has always been used?

Does the order of fields in the CSV matter? Are there

constraints on the header values (no spaces, mixed

case, and so on)?

How should outlier cases be handled by the

application? What should they look like in the data?



How should different objects like Boolean or date

values be represented in the data?

Is there additional data that should be captured to help

you accomplish your goals?

Finally, we need to understand the technology that our

application will be working with; that is, the computers,

networks, servers, and platforms available to accomplish

the task. You come up with the following questions to ask

the IT support staff:

What kind of computer does data entry use? How fast

or powerful is it?

What operating system platform does it run?

Is Python available on these systems? If so, are there

any Python libraries installed?

What other scripts or applications are involved in the

current solution?

How many users need to use the program at once?

Inevitably, more questions will come up about the data,

workflow, and technologies as the development process

continues. For that reason, be sure to keep in touch with all

these groups and ask more questions as the need arises.

Analyzing what we've found out

You've done all your interviews with the interested parties,

and now it's time to look over your notes. You begin by

writing down the basic information about operations at

ABQ that you already know:

Your ABQ facility has three greenhouses, each

operating with a different climate, marked A, B, and C



Each greenhouse has 20 plots (labeled 1 through 20)

There are currently four types of seed samples, each

coded with a six-character label

Each plot has 20 seeds of a given sample planted in it,

as well as its own environmental sensor unit

Information from the data originators

Your talk with the lab technicians revealed a lot about the

data. Four times a day, at 8:00, 12:00, 16:00, and 20:00,

each technician checks the plots in his or her assigned lab.

They use a paper form to record information about plants

and environmental conditions at each plot, recording all

numeric values to no more than two decimal places. This

usually takes between 45 and 90 minutes, depending on

how far along the plant growth has progressed.

Each plot has its own environmental sensor that detects the

light, temperature, and humidity at the plot. Unfortunately,

these devices are prone to temporary failure, indicated by

an Equipment Fault light on the unit. Since a fault makes

the environmental data suspect, they simply cross out the

fields in those cases and don't record that data.

They provide you with an example copy of the paper form,

which looks like this:



Figure 2.1: Paper form filled out by the lab technicians

Finally, the technicians tell you about the units and possible

ranges of data for the fields, which you record in the

following chart:

Field
Data

type
Notes

Date Date
The data collection date. Usually the current

date.

Time Time

The start of the period during which

measurements were taken. One of 8:00, 12:00,

16:00, or 20:00.

Lab Character The lab ID, either A, B, or C.



Technician Text The name of the technician recording the data.

Plot Integer The plot ID, from 1 to 20.

Seed

Sample
Text

ID string for the seed sample. Always a six-

character code containing digits 0 to 9 and

capital letters A to Z.

Fault Boolean
True if environmental equipment registered a

failure, otherwise False.

Humidity Decimal
The absolute humidity in g/m³, roughly between

0.5 and 52.0.

Light Decimal
The amount of sunlight at the plot center in

kilolux, between 0 and 100.

Temperature Decimal
The temperature at the plot, in degrees C; should

be between 4 and 40.

Blossoms Integer
The number of blossoms on the plants in a plot.

No maximum, but unlikely to approach 1,000.

Fruit Integer
The number of fruits on the plant. No maximum,

but unlikely to ever approach 1,000.

Plants Integer
The number of plants in the plot; should be no

more than 20.

Max Height Decimal
The height of the tallest plant in the plot, in cm.

No maximum, but unlikely to approach 1,000.

Median

Height

Decimal The median height of the plants in the plot, in cm.

No maximum, but unlikely to approach 1,000.



Min Height Decimal
The height of the smallest plant in the plot, in cm.

No maximum, but unlikely to approach 1,000.

Notes Long Text
Additional observations about the plant, data,

instruments, and so on.

Information from the users of the application

Your session with the data entry staff yielded good

information about their workflow and practical concerns.

You learn that the lab technicians drop off their paper

forms as they're completed, from which the data is typically

entered right away and usually on the same day as it's

handed in.

The data entry staff are currently using a spreadsheet

(LibreOffice Calc) to enter the data. They like that they can

use copy and paste to bulk-fill fields with repeated data like

the date, time, and technician name. They also note that

the autocompletion feature of LibreOffice is often helpful in

text fields, but sometimes causes accidental data errors in

the number fields.

You take these notes about how they enter data from the

forms:

Dates are entered in month/day/year format, since this

is how LibreOffice formats them by default with the

system's locale setting.

Time is entered as 24-hour time.

Technicians are entered as first initial and last name.

In the case of equipment faults, the environmental data

is entered as N/A .



The CSV file is generally created one lab at a time in

plot order (from 1 to 20).

There are four data entry clerks in total, but only one

working at any one time; while interviewing the clerks, you

learn that one has red-green color blindness, and another

has trouble using a mouse due to RSI issues. All are

reasonably computer literate and prefer keyboard entry to

mouse entry as it allows them to work faster.

One user in particular had some ideas about how your

program should look. He suggested doing the labs as a set

of checkboxes, and to have separate pop-up dialogs for

plant data and environmental data.

Information from technical support

Speaking with IT personnel, you learn that the data entry

staff have only a single PC workstation, which they share. It

is an older system running Debian GNU/Linux, but it

performs adequately. Python3 and Tkinter are already

installed as part of the base system, though they are

slightly older versions than you have on your workstation.

The data entry staff save their CSV data for the current day

to a file called abq_data_record.csv . When all the data is

entered, the data entry staff have a script they can run to

email you the file and build a new, empty file for the next

day. The script also backs up the old file with a date-stamp

so it can be pulled up later for corrections.

Information from the data consumer

As the main data consumer, it would be pretty easy for you

to just stick with what you know already; nevertheless, you

take the time to review a recent copy of abq_data_record.csv ,

which looks something like this:



Figure 2.2: The abq_data_record.csv file

In reflecting on this, you realize there are a few changes to

the status quo that could make life easier for you as you do

your data analysis:

It would be great to have the files date-stamped right

away. Currently, you have an inbox full of files called

abq_data_record.csv  and no good way to tell them apart.

It would be helpful if the data in the files were saved in

a way that Python could more easily parse without

ambiguity. For example, dates are currently saved with

the local month/day/year formatting, but ISO-format

would be less problematic.

You'd like a field that indicates explicitly when there is

an equipment fault, rather than just implying it with

missing environmental data.

The N/A  is something you just have to filter out when

you process the data. It would be nice if an equipment

fault would just blank out the environmental data fields

so that the file doesn't contain useless data like that.

The current CSV headers are cryptic, and you're always

having to translate them in your report scripts. It would

be good to have readable headers.

These changes won't just make your job easier, they will

also leave the data in a more usable state than it was

before. Legacy data formats like these CSV files are often

fraught with artifacts from obsolete software environments

or outdated workflows. Improving the clarity and



readability of the data will help anyone trying to use it in

the future as the lab's usage of the data evolves.

Documenting specification

requirements

Now that you've assembled your information about the

data, people, and technologies affected by your application,

it's time to write up a software specification. Software

specifications can range from very formal, contractual

documents that include time estimates and deadlines to a

simple set of descriptions of what the programmer intends

to build. The purpose of the specification is to give

everyone involved in the project a point of reference for

what the developer will create. It spells out the problem to

be solved, the functionality required, and the scope of what

the program should and shouldn't do.

Your scenario is rather informal and your application is

simple, so you do not need a detailed formal specification in

this case. However, a basic write-up of what you know will

make sure that you, your employer, and the users all

understand the essentials of the application you will be

writing.

Contents of a simple specification

We'll start our specification with the following outline of the

items we need to write:

Description: This is one or two sentences that

describe the primary purpose, function, and goals of



the application. Think of it as the program's mission

statement.

Requirements: This section is a list of specific things

the program must be able to do in order to be

minimally functional. It can include both functional and

non-functional requirements.

Functional requirements are concrete goals that

the program must achieve; for example, the

business logic that it must perform or the output

format it must produce. Listing these helps us know

when our program is ready for production use.

Non-functional requirements tend to be less

specific and focus on user expectations and general

goals, for example, usability, performance, or

accessibility requirements. Although these aren't

always measurable goals, they help to guide the

focus of our development.

Functionality not required: This section is a list of

things the program does not need to do; it exists to

clarify the scope of the software and make sure nobody

expects unreasonable things from the application. We

don't need to include every possible thing our

application won't do; naturally, our program won't

make toast or do the laundry. However, if there are

features we are not implementing that users might

reasonably expect, this is a good place to clarify what

won't be done.

Limitations: This is a list of constraints under which

the program must operate, both technological and

human.

Data dictionary: This is a detailed list of the data

fields in the application and their parameters. A data

dictionary can get quite lengthy, and may be worthy of

a document of its own. It will not only be useful during



the development of our application but will become a

critical reference to the data produced by the

application as the application expands and the data

gets utilized in other contexts.

Writing the ABQ data entry program

specification

You could write a specification in your favorite word

processor, but ideally the specification should be treated as

a part of your code; it will need to be kept with the code

and synchronized with any changes to the application. For

that reason, we're going to write our specification in our

code editor using the reStructuredText markup language.

For Python documentation, reStructuredText, or reST, is the

official markup language. The Python community

encourages the use of reST to document Python projects,

and many packaging and publication tools used in the

Python community expect the reST format. For an in-depth

coverage of reST, see Appendix A, A Quick Primer on

reStructuredText, or see the official documentation at

https://docutils.sourceforge.io/rst.html .

Let's start with the Description  section of our

documentation:

====================================== ABQ Data Entry Program

specification ====================================== Description

----------- This program facilitates entry of laboratory

observations into a CSV file.

Now, let's list the Requirements . Remember that functional

requirements are objectively attainable goals, like input

and output requirements, calculations that must be done,

or features that must be present. Non-functional



requirements, on the other hand, are subjective or best-

effort goals. Look through your findings from the last

section, and consider which needs are which. You should

come up with something like the following:

Requirements ---------------------- Functional Requirements: *

Allow all relevant, valid data to be entered, as per the data

dictionary. * Append entered data to a CSV file: - The CSV file

must have a filename of abq_data_record_CURRENTDATE.csv, where

CURRENTDATE is the date of the laboratory observations in ISO

format (Year-month-day). - The CSV file must include all fields

listed in the data dictionary. - The CSV headers will avoid

cryptic abbreviations. * Enforce correct datatypes per field.

Non-functional Requirements: * Enforce reasonable limits on data

entered, per the data dict. * Auto-fill data to save time. *

Suggest likely correct values. * Provide a smooth and efficient

workflow. * Store data in a format easily understandable by

Python.

Next, we'll reign in the scope of the program with the

Functionality Not Required  section. Remember that this is only

an entry form for now; editing or deletion of data will be

handled in the spreadsheet application. We'll clarify this as

follows:

Functionality Not Required -------------------------- The program

does not need to: * Allow editing of data. * Allow deletion of

data. Users can perform both actions in LibreOffice if needed.

For the Limitations  section, remember that we have some

users with physical constraints, as well as hardware and

operating system constraints. It should look something like

this:

Limitations ----------- The program must: * Be efficiently

operable by keyboard-only users. * Be accessible to color blind

users. * Run on Debian GNU/Linux. * Run acceptably on a low-end

PC.

Finally, we will write the data dictionary. This is essentially

the table we made previously, but we'll break out range,

data types, and units for quick reference, as follows:



+------------+--------+----+---------------+--------------------+

|Field | Type |Unit| Valid Values |Description |

+============+========+====+===============+====================+

|Date |Date | | |Date of record | +------------+--------+----+---

------------+--------------------+ |Time |Time | | 8:00, 12:00,

|Time period | | | | | 16:00, 20:00 | | +------------+--------+--

--+---------------+--------------------+ |Lab |String | | A - C

|Lab ID | +------------+--------+----+---------------+-----------

---------+ |Technician |String | | |Technician name | +----------

--+--------+----+---------------+--------------------+ |Plot |Int

| | 1 - 20 |Plot ID | +------------+--------+----+---------------

+--------------------+ |Seed |String | | 6-character |Seed sample

ID | |Sample | | | string | | +------------+--------+----+-------

--------+--------------------+ |Fault |Bool | | True, False

|Environmental | | | | | |sensor fault | +------------+--------+-

---+---------------+--------------------+ |Light |Decimal |klx |

0 - 100 |Light at plot | | | | | |blank on fault | +------------

+--------+----+---------------+--------------------+ |Humidity

|Decimal |g/m³| 0.5 - 52.0 |Abs humidity at plot| | | | | |blank

on fault | +------------+--------+----+---------------+----------

----------+ |Temperature |Decimal |°C | 4 - 40 |Temperature at

plot | | | | | |blank on fault | +------------+--------+----+----

-----------+--------------------+ |Blossoms |Int | | 0 - 1000

|No. blossoms in plot| +------------+--------+----+--------------

-+--------------------+ |Fruit |Int | | 0 - 1000 |No. fruits in

plot | +------------+--------+----+---------------+--------------

------+ |Plants |Int | | 0 - 20 |No. plants in plot | +----------

--+--------+----+---------------+--------------------+ |Max

Height |Decimal |cm | 0 - 1000 |Height of tallest | | | | |

|plant in plot | +------------+--------+----+---------------+----

----------------+ |Min Height |Decimal |cm | 0 - 1000 |Height of

shortest | | | | | |plant in plot | +------------+--------+----+-

--------------+--------------------+ |Median |Decimal |cm | 0 -

1000 |Median height of | |Height | | | |plants in plot | +-------

-----+--------+----+---------------+--------------------+ |Notes

|String | | |Miscellaneous notes | +------------+--------+----+--

-------------+--------------------+

That's our specification for now! The specification is very

likely to grow, change, or evolve in complexity as we

discover new needs, but it gives us a great starting point

for designing the first version of our application.



Designing the application

With our specification in hand and our requirements clear,

it's time to start designing our solution. The main focus of

our application is the data entry form itself, so we'll begin

with that GUI component.

We're going to create a basic design for our form in three

steps:

1. Determine the appropriate input widget type for each

data field

2. Group together related items to create a sense of

organization

3. Lay out our widgets within their groups

Deciding on input widgets

Without committing ourselves to a particular GUI library or

widget set, we can start our form design by deciding on an

appropriate input widget type for each field. Most toolkits

come with the same basic types of inputs for different types

of data.

We've already seen some of these in our look at Tkinter, but

let's see what sort of options are likely to be available:

Widget type Tkinter example Used for

Line entry Entry Single-line strings

Number entry Spinbox Integer or decimal values



Select list (drop-

down)

Listbox ,

OptionMenu

Choice between many distinct

values

Check box Checkbutton True/false value

Radio button Radiobutton
Choice between a few distinct

values

Text entry Text Multi-line text entry

Date entry (None specific) Dates

Looking at our data dictionary, what sort of widgets should

we pick out for each of our fields? Let's consider:

There are several decimal fields, many with clear

boundary ranges, like Min Height, Max Height, Median

Height, Humidity, Temperature, and Light. We'll need

some kind of number entry, perhaps a Tkinter Spinbox ,

for these.

There are also some integer fields, such as Plants,

Blossoms, and Fruit. Again, a number entry like the

Spinbox  widget is the right choice.

There are a couple of fields with a limited set of

possible values: Time and Lab. For these we could go

with radio buttons or a select list of some kind. It really

depends on the number of options and how we want to

lay it out: radio buttons take a lot of space with more

than a few choices, but select list widgets take

additional interaction and slow down a user. We'll

choose a select/drop-down for the Time field, and radio

buttons for the Lab field.

The Plot field is a tricky case. At face value, it looks like

an integer field, but think about it: the plots could just



as well be identified by letters, or symbols, or names.

Numbers just happen to be an easy set of values with

which to assign arbitrary identifiers. The Plot ID, like

the Lab ID, is actually a constrained set of values; so, it

would make more sense to use a select list here.

The Notes field is multiline text, so the Text widget is

appropriate here.

There is one Boolean field, Fault. A check box type

widget is a good choice here, especially since this value

is normally false and represents an exceptional

circumstance.

For the Date field, it would be nice to use a date entry

of some sort. We don't know of one in Tkinter yet, but

we'll see if we can solve that when we write our

application.

The remaining lines are simple, one-line character

fields. We'll use a text entry-type widget for those

fields.

Our final analysis comes to the following:

Field Widget type

Date Date entry

Time Select list

Lab Radio buttons

Technician Text entry

Plot Select list



Seed Sample Text entry

Fault Check box

Humidity Number entry

Light Number entry

Temperature Number entry

Blossoms Number entry

Fruit Number entry

Plants Number entry

Max Height Number entry

Median Height Number entry

Min Height Number entry

Notes Text entry

Bear in mind, this analysis is not set in stone; it will almost

certainly be revised as we receive feedback from our users,

as the application's use case evolves, or as we become

more familiar with the capabilities and limitations of

Python and Tkinter. This is simply a starting place from

which we can create an initial design.



Grouping our fields

Humans tend to get confused when staring at a huge wall

of inputs in no particular order. You can do your users a big

favor by breaking up the input form into sets of related

fields. Of course, that assumes that your data has related

sets of fields, doesn't it? Does our data have groups?

Recall some of the information we gathered during our

interviews:

One of the employees requested separate forms for

"environmental data" and "plant data"

The layout of the paper form has Time, Date, Lab, and

Technician, all together at the top; these things help

identify the data recording session

Details like this tell you a lot about how your users think

about their data, and that should inform how the

application presents that data.

Considering all this, you identify the following related

groups:

The Date, Lab, Plot, Seed Sample, Technician, and Time

fields are identifying data or metadata about the record

itself. You could group these together under a heading

calling Record Information.

The Blossoms, Fruit, three Height fields, and Plants

fields are all measurements that have to do with the

plants in the Plot field. You could group these together

under the heading Plant Data.

The Humidity, Light, Temperature, and Equipment

Fault fields are all information from the environmental

sensor. You could group these as Environmental Data.



The Notes field could be related to anything, so it's in a

category of its own.

Most GUI libraries offer a variety of ways to group sections

of a form together; think of some you have seen. A few are

listed in this table:

Widget type Description

Tabs

(notebook)

Allows multiple tabbed pages that the user can switch

between

Frames/boxes
Draws boxes around sections of a form, sometimes with a

header

Accordion
Divides a form into sections that can be hidden or expanded

one at a time

Framed boxes are the simplest way to break up a GUI. In

cases where there are a lot of fields, a tabbed or accordion

widget can help by hiding fields the user isn't working with.

However, they require additional user interaction to switch

between pages or sections. You decide, after some

consideration, that framed boxes with headers will be

perfectly adequate for this form. There are not really

enough fields to justify separate pages, and switching

between them would just add more overhead to the data

entry process.

Laying out the form

So far, we know that we have 17 inputs, which are grouped

as follows:



Six fields under Record Information

Four fields under Environmental Data

Six fields under Plant Data

One large Notes field

We want to group the preceding inputs using some kind of

box or frame with a header label. Notice that two of the

first three sections have widgets in multiples of three. That

suggests that we could arrange them in a grid with three

items across. How should we order the fields within each

group?

Ordering of fields seems like a trivial item, but for the user

it can make a significant difference in usability. Users who

have to jump around a form haphazardly to match their

workflow are more likely to make mistakes.

As you learned, the data is entered from paper forms filled

out by the lab technicians. Refer back to the screenshot of

the paper form shown in Figure 2.1 in the previous section.

It looks like items are mostly grouped the way our records

are grouped, so we'll use the ordering on this form to order

our fields. That way, data entry clerks can zip right through

the form from top to bottom, left to right, without having to

bounce around the screen.

Remember, user workflow is important! When designing a

new application to replace some part of an existing

procedure, it's crucial to respect the established workflow.

While improving the status quo may require adjusting the

workflow, be careful that you aren't making someone else's

job harder without a good reason.

One last consideration in our design is where to place field

labels in relation to the fields. There is a good deal of



debate in the UI design community over the best placement

of labels, but the consensus is that one of the following two

options is best:

Labels above fields

Labels to the left of fields

You might try sketching out both to see which you prefer,

but for this application, labels above fields will probably

work better for the following reasons:

Since both fields and labels are rectangular in shape,

our form will be more compact by stacking them

It's a lot easier to make the layout work, since we don't

have to find a label width that works for all the labels

without distancing them too far from the fields

The one exception is the check button field; check buttons

are typically labeled to the right of the widget.

Take a moment to make a mockup of your form, using

paper and pencil, or a drawing program if you prefer. Your

form should look something like this:



Figure 2.3: The form layout

Laying out the application

With your form designed, it's time to consider the rest of

the application's GUI:

You'll need a save button to trigger storage of the

entered data.



It's customary to include a button to reset the form, so

the user can start over if needed.

Sometimes, we might need to provide status

information to the user. For example, we might want to

let them know when a record was successfully saved, or

if there is an error in a particular field. Applications

typically have a status bar that displays these kinds of

messages at the bottom of the window.

Finally, it might be good to have a header indicating

what the form is.

Adding the following things to our sketch, we have

something like the following screenshot:



Figure 2.4: The application layout

Looks good! Your final step is to show these designs to your

users and the director for any feedback or approval. Good

luck!

Keep stakeholders – your boss, users, and others who will

be affected by your program – involved as much as possible

in your application design process. This reduces the



possibility that you'll have to go back and redesign your

application later.

Evaluating technology

options

Before we start coding, let's take a moment to evaluate the

technology choices available to implement this design.

Naturally, we're going to build this form using Python and

Tkinter, because that's what this book is about. However, in

a real-world situation it's worth asking whether Tkinter is

really a good choice of technology for the application. Many

criteria come into play when making decisions about

languages, libraries, and other technologies used in

implementing an application, including performance,

feature availability, cost and license, platform support, and

developer knowledge and confidence.

Let's evaluate the situation with our ABQ application

according to these criteria:

Performance: This will not be a high-performance

application. There are no computationally demanding

tasks, and high speed is not critical. Python and Tkinter

will work perfectly fine in terms of performance.

Feature availability: Your application needs to be able

to display basic form fields, validate the data entered,

and write it to CSV. Tkinter can handle these front-end

requirements, and Python can handle the CSV file

easily. You are a little concerned about Tkinter's lack of



a dedicated date entry field, but this may be something

we can work around.

Cost and license: This project isn't going to be

distributed or sold, so licenses are not a big concern.

There is no budget for the project, though, so whatever

you use will need to be free from any financial cost.

Both Python and Tkinter are free and liberally licensed,

so in any case this is not a concern.

Platform support: You will be developing the

application on a Windows PC, but it will need to run on

Debian Linux, so the choice of GUI should be cross-

platform. The computer it will run on is old and slow, so

your program needs to be frugal with resources. Python

and Tkinter check both boxes here.

Developer knowledge and confidence: Your

expertise is in Python, but you have little experience in

creating GUIs. For the fastest time to delivery, you need

an option that works well with Python and isn't

complicated to learn. You also want something

established and stable, as you won't have time to keep

up with new developments in the toolkit. Tkinter is a

good fit here.

Don't take your own skills, knowledge, and comfort level

with the technology out of the equation here! While it's

good to make objective choices and recognize your personal

biases toward things you already know, it's equally

important to recognize that your ability to confidently

deliver and maintain a product is a critical factor in your

evaluation.

Given the options available for Python, Tkinter is a good

choice for this application. It's easy to learn, lightweight,

free, readily available on both your development and target

platforms, and provides the basic functionality necessary



for our data entry form. Having settled this question, it's

time to take a deeper look into Tkinter to find what we'll

need to build this application.

Python has other options for GUI development, including

PyQt, Kivy, and wxPython. These have different strengths

and weaknesses compared to Tkinter, but if you find Tkinter

doesn't fit well for a project, one of these might be a better

option.

Summary

In this chapter, you worked through the first two phases of

application development: understanding the problem and

designing a solution. You learned how to develop an

application specification by interviewing users and

examining the data and requirements, created an optimal

form layout for your users, and learned about the different

types of widgets available in GUI frameworks for dealing

with different kinds of input data. After creating the

specification, you evaluated Tkinter to see if it was an

appropriate technology. Most importantly, you learned that

developing an application doesn't begin with code, but with

research and planning.

In the next chapter, you'll create a basic implementation of

your designs with Tkinter and Python. You'll learn about a

new widget set, Ttk, and use it along with some Tkinter

widgets we've already met to create the form and the

application.



3

Creating Basic Forms with Tkinter and Ttk

Widgets

Good news! Your design has been reviewed and approved

by the director. Now it's time to start implementing it! In

this chapter, we'll be creating a very simple application that

delivers the core functionality of the specification and little

else. This is known as a minimum viable product or

MVP. The MVP will not be production-ready, but it will give

us something to show our users and help us better

understand the problem and the technologies we're

working with. We'll cover this in the following topics:

In The Ttk widget set, we'll learn about a better widget

set for Tkinter, Ttk.

In Implementing the application, we'll build our form

design using Python, Tkinter, and Ttk.

Let's get coding!

The Ttk widget set

In Chapter 1, Introduction to Tkinter, we created a survey

application using the default Tkinter widgets. These

widgets are perfectly functional and still used in many

Tkinter applications, but modern Tkinter applications tend

to prefer an improved set of widgets called Ttk. Ttk is a

sub-module of Tkinter that provides themed versions of



many (but not all) Tkinter widgets. These widgets are

mostly identical to the traditional widgets but provide

advanced styling options in an aim to look more modern

and natural on Windows, macOS, and Linux.

On each platform, Ttk includes platform-specific themes

that mimic the platform's native widgets. In addition, Ttk

adds a few extra widgets that offer functionality not found

in the default library.

Although this chapter will cover the basic usage of Ttk

widgets, full coverage of the fonts, colors, and other style

customization for Ttk widgets can be found in Chapter 9,

Improving the Look with Styles and Themes.

Ttk is already included as part of Tkinter, so we do not need

to install anything extra. To use Ttk widgets in our Tkinter

applications, we will need to import ttk  like this:

from tkinter import ttk

In this section, we'll take a deeper look at the Ttk widgets

that will be useful in our application. Remember from our

design that we need the following types of widgets for our

application:

Labels

Date entry

Text entry

Number entry

Check boxes

Radio buttons

Select list

Long text entry



Buttons

Boxed frames with headers

Let's look at the Ttk widgets that we can use to meet these

needs.

The Label widget

We made good use of the Tkinter Label  widget in Chapter

1, Introduction to Tkinter, and the Ttk version is essentially

the same. We can create one like so:

mylabel = ttk.Label(root, text='This is a label')

This results in a label that looks like this:

Figure 3.1: A Ttk Label widget

The Ttk Label  widget shares most of the same options as

the Tk version, the most common of which are listed here:

Argument Values Description

text String The text content of the label

textvariable StringVar
The variable to bind to the contents of

the label

anchor
Cardinal

direction

The position of the text relative to the

inner margins



justify left , right ,

or center

The alignment of the lines of text

relative to one another

foreground Color string The color of the text

wraplength Integer
Number of pixels before the text is

wrapped to the next line

underline Integer
The index of a character in text  to

underline

font
Font string or

tuple
The font to be used

Note that a label's text can either be specified directly

using text , or bound to a StringVar , allowing for dynamic

label text. The underline  argument allows for underlining a

single character in the label text; this is useful for

indicating a keybinding for the user, for example, to

activate a control widget labeled by the label. No

keybinding is actually created by this argument; it's merely

cosmetic. We'll learn to create keybindings in Chapter 10,

Maintaining Cross-Platform Compatibility.

The Entry widget

The ttk.Entry  widget is a simple one-line text entry, just like

the Tkinter version. It looks like this:

Figure 3.2: A Ttk Entry widget



We can create an Entry  widget using this code:

The Ttk Entry  is very similar to the Tkinter Entry  widget

we've already seen, and supports many of the same

arguments. Here is a selection of the more common Entry

options:

Argument Values Description

textvariable StringVar Tkinter control variable to bind.

show String

Character or string to show when the user

types. Useful for password fields, for

example.

justify

left ,

right , or

center

Alignment of the text in the entry. left  is

default.

foreground Color string Color of text.

We'll learn some more options for the Entry  as we dig

deeper into the capabilities of Ttk widgets in future

chapters. The Entry  will be used for all of our text entry

fields, as well as our Date  field. Ttk does not have a

dedicated date  widget, but we'll learn in Chapter 5,

Reducing User Error with Validation and Automation, how

to turn our Entry  into a date  field.

The Spinbox widget

myentry = ttk.Entry(root, textvariable=my_string_var, width=20) 



Like the Tkinter version, the Ttk Spinbox  adds increment

and decrement buttons to the standard Entry  widget,

making it suitable for numerical data.

The Ttk Spinbox  is shown here:

Figure 3.3: A Ttk Spinbox widget

We can create one like this:

myspinbox = ttk.Spinbox( 

  root, 

  from_=0, to=100, increment=.01, 

  textvariable=my_int_var, 

  command=my_callback 

) 

As this code shows, the Ttk Spinbox  takes a number of

arguments that control the behavior of its arrow buttons,

listed in this table:

Argument Values Description

from_ Float or Int
Minimum value the arrows will decrement

to.

to Float or Int
Maximum value the arrows will increment

to.

increment Float or Int
Value that will be added or subtracted by

the arrows.



command Python

function

Callback to be executed when either button

is pushed.

textvariable

Control

variable (any

type)

Variable bound to the field value.

values

List of

strings or

numbers

Set of choices the buttons will scroll

through. Overrides the from_  and to

values.

Note that these arguments do not restrict what is entered

into the Spinbox ; they only impact the behavior of the

arrows. Also, be aware that if you specify only one of from_

or to , the other defaults to 0  automatically. This can lead

to unexpected behavior; for example, if you set from_=1

without specifying to , then to  will default to 0  and your

arrows will only toggle between 1  and 0 . To explicitly set

no limit, you can use from_='-infinity'  and to='infinity' .

The Spinbox  widget is not merely for numbers, even though

that's primarily how we'll be using it. As you can see, it can

also take a values  argument, which is a list of strings or

numbers that can be scrolled through using the arrow

buttons. Because of this, the Spinbox  can be bound to any

kind of control variable, not just IntVar  or DoubleVar

variables.

Remember, none of these parameters actually limit what

can be typed into a Spinbox  widget. It's really nothing

more than an Entry  widget with buttons tacked on, and

you can type not only numeric values outside the valid

range but letters and symbols as well. Doing so can cause

an exception if you've bound the widget to a non-string

variable. In Chapter 5, Reducing User Error with Validation

and Automation, we'll learn how to make the Spinbox

widget limit entry to valid numeric characters only.



The Checkbutton widget

The Ttk Checkbutton  widget is a labeled checkbox ideal for

entering Boolean data. It can be created like so:

mycheckbutton = ttk.Checkbutton( root, variable=my_bool_var,

textvariable=my_string_var, command=my_callback )

Checkbutton  widgets can take a number of arguments in

addition to those listed above, as shown in this table:

Argument Values Description

variable
Control

variable

The variable to which the

checked/unchecked state of the box is bound

text String The label text

textvariable StringVar The variable to which the label text is bound

command
Python

function

A callback to execute whenever the box is

checked or unchecked

onvalue Any
Value to set variable  when the box is

checked

offvalue Any
Value to set variable  when the box is

unchecked

underline Integer Index of a character in text  to underline

The label included in the Checkbutton  can be set directly

using the text  argument, or it can be bound to a control



variable using textvariable . This allows for dynamic labeling

of the widget, which can be useful in many situations.

Although the Checkbutton  is ideal for Boolean data and

defaults to setting its bound variable to True  or False , we

can override this behavior with the onvalue  and offvalue

arguments, allowing it to be usable with any type of control

variable.

For example, we can use it with a DoubleVar  like so:

mycheckbutton2 = ttk.Checkbutton( 

  root, 

  variable=my_dbl_var, 

  text='Would you like Pi?', 

  onvalue=3.14159, 

  offvalue=0, 

  underline=15 

) 

The Ttk Checkbutton  places the label to the right of the box,

as shown in this screenshot:

Figure 3.4: A Ttk Checkbutton widget with its built-in label

The Radiobutton widget

Like its Tkinter counterpart, the Ttk Radiobutton  widget is

used for selection among a set of mutually exclusive

options. A single Radiobutton  by itself is not a terribly useful

widget; instead, they are usually created as a group, as

shown here:



Figure 3.5: A pair of Ttk Radiobutton widgets

The following code shows how to create these buttons:

buttons = tk.Frame(root) r1 = ttk.Radiobutton( buttons,

variable=my_int_var, value=1, text='One' ) r2 = ttk.Radiobutton(

buttons, variable=my_int_var, value=2, text='Two' )

To group Radiobutton  widgets, you simply need to assign

them all the same control variable, then add a distinct

value  to each button. In our example, we've also grouped

them on the same parent widget, but this is merely for

visual reasons and not strictly necessary.

This table shows some of the various arguments you can

use with a Radiobutton :

Argument Values Description

variable
Control

variable

A variable to be bound to the button's

selected state

value Any
A value to set the variable to when the

button is selected

command
Python

function

A callback to execute when the button is

clicked

text String The label connected to the radio button

textvariable StringVar A variable bound to the button's label text

underline Integer Index of a character in text  to underline



The Combobox widget

In Chapter 1, Introduction to Tkinter, we learned about a

couple of options for providing a selection between distinct

options: the Listbox  and OptionMenu  widgets. Ttk offers a

new widget for this purpose, Combobox . The Combobox  widget

is an Entry  widget that has a drop-down listbox added. It

not only allows for mouse selection, but also keyboard

entry. Although it may seem like OptionMenu  is a better fit for

our application in some ways, we're going to exploit the

Combobox  widget's keyboard functionality to build a superior

drop-down widget.

We can create a Combobox  widget like so:

mycombo = ttk.Combobox( 

  root, textvariable=my_string_var, 

  values=['This option', 'That option', 'Another option'] 

) 

Running that code will give us a combo box that looks

something like this:

Figure 3.6: A Ttk Combobox widget

Note that while we can specify a list of possible values to

populate the drop-down listbox, the Combobox  widget is not

limited to those values. Users can type any text they wish

into the box and the bound variable will be updated



accordingly. By default, the Combobox  is not suited to a list of

values that must remain constrained to a set list; however,

in Chapter 5, Reducing User Error with Validation and

Automation, we'll learn how to address this.

This table shows some of the common arguments used with

a Combobox :

Argument Values Description

textvariable StringVar
Variable bound to the contents of the

Combobox

values List of strings
Values to populate the drop-down

listbox

postcommand Python function
Callback to run just before the

listbox  is displayed

justify
left , right , or

center
Alignment of text in the box

The Text widget

The Text  widget, which we have already met in Chapter 1,

Introduction to Tkinter, is the only widget we'll use that

does not have a Ttk version. While this widget is most often

used for multi-line text entry, it actually offers much more

than that. The Text  widget can be used to display or edit

text that contains images, multicolored text, hyperlink-style

clickable text, and much more.

We can add one to an application as follows:



mytext = tk.Text( 

  root, 

  undo=True, maxundo=100, 

  spacing1=10, spacing2=2, spacing3=5, 

  height=5, wrap='char' 

) 

The above code will produce something that looks like this:

Figure 3.7: A Tk Text widget

The Text  widget has a large number of arguments we can

specify to control its appearance and behavior. Some of the

more useful ones are listed in this table:

Argument Values Description

height Integer Height of the widget in lines of text.

width Integer

Width of the widget in number of characters. For

variable-width fonts, the width of a "0" character is

used to calculate the width.

undo Boolean

Activates or deactivates the undo functionality. Undo

and redo actions are activated using the platform's

default shortcuts.



maxundo Integer Maximum number of edits that will be stored for

undo.

wrap

none ,

char ,

or word

Specifies how a line of text will be broken and

wrapped when it exceeds the width of the widget.

spacing1 Integer
The number of pixels to pad above each complete

line of text.

spacing2 Integer
The number of pixels to pad between displayed lines

of wrapped text.

spacing3 Integer
The number of pixels to pad below each complete

line of text.

More advanced visual configuration of the Text  widget is

implemented using tags. We'll discuss tags in Chapter 9,

Improving the Look with Styles and Themes.

Text widget indices

Remember that a Text  widget cannot be bound to a control

variable; to access, set, or clear its contents, we need to

use its get() , insert() , and delete()  methods, respectively.

When reading or modifying with these methods, you are

required to pass in one or two index values to select the

character or range of characters that you're operating on.

These index values are strings that can take any of the

following formats:

The line number and character number separated by a

dot. Lines are numbered from 1 and characters from 0,

so the first character on the first line is 1.0 , while the

twelfth character on the fourth line would be 4.11 .



Note that a line is determined by the presence of a

newline character; a wrapped line of text is still only

considered one line for index purposes.

The string literal end , or the Tkinter constant END ,

indicating the end of the text.

A numerical index plus one of the words linestart ,

lineend , wordstart , or wordend , indicating the start or end

of the line or word relative to the numerical index. For

example:

6.2 wordstart  would be the start of the word

containing the third character on line 6

2.0 lineend  would be the end of line 2

Any of the preceding, a plus or minus operator, and a

number of characters or lines. For example:

2.5 wordend - 1 chars  would be the character before

the end of the word containing the sixth character

on line 2

The following example shows these indices in action:

# insert a string at the beginning 

mytext.insert('1.0', "I love my text widget!") 

# insert a string into the current text 

mytext.insert('1.2', 'REALLY ') 

# get the whole string 

mytext.get('1.0', tk.END) 

# delete the last character. 

mytext.delete('end - 2 chars') 

Note in the last example that we deleted two characters in

order to delete the last character. The Text  widget

automatically appends a newline to the end of its text

content, so we always need to remember to account for

that extra character when dealing with indices or the

extracted text.



Remember, these indices should be strings, not float values!

Float values will sometimes work due to implicit type

casting, but don't rely on that behavior.

The Button widget

The Ttk Button  is a simple clickable pushbutton that can

activate a callback function. It appears something like this:

Figure 3.8: A Ttk Button widget

We can create one like so:

mybutton = ttk.Button( 

  root, 

  command=my_callback, 

  text='Click Me!', 

  default='active' 

) 

The button is a pretty straightforward widget, but it has a

few options that can be used to configure it. These are

shown in the table below:

Arguments Values Description

text String Label text on the button.

textvariable StringVar Variable bound to the label text of the

button.



command
Python

function

Callback to be executed when the button is

clicked.

default

normal ,

active ,

disabled

If the button executes when Enter  is

pushed. active  means it will execute in

response to Enter , normal  means it will

only if selected first, and disabled  means it

will not respond to Enter .

underline Integer Index of a character in text  to underline.

Buttons can also be configured to display images rather

than text. We'll learn more about that in Chapter 9,

Improving the Look with Styles and Themes.

The LabelFrame widget

In Chapter 1, Introduction to Tkinter, we used the Frame

widget to group together our widgets. Ttk offers us a more

powerful option in the LabelFrame , which provides a frame

with a border and a label. This is a very useful widget to

provide visual grouping for widgets in our GUI.

This code shows an example of a LabelFrame :

mylabelframe = ttk.LabelFrame( 

  root, 

  text='Button frame' 

) 

b1 = ttk.Button( 

  mylabelframe, 

  text='Button 1' 

) 

b2 = ttk.Button( 

  mylabelframe, 

  text='Button 2' 

) 



b1.pack() 

b2.pack() 

The resulting GUI would look like this:

Figure 3.9: A Ttk LabelFrame widget

The LabelFrame  widget offers us a few arguments for

configuration, shown here:

Argument Values Description

text String The text of the label to display.

labelanchor
Cardinal

direction
Where to anchor the text label.

labelwidget
ttk.Label

object

A label widget to use for the label.

Overrides text .

underline Integer
The index of a character in text  to

underline.

As you can see, we can configure the label of the LabelFrame

either by specifying the text  argument, or by creating a

Label  widget and assigning it using the labelwidget

argument. The latter case may be preferable if we want to

take advantage of some of the Label  widget's advanced



features, such as binding a textvariable  to it. If we use it, it

will override the text  argument.

Tkinter and Ttk contain many more widgets, some of which

we'll encounter later in this book. Python also ships with a

widget library called tix , which contains several dozen

widgets. However, tix  is very outdated, and we won't be

covering it in this book. You should know that it exists,

though.

Implementing the

application

So far, we've learned some Tkinter basics, researched the

user's needs, designed our application, and determined

which Ttk widgets will be useful in our application. Now it's

time to put all of this together and actually code the first

version of the ABQ Data Entry application. Recall our

design from Chapter 2, Designing GUI Applications, shown

here:



Figure 3.10: The ABQ Data Entry application layout

Take a moment to review the widgets we need to create,

and we'll begin coding.

First steps

Open a new file in your editor called data_entry_app.py , and

let's begin like this:

# data_entry_app.py """The ABQ Data Entry application""" import

tkinter as tk from tkinter import ttk from datetime import

datetime from pathlib import Path import csv



Our script starts with a docstring, as all Python scripts

should. This string at a minimum should give the name of

the application to which the file belongs, and may also

include notes about usage, authorship, or other items a

future maintainer would need to know.

Next, we're importing the Python modules that we'll need

for this application; these are:

tkinter  and ttk , of course, for our GUI items

The datetime  class, from the datetime  module, which

we'll use to generate a datestring for the filename

The Path  class, from the pathlib  module, which is used

for some file operations in our save routine

The csv  module, which we'll use to interact with the

CSV file

Next, let's create some global variables that the app will

use to keep track of information:

variables = dict() 

records_saved = 0

The variables  dictionary will hold all of the form's control

variables. Keeping them in a dictionary will make it a little

easier to manage them and will keep our global namespace

lean and clean. The records_saved  variable will store how

many records the user has saved since opening the app.

Now it's time to create and configure the root window:

root = tk.Tk() 

root.title('ABQ Data Entry Application') 

root.columnconfigure(0, weight=1) 



We've set the window title for the application and also

configured its layout grid so that the first column is allowed

to expand. The root window will only have one column, but

by setting this it will allow the form to remain centered on

the application if the window is expanded. Without it, the

form would be stuck to the left side of the window when the

window is expanded.

Now we'll add a heading for the application:

ttk.Label( 

  root, text="ABQ Data Entry Application", 

  font=("TkDefaultFont", 16) 

).grid() 

Because we won't need to refer to this widget again, we

won't bother assigning it to a variable. This also allows us

to call grid()  on the Label  on the same line, keeping our

code more concise and the namespace less cluttered. We'll

do this for most of the widgets in the application, unless

there is some reason we may need to interact with the

widget elsewhere in the code.

Note that we used TkDefaultFont  as the font family value

for this label widget. This is an alias defined in Tkinter that

points to the default window font on your platform. We'll

learn more about fonts in Chapter 9, Improving the Look

with Styles and Themes.

Building the data record form

With the initial application window set up, let's start

building the actual data entry form. We'll create a frame to

contain the entire data record form, called drf :



drf = ttk.Frame(root) drf.grid(padx=10, sticky=(tk.E + tk.W))

drf.columnconfigure(0, weight=1)

The drf  frame is added to the main window with a bit of

horizontal padding, and the sticky  argument ensures that it

will stretch when the containing column is stretched. We're

also going to configure its grid to expand the first column.

For windows or frames using a grid layout, if you want to

make the child widgets stretch when the parent is

stretched, you need to make sure both the container will

expand (using columnconfigure  and rowconfigure  on

the parent) and the child widget will expand with the

container (using sticky  when you call grid()  on the

child widget).

The Record Information section

The first section of our form is the Record Information

section. Let's create and configure a LabelFrame  to store

that:

r_info = ttk.LabelFrame(drf, text='Record Information')

r_info.grid(sticky=(tk.W + tk.E)) for i in range(3):

r_info.columnconfigure(i, weight=1)

We start by creating a Ttk LabelFrame  widget with the data

record form as its parent. We add it to the parent's grid,

setting the sticky  argument so that it will expand when the

window is resized. Each frame of this form is going to have

three columns of input widgets, and we want each column

to expand evenly to fill the width of the frame. So, we have

used a for  loop to set the weight  attribute of each column

to 1 .

Now we can begin creating the contents of the frame,

starting with the first input widget, the Date  field:



variables['Date'] = tk.StringVar() ttk.Label(r_info,

text='Date').grid(row=0, column=0) ttk.Entry( r_info,

textvariable=variables['Date'] ).grid(row=1, column=0, sticky=

(tk.W + tk.E))

First, we created a control variable and put it in the

variables  dictionary. Then we created our Label  widget for

the Date  field and added it to the LabelFrame  widget's grid.

We're going to use explicit row  and column  values here,

even when it's not strictly necessary, because we're going

to be placing objects a little out of order. Without explicit

coordinates, things could get confusing.

Finally, we create the Entry  widget, passing in the control

variable. Note that we aren't going to save any references

to our widgets if we can use a variable to store the value.

This will keep the code more concise. We've added our

widget to the grid, placing it below its label by specifying

the first column of the next row. For both the Entry  and the

Label , we've used the sticky  argument to make sure the

widget stretches when the GUI is expanded.

Now let's add the rest of the first line, the Time  and

Technician  fields:

time_values = ['8:00', '12:00', '16:00', '20:00']

variables['Time'] = tk.StringVar() ttk.Label(r_info,

text='Time').grid(row=0, column=1) ttk.Combobox( r_info,

textvariable=variables['Time'], values=time_values ).grid(row=1,

column=1, sticky=(tk.W + tk.E)) variables['Technician'] =

tk.StringVar() ttk.Label(r_info, text='Technician').grid(row=0,

column=2) ttk.Entry( r_info, textvariable=variables['Technician']

).grid(row=1, column=2, sticky=(tk.W + tk.E))

Once again, we create a variable, Label , and input widget

for each item. Recall that the Combobox  widget takes a list of

strings for its values  argument, which will populate the

drop-down part of the widget. That takes care of the first

row.



On the second row, we'll start with the Lab  inputs:

variables['Lab'] = tk.StringVar() 

ttk.Label(r_info, text='Lab').grid(row=2, column=0) 

labframe = ttk.Frame(r_info) 

for lab in ('A', 'B', 'C'): 

  ttk.Radiobutton( 

    labframe, value=lab, text=lab, variable=variables['Lab'] 

).pack(side=tk.LEFT, expand=True) 

labframe.grid(row=3, column=0, sticky=(tk.W + tk.E)) 

Like before, we've created the control variable and Label ,

but for the input widget we've created a Frame  to hold the

three Radiobutton  widgets. We're also creating our

Radiobutton  widgets using a for  loop to keep the code more

concise and consistent.

The pack()  geometry manager comes in handy here

because we can populate from left to right without having

to explicitly manage column numbers. The expand  argument

causes the widget to use extra space when the window is

resized; this will help our buttons to utilize available space

and not be scrunched into the left side of the window.

Now let's do the remaining portion of line two, the Plot  and

Seed Sample  fields:

variables['Plot'] = tk.IntVar() ttk.Label(r_info,

text='Plot').grid(row=2, column=1) ttk.Combobox( r_info,

textvariable=variables['Plot'], values=list(range(1, 21))

).grid(row=3, column=1, sticky=(tk.W + tk.E)) variables['Seed

Sample'] = tk.StringVar() ttk.Label(r_info, text='Seed

Sample').grid(row=2, column=2) ttk.Entry( r_info,

textvariable=variables['Seed Sample'] ).grid(row=3, column=2,

sticky=(tk.W + tk.E))

We have the same thing going on here: create a variable,

create a Label , create the input widget. Note that for the

Plot  values we're generating a list using range()  to keep

our code concise.



The Environment Data section

The next part of the form is the Environment Data  frame. Let's

begin that section as follows:

e_info = ttk.LabelFrame(drf, text="Environment Data")

e_info.grid(sticky=(tk.W + tk.E)) for i in range(3):

e_info.columnconfigure(i, weight=1)

This is exactly what we did for the last LabelFrame , with only

the names updated. Let's start populating it with the

Humidity , Light , and Temperature  widgets:

variables['Humidity'] = tk.DoubleVar() ttk.Label(e_info,

text="Humidity (g/m³)").grid(row=0, column=0) ttk.Spinbox(

e_info, textvariable=variables['Humidity'], from_=0.5, to=52.0,

increment=0.01, ).grid(row=1, column=0, sticky=(tk.W + tk.E))

variables['Light'] = tk.DoubleVar() ttk.Label(e_info, text='Light

(klx)').grid(row=0, column=1) ttk.Spinbox( e_info,

textvariable=variables['Light'], from_=0, to=100, increment=0.01

).grid(row=1, column=1, sticky=(tk.W + tk.E))

variables['Temperature'] = tk.DoubleVar() ttk.Label(e_info,

text='Temperature (°C)').grid(row=0, column=2) ttk.Spinbox(

e_info, textvariable=variables['Temperature'], from_=4, to=40,

increment=.01 ).grid(row=1, column=2, sticky=(tk.W + tk.E))

Good! Now, for the second row of this section, we only need

to add in the Equipment Fault  check button:

variables['Equipment Fault'] = tk.BooleanVar(value=False)

ttk.Checkbutton( e_info, variable=variables['Equipment Fault'],

text='Equipment Fault' ).grid(row=2, column=0, sticky=tk.W,

pady=5)

The first three values are all floating-point numbers, so

we're using DoubleVar  control variables and Spinbox  widgets

for entry. Don't forget to populate the from_ , to , and

increment  values for the Spinbox  widgets, so that the arrows

behave properly. Our Checkbutton  takes a BooleanVar  control

variable and doesn't need a Label  widget due to its built-in

label. Also, note that because we've started a new frame,

our rows and columns for the grid start over. This is a



benefit of breaking up the form into smaller frames: we

don't have to keep track of ever-increasing row or column

numbers.

The Plant Data section

We'll create the next frame, Plant Data , just like the other

two:

p_info = ttk.LabelFrame(drf, text="Plant Data") 

p_info.grid(sticky=(tk.W + tk.E)) 

for i in range(3): 

  p_info.columnconfigure(i, weight=1) 

Now, having created and configured the frame, let's add in

the first row of inputs, Plants , Blossoms , and Fruit :

variables['Plants'] = tk.IntVar() ttk.Label(p_info,

text='Plants').grid(row=0, column=0) ttk.Spinbox( p_info,

textvariable=variables['Plants'], from_=0, to=20, increment=1

).grid(row=1, column=0, sticky=(tk.W + tk.E))

variables['Blossoms'] = tk.IntVar() ttk.Label(p_info,

text='Blossoms').grid(row=0, column=1) ttk.Spinbox( p_info,

textvariable=variables['Blossoms'], from_=0, to=1000, increment=1

).grid(row=1, column=1, sticky=(tk.W + tk.E)) variables['Fruit']

= tk.IntVar() ttk.Label(p_info, text='Fruit').grid(row=0,

column=2) ttk.Spinbox( p_info, textvariable=variables['Fruit'],

from_=0, to=1000, increment=1 ).grid(row=1, column=2, sticky=

(tk.W + tk.E))

There is nothing really new here, except that, since we're

using IntVar  control variables, we've set the Spinbox

increment to 1 . That won't really stop anyone from

entering a decimal (or any arbitrary string for that matter),

but at least the buttons won't steer the user wrong. In

Chapter 5, Reducing User Error with Validation and

Automation, we'll see how to enforce increment  more

thoroughly.



And now finally our last row of inputs, Min Height , Max

Height , and Med Height :

variables['Min Height'] = tk.DoubleVar() ttk.Label(p_info,

text='Min Height (cm)').grid(row=2, column=0) ttk.Spinbox(

p_info, textvariable=variables['Min Height'], from_=0, to=1000,

increment=0.01 ).grid(row=3, column=0, sticky=(tk.W + tk.E))

variables['Max Height'] = tk.DoubleVar() ttk.Label(p_info,

text='Max Height (cm)').grid(row=2, column=1) ttk.Spinbox(

p_info, textvariable=variables['Max Height'], from_=0, to=1000,

increment=0.01 ).grid(row=3, column=1, sticky=(tk.W + tk.E))

variables['Med Height'] = tk.DoubleVar() ttk.Label(p_info,

text='Median Height (cm)').grid(row=2, column=2) ttk.Spinbox(

p_info, textvariable=variables['Med Height'], from_=0, to=1000,

increment=0.01 ).grid(row=3, column=2, sticky=(tk.W + tk.E))

We've made three more DoubleVar  objects, three more

labels, and three more Spinbox  widgets. If this feels a little

repetitive, don't be surprised; GUI code can tend to be

quite repetitive. In Chapter 4, Organizing Our Code with

Classes, we'll find ways to reduce this repetitiveness.

Finishing the GUI

That finishes our three info sections; now we need to add

the Notes  input. We'll add it directly to the drf  frame with a

label, like so:

ttk.Label(drf, text="Notes").grid() notes_inp = tk.Text(drf,

width=75, height=10) notes_inp.grid(sticky=(tk.W + tk.E))

Since we cannot associate a control variable with the Text

widget, we'll need to keep a regular variable reference to

it.

When you do need to save a reference to a widget, don't

forget to call grid()  in a separate statement! Since

grid()  (and other geometry manager methods) returns

None , if you create and position the widget in one

statement your saved widget reference will just be None .



We're almost finished with the form! We just need to add

some buttons:

buttons = tk.Frame(drf) 

buttons.grid(sticky=tk.E + tk.W) 

save_button = ttk.Button(buttons, text='Save') 

save_button.pack(side=tk.RIGHT) 

reset_button = ttk.Button(buttons, text='Reset') 

reset_button.pack(side=tk.RIGHT) 

To keep the form's grid layout simpler, we've packed the

two buttons into a sub-frame, using pack()  with the side

argument to keep them over on the right.

That finishes the data record form; to finish out the

application GUI, we only need to add in a status bar with

an associated variable, like so:

status_variable = tk.StringVar() ttk.Label( root,

textvariable=status_variable ).grid(sticky=tk.W + tk.E, row=99,

padx=10)

The status bar is simply a Label  widget, which we've placed

on the root  window's grid at row 99  to ensure that it stays

at the bottom in case of any future additions to the

application. Note that we have not added the status

variable to the variables  dictionary; that dictionary is

reserved for variables that will hold user input. This

variable is just going to be used to display messages to the

user.

Writing the callback functions

Now that our layout is done, let's work on creating the

functionality of our application. Our form has two buttons

that need callback functions: Reset  and Save .



The Reset function

The job of our reset function is to return the entire form to

a blank state so the user can enter in more data. We'll need

this function not only as a callback to the Reset  button, but

also to prepare the form for the next record after the user

saves a record. Otherwise, the user would have to manually

delete and overwrite the data in each field for every new

record.

Since we'll need to call the reset callback from the save

callback, we need to write the reset function first. At the

end of data_entry_app.py , start a new function like so:

# data_entry_app.py def on_reset(): """Called when reset button

is clicked, or after save"""

The function is called on_reset() . Recall from Chapter 1,

Introduction to Tkinter, that, by convention, callback

functions are typically named on_<eventname> , where

eventname  refers to the event that triggers it. Since this will

be triggered by clicking the Reset  button, we'll call it

on_reset() .

Inside the function, we need to reset all the widgets to an

empty value. But wait! We didn't save references to any of

the widgets, apart from the Notes  input. What do we need

to do?

Simple: we reset all the variables to a blank string, like

this:

  for variable in variables.values(): 

    if isinstance(variable, tk.BooleanVar): 

      variable.set(False) 

    else: 

      variable.set('') 

  notes_inp.delete('1.0', tk.END) 



StringVar , DoubleVar , and IntVar  objects can be set to a

blank string, which will cause any widgets bound to them

to be blank. BooleanVar  variables will raise an exception if

we try to do that, so instead we'll check if our variable is a

BooleanVar  using Python's built-in isinstance()  function. If it

is, we simply set it to False .

For the Notes  input, we can use the Text  widget's delete()

method to clear its contents. This method takes a start and

end location, just like the get()  method does. The values

1.0  and tk.END  indicate the entire contents of the widget.

Recall from our earlier discussion of the Text  widget that

this index is the string 1.0 , not a float value.

That's all we need in our reset callback. To bind it to the

button, use the button's configure()  method:

reset_button.configure(command=on_reset)

The configure()  method can be called on any Tkinter

widget to change its properties. It accepts the same

keyword arguments as the widget's constructor.

The Save callback

Our last bit of functionality, and the most important, is the

Save  callback. Recall from our program specification that

our application needs to append the entered data to a CSV

(comma-separated values) file with the filename

abq_data_record_CURRENTDATE.csv , where CURRENTDATE  is the date

in ISO format (year-month-day). The CSV should be created

if it doesn't exist, and have the column headers written to

the first row. Therefore, this function needs to do the

following:

Determine the current date and generate the filename



Determine if the file exists, and if not create it and

write a header row

Extract the data from the form and do any clean-up

necessary

Append the row of data to the file

Increment records_saved  and alert the user that the

record was saved

Reset the form for the next record

Let's start the function out this way:

def on_save(): 

  """Handle save button clicks""" 

  global records_saved 

Once again, we're using the on_<eventname>  naming

convention. The first thing we've done is declared

records_saved  as a global variable. If we don't do this,

Python will interpret the name records_saved  as a local

variable and we won't be able to update it.

Modifying global variables is generally bad form, but

Tkinter doesn't really give us many options here: we can't

use a return value to update the variable, because this is a

callback function that is called in response to an event, not

at any place in our code where we have direct access to

records_saved . In Chapter 4, Organizing Our Code with

Classes, we'll learn a better way to implement this

functionality without global variables; for now, though,

we're stuck with it.

Next, let's figure out the details of the filename and

whether it exists or not:



  datestring = datetime.today().strftime("%Y-%m-%d") 

  filename = f"abq_data_record_{datestring}.csv" 

  newfile = not Path(filename).exists() 

The datetime.today()  function returns a Date  object for the

current day, and its strftime()  method allows us to format

that date into a string in any way we specify. The syntax for

strftime()  has its roots in C programming, so it's rather

cryptic in some cases; but hopefully it is clear that %Y

means year, %m  means month, and %d  means day. This will

return the date in ISO format; for example, 2021-10-31 for

October 31, 2021.

With the datestring  in hand, we can use it to build the

filename for the day's CSV file. In the next line,

Path(filename).exists()  tells us whether the file exists in the

current working directory. It does this by constructing a

Path  object using the filename, then calling its exists()

method to see if the file is already on the filesystem. We'll

save this information to a variable called newfile .

Now it's time to get the data from the form:

  data = dict() 

  fault = variables['Equipment Fault'].get() 

  for key, variable in variables.items(): 

    if fault and key in ('Light', 'Humidity', 'Temperature'): 

      data[key] = '' 

    else: 

      try: 

        data[key] = variable.get() 

      except tk.TclError: 

        status_variable.set( 

          f'Error in field: {key}.  Data was not saved!' ) 

        return 

  # get the Text widget contents separately 

  data['Notes'] = notes_inp.get('1.0', tk.END) 



We're going to store the data in a new dictionary object

called data . To do this, we'll iterate through our variables

dictionary, calling get()  on each variable. Of course, if

there is an equipment fault, we want to skip the values for

Light , Humidity , and Temperature , so we're first getting the

value of Equipment Fault  and checking it before those field

values are being retrieved. If we do need to retrieve a value

from the variable, we'll do this in a try  block. Remember

that variables will raise a TclError  if the get()  method is

called when there is an invalid value in them, so we need to

handle that exception. In this case, we'll let the user know

that there was a problem with that particular field and exit

the function immediately.

Finally, we need to get the data from the Notes  field using

get() .

Now that we have the data, we need to write it to a CSV.

Add the following code next:

  with open(filename, 'a', newline='') as fh: 

    csvwriter = csv.DictWriter(fh, fieldnames=data.keys()) 

    if newfile: 

      csvwriter.writeheader() 

    csvwriter.writerow(data) 

First, we're opening the file using a context manager (the

with  keyword). Doing it this way ensures that the file will

be closed when we exit the indented block. We're opening

in append mode (indicated by the a  argument to open ),

which means any data we write will simply be added to the

end of whatever is already there. Note the newline

argument, which we've set to an empty string. This is to

work around a bug in the CSV module on Windows that

causes an extra empty line to appear between each record.

It does no harm on other platforms.



Inside the block, we need to create something called a CSV

Writer object. The standard library csv  module contains a

few different types of objects that can write data into a CSV

file. The DictWriter  class is handy in that it can take a

dictionary of values in any order and write them to the

proper fields of the CSV, provided the first row contains the

names of the columns. We can tell the DictWriter  what those

header values should be by passing it data.keys() , which is

all the names of our data values.

Append mode will create the file if it does not exist, but it

won't write the header row automatically. Therefore, we

need to check if the file is a new file (using the newfile

value we found earlier), and if it is, we'll write the header

row. The DictWriter  object has a method for this, which

causes it to just write a single row containing all the field

names.

Finally, we can use the DictWriter  object's writerow()

method to pass in our dictionary of data to be written to the

file. As we exit the indented block, Python closes the file

and saves it to disk.

That leaves us with just a few final lines in the on_save()

function:

records_saved += 1 status_variable.set( f"{records_saved} records

saved this session" ) on_reset()

First, we'll increment the records_saved  variable, then alert

the user in the status bar how many records have been

saved so far. This is good feedback that helps the user

know their actions were successful. Finally, we call

on_reset()  to prepare the form for the next record to be

entered.



With the save method implemented, let's go ahead and bind

it to our button:

save_button.configure(command=on_save) 

Last of all, let's reset the form and launch the main event

loop:

on_reset() 

root.mainloop() 

That's it, your first application for ABQ is finished and

ready to go!

Finishing up and testing

Before we send our application out into the world, let's fire

it up and give it a test:



Figure 3.11: Our first ABQ Data Entry application

Looking good! And it works, too. Go ahead and enter some

test data and save it. Of course, this isn't the end – we

haven't quite addressed everything on the program

specification, and once users get their hands on the

application, the feature requests will undoubtedly begin.

But for now, we can celebrate the victory of a working MVP.



Summary

Well, we've come a long way in this chapter! You took your

design from a specification and some drawings to a running

MVP of the application that already covers the basic

functionality you need. You learned about basic Ttk

widgets, such as Entry , Spinbox , Combobox , Radiobutton , and

Checkbutton , as well as the Tkinter Text  widget. You learned

how to assemble these widgets into a complex but

organized GUI using nested LabelFrame  widgets, and how to

save a file using a callback method.

In the next chapter, we're going to utilize classes and

object-oriented programming techniques to clean up our

code and expand the capabilities of our widgets.



4

Organizing Our Code with Classes

Things are going great with your data entry form! Your

boss and coworkers and excited to see the progress you've

made and are already coming up with some ideas of what

other features could be added. This makes you a little

nervous, to be honest! While they see a professional-

looking form, you know that the code underneath is getting

bulky and repetitive. You've got some warts in there too,

like a global variable and a very cluttered global

namespace. Before you start adding more features, you'd

like to get a handle on this code and start breaking it down

into some manageable chunks. For this, you'll need to

create classes.

In this chapter, we'll cover the following topics:

In A primer on Python classes, we'll review how to

create Python classes and subclasses.

In Using classes with Tkinter, we'll discover ways to

utilize classes effectively in Tkinter code.

In Rewriting our application using classes, we'll apply

these techniques to the ABQ Data Entry application.

A primer on Python

classes



While the concept of a class is simple enough on the

surface, classes bring with them a number of terms and

concepts that confuse many beginners. In this section, we'll

discuss the advantages of using classes, explore the

different features of classes, and review the syntax for

creating classes in Python.

The advantages of using classes

Many beginners and even intermediate Python coders

avoid or dismiss the use of classes in Python; unlike

functions or variables, classes do not have obvious uses in

short, simple scripts. As our application code grows,

however, classes become an indispensable tool for

organizing our code into manageable units. Let's look at

some ways classes can help us build cleaner code.

Classes are an integral part of Python

A class is essentially a blueprint for creating an object.

What is an object? In Python, everything is an object:

integers, strings, floats, lists, dictionaries, Tkinter widgets,

and even functions are all objects. Each of these types of

objects is defined by a class. You can see this easily at a

Python prompt if you use the type  command, like so:

>>> type('hello world') <class 'str'> >>> type(1) <class 'int'>

>>> type(print) <class 'builtin_function_or_method'>

The type  function shows you what class was used to

construct the object in question. When an object is built

from a particular class, we say it is an instance of that

class.



Instance and object are often used interchangeably,

because every object is an instance of some class.

Because everything in Python is a class, creating our own

classes allows us to work with custom objects using the

same syntax we use with built-in objects.

Classes make relationships between data and

functions explicit

Often, in code, we have a set of data that all relates to the

same thing. For example, in a multiplayer game, you might

have variables for each player's score, health, or progress.

Functions that operate on these variables would need to be

sure to operate on the variables that refer to the same

player. Classes would allow us to create an explicit

relationship between these variables and the functions that

operate on them, so that we can more easily keep them

organized as a unit.

Classes help create reusable code

Classes are a great tool for reducing code redundancy.

Suppose we have a set of forms that have similar behavior

on submission, but different input fields. Using class

inheritance, we can create a base form with the desired

common behaviors; then, we can derive the individual form

classes from that, only having to implement what is unique

in each form.

Syntax of class creation

Creating a class is very similar to creating a function,

except that we use the class  keyword, like so:



class Banana: """A tasty tropical fruit""" pass

Note that we've also included a docstring, which is used

by Python tools (such as the built-in help  function) to

generate documentation about the class. Class names in

Python traditionally use Pascal Case, meaning the first

letter of each word is capitalized; sometimes, third-party

libraries will use other conventions, however.

Once we have defined a class, we can create instances of

the class by calling it, just like a function:

my_banana = Banana()

In this case, my_banana  is an object that is an instance of the

Banana  class. Of course, a more useful class will have some

things defined inside the class body; specifically, we can

define attributes and methods, which are collectively

known as members.

Attributes and methods

Attributes are simply variables, and they can be either

class attributes or instance attributes. A class attribute

is defined in the top scope of the class body, like this:

class Banana: """A tasty tropical fruit""" food_group = 'fruit'

colors = [ 'green', 'green-yellow', 'yellow', 'brown spotted',

'black' ]

Class attributes are shared by all instances of the class,

and are usually used for setting defaults, constants, and

other read-only values.

Note that unlike class names, member names, by

convention, use snake case, where lowercase words are

separated by underscores.



Instance attributes store values specific to a single instance

of the class; to create one, we need access to an instance.

We could do it like this:

my_banana = Banana() my_banana.color = 'yellow'

However, it would be more ideal if we could define some

instance attributes inside our class definition, instead of

doing it externally like that. In order to do so, we need a

reference to the instance of the class inside the class

definition. This can be done with an instance method.

Methods are simply functions attached to the class. An

instance method is a method that automatically receives a

reference to the instance as its first argument. We can

define one like this:

class Banana: def peel(self): self.peeled = True

As you can see, defining an instance method is simply

defining a function inside the class body. The first argument

that this function will receive is a reference to the instance

of the class; it can be called anything you like, but by long-

standing Python convention, we name it self . Inside the

function, self  can be used to do operations on the instance,

such as assigning an instance attribute.

Note that the instance ( self ) also has access to class

attributes (for example, self.colors ), as shown here:

def set_color(self, color): """Set the color of the banana""" if

color in self.colors: self.color = color else: raise

ValueError(f'A banana cannot be {color}!')

When we use an instance method, we do not explicitly pass

self ; it's passed implicitly, like so:

my_banana = Banana() my_banana.set_color('green')

my_banana.peel()



The implicit passing of self  often leads to confusing error

messages when you pass the wrong number of arguments.

For example, if you called my_banana.peel(True) , you'd

get an exception saying that one argument was expected

but two were passed. From your point of view, you only

passed one argument, but the method got two because the

instance reference was automatically added.

In addition to instance methods, classes can have class

methods and static methods. Unlike instance methods,

these methods do not have access to the instance of the

class and cannot read or write instance attributes.

Class methods are created using a decorator just before

the method definition, like this:

@classmethod def check_color(cls, color): """Test a color string

to see if it is valid.""" return color in cls.colors 

@classmethod def make_greenie(cls): """Create a green banana

object""" banana = cls() banana.set_color('green') return banana

Just as an instance method is implicitly passed a reference

to the instance, a class method is implicitly passed a

reference to the class as the first argument. Once again,

you can call that argument anything you like, but

conventionally it is called cls . Class methods are usually

used for interaction with class variables. For example, in

the check_color()  method above, the method needs a

reference to the class variable colors . Class methods are

also used as convenience functions for geneating

specifically configured instances of the class; for example,

the make_greenie()  method above uses its class reference to

create instances of Banana  with the color pre-set to green .

A static method is also a function that's attached to the

class, but it does not get any implicit arguments, and the

code within the method has no access to the class or



instance. Just like the class methods, we use a decorator to

define a static method, as follows:

@staticmethod def estimate_calories(num_bananas): """Given

`num_bananas`, estimate the number of calories""" return

num_bananas * 105

Static methods are often used for defining algorithms or

utility functions used internally by the class.

Class and static methods can be called on the class itself;

for example, we could call Banana.estimate_calories()

or Banana.check_color()  without actually creating an

instance of Banana . Instance methods, however, must be

called on an instance of the class. It would make no sense

to call Banana.set_color()  or Banana.peel() , since

these methods are meant to operate on an instance.

Instead, we should create an instance and call those

methods on it (for example, my_banana.peel() ).

Magic attributes and methods

All Python objects automatically get a set of attributes

called magic attributes and a set of methods called

magic methods, also called special methods or dunder

methods, because they are indicated by double underscores

around the attribute or method name ("dunder" is a

portmanteau of "double under").

Magic attributes generally store metadata about the object.

For example, the __class__  attribute of any object stores a

reference to the object's class:

>>> print(my_banana.__class__) <class '__main__.Banana'>

Magic methods define how a Python object responds to

operators (like + , % , or [] ) or built-in functions (like dir()

or setattr() ). For example, the __str__()  method defines



what an object returns when passed to the str()  function

(either explicitly or implicitly, by being passed to print() ,

for example):

class Banana: # .... def __str__(self): # "Magic Attributes"

contain metadata about the object return f'A {self.color}

{self.__class__.__name__}'

Here, we're not only accessing the instance's color

attribute, but using the __class__  attribute to retrieve its

class, and then using the class object's __name__  attribute to

get the class name.

As confusing as it is, the class is also an object. It's an

instance of the type  class. Remember, everything in

Python is an object, and all objects are instances of some

class.

Thus, when a Banana  object is printed, it looks like this:

>>> my_banana = Banana() >>> my_banana.set_color('yellow') >>>

print(my_banana) A yellow Banana

By far the most important magic method is the initializer

method, __init__() . This method is executed whenever we

call the class object to create an instance, and the

arguments we define for it become the arguments we can

pass in when creating the instance. For example:

def __init__(self, color='green'): if not

self.check_color(color): raise ValueError( f'A

{self.__class__.__name__} cannot be {color}' ) self.color = color

Here, we've created the initializer with an optional

argument called color , allowing us to set the Banana

object's color value when creating the object. Thus, we can

create a new Banana  like so:

>>> my_new_banana = Banana('green') >>> print(my_new_banana) A

green Banana



Ideally, any instance attributes used in the class should be

created within __init__() , so that we can ensure they exist

for all instances of the class. For example, we should create

our peeled  attribute like so:

def __init__(self, color='green'): # ... self.peeled = False

If we didn't define this attribute here, it would not exist

until the peel()  method is called. Code looking for the value

of my_banana.peel  before that method was called would raise

an exception.

Ultimately, the initializer should leave the object in a state

where it is ready to be used by the program.

In other object-oriented languages, the method that sets up

a class object is known as the constructor, which not only

initializes the new object but returns it as well. Sometimes,

Python developers will casually refer to __init__()  as a

constructor. However, the actual constructor method for

Python objects is __new__() , which we generally leave

untouched in Python classes.

Public, private, and protected members

Classes are a powerful tool for abstraction – that is, taking

a complicated object or process and providing a simple,

high-level interface to the rest of the application. To help

them do that, Python programmers use some naming

conventions to distinguish between public, private, and

protected members:

Public members are those intended to be read or

called by code outside the class. They use ordinary

member names.



Protected members are meant only for use inside the

class or its subclasses. They are prefixed with a single

underscore.

Private members are meant only for use within the

class. They're prefixed with double underscores.

Python does not actually enforce any distinction between

public, protected, and private members; these are merely

conventions that are understood by other programmers to

indicate which parts of the class can be accessed

externally, and which ones are part of the internal

implementation and not meant for use outside the class.

Python will assist in enforcing private members by

automatically changing their names to

_classname__member_name .

For example, let's add this code to the Banana  class:

__ripe_colors = ['yellow', 'brown spotted'] def _is_ripe(self):

"""Protected method to see if the banana is ripe.""" return

self.color in self.__ripe_colors def can_eat(self,

must_be_ripe=False): """Check if I can eat the banana.""" if

must_be_ripe and not self._is_ripe(): return False return True

Here, __ripe_colors  is a private attribute. If you tried to

access my_banana.__ripe_colors , Python would raise an

AttributeError  exception because it has implicitly renamed

this property to my_banana._Banana__ripe_colors . The method

_is_ripe()  is a protected member but, unlike the private

member, Python does not alter its name. It could be

executed as my_banana._is_ripe() , but programmers using

your class would understand that this method is meant for

internal use and not to be relied upon in external code.

Instead, the can_eat()  method, which is public, should be

called.



There are a variety of reasons why you'd want to indicate a

member as private or protected, but in general, it's

because the member is part of some internal process and

would be either meaningless, unreliable, or lacking in

context for use in outside code.

Although the words private and protected seem to indicate

a security feature, that is not their intention, and using

them does not provide any security to the class. The

intention is simply to distinguish the public interface of the

class (which outside code should use) from the internal

machinery of the class (which should be left alone).

Inheritance and subclasses

Building our own classes is a powerful tool indeed, but

since everything in Python is an object built from a class,

wouldn't it be nice if we could take one of those existing

classes and simply alter it to fit our needs? That way, we

wouldn't have to start from scratch every time.

Fortunately, we can! When we create a class, Python allows

us to derive it from an existing class, like so:

class RedBanana(Banana): """Bananas of the red variety""" pass

We've created the class RedBanana  as a child class or

subclass of Banana . Banana  is known as the parent class or

superclass in this case. Initially, RedBanana  is an exact copy

of Banana  and will behave identically, but we can modify it

by simply defining members, like so:

class RedBanana(Banana): colors = ['green', 'orange', 'red',

'brown', 'black'] botanical_name = 'red dacca' def

set_color(self, color): if color not in self.colors: raise

ValueError(f'A Red Banana cannot be {color}!')



Specifying existing members, like colors  and set_color , will

mask the superclass versions of those members. Thus,

calling set_color()  on a RedBanana  instance will call the

RedBanana  version of the method, which, in turn, will consult

the RedBanana  version of colors  when self.colors  is

referenced. We can also add new members, such as the

botanical_name  a ttribute, which will only exist in the

subclass.

In some cases, we might want our subclass method to add

to the superclass method, but still execute the code in the

superclass version of the method. We could copy the

superclass code into our subclass code, but there's a better

way: using super() .

Inside an instance method, super()  gives us a reference to

the superclass version of our instance, like so:

def peel(self): super().peel() print('It looks like a regular

banana inside!')

In this case, calling super().peel()  causes the code in

Banana.peel()  to be executed on our RedBanana  instance.

Then, we can add additional code to our subclass version of

peel() .

As you'll see in the next section, super()  is often used in

the __init__()  method to run the superclass's initializer.

This is especially true for Tkinter GUI classes, which do a

lot of critical external setup in their initializer methods.

There is much more to Python classes than we have

discussed here, including the concept of multiple

inheritance, which we will learn about in Chapter 5,

Reducing User Error with Validation and Automation. What

we've learned so far, however, is more than enough to apply



to our Tkinter code. Let's see how classes can help us in a

GUI context.

Using classes with Tkinter

GUI frameworks and object-oriented code go hand in hand.

While Tkinter, more than most frameworks, allows you to

create GUIs using procedural programming, we miss out on

a great deal of organizational power in doing so. Although

we'll find many ways to use classes in our Tkinter code

throughout this book, we'll look at three primary ways of

using them here:

Improving or expanding Tkinter classes for more power

Creating compound widgets to save repetitive typing

Organizing our application into self-contained

components

Improving Tkinter classes

Let's face it: some Tkinter objects are a little lacking in

functionality. We can fix that by subclassing Tkinter classes

and making our own improved versions. For instance, while

we've seen that Tkinter control variable classes are useful,

hey are limited to string, integer, double, and Boolean

types. What if we wanted the functionality of these

variables, but for more complex objects like dictionaries or

lists? We can, with subclassing and some help from JSON.

JavaScript Object Notation (JSON) is a standardized

format for representing lists, dictionaries, and other

compound objects as strings. The Python standard library



comes with a json  library, which allows us to convert such

objects to string format and back again. We'll use JSON

more in Chapter 7, Creating Menus with Menu and Tkinter

Dialogs.

Open a new script called tkinter_classes_demo.py , and let's

begin with some imports, like this:

# tkinter_classes_demo.py import tkinter as tk import json

In addition to Tkinter, we've imported the standard library

json  module. This module contains two functions that we'll

use to implement our variable:

json.dumps()  takes a Python object like a list, dictionary,

string, int, or float, and returns a string in JSON format.

json.loads()  takes a JSON string and returns a Python

object like a list, dict, or string, depending on what was

stored in the JSON string.

Begin the new variable class by creating a subclass of

tk.StringVar  called JSONVar :

class JSONVar(tk.StringVar): """A Tk variable that can hold dicts

and lists"""

To make our JSONVar  work, we need to intercept the value

argument wherever it is passed to the object and convert it

into a JSON string using the json.dumps()  method. The first

such place is in __init__() , which we'll override like so:

def __init__(self, *args, **kwargs): kwargs['value'] =

json.dumps(kwargs.get('value') super().__init__(*args, **kwargs)

Here, we're simply retrieving the value  argument from the

keywords and converting it into a string using json.dumps() .

The converted string will overwrite the value  argument,

which will then be passed to the superclass initializer. In

the event that a value  argument isn't provided (remember,



it is an optional argument), kwargs.get()  will return None ,

which will be converted into a JSON null  value.

When overriding methods in a class you didn't write, it's

always a good idea to include *args  and **kwargs  to

catch any arguments that you don't explicitly list. That way,

the method will continue to allow all the arguments that the

superclass version did, but you won't have to explicitly

enumerate them all.

The next place we need to intercept the value is in the

set()  method, like this:

def set(self, value, *args, **kwargs): string = json.dumps(value)

super().set(string, *args, **kwargs)

Once again, we've intercepted the value  argument and

converted it into a JSON string before passing it to the

superclass version of set() .

Last of all, let's fix get() :

def get(self, *args, **kwargs): string = super().get(*args,

**kwargs) return json.loads(string)

Here, we've done the opposite of the other two methods:

first, we got the string from the superclass, and then

converted it back into an object using json.loads() . With

that done, we're ready! What we now have is a variable

that can store and retrieve a list or dictionary, just like any

other Tkinter variable.

Let's test it out:

root = tk.Tk() 

var1 = JSONVar(root) 

var1.set([1, 2, 3]) 

var2 = JSONVar(root, value={'a': 10, 'b': 15}) 

print("Var1: ", var1.get()[1]) 



# Should print 2

print("Var2: ", var2.get()['b']) 

# Should print 15

As you can see, subclassing Tkinter objects opens up a

whole new range of possibilities for our code. We'll apply

this same concept to widget classes both later in this

chapter and more extensively in Chapter 5, Reducing User

Error with Validation and Automation. First, though, let's

look at two more ways we can use classes with Tkinter

code.

Creating compound widgets

Many GUIs (particularly data entry forms) contain patterns

that require a lot of repetitive boilerplate code. For

example, input widgets usually have an accompanying label

to tell the user what they need to enter. This often requires

several lines of code to create and configure each object

and add them to the form. We can not only save time, but

ensure better consistency of output by creating a reusable

compound widget that combines both into a single class.

Let's combine an input widget and label by creating a

LabelInput  class, starting with this:

# tkinter_classes_demo.py class LabelInput(tk.Frame): """A label

and input combined together"""

The tk.Frame  widget, a bare widget with nothing on it, is an

ideal class to subclass for a compound widget. After

starting our class definition, the next thing we need to do is

think through all the pieces of data our widget will need,

and make sure those can be passed into the __init__()

method.



For a basic widget, the minimal set of arguments might

look like this:

The parent widget

The text for the label

The type of input widget to use

A dictionary of arguments to pass to the input widget

Let's implement that in our LabelInput  class:

def __init__( self, parent, label, inp_cls, inp_args, *args,

**kwargs ): super().__init__(parent, *args, **kwargs) self.label

= tk.Label(self, text=label, anchor='w') self.input =

inp_cls(self, **inp_args)

The first thing we do here is call the superclass initializer

so that the Frame  widget can be constructed. Note that we

pass along the parent  argument, since that will be the

parent widget of the Frame  itself; the parent widget for the

Label  and input widget is self  – that is, the LabelInput

object itself.

Don't confuse "parent class" and "parent widget." "Parent

class" refers to the superclass from which our subclass

inherits its members. "Parent widget" refers to the widget

(of a probably unrelated class) to which our widget is

attached. To help avoid confusion, we'll stick to the

super/subclass terminology in this book when speaking of

class inheritance.

After creating our label  and input  widgets, we can arrange

them on the Frame  however we wish; for example, we might

want labels next to the input, like so:

self.columnconfigure(1, weight=1) self.label.grid(sticky=tk.E +

tk.W) self.input.grid(row=0, column=1, sticky=tk.E + tk.W)



Or, we might prefer labels above our input widgets, as

implemented here:

self.columnconfigure(0, weight=1) self.label.grid(sticky=tk.E +

tk.W) self.input.grid(sticky=tk.E + tk.W)

In either case, if we create all the inputs on our form using

a LabelInput , we have the power to change the layout of the

entire form using only three lines of code. We could

conceivably add an initializer argument to configure the

layout individually for each instance as well.

Let's see this class in action. Since our inp_args  argument is

going to be expanded directly into our call to the inp_cls

initializer, we can populate it with any arguments we'd like

our input widget to receive, like so:

# tkinter_classes_demo.py li1 = LabelInput(root, 'Name',

tk.Entry, {'bg': 'red'}) li1.grid()

We can even pass in a variable to bind to the widget:

age_var = tk.IntVar(root, value=21) li2 = LabelInput( root,

'Age', tk.Spinbox, {'textvariable': age_var, 'from_': 10, 'to':

150} ) li2.grid()

The compound widget saves us a few lines of code, but

more importantly, it raises our input form code to a higher-

level description of what's going on. Instead of being full of

details about how each label is placed in relation to each

widget, we can think about the form in terms of these

larger components.

Building encapsulated components

Creating compound widgets is useful for structures we plan

to reuse in our application, but the same concept can be



applied beneficially to larger pieces of our application, even

if they only appear once.

Doing so allows us to attach methods to the components of

our application to build self-contained units of functionality

that are more easily managed.

For example, let's create a MyForm  class to hold a simple

form:

# tkinter_classes_demo.py class MyForm(tk.Frame): def

__init__(self, parent, data_var, *args, **kwargs):

super().__init__(parent, *args, **kwargs) self.data_var =

data_var

Just as we did with the compound wiget, we've subclassed

tk.Frame  and defined a new initializer method. The parent ,

*args , and **kwargs  arguments will get passed on to the

superclass's initializer, but we'll also take a data_var

argument, which will be an instance of our new JSONVar

type. We'll use this argument to communicate the form data

back out of the form.

Next, we'll create some internal control variables to bind to

our form widgets:

self._vars = { 'name': tk.StringVar(self), 'age': tk.IntVar(self,

value=2) }

As we've already seen in our data entry application,

keeping our form data variables in a dictionary will make it

simple to extract data from them later. Rather than using a

global variable, however, we've created the dictionary as a

protected instance variable by adding it to self  and

prefixing it with an underscore. That's because this

dictionary is meant for our form's internal use only.

Now, let's put our LabelInput  class to work to create the

actual widgets for our form:



LabelInput( self, 'Name', tk.Entry, {'textvariable':

self._vars['name']} ).grid(sticky=tk.E + tk.W) LabelInput( self,

'Age', tk.Spinbox, {'textvariable': self._vars['age'], 'from_':

10, 'to': 150} ).grid(sticky=tk.E + tk.W)

You can see that LabelInput  has trimmed our GUI-building

code considerably! Now, let's add a submit button for our

form:

tk.Button(self, text='Submit', command=self._on_submit).grid()

The submit button is configured to call a protected instance

method named _on_submit . This shows us a powerful feature

of using classes for our GUI components: by binding our

button to an instance method, that method will have access

to all the other instance members. For example, it can

access our _vars  dictionary:

def _on_submit(self): data = { key: var.get() for key, var in

self._vars.items() } self.data_var.set(data)

Without using a class, we would have had to rely on global

variables, such as we did in the data_entry_app.py  application

we wrote in Chapter 3, Creating Basic Forms with Tkinter

and Ttk Widgets. Instead, our callback method needs only

the implicitly passed self  object to have access to all the

objects that it needs. In this case, we're using a dictionary

comprehension to extract all the data frm our widgets

and, then storing the resulting dictionary in our JSONVar

object.

A dictionary comprehension is similar to a list

comprehension, but creates a dictionary instead; the syntax

is { key: value for expression in iterator } . For

example, if you wanted to create a dictionary of numbers

with their squares, you could write { n: n**2 for n in

range(100) } .



Thus, whenever the submit button is clicked, the data_var

object will be updated with the current contents of the

input widgets.

Subclassing Tk

We can extend this concept of component building all the

way up to our top window, the Tk  object. By subclassing Tk

and building our other application components in their own

classes, we can compose our application's layout and

behavior in a high-level way.

Let's try this with our current demo script:

# tkinter_classes_demo.py class Application(tk.Tk): """A simple

form application""" def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

Remember that the Tk  object is not just our top-level

window, but also represents the core of our application

itself. Therefore we've named our subclass Application  to

indicate that it represents the foundation of our entire

application. Our initializer method begins with the

obligatory call to super().__init__() , passing along any

arguments to the Application.__init__()  method.

Next, we'll create some variables to keep track of the data

in our application:

self.jsonvar = JSONVar(self) self.output_var = tk.StringVar(self)

The JSONVar , as you might expect, will be passed into our

MyForm  object to handle its data. The output_var  is just a

StringVar  we'll use to display some output. Let's next add

some widgets to our window:

tk.Label(self, text='Please fill the form').grid(sticky='ew')

MyForm(self, self.jsonvar).grid(sticky='nsew') tk.Label(self,



textvariable=self.output_var).grid(sticky='ew')

self.columnconfigure(0, weight=1) self.rowconfigure(1, weight=1)

Here, we've added a simple header label for the form, a

MyForm  object, and another label to display the output.

We've also configured the frame so that the first (and only)

column expands into the extra space, and the second row

(the one containing the form) expands into extra vertical

space.

Since a submission of MyForm  updates the JSONVar  object we

passed to it, we'll need a way to execute a submission-

handling callback whenever the variable contents are

changed. We can do this by setting a trace on jsonvar , like

this:

self.jsonvar.trace_add('write', self._on_data_change)

The trace_add()  method can be used on any Tkinter vaiable

(or variable subclass) to execute a callback function

whenever a variable-related event occurs. Let's take a

moment to examine it in more detail The first argument to

trace_add()  specifies the event that the trace will trigger on;

it can be one of the following:

read : The variable value is read (by a get()  call, for

example).

write : The variable value is modified (by a set()  call,

for example).

unset : The variable is deleted.

array : This is an artifact of Tcl/Tk, not really meaningful

in Python, but still valid syntax. You will likely never

use it.

The second argument specifies a callback for the event,

which, in this case, is the instance method _on_data_change() ,



which will be triggered whenever jsonvar  is updated. We'll

handle it like this:

def _on_data_change(self, *args, **kwargs): data =

self.jsonvar.get() output = ''.join([ f'{key} = {value}\n' for

key, value in data.items() ]) self.output_var.set(output)

This method simply iterates through the values in the

dictionary retrieved from jsonvar , and then joins them

together into a single formatted string. Finally, the

formatted string is passed into output_var , which will

update the label at the bottom of the main window to

display our values from the form. In a real application, you

might save the retrieved data to a file or use them as

parameters to a batch operation, for example.

When should you use an instance variable (for example,

self.jsonvar ), and when should you use regular

variables (for example, data ), in an instance method?

Regular variables in a method are local in their scope,

meaning they are destroyed as soon as the method returns.

In addition, they cannot be referenced by other methods in

the class. Instance variables stay in scope for the lifetime of

the instance itself, and are available for any other instance

method to read or write. In the case of the Application

class, the data  variable was only needed inside the

_on_data_change()  method, whereas jsonvar  needed to

be accessed in both __init__()  and _on_datachange() .

Since we've subclassed Tk , we should no longer start our

script with the line root = tk.Tk() . Make sure to delete that

line, and also to delete the previous lines of the code that

reference root . Instead, we'll execute our application like

this:

if __name__ == "__main__": app = Application() app.mainloop()

Note that these lines, our class definitions, and our imports

are the only top-level code we're executing. That cleans up



our global scope considerably, isolating the finer details of

our code to a more limited scope.

In Python, if __name__ == "__main__":  is a common

idiom to check if a script is being run directly, such as when

we type python3 tkinter_classes_demo.py  at a

command prompt. If we were to import this file as a module

into another Python script, this check would be false and

the code inside the block would not be run. It's a good

practice to put your program's main execution code below

this check so that you can safely reuse your classes and

functions in larger applications.

Rewriting our application

using classes

Now that we've learned these techniques for using classes

in our code, let's apply it to our ABQ Data Entry

application. We'll start with a fresh file called

data_entry_app.py  and add in our import statements, like so:

# data_entry_app.py from datetime import datetime from pathlib

import Path import csv import tkinter as tk from tkinter import

ttk

Now, let's see how we can apply some class-based

techniques to rewrite a cleaner version of our application

code.

Adding a StringVar to the Text widget

One annoyance we discovered in creating our application

was that the Text  widget does not allow the use of a



StringVar  to store its content, requiring us to treat it

differently than all our other widgets. There is a good

reason for this: the Tkinter Text  widget is far more than

just a multi-line Entry  widget, capable of containing rich

text, images, and other things that a lowly StringVar  cannot

store. That said, we're not using any of those features, so it

would be better for us to have a more limited Text  widget

that can be bound to a variable.

Let's create a subclass called BoundText  to solve this

problem; start with this code:

class BoundText(tk.Text): """A Text widget with a bound

variable."""

Our class needs to add three things to the Text  class:

It needs to allow us to pass in a StringVar , which it will

be bound to.

It needs to update the widget contents whenever the

variable is updated; for example, if it were loaded in

from a file or changed by another widget.

It needs to update the variable contents whenever the

widget is updated; for example, when the user types or

pastes content into the widget.

Passing in a variable

We'll begin by overriding the initializer to allow a control

variable to be passed in:

def __init__(self, *args, textvariable=None, **kwargs):

super().__init__(*args, **kwargs) self._variable = textvariable

In keeping with Tkinter convention, we'll use the

textvariable  argument to pass in the StringVar  object.

Having passed the remaining arguments to



super().__init__() , we store the variable as a protected

member of the class.

Next, if the user has provided a variable, we'll go ahead

and insert its contents into the widget (this takes care of

any default value assigned to the variable):

if self._variable: self.insert('1.0', self._variable.get())

Note that, if a variable was not passed in, textvariable  (and

consequently self._variable ) will be None .

Synchronizing the widget to the variable

The next thing we need to do is bind modifications of the

control variable to an instance method that will update the

widget.

Still working in the __init__()  method, let's add a trace

inside the if  block we just created, like so:

if self._variable: self.insert('1.0', self._variable.get())

self._variable.trace_add('write', self._set_content)

The callback for our trace is a protected member function

called _set_content() , which will update the content of the

widget with the contents of the variable. Let's go ahead and

create that callback:

def _set_content(self, *_): """Set the text contents to the

variable""" self.delete('1.0', tk.END) self.insert('1.0',

self._variable.get())

First, note that the argument list of our callback includes

*_ . This notation simply wraps up any positional arguments

passed to the function in a variable called _  (underscore).

A single underscore, or series of underscores, is a

conventional way of naming Python variables that we need

to provide but don't intend to use. In this case, we're using



it to consume any additional arguments that Tkinter will

pass to this function when it calls it in response to an event.

You'll see this same technique used in other callback

methods whenever we intend to bind them to Tkinter

events.

Inside the method, we'll simply modify the widget contents

using its delete()  and insert()  methods.

Synchronizing the variable to the widget

Updating the variable when the widget is modified is

slightly more involved. We need to find an event that will

fire whenever the Text  widget is edited to bind to our

callback. We could use the <Key>  event, which fires

whenever a key is pressed, but it won't capture mouse-

based edits such as a paste operation. The Text  widget

does, however, have a <<Modified>>  event that is emitted

when it is first modified.

We can start with that; add another line to the end of our

if  statement in __init__() , as shown here:

if self._variable: self.insert('1.0', self._variable.get())

self._variable.trace_add('write', self._set_content)

self.bind('<<Modified>>', self._set_var)

Rather unintuitively, though, <<Modified>>  only fires the first

time the widget is modified. After that, we'll need to reset

the event by changing the widget's modified flag. We can

do this using the Text  widget's edit_modified()  method,

which also allows us to retrieve the state of the modified

flag.

To see how this will work, let's write the _set_var()

callback:



def _set_var(self, *_): """Set the variable to the text

contents""" if self.edit_modified(): content = self.get('1.0',

'end-1chars') self._variable.set(content)

self.edit_modified(False)

In this method, we begin by checking if the widget has

been modified by calling edit_modified() . If it has, we'll

retrieve the content using the widget's get()  method.

Notice that the ending index for get is end-1chars . This

means "one character before the end of the content." Recall

that the Text  widget's get()  method automatically appends

a newline to the end of the content, so by using this index,

we can eliminate the extra newline.

After retrieving the contents of the widget, we need to

reset the modified flag by passing False  into the

edit_modified()  method. That way, it is ready to fire the

<<Modified>>  event the next time the user interacts with the

widget.

Creating a more advanced

LabelInput()

The LabelInput  class we created earlier under Creating

compound widgets seems useful, but if we want to use it in

our program, it's going to require some more fleshing out.

Let's start, once again, with our class definition and

initializer method:

# data_entry_app.py class LabelInput(tk.Frame): """A widget

containing a label and input together.""" def __init__( self,

parent, label, var, input_class=ttk.Entry, input_args=None,

label_args=None, **kwargs ): super().__init__(parent, **kwargs)

input_args = input_args or {} label_args = label_args or {}

self.variable = var self.variable.label_widget = self



As before, we've got arguments for the parent widget, label

text, input class, and input arguments. Since every widget

we want to use can now have a variable bound to it, we'll

also go ahead and accept that as a required argument, and

we'll add an optional argument for a dictionary of

arguments to pass to the label widget, should we need that.

We're defaulting input_class  to ttk.Entry , since we have

several of those.

Note that the default values for the input_args  and

label_args  arguments are None , and that we make them

dictionaries inside the method if they are None . Why not

just use empty dictionaries as default arguments? In

Python, default arguments are evaluated when the function

definition is first run. This means that a dictionary object

created in the function signature will be the same object

every time the function is run, rather than a fresh, empty

dictionary each time. Since we want a fresh, empty

dictionary each time, we create the dictionaries inside the

function body rather than the argument list. The same holds

for lists and other mutable objects.

Inside the method, we call super().__init__()  as usual, and

then ensure that input_args  and label_args  are dictionaries.

Finally, we'll save the input_var  to an instance variable, and

save the label widget itself as a property of the variable

object. Doing this means we won't have to store references

to our LabelInput  objects; we can just access them through

the variable object if we need to.

Next, it's time to set up the label, like this:

if input_class in (ttk.Checkbutton, ttk.Button):

input_args["text"] = label else: self.label = ttk.Label(self,

text=label, **label_args) self.label.grid(row=0, column=0,

sticky=(tk.W + tk.E))

Checkbutton  and Button  widgets have a label built into them,

so we don't want to have a separate label hanging around.



Instead, we'll just set the text  argument of the widget to

whatever is passed in. ( Radiobutton  objects also have a label

built in, but we'll handle those slightly differently, as you'll

see in a moment). For all other widgets, we'll add a Label

widget to the first row and column of the LabelInput .

Next, we need to set up the input arguments so that the

input's control variable will be passed in with the correct

argument name:

if input_class in ( ttk.Checkbutton, ttk.Button, ttk.Radiobutton

): input_args["variable"] = self.variable else:

input_args["textvariable"] = self.variable

Recall that button classes use variable  as the argument

name, while all others use textvariable . By handling this

inside the class, we won't need to worry about that

distinction when building our form.

Now, let's set up the input widget. Most widgets will be

simple to set up, but for Radiobutton , we need to do

something different. We need to create a Radiobutton  widget

for each possible value that's passed in (using the values

key in input_args ). Remember that we link the buttons by

having them share the same variable, which we'll do here.

We'll add it like this:

if input_class == ttk.Radiobutton: self.input = tk.Frame(self)

for v in input_args.pop('values', []): button = ttk.Radiobutton(

self.input, value=v, text=v, **input_args ) button.pack(

side=tk.LEFT, ipadx=10, ipady=2, expand=True, fill='x' )

First, we create a Frame  object to hold the buttons; then, for

each value passed into values , we add a Radiobutton  widget

to the Frame  layout. Note that we call the pop()  method to

get the values  item from the input_args  dict. dict.pop()  is

nearly identical to dict.get() , returning the value of the

given key if it exists, or the second argument if it does not.



The difference is that pop()  also deletes the retrieved item

from the dictionary. We're doing this because values  isn't a

valid argument for Radiobutton , so we need to remove it

before passing input_args  to the Radiobutton  initializer. The

remaining items in input_args  should be valid keyword

arguments to the widget.

In the case of non- Radiobutton  widgets, it's pretty

straightforward:

else: self.input = input_class(self, **input_args)

We simply call whatever input_class  class has been passed

in with the input_args . Now that we have self.input  created,

we just need to add it to the LabelInput  layout:

self.input.grid(row=1, column=0, sticky=(tk.W + tk.E))

self.columnconfigure(0, weight=1)

The final call to columnconfigure  tells the LabelWidget  widget

to fill its entire width with column 0 .

One convenient thing we can do when creating our own

widgets (either a custom subclass or compound widget) is

to set some reasonable defaults for the geometry layout.

For example, we're going to want all our LabelInput  widgets

to stick to the left- and right-hand sides of their container

so that they fill the maximum width available. Rather than

having to pass in sticky=(tk.E + tk.W)  every single time we

position a LabelInput  widget, let's make it the default, like

this:

def grid(self, sticky=(tk.E + tk.W), **kwargs): """Override grid

to add default sticky values""" super().grid(sticky=sticky,

**kwargs)

We've overridden grid  and simply passed on the arguments

to the superclass version but added a default for sticky . We



can still override it if needed, but it will save us a lot of

clutter to make that default.

Our LabelInput  is fairly robust now; time to put it to work!

Creating a form class

Now that our building blocks are ready, it's time to build

the major components of our application. Breaking the

application into sensible components requires some

thinking about what might constitute a reasonable division

of responsibilities. Initially, it seems like our application

could be broken into two components: the data entry form

and the root application itself. But which features go

where?

One reasonable assessment might be as follows:

The data entry form itself should contain all the

widgets, of course. It should also hold the Save and

Reset buttons, since these make no sense being

separate from the form.

The application title and status bar belong at a

universal level, since they will apply to all parts of the

application. File saving could go with the form, but it

also has to interact with some application-level items

like the status bar or records_saved  variable. It's a tricky

call, but we'll put it with the application object for now.

Let's begin by building our data entry form class,

DataRecordForm :

# data_entry_app.py class DataRecordForm(ttk.Frame): """The input

form for our widgets""" def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)



As always, we begin by subclassing Frame  and calling the

superclass's initializer method. We don't really need to add

any custom arguments at this point.

Now, let's create a dictionary to hold all our variable

objects:

self._vars = { 'Date': tk.StringVar(), 'Time': tk.StringVar(),

'Technician': tk.StringVar(), 'Lab': tk.StringVar(), 'Plot':

tk.IntVar(), 'Seed Sample': tk.StringVar(), 'Humidity':

tk.DoubleVar(), 'Light': tk.DoubleVar(), 'Temperature':

tk.DoubleVar(), 'Equipment Fault': tk.BooleanVar(), 'Plants':

tk.IntVar(), 'Blossoms': tk.IntVar(), 'Fruit': tk.IntVar(), 'Min

Height': tk.DoubleVar(), 'Max Height': tk.DoubleVar(), 'Med

Height': tk.DoubleVar(), 'Notes': tk.StringVar() }

This is just straight out of our data dictionary. Note that,

thanks to our BoundText  class, we can assign a StringVar

object to Notes. Now, we're ready to start adding widgets

to our GUI. In the current version of our application, we

added a LabelFrame  widget for each section of the

application using a chunk of code like this:

r_info = ttk.LabelFrame(drf, text='Record Information')

r_info.grid(sticky=(tk.W + tk.E)) for i in range(3):

r_info.columnconfigure(i, weight=1 )

This code was repeated for each frame, with only a change

to the variable name and label text. To avoid this repetition,

we can abstract this process into an instance method. Let's

create a method that can add a new label frame for us; add

this code just above the __init__()  definition:

def _add_frame(self, label, cols=3): """Add a LabelFrame to the

form""" frame = ttk.LabelFrame(self, text=label)

frame.grid(sticky=tk.W + tk.E) for i in range(cols):

frame.columnconfigure(i, weight=1) return frame

This method simply redefines the earlier code in a generic

way, so we can just pass in the label text and, optionally, a

number of columns. Scroll back down to where we were in



the DataRecordForm.__init__()  method, and let's put this

method to use by making a Record Information section, like

so:

r_info = self._add_frame("Record Information")

Now that we have our frame, let's give LabelInput  a try and

start building the first section of the form, like this:

LabelInput( r_info, "Date", var=self._vars['Date'] ).grid(row=0,

column=0) LabelInput( r_info, "Time", input_class=ttk.Combobox,

var=self._vars['Time'], input_args={"values": ["8:00", "12:00",

"16:00", "20:00"]} ).grid(row=0, column=1) LabelInput( r_info,

"Technician", var=self._vars['Technician'] ).grid(row=0,

column=2)

As you can see, LabelInput  has saved us a lot of redundant

clutter already!

Let's continue with the second line:

LabelInput( r_info, "Lab", input_class=ttk.Radiobutton,

var=self._vars['Lab'], input_args={"values": ["A", "B", "C"]}

).grid(row=1, column=0) LabelInput( r_info, "Plot",

input_class=ttk.Combobox, var=self._vars['Plot'], input_args=

{"values": list(range(1, 21))} ).grid(row=1, column=1)

LabelInput( r_info, "Seed Sample", var=self._vars['Seed Sample']

).grid(row=1, column=2)

Remember that to use RadioButton  widgets with LabelInput ,

we need to pass in a list of values to the input arguments,

just as we do for Combobox . Having finished the Record

Information  section, let's continue with the next section,

Environmental Data :

e_info = self._add_frame("Environment Data") LabelInput( e_info,

"Humidity (g/m³)", input_class=ttk.Spinbox,

var=self._vars['Humidity'], input_args={"from_": 0.5, "to": 52.0,

"increment": .01} ).grid(row=0, column=0) LabelInput( e_info,

"Light (klx)", input_class=ttk.Spinbox, var=self._vars['Light'],

input_args={"from_": 0, "to": 100, "increment": .01}

).grid(row=0, column=1) LabelInput( e_info, "Temperature (°C)",

input_class=ttk.Spinbox, var=self._vars['Temperature'],

input_args={"from_": 4, "to": 40, "increment": .01} ).grid(row=0,



column=2) LabelInput( e_info, "Equipment Fault",

input_class=ttk.Checkbutton, var=self._vars['Equipment Fault']

).grid(row=1, column=0, columnspan=3)

Again, we have added and configured a LabelFrame  using our

_add_frame()  method, populating it with the four LabelInput

widgets.

Now, let's add the Plant Data  sections:

p_info = self._add_frame("Plant Data") LabelInput( p_info,

"Plants", input_class=ttk.Spinbox, var=self._vars['Plants'],

input_args={"from_": 0, "to": 20} ).grid(row=0, column=0)

LabelInput( p_info, "Blossoms", input_class=ttk.Spinbox,

var=self._vars['Blossoms'], input_args={"from_": 0, "to": 1000}

).grid(row=0, column=1) LabelInput( p_info, "Fruit",

input_class=ttk.Spinbox, var=self._vars['Fruit'], input_args=

{"from_": 0, "to": 1000} ).grid(row=0, column=2) LabelInput(

p_info, "Min Height (cm)", input_class=ttk.Spinbox,

var=self._vars['Min Height'], input_args={"from_": 0, "to": 1000,

"increment": .01} ).grid(row=1, column=0) LabelInput( p_info,

"Max Height (cm)", input_class=ttk.Spinbox, var=self._vars['Max

Height'], input_args={"from_": 0, "to": 1000, "increment": .01}

).grid(row=1, column=1) LabelInput( p_info, "Median Height (cm)",

input_class=ttk.Spinbox, var=self._vars['Med Height'],

input_args={"from_": 0, "to": 1000, "increment": .01}

).grid(row=1, column=2)

We're almost done; let's add our Notes  section next:

LabelInput( self, "Notes", input_class=BoundText,

var=self._vars['Notes'], input_args={"width": 75, "height": 10}

).grid(sticky=tk.W, row=3, column=0)

Here, we're taking advantage of our BoundText  object so we

can attach a variable. Otherwise, this looks like all the

other calls to LabelInput .

Now, it's time for the buttons:

buttons = tk.Frame(self) buttons.grid(sticky=tk.W + tk.E, row=4)

self.savebutton = ttk.Button( buttons, text="Save",

command=self.master._on_save) self.savebutton.pack(side=tk.RIGHT)



self.resetbutton = ttk.Button( buttons, text="Reset",

command=self.reset) self.resetbutton.pack(side=tk.RIGHT)

As before, we've added our button widgets on a Frame . This

time, though, we're going to pass in some instance methods

as callback commands for the buttons. The Reset  button

will get an instance method we'll define in this class, but

since we decided that saving a file was the application

object's responsibility, we're binding the Save  button to an

instance method on the parent object (accessed through

this object's master  attribute).

Binding GUI objects directly to commands on other objects

is not a good way to approach the problem of inter-object

communication, but for now it will do the job. In Chapter 6,

Planning for the Expansion of Our Application, we'll learn a

more elegant way to accomplish this.

That wraps up our __init__()  method, but we're going to

need a couple more methods on this class before we're

done. First, we need to implement the reset()  method that

handles our form reset; it will look like this:

def reset(self): """Resets the form entries""" for var in

self._vars.values(): if isinstance(var, tk.BooleanVar):

var.set(False) else: var.set('')

Essentially, we just need to set all our variables to an empty

string. In the case of BooleanVar  objects, though, this will

raise an exception, so we need to set it to False  to uncheck

our checkbox.

Finally, we need a method that will allow the application

object to retrieve data from the form so that it can save the

data. In keeping with Tkinter convention, we'll call this

method get() :



def get(self): data = dict() fault = self._vars['Equipment

Fault'].get() for key, variable in self._vars.items(): if fault

and key in ('Light', 'Humidity', 'Temperature'): data[key] = ''

else: try: data[key] = variable.get() except tk.TclError: message

= f'Error in field: {key}. Data was not saved!' raise

ValueError(message) return data

The code here is very similar to the data retrieval code in

the on_save()  function of our previous version of the

application, with a couple of differences. First, we're

retrieving data from self._vars  rather than a global

variables dictionary. Secondly, in the event of an error,

we're creating an error message and re-raising a ValueError

rather than directly updating the GUI. We'll have to make

sure that code that calls this method is written to handle a

ValueError  exception. Finally, rather than saving the data as

we did in the previous version of the application, we're

merely returning it.

That completes the form class! Now all that remains is to

code an application to keep it in.

Creating an application class

Our application class is going to handle application-level

functionality as well as being our top-level window. GUI-

wise, it needs to contain:

A title label

An instance of our DataRecordForm  class

A status bar

It will also need a method to save the data in the form to a

CSV.

Let's begin our class:



class Application(tk.Tk): """Application root window""" def

__init__(self, *args, **kwargs): super().__init__(*args,

**kwargs)

Nothing new here, except that now we're subclassing Tk

instead of Frame .

Let's set up some window parameters:

self.title("ABQ Data Entry Application") self.columnconfigure(0,

weight=1)

As with the procedural version of the program, we've set

the window title and configured the first column of the grid

to expand. Now, we'll create the title label:

ttk.Label( self, text="ABQ Data Entry Application", font=

("TkDefaultFont", 16) ).grid(row=0)

Nothing is really different here, except note that the parent

object is now self  – there isn't going to be a root  object

anymore; self  is our Tk  instance inside this class.

Let's create a record form:

self.recordform = DataRecordForm(self)

self.recordform.grid(row=1, padx=10, sticky=(tk.W + tk.E))

Despite the size and complexity of DataRecordForm , adding it

to the application is just like adding any other widget.

Now, for the status bar:

self.status = tk.StringVar() ttk.Label( self,

textvariable=self.status ).grid(sticky=(tk.W + tk.E), row=2,

padx=10)

Again, this is just like the procedural version, except that

our status  variable is an instance variable. This means it

will be accessible to any of the methods in our class.



Finally, let's create a protected instance variable to hold

the number of records saved:

self._records_saved = 0

With __init__()  finished up, we can now write the last

method: _ on_save() . This method will be very close to the

procedural function we wrote previously:

def _on_save(self): """Handles save button clicks""" datestring =

datetime.today().strftime("%Y-%m-%d") filename =

"abq_data_record_{}.csv".format(datestring) newfile = not

Path(filename).exists() try: data = self.recordform.get() except

ValueError as e: self.status.set(str(e)) return with

open(filename, 'a', newline='') as fh: csvwriter =

csv.DictWriter(fh, fieldnames=data.keys()) if newfile:

csvwriter.writeheader() csvwriter.writerow(data)

self._records_saved += 1 self.status.set( "{} records saved this

session".format(self._records_saved)) self.recordform.reset()

Once again, this function generates the filename using the

current date, and then opens the file in append mode. This

time, though, we can get our data by simply calling

self.recordform.get() , which abstracts the process of getting

data from its variables. Remember that we do have to

handle ValueError  exceptions in case there is bad data in

the form, which we've done here. In the case of bad data,

we simply display the error in the status bar and exit before

the method attempts to save the data. If there is no

exception, the data is saved, so we increment the

_records_saved  attribute and update the status.

The final thing we need to make this application run is to

create an instance of our Application  object and start its

mainloop :

if __name__ == "__main__": app = Application() app.mainloop()

Note that, other than our class definitions and module

imports, these two lines are the only ones being executed



in the top-level scope. Also, because Application  takes care

of building the GUI and other objects, we can execute it

and the mainloop()  call together at the end of the

application using the if __name__ == "__main__"  guard.

Summary

In this chapter, you learned to take advantage of the power

of Python classes. You learned to create your own classes,

to define attributes and methods, and the function of magic

methods. You also learned how to extend the functionality

of existing classes with subclassing.

We explored how these techniques can be applied

powerfully to Tkinter classes, to extend their functionality,

build compound widgets, and organize our application into

components.

In the next chapter, we'll learn about Tkinter's validation

features, and further employ subclassing to make our

widgets more intuitive and robust. We'll also learn how to

automate input to save users time and ensure consistent

data entry.



5

Reducing User Error with Validation and

Automation

Things are going well for our project: the data entry form

works well, the code is better organized, and the users are

excited at the prospect of using the application. We're not

ready for production yet, though! Our form doesn't yet

perform the promised task of preventing or discouraging

user errors: number boxes still allow letters, combo boxes

aren't limited to the choices given, and dates are just text

fields that have to be filled in by hand. In this chapter,

we're going to set things right as we work through the

following topics:

In Validating user input, we'll talk about some

strategies for enforcing correct values in our widgets

and how to implement them in Tkinter.

In Creating validated widget classes, we'll super-charge

Tkinter's widget classes with some custom validation

logic.

In Implementing validated widgets in our GUI, we'll use

our new widgets to improve ABQ Data Entry.

In Automating input, we'll implement auto-population

of data in our widgets to save users time and effort.

Let's get started!

Validating user input



At first glance, Tkinter's selection of input widgets seems a

little disappointing.

It gives us neither a true number entry that only allows

digits, nor a truly keyboard-friendly, modern drop-down

selector. We have no date inputs, email inputs, or other

specially formatted input widgets.

Nevertheless, these weaknesses can become strengths.

Because these widgets assume nothing, we can make them

behave in a way that's appropriate to our specific needs.

For example, alphabetical characters may seem

inappropriate in a number entry, but are they? In Python,

strings such as NaN  and Infinity  are valid float values;

having a box that could increment numerals but also

handle those string values may be very useful in some

applications.

Of course, before we can tailor our widgets to our needs,

we'll need to think about what exactly we want them to do.

Let's do some analysis.

Strategies to prevent data errors

There is no universal answer to how a widget should react

to a user trying to enter bad data. The validation logic

found in various GUI toolkits can differ greatly; when bad

data is entered, an input widget might validate the user

input in any of the following ways:

Prevent the invalid keystrokes from registering at all

Accept the input, but return an error or list of errors

when the form is submitted

Show an error when the user leaves the entry field,

perhaps disabling form submission until it's corrected



Lock the user in the entry field until valid data is

entered

Silently correct the bad data using a best-guess

algorithm

The correct behavior in a data entry form (which is filled

out hundreds of times a day by the same users, who may

not even be looking at it) may be different from an

instrument control panel (where values absolutely must be

correct to avoid a disaster) or an online user registration

form (which is filled out once by a user who has never seen

it before). We need to ask ourselves – and our users – which

behavior will best minimize errors.

After discussing this with your users on the data entry staff,

you come to the following set of guidelines:

Whenever possible, meaningless keystrokes should be

ignored (for example, letters in a number field).

Fields containing bad data should be marked in some

visible way at focus-out (when the user exits the field)

with an error describing the problem.

A required field left empty at focus-out should be

marked with an error.

Form submission should be disabled if there are fields

with outstanding errors.

Let's add the following requirements to our specification

before moving on. Under the Requirements section, update

the Functional Requirements  as follows:

Functional Requirements: (...) * have inputs that: - ignore

meaningless keystrokes - display an error if the value is invalid

on focusout - display an error if a required field is empty on

focusout * prevent saving the record when errors are present

So far so good, but how do we implement this?



Validation in Tkinter

Tkinter's validation system is one of those parts of the

toolkit that is less than intuitive. It relies on three

configuration arguments that we can pass into any input

widget:

validate : This option determines which type of event

will trigger the validation callback.

validatecommand : This option takes the command that will

determine if the data is valid.

invalidcommand : This option takes a command that will

run if validatecommand  returns False .

This all seems pretty straightforward, but there are some

unexpected curves. Let's look in depth at each argument.

The validate argument

The validate  argument specifies what kind of event triggers

the validation. It can be one of the following string values:

Value Trigger event

none Never. This option turns off validation.

focusin The user selects or enters the widget.

focusout The user leaves the widget.

focus Both focusin  and focusout .

key The user presses a key while in the widget.



all Any of the focusin , focusout , or key  events.

Only one validate  argument can be specified, and all

matching events will trigger the same validation callback.

Most of the time, you will want to use key  and focusout

(validating on focusin  is rarely useful), but since there isn't

a value that combines those two events, it's often best to

use all  and let the callback switch its validation logic

based on the event type if necessary.

The validatecommand argument

The validatecommand  argument specifies the callback function

that will be run when the validate  event is triggered. This

is where things get a little tricky. You might think this

argument takes the name of a Python function or method,

but that's not quite it. Instead, we need to give it a tuple

containing a string reference to a Tcl/Tk function, and

(optionally) some substitution codes that specify

information about the triggering event that we want to pass

into the function.

How do we get a reference to a Tcl/Tk function?

Fortunately, this isn't too hard; we just need to pass a

Python callable to the register()  method of any Tkinter

widget. This returns string reference that we can use with

validatecommand .

For example, we can create a (somewhat pointless)

validation command like this:

# validate_demo.py import tkinter as tk root = tk.Tk() entry =

tk.Entry(root) entry.grid() def always_good(): return True

validate_ref = root.register(always_good) entry.configure(

validate='all', validatecommand=(validate_ref,) ) root.mainloop()



In this example, we've retrieved our function reference by

passing the always_good  function to root.register() . Then we

can pass this reference in a tuple to validatecommand . The

validation callback that we register must return a Boolean

value indicating whether the data in the field is valid or

invalid.

A validatecommand  callback must return a Boolean value.

If it returns anything else (including the implicit None

value when there is no return  statement), Tkinter will

turn off validation on the widget (that is, it will set

validate  to none ). Remember that its purpose is only to

indicate whether the data is acceptable or not. The

handling of invalid data will be done by our

invalidcommand  callback.

Of course, it's not easy to validate the data unless we

provide the function with some data to be validated. To

make Tkinter pass information to our validation callback,

we can add one or more substitution codes to our

validatecommand  tuple. These codes are as follows:

Code Value passed

%d

A code indicating the action being attempted: 0  for delete, 1  for

insert, and -1  for other events. Note that this is passed as a string,

and not as an integer.

%P
The proposed value that the field would have after the change (key

events only).

%s The value currently in the field (key events only).

%i The index (from 0 ) of the text being inserted or deleted on key

events, or -1  on non-key events. Note that this is passed as a string,

not an integer.



%S
For insertion or deletion, the text that is being inserted or deleted

(key events only).

%v The widget's validate  value.

%V

The event type that triggered validation, one of focusin ,

focusout , key , or forced  (indicating the widget's variable was

changed).

%W The widget's name in Tcl/Tk, as a string.

We can use these codes to create a slightly more useful

validated Entry , like so:

# validate_demo.py # Place just before root.mainloop() entry2 =

tk.Entry(root) entry2.grid(pady=10) def no_t_for_me(proposed):

return 't' not in proposed validate2_ref =

root.register(no_t_for_me) entry2.configure( validate='all',

validatecommand=(validate2_ref, '%P') )

Here, we're passing the %P  substitution code into our

validatecommand  tuple so that our callback function will be

passed the proposed new value for the widget (that is, the

value of the widget if the keystroke is accepted). In this

case, we're going to return False  if the proposed value

contains the t  character.

Note that the behavior of the widget when the

validatecommand  callback returns changes depending on the

type of event that triggered validation. If a validation

callback is triggered by a key  event and it returns False ,

Tkinter's built-in behavior is to reject the keystroke and

leave the contents as they are. In the event of a focus  event

triggering validation, a False  return value will simply flag

the widget as invalid. In both cases, the invalidcommand



callback will also be executed. If we haven't specified a

callback, Tkinter will simply do nothing further.

For example, run the above script; you'll find you cannot

type a t  in the Entry  widget. That's because the key

validation returned False , so Tkinter rejected the

keystroke.

The invalidcommand argument

The invalidcommand  argument works exactly the same as the

validatecommand  argument, requiring the use of the register()

method and the same substitution codes. It specifies a

callback function to be run when validatecommand  returns

False . It could be used to show an error or possibly correct

the input.

To see what this looks like together, consider the following

code for an Entry  widget that only accepts five characters:

entry3 = tk.Entry(root) entry3.grid() entry3_error =

tk.Label(root, fg='red') entry3_error.grid() def

only_five_chars(proposed): return len(proposed) < 6 def

only_five_chars_error(proposed): entry3_error.configure(

text=f'{proposed} is too long, only 5 chars allowed.' )

validate3_ref = root.register(only_five_chars) invalid3_ref =

root.register(only_five_chars_error) entry3.configure(

validate='all', validatecommand=(validate3_ref, '%P'),

invalidcommand=(invalid3_ref, '%P') )

Here, we've created a simple GUI with an Entry  widget and

a Label  widget. We've also created two functions, one that

returns whether or not the length of a string is less than six

characters, and another that configures the Label  widget to

show an error. We then register the two functions with Tk

using the root.register()  method, passing them to the Entry

widget's validatecommand  and invalidcommand  arguments. We

also include the %P  substitution code so that the proposed



value of the widget is passed into each function. Note that

you can pass in as many substitution codes as you wish,

and in any order, as long as your callback function is

written to accept those arguments.

Run this example and test its behavior; note that not only

can you not type more than five characters in the box, but

you also receive a warning in the label that your attempted

edit was too long.

Creating validated widget

classes

As you can see, adding even very simple validation to

Tkinter widgets involves several steps with some less-than-

intuitive logic. Adding validation to even a fraction of our

widgets could get quite verbose and ugly. However, we

learned in the previous chapter that we can improve on

Tkinter widgets by subclassing them to add new

configuration and functionality. Let's see if we can apply

this technique to widget validation by creating validated

versions of Tkinter's widget classes.

For example, let's implement our five-character entry

again, this time as a subclass of ttk.Entry , like so:

# five_char_entry_class.py class FiveCharEntry(ttk.Entry): """An

Entry that truncates to five characters on exit.""" def

__init__(self, parent, *args, **kwargs): super().__init__(parent,

*args, **kwargs) self.error = tk.StringVar() self.configure(

validate='all', validatecommand=(self.register(self._validate),

'%P'), invalidcommand=(self.register(self._on_invalid), '%P') )

def _validate(self, proposed): return len(proposed) <= 5 def

_on_invalid(self, proposed): self.error.set( f'{proposed} is too

long, only 5 chars allowed!' )



This time, we've implemented validation by subclassing

Entry  and defining our validation logic in a method rather

than an external function. This simplifies access to the

widget in our validation methods, should we need it, and

also allows us to refer to the methods in __init__()  before

they are actually defined. We've also added a StringVar

called error  as an instance variable. We can use this

variable to hold an error message should our validation fail.

Note that we've registered these functions using

self.register()  rather than root.register() . The register()

method does not have to be run on the root  window object;

it can be run on any Tkinter widget. Since we don't know

for sure that the code using our class will call the root

window root , or if it will be in scope when the __init__()

method runs, it makes sense to use the FiveCharEntry  widget

itself to register the functions. However, this must be done

after we call super().__init__() , since the underlying Tcl/Tk

object doesn't actually exist (and cannot register functions)

until that method is run. That is why we're using configure()

to set these values rather than passing them into

super().__init__() .

We can then use this class like so:

root = tk.Tk() entry = FiveCharEntry(root) error_label =

ttk.Label( root, textvariable=entry.error, foreground='red' )

entry.grid() error_label.grid() root.mainloop()

Here, we've created an instance of the FiveCharEntry  widget

as well as a Label  widget to display errors. Note that we

pass the widget's built-in error variable, entry.error , to the

label's textvariable  argument. When you execute this, you

should see the label displaying an error when you try to

type more than five characters, like so:



Figure 5.1: The five-character entry refusing to accept "Banana"

Creating a Date field

Let's try something a little more useful now: creating a

validating DateEntry  widget to use for our Date  field. Our

widget will prevent any keystrokes that aren't valid for a

date string, and check for validity of the date on focusout . If

the date is invalid, we'll mark the field in some way and set

an error message in a StringVar , which some other widget

could use to display the error.

First, open a new file called DateEntry.py  and begin with the

following code:

# DateEntry.py import tkinter as tk from tkinter import ttk from

datetime import datetime class DateEntry(ttk.Entry): """An Entry

for ISO-style dates (Year-month-day)""" def __init__(self,

parent, *args, **kwargs): super().__init__(parent, *args,

**kwargs) self.configure( validate='all', validatecommand=(

self.register(self._validate), '%S', '%i', '%V', '%d' ),

invalidcommand=(self.register(self._on_invalid), '%V') )

self.error = tk.StringVar()

After importing tkinter  and ttk , we also import datetime ,

which we'll need for validating the date strings entered. As

with our previous class, we've overridden __init__()  to set

up validation and add an error variable. This time, however,

we're going to be passing several more arguments into our

validatecommand  method: the character being inserted ( %S ),



the index where it's being inserted ( %i ), the event type

triggering validation ( %V ), and the action type ( %d ).

invalidcommand  is receiving only the event type ( %V ). Since

we're triggering validation on all events, we'll need this

value to decide how to handle the invalid data

appropriately.

Next, let's create a method called _toggle_error()  to turn an

error state on or off in the widget:

def _toggle_error(self, error=''): self.error.set(error)

self.config(foreground='red' if error else 'black')

We'll use this method to handle how our widget behaves

when an error occurs or is corrected. It starts by setting

our error variable to the string provided. If the string is not

blank, we set a visual error indicator (in this case, turning

the text red); if it's blank, we turn off the visual indicator.

Now that we have that, we can create our _validate()

method, as follows:

def _validate(self, char, index, event, action): # reset error

state self._toggle_error() valid = True # ISO dates only need

digits and hyphens if event == 'key': if action == '0': valid =

True elif index in ('0', '1', '2', '3', '5', '6', '8', '9'):

valid = char.isdigit() elif index in ('4', '7'): valid = char ==

'-' else: valid = False

This method will take an "innocent until proven guilty"

approach to validating the user input, so we begin by

toggling off any error state and setting a valid  flag to True .

Then, we'll start looking at keystroke events. The line if

action == '0':  tells us if the user is trying to delete

characters. We always want to allow this so that the user

can edit the field, so that should always return True .

The basic format of an ISO date is four digits, a dash, two

digits, a dash, and two digits. We can test whether the user



is following this format by checking whether the inserted

characters match our expectations at the inserted index.

For example, the line index in ('0','1', '2', '3', '5', '6',

'8', '9')  will tell us if the character is being inserted at one

of the positions that requires a digit, and if so we check

that the character is a digit. The characters at indexes 4

and 7  should be a dash. Any other keystroke is invalid.

Although you might expect them to be integers, Tkinter

passes both action codes and character indexes as strings.

Keep this in mind when writing your comparisons.

While this is a hopelessly naive heuristic for a correct date,

since it allows for complete nonsense dates like 0000-97-46 ,

or right-looking-but-still-wrong dates like 2000-02-29 , it at

least enforces the basic format and removes a large

number of invalid keystrokes. A completely accurate partial

date analyzer is a project unto itself, but for now, this will

do.

Checking our date for correctness on focus-out is simpler

and much more foolproof, as you can see here:

# still in DateEntry._validate() elif event == 'focusout': try:

datetime.strptime(self.get(), '%Y-%m-%d') except ValueError:

valid = False return valid

Since we have access to the final value the user meant to

enter at this point, we can use datetime.strptime()  to try to

convert the string to a Python datetime  object using the

format %Y-%m-%d . If this fails, we know the date is invalid.

Finally, at the end of the method, we return our valid  flag.

As you saw previously, it's sufficient to return False  for

keystroke events to prevent the character from being



inserted; but for errors on focus events, we'll need to

respond in some user-visible way.

This will be handled in our _on_invalid()  method as follows:

def _on_invalid(self, event): if event != 'key':

self._toggle_error('Not a valid date')

We have configured this method to receive only the event

type, which we'll use to ignore keystroke events (they're

already adequately handled by the default behavior). For

any other event type, we'll use our _toggle_error()  method

to set our visual indicator and the error string.

Let's test the DateEntry  class with a small test script at the

end of the file:

if __name__ == '__main__': root = tk.Tk() entry = DateEntry(root)

entry.pack() ttk.Label( textvariable=entry.error,

foreground='red' ).pack() # add this so we can unfocus the

DateEntry ttk.Entry(root).pack() root.mainloop()

Save the file and run it to try the new DateEntry  class. Try

entering various bad dates or invalid keystrokes, and then

click the second Entry  widget to unfocus the DateEntry  and

note what happens.

You should see something like this:



Figure 5.2: A validating DateEntry widget warning us about a bad date string

Implementing validated

widgets in our GUI

Now that you know how to validate your widgets, you have

your work cut out for you! We have 17 input widgets, and

you'll have to write validation code like that shown in the

previous section for all of them to get the behavior we

need. Along the way, you'll need to make sure the widgets

respond consistently to errors and present a consistent API

to the application.

If that sounds like something you'd like to put off

indefinitely, I can't blame you. Maybe there's a way we can

cut down the amount of repetitive code we need to write.

Introducing the power of multiple

inheritance

So far, we have learned that Python allows us to create new

classes by subclassing, inheriting features from the

superclass, and only adding or changing what's different

about our new class. Python also supports building classes

using multiple inheritance, in which a subclass can

inherit from multiple superclasses. We can exploit this

feature to our advantage by creating what's called a mixin

class.

Mixin classes contain only a specific set of functionalities

that we want to be able to "mix in" with other classes to



compose a new class.

Take a look at the following example code:

class Fruit(): _taste = 'sweet' def taste(self): print(f'It

tastes {self._taste}') class PeelableMixin(): def __init__(self,

*args, **kwargs): super().__init__(*args, **kwargs) self._peeled

= False def peel(self): self._peeled = True def taste(self): if

not self._peeled: print('I will peel it first') self.peel()

super().taste()

In this example, we have a class called Fruit  with a _taste

class attribute and a taste()  method that prints a message

indicating how the fruit tastes. We then have a mixin class

called PeelableMixin . The mixin class adds an instance

attribute called _peeled  to indicate if the fruit has been

peeled, as well as a peel()  method to update the _peeled

attribute. It also overrides the taste()  method to check if

the fruit is peeled before tasting. Note that the mixin

class's __init__()  method also calls the superclass

initializer, even though it doesn't inherit from another class.

We'll see why this is in a moment.

Now, let's use multiple inheritance to create a new class,

like so:

class Plantain(PeelableMixin, Fruit): _taste = 'starchy' def

peel(self): print('It has a tough peel!') super().peel()

The Plantain  class is created from the combination of the

PeelableMixin  and the Fruit  class. When we create a class

using multiple inheritance, the rightmost class we specify is

called the base class, and mixin classes should be

specified before it (that is, to the left of the base class).

Thus, Fruit  is the base class in this case.

Let's create an instance of our class and call taste() , like

so:

plantain = Plantain() plantain.taste()



As you can see, the resulting subclass has both a taste()

and a peel()  method, but note that there are two versions

of each method defined between all the classes. When we

call one of these methods, which version is used?

In a multiple inheritance situation, super()  does something

a little more complex than just standing in for the

superclass. It looks up the chain of inheritance using

something called the method resolution order (MRO)

and determines the nearest class that defines the method

we're calling. The resolution order starts with the current

class, and then follows the chain of superclasses from the

leftmost to the base class.

Thus, when we call plantain.taste() , a series of method

resolutions occurs, as follows:

plantain.taste()  is resolved to PeelableMixin.taste() .

PeelableMixin.taste()  then calls self.peel() . Since self  is

a Plantain  object, self.peel()  is resolved to

Plantain.peel() .

Plaintain.peel()  prints a message and calls

super().peel() . Python resolves this call to the leftmost

class with a peel()  method, PeelableMixin.peel() .

When that's returned, PeelableMixin.taste()  then calls

super().taste() . The next leftmost class from

PeelableMixin  is Fruit , so this is resolved to

Fruit.taste() .

Fruit.taste()  refers to the class variable _taste . Even

though the method being run is in the Fruit  class, the

class of our object is Plantain , so Plantain._taste  is used

here.

If this seems confusing, just remember that self.method()  or

self.attribute  will always look for method()  or attribute  in



the current class first, and then follow the list of inherited

classes from left to right until the method or attribute is

found. The super()  object will do the same, except that it

skips the current class.

This is the reason why we called super().__init__()  inside

the mixin class's initializer in the example.

Without this call, only the mixin class initializer would be

called. By calling super().__init__() , Python will also

continue up the MRO chain and call the base class

initializer. This is particularly important to remember when

creating mixins for Tkinter classes, since the Tkinter class's

initializer creates the actual Tcl/Tk object.

The method resolution order of a class is stored in its

__mro__  property; you can inspect this method in a Python

shell or debugger if you're having trouble with inherited

methods or attributes.

Note that PeelableMixin  is not usable on its own: it only

works when combined with a class that has a taste()

method. This is why it's a mixin class: it is meant to be

mixed in to enhance other classes, not used on its own.

Unfortunately, Python does not give us a way to explicitly

annotate in code that a class is a mixin or what classes it

must be mixed with, so be sure to document your mixin

classes well.

Building a validating mixin class

Let's apply our knowledge of multiple inheritance to build a

mixin class that will help us create validated widget classes



with less boilerplate code. Open data_entry_app.py  and add

the new class just above your Application  class definition:

# data_entry_app.py class ValidatedMixin: """Adds a validation

functionality to an input widget""" def __init__(self, *args,

error_var=None, **kwargs): self.error = error_var or

tk.StringVar() super().__init__(*args, **kwargs)

We've started this class as usual, though we're not

subclassing anything this time because this is a mixin class.

The constructor also has an extra argument called

error_var . This will allow us to pass in a variable to use for

the error message; if we don't, the class creates its own.

Remember that the call to super().__init__()  will ensure that

the base class initializer will be executed as well.

Next, we set up validation, as follows:

vcmd = self.register(self._validate) invcmd =

self.register(self._invalid) self.configure( validate='all',

validatecommand=(vcmd, '%P', '%s', '%S', '%V', '%i', '%d'),

invalidcommand=(invcmd, '%P', '%s', '%S', '%V', '%i', '%d') )

As we've done before, we're registering instance methods

for validation and invalid data handling, and then using

configure  to set them up with the widget. We'll go ahead

and pass in all the substitution codes (except %w , the

widget name, since it's fairly useless inside a class context).

We're running validation on all  conditions, so we can

capture both focus  and key  events.

Now, we'll define our error condition handler:

def _toggle_error(self, on=False): self.configure(foreground=

('red' if on else 'black'))

This will just change the text color to red if there's an error,

or black otherwise. Unlike our previous validated widget

classes, we won't set the error string in this function;



instead, we'll do that in the validation callback since we'll

have a better idea of what the error is in that context.

Our validation callback will look like this:

def _validate(self, proposed, current, char, event, index,

action): self.error.set('') self._toggle_error() valid = True #

if the widget is disabled, don't validate state =

str(self.configure('state')[-1]) if state == tk.DISABLED: return

valid if event == 'focusout': valid =

self._focusout_validate(event=event) elif event == 'key': valid =

self._key_validate( proposed=proposed, current=current,

char=char, event=event, index=index, action=action ) return valid

Since this is a mixin, our _validate()  method doesn't

actually contain any validation logic. Rather, it's going to

start by handling a few setup chores, like toggling off the

error and clearing the error message. It then checks to see

if the widget is disabled by retrieving the last item in the

widget's state  value. If it is disabled, the value of the

widget is immaterial, so validation should always pass.

After that, the method calls an event-specific callback

method, depending on the event type passed in. We only

care about the key  and focusout  events right now, so any

other event just returns True . Those event-specific methods

will be defined in our subclasses to determine the actual

validation logic used.

Notice that we call the individual methods using keyword

arguments; when we create our subclasses, we'll be

overriding these methods. By using keyword arguments,

our overridden functions can just specify the needed

keywords or extract individual arguments from **kwargs ,

rather than having to get all the arguments in the right

order. Also, notice that all the arguments are passed into

_key_validate() , but only event  is passed into

_focusout_validate() . Focus events don't pass anything

useful for any of the other arguments, so there's no point in

passing them along.



Next, we'll put in placeholders for the event-specific

validation methods:

def _focusout_validate(self, **kwargs): return True def

_key_validate(self, **kwargs): return True

The ultimate idea here is that our subclasses only need to

override one or both of _focusout_validate()  or

_key_validate() , depending on what we care about for that

widget. If we don't override them, they just return True , so

validation passes.

Now, let's do something similar for our invalid input

handler:

def _invalid(self, proposed, current, char, event, index,

action): if event == 'focusout':

self._focusout_invalid(event=event) elif event == 'key':

self._key_invalid( proposed=proposed, current=current, char=char,

event=event, index=index, action=action ) def

_focusout_invalid(self, **kwargs): """Handle invalid data on a

focus event""" self._toggle_error(True) def _key_invalid(self,

**kwargs): """Handle invalid data on a key event. By default we

want to do nothing""" pass

We take an identical approach to these methods. Unlike the

validate methods, though, our invalid data handlers don't

need to return anything. For invalid key  events, we do

nothing by default, and for invalid input on focusout  events,

we toggle on our error status.

The last thing we want to add is a way to manually execute

validation on the widget. Keystroke validation only really

makes sense in the context of entering keys, but there may

be times when we want to manually run the focus-out

checks since they effectively check the complete entered

value. Let's implement that with the following public

method:

def trigger_focusout_validation(self): valid = self._validate('',

'', '', 'focusout', '', '') if not valid:



self._focusout_invalid(event='focusout') return valid

In this method, we're just duplicating the logic that occurs

when a focus-out event happens: run the validation

function, and if it fails, run the invalid handler. This

completes the ValidatedMixin . Now let's see how it works by

applying it to some of our widgets.

Building validating input widgets with

ValidatedMixin

To begin, let's think through what classes we need to

implement with our new ValidatedMixin  class:

All our fields except the Notes field are required (when

not disabled), so we'll need a basic Entry  widget that

registers an error if there's no input.

We have one Date field, so we need an Entry  widget

that enforces a valid date string.

We have a number of Spinbox  widgets for decimal or

integer input. We'll need to make sure these only

accept valid number strings.

We have a few Combobox  widgets that don't behave quite

the way we want them to.

Let's get started!

Requiring data

Let's start with a basic Entry  widget that requires data. We

can use these for the Technician and Seed Sample fields.

Add a new class just after the ValidatedMixin  class:



# data_entry_app.py class RequiredEntry(ValidatedMixin,

ttk.Entry): """An Entry that requires a value""" def

_focusout_validate(self, event): valid = True if not self.get():

valid = False self.error.set('A value is required') return valid

There's no keystroke validation to do here, so we just need

to create _focusout_validate() . All we need to do in that

method is check whether the entered value is empty. If so,

we just set an error  string and return False .

That's all there is to it!

Creating a Date widget

Next, let's apply the mixin class to the DateEntry  class we

made before, keeping the same validation algorithm. Add

the following code just under the RequiredEntry  class:

class DateEntry(ValidatedMixin, ttk.Entry): """An Entry that only

accepts ISO Date strings""" def _key_validate(self, action,

index, char, **kwargs): valid = True if action == '0': # This is

a delete action valid = True elif index in ('0', '1', '2', '3',

'5', '6', '8', '9'): valid = char.isdigit() elif index in ('4',

'7'): valid = char == '-' else: valid = False return valid def

_focusout_validate(self, event): valid = True if not self.get():

self.error.set('A value is required') valid = False try:

datetime.strptime(self.get(), '%Y-%m-%d') except ValueError:

self.error.set('Invalid date') valid = False return valid

In this class, we've once again simply overridden the key

and focus  validation methods, this time copying in the

validation logic we used in our DateEntry  widget from the

previous section. The _focusout_validate()  method also

includes the logic from our RequiredEntry  class too, since the

Date  value is required.

Those classes were both pretty easy to create; let's move

on to something a bit more intricate.



A better Combobox widget

The drop-down widgets in different toolkits or widget sets

behave fairly consistently when it comes to mouse

operation, but the response to keystrokes varies; for

example:

Some do nothing, such as the Tkinter OptionMenu

Some require the use of arrow keys to select items,

such as the Tkinter ListBox

Some move to the first entry that begins with any key

pressed and cycle through entries beginning with that

letter on subsequent presses

Some narrow down the list to entries that match what's

typed

We need to think about what behavior our Combobox  widget

should have. Since our users are accustomed to doing data

entry with the keyboard, and some have difficulty with the

mouse, the widget needs to work well with the keyboard.

Making them use repeated keystrokes to select options is

not very intuitive, either. After talking with the data entry

staff, you decide on this behavior:

If the proposed text matches no entries, the keystroke

will be ignored

When the proposed text matches a single entry, the

widget is set to that value

A delete or backspace clears the entire box

Let's see if we can implement this with validation. Add

another class after the DateEntry  definition:

class ValidatedCombobox(ValidatedMixin, ttk.Combobox): """A

combobox that only takes values from its string list""" def



_key_validate(self, proposed, action, **kwargs): valid = True if

action == '0': self.set('') return True

The _key_validate()  method starts out by setting up a valid

flag and doing a quick check to see if this is a delete action.

If it is, we set the value to a blank string and return True .

That takes care of the last requirement.

Now, we'll add the logic to match the proposed text to our

values:

values = self.cget('values') # Do a case-insensitive match

against the entered text matching = [ x for x in values if

x.lower().startswith(proposed.lower()) ] if len(matching) == 0:

valid = False elif len(matching) == 1: self.set(matching[0])

self.icursor(tk.END) valid = False return valid

A copy of the widget's list of values is retrieved using its

cget()  method. Then, we use a list comprehension to

reduce this list to only the entries that begin with the

proposed text. To make matching case-insensitive, we're

calling lower()  on both the values in the list item and the

proposed text before comparing them.

Every Tkinter widget supports the cget()  method. It can

be used to retrieve any of the widget's configuration values

by name.

If the length of the matching list is 0 , nothing starts with

the typed value and we reject the keystroke. If it's 1 , we've

found our match, so we'll set the variable to that value.

This is done by calling the widget's set()  method and

passing in the matching value. As a final touch, we'll send

the cursor to the end of the field using the combo box's

.icursor() . This isn't strictly necessary, but it looks better

than leaving the cursor in the middle of the text. Note that

we set valid  to False  even though the value matched



successfully; since we are setting the value ourselves to the

matching item, we want to stop any further input to the

widget. Otherwise, the proposed keystroke would be

appended to the end of the value we set, creating an invalid

input.

Also note that if our matching list contains more than one

value, the method will just return True , allowing the user to

continue typing and filtering the list.

Next, let's add the focusout  validator:

def _focusout_validate(self, **kwargs): valid = True if not

self.get(): valid = False self.error.set('A value is required')

return valid

We don't have to do much here, because the key validation

method ensures that the only possible values are a blank

field or an item from the values  list, but since all fields

require a value, we'll copy in the validation logic from

RequiredEntry .

That takes care of our Combobox  widget. Next, we'll deal with

the Spinbox  widget.

A range-limited Spinbox widget

A number entry seems like it shouldn't be too complicated

to deal with, but there are several subtleties to work

through to make it bulletproof. In addition to limiting the

field to valid number strings, you'll want to enforce the

from_ , to , and increment  arguments as the minimum,

maximum, and precision of the input, respectively.

The algorithm needs to implement the following rules:

Deletion is always allowed



Digits are always allowed

If from_  is less than 0, a minus is allowed as the first

character

If increment  has a decimal component, one (and only

one) dot is allowed

If the proposed value is greater than the to  value,

ignore the keystroke

If the proposed value requires more precision than

increment , ignore the keystroke

On focusout , make sure the value is a valid number

string

Also on focusout , make sure the value is greater than

the from_  value

This is a lot of rules, so let's proceed slowly as we try to

implement them. The first thing we'll want to do is import

the Decimal  class from the standard library. At the top of the

file, add the following to the end of the import list:

from decimal import Decimal, InvalidOperation

The Decimal  class helps our decimal values be a bit more

precise than the built-in float  class, and also makes

converting between numbers and strings a bit easier.

InvalidOperation  is a decimal-specific exception we can use

in our validation logic.

Now, let's add a new ValidatedSpinbox  class under the

ValidatedCombobox  class, like so:

class ValidatedSpinbox(ValidatedMixin, ttk.Spinbox): def

__init__( self, *args, from_='-Infinity', to='Infinity', **kwargs

): super().__init__(*args, from_=from_, to=to, **kwargs)

increment = Decimal(str(kwargs.get('increment', '1.0')))

self.precision = increment.normalize().as_tuple().exponent



We start by overriding the __init__()  method so that we can

specify some defaults and grab the from_ , to , and increment

values from the initializer arguments for use in establishing

our validation rules. Note that we have set defaults for to

and from_ : -Infinity  and Infinity . Both float  and Decimal

will happily accept these values and treat them as you'd

expect them to do. Recall that if we specify one limit, we

must also specify the other. Adding these defaults allows us

to only specify the one we need, and our Spinbox  will act as

we expect it to.

Once we have run the superclass's initializer method, we're

going to figure out the precision value; that is, the number

of digits we want to the right of the decimal.

To do this, we're first going to retrieve the increment  value

from the keyword arguments, using 1.0  if it's not specified.

We then convert this value to a Decimal  object. Why do this?

The Spinbox  widget's arguments can be passed in as floats,

integers, or strings. Regardless of how you pass them in,

Tkinter converts them to floats when the Spinbox  initializer

is run. Determining the precision of a float is problematic

because of floating-point error, so we want to convert it to a

Python Decimal  before it becomes a float.

What is a floating-point error? Floats attempt to represent

decimal numbers in binary form. Open a Python shell and

enter 1.2 / 0.2 . You might be surprised to find the

answer is 5.999999999999999  rather than 6 . This is a

result of calculations being done on binary numbers rather

than decimal numbers, and it's a source of computation

error in nearly every programming language. Python offers

us the Decimal  class, which takes a numeric string and

stores it in a way that makes mathematical operations safe

from floating-point errors.



Notice that we cast increment  to str  before passing it to

Decimal . Ideally, we should pass increment  to our widget as a

string to ensure it will be interpreted correctly, but if we

need to pass in a float for some reason, str  will do some

sensible rounding first.

Having converted increment  to a Decimal  object, we can

extract its precision value by taking the exponent of the

smallest valid decimal place. We'll use this value in the

validation method to make sure our entered data doesn't

have too many decimal places.

Our constructor is now settled, so let's write the validation

methods. The _key_validate()  method is a bit tricky, so we'll

walk through it chunk by chunk.

First, we start the method:

def _key_validate( self, char, index, current, proposed, action,

**kwargs ): if action == '0': return True valid = True min_val =

self.cget('from') max_val = self.cget('to') no_negative = min_val

>= 0 no_decimal = self.precision >= 0

First, because deletion should always work, we'll return

True  immediately if the action is a deletion. After that, we

retrieve the from_  and to  values using cget()  and declare

some flag variables to indicate if negatives and decimals

should be allowed.

Next, we need to test if the proposed keystroke is a valid

character:

if any([ (char not in '-1234567890.'), (char == '-' and

(no_negative or index != '0')), (char == '.' and (no_decimal or

'.' in current)) ]): return False

Valid characters are digits, the -  symbol, and the decimal

( . ). The minus sign is only valid at index 0 , and only when

negative numbers are allowed. The decimal can only



appear once, and only if our precision is less than 1 . We've

put all these conditions in a list and passed it to the built-in

any()  function.

The built-in any()  function takes a list of expressions and

returns True  if any one of the expressions in the list is

true. There's also an all()  function that returns True

only if every expression in the list is true. These functions

allow you to condense a long chain of Boolean expressions.

We're almost guaranteed at this point to have a valid

Decimal  string, but not quite; we might have just the - , . ,

or -.  characters.

Those are not valid Decimal  strings, but they are valid

partial entries, so we should allow them. This code will

check for those combinations and allow them:

if proposed in '-.': return True

If we have not yet returned at this point, the proposed text

can only be a valid Decimal  string, so we'll make a Decimal

from it and do some final tests:

proposed = Decimal(proposed) proposed_precision =

proposed.as_tuple().exponent if any([ (proposed > max_val),

(proposed_precision < self.precision) ]): return False return

valid

Our last two tests check to see whether the proposed text

is either greater than our maximum value or has more

precision than the increment that we specified (the reason

we use a <  operator here is because precision is given as a

negative value for decimal places). Finally, in case nothing

has been returned yet, we return the valid  value.

That takes care of key validation; our focus-out validator is

much simpler, as you can see:



def _focusout_validate(self, **kwargs): valid = True value =

self.get() min_val = self.cget('from') max_val = self.cget('to')

try: d_value = Decimal(value) except InvalidOperation:

self.error.set(f'Invalid number string: {value}') return False if

d_value < min_val: self.error.set(f'Value is too low (min

{min_val})') valid = False if d_value > max_val:

self.error.set(f'Value is too high (max {max_val})') valid =

False return valid

With the entire intended value at our disposal, we only

need to make sure it's a valid Decimal  string and within the

specified value range. In theory, our key validation should

have prevented an invalid decimal string or high value from

being entered, but it doesn't hurt to check regardless.

With that method completed, our ValidatedSpinbox  is ready

to go.

Validating Radiobutton widgets

Validating Radiobutton  widgets may seem initially pointless

since the widget itself can only be on or off; however,

validating a group of buttons can be quite useful in some

situations. For example, in our ABQ data form, the Lab field

is required to have a value, but currently the user can

submit a record without clicking on one of the options.

To fix this, we're going to create a new class that will

represent a group of buttons and add validation code to

this compound widget.

Unfortunately, our mixin class cannot help us here as

neither our compound widget nor Ttk Radiobutton  widgets

can support the validate , validatecommand , or invalidcommand

arguments. Therefore, we'll have to implement validation of

the button group without help from Tkinter's validation

system.



To begin, we'll subclass ttk.Frame  to build the compound

widget on:

# data_entry_app.py class ValidatedRadioGroup(ttk.Frame): """A

validated radio button group""" def __init__( self, *args,

variable=None, error_var=None, values=None, button_args=None,

**kwargs ): super().__init__(*args, **kwargs) self.variable =

variable or tk.StringVar() self.error = error_var or

tk.StringVar() self.values = values or list() self.button_args =

button_args or dict()

The initializer for this class takes a number of keyword

values:

variable  will be the control variable for the group's

value. If not passed in, it will be created by the class.

error_var  is a control variable for the error string. Just

as with our other validated classes, we have allowed

the possibility of accepting a StringVar  control variable

to hold the error string, or we just create one if one

wasn't passed in, saving it as self.error .

values  will be a list containing the string values that

each button in the group represents.

button_args  will be a dictionary of keyword arguments

that we can pass to the individual Radiobutton  widgets.

This will allow us to pass arguments to the buttons

separately from the Frame  container.

The remaining positional and keyword arguments are

passed to the superclass initializer. After saving the

keyword values to instance variables, we'll next create the

buttons like so:

for v in self.values: button = ttk.Radiobutton( self, value=v,

text=v, variable=self.variable, **self.button_args ) button.pack(

side=tk.LEFT, ipadx=10, ipady=2, expand=True, fill='x' )

Just as we did in the LabelInput  initializer, we are iterating

through the values  list, creating a Radiobutton  widget for



each value, and binding it to the common control variable.

Each one is packed onto the Frame  from the left side of the

widget.

To finish the initializer, we need to trigger a validation

callback whenever the Frame  widget loses focus. To do that,

we can just use bind() , like so:

self.bind('<FocusOut>', self.trigger_focusout_validation)

Now, whenever the widget loses focus, the validation

callback will be called. Let's write that callback next:

def trigger_focusout_validation(self, *_): self.error.set('') if

not self.variable.get(): self.error.set('A value is required')

This method will begin by setting the error variable to an

empty string and then simply check if our bound variable

contains a value. If it's empty, the error string is populated.

Before we can use this compound widget with our

application, we'll need to make one minor change to the

LabelInput  class. Remember that LabelInput  makes sure that

the correct control variable keyword argument gets passed

into the widget initializer. We need to make sure our new

compound widget class is getting the correct keyword

( variable , in this case).

Update the LabelInput  initializer like so:

# data_entry_app, in LabelInput.__init__() if input_class in (

ttk.Checkbutton, ttk.Button, ttk.Radiobutton, ValidatedRadioGroup

): input_args["variable"] = self.variable else:

input_args["textvariable"] = self.variable

With that, the ValidatedRadio  widget should be ready to use!



Updating our form with validated

widgets

Now that our widgets are all made, it's time to make use of

them in our form GUI. In data_entry_app.py , scroll down to

the DataRecordForm  class's __init__()  method, and we'll start

updating our widgets one row at a time. Line 1 is fairly

straightforward:

LabelInput( r_info, "Date", var=self._vars['Date'],

input_class=DateEntry ).grid(row=0, column=0) LabelInput( r_info,

"Time", input_class=ValidatedCombobox, var=self._vars['Time'],

input_args={"values": ["8:00", "12:00", "16:00", "20:00"]}

).grid(row=0, column=1) LabelInput( r_info, "Technician",

var=self._vars['Technician'], input_class=RequiredEntry

).grid(row=0, column=2)

It's as simple as swapping out the input_class  value in each

LabelInput  call with one of our new classes. Go ahead and

run your application and try out the widgets. Try some

different valid and invalid dates in the DateEntry , and see

how the ValidatedCombobox  widget works ( RequiredEntry  won't

do much at this point since the only visible indication is red

text, and there's no text to mark red if it's empty; we'll

address that in the next section).

Now let's work on line 2, which includes the Lab, Plot, and

Seed Sample inputs:

LabelInput( r_info, "Lab", input_class=ValidatedRadioGroup,

var=self._vars['Lab'], input_args={"values": ["A", "B", "C"]}

).grid(row=1, column=0) LabelInput( r_info, "Plot",

input_class=ValidatedCombobox, var=self._vars['Plot'],

input_args={"values": list(range(1, 21))} ).grid(row=1, column=1)

LabelInput( r_info, "Seed Sample", var=self._vars['Seed Sample'],

input_class=RequiredEntry ).grid(row=1, column=2)

An astute reader might note that this shouldn't work, since

our list of values contains integers, and the



ValidatedCombobox  widget's validation callback assumes

the values are strings (for example, we run lower()  on

each item in the list, and compare the item to the proposed

string). It turns out that Tkinter converts the items in the

value list to strings implicitly as it converts the call to

Tcl/Tk. This is good to be aware of as you're writing

validation methods on fields containing numbers.

Great! Let's move on now to the Environmental Data. We

only need to update the number entries to ValidatedSpinbox

widgets here:

LabelInput( e_info, "Humidity (g/m³)",

input_class=ValidatedSpinbox, var=self._vars['Humidity'],

input_args={"from_": 0.5, "to": 52.0, "increment": .01}

).grid(row=0, column=0) LabelInput( e_info, "Light (klx)",

input_class=ValidatedSpinbox, var=self._vars['Light'],

input_args={"from_": 0, "to": 100, "increment": .01}

).grid(row=0, column=1) LabelInput( e_info, "Temperature (°C)",

input_class=ValidatedSpinbox, var=self._vars['Temperature'],

input_args={"from_": 4, "to": 40, "increment": .01} ).grid(row=0,

column=2)

Save and execute the script at this point and give the

ValidatedSpinbox  widget a try. You should find it impossible to

enter values greater than the maximum or with more than

two decimal places, and should also find the text turns red

if you leave it less than the minimum.

Next, we'll update the first row of Plant Data with more

ValidatedSpinbox  widgets:

LabelInput( p_info, "Plants", input_class=ValidatedSpinbox,

var=self._vars['Plants'], input_args={"from_": 0, "to": 20}

).grid(row=0, column=0) LabelInput( p_info, "Blossoms",

input_class=ValidatedSpinbox, var=self._vars['Blossoms'],

input_args={"from_": 0, "to": 1000} ).grid(row=0, column=1)

LabelInput( p_info, "Fruit", input_class=ValidatedSpinbox,

var=self._vars['Fruit'], input_args={"from_": 0, "to": 1000}

).grid(row=0, column=2)



Save and run the form again; you should find that these

widgets will not allow you to type a decimal place, since the

increment is at the default ( 1.0 ).

All that remains is our last row of number inputs. Before we

do those, however, let's address some issues of form widget

interaction.

Implementing validation interaction

between form widgets

So far, we've used validation to create widgets that can

validate based on the user's input to that widget. However,

sometimes widgets might need to validate based on the

state of another widget on the form. We have two such

examples on our form:

Our Height fields (Min Height, Med Height, and Max

Height) should not allow a user to enter a Min Height

that is greater than the other two fields, a Max Height

that is less than the other two fields, nor a Med Height

that is not between the other fields.

Our Equipment Fault checkbox should disable entry of

Environmental Data, since we do not want to record

data suspected of being faulty.

Dynamically updating the Spinbox range

To solve the problem with our Height fields, we're going to

update our ValidatedSpinbox  widget so that its ranges can be

dynamically updated. To do this, we can use the variable

tracing feature we learned about in Chapter 4, Organizing

Our Code with Classes.



Our strategy will be to allow optional min_var  and max_var

arguments to be passed into the ValidatedSpinbox  class, and

then set a trace on these variables to update the

ValidatedSpinbox  object's minimum or maximum values

whenever the corresponding variable is changed. We'll also

have a focus_update_var  variable that will be updated with

the Spinbox  widget's value at focus-out time. This variable

can then be passed in as the min_var  or max_var  variable to a

second ValidatedSpinbox  so that the first widget's value can

alter the second's valid range.

Let's make these changes to our ValidatedSpinbox . To start,

update the ValidatedSpinbox.__init__()  method with our new

keyword arguments as follows:

def __init__(self, *args, min_var=None, max_var=None,

focus_update_var=None, from_='-Infinity', to='Infinity', **kwargs

):

Some of our code for this feature is going to require that

the Spinbox  has a variable bound to it, so the next thing

we're going to do is make sure that happens; put this code

at the end of __init__() :

self.variable = kwargs.get('textvariable') if not self.variable:

self.variable = tk.DoubleVar()

self.configure(textvariable=self.variable)

We start by retrieving the textvariable  from the keyword

arguments; if it's not set to anything, we'll just create a

DoubleVar  and make it our variable. We're storing a

reference to the variable so we can use it easily in our

instance methods.

Note that this arrangement could cause problems if a

variable is assigned later using configure() . This won't

be a problem in our code, but if you're using this class in

your own Tkinter programs, you may want to override



configure()  to make sure the variable reference is kept

in sync.

Next, still in __init__() , let's set up our minimum and

maximum variables:

if min_var: self.min_var = min_var

self.min_var.trace_add('write', self._set_minimum) if max_var:

self.max_var = max_var self.max_var.trace_add('write',

self._set_maximum)

If we pass in either a min_var  or max_var  argument, the

value is stored and a trace is configured. The callback for

the trace points to an appropriately named private method.

We'll also need to store a reference to the focus_update_var

argument and bind focus-out events to a method that will

be used to update it. To do that, add the following code to

__init__() :

self.focus_update_var = focus_update_var self.bind('<FocusOut>',

self._set_focus_update_var)

The bind()  method can be called on any Tkinter widget,

and it's used to connect widget events to a Python callable.

Events can be keystrokes, mouse movements or clicks,

focus events, window management events, and more.

Now, we need to add the callback methods for our trace()

and bind()  commands. We'll start with the one that updates

the focus_update_var , which we'll call _set_focus_update_var() .

Add it as follows:

def _set_focus_update_var(self, event): value = self.get() if

self.focus_update_var and not self.error.get():

self.focus_update_var.set(value)

This method simply gets the widget's current value and, if

there is a focus_update_var  argument present in the instance,



sets it to the same value. Note that we don't set the value if

there's an error currently present on the widget, since it

wouldn't make sense to update the value to something

invalid.

Also notice that the method takes an event  argument. We

don't use this argument, but it is necessary since this is a

callback for a bind. When Tkinter calls a bind callback, it

passes in an event object that contains information about

the event that triggered the callback. Even if you aren't

going to use this information, your function or method

needs to be able to take this argument.

Now, let's create the callback for setting the minimum,

starting with this:

def _set_minimum(self, *_): current = self.get()

The first thing this method does is retrieve the current

value of the widget using self.get() . The reason we're

doing this is because the Spinbox  widget has the slightly

annoying default behavior of correcting its value when the

to  or from_  values are changed, moving too-low values to

the from_  value and too-high values to the to  value. This

kind of silent auto-correction might slip past the attention

of our user and cause bad data to be saved.

What we would prefer is to leave the out-of-range value as-

is and mark it as an error; so to work around the Spinbox

widget, we're going to save the current value, change the

configuration, and then put the original value back in the

field.

After storing the current value in current , we attempt to get

the value of the min_var  and set our widget's from_  value

from it, like so:



try: new_min = self.min_var.get() self.config(from_=new_min)

except (tk.TclError, ValueError): pass

There are several things that could go wrong here, such as

a blank or invalid value in min_var , all of which should raise

either a tk.TclError  or a ValueError . In any case, we'll just do

nothing, leaving the current minimum in place.

It's generally a bad idea to just silence exceptions; however,

in this case, there's nothing we can reasonably do if the

variable is bad except ignore it.

Now, we just need to write the current  value that we saved

back into the field, like so:

if not current: self.delete(0, tk.END) else:

self.variable.set(current)

If current  is empty, we just delete the contents of the field;

otherwise, we set the input's variable to current .

Finally, we'll want to trigger the widget's focus-out

validation to see if the current value is acceptable in the

new range; we can do that by calling our

trigger_focusout_validation()  method, like this:

self.trigger_focusout_validation()

The _set_maximum()  method will be identical to this method,

except that it will update the to  value using max_var

instead. It is shown here:

def _set_maximum(self, *_): current = self.get() try: new_max =

self.max_var.get() self.config(to=new_max) except (tk.TclError,

ValueError): pass if not current: self.delete(0, tk.END) else:

self.variable.set(current) self.trigger_focusout_validation()



That finishes our ValidatedSpinbox  changes. Now we can

implement the last line of our Plant Data with this new

capability.

First, we'll need to set up variables to store the minimum

and maximum height, as follows:

min_height_var = tk.DoubleVar(value='-infinity') max_height_var =

tk.DoubleVar(value='infinity')

Each variable is a DoubleVar , set to -infinity  or infinity ,

effectively defaulting to no minimum or maximum. Our

widgets won't be affected by the values of these variables

until they're actually changed (triggering the trace

callback), so they won't initially override the to  or from_

values entered into the widgets.

Note that these need not be instance variables, as our

widgets will store references to them.

Now, we'll create the Min Height widget, as follows:

LabelInput( p_info, "Min Height (cm)",

input_class=ValidatedSpinbox, var=self._vars['Min Height'],

input_args={ "from_": 0, "to": 1000, "increment": .01, "max_var":

max_height_var, "focus_update_var": min_height_var }

).grid(row=1, column=0)

We'll use max_height_var  to update the maximum here, and

set the focus_update_var  to min_height_var  so that entry into

the Min Height widget will update the minimum height

variable. We do not want to set a min_var  on this field

because its value represents the minimum for other fields.

Next, let's update the Max Height widget:

LabelInput( p_info, "Max Height (cm)",

input_class=ValidatedSpinbox, var=self._vars['Max Height'],

input_args={ "from_": 0, "to": 1000, "increment": .01, "min_var":

min_height_var, "focus_update_var": max_height_var }

).grid(row=1, column=1)



This time, we use our min_height_var  variable to set the

widget's minimum value and set the max_height_var  to be

updated with the widget's current value on focus-out. We

do not set a max_var  on this field since its value will

represent the maximum and shouldn't be constrained

beyond its initial limits.

Finally, the Median Height field should be updated like so:

LabelInput( p_info, "Median Height (cm)",

input_class=ValidatedSpinbox, var=self._vars['Med Height'],

input_args={ "from_": 0, "to": 1000, "increment": .01, "min_var":

min_height_var, "max_var": max_height_var } ).grid(row=1,

column=2)

Here, we're setting the minimum and maximum values for

the field from the min_height_var  and max_height_var

variables, respectively. We're not updating any variables

from the Median Height field, although we could add

additional variables and code here to make sure that Min

Height couldn't go above it or Max Height below it. In most

cases, it won't matter as long as the user is entering data in

order since Median Height is last.

You might wonder why we don't just use the bound

variables from Min Height and Max Height to hold these

values instead. If you try this, you'll discover the reason:

the bound variable updates as you type, which means your

partial value instantly becomes the new maximum or

minimum value. We'd rather wait until the user has

committed to the value to update the ranges, and thus we

created a separate variable that is only updated on focus-

out.

Dynamic disabling of fields



To implement the disabling of our Environment Data fields

when the Equipment  Fault checkbox is activated, we'll

once again use control variable tracing. This time, however,

instead of implementing it at the widget class level, we'll

implement it in our compound widget, the LabelInput .

Locate the LabelInput  class in your code, and let's add a

new keyword argument to its __init__()  method:

class LabelInput(tk.Frame): """A widget containing a label and

input together.""" def __init__( self, parent, label, var,

input_class=ttk.Entry, input_args=None, label_args=None,

disable_var=None, **kwargs ):

The disable_var  argument will allow us to pass in a Boolean

control variable that will be monitored to determine if our

field should be disabled. To make use of it, we'll need to

store it in the LabelInput  instance and configure a trace.

Add this code to the end of LabelInput.__init__() :

if disable_var: self.disable_var = disable_var

self.disable_var.trace_add('write', self._check_disable)

The trace is linked to an instance method called

_check_disable() . This method will need to check the value of

disable_var  and take appropriate action with the LabelInput

widget's input.

Let's implement the method in our LabelInput  class like this:

def _check_disable(self, *_): if not hasattr(self,

'disable_var'): return if self.disable_var.get():

self.input.configure(state=tk.DISABLED) self.variable.set('')

else: self.input.configure(state=tk.NORMAL)

First, our method uses hasattr  to see if this LabelInput  even

has a disable_var . In theory, the method shouldn't even get

called if it doesn't, since there would be no trace, but just

to be sure, we'll check and simply return if the instance

variable doesn't exist.



If we have a disable_var , we'll check its value to see if it's

True . If it is, we disable the input widget. To disable an

input widget, we need to configure its state  property. The

state  property determines the current disposition of the

widget. In this case, we want to disable it, so we can set

state  to the tk.DISABLED  constant. That will have the effect

of "graying out" our field and making it read-only. We also

want to clear out any information in the disabled fields, to

make sure the user understands no data will be recorded

for these fields. So, we'll set the variable to an empty

string.

If the disable_var  is false, we need to re-enable the widget.

To do that, we can just set its state to tk.NORMAL .

The state  property will be covered in more detail in

Chapter 9, Improving the Look with Styles and Themes.

With that method written, we just need to update our

Environmental Data fields with a disable_var  variable. Scroll

back to your DataRecordForm.__init__()  method and find where

we've created those fields. We'll update them like so:

LabelInput( e_info, "Humidity (g/m³)",

input_class=ValidatedSpinbox, var=self._vars['Humidity'],

input_args={"from_": 0.5, "to": 52.0, "increment": .01},

disable_var=self._vars['Equipment Fault'] ).grid(row=0, column=0)

LabelInput( e_info, "Light (klx)", input_class=ValidatedSpinbox,

var=self._vars['Light'], input_args={"from_": 0, "to": 100,

"increment": .01}, disable_var=self._vars['Equipment Fault']

).grid(row=0, column=1) LabelInput( e_info, "Temperature (°C)",

input_class=ValidatedSpinbox, var=self._vars['Temperature'],

input_args={"from_": 4, "to": 40, "increment": .01},

disable_var=self._vars['Equipment Fault'] ).grid(row=0, column=2)

In each case, we've added the disable_var  argument and set

it to self._vars['Equipment Fault'] . If you run the script now,

you should find that checking the Equipment Fault box



disables and clears these three fields, and unchecking it re-

enables them.

Our form is now much better at enforcing correct data and

catching potential errors during data entry, but it's not

quite user-friendly yet. Let's see what can be done about

that in the next section.

Displaying errors

If you run the application, you may notice that while fields

with the focus-out errors turn red, we don't get to see the

actual error. This is a bit of a problem for user-friendliness,

so let's see if we can fix it. Our plan will be to update the

LabelInput  compound widget with another Label  that can

display an error string in the event of an error.

To implement this, first locate your LabelInput  class. Add

this code to the end of the __init__()  method:

self.error = getattr(self.input, 'error', tk.StringVar())

ttk.Label(self, textvariable=self.error, **label_args).grid(

row=2, column=0, sticky=(tk.W + tk.E) )

Here, we check to see if our input has an error variable,

and if not, we create one. Our validated widgets should

already have such a variable, but unvalidated widgets such

as the BoundText  widget used for the Notes  field do not, so

we need this check to make sure.

Next, we're creating and placing a Label  widget and

binding the error variable to its textvariable  argument. This

will update the Label  contents with whatever our widget's

error  variable contains as it is updated by the validation

logic.



Save the application, run it, and try entering some bad data

in the fields (for example, a low value in one of the Spinbox

widgets). You should see an error pop up under the field

when you focus the next field. Success!

There is one small issue to fix, though. If you happen to be

focused on an Environment Data field like Humidity when

you click the Equipment Fault checkbox, an error will be

left under the field. The reason is that clicking the

checkbox causes the field to lose focus, triggering its

validation. Meanwhile, the _check_disable()  method sets its

value to an invalid blank string, which the validation logic

rejects.

The solution is for us to clear the error string when we

disable the field. In the LabelInput._check_disable()  method,

update the code like so:

if self.disable_var.get():

self.input.configure(state=tk.DISABLED) self.variable.set('')

self.error.set('')

Run the application again and you should see the errors

disappear when the checkbox is checked.

Preventing form submission on error

The final step in preventing errors from getting into our

CSV file is to stop the application from saving the record if

the form has known errors.

Record saving happens in our Application  object, so we

need a way for that object to determine the error state of

the form before it saves the data. That means our

DataRecordForm  will need a public method. We'll call that

method get_errors() .



At the end of the DataRecordForm  class, add the following

method:

def get_errors(self): """Get a list of field errors in the

form""" errors = {} for key, var in self._vars.items(): inp =

var.label_widget.input error = var.label_widget.error if

hasattr(inp, 'trigger_focusout_validation'):

inp.trigger_focusout_validation() if error.get(): errors[key] =

error.get() return errors

We begin by defining an empty dict  object to store the

errors. We'll store our errors in the dictionary as field:

error_string  so that the calling code can be specific about

the fields that have errors.

Recall that our LabelInput  class attaches a reference to

itself to the control variable passed into its __init__()

method. We can use this reference now as we loop through

our dictionary of variables. For each variable, we've done

the following:

We retrieve its input widget and the associated error

variable from the LabelWidget  reference

If the input defines a trigger_focusout_validation()

method, we call it, just to be sure that its value has

been validated

If the value is invalid, that should populate the error

variable; so, if error  is not empty, we add it to the

errors  dictionary

After we've gone through all the fields, we can return

the errors  dictionary

Now that we have a way to retrieve the form's errors, we

need to utilize it in the Application  class's on_save()  method.

Locate that method, and then add the following code to the

beginning of the method:



errors = self.recordform.get_errors() if errors: self.status.set(

"Cannot save, error in fields: {}" .format(',

'.join(errors.keys())) ) return

Recall that our Application  object stores a reference to the

form in self.recordform . We can now retrieve its dictionary

of errors by calling its get_errors()  method. If the dictionary

is not empty, we'll construct an error string by joining all its

keys (that is, the field names) and appending them to an

error message. This is then passed to the status  control

variable, causing it to be displayed in the status bar.

Finally, we return from the method so that the remaining

logic in on_save()  is not executed.

Start the application and try it out by trying to save a blank

form. You should get error messages in all fields and a

message at the bottom telling you which fields have errors,

as shown here:



Figure 5.3: The application with all errors showing

Automating input

Preventing users from entering bad data is one way to

improve the quality of their output; another approach is to

automate the entry of data wherever the values are

predictable. Using our understanding of how the forms are

likely to be filled out, we can insert values that are very

likely to be correct for certain fields.



Remember from Chapter 2, Designing GUI Applications,

that the forms are nearly always recorded the same day

that they're filled out, starting with Plot 1 and going to Plot

20 in order for each paper form.

Also remember that the Date, Time, Lab, and Technician

values remain the same for each form that is filled in. That

gives us the possibility of implementing some helpful

automation, specifically:

The current date can automatically be inserted in the

Date field

If the previous Plot was not the last plot in the lab, we

can increment its value and leave the Time, Technician,

and Lab values the same

Let's see how we can implement these changes for the

users.

Date automation

Inserting the current date is an easy place to start. The

place to do this is in the DataRecordForm.reset()  method,

which is called when the form is initialized and every time a

record is saved to set up the form for a new record.

Update that method as follows:

def reset(self): """Resets the form entries""" for var in

self._vars.values(): if isinstance(var, tk.BooleanVar):

var.set(False) else: var.set('') current_date =

datetime.today().strftime('%Y-%m-%d')

self._vars['Date'].set(current_date)

self._vars['Time'].label_widget.input.focus()

After clearing the values of all the variables, we're going to

get the current date in ISO format using



datetime.today().strftime() , just as we do for the datestamp

in Application.on_save() . Once we have that value, it's simply

a matter of setting the Date  variable to it.

As a final touch, we should update the focus of the form to

the next input that needs entry, in this case, the Time field.

Otherwise, the user would have to manually tab through

the Date field, which is already filled in. To do this, we have

accessed the input widget associated with the Time  variable

by way of its label_widget  member and called the widget's

focus()  method. This method gives the widget keyboard

focus.

Automating Plot, Lab, Time, and

Technician

Handling Plot, Lab, Time, and Technician is a bit more

complex. Our strategy will go something like this:

Before clearing the data, store the Plot, Lab, Time, and

Technician values.

Clear all the values.

If the stored Plot value is less than the last value (20),

we'll put the Lab, Time, and Technician values back in

the fields. We'll also increment the Plot value.

If the stored Plot value is the last value (or no value),

leave those fields blank.

Let's begin to add this logic to the reset()  method, as

follows:

def reset(self): """Resets the form entries""" lab =

self._vars['Lab'].get() time = self._vars['Time'].get()

technician = self._vars['Technician'].get() try: plot =

self._vars['Plot'].get() except tk.TclError: plot = ''



plot_values = (

self._vars['Plot'].label_widget.input.cget('values') )

Before anything else in reset() , we're going to get the

values of the affected fields and save them. Note that we

have put plot  in a try/except  block. In the event that the

Plot input is blank, it will throw a TclError , since a blank

string is an invalid integer string. In that case, we'll assign

the plot to be a blank string and carry on.

We're also retrieving the list of possible plot values by

accessing the Plot widget by way of the Plot variable's

label_widget  member. Since we know there are 20 plots in

each lab, we could just hardcode a list of 1 to 20 here, but

that kind of hardcoding of information is bad form; if plots

are added or eliminated from the lab, we would have to

scour our code for the number 20 to fix all the places where

we'd made this assumption. It's far better to query the

widget itself to find out its possible values.

Next, at the end of this method (after clearing the fields

and setting the date), let's add this code to update the

fields:

if plot not in ('', 0, plot_values[-1]):

self._vars['Lab'].set(lab) self._vars['Time'].set(time)

self._vars['Technician'].set(technician) next_plot_index =

plot_values.index(str(plot)) + 1

self._vars['Plot'].set(plot_values[next_plot_index])

self._vars['Seed Sample'].label_widget.input.focus()

This code checks to see if the plot value is a blank string,

0 , or the last value in the list of plot values. If it's not, we

start populating the automated fields. First Lab, Time, and

Technician are populated with our stored values. Then we

need to increment the Plot value.



Plot should be an integer at this point, but because of

Tkinter's habit of implicitly casting things to string, it's

better to work with it as though it were not. So, instead of

merely incrementing the value of Plot, we're instead going

to retrieve its index from plot_values  and increment that

instead. Then we can set the value of the Plot variable to

the incremented index.

As a final touch, we will set the focus of the form to the

Seed Sample input, just as we did previously with the Time

input.

Our validation and automation code is complete, and the

form is now ready for a trial run with our users. It's

definitely an improvement over the CSV entry at this point

and will help data entry to make quick work of those forms.

Great work!

Summary

The application has really come a long way. In this chapter,

we learned about Tkinter validation, created a validation

mixin class, and used it to create validated versions of the

Entry , Combobox , and Spinbox  widgets. We also learned how

to validate widgets like Radiobutton , which don't support the

built-in validation framework. We validated different kinds

of data on keystrokes and focus events, and created fields

that dynamically change state or update their constraints

based on the values of related fields. Finally, we automated

input on several fields to reduce the amount of manual data

entry required by the user.

In the next chapter, we're going to prepare our code base

for expansion by learning how to organize a large



application for easier maintenance. More specifically, we'll

learn about the MVC pattern and how to structure our code

in multiple files for simpler maintenance. We'll also learn

about version control software and how it can help us keep

track of changes.



6

Planning for the Expansion of Our Application

The application is a real hit! After some initial testing and

orientation, the data entry staff have been utilizing your

new form for a few weeks now. The reduction in errors and

data entry time is dramatic, and there's a lot of excited talk

about what other problems this program might solve. With

even the director joining in on the brainstorming, you have

a strong suspicion that you'll be asked to add some new

features soon.

There's a problem, though: the application is already a

script of several hundred lines, and you're worried about its

manageability as it grows. You need to take some time to

organize your code base in preparation for future

expansion.

In this chapter, we'll learn about the following topics:

In Separating concerns, you'll learn about using the

model-view-controller (MVC) pattern.

In Structuring our application directory, you'll learn

how to organize your code into a Python package.

In Splitting our application into multiple files, you'll

reorganize the data entry application into an MVC

Python package.

In Using version control software, you'll discover how

to use the Git version control system to track your

changes.



Separating concerns

Proper architectural design is essential for any project that

needs to scale. Anyone can prop up some studs and build a

garden shed, but a house or skyscraper takes careful

planning and engineering. Software is no different; simple

scripts can get away with shortcuts such as global variables

or manipulating class properties directly, but as the

program grows, our code needs to isolate and encapsulate

different functionalities in a way that limits the amount of

complexity we need to understand at any given moment.

We call this concept separation of concerns, and it's

accomplished through the use of architectural patterns that

describe different application components and how they

interact.

The MVC pattern

Probably the most enduring of these architectural patterns

is the model-view-controller (MVC) pattern, which was

introduced in the 1970s. While this pattern has evolved and

spun off variations over the years, the basic gist remains:

keep the data, the presentation of the data, and the

application logic in separate, independent components.

The roles and relationships of the MVC components are

shown in this diagram:



Figure 6.1: The roles and relationships of Model, View, and Controller Let's

take a deeper look at each of these components and understand them in the

context of our current application.

What is a model?

The model in MVC represents the data. This includes the

storage of the data, but also the various ways data can be

queried or manipulated. Ideally, the model is not concerned

with or affected by how the data will be presented (that is,

what GUI widgets will be used, how the fields will be

ordered, and so on), but rather presents a high-level

interface that only minimally concerns other components

with its inner workings. In theory, if you decided to

completely change the user interface of the program (say,

from a Tkinter application to a web application), the model

should be totally unaffected.

Some examples of functionality or information you find in

the model include:

Preparation and saving of program data to a persistent

medium (data file, database, and so on)



Retrieval of data from a file or database into a format

useful to the program

An authoritative list of the fields in a set of data, along

with their data types and limits

Validation of data against the data types and limits

defined

Calculations on stored data

We don't have a model class in our application currently;

the data layout is defined in the form class, and the

Application.onsave()  method is the only code concerned with

data persistence so far. To implement MVC in our

application, we're going to need to split this logic off into a

separate object that will define the data layout and handle

all the CSV operations.

What is a view?

A view is an interface for presenting data and controls to

the user. Applications may have many views, often on the

same data. Views may or may not have direct access to the

model; if they do, they generally have read-only access,

sending write requests through the controller.

Some examples of code you find in a view include:

GUI layout and widget definitions

Form automations, such as auto-completion of fields,

dynamic toggling of widgets, or display of error dialogs

Formatting of raw data for presentation

Our DataRecordForm  class is an example of a view: it contains

most of the code for our application's user interface. It also

contains the _vars  dictionary, which currently defines the

structure of our data records. This dictionary can stay in



the view, because the view does need a way to store the

data temporarily before handing it off to the model, but

_vars  shouldn't be defining our data record from here on

out — that's the model's job. To implement MVC, we'll need

to make the view's concept of the data dependent on the

model, not on its own definitions.

What is a controller?

The controller is the "Grand Central Station" for the

application. It handles requests from the user and takes

care of routing data between the views and the model.

Most variations of MVC change the role (and sometimes

the name) of the controller, but the important thing is that

it acts as the intermediary between the view and the model.

Our controller object will need to hold references to the

views and models used by our application and be

responsible for managing interactions between them.

Examples of code you find in the controller include:

Startup and shutdown logic for the application

Callbacks for user interface events

Creation of model and view instances

Our Application  object is currently acting as the controller

for our application, though it has some view and model

logic in it as well. Unfortunately, the Tk  object in Tkinter

combines both the central point of control and the root

window, so it's not entirely possible to separate the

controller from the application's main view. Our Application

object will therefore contain a little of both, but in the

interest of implementing a more MVC design, we'll need to

move some of its presentation logic into the views and

some of its data logic into the models. Ideally, though, we



want the Application  object focused mainly on connecting

code between the models and views.

Why complicate our design?

Initially, it may seem like a lot of needless overhead to split

up the application this way. We'll have to shuttle data

around between different objects and ultimately write more

code to do exactly the same thing. Why would we do this?

Put simply, we're doing it to make expansion manageable.

As the application grows, the complexity will also grow.

Isolating our components from one another limits the

amount of complexity that any one component has to

manage; for example, if we wanted to restructure the

layout of the Data Record Form, we should not have to

worry if doing so will change the structure of the data in

the output file.

Those two aspects of the program should be independent of

one another.

It also helps us to be consistent about where we put certain

types of logic. For example, having a discrete model object

helps us to avoid littering our UI code with ad hoc data

queries or file access attempts.

The bottom line is, without some guiding architectural

strategy, our program is in danger of becoming a hopeless

tangle of spaghetti logic. Even without adhering to a strict

definition of MVC design, consistently following even a

loose MVC pattern will save a lot of headaches as the

application becomes more complex.



Structuring our

application directory

Just as logically breaking our program into separate

concerns helps us manage the logical complexity of each

component, physically breaking the code into multiple files

helps us keep the complexity of each file manageable. It

also reinforces more isolation between components; for

example, you can't share global variables between files,

and you know that if your models.py  file imports tkinter ,

you're doing something wrong.

Basic directory structure

There is no official standard for laying out a Python

application directory, but there are some common

conventions that will help us keep things tidy and make it

easier to package our software later on. Let's set up our

directory structure.

To begin, create a directory called ABQ_Data_Entry . This is the

root directory of our application, so whenever we refer to

the application root, this is it.

Under the application root, create another directory called

abq_data_entry . Notice it's in lowercase. This is going to be a

Python package that will contain all the code for the

application; it should always be given a fairly unique and

descriptive name so that it won't be confused with existing

Python packages. Normally, you wouldn't have a different

casing between the application root and this main module,

but it doesn't hurt anything either; we're doing it here to

avoid confusion.



Python packages and modules should always be named

using all lowercase letters and underscores to separate

words. This convention is spelled out in PEP 8, Python's

official style guide. See

https://www.python.org/dev/peps/pep-0008 for more

information about PEP 8.

Next, create a docs  folder under the application root. This

folder will be for documentation files about the application.

Finally, create two empty files in the application root:

README.rst  and abq_data_entry.py . Your directory structure

should look as follows:

Figure 6.2: Directory structure of our application root directory Now, let's put

some code in these files.

The abq_data_entry.py file

The abq_data_entry.py  file is going to be the main file that

gets executed to start the program. However, it won't

contain the bulk of our program. In fact, it will contain only

the following code:

https://www.python.org/dev/peps/pep-0008


from abq_data_entry.application import Application app =

Application() app.mainloop()

Add that code to the file and save it. The only purpose of

this file is to import our Application  class, make an instance

of it, and run it. The remainder of the work will happen

inside the abq_data_entry  package. We haven't created that

yet, so this file won't run just yet. Before we do anything

about the application package, let's deal with our

documentation.

The README.rst file

Since as far back as the 1970s, programs have included a

short text file called README , containing a condensed

summary of the program's documentation. For small

programs, it may be the only documentation; for larger

programs, it usually contains essential pre-flight

instructions for users or administrators.

There's no prescribed set of contents for a README  file, but

as a basic guideline, consider the following sections:

Description: A brief description of the program and its

function. We can reuse the description from our

specification, or something like it. This might also

contain a brief list of the main features.

Author information: The names of the authors and

copyright date. This is especially important if you plan

to share your software, but even for something in-

house, it's useful for future maintainers to know who

created the software and when.

Requirements: A list of the software and hardware

requirements for the software, if any.



Installation: Instructions for installing the software,

its prerequisites, dependencies, and basic setup.

Configuration: How to configure the application and

what options are available. This is generally aimed at

the command-line or configuration file options, not

options set interactively in the program.

Usage: A description of how to launch the application,

command-line arguments, and other notes a user would

need to know to use the basic functionality of the

application.

General notes: A catch-all for notes or critical

information users should be aware of.

Bugs: A list of known bugs or limitations in the

application.

Not all of these sections will apply to every program; for

example, ABQ Data Entry doesn't currently have any

configuration options, so there's no reason to have a

configuration section. You might add other sections as well,

depending on the situation; for example, publicly

distributed software may have an FAQ section for common

questions, or open source software might have a

Contributing section with instructions on how to submit

patches.

The README  file is written in plain ASCII or Unicode text,

either free-form or using a markup language. Since we're

doing a Python project, we'll use reStructuredText, the

official markup for Python documentation (which is why our

file uses an rst  file extension).

For more information on reStructuredText, see the

Appendix A, A Quick Primer on reStructuredText.



A sample README.rst  file is included in the example code in

the GitHub repo. Take a moment to look it over; then, we

can move on to the docs  folder.

Populating the docs folder

The docs  folder is where documentation goes. This can be

any kind of documentation: user manuals, program

specifications, API references, diagrams, and so on.

For now, let's just copy in these things:

The program specification we wrote in the previous

chapters

Your interface mockups

A copy of the form used by the technicians

At some point, you might need to write a user manual, but

for now, the program is simple enough not to need it.

Making a Python package

Creating your own Python package is surprisingly easy. A

Python package consists of the following three things:

A directory

A file called __init__.py  in the directory

Optionally, one or more Python files in that directory

Once you've done this, you can import your package in

whole or in part, just like you would import standard

library packages, provided your script is in the same parent

directory as the package directory.



Note that the __init__.py  file in a module is somewhat

analogous to what the initializer method is for a class. Code

inside it will run whenever the package is imported, and

any names created or imported into it are available directly

under the package namespace. The Python community

generally discourages putting too much code in this file,

though; and since no code is actually required, we'll leave

this file empty.

Let's start building our application's package. Create the

following six empty files under abq_data_entry :

__init__.py

widgets.py

views.py

models.py

application.py

constants.py

Each of those Python files is called a module. A module is

nothing more than a Python file inside a package directory.

Your directory structure should now look like this:



Figure 6.3: Updated directory structure, including the package directory At

this point, you have a working package, albeit with no actual code in it. To test

this, open a Terminal or command-line window, change to your

ABQ_Data_Entry  directory, and start a Python shell.

Now, type the following command:

from abq_data_entry import application

This should execute without error. Of course, it doesn't do

anything, but we'll get to that next.

Don't confuse the term package here with the actual

distributable Python packages, such as those you download

using pip . We will learn how to make distributable Python



packages in Chapter 16, Packaging with setuptools and

cxFreeze. In this context, a package is just a collection of

Python modules.

Splitting our application

into multiple files

Now that our directory structure is in order, we need to

start dissecting our application script and splitting it up

into our module files. We'll also need to create our model

class.

Open up your data_entry_app.py  file from Chapter 5,

Reducing User Error with Validation and Automation, and

let's begin!

Creating the models module

When your application is all about data, it's good to begin

with the model. Remember that the job of a model is to

manage the storage, retrieval, and processing of our

application's data, usually with respect to its persistent

storage format (in this case, CSV). To accomplish this, our

model should contain all the knowledge about our data.

Currently, our application has nothing like a model;

knowledge about the application's data is scattered the

form fields, and the Application  object simply takes

whatever data the form contains and stuffs it directly into a

CSV file when a save operation is requested. Since we

aren't yet retrieving or updating information, our



application has no actual knowledge about what's inside

the CSV file.

To move our application to an MVC architecture, we'll need

to create a model class that both manages data storage and

retrieval, and represents the authoritative source of

knowledge about our data. In other words, we have to

encode the knowledge contained in our data dictionary

here in our model. We don't really know what we'll do with

this knowledge yet, but this is where it belongs.

There are a few ways we could store this data, such as

creating a custom field class or a namedtuple  object, but

we'll keep it simple for now and just use a dictionary,

mapping field names to field metadata.

The field metadata will likewise be stored as a dictionary of

attributes about the field, which will include:

The type of data stored in the field

Whether or not the field is required

The list of possible values, if applicable

The minimum, maximum, and increment of values, if

applicable

To store the data type for each field, we're going to define a

set of constants that will let us refer to the different field

types in a consistent and explicit way. We'll place this in the

constants.py  file, so open that file in your editor and add the

following code:

# abq_data_entry/constants.py from enum import Enum, auto class

FieldTypes(Enum): string = auto() string_list = auto()

short_string_list = auto() iso_date_string = auto() long_string =

auto() decimal = auto() integer = auto() boolean = auto()



We've created a class called FieldTypes  that simply stores

some named integer values, which will describe the

different types of data we're going to store. This class is

based on Python's Enum  class, which is a useful class for

defining collections of constants like this. The values of

these variables are not at all important, so long as each one

is unique; in an Enum , we're really just interested in having

a set of variable names that are not equal to one another.

We could set them to strings or sequential integers by

hand, but the enum  module provides the auto()  function,

which gives each constant of the class a unique integer

value automatically. Using this approach better

communicates that the values themselves are not

significant; only the names matter.

Now that we have these constants, let's open models.py  and

begin creating our model class:

# abq_data_entry/models.py, at the top import csv from pathlib

import Path from datetime import datetime import os from

.constants import FieldTypes as FT class CSVModel: """CSV file

storage"""

We begin by importing the libraries we will need for our

model: csv , pathlib , datetime , os , and our new FieldTypes

constants. The first three were the libraries we needed for

our on_save()  method in Application . Now, the model class

will be handling most of this functionality. The os  module

will be used to check file permissions, and the FieldTypes

constants will be used to define our model's data dictionary.

Notice the way we import FieldTypes : from .constants import

FieldTypes . The dot in front of constants  makes this a

relative import. Relative imports can be used inside a

Python package to locate other modules in the same

package. In this case, we're in the models  module, and we

need to access the constants  module inside the



abq_data_entry  package. The single dot represents our

current parent module ( abq_data_entry ), and thus .constants

within this file means the constants  module of the

abq_data_entry  package.

Relative imports distinguish our custom modules from

modules in PYTHONPATH . By using them, we don't have to

worry about any third-party or standard library packages

conflicting with our module names.

Next, we're going to need to create a class member

variable that contains a dictionary of all the fields in our

model. Each item in the dictionary will contain details

about the field: its data type, if it's required, and valid

values, ranges, and increments.

In addition to field attributes, we're also documenting the

order of fields for the CSV here. In Python 3.6 and later,

dictionaries retain the order they were defined by; if you're

using an older version of Python 3, you need to use the

OrderedDict  class from the collections  standard

library module to preserve the field order.

Add this dictionary like this:

fields = { "Date": {'req': True, 'type': FT.iso_date_string},

"Time": {'req': True, 'type': FT.string_list, 'values': ['8:00',

'12:00', '16:00', '20:00']}, "Technician": {'req': True, 'type':

FT.string}, "Lab": {'req': True, 'type': FT.short_string_list,

'values': ['A', 'B', 'C']}, "Plot": {'req': True, 'type':

FT.string_list, 'values': [str(x) for x in range(1, 21)]}, "Seed

Sample": {'req': True, 'type': FT.string}, "Humidity": {'req':

True, 'type': FT.decimal, 'min': 0.5, 'max': 52.0, 'inc': .01},

"Light": {'req': True, 'type': FT.decimal, 'min': 0, 'max':

100.0, 'inc': .01}, "Temperature": {'req': True, 'type':

FT.decimal, 'min': 4, 'max': 40, 'inc': .01}, "Equipment Fault":

{'req': False, 'type': FT.boolean}, "Plants": {'req': True,

'type': FT.integer, 'min': 0, 'max': 20}, "Blossoms": { 'req':

True, 'type': FT.integer, 'min': 0, 'max': 1000}, "Fruit":

{'req': True, 'type': FT.integer, 'min': 0, 'max': 1000}, "Min



Height": {'req': True, 'type': FT.decimal, 'min': 0, 'max': 1000,

'inc': .01}, "Max Height": {'req': True, 'type': FT.decimal,

'min': 0, 'max': 1000, 'inc': .01}, "Med Height": {'req': True,

'type': FT.decimal, 'min': 0, 'max': 1000, 'inc': .01}, "Notes":

{'req': False, 'type': FT.long_string} }

This list is straight from our data dictionary, and we've seen

these same values already in our DataRecordForm  class; but

from now on, this dictionary is going to be the authoritative

source of this information. Any other class that needs

information about a model field will have to retrieve it from

this dictionary.

Before we start designing our model class's methods, let's

take a moment to look at the existing file-save logic in our

application and consider which parts belong to the model.

The code in our current script looks like this:

def _on_save(self): errors = self.recordform.get_errors() if

errors: self.status.set( "Cannot save, error in fields: {}"

.format(', '.join(errors.keys())) ) return datestring =

datetime.today().strftime("%Y-%m-%d") filename =

f"abq_data_record_{datestring}.csv" newfile = not

Path(filename).exists() data = self.recordform.get() with

open(filename, 'a') as fh: csvwriter = csv.DictWriter(fh,

fieldnames=data.keys()) if newfile: csvwriter.writeheader()

csvwriter.writerow(data) self._records_saved += 1

self.status.set( f"{self._records_saved} records saved this

session" ) self.recordform.reset()

Let's go through this code and determine what goes into

the model and what stays in the Application  class:

The first block pulls errors from the DataRecordForm  class.

Since the model will have no knowledge of the form,

this should stay in Application . In fact, the model

doesn't even need to know about form errors, since the

only action taken is UI-related (that is, displaying the

errors).



The next set of lines define the filename we're going to

use. Since this is a detail of the file storage, it is clearly

the model's concern.

The newfile  assignment line determines whether the

file exists or not. As an implementation detail of the

data storage medium, this is clearly the model's

problem, not the application's.

The line data = self.recordform.get()  pulls data from the

form. Since our model has no knowledge of the form's

existence, this needs to stay in Application .

The next block opens the file, creates a csv.DictWriter

object, and appends the data. This is definitely the

model's concern.

The final block communicates the results of the file-

save operation to the user and resets the form. This is

all user interface-related, so it does not belong in the

model.

So, our model will need to determine the filename and take

care of writing the data received from the Application

object to it, while the application will be responsible for

checking the form for errors, retrieving the data from the

form, and communicating the results of the save operation

to the user.

Let's create the initializer method for our model class.

Because the CSVModel  represents an interface to a specific

CSV file, we're going to determine the filename in

__init__()  and keep it for the lifespan of the model object.

The method begins like this:

# models.py, in the CSVModel class def __init__(self): datestring

= datetime.today().strftime("%Y-%m-%d") filename =

"abq_data_record_{}.csv".format(datestring) self.file =

Path(filename)



The __init__()  method begins by determining the filename

from the current date and converting it into a Path  object,

which it stores as an instance variable.

Since the instance of the model is tied to the filename and

represents our access to that file, it would be a relatively

useless model if we did not have permission to append data

to the file. Therefore, we will want the initializer to check

access to the file and alert us if there is any problem with it

before we start entering data into our form.

To do that, we need to use the os.access()  function, like so:

# models.py, in CSVModel.__init__() file_exists =

os.access(self.file, os.F_OK) parent_writeable =

os.access(self.file.parent, os.W_OK) file_writeable =

os.access(self.file, os.W_OK) if ( (not file_exists and not

parent_writeable) or (file_exists and not file_writeable) ): msg

= f'Permission denied accessing file: {filename}' raise

PermissionError(msg)

The os.access()  function takes two arguments: a file path

string or Path  object, and a constant indicating the mode

we want to check. The two constants we'll be using are

os.F_OK , which checks if the file exists, and os.W_OK , which

checks that we have write permission to it. Note that

checking for W_OK  will return False  if the file doesn't exist

(which is a distinct possibility if no data has been saved

yet), so we need to check for two possible scenarios:

The file exists, but we cannot write to it

The file does not exist, and we cannot write to its

parent directory

In either of these cases, we won't be able to write to the file

and should raise an exception. You might wonder why we're

raising an exception and not displaying some kind of error

(such as in the status bar or by printing to the console).



Remember that the model class should not assume

anything about the UI or contain any UI code. The

appropriate way to handle an error situation in a model is

to pass a message back to the controller using an

exception, so that the controller can take actions

appropriate to our user interface.

The idea of raising an exception on purpose often seems

strange to beginners; after all, exceptions are something

we're trying to avoid, right? This is true in the case of small

scripts where we are essentially consumers of existing

modules; when writing your own module, however,

exceptions are the correct way for your module to

communicate problems to the code using its classes and

functions. Trying to handle – or worse, silence – bad

behavior on the part of external code will, at best, break the

modularization of our code; at worst, it will create subtle

bugs that are difficult to track down.

Now that we have our model initialized with a writable

filename, we need to create a method to save the data. In

the CSVModel  class, let's create a public method to store

data. Add the following code for the save_record()  method:

# models.py, in the CSVModel class def save_record(self, data):

"""Save a dict of data to the CSV file""" newfile = not

self.file.exists() with open(self.file, 'a', newline='') as fh:

csvwriter = csv.DictWriter(fh, fieldnames=self.fields.keys()) if

newfile: csvwriter.writeheader() csvwriter.writerow(data)

Since the model does not need to know about form errors

and already has a filename established in its initializer, the

only argument this method requires is a dictionary of the

form data. What remains is to determine if we are dealing

with a new file and to write the data to the CSV.

Note that, when writing the field names to a new CSV file,

we use the keys of our fields  dictionary, rather than

relying on the keys in the incoming data. Remember that



CSVModel.fields  is now the authoritative source of

information about application data, so it should determine

the headers that are used.

Our model class is now complete. Let's get to work on the

user interface!

Moving the widgets

While we could put all of our UI-related code in one views

module, we have a lot of custom widget classes. It would

make sense to put them in their own separate module to

limit the complexity of the views  module. So, instead, we're

going to move all of the code for our widget classes into a

widgets.py  file. The widget classes we'll move include all the

classes that implement reusable GUI components,

including compound widgets like LabelInput . If we develop

more custom widgets, we'll add them to this file as well.

Open widgets.py  and copy in all of the code for

ValidatedMixin , DateEntry , RequiredEntry , ValidatedCombobox ,

ValidatedSpinbox , ValidatedRadioGroup , BoundText , and

LabelInput . These are all the widget classes we've created

so far.

The widgets.py  file will, of course, need to import any

module dependencies used by the code being copied in.

We'll need to look through our code and find what libraries

we use and import them. Add the following to the top of the

file:

# top of widgets.py import tkinter as tk from tkinter import ttk

from datetime import datetime from decimal import Decimal,

InvalidOperation



Obviously, we need tkinter  and ttk ; our DateEntry  class

uses the datetime  class from the datetime  library, and our

ValidatedSpinbox  class makes use of the Decimal  class and

InvalidOperation  exception from the decimal  library. This is

all we need in widgets.py .

Moving the views

Next, we'll work on the views.py  file. Recall that views are

larger GUI components, like our DataRecordForm  class.

Currently, in fact, it is our only view, but as we create more

large GUI components, they will be added here.

Open the views.py  file and copy in the DataRecordForm  class;

then, go back to the top to deal with the module imports.

Again, we'll need tkinter  and ttk , as well as datetime , since

our auto-fill logic requires it.

Add them to the top of the file, as follows:

# abq_data_entry/views.py, at the top import tkinter as tk from

tkinter import ttk from datetime import datetime

We aren't done, though; our actual widgets aren't here

anymore, so we'll need to import them, like so:

from . import widgets as w

Just as we did with the FieldTypes  in our models.py  file, we've

imported our widgets  module using a relative import. We've

kept the widgets in their own namespace to keep our global

namespace clean, but given it a short alias, w , so that our

code won't get overly cluttered.

This means, though, that we'll need to go through the code

and prepend w.  to all instances of LabelInput , RequiredEntry ,

DateEntry , ValidatedCombobox , ValidatedRadioGroup , BoundText ,



and ValidatedSpinbox . This should be easy enough to do in

IDLE or any other text editor using a series of search and

replace actions.

For example, line 1 of the form should be as follows:

w.LabelInput( r_info, "Date", var=self._vars['Date'],

input_class=w.DateEntry ).grid(row=0, column=0) w.LabelInput(

r_info, "Time", input_class=w.ValidatedCombobox,

var=self._vars['Time'], input_args={"values": ["8:00", "12:00",

"16:00", "20:00"]} ).grid(row=0, column=1) w.LabelInput( r_info,

"Technician", var=self._vars['Technician'],

input_class=w.RequiredEntry ).grid(row=0, column=2)

Before you go through and change that everywhere,

though, let's stop and take a moment to refactor some of

the redundancy out of this code.

Removing redundancy in our view logic

Consider the arguments we're passing into the LabelInput

widgets: they contain a lot of information that is also in our

model. Minimums, maximums, increments, and possible

values are defined both here and in our model code. Even

the type of the input widget we're choosing is related

directly to the type of data being stored: numbers get a

ValidatedSpinbox  widget, dates get a DateEntry  widget, and so

on. Ideally, our source for information about each field

should only be defined in one place, and that place should

be the model. If we need to update the model for some

reason, our form should synchronize with those changes.

Rather than redundantly define these options in the view,

we need to give our view access to the field specifications

from our model so that the widgets' details can be

determined from it. Since our widget instances are being

defined inside the LabelInput  class, we're going to enhance

that class with the ability to automatically work out the



input class and arguments from our model's field

specification format.

To do that, open up the widgets.py  file. We'll begin by

importing the FieldTypes  class, like so:

# at the top of widgets.py from .constants import FieldTypes as

FT

Next, we need to tell the LabelInput  class how to translate a

field type into a widget class. To do that, locate the

LabelInput  class and add the following field_types  class

attribute just above the __init__()  method:

# widgets.py, inside LabelInput field_types = { FT.string:

RequiredEntry, FT.string_list: ValidatedCombobox,

FT.short_string_list: ValidatedRadioGroup, FT.iso_date_string:

DateEntry, FT.long_string: BoundText, FT.decimal:

ValidatedSpinbox, FT.integer: ValidatedSpinbox, FT.boolean:

ttk.Checkbutton }

This dictionary will act as a key to translate our model's

field types into an appropriate widget type.

Note that all of these widgets need to exist before we can

create this dictionary, so be sure to place the LabelInput

class definition at the end of widgets.py , if it's not already

there.

Now, we need to update LabelInput.__init__()  to take a

field_spec  argument and, if given, use it to define the

parameters of the input widget. To begin with, update the

argument list of the initializer as follows:

# widgets.py, inside LabelInput def __init__( self, parent,

label, var, input_class=None, input_args=None, label_args=None,

field_spec=None, disable_var=None, **kwargs ):

Although field_spec  will largely remove the requirement for

the input_class  and input_args  arguments, we're going to



retain them in case we should later need to build a form

that is not tied to a model.

Inside the initializer method, we'll need to read the field

spec and apply the information. Add the following code

after the variable setup and before the label setup:

# widgets.py, inside LabelInput.__init__(): if field_spec:

field_type = field_spec.get('type', FT.string) input_class =

input_class or self.field_types.get(field_type) if 'min' in

field_spec and 'from_' not in input_args: input_args['from_'] =

field_spec.get('min') if 'max' in field_spec and 'to' not in

input_args: input_args['to'] = field_spec.get('max') if 'inc' in

field_spec and 'increment' not in input_args:

input_args['increment'] = field_spec.get('inc') if 'values' in

field_spec and 'values' not in input_args: input_args['values'] =

field_spec.get('values')

The first thing we'll do with the field_spec , if it is supplied,

is retrieve the field type. This will be used to look up an

appropriate widget using the field_types  dictionary. If we

want to override this for a particular LabelInput  instance, an

explicitly passed input_class  argument will override the

lookup value.

Next, we need to set up the field parameters, min , max , inc ,

and values . For each of these, we check if the key exists in

the field specification and make sure the corresponding

from_ , to , increment , or values  argument has not been

passed in explicitly using input_args . If so, we'll set up the

input_args  with the appropriate value. Now that input_class

and input_args  have been determined from the field

specification, the remainder of the initializer method can

continue as previously defined.

With LabelInput  refactored to accept a field_spec  argument,

we can update our view code to take advantage of this new

capability. To do this, our DataRecordForm  class will first need



access to the model  object from which it can obtain the field

specifications for the data model.

Back in the views.py  file, edit the initializer method for

DataRecordForm  so that we can pass in a copy of the model :

# views.py, in DataRecordForm class def __init__(self, parent,

model, *args, **kwargs): super().__init__(parent, *args,

**kwargs) self.model= model fields = self.model.fields

We've stored the model  itself in an instance variable, and

also extracted the fields  dictionary into a local variable to

cut down the code verbosity as we use this dictionary in the

initializer method. Now, we can go through our LabelInput

calls and replace the input_args  and input_class  arguments

with a single field_spec  argument.

With these changes, the first line looks like this:

# views.py, in DataRecordForm.__init__() w.LabelInput( r_info,

"Date", field_spec=fields['Date'], var=self._vars['Date'],

).grid(row=0, column=0) w.LabelInput( r_info, "Time",

field_spec=fields['Time'], var=self._vars['Time'], ).grid(row=0,

column=1) w.LabelInput( r_info, "Technician",

field_spec=fields['Technician'], var=self._vars['Technician']

).grid(row=0, column=2)

Go ahead and update the rest of the widgets in the same

way, replacing input_class  and input_args  with the field_spec

argument. Note that when you get to the height fields,

you'll still need to pass in an input_args  dictionary to define

the min_var , max_var , and focus_update_var  arguments.

For example, the following is the Min Height input

definition:

w.LabelInput( p_info, "Min Height (cm)", field_spec=fields['Min

Height'], var=self._vars['Min Height'], input_args={ "max_var":

max_height_var, "focus_update_var": min_height_var })



That does it. Now, any changes to a given field specification

can be made solely in the model, and the form will simply

do the correct thing.

Using custom events to remove tight coupling

Before we leave the DataRecordForm  class, there is one fix we

should make to improve the separation of concerns in our

application. Currently, the savebutton  widget on our form is

bound to self.master._on_save() , which refers to the

_on_save()  method of the Application  class. However, the

way we have bound this command makes the assumption

that self.master  (that is, the parent widget of the

DataRecordForm ) is Application . What would happen if we

decided to put our DataRecordForm  widget inside a Notebook  or

Frame  widget, rather than directly under the Application

object? In that case, self.master  would change and the code

would break. Since the parent widget is really a layout

concern, we would not expect that a change to it would

impact the save button callback.

A situation like this, where a class depends too much on the

architecture of the application outside the class, is known

as tight coupling, and is something we should work to

avoid in our code. Instead, we want loose coupling in our

code so that changes to one class will not cause unexpected

bugs in another.

There are a few ways we could address this issue. We could

pass a reference to the callback or the Application  class to

the view so that it could more explicitly reference the

method in question. This would work, but it would still be

tighter coupling than we'd ideally like to have.

A better approach is to utilize events. As you know, Tkinter

generates an event whenever the user interacts with the



GUI in some way, like clicking a button or making a

keystroke. These events can be explicitly bound to a

callback function using the bind()  method of any Tkinter

widget. Tkinter also allows us to generate our own custom

events that we can bind just like the built-in ones.

Let's implement a callback method in DataRecordForm  that

will generate a custom event, as follows:

def _on_save(self): self.event_generate('<<SaveRecord>>')

The event_generate()  method can be called on any Tkinter

widget to cause it to emit the event specified. In this case,

we're calling our event <<SaveRecord>> . All custom event

sequences must use double angle brackets to differentiate

them from built-in event types. Apart from that, you can

call them whatever you wish.

Back in the DataRecordForm.__init__()  method, we'll update

our save button definition to use this method as a callback,

like so:

# views.py, in DataRecordForm.__init__() self.savebutton =

ttk.Button( buttons, text="Save", command=self._on_save)

Now, rather than directly executing the Application  object's

_on_save()  method, the button will simply cause

DataRecordForm  to emit a message that the record-save

operation was requested by the user. It will be the

Application  object's responsibility to deal with that

message.

We'll be utilizing custom events more extensively in Chapter

7, Creating Menus with Menu and Tkinter Dialogs, when we

build our application menu.



Creating the application file

The last piece we need to create is our controller and root

window class, Application . Open the application.py  file and

copy in the Application  class definition from the old

data_entry_app.py  file.

As before, we need to add the module imports required for

this code. At the top of the file, add the following:

# abq_data_entry/application.py, at the top import tkinter as tk

from tkinter import ttk from . import views as v from . import

models as m

Once again, we need tkinter  and ttk , of course; we also

need the views  module for our DataRecordForm  and the models

module for our CSVModel .

Now, we're going to need to make several changes to the

Application.__init__()  method. To begin with, we'll need to

create a model instance that we can pass to the

DataRecordForm  and to save our data. Create this object near

the top of the initializer method:

# application.py, inside the Application class def __init__(self,

*args, **kwargs): super().__init__(*args, **kwargs) self.model =

m.CSVModel()

Next, we need to update the call to DataRecordForm , both to

add the namespace and make sure we pass in the model

instance, as follows:

# application.py, inside Application.__init__() self.recordform =

v.DataRecordForm(self, self.model)

We will also need to bind our custom event, <<SaveRecord>> ,

to the Application  object's record-save callback. Add the

bind  command like so:



# application.py, inside Application.__init__() self.recordform =

v.DataRecordForm(self, self.model) self.recordform.grid(row=1,

padx=10, sticky=(tk.W + tk.E))

self.recordform.bind('<<SaveRecord>>', self._on_save)

Finally, we need to update the code in Application._on_save()

to use the model. The new method should look like this:

def _on_save(self, *_): """Handles file-save requests""" errors =

self.recordform.get_errors() if errors: self.status.set( "Cannot

save, error in fields: {}" .format(', '.join(errors.keys())) )

return data = self.recordform.get() self.model.save_record(data)

self._records_saved += 1 self.status.set( f"{self._records_saved}

records saved this session" ) self.recordform.reset()

As you can see, using our model is pretty seamless; once

we have checked for errors and retrieved the data from the

form, we just pass it to self.model.save_record() . The

Application  doesn't have to know any details about how the

data is saved.

Note that we've added an argument of *_  to the method

definition. When we use bind  to bind an event to a callback,

the callback will receive an event  object. We aren't going to

be using this event  argument, so by Python convention,

we'll just roll up any positional arguments into a variable

called _  (underscore). This way, our callback can handle

receiving arguments, but we've indicated we aren't going

to use them.

Running the application

The application is now completely migrated to the new data

format. To test it, navigate to the application root folder,

ABQ_Data_Entry , and execute the following command:

$ python3 abq_data_entry.py



It should look and act just like the single script from

Chapter 5, Reducing User Error with Validation and

Automation, and run without errors, as shown in the

following screenshot:

Figure 6.4: The ABQ Data Entry application – still looks the same after MVC

refactoring!

Success!



Using version control

software

Our code is nicely structured for expansion, but there's one

more critical item we should address: version control. You

may already be familiar with a version control system

(VCS), sometimes called revision control or source code

management, but if not, it's an indispensable tool for

dealing with a large and changing code base.

When working on an application, we sometimes think we

know what needs to be changed, but it turns out we're

wrong. Sometimes, we don't know exactly how to code

something, and it takes several attempts to find the correct

approach. Sometimes, we need to revert to code that was

changed a long time ago. Sometimes, we have multiple

people working on the same piece of code, and we need to

merge their changes together. Version control systems

were created to address these issues and more.

There are dozens of different version control systems, but

most of them follow essentially the same workflow:

You have a working copy of the code to which you

make changes

You periodically select changes and commit them to a

master copy

You can checkout (that is, retrieve into your working

copy) older versions of the code at any point, then later

revert back to the master copy

You can create branches of the code to experiment

with different approaches, new features, or large

refactors



You can later merge these branches back into the

master copy

VCS provides a safety net that gives you the freedom to

change your code without the fear that you'll hopelessly

ruin it: reverting to a known working state is just a few

quick commands away. It also helps us to document

changes to our code and collaborate with others if the

opportunity arises.

There are dozens of version control systems available, but

by far the most popular for many years now is Git. Let's

take a look at how to use Git to track changes to our

application.

A super-quick guide to using Git

Git was created by Linus Torvalds to be the version control

software for the Linux kernel project, and has since grown

to be the most popular VC software in the world. It is

utilized by source sharing sites like GitHub, Bitbucket,

SourceForge, and GitLab. Git is extremely powerful, and

mastering it can take months or years; fortunately, the

basics can be grasped in a few minutes.

First, you'll need to install Git; visit https://git-

scm.com/downloads for instructions on how to install Git on

macOS, Windows, Linux, or other Unix operating systems.

Initializing and configuring a Git repository

Once Git is installed, we need to initialize and configure our

project directory as a Git repository. To do this, open a

command terminal, navigate to the application's root

directory ( ABQ_Data_Entry ), and run the following command:

https://git-scm.com/downloads


$ git init

This command creates a hidden directory under our project

root called .git  and initializes it with the basic files that

make up the repository. The .git  directory will contain all

the data and metadata about our saved revisions.

Before we add any files to the repository, we need to

instruct Git to ignore certain kinds of files. For example,

Python creates bytecode ( .pyc ) files whenever it executes a

file, and we don't want to save these as part of our code. To

do this, create a file in your project root called .gitignore

and put the following lines in it:

*.pyc __pycache__/

You can add more directory names, filenames, or wildcard

patterns to ignore various file types you don't want to save

(for example, some editors create temporary files or backup

copies by adding particular characters to a filename).

Adding and committing code

Now that our repository has been initialized, we can add

files and directories to our Git repository using the git add

command, like so:

$ git add abq_data_entry $ git add abq_data_entry.py $ git add

docs $ git add README.rst

At this point, our files have been staged, but not yet

committed to the repository. Because a single change to an

application may require altering several files, Git allows

you to stage as many files as you wish to be part of a single

commit. Note that we can specify directories rather than

individual files; in this case, all the files currently inside the

directory will be staged for our next commit.



You can check the status of your repository and the files in

it at any time by entering the command git status . Try this

now and you should get the following output:

On branch master No commits yet Changes to be committed: (use

"git rm --cached <file>..." to unstage) new file: README.rst new

file: abq_data_entry.py new file: abq_data_entry/~__init__.py~

new file: abq_data_entry/application.py new file:

abq_data_entry/models.py new file: abq_data_entry/views.py new

file: abq_data_entry/widgets.py new file:

docs/Application_layout.png new file:

docs/abq_data_entry_spec.rst new file: docs/lab-tech-paper-

form.png Untracked files: (use "git add <file>..." to include in

what will be committed) .gitignore

This shows you that all the files under abq_data_entry/  and

docs/ , as well as the files you specified directly, are staged

to be committed to the repository.

Let's go ahead and commit the changes with the following

command:

$ git commit -m "Initial commit"

The -m  flag here allows you to specify a commit message,

which is stored with the commit. Each time you commit

code to the repository, you will be required to write a

message. You should always make these messages as

meaningful as possible, detailing what changes you made

and the rationale behind them.

Viewing and using our commits

To view your repository's history, run the git log  command,

like so:

$ git log commit df48707422875ff545dc30f4395f82ad2d25f103 (HEAD -

> master) Author: Alan Moore <alan@example.com> Date: Thu Dec 21

18:12:17 2017 -0600 Initial commit



As you can see, the Author , Date , and commit message is

displayed for our last commit. If we had more commits,

they would be listed here as well, from newest to oldest.

The long hexadecimal value you see in the first line of

output is the commit hash, a unique value that identifies

the commit. This value can be used to refer to the commit

in other operations.

For example, we can use it to reset our repository to a past

state. Try this out by following these steps:

1. Delete the README.rst  file, and verify that it's completely

gone.

2. Run git log  to get the hash of your last commit.

3. Now, enter the command git reset --hard df48707 ,

replacing df48707  with the first seven characters of your

last commit's hash.

4. Check your file listing again: the README.rst  file should

be back.

What happened here is that we altered our repository, then

told Git to hard reset the state of the repository to the last

commit. If you don't want to reset your repository, you can

also use git checkout  to switch to an old commit

temporarily, or use git branch  to create a new branch using

a particular commit as the base. As you can see already,

this gives us a powerful safety net for experimentation; no

matter how much you tinker with the code, any commit is

just a command away!

Git has many more features that are beyond the scope of

this book. If you'd like to learn more, the Git project

provides a free online manual at https://git-

scm.com/book, where you can learn about advanced

features like branching and setting up remote repositories.

https://git-scm.com/book


For now, the important thing is to commit changes as you

go, so that you maintain your safety net and document the

history of changes.

Summary

In this chapter, you learned to prepare your simple script

for some serious expansion. You learned how to divide your

application's areas of responsibility into separate

components using the model-view-controller model. You

reimplemented the ABQ application as a Python package,

splitting the code into multiple modules to further enforce

separation of concerns and provide an organized

framework for later expansion. Finally, you set up a Git

repository for your code so that you can track all your

changes with version control.

In the next chapter, we're going to put the convenience of

our new project layout to the test by implementing file

opening and saving, informational popups, and a main

menu. You'll also learn how to provide configurable settings

for your application and save them to disk.



7

Creating Menus with Menu and Tkinter Dialogs

As an application grows in functionality, it becomes

increasingly counterproductive to cram all its functions and

inputs into a single form. Instead, we will need to organize

access to features, information, and controls in a way that

keeps them available without cluttering up the visual

presentation. GUI toolkits like Tkinter offer us a couple of

tools to help deal with this. First, the menu system,

typically located at the top of the application window (or,

on some platforms, in a global desktop menu), can be used

to organize application functions in a condensed hierarchy.

Second, dialog windows, often referred to as dialog

boxes, provide a quick means of displaying temporary

windows containing information, errors, or basic forms.

In this chapter, we're going to explore the use and best

practices of menus and dialog boxes in Tkinter through the

following topics:

In Solving problems in our application, we'll analyze

some reported problems with our application and

design a solution involving menus and dialog boxes.

In Implementing Tkinter dialogs, we'll explore Tkinter's

dialog classes and how to use them to implement

common application functionality.

In Designing the application menu, we'll organize our

application's features into a main menu system using

Tkinter's Menu  widget.



Let's begin by seeing what improvements our application

needs.

Solving problems in our

application

Although everyone is happy with your application so far,

your boss, after discussion with the staff, has brought you

this set of problems that need to be addressed:

The hard-coded filename is a problem. Occasionally the

data entry staff aren't able to get to a form until the

following day; in this situation, they need to be able to

manually enter the filename that they'd like to append

the data to.

Also, the data entry staff have mixed feelings about the

auto-filling features in the form. Some find it very

helpful, but others would like auto-fill to be partially or

completely disabled.

Some users have a hard time noticing the status bar

text at the bottom, and would like the application to be

more assertive when it fails to save a data record due

to field errors.

Finally, the lab is bringing in some interns to work in

the labs, and the issue of data security has been raised.

IT has suggested a simple login requirement would be

advisable. It doesn't have to have high security, just

enough to "keep the honest person honest."

Planning solutions to the issues



It's clear you need to implement a way to enter login

credentials, select a save file name, and toggle the auto-

populate features of the form. You also need to make the

status text more noticeable. First, you consider just adding

controls to the main application for these features and

increasing the size of the status text. You make a quick

mock-up that looks like this:



Figure 7.1: Our first attempt at adding the new features: three Entry widgets

for login data and filename, and two Checkbutton widgets for the settings

It's immediately evident that this is not a great design, and

certainly not one that will accommodate growth. Your users

don't want to have to type a file path and filename blindly

into the box, nor do they need the extra login fields and

check boxes cluttering up the user interface. Making the

status font larger seems like a good idea, until you realize

that the form is now so long it will likely just get pushed off

the bottom of the screen.

Thinking through other GUI applications, you realize that

these features are typically handled by dialog windows,

usually activated from menu options. Taking menus and

dialogs into consideration, you plan the following solutions

to the problems:

A file dialog, activated from a menu system, can be

used to select the file that the data will be saved to.

A settings menu in our menu system will handle

activating or disabling auto-fill.

An error dialog will be used to display problematic

status messages more assertively.

A login dialog can be used to enter login information.

Before we can code this solution, we'll need to learn more

about dialogs in Tkinter.

Implementing Tkinter

dialogs



Tkinter contains a number of submodules that provide

ready-made dialog windows for different situations. These

include:

messagebox , for displaying simple messages and

warnings

filedialog , for prompting the user for a file or folder

path

simpledialog , for requesting string, integer, or float

values from a user

In this section, we're going to explore these dialogs and use

them to solve some of the problems with our application.

Error dialogs with the Tkinter

messagebox

The best way to display simple dialog boxes in Tkinter is by

using the tkinter.messagebox  module, which provides a

variety of information-display dialog types.

Since it is a submodule, we need to explicitly import it

before we can use it, like so:

from tkinter import messagebox 

Rather than having a lot of widget classes that we create

instances of, the messagebox  module provides a selection of

convenience functions for making use of its various

dialog types. When executed, each function displays a

different combination of buttons and a preset icon, along

with a message and detail text that you specify. When the

user clicks a button in the dialog or closes it, the function



will return a Boolean or string value depending on which

button was clicked.

The following table shows some of the messagebox  module's

functions with their icons and return values:

Function Icon Button text/Return value

askokcancel() Question OK ( True ), Cancel ( False )

askretrycancel() Warning Retry ( True ), Cancel ( False )

askyesno() Question Yes ( True ), No ( False )

askyesnocancel() Question
Yes ( True ), No ( False ), Cancel

( None )

showerror() Error OK ( ok )

showinfo() Information OK ( ok )

showwarning() Warning OK ( ok )

Each message box  function accepts this same set of

arguments:

title  sets the title of the window, which is displayed in

the title bar and/or task bar in your desktop

environment.

message  sets the main message of the dialog. It's usually

in a heading font and should be kept fairly short.



detail  sets the body text of the dialog, which is usually

displayed in the standard window font.

A basic call to messagebox.showinfo()  would look something

like this:

messagebox.showinfo( 

  title='This is the title', 

  message='This is the message', 

  detail='This is the detail' 

) 

In Windows 10, it results in a dialog box that looks like this:

Figure 7.2: A showinfo() message box on Windows 10

On macOS, you'd see something like this:

Figure 7.3: A showinfo() message box on macOS

On Ubuntu Linux, the dialog looks like this:



Figure 7.4: A showinfo() message box on Ubuntu Linux

Note that Tkinter messagebox  dialog boxes are modal,

which means that the program execution pauses and the

rest of the UI is unresponsive while the dialog box is open.

There is no way to change this, so only use them in

situations where it's acceptable for the program to pause

execution while the box is open.

Let's create a small example script to show the use of the

messagebox  functions:

# messagebox_demo.py

import tkinter as tk 

from tkinter import messagebox 

see_more = messagebox.askyesno( 

  title='See more?', 

  message='Would you like to see another box?', 

  detail='Click NO to quit' 

) 

if not see_more: 

  exit() 

messagebox.showinfo( 

  title='You got it', 

  message="Ok, here's another dialog.", 

  detail='Hope you like it!' 

) 

This creates a dialog with Yes and No buttons. If the user

clicks No, the function returns False  and the application

exits. In the case our user wants to see more boxes, the

program continues and displays an information box.



Showing error dialogs in ABQ Data

Entry

Now that you understand how to use messagebox , error

dialogs should be easy to implement in our application. The

Application._on_save()  method already displays errors in the

status bar; we just need to make the same text display in an

error dialog as well.

First, open application.py , and let's import messagebox  like

so:

# application.py at the top of the file

from tkinter import messagebox 

Now, locate the line in the Application._on_save()  method

that updates the application status with any errors (inside

the if errors:  block). Just after that line, let's add some

code to display the error dialog, like so:

# application.py, inside Application._on_save() 

    if errors: 

      # ... after setting the status: 

      message = "Cannot save record" 

      detail = ( 

        "The following fields have errors: " 

        "\n  * {}".format( 

          '\n  * '.join(errors.keys()) 

      )) 

      messagebox.showerror( 

        title='Error', 

        message=message, 

        detail=detail 

      ) 

      return False

The first thing we've done is build the message and detail

strings for the dialog, making a bullet list of the fields that



have errors by joining them with \n *  (that is, a newline,

space, and asterisk). Unfortunately, messagebox  dialogs don't

support any sort of markup or rich text, so constructs like

bullet lists need to be built manually using regular

characters.

After building the messages, we call messagebox.showerror()  to

display them. Remember that the application will freeze at

this point until the user clicks OK and the showerror()

function returns.

Open the program and hit Save; you'll see a dialog box

alerting you to the errors in the application, as shown in

the following screenshot:

Figure 7.5: The error message on Windows 10 when we try to save with no data

This error should be hard for anyone to miss!

One shortcoming of the messagebox  module's dialogs is

that they don't scroll; a long error message will create a

dialog that may fill (or extend beyond) the screen. If this is

a potential problem, you'll want to create a custom dialog



containing a scrollable widget. We'll make a custom dialog

later in this section.

Using filedialog

When a user needs to enter a file or directory path, the

preferred way to do this is to display a dialog containing a

miniature file browser, commonly called a file dialog. Like

most toolkits, Tkinter provides us with dialogs for opening

files, saving files, and selecting a directory. These are all

part of the filedialog  module.

Just like messagebox , filedialog  is a Tkinter submodule that

needs to be explicitly imported to be used. Also like

messagebox , it contains a set of convenience functions that

create file dialogs appropriate to different scenarios.

The following table lists the functions, what they return,

and what can be selected in the dialog shown:

Function Return value
Allows selection

of

askdirectory() Directory path as string Directories only

askopenfile() File handle object Existing file only

askopenfilename() File path as string Existing file only

askopenfilenames()
Multiple file paths as a list of

strings

Multiple existing

files

asksaveasfile() File handle object New or existing



file

asksaveasfilename() File path as string
New or existing

file

As you can see, each file selection dialog comes in two

versions: one that returns a path as a string, and one that

returns an open file object.

Each function can take the following arguments:

title  specifies the dialog window title.

parent  specifies the (optional) parent widget. The file

dialog will appear over this widget.

initialdir  sets the directory in which the file browser

should start.

filetypes  is a list of tuples, each with a label and

matching pattern, which will be used to build the

"Format" or "files of type" drop-down typically seen

under the filename entry. This is used to filter the

visible files to only those supported by the application.

For example, a value of [('Text', '*.txt'), ('Python',

'*.py')]  would provide the ability to see only .txt  or

.py  files.

The asksaveasfile()  and asksaveasfilename()  functions take

the following two additional arguments:

initialfile : This argument is a default file path to

select

defaultextension : This argument is a file extension string

that will be automatically appended to the filename if

the user doesn't include one



Finally, the methods that return a file object take a mode

argument that specifies the mode to use when opening the

file; these are the same one- or two-character strings used

by Python's built-in open()  function (for example, r  for

read-only, w  for write, and so on).

Be aware that asksaveasfile()  automatically opens the

selected file in write mode by default. This immediately

empties the contents of the selected file, even if you do not

subsequently write anything to the file or close the file

handle! For that reason, this function should be avoided

unless you're absolutely certain the selected file should be

overwritten.

On macOS and Windows, filedialog  uses the operating

system's built-in file dialogs, which you are likely familiar

with. On Linux, it will use its own dialog, which looks

something like this:

Figure 7.6: File dialog on Ubuntu Linux

Which dialog do we need to use in our application? Let's

consider our needs:

We need a dialog that allows us to select an existing

file.



We also need to be able to create a new file.

Since opening the file is the responsibility of the model,

we don't want Tkinter to open it for us, so we'll just

want to get a filename to pass to the model.

These requirements clearly point to the asksaveasfilename()

function. Let's create a method on our Application  object

that will use this dialog to get a filename and build a new

model.

Open abq_data_entry/application.py  and start a new method

on the Application  class called _on_file_select() :

# abq_data_entry/application.py, in the Application class 

  def _on_file_select(self, *_): 

    """Handle the file->select action""" 

    filename = filedialog.asksaveasfilename( 

      title='Select the target file for saving records', 

      defaultextension='.csv', 

      filetypes=[('CSV', '*.csv *.CSV')] 

    ) 

The method first launches an asksaveasfilename  file dialog;

using the filetypes  argument, the selection of existing files

will be limited to those ending in .csv  or .CSV . When the

dialog exits, the function will return the path to the

selected file as a string to filename . Somehow, we have to

get this path to our model.

Currently, the filename used by the model is generated in

the model's initializer method. To create a new model with

a user-provided filename, we'll need to update the

initializer so that it can accept a filename as an argument

instead.

Open abq_data_entry/model.py  and let's edit the

CSVModel.__init__()  method, like so:



# abq_data_entry/models.py, in CSVModel 

  def __init__(self, filename=None): 

    if not filename: 

      datestring = datetime.today().strftime("%Y-%m-%d") 

      filename = "abq_data_record_{}.csv".format(datestring) 

    self.file = Path(filename) 

As you can see, we've added filename  as a keyword

argument with a default value of None . If filename  does

happen to be empty, we'll use our generated filename as

before. This way, we don't have to alter any existing code

using CSVModel , but we have the option to pass in a

filename.

Now, go back to the Application  class and let's finish out the

_on_file_select()  method, like so:

# abq_data_entry/application.py, in CSVModel._on_file_select() 

    if filename: 

      self.model = m.CSVModel(filename=filename) 

This is all that we need to change to use a different file.

Currently there's no way for us to run this callback; we'll

address that in the next section, Designing the application

menu. First, though, let's talk about the last dialog module,

simpledialog .

Using simpledialog and creating a

custom dialog

Quite often in a GUI application, you will need to stop

everything and ask the user for a value before the program

can continue with an operation. For this purpose, Tkinter

provides the simpledialog  module. Like messagebox , it

provides us with some convenience functions that display a



modal dialog and return a value based on the user's

interaction. However, with simpledialog , the dialog box

contains an Entry  widget that allows the user to provide a

value.

As with the other dialog libraries, we have to import

simpledialog  to use it, like so:

from tkinter import simpledialog as sd 

There are three convenience functions available:

askstring() , askinteger() , and askfloat() . Each one takes a

title  and prompt  argument, for providing the window title

and the text prompt for the entry, respectively.

For example, let's ask the user for a word:

word = sd.askstring('Word', 'What is the word?') 

This will display a box like this:

Figure 7.7: The askstring dialog box on macOS

When the user clicks OK, the function will return whatever

was typed into the Entry  widget as a string. askinteger()

and askfloat()  work exactly the same, except that they will

try to convert the entered value into an integer or float

before returning it. The Entry  widget itself is not validated



using validation callbacks, but Tkinter will display an error

box when the dialog is submitted if there is a problem

converting the entered value, as shown here:

Figure 7.8: Error generated from askinteger() when a non-integer value is

submitted

Creating a Login dialog using simpledialog

One of the tasks we've been given for this chapter is adding

a Login  dialog to our application. It seems like something

simpledialog  can help us with, but none of the built-in

convenience functions really work well for this purpose:

askstring()  could be used, but it only asks for one string at

a time, and it would be nice if we could mask the password

entry for user security.

Fortunately we can create our own custom simpledialog

class with any set of fields we wish. To do that, we'll

subclass the simpledialog.Dialog  class.

Since this is a GUI form, let's add it to our

abq_data_entry/views.py  file. Open that file and start with

importing Dialog :

# abq_data_entry/views.py at the top

from tkinter.simpledialog import Dialog 



Now, at the end of the file, let's start a new class called

LoginDialog , like this:

# abq_data_entry/views.py at the bottom

class LoginDialog(Dialog): 

  """A dialog that asks for username and password""" 

  def __init__(self, parent, title, error=''): 

    self._pw = tk.StringVar() 

    self._user = tk.StringVar() 

    self._error = tk.StringVar(value=error) 

    super().__init__(parent, title=title) 

The Dialog  initializer expects a parent  argument specifying

the widget over which it will appear, as well as a title

argument for the window title of the box. We've also added

a keyword argument, error , that will allow us to pass an

error message to the dialog box when we display it.

Inside the initializer, we're setting up private control

variables for the user, password, and error strings, then

calling the superclass initializer. To actually build the GUI

for the Dialog  class, we need to override a method called

body() . This method is expected to build the main body of

the GUI and return an instance of an input widget, which

should receive focus when the dialog is displayed.

Our body()  method will look like this:

  def body(self, frame): 

    ttk.Label(frame, text='Login to ABQ').grid(row=0) 

    if self._error.get(): 

      ttk.Label(frame, textvariable=self._error).grid(row=1) 

    user_inp = w.LabelInput( 

      frame, 'User name:', input_class=w.RequiredEntry, 

      var=self._user 

    ) 

    user_inp.grid() 

    w.LabelInput( 

      frame, 'Password:', input_class=w.RequiredEntry, 

      input_args={'show': '*'}, var=self._pw 



    ).grid() 

    return user_inp.input

The frame  argument to this method is a tkinter.Frame  object

created by the super-class initializer on which the body of

the dialog can be built. Our method needs to build the form

on this frame. Here, we've added a Label  widget for the top

of the form, then made use of our LabelInput  class to add

User name and Password fields. For our password input,

we're using the show  argument to mask password entry

with asterisks. Also note that we've saved a local reference

to the user input class; remember that body()  needs to

return a reference to a widget that will have focus when

the dialog is shown.

Notice there are no buttons defined by our body()  method.

By default, Dialog  creates an OK button and Cancel

button, which are connected to the Dialog.ok()  and

Dialog.cancel()  callbacks, respectively. This is fine for many

situations, but we might prefer for our dialog to show

Login and Cancel instead. To do that, we need to override

the buttonbox()  method. This method is responsible for

putting the buttons on the form and connecting them to

their callbacks.

Let's override that method like so:

  def buttonbox(self): 

    box = ttk.Frame(self) 

    ttk.Button( 

      box, text="Login", command=self.ok, default=tk.ACTIVE 

    ).grid(padx=5, pady=5) 

    ttk.Button( 

      box, text="Cancel", command=self.cancel 

    ).grid(row=0, column=1, padx=5, pady=5) 

    self.bind("<Return>", self.ok) 

    self.bind("<Escape>", self.cancel) 

    box.pack() 



In this method, we've created a Frame  widget, then added

Login and Cancel buttons. Each button is connected to the

appropriate callback and added to the frame. Next, we've

bound the same callbacks to the Return  and Escape  keys,

respectively. This isn't strictly necessary, but it's a nice

touch for keyboard-only users, and it's what the superclass

version of the method does.

To make the entered data easily available to the code

calling the dialog, we'll create a tuple with the entered

username and password and make it available as a class

member when the user clicks Login.

We could override the ok()  method to do this, but that

method takes care of some other logic (like closing the

dialog) that we don't want to have to re-implement.

Instead, Dialog  features an apply()  method that we are

meant to override with our custom logic.

Ours will simply look like this:

  def apply(self): 

    self.result = (self._user.get(), self._pw.get()) 

This function builds a tuple containing the entered data and

stores it as a public member, result . Code using our

LoginDialog  class can access this attribute to retrieve the

username  and password .

Incorporating the LoginDialog in our class

The convenience functions, askstring() , askfloat() , and

askinteger() , essentially create an instance of their

associated dialog class and return its result  attribute. To

use our custom dialog class, we'll essentially do the same

thing. When we get the result, however, we'll pass it to an



authentication method that will decide if the credentials

are valid or not. If they're not, we'll re-display the dialog

with an error until either the credentials are correct, or the

user cancels the dialog.

To begin, let's write an authentication method. We'll be

adding this to the Application  class, so open application.py

and add this _simple_login()  method to the end of the class:

# application.py, at the end of the Application class

  @staticmethod 

  def _simple_login(username, password): 

    return username == 'abq' and password == 'Flowers'

Notice we've implemented this as a static method, since it

does not need access to the instance or class. It will simply

take the username  and password  given and see if they match

hard-coded values. It returns True  or False  accordingly.

This is quite possibly the worst way you can do password

security in an application; do not ever use this approach in

a real application. We are using it here for the sake of

illustration, since the point is to understand dialogs. In

Chapter 12, Improving Data Storage with SQL, we'll

implement an authentication backend that's actually

production-worthy.

Now, let's create a second method that will display the

login dialog and test the entered credentials for validity,

like so:

# application.py, at the end of the Application class 

  def _show_login(self): 

    error = '' 

    title = "Login to ABQ Data Entry" 

    while True: 

      login = v.LoginDialog(self, title, error) 

      if not login.result:  # User canceled 



        return False 

      username, password = login.result 

      if self._simple_login(username, password): 

        return True 

      error = 'Login Failed' # loop and redisplay

In this method, we begin by creating error  and title

variables, then entering an infinite loop. Inside the loop, we

create our LoginDialog  instance using the title  and error

strings. This will display the dialog, and execution will halt

here until the user either cancels or submits the dialog.

When that happens, login  is assigned to the instance of the

dialog (not to the results!). Now we can check login.result

to see what the user entered.

If result  is empty, the user canceled, so we can return

False  from the method. If the user entered something, we'll

extract result  into its username  and password  values, then

pass those to our _simple_login()  method. If the credentials

check out, we will return True ; if not, we'll update the error

string and let the loop iterate again, re-displaying the

dialog. The net result is that this method will return either

False  if the dialog was canceled, or True  if the

authentication succeeded.

Now, we need to call this method during the startup of our

application. We'll do this in the application's initializer.

Since dialogs cannot be created until a root window has

been created, we'll have to do this just after the call to

super().__init__()  (remember that Application  is a subclass

of Tk , so calling super().__init__()  is what creates our Tk

instance).

Add the following code to Application.__init__() , just under

the call to super().__init__() :



# application.py, inside Application.__init__() 

    self.withdraw() 

    if not self._show_login(): 

      self.destroy() 

      return 

    self.deiconify() 

The first line calls the withdraw()  method, which hides our

main window. We don't strictly have to do this, but without

it we'll have a blank Application  window hanging around

while the login dialog is being presented.

After hiding the blank window, we'll call _show_login()  and

test its return  value. Remember it will return True  if the

user successfully authenticates, or False  if the user cancels

the dialog. In the latter case, we'll call self.destroy() , which

deletes our Tk  instance, and return from the method.

Effectively, this quits the application.

Normally you would call Application.quit()  to exit a

Tkinter program; this method of the Tk  object causes the

main loop to exit and thus the program ends. However, at

this point in the program, we haven't started the main loop

yet, so quit()  won't do anything. If we destroy the

window and return without adding anything else, the main

loop will see that the root window is destroyed and exit

after its first iteration.

If the user is successful in authenticating, we'll call the

application's deiconify()  method, which restores its

visibility. Then we continue with the remainder of the

initializer.

Go ahead and launch the application to give your

LoginDialog  class a test run. It should look something like

this:



Figure 7.9: The login dialog

Great job!

Designing the application

menu

Most applications organize functionality into a hierarchical

menu system, typically displayed at the top of the

application or screen (depending on the operating system).

While the organization of this menu varies between

operating systems, certain items are fairly common across

platforms.

Of these common items, our application will need the

following:

A File menu containing file operations such as

Open/Save/Export, and often an option to quit the

application. Our users will need this menu to select a

file to save to, and to quit the program.



An Options menu where users can configure the

application. We'll need this menu for our toggle

settings; sometimes a menu like this is called

Preferences or Settings, but we'll go with Options for

now.

A Help menu, which contains links to help

documentation, or, at the very least, an About message

giving the basic information about the application. We'll

implement this menu for the About dialog.

Apple, Microsoft, and the GNOME Project publish

guidelines for macOS, Windows, and the GNOME desktop

environment (used on Linux and BSD), respectively; each

set of guidelines addresses the layout of menu items

specific to that platform. We'll explore this in more detail in

Chapter 10, Maintaining Cross-Platform Compatibility.

Before we can implement our menu, we'll need to

understand how menus work in Tkinter.

The Tkinter Menu widget

The tkinter.Menu  widget is the building block used to

implement menus in Tkinter applications; it's a fairly

simple widget that acts as a container for any number of

menu items.

The menu items can be one of the following five types:

Item type Description

command A labeled item that executes a command when clicked



checkbutton A labeled checkbutton that can be tied to a Boolean control

variable

radiobutton A labeled radio button that can be tied to a control variable

separator A system-appropriate visual separator, usually a black line

cascade A submenu, implemented as a second Menu  instance

To explore how the Menu  class works, let's start a simple

example script, like so:

# menu_demo.py

import tkinter as tk 

root = tk.Tk() 

root.geometry('200x150') 

main_text = tk.StringVar(value='Hi') 

label = tk.Label(root, textvariable=main_text) 

label.pack(side='bottom') 

This application sets up a 200-by-150-pixel main window

with a Label  widget, whose text is controlled by a string

variable, main_text . Now, let's start adding the menu

components, like so:

main_menu = tk.Menu(root) 

root.config(menu=main_menu) 

This creates a Menu  instance and then sets it as the main

menu of our application by assigning it to the root

window's menu  argument.

Currently, the menu is empty, so let's add an item; add this

code to the script:



main_menu.add('command', label='Quit', command=root.quit) 

Here, we've added a command  item to quit the application.

The Menu.add()  method allows us to specify an item type and

any number of keyword arguments to create a new menu

item. In the case of a command  item, we need to at least have

a label  argument specifying the text that will show in the

menu and a command  argument pointing to a Python

callback.

Some platforms, such as macOS, don't allow a command in

the top-level menu. We'll cover the differences between

menus on different platforms in more detail in Chapter 10,

Maintaining Cross-Platform Compatibility.

Next, let's try creating a submenu, like so:

text_menu = tk.Menu(main_menu, tearoff=False) 

Creating a submenu is just like creating a menu, except

that we specify the parent menu as the widget's parent.

Notice the tearoff  argument; by default, submenus in

Tkinter are tearable, which means they can be pulled off

and moved around as independent windows.

You don't have to disable this option, but it is a rather

archaic UI feature that is rarely used on modern platforms.

Our users will likely just find it confusing, so we're going to

disable it whenever we create submenus.

Now that we have a submenu object, let's add some

commands, like so:



text_menu.add_command( 

  label='Set to "Hi"', 

  command=lambda: main_text.set('Hi') 

) 

text_menu.add_command( 

  label='Set to "There"', 

  command=lambda: main_text.set('There') 

) 

The add_command()  method used here is simply a shortcut for

add('command') , and it can be used on any Menu  object. There

are analogous methods for adding other items as well

( add_cascade() , add_separator() , and so on).

Now that we've populated the text_menu , let's use the

add_cascade()  method to add our menu back to its parent

widget as follows:

main_menu.add_cascade(label="Text", menu=text_menu) 

When adding a submenu to its parent menu, we simply

have to provide the label for the menu and the menu object

itself.

Using Checkbutton and Radiobutton items

In addition to commands and submenus, we can also add

Checkbutton  and Radiobutton  widgets to the menu. To

demonstrate this, let's create another submenu with

options to alter the label's appearance.

First, we'll need to add the following setup code:

font_bold = tk.BooleanVar(value=False) 

font_size = tk.IntVar(value=10) 

def set_font(*args): 

  size = font_size.get() 



  bold = 'bold' if font_bold.get() else '' 

  font_spec = f'TkDefaultFont {size} {bold}' 

  label.config(font=font_spec) 

font_bold.trace_add('write', set_font) 

font_size.trace_add('write', set_font) 

set_font() 

To use checkbutton  and radiobutton  items in a menu, we need

to first create control variables to bind to them. Here, we're

just creating a Boolean variable for the bold font toggle,

and an integer variable for the font size. Next, we've

created a callback function that reads the variables and

sets the Label  widget's font  property from them when

called. Finally, we've set up a trace on both variables to call

the callback whenever the values are changed, and called

the callback to initialize the font settings.

Now, we just need to create the menu options to change

the variables; add this code next:

Here we've created the submenu for the appearance

options and added the checkbutton for bold text. Like a

regular Checkbutton  widget, the add_checkbutton()  method

uses a variable  argument to assign its control variable.

Unlike a regular Checkbutton  widget, though, it uses the

label  argument, rather than the text  argument, to assign

the label text.

The checkbutton  item works with a BooleanVar  by

default; however, just like a Checkbutton  widget, you can

use it with different control variable types by passing in

onvalue  and offvalue  arguments.

appearance_menu = tk.Menu(main_menu, tearoff=False) 

main_menu.add_cascade(label="Appearance", menu=appearance_menu) 

appearance_menu.add_checkbutton(label="Bold", variable=font_bold



To demonstrate radiobutton  items, let's add a submenu to

our Appearance submenu, like so:

size_menu = tk.Menu(appearance_menu, tearoff=False) 

appearance_menu.add_cascade(label='Font size', menu=size_menu) 

for size in range(8, 24, 2): 

  size_menu.add_radiobutton( 

    label="{} px".format(size), 

    value=size, variable=font_size 

  ) 

Just as we added a submenu to our main menu, we can add

submenus to submenus. In theory, you could nest submenus

indefinitely, but most UI guidelines discourage more than

two levels.

To create the items for our size menu, we're just iterating a

generated list of even numbers between 8 and 24; for each

one, we call add_radiobutton() , adding an item with a value

equal to that size. Just as with regular Radiobutton  widgets,

the control variable passed to the variable  argument will be

updated with the value stored in the value  argument when

the button is selected.

Finally, let's add a call to mainloop() :

root.mainloop() 

Launch the application and try it out. You should get

something like this:



Figure 7.10: The Menu demo application

Now that we understand how to work with the Menu  widget,

let's design and implement a menu for our application.

Implementing the ABQ application

menu

As a major component of the GUI, our main menu code

would be right at home in the views.py  file. However,

because it's going to be expanded considerably as our

application grows, we'll put it in its own module file. Create

a new file the abq_data_entry  directory called mainmenu.py .

Then begin the file with a docstring and our imports:

# mainmenu.py

"""The Main Menu class for ABQ Data Entry"""

import tkinter as tk 

from tkinter import messagebox 

Next, let's subclass tkinter.Menu  to create our own main

menu class, like so:



class MainMenu(tk.Menu): 

  """The Application's main menu""" 

  def __init__(self, parent, **kwargs): 

    super().__init__(parent, **kwargs) 

We will be building the rest of the menu inside the

initializer, though for the moment this doesn't do anything

extra. Before we start building the menu, let's drop back

into our application.py  module and set up this class as the

application's main menu.

First, import the class at the top of the file, like this:

# application.py, at the top after the import statements

from .mainmenu import MainMenu 

Next, inside Application.__init__() , we need to create an

instance of our MainMenu  class and make it the application's

menu. Update the method as follows:

# application.py, inside Application.__init__() 

    self.title("ABQ Data Entry Application") 

    self.columnconfigure(0, weight=1) 

    menu = MainMenu(self) 

    self.config(menu=menu)

Now let's head back to mainmenu.py  and start building the

components of our menu.

Adding a Help menu

Let's begin with something simple. We'll just add an About

dialog to display some information about our program. This

is typically located in a Help menu.

Add the following code to MainMenu.__init__() :



Here, we've added a Help menu and a command for About.

The command specifies an instance method, show_about() , as

its callback; so, we'll need to add that method to the class,

as follows:

This method just specifies some basic information about the

application and displays it in a messagebox  dialog. You can, of

course, update the about_detail  variable with your own

information, or a much longer (and hopefully more helpful)

message.

Adding a File menu

The next menu we'll create is a File menu. This will have

two commands, one for selecting a file and another for

quitting the application. Unlike the About dialog, though,

we can't really implement the callback logic for either

command in the menu class itself. File selection will need

to call the Application._on_file_select()  method we created

# mainmenu.py, inside MainMenu.__init__() 

    help_menu = tk.Menu(self, tearoff=False) 

    help_menu.add_command(label='About…', command=self.show_abou

# mainmenu.py, inside the MainMenu class 

  def show_about(self): 

    """Show the about dialog""" 

    about_message = 'ABQ Data Entry' 

    about_detail = ( 

      'by Alan D Moore\n' 

      'For assistance please contact the author.' 

    ) 

    messagebox.showinfo( 

      title='About', message=about_message, detail=about_detail 

    ) 



earlier in the chapter, and the quit command will need to

call Application.quit() .

Since the menu's parent widget will be the Application

object, we could just bind these commands to

parent._on_file_select  and parent.quit , but that would create

a tight coupling situation as we discussed in Chapter 6,

Planning for the Expansion of Our Application. As we did in

that chapter, we'll instead use generated events to

communicate back to the controller class.

One possible way to implement our File menu commands is

to use a lambda  function, like so:

    file_menu.add_command( 

      label="Select file…", 

      command=lambda: self.event_generate('<<FileSelect>>') 

    ) 

The lambda  keyword creates an anonymous inline function

that contains a single expression. It is often used in

situations where we need a reference to a function (such as

a widget's command  argument) but don't need the overhead

of defining a named function. In this case, we're creating

an anonymous function that generates a custom

<<FileSelect>>  event on the MainMenu  object using

event_generate() .

You can find out more about Lambda expressions in Section

6.14 of the Python official documentation, available at

https://docs.python.org/3/reference/expressions.htm

l.

However, there are two problems with this approach.

https://docs.python.org/3/reference/expressions.html


First, using lambda  every time is rather verbose and ugly,

and since our menu is going to be generating a lot of

custom events as the application grows, we'd like to avoid a

lot of repetitive boilerplate code.

Second, binding events on a Menu  object doesn't work on all

platforms (particularly, it doesn't work on Microsoft

Windows). This has to do with the fact that the Menu  is built

around the native menu system of each platform. To work

around this, we'll need to get a reference to our root

window and bind our events to that.

Since this makes our code even uglier, it makes sense to

create a simple wrapper function that will keep our menu

definitions nice and clean.

Add the following _event()  method to the MainMenu  class

above the initializer:

# mainmenu.py, inside MainMenu 

  def _event(self, sequence): 

    def callback(*_): 

      root = self.master.winfo_toplevel() 

      root.event_generate(sequence) 

    return callback 

This simple method creates a function that causes the root

window instance to generate the provided sequence  string,

then returns a reference to the newly defined function. To

get a reference to the root  window, we call winfo_toplevel()

on the menu's parent widget ( self.master ), which returns

the top-level window of the menu's parent widget. You

might wonder why we don't just use self.master , or just call

winfo_toplevel()  on the Menu  object itself. In the first case,

we can't be sure what the menu's parent widget will be

until we create an instance of it, especially as our program

evolves in the future. While we can't be sure exactly what



the parent widget will be, we can be sure it will be a widget

on a window; by calling winfo_toplevel()  we should get the

root  window.

In the second case, the winfo_toplevel()  method, when

called on a Menu  object, actually returns the top level of the

menu. In other words, self.winfo_toplevel()  in this context

would just return our MainMenu  object.

Now we can update our menu items to use this wrapper

method, like so:

# mainmenu.py, inside MainMenu.__init__() 

    file_menu = tk.Menu(self, tearoff=False) 

    file_menu.add_command( 

      label="Select file…", 

      command=self._event('<<FileSelect>>') 

    ) 

    file_menu.add_separator() 

    file_menu.add_command( 

      label="Quit", 

      command=self._event('<<FileQuit>>') 

    ) 

Note the use of the ellipsis character ( … ) after "Select

file" . This is a convention in menus to indicate when a

command will open another window or dialog to get

information from the user rather than just running a

command directly.

Now our code looks much cleaner. To make these

commands work, we'll need to tell our Application  class to

listen for these events and take appropriate action when

they're generated.

Back in the application.py  file, let's add the following lines

to Application.__init__() , just after the menu object setup:



# application.py, inside Application.__init__() 

    event_callbacks = { 

      '<<FileSelect>>': self._on_file_select, 

      '<<FileQuit>>': lambda _: self.quit(), 

    } 

    for sequence, callback in event_callbacks.items(): 

      self.bind(sequence, callback) 

Here, we've created an event_callbacks  dictionary, matching

event sequences to callback methods. Then, we're iterating

through the dictionary, binding each sequence to its event.

As we add more items to our menu, we'll just need to

update the dictionary with the additional bindings. Note

that we cannot bind the <<FileQuit>>  action directly to

self.quit() . That's because callbacks bound using the

bind()  method pass arguments when the callback is called,

and self.quit()  takes no arguments. We're using a lambda

call here just to filter out the added argument from the

callback.

Adding a settings menu

The next thing we need to add is our Options menu, which

will allow the user to specify whether they want the Date

and Sheet data auto-filled in the form or not. We've already

seen that adding checkbutton options to a menu is fairly

easy, but actually making these options work is going to

take some additional plumbing work. Somehow, we need to

connect these menu options to the DataRecordForm  instance

so that it can disable the automation appropriately.

To do this, let's begin by creating a dictionary in the

Application  class that will store some control variables:

# application.py, inside Application.__init__()

# before the menu setup 



  self.settings = { 

    'autofill date': tk.BooleanVar(), 

    'autofill sheet data': tk.BooleanVar() 

  } 

Next, we will need to make sure both our DataRecordForm  and

MainMenu  objects have access to these settings; we will do

this by passing the settings  dictionary to their initializer

methods and storing it as an instance variable on each

class.

First, in views.py , let's update the DataRecordForm.__init__()

method, like so:

Next, in mainmenu.py , let's update the MainMenu.__init__()

method, like so:

# mainmenu.py, inside MainMenu class 

  def __init__(self, parent, settings, **kwargs): 

    super().__init__(parent, **kwargs) 

    self.settings = settings

Now, back in the Application  class, we have to update the

code that creates instances of these classes to pass in the

settings  dictionary to each one. Update the code in

Application.__init__()  as follows:

# application.py, in Application.__init__() 

  # update the menu creation line: 

  menu = MainMenu(self, self.settings) 

  #... 

# views.py, inside DataRecordForm class 

  def __init__(self, parent, model, settings, *args, **kwargs): 

    super().__init__(parent, *args, **kwargs) 

    self.model = model 

    self.settings = settings



  # update the data record form creation line: 

  self.recordform = v.DataRecordForm( 

    self, 

    self.model, 

    self.settings 

  ) 

Each class now has access to the settings  dictionary, so

let's put it to use. To begin with, let's add our Options menu

to the main menu.

In the MainMenu  file, add this code to the initializer method

to build the menu:

# mainmenu.py, in MainMenu.__init__() 

    options_menu = tk.Menu(self, tearoff=False) 

    options_menu.add_checkbutton( 

      label='Autofill Date', 

      variable=self.settings['autofill date'] 

    ) 

    options_menu.add_checkbutton( 

      label='Autofill Sheet data', 

      variable=self.settings['autofill sheet data'] 

    ) 

Very simply, we've created a Menu  widget called options_menu

with two checkbutton  items that are bound to our settings

variable. That's all the configuration our MainMenu  needs for

the settings.

The last thing we need to do is make these settings work

with the DataRecordForm  class's reset()  method, which

handles the auto-filling of these fields.

In the views.py  file, locate the DataRecordForm.reset()  method,

and find the code that sets the date variable. Update it as

follows:



# views.py, in DataRecordForm.reset() 

    if self.settings['autofill date'].get(): 

      current_date = datetime.today().strftime('%Y-%m-%d') 

      self._vars['Date'].set(current_date) 

      self._vars['Time'].label_widget.input.focus() 

All we've done here is put this date-setting logic below an

if  statement that checks the settings  value. We need to do

the same for our sheet data section, as follows:

    if ( 

      self.settings['autofill sheet data'].get() and 

      plot not in ('', 0, plot_values[-1]) 

    ): 

      self._vars['Lab'].set(lab) 

      self._vars['Time'].set(time) 

      # etc...

Since this logic was already under an if  statement, we've

just added another condition to the check. This should now

give us functioning options.

Finishing the menu

The last thing we need to do in our main menu is add the

submenus we've created to the main menu. At the end of

MainMenu.__init__() , add the following lines:

# mainmenu.py, at the end of MainMenu.__init__() 

    self.add_cascade(label='File', menu=file_menu) 

    self.add_cascade(label='Options', menu=options_menu) 

    self.add_cascade(label='Help', menu=help_menu) 

The submenus will be arranged from left to right in the

order we add them. Typically the File menu is first and the

Help menu is last, with the other menus arranged in

between. We'll learn more about how to arrange menus



with respect to platform in Chapter 10, Maintaining Cross-

Platform Compatibility.

Run the application, and you should see a nice main menu

like this:

Figure 7.11: The ABQ application sporting a fancy main menu

Give the settings a try by un-checking them and entering

some records. They should disable the auto-fill functionality

when disabled.

Persisting settings

Our settings work, but there's a major annoyance: they

don't persist between sessions. Shut down the application

and start it up again, and you'll see that the settings are

back to their defaults. It's not a major problem, but it's a

rough edge we shouldn't leave for our users. Ideally, their

personal settings should load up each time they launch the

application.

Python gives us a variety of ways to persist data in files.

We've already experienced CSV, which is designed for

tabular data; there are other formats designed with

different capabilities in mind. The following table shows

just a few of the options for storing data available in the

Python standard library:

Module File Suitable Benefits Drawbacks



type for

pickle Binary

Any

Python

object

Fast, easy,

small files

Not safe, files not

human-readable,

whole file must be

read

configparser Text

Key ->

value

pairs

Human-

readable files

Can't handle

sequences or

complex objects,

limited hierarchy

json Text

Simple

values

and

sequences

Widely used,

easy, human-

readable

Can't handle dates,

complex objects

without

modification

xml Text

Any kind

of Python

object

Powerful,

flexible, human-

readable files

Not safe, complex

to use, verbose

syntax

sqlite Binary
Relational

data

Fast, powerful,

can represent

complex

relationships

Requires SQL

knowledge, objects

must be translated

to tables

Table 7.3:

If this weren't enough, there are even more options

available in the third-party libraries. Almost any of them

would be suitable for storing a couple of Boolean values, so

how do we choose? Let's consider the options:

SQL  and XML  are powerful, but far too complex for our

simple needs here.

We'd like to stick to a text format in case we need to

debug a corrupt settings file, so pickle  is out.



configparser  would work for now, but its inability to

handle lists, tuples, and dictionaries may be limiting in

the future.

That leaves json , which is a good option. While it can't

handle every kind of Python object, it can handle strings,

numbers, and Boolean values, as well as lists and

dictionaries. It can even be extended to handle other kinds

of data. It should cover our current configuration needs just

fine, and most likely our future needs as well.

What does it mean when we say that a library is "not safe"?

Some data formats are designed with powerful capabilities,

such as extensibility, linking, or aliasing, which parser

libraries must implement. Unfortunately, those capabilities

can be exploited for malicious purposes. For example, the

"billion laughs" XML vulnerability combines three XML

capabilities to craft a file that, when parsed, expands to a

massive size (usually causing the program or, in some

cases, the operating system, to crash).

Building a model for settings persistence

As with any kind of data persistence, we need to start by

implementing a model. As with our CSVModel  class, the

settings model needs to save and load the data, as well as

authoritatively defining the layout of the settings data.

Since we're using json , we need to import it. Add this to

the top of models.py :

import json 

Now, down at the end of models.py , let's start a new

SettingsModel  class as follows:



# models.py, at the bottom

class SettingsModel: 

  """A model for saving settings""" 

  fields = { 

    'autofill date': {'type': 'bool', 'value': True}, 

    'autofill sheet data': {'type': 'bool', 'value': True} 

  } 

As we did with the CSVModel , we've begun our class with a

class variable that defines the fields  included in the

settings file. Currently, it only contains our two Boolean

values. Each field in the dictionary defines a data type and

default value for the field. Note that we're using strings

here rather than Python type  objects; doing this will allow

us to persist both the type and the value to a text file.

Next, let's create the initializer method, as follows:

# models.py, in SettingsModel 

  def __init__(self): 

    filename = 'abq_settings.json' 

    self.filepath = Path.home() / filename 

The initializer will determine the file path to which our

settings will be saved; for now, we've hard-coded the name

abq_settings.json  and stored it in the user's home directory.

Path.home()  is a class method of the Path  class that provides

us with a Path  object pointed to the user's home directory.

In this way, each user on the system can have their own

settings file.

As soon as the model is created, we'll want to load the

user's saved options from disk, so let's add a call to an

instance method we'll call load() :

# models.py, at the end of SettingsModel.__init__() 

    self.load() 



Now we need to implement the load()  method. A simplistic

implementation may look like this:

  def load(self): 

    with open(self.filepath, 'r') as fh: 

      self.fields = json.load(fh) 

This simply opens the file stored in our self.filepath

location and overwrites the fields  variable with whatever

contents are extracted by json.load() . This is the gist of

what we need to do, but there are two problems with this

approach:

What happens if the file doesn't exist? (For example, if

the user has never run the program before.)

What happens if the JSON data in the model doesn't

match with the keys expected by our application? (For

example, if it was tampered with, or created by an

older version of the application.)

Let's create a more robust callback that addresses these

issues, as follows:

# models.py, inside the SettingsModel class 

  def load(self): 

    if not self.filepath.exists(): 

      return 

    with open(self.filepath, 'r') as fh: 

      raw_values = json.load(fh) 

    for key in self.fields: 

      if key in raw_values and 'value' in raw_values[key]: 

        raw_value = raw_values[key]['value'] 

        self.fields[key]['value'] = raw_value 

In this version, we address the first issue by checking to

see if the file exists. If the file doesn't exist, the method

simply returns and does nothing. It's perfectly reasonable



for the file not to exist, especially if the user has never run

the program or edited any of the settings. In this case, the

method would leave self.fields  alone and the user would

end up with the defaults.

To address the second problem, we've pulled the JSON data

into a local variable called raw_values ; then, we update

fields  by retrieving from raw_values  only those keys that

are defined by our class. If the JSON data lacks a particular

key, we skip it, leaving fields  with its default value.

In addition to loading settings, our model will of course

need to save its data. Let's write a save()  method to write

our values to the file:

# models.py, inside the SettingsModel class 

  def save(self): 

    with open(self.filepath, 'w') as fh: 

      json.dump(self.fields, fh) 

The json.dump()  function is the inverse of json.load() : it

takes a Python object and a file handle, converts the object

to a JSON string, and writes it to the file. Saving our

settings data is as simple as converting the fields

dictionary to a JSON string and writing it to the specified

text file.

The final method our model needs is a way for external

code to set values; we could just allow external code to

manipulate the fields  dictionary directly, but in the interest

of protecting our data integrity, we'll do it through a

method call.

Keeping with Tkinter convention, we'll call this method

set() .

A basic implementation of the set()  method is as follows:



def set(self, key, value): 

  self.fields[key]['value'] = value 

This simple method just takes key  and value  arguments

and writes them to the fields  dictionary. This opens up

some potential problems, though:

What if the value provided isn't valid for the data type?

What if the key isn't in our fields  dictionary? Should

we allow outside code to just add new keys?

These situations could create problems in the application

that would be hard to debug, so our set()  method should

safeguard against these scenarios.

Let's create a more robust version, as follows:

# models.py, inside the SettingsModel class 

  def set(self, key, value): 

    if ( 

      key in self.fields and 

      type(value).__name__ == self.fields[key]['type'] 

    ): 

      self.fields[key]['value'] = value 

    else: 

      raise ValueError("Bad key or wrong variable type") 

In this version, we check if the given key  argument exists

in fields , and if the type  of the data matches the type

defined for that field. To match the value  variable's object

type to the field  dictionary's type  strings, we have

extracted the variable's data type as a string using

type(value).__name__ . This returns a string like bool  for

Boolean variables, or str  for strings. With these checks

protecting our value assignment, an attempt to write an

unknown key or incorrect variable type will fail.



However, we don't let it fail silently; if there is bad data, we

immediately raise a ValueError  exception. Why raise an

exception? If the test fails, it can only mean a bug in the

calling code. With an exception, we'll know immediately if

the calling code is sending bad requests to our model.

Without it, requests would fail silently, leaving a hard-to-

find bug.

Using the settings model in our application

Our application needs to load in the settings when it starts,

then save them automatically whenever they are changed.

Currently, the application's settings  dictionary is created

manually, but our model, as the authority on the settings

data structure, should really be telling it what kind of

variables to create.

Back in the Application.__init__()  method, locate the line

that creates our settings  dictionary, and replace it with the

following code:

# application.py, inside Application.__init__() 

    self.settings_model = m.SettingsModel() 

    self._load_settings() 

First, we've created a SettingsModel  instance, storing it as

an instance variable. Then, we're running an instance

method called _load_settings() . This method will be

responsible for querying the settings_model  to create the

Application.settings  dictionary.

At the end of the class definition, let's create the

_load_settings()  method:

# application.py, inside the Application class 

  def _load_settings(self): 



    """Load settings into our self.settings dict.""" 

    vartypes = { 

      'bool': tk.BooleanVar, 

      'str': tk.StringVar, 

      'int': tk.IntVar, 

      'float': tk.DoubleVar 

    } 

    self.settings = dict() 

    for key, data in self.settings_model.fields.items(): 

      vartype = vartypes.get(data['type'], tk.StringVar) 

      self.settings[key] = vartype(value=data['value']) 

Our model stores the type and value for each variable, but

our application needs Tkinter control variables. We need to

translate the model's representation of the data into a

structure that Application  can use. So the first thing this

function does is create a vartypes  dictionary to translate

our type  strings to control variable types.

Although we currently only have Boolean variables in our

settings, we're going to anticipate more settings in the

future and create a function capable of handling strings,

floats, and integers as well.

After defining the vartypes  dictionary and creating an

empty dictionary for settings , we just need to iterate

through self.settings_model.fields , creating a matching

control variable for each field. Note that

vartypes.get(data['type'], tk.StringVar)  ensures that, if we get

a variable type not listed in vartypes , we'll just create a

StringVar  for it.

The main reason for using Tkinter variables here is so that

we can trace any changes the user makes to the values via

the UI and respond immediately. Specifically, we want to

save our settings whenever the user makes a change. To

implement this, add the last two lines to the method:



# application.py, inside Application._load_settings() 

    for var in self.settings.values(): 

      var.trace_add('write', self._save_settings) 

This adds a trace that calls _save_settings  whenever a

settings variable is changed. Of course, this means we need

to write a method called Application._save_settings() , which

will save the settings to disk.

Add this code to the end of Application :

  def _save_settings(self, *_): 

    for key, variable in self.settings.items(): 

      self.settings_model.set(key, variable.get()) 

    self.settings_model.save() 

The save_settings()  method just needs to get the data back

from Application.settings  to the model and then save it. It's

as simple as iterating through self.settings  and calling our

model's set()  method to pull in the values one at a time.

Once we've updated the values, we call the model's save()

method.

This completes our settings persistence; you should be able

to run the program and observe that the settings are saved,

even when you close and re-open the application. You'll also

find a file in your home directory called abq_settings.json

(this isn't the ideal place to keep a settings file, but we'll

address that in Chapter 10, Maintaining Cross-Platform

Compatibility).

Summary



In this chapter, our simple form has taken a big step

forward toward being a full-blown application. We've

implemented a main menu, option settings that are

persisted between executions, and an About dialog. We've

added the ability to select a file where records are saved,

and improved the visibility of form errors with an error

dialog. Along the way, you learned about Tkinter menus,

file dialogs, message boxes, and custom dialogs, as well as

the various options for persisting data in the standard

library.

In the next chapter, we're going to be asked to make the

program read data as well as write it. We'll learn about

Ttk's Treeview  and Notebook  widgets, and how to make our

CSVModel  and DataRecordForm  classes capable of reading and

updating existing data.



8

Navigating Records with Treeview and

Notebook

You've received another request for features in the

application. Now that your users can open arbitrary files

for appending, they'd like to be able to see what's in those

files and correct old records using the data entry form

they've grown accustomed to, rather than having to switch

over to a spreadsheet. In a nutshell, it's finally time to

implement read and update capabilities in our application.

In this chapter, we're going to cover the following topics:

In Implementing read and update in the model, we'll

modify our CSV model for read and update capabilities.

In The Ttk Treeview, we'll explore the Ttk Treeview

widget.

In Implementing a record list with Treeview, we'll use

our knowledge of the Treeview  widget to create an

interactive display of records in the CSV file.

In Adding the record list to the application, we'll

incorporate our new record list view into our

application using the Ttk Notebook  widget.

Implementing read and

update in the model



Our entire design up to this point has been centered

around a form that only appends data to a file; adding read

and update capabilities is a fundamental change that will

touch nearly every portion of the application.

It may seem like a daunting task, but by taking it one

component at a time, we'll see that the changes are not so

overwhelming.

The first thing we should do is update our documentation.

Open the abq_data_entry_spec.rst  file in the docs  folder, and

let's start with the Requirements section:

Functional Requirements: * Provide a UI for reading, updating,

and appending data to the CSV file * ...

And, of course, we should also update the part that is not

required, like so:

The program does not need to: * Allow deletion of data.

Now, it's a simple matter of making the code match with

the documentation. Let's get started!

Adding read and update to the

CSVModel class

Take a moment to consider what's missing from the

CSVModel  class that we'll need to add for read and update

functionality:

We'll need a method that can retrieve all records in a

file so we can display them. We'll call it

get_all_records() .

We'll need a method to fetch individual records from

the file by row number. We can call this one



get_record() .

We'll need to save records in a way that can not only

append new records but update existing records as

well. We can update our save_record()  method to

accommodate this.

Open up models.py  in your editor, and let's work through

making these changes.

Implementing get_all_records()

Let's start a new method in CSVModel  called get_all_records() :

# models.py, in the CSVModel class def get_all_records(self):

"""Read in all records from the CSV and return a list""" if not

self.file.exists(): return []

The first thing we've done is check if the model's file exists

yet (recall that self.file  is a Path  object, so we can just call

exists()  to see if it exists). When our users start the

program each morning, the CSVModel  generates a default

filename pointing to a file that likely doesn't exist yet, so

get_all_records()  will need to handle this situation

gracefully. It makes sense to return an empty list in this

case, since there's no data if the file doesn't exist.

If the file does exist, we will open it in read-only mode and

get all the records. We could do that like this:

with open(self.file, 'r') as fh: csvreader = csv.DictReader(fh)

records = list(csvreader)

While not terribly efficient, pulling the entire file into

memory and converting it into a list is acceptable in our

case, since we know that our largest files should be limited

to a mere 241 rows: 20 plots times 3 labs times 4 check

sessions, plus a header row. That amount of data is easy

work for Python, even on an old workstation. This method



is just a little too trusting, however. We should at least do

some sanity checks to make sure that the user has actually

opened a CSV file containing the proper fields and not

some other arbitrary file, which would likely crash the

program.

Let's revise the method so that it will check the file for the

correct field structure:

# models.py, inside CSVModel.get_all_records() with

open(self.file, 'r', encoding='utf-8') as fh: csvreader =

csv.DictReader(fh.readlines()) missing_fields = (

set(self.fields.keys()) - set(csvreader.fieldnames) ) if

len(missing_fields) > 0: fields_string = ',

'.join(missing_fields) raise Exception( f"File is missing fields:

{fields_string}" ) records = list(csvreader)

In this version, we first find any missing fields by

comparing the CSVModel.fields  dictionary keys to the

fieldnames  list in the CSV file. To find the missing fields,

we're using a simple trick involving the Python set  type: if

we convert both lists to set  objects, we can subtract one

from the other, leaving us with a set  object containing the

fields from the first list (our fields  keys) that were missing

from the second list (the CSV field names).

If missing_fields  has any items, those are missing fields

from the CSV file. We'll raise an exception in this case,

detailing which fields are absent. Otherwise, we convert

the CSV data to a list, as we did in our simpler version of

the method.

Python set  objects are very useful for comparing the

content of the list, tuple, and other sequence objects. They

provide an easy way to get information such as the

difference (items in x that are not in y) or intersection

(items in both x and y) between two sets and allow you to

compare sequences without respect to order.



Before we can return the records  list from the method, we

need to correct one issue; all data in a CSV file is stored as

text, and read by Python as a string. Most of this is not a

problem, since Tkinter will take care of converting strings

to float  or int  as necessary. Boolean values, however, are

stored in the CSV file as the strings True  and False , and

coercing these values directly back to bool  doesn't work.

The string False  is a non-empty string, and all non-empty

strings evaluate to True  in Python.

To fix this, let's first define a list of strings that should be

interpreted as True :

# models.py, inside CSVModel.get_all_records() trues = ('true',

'yes', '1')

Any values not in this list will be considered False . We'll do

a case-insensitive comparison, so there are only lowercase

values in our list.

Next, we create a list of model fields that are Boolean using

a list comprehension, like so:

bool_fields = [ key for key, meta in self.fields.items() if

meta['type'] == FT.boolean ]

Technically, we know that Equipment Fault is our only

Boolean field, so in reality, we could just hard-code the

method to correct that field. However, it's wiser to design

the model so that any changes to the schema will be

automatically handled appropriately by the logic portions.

If fields are added or altered, we should ideally only need

to alter the field specification and the rest of the model

code should behave correctly.

Now, let's iterate through the records and correct all the

Boolean fields in each row:



for record in records: for key in bool_fields: record[key] =

record[key].lower() in trues

For every record, we iterate through our list of the Boolean

fields and check the field's value against our list of truthy

strings, setting the value of the item accordingly.

With the Boolean values fixed, we can finish our function by

returning the list of records, like so:

return records

Note that the rows returned by this method are dictionaries

in the same format expected by the save_record()

method when saving data. It's good practice for the model

to be consistent about the way it represents data. In a more

robust model, you might even make a class to represent a

row of data, though for simpler applications a dictionary

usually serves as well.

Implementing get_record()

The get_record()  method needs to take a row number and

return a single dictionary containing the data for that row.

Given that we are dealing in very small amounts of data, we

can simply leverage the get_all_records()  method we just

wrote and take care of this in just a few lines, like so:

# models.py, inside the CSVModel class def get_record(self,

rownum): return self.get_all_records()[rownum]

Keep in mind, however, that it's possible to pass a rownum

value that doesn't exist in our records list; in this case,

Python would raise an IndexError  exception.

Since there's no meaningful way for us to handle that

situation inside the model, we'll need to remember to have



our controller catch this exception and deal with it

appropriately when using this method.

Adding update capability to save_record()

To convert our save_record()  method so that we can update

records, the first thing we'll need to do is provide the

ability to pass in a row number to update. The default will

be None , which will indicate that the data is a new row that

should be appended to the file.

The updated method signature looks like this:

# models.py, in the CSVModel class def save_record(self, data,

rownum=None): """Save a dict of data to the CSV file"""

Our existing record-saving logic doesn't need to change,

but it should only be run if rownum  is None .

So, the first thing to do in the method is check rownum :

if rownum is None: # This is a new record newfile = not

self.file.exists() with open(self.file, 'a') as fh: csvwriter =

csv.DictWriter(fh, fieldnames=self.fields.keys()) if newfile:

csvwriter.writeheader() csvwriter.writerow(data)

If rownum  is None , we're just running our existing code:

writing a header if the file doesn't exist, and then

appending the row to the end of the file.

In the case that the rownum  is not None , we'll need to update

the given row and save the file. There are several

approaches to this task, but for relatively small files, the

simplest way to update a single row is:

1. Load the entire file into a list

2. Change the row in the list

3. Write the entire list back to a clean file



That may seem inefficient, but again, we're dealing with

very small amounts of data. A more surgical approach

would only be required with much larger sets of data (more

than should be stored in a CSV file, for sure!).

So, let's add the following code that does this:

# models.py, inside CSVModel.save_record() else: # This is an

update records = self.get_all_records() records[rownum] = data

with open(self.file, 'w', encoding='utf-8') as fh: csvwriter =

csv.DictWriter(fh, fieldnames=self.fields.keys())

csvwriter.writeheader() csvwriter.writerows(records)

Once again, we leverage our get_all_records()  method to

fetch the CSV file's content into a list. We then replace the

dictionary in the requested row with the data dictionary

provided. Finally, we open the file in write mode ( w ), which

will clear its content and replace it with whatever content

we write to the file. We then write the header and all

records back to the empty file.

Note that the approach we're taking makes it unsafe for

two users to work in the same CSV file simultaneously.

Creating software that allows multiple users to edit a single

file at the same time is notoriously difficult, and many

programs simply opt to prevent it in the first place using

lock files or other protection mechanisms. In Chapter 12,

Improving Data Storage with SQL, we'll update our

program so that multiple users can use it simultaneously.

This method is finished, and that's all we need to change in

our model to enable the updating and viewing of data. Now,

it's time to add the necessary features to our GUI.

The Ttk Treeview



For users to be able to view the contents of a CSV file and

select records to edit, we'll need to implement a new view

in the application capable of displaying tabular data. This

record list view will allow our users to browse the content

of the file and open records for viewing or editing.

Our users are accustomed to seeing this data in a

spreadsheet, laid out in a table-like format, so it makes

sense to design our view in a similar fashion.

For building table-like views with selectable rows, Tkinter

gives us the Ttk Treeview widget. To build our record list

view, we'll need to learn about Treeview .

Anatomy of a Treeview

To help us explore the treeview, let's go through a few basic

terms and concepts related to the widget. A treeview is

designed to display hierarchical data; that is, data that is

organized into nodes, where each node can have exactly

one parent node and zero or more child nodes. The

following diagram shows an example of hierarchical data:



Figure 8.1: A small hierarchical data structure. Nodes 1, 2, and 3 are children

of the root, nodes 4 and 5 are children of node 1; "value" is an attribute of each

node.

The Treeview  widget displays hierarchical data in a table

format; each row of the table represents a single node,

which it calls an item. Each column of the table represents

some attribute of the node. When a node has child nodes,

those rows are displayed under their parent and can be

hidden or shown by clicking the parent row.

For example, the hierarchy pictured above in a Treeview

would look like this:



Figure 8.2: The berry hierarchy displayed in a Treeview widget Each item in a

treeview is identified by a unique item identifier (IID), and each column by a

column identifier (CID). These values are strings, and you can either assign

them manually or let the widget choose them automatically.

At the top of the treeview's columns are header widgets.

These are buttons that can display the name of each

column, and optionally run a callback when clicked.

The first column of the Treeview  widget is known as the

icon column and has a CID of #0 . It cannot be removed,

nor can its CID be altered. Typically it contains identifying

information about the item.

Building a file browser

Perhaps the best example of the kind of data we can

represent in a treeview is a filesystem tree:

Each row can represent a file or directory

Each directory can contain additional files or

directories



Each row can have additional data properties, such as

permissions, size, or ownership information

To better understand how a Treeview  widget works, let's

create a simple file browser.

Open a new file called treeview_demo.py  and start with this

template:

# treeview_demo.py import tkinter as tk from tkinter import ttk

from pathlib import Path root = tk.Tk() # Code will go here

root.mainloop()

We'll start by getting a list of all the file paths under the

current working directory. Path  has a method called glob()

that will give us such a list. Add this line just below the root

= tk.Tk()  line:

paths = Path('.').glob('**/*')

glob()  searches a file path for files or directories matching

a filesystem-matching expression. The expression can

contain wildcard characters like *  (which means "zero or

more characters") and ?  (which means "a single

character"). The name "glob" goes back to a very early Unix

command, though this same wildcard syntax is now used

across most modern operating systems' command-line

interfaces.

Path('.')  creates a path object referencing the current

working directory, and **/*  is a special wildcard syntax

that recursively grabs all objects under the path. Given that

wildcard expression, the glob()  method returns a list of the

Path  objects that include every directory and file under our

current directory.

Creating and configuring a Treeview



Now that we have some data to display, let's create a

Treeview  widget to display it, like so:

tv = ttk.Treeview( root, columns=['size', 'modified'],

selectmode='none' )

Like any Tkinter widget, the first argument to Treeview  is its

parent widget. Next, we've passed in a list of strings to the

column  argument. These are the CID values for our

columns. Note that these columns are in addition to the

default icon column, so this Treeview  widget will have 3

total columns: #0 , size , and modified .

The selectmode  argument determines how users can select

items in the tree. The different options for selectmode  are

shown here:

Value Behavior

"none" No selections can be made

"browse" User can select one item only

"extended" User can select multiple items

In this case, we're preventing selection, so we set it to none

(note that this is the string none , not a None  object).

While Tkinter will add a column for each CID value, it will

not automatically give those columns a header label. We

need to do that ourselves using the Treeview.heading()

method, like this:

tv.heading('#0', text='Name') tv.heading('size', text='Size',

anchor='center') tv.heading('modified', text='Modified',

anchor='e')



The treeview's heading()  method allows us to configure the

column heading widget; it takes the CID of the column we

wish to operate on, followed by any number of keyword

arguments to configure the header widget.

Those attributes can include:

text : The text displayed for the heading. By default, it's

blank.

anchor : The alignment of the text; it can be any of eight

cardinal directions or center , specified as strings or

Tkinter constants.

command : A callback to run when the heading is clicked.

This might be used to order the rows by that column, or

select all the values in the column, for example.

image : An image to display in the heading.

In addition to configuring the headers, we can configure

some attributes that affect the entire column using the

Treeview.column()  method.

For example:

tv.column('#0', stretch=True) 

tv.column('size', width=200) 

In this code, we've set stretch=True  in the first column,

which will cause it to expand to fill any available space.

Then we've set the width  value on the size  column to 200

pixels.

The column parameters that can be set include:

stretch : Whether or not to expand this column to fill the

available space.



width : The width of the column in pixels.

minwidth : The minimum width to which the column can

be resized, in pixels.

anchor : The alignment of the text in the column. Can be

any of eight cardinal directions or center , specified as

strings or Tkinter constants.

With the treeview configured, let's add it into the GUI, like

so:

tv.pack(expand=True, fill='both')

Populating a Treeview with data

Now that we've finished the GUI portion, our view needs to

be filled with data. Populating a Treeview  widget with data

is done one row at a time using its insert()  method.

A basic call to the insert()  method looks like this:

mytreeview.insert( parent, 'end', iid='item1', text='My Item 1',

values=['12', '42'] )

The first argument specifies the parent item for the

inserted row. This is not the parent widget, but rather the

IID of the parent node under which the inserted node

belongs in the hierarchical structure. For top-level items,

this value should be an empty string.

The next argument specifies where the item should be

inserted under its parent node with respect to its sibling

nodes. It can be either a numerical index or the string end ,

which places the item at the end of the list.

After those positional arguments, insert()  takes a number

of keyword arguments, which can include:



text : This is the value to be shown in the icon column

(CID #0 ).

values : This is a list of values for the remaining

columns. Note that we need to specify them in order.

image : This is an image object to display in the far left

of the icon column.

iid : The row's IID string. This will be automatically

assigned if you don't specify it.

open : For nodes with children, this sets if the row is

initially open (displaying child items) or not.

tags : A list of tag strings. We'll learn more about tags

when we discuss styling in Chapter 9, Improving the

Look with Styles and Themes.

To insert our file paths into the treeview, let's iterate the

paths  list as follows:

for path in paths: meta = path.stat() parent = str(path.parent)

if parent == '.': parent = ''

Before calling insert() , we need to extract and prepare

some data from the path  object. The path.stat()  method will

give us an object containing various file information, from

which we'll extract the size and modified time. path.parent

provides us with the containing path; however, we need to

change the name of the root path (currently a single dot) to

an empty string, which is how Treeview  represents the root

node.

Now, still in the for  loop, we add the insert()  method call

as follows:

tv.insert( parent, 'end', iid=str(path), text=str(path.name),

values=[meta.st_size, meta.st_mtime] )



By using the path string as the IID, we can then specify it

as a parent for its child objects. We use only the path name

(that is, the file or directory name without the containing

path) as our display value, then retrieve st_size  and

st_mtime  from the stat()  data for populating the size and

modification time columns.

Run this script and you should see a simple file tree

browser that looks something like this:

Figure 8.3: Our Treeview widget file browser running on Ubuntu Linux

Sorting Treeview records

The Treeview  widget doesn't offer any kind of sorting

functionality by default, but we can implement sorting by

adding a callback function to the column headers.



Sorting through hierarchical data of an unknown depth is a

bit tricky; to do it, we're going to write a recursive

function. A recursive function is a function that calls itself,

and they are most commonly employed when dealing with

hierarchical data of unknown depth.

Let's start by defining our function signature, like so:

def sort(tv, col, parent='', reverse=False):

This sort()  function takes a Treeview  widget, a CID string of

the column we want to sort on, an optional parent node IID,

and a Boolean value indicating if the sort should be

reversed. The default value for parent  is an empty string,

indicating the root of the hierarchy.

The first thing we're going to do is build a list of tuples,

each containing the value we want to sort on and the IID of

the row containing that value, like so:

sort_index = list() for iid in tv.get_children(parent):

sort_value = tv.set(iid, col) if col != '#0' else iid

sort_index.append((sort_value, iid))

The Treeview.get_children()  method retrieves a list of IID

strings that are immediate children of the given parent  IID.

For example, in our file browser, calling tv.get_children('')

would return a list of all the IID values for the files and

folders in the current directory (not in any sub-directories).

Once we have this list, we iterate through it and start

building a list we can sort on. To do this, we need to

retrieve the contents of the sort column for each IID.

Rather confusingly, this is done using the Treeview.set()

method. Treeview.set()  can be called with either two or

three arguments, the first two always being the IID and

CID of the cell we want to reference. If the third argument

is present, set()  will write that value to the cell. If it is



omitted, set()  will return the current value of that cell.

There is no Treeview.get()  method, so this is how we

retrieve the value of a particular cell.

However, set()  cannot be called on CID #0 , even if we only

want to retrieve the value. So we have added a check in

case the user is sorting on that column, and return the IID

instead. After obtaining the contents of the table cell, we

add it with its IID to the sort_index  list.

Now, we can sort the index:

sort_index.sort(reverse=reverse)

Because our table cell value is first in each tuple, the tuples

will be sorted on it by default. Note that we've passed in

the reverse  value, to indicate which direction the list will be

sorted in.

Now that we have a sorted list, we'll need to move each

node accordingly. Add this code next:

for index, (_, iid) in enumerate(sort_index): tv.move(iid,

parent, index)

The enumerate()  function returns a tuple containing each

item in the list with an integer indicating its index in the

list. Since each item in our list is already a tuple, we're

expanding that as well, giving us three variables: index , the

index number of the list item; _ , the sort value (which we

no longer need, so we're naming it with an underscore);

and iid .

For each item in the list, we call Treeview.move() , which

takes three arguments: the IID of the row we want to move,

the parent node to which we want to move it, and the index

under that node into which it should be inserted. This will



effectively sort the rows according to the order of the

sort_index  list.

So far, though, this has only sorted the immediate children

of our root node. Now it is time to employ recursion so that

we can sort all the child nodes; this takes only one

additional line of code:

for index, (_, iid) in enumerate(sort_index): tv.move(iid,

parent, index) sort(tv, col, parent=iid, reverse=reverse)

The last line of the for  loop calls the sort()  function again,

this time passing in the child IID as the parent, and all

other arguments the same. sort()  will continue to call itself

recursively until it reaches a node that has no children. In

the case where a node has no children, that call to sort()

will return without doing anything. In this way, all sub-

directories containing files will be individually sorted by

their own call to sort() .

To use our sort()  function, we need to bind it to our column

headers; we can do that once again by calling the

Treeview.heading()  method, like so:

for cid in ['#0', 'size', 'modified']: tv.heading(cid,

command=lambda col=cid: sort(tv, col))

Here we're looping through each of our CID values, calling

the heading()  method to add a command  argument to the

heading. We're doing this in the form of a lambda  function

with a default argument for the CID.

Why use a default argument to pass in the CID? The body of

a lambda  function is evaluated using late binding,

meaning that the value of the variables isn't established

until the moment the body is run. By that point, cid  will be

the last value in the list ( 'modified' ) no matter which

column is calling the callback. The signature of the lambda

function, however, is evaluated immediately, meaning the



default value of col  will be whatever cid  is when we

create the function.

One last fix to make to this function; typically, a sort will

reverse with a second click of the header. We can

implement this with a second set of calls to the heading()

method inside the sort()  function that will replace the

lambda  function with a reversed version.

Inside the sort()  function, add this code:

if parent == '': tv.heading( col, command=lambda col=col:

sort(tv, col, reverse=not reverse) )

Since the function is called recursively, we do not want to

call this more than once per sorting; so, we'll only run this

code for the root node, indicated by the parent  value being

a blank string. Inside that block, we reset the lambda

function on the column being sorted, this time setting

reverse  to be the opposite of its current value.

Now when you run the application, you should be able to

sort in both directions by clicking the headers of each

column.

Note that even though two of the columns contain numbers,

they are sorted in lexical order – that is, as though they

were strings, not numerical values. This is because the

values put into a Treeview  widget are implicitly converted

to strings, so the sort value returned by Treeview.set()

is a string. To sort these using a numerical sort, you would

need to cast them back to integer or float values before

sorting.

Using Treeview virtual events



To make it possible to respond to user interaction with the

Treeview  widget's items, the widget includes three virtual

events, shown in this table:

Event Generated

<<TreeviewSelect>> When the user selects an item

<<TreeviewOpen>>
When a parent item is expanded to display child

items

<<TreeviewClose>> When an open parent item is closed again

For example, we can use these events to display some

directory information in a status bar when the user opens a

directory. First, let's add a status bar to the application:

# treeview_demo.py status = tk.StringVar() tk.Label(root,

textvariable=status).pack(side=tk.BOTTOM)

Next, we'll create a callback for the event that will get

some information about the opened directory and display it:

def show_directory_stats(*_): clicked_path = Path(tv.focus())

num_children = len(list(clicked_path.iterdir())) status.set(

f'Directory: {clicked_path.name}, {num_children} children' )

When a user clicks on an item to open it, that item gains

focus, so we can use the treeview's focus()  method to get

the IID of the item that was clicked on. We've converted

that to a Path  and calculated the number of child objects in

the directory using the Path  object's iterdir()  method.

Then, we update the status  variable with that information.

Now, we can bind this callback to the appropriate virtual

events, like so:



tv.bind('<<TreeviewOpen>>', show_directory_stats)

tv.bind('<<TreeviewClose>>', lambda _: status.set(''))

In addition to binding the open event to our callback, we've

bound the close event to a lambda  function that clears the

status control variable. Now, run the demo script and click

on a directory. You should see some information show up in

the status bar. Click it again and the information goes away.

Implementing a record list

with Treeview

Now that we understand how to use the Treeview  widget,

it's time to implement a GUI that will allow us to browse

the records in the CSV file and open them for editing. Let's

take a moment to plan out what it is that we need to create:

We want to lay out the CSV data in a table structure,

similar to how it would look in a spreadsheet. This will

be a flat table, not a hierarchy.

Each table row will represent a record in the file. When

a user double-clicks the row, or highlights it and

presses Enter, we want the record form to open with

the selected record.

We don't really need to show every field in the table,

since its purpose is merely to locate records for editing.

Instead, we'll show only the rows that uniquely identify

a record to the user. Namely, those are Date , Time , Lab ,

and Plot . We can also show the CSV row number.

There isn't really a need to sort the data, so we won't

implement sorting. The point is to visualize the CSV

file, and its order shouldn't change.



To make all of this work, we'll first implement a widget,

using a treeview, to display all the records and allow the

selection of a record. Then, we'll go through the rest of the

application components and integrate the new

functionality. Let's get started!

Creating the RecordList class

We'll begin building our RecordList  class by subclassing

tkinter.Frame , just as we did with our record form:

# views.py, at the end of the file class RecordList(tk.Frame):

"""Display for CSV file contents"""

To save ourselves from some repetitious code, we'll define

our treeview's column properties and defaults as class

attributes. This will also make it easier to tweak them later

to suit our evolving needs. Add these properties to the

class:

# views.py, inside the RecordList class column_defs = { '#0':

{'label': 'Row', 'anchor': tk.W}, 'Date': {'label': 'Date',

'width': 150, 'stretch': True}, 'Time': {'label': 'Time'}, 'Lab':

{'label': 'Lab', 'width': 40}, 'Plot': {'label': 'Plot', 'width':

80} } default_width = 100 default_minwidth = 10 default_anchor =

tk.CENTER

Recall that we're going to be displaying Date , Time , Lab ,

and Plot . For the #0  column, we'll show the CSV row

number. We've also set the width  and anchor  values for

some columns and configured the Date  field to stretch .

We'll use these values when configuring the Treeview  widget

in the RecordList  class's initializer.

Moving on to the initializer method, let's begin it as follows:

# views.py, inside the RecordList class def __init__(self,

parent, *args, **kwargs): super().__init__(parent, *args,



**kwargs) self.columnconfigure(0, weight=1) self.rowconfigure(0,

weight=1)

Here, after running the superclass initializer, we've

configured the grid layout to expand the first row and first

column. This is where our Treeview  widget will be placed, so

we want it to take up any available space on the frame.

Configuring a Treeview widget

Now we're ready to create our Treeview  widget, as follows:

# views.py, inside the RecordList.__init__() method self.treeview

= ttk.Treeview( self, columns=list(self.column_defs.keys())[1:],

selectmode='browse' ) self.treeview.grid(row=0, column=0,

sticky='NSEW')

Here, we've created a Treeview  widget and added it to the

frame's layout. We've generated the columns  list by

retrieving the keys from the column_defs  dictionary and

excluding the first entry ( #0 ). Remember that #0  is

automatically created and should not be included in the

columns  list. We're also choosing the browse  selection mode

so that users can select only individual rows of the CSV file.

This will be important in the way we communicate back to

the controller.

Next, we'll configure the columns and headings of the

Treeview  widget by iterating through the column_defs

dictionary:

for name, definition in self.column_defs.items(): label =

definition.get('label', '') anchor = definition.get('anchor',

self.default_anchor) minwidth = definition.get('minwidth',

self.default_minwidth) width = definition.get('width',

self.default_width) stretch = definition.get('stretch', False)

self.treeview.heading(name, text=label, anchor=anchor)

self.treeview.column( name, anchor=anchor, minwidth=minwidth,

width=width, stretch=stretch )



For each entry in column_defs , we're extracting the

configuration values specified, then passing them to

Treeview.heading()  or Treeview.column()  as appropriate. If the

values aren't specified in the dictionary, the class default

values will be used.

Finally, we're going to set up some bindings so that double-

clicking or hitting Enter on a record will cause a record to

be opened, like so:

# views.py, in RecordList.__init__() self.treeview.bind('<Double-

1>', self._on_open_record) self.treeview.bind('<Return>',

self._on_open_record)

The event <Double-1>  refers to double-clicking mouse button

1 (that is, the left mouse button), while the <Return>  event

signifies striking the Return or Enter key (depending on

how it's labeled on your hardware). These are both bound

to an instance method called _on_open_record() . Let's go

ahead and implement that method, like so:

# views.py, in the RecordList class def _on_open_record(self,

*args): self.event_generate('<<OpenRecord>>')

Since opening a record is something that happens outside

the RecordList  class, we're simply going to generate a

custom event called <<OpenRecord>>  that our Application  class

can listen for. Of course, Application  will need to know

which record to switch to, so we'll need a way for it to

retrieve the currently selected row from the table. We'll do

this using a feature of Python classes called a property. A

class property appears to outside code to be a regular

attribute, but runs a method to determine its value

whenever it is evaluated. We could use a method here, of

course, but using a property simplifies access for code

outside the class. To create a property, we need to write a

method that takes only self  as an argument and returns a



value, then use the @property  decorator on it. We'll call our

property selected_id ; add it to the RecordList  class like so:

@property def selected_id(self): selection =

self.treeview.selection() return int(selection[0]) if selection

else None

In this method, we first retrieve a list of selected items

using the selection()  method. This method always returns a

list, even when only one item is selected (and even when

only one item can be selected). Since we only want to

return one IID, we retrieve item 0 from the list if it exists,

or None  if nothing is selected. Remember that the IID of

each row in our treeview is the CSV row number as a

string. We'll want to convert that to an integer so that the

controller can easily use it to locate the CSV record from

the model.

Adding a scrollbar for the Treeview

Since the CSV files are going to get several hundred

records long, the record list is bound to overflow the height

of the application window, even if the application is

maximized. If this should happen, it would be helpful for

users to have a scroll bar to navigate the list vertically.

The Treeview  widget does not have a scrollbar by default; it

can be scrolled using the keyboard or mouse-wheel

controls, but users would reasonably expect a scrollbar on

a scrollable area like the Treeview  to help them visualize the

size of the list and their current position in it.

Fortunately, Ttk provides us with a Scrollbar  widget that

can be connected to our Treeview  widget. Back in the

initializer, let's add one:

# views.py , in RecordList.__init__() self.scrollbar =

ttk.Scrollbar( self, orient=tk.VERTICAL,



command=self.treeview.yview )

The Scrollbar  class takes two important keyword

arguments:

orient : This argument determines whether it is a

horizontal or vertical scroll. The strings horizontal  or

vertical  can be used, or the Tkinter constants

tk.HORIZONTAL  and tk.VERTICAL .

command : This argument provides a callback for scrollbar

move events. The callback will be passed arguments

describing the scroll movement that happened.

In this case, we set the callback to the treeview's yview()

method, which is used to make the treeview scroll up and

down. (The other option would be xview() , which would be

used for horizontal scrolling.) The result is that when the

scrollbar is moved, the position data is sent to

Treeview.yview() , causing the treeview to scroll up and

down.

We also need to connect our Treeview  back to the scrollbar:

self.treeview.configure(yscrollcommand=self.scrollbar.set)

This tells the Treeview  to send its current vertical position to

the Scrollbar  widget's set()  method whenever it is scrolled.

If we don't do this, our scrollbar won't know how far down

the list we've scrolled or how long the list is, and won't be

able to set the size or location of the bar widget

appropriately.

With our Scrollbar  widget configured, we need to place it

on the frame. By convention, it should be just to the right of

the widget being scrolled, like so:

self.scrollbar.grid(row=0, column=1, sticky='NSW')



Notice we set sticky  to north, south, and west. North and

south make sure the scrollbar stretches the entire height of

the widget, and west makes sure it's snug against the

Treeview  widget to the left of it.

Populating the Treeview

Now that we have created and configured our Treeview

widget, we'll need a way to fill it with data. Let's create a

populate()  method to do this:

# views.py, in the RecordList class def populate(self, rows):

"""Clear the treeview and write the supplied data rows to it."""

The rows  argument will take a list of dictionaries, such as

what is returned from the model's get_all_records()  method.

The idea is that the controller will fetch a list from the

model and then pass it to the RecordList  via this method.

Before refilling Treeview , we need to empty it:

# views.py, in RecordList.populate() for row in

self.treeview.get_children(): self.treeview.delete(row)

To delete records from the treeview, we just need to call its

delete()  method with the IID of the row we want to delete.

Here, we've retrieved all row IIDs using get_children() , then

passed them one by one to delete() .

Now that the treeview is cleared, we can iterate through

the rows  list and populate the table:

cids = self.treeview.cget('columns') for rownum, rowdata in

enumerate(rows): values = [rowdata[cid] for cid in cids]

self.treeview.insert('', 'end', iid=str(rownum),

text=str(rownum), values=values)

The first thing we do here is create a list of all the CIDs we

actually want to fetch from each row by retrieving the



treeview's columns  value.

Next, we iterate through the provided data rows using the

enumerate()  function to generate a row number. For each

row, we'll create a list of values in the proper order using a

list comprehension, then insert the list at the end of the

Treeview  widget with the insert()  method. Notice that we're

just using the row number (converted to a string) as both

the IID and text for the first column of the row.

The last thing we need to do in this function is a small

usability tweak. To make our record list keyboard-friendly,

we need to initially focus the first item so that keyboard

users can immediately start to navigate it via the arrow

keys.

Doing this in a Treeview  widget actually takes three method

calls:

if len(rows) > 0: self.treeview.focus_set()

self.treeview.selection_set('0') self.treeview.focus('0')

First, the focus_set()  method moves focus to the Treeview

widget. Next, selection_set('0')  selects the first record in

the list (note that the string 0  is the IID of the first record).

Finally, focus('0')  focuses the row with an IID of 0 . And, of

course, we only do this if there are any rows at all; if we

called these methods on an empty Treeview , we would cause

an exception.

The RecordList  class is now complete. Now it's time to

update the rest of the application to make use of it.



Adding the record list to

the application

Now that we have a model capable of reading and updating

data, and a RecordList  widget capable of displaying the

contents of a file, we need to make changes to the rest of

the application to enable everything to work together.

Specifically, we'll have to do the following:

We'll need to update the DataRecordForm  to be suitable for

updating existing records as well as adding new ones.

We'll need to update the layout of the Application

window to accommodate the new record list.

We'll need to create new Application  callbacks to handle

loading records and navigating the application.

Finally, we'll need to update the main menu with new

options for the added functionality.

Let's get started!

Modifying the record form for read

and update

As long as we're still in views.py , let's scroll up to look at

our DataRecordForm  class and adjust it to make it capable of

loading and updating existing records.

Take a moment and consider the following changes we'll

need to make:

The form will need to keep track of what record it's

editing, or if it's a new record.



The user will need some visual indication of what

record is being edited.

The form will need some way to load in a record

provided by the controller.

Let's implement these changes.

Adding a current record property

To keep track of the current record being edited, we'll just

use an instance property. In the __init__()  method, just

above where the first LabelFrame  widget is created, add this

code:

# views.py, in DataRecordForm.__init__() self.current_record =

None

The current_record  instance attribute is initially set to None ,

which we'll use to indicate that no record is loaded and the

form is being used to create a new record. When we edit a

record, we'll update this value to an integer referencing a

row in the CSV data. We could use a Tkinter variable here,

but there's no real advantage in this case, and we wouldn't

be able to use None  as a value.

Adding a label to show what is being edited

Since the form might now be editing an existing record or a

new one, it would be helpful to the user to be able to see

what is going on at a glance. To do that, let's add a Label  to

the top of the form to display the current record being

edited, like so:

# views.py, in DataRecordForm.__init__() self.record_label =

ttk.Label(self) self.record_label.grid(row=0, column=0)



We're placing the new Label  widget in row 0 , column 0 ,

which is going to cause the other widgets to bump down

one row. This won't affect our Frame  widgets generated by

_add_frame() , since they use implicit row numbers, but our

Notes input and buttons will need to be moved. Let's

update those widgets with a new position:

# views.py, in DataRecordForm.__init__() w.LabelInput( self,

"Notes", field_spec=fields['Notes'], var=self._vars['Notes'],

input_args={"width": 85, "height": 10} ).grid(sticky="nsew",

row=4, column=0, padx=10, pady=10) buttons = tk.Frame(self)

buttons.grid(sticky=tk.W + tk.E, row=5)

Feel free to adjust the height of the Notes field if this

change pushes the bottom of the form off-screen on your

system!

Adding a load_record() method

The last thing to add to the DataRecordForm  class is a method

for loading in a new record. This method will need to

accept a row number and dictionary of data from the

controller and use them to update the current_record , the

data in the form, and the label at the top. This will be a

public method, since it will be called from the controller,

and it will begin like this:

def load_record(self, rownum, data=None): self.current_record =

rownum if rownum is None: self.reset()

self.record_label.config(text='New Record')

After updating the current_record  attribute, we check to see

if rownum  is None . Recall that this indicates we're requesting

a blank form to enter a new record. In that case, we'll call

the reset()  method and configure the label to show New

Record.



Note that our if  condition here checks specifically

whether rownum  is None ; we can't just check the truth

value of rownum , since 0 is a valid rownum  for updating!

If we do have a valid rownum , we'll need it to act differently:

else: self.record_label.config(text=f'Record #{rownum}') for key,

var in self._vars.items(): var.set(data.get(key, '')) try:

var.label_widget.input.trigger_focusout_validation() except

AttributeError: pass

In this block, we first set the label appropriately with the

row number we're editing. Then, we iterate over the form's

_vars  dictionary, retrieving matching values from the data

dictionary that was passed to the function. Finally, we

attempt to call the trigger_focusout_validation()  method on

each variable's input widget, since it's possible that the

CSV file contains invalid data. If the input has no such

method (that is, if we used a regular Tkinter widget rather

than one of our validated widgets), we just do nothing.

Our form is now ready to load data records!

Updating the application layout

We have the form ready for loading records, and we have

the record list ready to display them. We now need to

incorporate all of this into the main application. First,

though, we need to consider how we can accommodate

both forms into our GUI layout.

Back in Chapter 2, Designing GUI Applications, we listed a

few options for widgets that can help us group GUI

components and cut down on the clutter of the GUI. We

chose to use framed boxes to organize our data entry form;

could we do the same again?



A quick mockup of the idea might look something like this:

Figure 8.4: A layout of our application using side-by-side frames This could

work, but it's a lot of information on the screen at once, and the user doesn't

really need to see all of this at the same time. The Record List is primarily for

navigating, and the Data Entry form is for editing or entering data. It would

probably be better if we showed only one component at a time.

Another option for organizing these two large components

into the same GUI is the notebook. This type of widget can

switch between multiple pages in a GUI by using tabs. Ttk

offers us a Notebook  widget that implements this feature;

you've seen it before, back in Chapter 1, Introduction to

Tkinter, when we looked at the IDLE configuration dialog.

It can be seen here:



Figure 8.5: Ttk Notebook tabs in IDLE's config dialog Let's take a quick look at

the Ttk Notebook  to see how it can be used in an application.

The Ttk Notebook widget

The Notebook  widget is part of the ttk  module, so we don't

need to add any additional imports to use it. Creating one is

fairly simple, as shown here:

# notebook_demo.py import tkinter as tk from tkinter import ttk

root = tk.Tk() notebook = ttk.Notebook(root) notebook.grid()

To add pages to the widgets, we need to create some child

widgets. Let's create a couple of Label  widgets with some

informative content:

banana_facts = [ 'Banana trees are of the genus Musa.', 'Bananas

are technically berries.', 'All bananas contain small amounts of

radioactive potassium.' 'Bananas are used in paper and textile

manufacturing.' ] plantain_facts = [ 'Plantains are also of genus

Musa.', 'Plantains are starchier and less sweet than bananas',

'Plantains are called "Cooking Bananas" since they are' ' rarely

eaten raw.' ] b_label = ttk.Label(notebook,

text='\n\n'.join(banana_facts)) p_label = ttk.Label(notebook,

text='\n\n'.join(plantain_facts))

Here, we've created a couple of labels to be pages in our

notebook. Typically your notebook page widgets would

probably be Frame  objects or subclasses like our RecordList

or DataRecordForm  components, but any widget can be used.

Rather than use a geometry manager to place these

components in the notebook, we instead use the widget's

add()  method, like so:

notebook.add(b_label, text='Bananas', padding=20)

notebook.add(p_label, text='Plantains', padding=20)



The add()  method creates a new page containing the given

widget at the end of the notebook. If we wanted to insert

the page somewhere other than the end, we could also use

the insert()  method, like so:

notebook.insert(1, p_label, text='Plantains', padding=20)

This method is identical, except that it takes an index

number as the first argument. The page will be inserted at

that index.

Both methods take a number of keyword arguments to

configure the page and its tab, shown here:

Argument Values Description

text String
The text shown on the label. By default,

tabs are blank.

padding Integer
Padding in pixels to add around the widget

on the page.

sticky
Cardinal values

( N , S , E , W )

Where to stick the widget on the notebook

page. NSEW  by default.

underline Integer
Index of a letter in the text  to bind for

keyboard traversal.

image
Tkinter

Photoimage

An image to display on the tab. See

Chapter 9, Improving the Look with Styles

and Themes.

compound

LEFT , RIGHT ,

CENTER , TOP ,

BOTTOM

If both text and image are specified, where

to display the image in relation to the text.



The underline  option is one we've seen before on other

widgets (see Chapter 3, Creating Basic Forms with Tkinter

and Ttk Widgets); however, in the ttk.Notebook  widget, the

option actually sets up a keyboard binding when we use it.

Let's try that out on our example notebook:

notebook.tab(0, underline=0) notebook.tab(1, underline=0)

The tab()  method, similar to a widget's config()  method,

allows us to change configuration options on the tab after

we've already added it.

In this case, we're specifying underline=0  for both tabs,

meaning the first letter of each tab's text  string will be

underlined. In addition, a keybinding will be created so that

the key combination of Alt plus the underlined letter will

switch to the matching tab. For example, in our application,

we underlined letter 0 in the tab labeled Banana, so Alt-B

will switch to that tab; we also underlined letter 0 in the

tab labeled Plantain, so Alt-P will switch to the Plantain

tab.

In addition to these bindings, we can enable general

keyboard traversal of the notebook by calling its

enable_traversal()  method, like so:

notebook.enable_traversal()

If this method is called, Control-Tab will cycle through the

tabs from left to right, and Shift-Control-Tab will cycle

through them right to left.

Our code may sometimes need to select a tab; for this, we

can use the select()  method, like so:

notebook.select(0)



In this case, we're passing in the integer 0 , which indicates

the first tab. We could also pass in the name of the widget

contained by the tab, like this:

notebook.select(p_label)

This works for the tab()  method as well, and any method

that requires a tab ID.

The Notebook  widget has a <<NotebookTabChanged>>

virtual signal that is generated whenever the user changes

tabs. You might use this to refresh pages or display help

messages, for example.

Now that we're familiar with the notebook, let's

incorporate one into our application.

Adding a notebook to our application

To add a Notebook  widget to our layout, we'll need to create

one in Application.__init__()  before we create the

DataRecordForm  and RecordList  widgets. Open the

application.py  file and locate the lines that currently create

the DataRecordForm  object, and let's create a notebook just

above them, like so:

# application.py, in Application.__init__() self.notebook =

ttk.Notebook(self) self.notebook.enable_traversal()

self.notebook.grid(row=1, padx=10, sticky='NSEW')

Note that we're enabling keyboard traversal for our

keyboard-only users, and sticking the widget to all sides of

the grid. Now, update the lines that create the record form

as follows:

self.recordform = v.DataRecordForm( self, self.model,

self.settings ) self.recordform.bind('<<SaveRecord>>',

self._on_save) self.notebook.add(self.recordform, text='Entry

Form')



Here, we've simply removed the call to

self.recordform.grid()  and replaced it with

self.notebook.add() . Next, let's create an instance of the

RecordList  class and add it to the notebook:

self.recordlist = v.RecordList(self) self.notebook.insert(0,

self.recordlist, text='Records')

Although we're adding the RecordList  widget second, we'd

like it to display first; so, we're using insert()  to add it to

the beginning of the tab list. That completes adding our

pages, but let's start adding the necessary callbacks to

make them work.

Adding and updating application

callbacks

To bring all of these new widgets together in a functional

way, we need to create a few callback methods on the

Application  object that will allow the application to get the

user and the data to appropriate areas of the GUI when

required. Specifically, we need to create four methods:

A _show_recordlist()  method we can use to display the

record list when required

A _populate_recordlist()  method we can call to

repopulate the record list from file data

A _new_record()  method that we can use to switch to a

new, empty record

An _open_record()  method we can call to load a

particular record into the form from the record list

We also need to fix the Application._on_save()  method to

make sure it's passing the model all the information



necessary for both updating existing records and creating

new records.

Let's go through each method, creating or updating the

method and binding or calling it where appropriate.

The _show_recordlist() method

The first method we'll write is _show_recordlist() . This

method is fairly simple, as you can see:

# application.py, in the Application class def

_show_recordlist(self, *_): self.notebook.select(self.recordlist)

It's almost not worth writing such a simple method, but by

having this as a method we can easily bind it as a callback

without resorting to a lambda  function. Note that we could

have written this as self.notebook.select(0) , but passing the

widget reference is more explicit about our intentions.

Should we decide to switch the order of the tabs, this

method will continue to work without alteration.

One place we'll want to bind this callback is in our main

menu. Back in the initializer for Application , let's add this

method to our dictionary of callback functions, like so:

# application.py, in Application.__init__() event_callbacks = {

#... '<<ShowRecordlist>>': self._show_recordlist }

We'll add the necessary code for the menu itself in the next

section. One other place we ought to call this method is at

the end of __init__() , to ensure that the record list is

displayed when the user opens the program. Add this at the

end of Application.__init__() :

# application.py, at the end of Application.__init__()

self._show_recordlist()



The _populate_recordlist() method

The _populate_recordlist()  method needs to retrieve data

from the model and hand it to the record list's populate()

method. We could write it like so:

def _populate_recordlist(self): rows =

self.model.get_all_records() self.recordlist.populate(rows)

However, remember that CSVModel.get_all_records()  can

potentially raise an Exception  if there are problems with the

data in the file. It's the controller's responsibility to catch

that exception and take appropriate action, so we'll write

the method like this instead:

# application.py, in the Application class def

_populate_recordlist(self): try: rows =

self.model.get_all_records() except Exception as e:

messagebox.showerror( title='Error', message='Problem reading

file', detail=str(e) ) else: self.recordlist.populate(rows)

In this version, if we get an exception from

get_all_records() , we'll display its message in an error

dialog. It will then be up to the user to deal with that issue.

Now that we have this method, when should it be called?

To begin with, it should be called whenever we select a new

file to work with; so, let's add a call to it at the end of

_on_file_select() , like so:

def _on_file_select(self, *_): # ... if filename: self.model =

m.CSVModel(filename=filename) self._populate_recordlist()

In addition, we need to populate the list whenever we open

the program, since it will automatically load the default file.

Let's add a call to this method in the initializer just after

creating the record list widget, as follows:

# application.py, in Application.__init__() self.recordlist =

v.RecordList(self) self.notebook.insert(0, self.recordlist,

text='Records') self._populate_recordlist()



Finally, whenever we save a record, this should also update

the record list, since the new record will have been added

to the file. We need to add a call to the method in

_on_save() , like this:

# application.py, in Application._on_save() def _on_save(self,

*_): #... self.recordform.reset() self._populate_recordlist()

Now our record list should stay in sync with the state of the

file we're working on.

The _new_record() method

Next, we need a method that can open the data record form

for the entry of a new record. Remember that our

DataRecordForm.load_record()  method can take None  as

arguments for the record number and data, indicating that

we want to work on a new record, so we just need to write

a callback that will do this.

Add this method to Application :

# application.py, in the Application class def _new_record(self,

*_): self.recordform.load_record(None)

self.notebook.select(self.recordform)

After calling load_record()  to prepare the form for a new

record entry, we switch the notebook to the record form

using notebook.select() . To enable users to call this method,

we'll create a menu entry, so we'll need to add another

entry to the event_callbacks  dictionary.

In Application.__init__() , update the dictionary as follows:

# application.py, in Application.__init__() event_callbacks = {

#... '<<NewRecord>>': self._new_record }

We'll add the necessary code to the menu in the next

section.



The _open_record() method

Next, we need to write a callback method that will open an

existing record when the user selects one from the record

list. Add this method to the Application  class:

# application.py, in the Application class def _open_record(self,

*_): """Open the selected id from recordlist in the recordform"""

rowkey = self.recordlist.selected_id try: record =

self.model.get_record(rowkey) except Exception as e:

messagebox.showerror( title='Error', message='Problem reading

file', detail=str(e) ) else: self.recordform.load_record(rowkey,

record) self.notebook.select(self.recordform)

Remember that the RecordList  object updates its selected_id

property whenever a record is double-clicked or activated

with the Enter key. We're retrieving this ID number and

passing it to the model's get_record()  method. Because

get_record()  calls get_all_records() , it can also potentially

raise an exception if there is a problem with the file.

Therefore, just as we did in _populate_recordlist() , we're

catching the exception and displaying its message to the

user in the case of problem.

If there's no problem, we've retrieved the data, and we

need only pass the row number and dictionary of data to

the form's load_record()  method. Last of all, we call

notebook.select()  to switch to the record form view.

This callback needs to be called whenever the user chooses

a file from the record list. Remember that we have written

our RecordList  objects to generate an <<OpenRecord>>  event

whenever this happens. Back in the application's initializer

method, we need to set up a binding to this event.

Back in Application.__init__() , add this binding just after

creating the RecordList  widget, like so:

# application.py, inside Application.__init__()

self.notebook.insert(0, self.recordlist, text='Records')



self._populate_recordlist()

self.recordlist.bind('<<OpenRecord>>', self._open_record)

Now a double-click or Enter keypress will open the selected

record in the form.

The _on_save() method

Finally, now that our model can handle updating existing

records, we need to alter the call that we make to the

model's save_record()  method to make sure we're passing in

all the information it needs to either update an existing

record or insert a new one. Recall that we updated

save_record()  to take a rownum  argument. When this value is

None , a new record is added; when it is an integer, the

indicated row number is updated.

In Application._on_save() , update the code as follows:

# application.py, inside Application._on_save() data =

self.recordform.get() rownum = self.recordform.current_record

self.model.save_record(data, rownum)

Recall that the record form object's current_record  holds the

value of the current row being edited, or None  if it is a new

record. We can pass that value directly on to the model's

save()  method, ensuring that the data is saved to the

proper place.

Main menu changes

The last change we need to make to our application is

updating the main menu with the new options for

navigating the application; specifically, we need to add a

command for adding a new file, and a command for going

back to the record list. Remember that the Application



object has bound callbacks for these operations to the

<<ShowRecordlist>>  and <<NewRecord>>  events, respectively.

There isn't really a standard location for commands that

navigate around the application, so we'll create a new sub-

menu called Go. Open the mainmenu.py  file, and let's add a

new sub-menu in the initializer method:

# mainmenu.py, inside MainMenu.__init__() go_menu = tk.Menu(self,

tearoff=False) go_menu.add_command( label="Record List",

command=self._event('<<ShowRecordlist>>') ) go_menu.add_command(

label="New Record", command=self._event('<<NewRecord>>') )

Here, we've added a new sub-menu widget and added our

two navigation commands, once again taking advantage of

the _event()  method, which gives us a reference to a

method that generates the given event. Now add the Go

menu between the File and Options menus, like so:

# mainmenu.py, at the end of MainMenu.__init__()

self.add_cascade(label='File', menu=file_menu)

self.add_cascade(label='Go', menu=go_menu)

self.add_cascade(label='Options', menu=options_menu)

Testing our program

At this point, you should be able to run the application and

load in a sample CSV file as shown in the following

screenshot:



Figure 8.6: Selecting an existing file for writing with our new menu and record

list Make sure to try opening a record, editing and saving it, as well as

inserting new records and opening different files. You should also test the

following error conditions:

Try opening a file that isn't a CSV file, or a CSV with

incorrect fields. What happens?

Open a valid CSV file, select a record for editing, then,

before clicking Save, select a different or empty file.

What happens?

Open two copies of the program and point them to the

saved CSV file. Try alternating edit or update actions

between the programs. Note what happens.

Consider how you might address some of these issues; in

some cases it may not be possible, and users will just have

to be informed of the limitations. Also, if possible, try the

last test on different operating systems. Are the results

different?



Summary

We have changed our program from being an append-only

data entry form to an application capable of loading,

viewing, and updating data from existing files. In the

process, you learned how to update our model so that it

could read and update CSV files. You also explored the

Treeview  widget, including its basic use, virtual events, and

column callbacks. You explored using the Treeview  widget

with hierarchical data structures by creating a file-

browsing tool. You learned how to organize multi-form

applications using a Notebook  widget, and how to create

scrolling interfaces using the Scrollbar  widget. Finally, you

integrated these concepts into the ABQ Data Entry

application to address user needs.

In our next chapter, we'll be learning how to modify the

look and feel of our application. We'll learn about using

widget attributes, styles, and themes, as well as working

with bitmapped graphics.



9

Improving the Look with Styles and Themes

While programs can be perfectly functional with plain text

in shades of black, white, and gray, the subtle use of colors,

fonts, and images can enhance the visual appeal and

usability of even the most utilitarian applications. Your data

entry application is no exception, and the current round of

requests brought to you by your coworkers seems to

require some retooling of the application's look and feel.

Specifically, you've been asked to address these points:

Your manager has informed you that ABQ's corporate

policy requires the company logo to be displayed on all

in-house software. You've been provided with a

corporate logo image to include in the application.

The data entry staff have some readability issues with

the form. They want more visual distinction between

the sections of the form and more visibility for error

messages.

The data entry staff have also requested that you

highlight records they've added or updated during a

session to help them keep track of their work.

In addition to the user's requests, you'd like to make your

application look more professional by adding some icons to

your buttons and menu.

In this chapter, we're going to learn about some features of

Tkinter that will help us to solve these issues:



In Working with images in Tkinter, we'll learn how to

add pictures and icons to our Tkinter GUI.

In Styling Tkinter widgets, we'll learn how to adjust the

colors and visual style of Tkinter widgets, both directly

and using tags.

In Working with fonts in Tkinter, we'll learn the ins and

outs of using fonts in Tkinter.

In Styling Ttk widgets, we'll learn how to adjust the

look of Ttk widgets using styles and themes.

Working with images in

Tkinter

To solve the corporate logo issue and spruce up our

application with some icons, we're going to need to

understand how to work with images in Tkinter. Tkinter

provides access to image files through two classes: the

PhotoImage  class and the BitmapImage  class. Let's see how

these classes can help us add graphics to our application.

Tkinter PhotoImage

Many Tkinter widgets, including Label  and Button , accept

an image  argument that allows us to display an image on

the widget. This argument requires that we create and pass

in a PhotoImage  (or BitmapImage ) object.

Making a PhotoImage  object is fairly simple:

myimage = tk.PhotoImage(file='my_image.png')



PhotoImage  is typically called with the keyword argument

file , which is pointed to a file path. Alternatively, you can

use the data  argument to point to a bytes  object containing

image data. In either case, the resulting object can now be

used wherever an image  argument is accepted, such as in a

Label  widget:

mylabel = tk.Label(root, image=myimage)

Note that if we pass both an image  and text  argument to

the Label  initializer, only the image will be displayed by

default. To display both, we need to also provide a value for

the compound  argument, which determines how the image

and text will be arranged with respect to one another. For

example:

mylabel_1 = tk.Label(root, text='Banana', image=myimage)

mylabel_2 = tk.Label( root, text='Plantain', image=myimage,

compound=tk.LEFT )

In this situation, the first label would only show the image ;

the text  will not be displayed. In the second, since we have

specified a compound  value of tk.LEFT , the image  will be

displayed to the left of the text . compound  can be any of

LEFT , RIGHT , BOTTOM , or TOP  (either lowercase strings or the

Tkinter constants), and indicates where the image will be

placed in relation to the text.

PhotoImage and variable scope

When using a PhotoImage  object, it is critical to remember

that your application must retain a reference to the object

that will stay in scope for as long as the image is shown;

otherwise, the image will not appear. To understand what

this means, consider the following example:

# image_scope_demo.py import tkinter as tk class App(tk.Tk): def

__init__(self): super().__init__() smile =



tk.PhotoImage(file='smile.gif') tk.Label(self,

image=smile).pack() App().mainloop()

If you run this example, you'll notice that no image gets

displayed. That's because the variable holding the

PhotoImage  object, smile , is a local variable, and therefore

destroyed as soon as the initializer returns. With no

reference remaining to the PhotoImage  object, it is discarded

and the image vanishes, even though we've packed it into

the layout.

Let's fix our script by making a simple change:

def __init__(self): super().__init__() self.smile =

tk.PhotoImage(file='smile.gif') tk.Label(self,

image=self.smile).pack()

In this case, we've stored the PhotoImage  object in an

instance variable, self.smile . Instance variables continue to

exist until the object itself is destroyed, so the picture

remains on the screen.

Using Pillow for extended image

support

Image support in Tkinter is limited to GIF, PGM, PPM, and

PNG files. If you're merely adding logos and icons to a GUI,

these formats are probably sufficient, but for more

graphics-heavy scenarios, the absence of such common

formats as JPEG, SVG, and WebP becomes quite limiting. If

you need support for any of these formats, you can use the

Pillow  library.

Pillow  is not part of the standard library, nor shipped with

most Python distributions. To install it, follow the

instructions at https://python-pillow.org; though in

https://python-pillow.org/


most cases, you can simply enter the following at a

terminal:

$ pip install -U pillow

This will install Pillow  from the Python Package Index

(PyPI). Pillow provides us with a class called ImageTk , which

we can use to create PhotoImage  objects from a wide range

of image file formats. To see how it works, let's build a

small Tkinter-based image viewer with filters.

Open a new file called image_viewer_demo.py  and start with the

following code:

# image_viewer_demo.py import tkinter as tk from tkinter import

ttk from tkinter import filedialog from PIL import Image,

ImageTk, ImageFilter

Note that Pillow  is imported as PIL . Pillow is actually a

fork of a discontinued project called PIL  (Python Imaging

Library). For backward compatibility, it continues to use

the PIL  module name. From PIL  we're importing the Image

class, which is used to load images; the ImageTk  class, which

is used to convert Pillow Image  objects for use in Tkinter;

and ImageFilter , which will provide some filters for

transforming our images.

Next, let's create our main application class for this app,

PictureViewer :

class PictureViewer(tk.Tk): def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs) self.title('My Image Viewer')

self.geometry('800x600') self.rowconfigure(0, weight=1)

self.columnconfigure(0, weight=1)

This class begins by subclassing Tk , just as we did in our

ABQ application, and the initializer starts with some basic

window and grid layout configuration. Next, we'll create

the GUI elements, like so:



self.image_display = ttk.Label(self)

self.image_display.grid(columnspan=3) ttk.Button( self,

text='Select image', command=self._choose_file ).grid(row=1,

column=0, sticky='w')

So far, we just have a Label  widget for displaying the image

and a Button  widget bound to an instance method,

self._choose_file() . Let's create that method, like so:

def _choose_file(self): filename = filedialog.askopenfilename(

filetypes=( ('JPEG files', '*.jpg *.jpeg *.JPG *.JPEG'), ('PNG

files', '*.png *.PNG'), ('All files', '*.*') )) if filename:

self.image = Image.open(filename) self.photoimage =

ImageTk.PhotoImage(self.image)

self.image_display.config(image=self.photoimage)

This method starts by asking the user for the filename with

the filedialog.askopenfilename()  method we learned about in

Chapter 7, Creating Menus with Menu and Tkinter Dialogs.

If the user selects a file, we call the Image.open()  method to

create a Pillow Image  object from the file. Image.open()  is a

convenience method that simply takes a filename or path

and returns an Image  object containing that file's image

data. Next, we create a Tkinter PhotoImage  object by passing

the Image  object to ImageTk.PhotoImage() . Finally, we update

our image_display  widget with the new PhotoImage  object.

Using this approach, you can display a much wider variety

of image formats in Tkinter — Pillow has full read support

for over 40 different formats! However, Pillow offers far

more than just image format conversions. We can also use

it to edit or transform our images in a variety of ways. For

example, we can apply filtering to our Pillow Image  objects.

Let's add this feature to the demo application.

Back up in PictureViewer.__init__() , add the following GUI

code:

self.filtervar = tk.StringVar() filters =[ 'None', 'BLUR',

'CONTOUR', 'DETAIL', 'EDGE_ENHANCE', 'EDGE_ENHANCE_MORE',



'EMBOSS', 'FIND_EDGES', 'SHARPEN', 'SMOOTH', 'SMOOTH_MORE' ]

ttk.Label(self, text='Filter: ').grid( row=1, column=1,

sticky='e' ) ttk.OptionMenu( self, self.filtervar, 'None',

*filters ).grid(row=1, column=2)

self.filtervar.trace_add('write', self._apply_filter)

The filters  list contains the names of all the filter objects

Pillow provides that we can apply to an Image  object (these

can be found in the Pillow  documentation). We've added all

these to an OptionMenu  along with the string None . The

OptionMenu  widget is then bound to the filtervar  control

variable, on which we've added a trace that calls the

_apply_filter()  method.

The _apply_filter()  method looks like this:

def _apply_filter(self, *_): filter_name = self.filtervar.get()

if filter_name == 'None': self.filtered_image = self.image else:

filter_object = getattr(ImageFilter, filter_name)

self.filtered_image = self.image.filter(filter_object)

self.photoimage = ImageTk.PhotoImage(self.filtered_image)

self.image_display.config(image=self.photoimage)

First, this method retrieves the filter name from the control

variable. If it's None , we set self.filtered_image  to the

current self.image  object. Otherwise, we retrieve the filter

object from the ImageFilter  module using getattr()  and

apply the filter to our Pillow Image  object using its filter()

method.

Finally, we update the displayed image in the application by

creating a new PhotoImage  object and updating the

configuration of the Label  widget.

To see this program in action, add the last two lines to the

script:

app = PictureViewer() app.mainloop()

You should see something that looks like this:



Figure 9.1: The image viewer application, filtering the Mona Lisa Now that we

have a handle on using images in Tkinter, let's apply this knowledge to the ABQ

Data Entry application.

Adding the company logo to ABQ

Data Entry

With our knowledge of PhotoImage , adding the company logo

to our program should be simple. We've been provided with



several PNG files of the company logo in different sizes.

You could simply copy one into the application root

directory and add something like this to the Application

class's initializer:

# application.py, in Application.__init__() self.logo =

tk.PhotoImage(file='abq_logo_32x20.png') ttk.Label( self,

text="ABQ Data Entry Application", font=("TkDefaultFont", 16),

image=self.logo, compound=tk.LEFT ).grid(row=0)

In this snippet, we've created a PhotoImage  object from a file

path, storing it as an instance variable so it does not go out

of scope. Then, we've assigned this object to the image

argument of the application's title label, also adding the

compound  argument so that the image is displayed to the left

of the text.

If you run the application from a terminal inside the

application root directory, this approach works fine.

However, if you run it from any other directory, the image

won't appear. For example, try this from the command line

in the directory containing your root:

$ cd ABQ_Data_Entry $ python3 abq_data_entry.py # the image will

show when you run it this way. $ cd .. $ python3

ABQ_Data_Entry/abq_data_entry.py # the image will not show this

way.

Why is this, and what can we do about it?

Dealing with the image path problem

When you give Python only a filename (with no path) to

open, it assumes the file is in the current working

directory. This is the directory the user was in when

running the application. In the example above, when we

ran the program the first time, our working directory was

the application's root directory. The image was in that



directory, so Python found it. The second time we ran it,

our working directory was the parent directory of the

application root. Python looked for the image in that

directory, and it wasn't found.

If you know where your file is on the system, you can

provide an absolute path; for example, if you're on

Windows 10 and the application root is on your home

directory, you could do this:

self.logo = tk.PhotoImage(

file=r'C:\Users\myuser\ABQ_Data_Entry\abq_logo_32x20.png' )

The problem, though, is that this reference would break if

we put the code anywhere else on the system. Remember,

as well, that our application needs to run on Linux and

Windows, so providing an absolute path like this won't

work across different platforms.

The r  in front of the path string above makes it a raw

string. When a string is marked as raw, Python does not

interpret backslash escape sequences in the string. This

makes raw strings useful for file paths on Windows, which

uses the backslash for a path separator. See Chapter 10,

Maintaining Cross-Platform Compatibility, for more details

on solving cross-platform path issues.

A more robust approach is to provide a relative path from

some known point. Every Python script has access to a

variable called __file__ , which is a string containing the

path to the script file. We can use this variable in

conjunction with the pathlib  module to locate files inside

our application root directory.

For example, we could rewrite our PhotoImage  object's

configuration like this:



self.logo = tk.PhotoImage( Path(__file__).parent.parent /

'abq_logo_32x20.png' )

Since we are in application.py , __file__  points to

ABQ_Data_Entry/abq_data_entry/application.py . We can use this

reference point to find the parent of the parent directory,

where the image files are located. This will enable Python

to successfully find the images no matter what the current

working directory is.

This approach is functionally acceptable, but it's rather

cluttered and clumsy to do these kinds of path

manipulation every time we need to access an image file.

Let's employ some of our organizational skills from Chapter

6, Planning for the Expansion of Our Application, to put the

images in their own module.

Under the abq_data_entry  directory, create a new directory

called images , and place within it an appropriately sized

PNG file that we can use in our application (the image in

the example code has an 8x5 aspect ratio, so in this case,

we're using 32x20).

Next, create an __init__.py  file inside the images  folder, in

which we'll add the following code:

# images/__init__.py from pathlib import Path IMAGE_DIRECTORY =

Path(__file__).parent ABQ_LOGO_16 = IMAGE_DIRECTORY / 'abq_logo-

16x10.png' ABQ_LOGO_32 = IMAGE_DIRECTORY / 'abq_logo-32x20.png'

ABQ_LOGO_64 = IMAGE_DIRECTORY / 'abq_logo-64x40.png'

In this case, __file__  points to

ABQ_Data_Entry/abq_data_entry/images/__init__.py , so we can use

that point of reference to get paths to all the image files we

put in ABQ_Data_Entry/abq_data_entry/images/ .

Now, our application.py  module can import the images

module like this:



# application.py, at the top from . import images

Once imported, we can reference the image paths for our

PhotoImage  object easily:

# application.py, inside Application.__init__() self.logo =

tk.PhotoImage(file=images.ABQ_LOGO_32) ttk.Label( self, text="ABQ

Data Entry Application", font=("TkDefaultFont", 16),

image=self.logo, compound=tk.LEFT ).grid(row=0)

Now, regardless of what working directory you run the

script from, you should see the title looking something like

this:

Figure 9.2: The ABQ Data Entry application sporting a company logo

Setting a window icon

Currently, our application's window icon (the icon that

shows up in both the window decorations and in the

operating system's taskbar) is the Tkinter logo, which is the

default for any Tkinter application. It would make more

sense for us to use the company logo image for this icon.

How can we make this happen?

As a subclass of Tk , our Application  object has a method

called iconphoto()  which should, given a path to an icon file,

set the window icon appropriately. Unfortunately, this

method is a bit inconsistent in its results across platforms.

Let's go ahead and add it to our initializer as follows and

see what happens. Add this code just after the call to

super().__init__() :



# application.py, inside Application.__init__() self.taskbar_icon

= tk.PhotoImage(file=images.ABQ_LOGO_64) self.iconphoto(True,

self.taskbar_icon)

The first line creates another PhotoImage  object, referencing

a larger version of the logo. Next, we execute

self.iconphoto() . The first argument indicates whether we

want this icon to be the default across all new windows, or

whether it's only for this window. Passing True  here makes

it the default for all. The second argument is our PhotoImage

object.

Now, when you run the application, you should see an ABQ

icon being used as the window icon; how it is used depends

on the platform. For example, on Windows, it shows up in

the window decorations, as seen here:

Figure 9.3: The ABQ logo as a taskbar icon Here's a summary of how the

iconphoto  is used on different platforms:

On Linux, it will depend on your desktop environment,

but typically, it will show up in both the taskbar or dock

and on the window decorations

On macOS, it will show up as the icon in the dock, but

not in the global menu or on the window itself

On Windows 10, it will appear on the window

decorations, but not on the taskbar

Part of the reason for this inconsistency is that our

application is a script being executed by Python, so from

the operating system's point of view, the program we're

running isn't ABQ Data Entry, but rather Python. For that



reason, you may see the Python logo appearing instead of

the ABQ logo on your platform. We'll address this further

when we package our application in Chapter 16, Packaging

with setuptools and cxFreeze .

Adding icons to buttons and menus

While not required by the users or company, you feel your

application would look a little more impressive with some

simple icons accompanying the text on your buttons and

menu items. Unfortunately, Tkinter does not ship with any

icon themes, nor is it able to access the operating system's

built-in icon themes. So, in order to use icons, we'll have to

first acquire some PNG or GIF images to use. These can be

acquired from a number of sources online or, of course, you

can create your own.

The example code comes with some icons taken from the

Open-Iconic project, which features a large selection of

standard application icons released under an MIT license.

You can find this project at https://useiconic.com/open.

Assuming you have obtained some icon files, let's add them

to the images  folder and then update images/__init__.py  as

follows:

SAVE_ICON = IMAGE_DIRECTORY / 'file-2x.png' RESET_ICON =

IMAGE_DIRECTORY / 'reload-2x.png' LIST_ICON = IMAGE_DIRECTORY /

'list-2x.png' FORM_ICON = IMAGE_DIRECTORY / 'browser-2x.png'

Here, we've added images for the Save and Reset buttons,

as well as images to represent the Record List and Data

Entry Form portions of the GUI. We can now begin adding

these to our application; for example, let's add them to the

https://useiconic.com/open


buttons in the DataRecordForm  frame. Start by importing

images  into views.py , like so:

# views.py, at the top from . import images

Now, in the initializer, let's update the buttons in the

DataRecordForm  with image icons:

# views.py, inside DataRecordForm.__init__()

self.save_button_logo = tk.PhotoImage(file=images.SAVE_ICON)

self.savebutton = ttk.Button( buttons, text="Save",

command=self._on_save, image=self.save_button_logo,

compound=tk.LEFT ) #... self.reset_button_logo =

tk.PhotoImage(file=images.RESET_ICON) self.resetbutton =

ttk.Button( buttons, text="Reset", command=self.reset,

image=self.reset_button_logo, compound=tk.LEFT )

Now, the form should look something like this:

Figure 9.4: The buttons in the Data Record Form, now with icons Remember

that we can also add images to the Notebook  widget's tabs. Back in

application.py , locate the code in __init__()  that creates the notebook

tabs and let's update it as follows:

# application.py, inside Application.__init__() self.recordform_icon =

tk.PhotoImage(file=images.FORM_ICON) self.recordform = v.DataRecordForm( self,

self.model, self.settings ) self.notebook.add( self.recordform, text='Entry Form',

image=self.recordform_icon, compound=tk.LEFT ) #... self.recordlist_icon =

tk.PhotoImage(file=images.LIST_ICON) self.recordlist = v.RecordList(self)

self.notebook.insert( 0, self.recordlist, text='Records', image=self.recordlist_icon,

compound=tk.LEFT )

It's as simple as adding an image  argument to the

notebook's add()  and insert()  method calls. As with buttons

and labels, be sure to include the compound  argument, or

else only the icon will be displayed. Now, when we run the

application, the tabs should look like this:



Figure 9.5: The notebook tabs with icons As you can see, the workflow for

using the icons is fairly consistent:

1. Create a PhotoImage  object, making sure a reference to it

will stay in scope.

2. Pass the object to the image  argument of the widget you

want it to appear on.

3. Pass the widget's compound  argument to specify the

layout for widgets that will display both text and the

image.

Rather than creating an individual class attribute for every

icon, you may find it more efficient to store them in a

dictionary object. For example, we should do this in the

MainMenu  class, where we'll need a lot of icons. Import

images  into mainmenu.py , just as you did in the other two files,

and let's create a new _create_icons()  instance method in

MainMenu , as follows:

# mainmenu.py, in the MainMenu class def _create_icons(self):

self.icons = { 'file_open': tk.PhotoImage(file=images.SAVE_ICON),

'record_list': tk.PhotoImage(file=images.LIST_ICON),

'new_record': tk.PhotoImage(file=images.FORM_ICON), }

Here, we're using an instance method to create a

dictionary of PhotoImage  objects and storing it as an instance

attribute, self.icons . You might wonder why we don't

create MainMenu.icons  as a class attribute, similar to the

fields  dictionaries we created for our models.



The reason is that PhotoImage  objects, like all Tkinter

objects, cannot be created until an instance of Tk  has been

created (in our case, the Application  object).

Class definitions, and therefore class attributes, are

executed by Python before the main thread of execution

begins, so there would be no Application  object when this

class is defined.

We can call this method inside the initializer to make sure

self.icons  is populated before we define the menu; add that

code like so:

# mainmenu.py, inside the MainMenu class def __init__(self,

parent, settings, **kwargs): super().__init__(parent, **kwargs)

self.settings = settings self._create_icons()

Now, each menu item can access its PhotoImage  object via

the dictionary, as follows:

# mainmenu.py, inside MainMenu.__init__() file_menu.add_command(

label="Select file…", command=self._event('<<FileSelect>>'),

image=self.icons['file_open'], compound=tk.LEFT ) #...

go_menu.add_command( label="Record List",

command=self._event('<<ShowRecordlist>>'),

image=self.icons['record_list'], compound=tk.LEFT )

go_menu.add_command( label="New Record",

command=self._event('<<NewRecord>>'),

image=self.icons['new_record'], compound=tk.LEFT )

Now our menu boasts some professional-looking icons, as

shown here:

Figure 9.6: The Go menu, with some nice icons



Using BitmapImage

Using PhotoImage  with PNG files is more than sufficient for

our application, but there is one other option for images in

Tkinter that bears mentioning: BitmapImage . The BitmapImage

object is similar to PhotoImage , but works exclusively with

XBM (X11 Bitmap) files. This is a very old image format

that only allows for monochromatic images. Despite being

monochromatic, XBM images are not compressed, and

therefore not smaller than PNG files of equivalent size. The

only real advantage to a BitmapImage  object is that we can

tell Tkinter to render it with any colors we wish.

To see how this works, let's add a few XBM files to our

images  module; copy in some XBM files and then add them

to __init__.py , like so:

QUIT_BMP = IMAGE_DIRECTORY / 'x-2x.xbm' ABOUT_BMP =

IMAGE_DIRECTORY / 'question-mark-2x.xbm'

Some XBM files are included in the sample code;

alternatively, you can convert your own image files to XBM

using image editing software like the GNU Image

Manipulation Program from https://www.gimp.org.

Now, back in mainmenu.py , let's add them to our icons

dictionary, as follows:

# mainmenu.py, in MainMenu._create_icons() self.icons = { #...

'quit': tk.BitmapImage( file=images.QUIT_BMP, foreground='red' ),

'about': tk.BitmapImage( file=images.ABOUT_BMP,

foreground='#CC0', background='#A09' ) }

As you can see, creating a BitmapImage  is identical to

creating a PhotoImage  object, but with the possibility of

specifying foreground  and background  colors for the image.

Once created, adding them to the menu item is identical to

using PhotoImage , as shown here:

https://www.gimp.org/


# mainmenu.py, inside MainMenu.__init__() help_menu.add_command(

label='About…', command=self.show_about,

image=self.icons['about'], compound=tk.LEFT ) #...

file_menu.add_command( label="Quit",

command=self._event('<<FileQuit>>'), image=self.icons['quit'],

compound=tk.LEFT )

Now the Help menu should have a colorful icon, as shown

here:

Figure 9.7: The now colorful About icon You may find BitmapImage  objects

useful if you want to reuse a single file with different colors, or perhaps

dynamically change the color scheme of your icons to fit with a theme or

indicate some kind of state. Most of the time, though, using PhotoImage

objects will be preferable.

These images have dramatically changed the look of our

application, but the rest of it is still a rather drab gray. In

the next sections, we'll work on updating its colors.

Styling Tkinter widgets

Tkinter has essentially two styling systems: the old Tkinter

widgets system, and the newer Ttk system. Although we

are using Ttk widgets wherever possible, there are still

situations where regular Tkinter widgets are required, so

it's good to know both systems. Let's take a look first at the

older Tkinter system and apply some styling to the Tkinter

widgets in our application.



Widget color properties

As you saw in Chapter 1, Introduction to Tkinter, basic

Tkinter widgets allow you to change two color values: the

foreground color, meaning mainly the color of text and

borders, and the background color, meaning the rest of the

widget. These can be set using the foreground  and background

arguments, or their aliases, fg  and bg .

For example, we can set the colors of a label like so:

# tkinter_color_demo.py import tkinter as tk l =

tk.Label(text='Hot Dog Stand!', fg='yellow', bg='red')

The values for the colors can be color name strings or CSS-

style RGB hex strings.

For example, this code produces the same effect:

l2 = tk.Label( text='Also Hot Dog Stand!', foreground='#FFFF00',

background='#FF0000' )

There are over 700 named colors recognized by Tkinter,

roughly corresponding to those recognized by the X11

display server used on Linux and Unix, or the CSS named

colors used by web designers. For a complete list, see

https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm.

Using widget properties on the MainMenu

We aren't using many Tkinter widgets in our views,

preferring Ttk as much as possible. One place where we

are using a Tkinter widget is our application's main menu.

We can use the main menu to demonstrate how Tkinter

widget colors can be configured.

https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm


Note that setting colors and other appearance options on

the menu system only works consistently on Linux or BSD.

The effect on Windows or macOS is incomplete, so readers

on those platforms may see incomplete results. In Chapter

10, Maintaining Cross-Platform Compatibility, we'll

redesign our menu so that these differences in compatibility

are accounted for.

The tk.Menu  widget accepts the following appearance-

related arguments:

Argument Values Description

background Color string

The color of the

background under normal

conditions

foreground Color string

The color of the

foreground (text) under

normal conditions

borderwidth Integer

The width of the widget

border, in pixels, under

normal conditions

activebackground Color string

The background color

when the widget is active

(being hovered over or

selected via the keyboard)

activeforeground Color string
The foreground (text) color

when the widget is active

activeborderwidth Integer

The border width, in

pixels, of the widget when

active



disabledforeground Color string The foreground (text) color

when the widget is

disabled

relief

One of the Tkinter

constants RAISED ,

SUNKEN , FLAT ,

RIDGE , SOLID , or

GROOVE

The style of the border

drawn around the widget

Note that there are versions of background , foreground , and

borderwidth  for both the normal and active states, and a

version of foreground  for the disabled state. Depending on

what is applicable to the widget, many Tkinter widgets

support additional arguments for certain states, conditions,

or features; for example, widgets with selectable text like

the Entry  widget support highlightbackground  and

highlightforeground  arguments to specify the colors used

when text is selected.

The Tcl/Tk documentation at https://www.tcl.tk/man/

provides the most complete reference for widget-specific

options, including styling options.

Open up the mainmenu.py  file and let's add some styles to our

menu inside the initializer method:

# mainmenu.py, inside MainMenu.__init__() self.configure(

background='#333', foreground='white', activebackground='#777',

activeforeground='white', 'relief'=tk.GROOVE )

Execute the application, and note the menu's appearance.

On Linux or BSD, it should look something like this:

https://www.tcl.tk/man/


Figure 9.8: A styled Tkinter menu on Ubuntu Linux Note that the styling does

not go past the main menu; the sub-menus are still the default black-on-gray. To

make the menu consistent, we'll need to apply these styles to all the sub-menus

as well. To avoid a lot of repetition, let's change our code so that the styles are

stored in a dictionary, which we can then unpack in each call to tk.Menu .

Update the code like so:

# mainmenu.py, inside MainMenu.__init__() self.styles = { 'background': '#333',

'foreground': 'white', 'activebackground': '#777', 'activeforeground': 'white',

'relief': tk.GROOVE } self.configure(**self.styles)

Now, to add the styling to each sub-menu, we just need to

add **self.styles  to each sub-menu initialization, like so:

# mainmenu.py, inside MainMenu.__init__() help_menu =

tk.Menu(self, tearoff=False, **self.styles) #... file_menu =

tk.Menu(self, tearoff=False, **self.styles) #... options_menu =

tk.Menu(self, tearoff=False, **self.styles) #... go_menu =

tk.Menu(self, tearoff=False, **self.styles)

Assuming your platform supports menu styling, you should

now see the styles applied to the sub-menus as well.

Styling widget content with tags

Foreground and background colors are sufficient for simple

widgets such as buttons and labels, but more complex

Tkinter widgets like the Text  widget or the Ttk Treeview

widget rely on a tag-based system for more detailed

styling. A tag in Tkinter is a named region of a widget's

content to which color and font settings can be applied. To

see how this works, let's build a crude, but pretty, Python

terminal emulator.



Open a new file called tags_demo.py , and we'll start by

creating a Text  widget to store the terminal input and

output:

# tags_demo.py import tkinter as tk text = tk.Text(width=50,

height=20, bg='black', fg='lightgreen') text.pack()

Here, we've used the fg  and bg  arguments to set up a

green-on-black terminal theme, a classic combination

popular with programmers. Rather than having only green

text, though, let's configure different colors for our prompt

and our interpreter output.

To do this, we'll define some tags:

text.tag_configure('prompt', foreground='magenta')

text.tag_configure('output', foreground='yellow')

The tag_configure()  method allows us to declare and

configure tags on the Text  widget. We've created one called

prompt  with magenta text for the shell prompt, and another

called output  with yellow text for the Python output. Note

that we aren't restricted to a single configuration argument

here; we could conceivably pass a font  or background

argument as well, if we wished.

To insert text with a given tag applied, we do the following:

text.insert('end', '>>> ', ('prompt',))

As you may remember, the Text.insert()  method takes an

index and string as its first two arguments. Notice the third

argument: this is a tuple of the tags with which we want to

mark the inserted text. This value must be a tuple, even if

you're only using one tag; naturally, you can include as

many tags as you wish.

If you add text.mainloop()  to the end of the code and run it,

you'll see that we have a black text entry window with a



magenta prompt; however, if you type anything, your text

will show up in green (the widget's default foreground

color). So far so good; now, let's make it execute some

Python.

Create a function just before the mainloop()  call:

def on_return(*args): cmd = text.get('prompt.last',

'end').strip()

Recall that, when retrieving text from a Text  widget, we're

required to supply start and end indices for the text we

want to retrieve. We can utilize tag names in our index

values, as we've done here: prompt.last  tells Tkinter to fetch

the text starting after the end of the region tagged prompt .

Next, let's execute the entered command:

if cmd: try: output = str(eval(cmd)) except Exception as e:

output = str(e)

If the cmd  variable actually contains anything, we'll try to

execute it with eval() , and then store a string of the

response value as output. If it raises an exception, we'll

cast our exception to a string and set that as the output.

Note that eval()  only works on expressions, so our "shell"

won't be able to handle loops, conditionals, or other

statements.

Then, we'll just show our output, like so:

# (still in the if block) text.insert('end', '\n' + output,

('output',))

Here, we've inserted our output  string, prefixed with a

newline and tagged as output .



We'll finish off the function by giving the user back a

prompt:

text.insert('end', '\n>>> ', ('prompt',)) return 'break'

Note that we also return the string break  here. This tells

Tkinter to ignore the original event that triggered the

callback. Since we're going to trigger this from a

Return/Enter keystroke, we want to ignore that keystroke

after we're finished. If we don't, the keystroke will be

executed after our function returns, inserting the newline

after the display of the prompt and leaving the user on the

line under the prompt.

Finally, we need to bind our function to the Return key:

text.bind('<Return>', on_return)

Note that the event for the Enter/Return key is always

<Return> , even on non-Apple hardware (where the key is

more commonly labeled "Enter").

Make sure to add a call to text.mainloop()  at the end of the

script, and then launch the application. You should get

something like this:

Figure 9.9: The colorful Python shell While this shell won't be supplanting IDLE

any time soon, it does look rather nice, don't you think?



Styling our record list with tags

Although Treeview  is a Ttk widget, it uses tags to control the

styling of individual rows. We can use this capability to

address another of the requests you've gotten from the

data entry staff – specifically, that they'd like the record list

to highlight the records updated and inserted during the

current session.

The first thing we'll need to do is have our RecordList  object

keep track of which rows have been updated or inserted

during the session.

We'll start in RecordList.__init__()  by creating a couple of

instance variables to store the updated or inserted rows:

# views.py, inside RecordList.__init__() super().__init__(parent,

*args, **kwargs) self._inserted = list() self._updated = list()

When a record is inserted or updated, we'll need to append

its row number to the appropriate list. Since RecordList

doesn't know when a record is updated or inserted, we'll

have to create some public methods that the Application

object can call to append to the lists. Create these two

methods in the RecordList  class:

# views.py, inside RecordList def add_updated_row(self, row): if

row not in self._updated: self._updated.append(row) def

add_inserted_row(self, row): if row not in self._inserted:

self._inserted.append(row)

Each method takes a row number and appends it to the

corresponding list. To avoid duplicates, we only do so if the

row is not in the list. Now, to use these methods, we'll have

to update the Application._on_save()  method so that it calls

the appropriate update method after the record is saved,

but before we repopulate the record list.



In _on_save() , right after calling self.model.save_record() , add

these lines:

# application.py, in Application._on_save() if rownum is not

None: self.recordlist.add_updated_row(rownum)

Updates have a rownum  value that is not None , but could be

0 , so we explicitly test for None  here rather than just using

if rownum: . If rownum  is not None , we'll append it to the

updated list.

Now, we need to deal with inserts:

else: rownum = len(self.model.get_all_records()) -1

self.recordlist.add_inserted_row(rownum)

Inserted records are a little more troublesome in that we

don't have a row number readily available to record. We do

know that an insert is always appended to the end of the

file, though, so its row number should be one smaller than

the number of rows in the file.

Our inserted and updated records will be kept until the end

of the program session (when the user exits the program)

or until the user selects a new file to work on. If the user

selects a new file, we will need to clear out the lists since

we're working with a completely new set of records.

Once again, since RecordList  doesn't know when this

happens, we'll need to create a public method that clears

the lists. Add the following clear_tags()  method to the

RecordList  class:

# views.py, inside RecordList def clear_tags(self):

self._inserted.clear() self._updated.clear()

Now we need the Application  class to call this whenever a

new file is selected for saving, which happens in



Application._on_file_select() . Add a call to the method just

before repopulating the record list:

# application.py inside Application._on_file_select() if

filename: self.model = m.CSVModel(filename=filename)

self.recordlist.clear_tags() self._populate_recordlist()

Now that we have these lists updating correctly, we need to

use them to color-code the list items.

To do this, we first need to configure tags with appropriate

colors. Our data entry staff feel that light green would be a

sensible color for inserted records, and light blue for

updated.

Add the following code at the end of RecordList.__init__() :

# views.py, inside RecordList.__init__()

self.treeview.tag_configure( 'inserted', background='lightgreen'

self.treeview.tag_configure('updated', background='lightblue')

Just as we did with the Text  widget earlier, we call the

TreeView  object's tag_configure()  method to connect

background  color settings with our tag names. To add the

tags to our TreeView  rows, we'll need to update the

populate()  method so that as rows are inserted, the

appropriate tag (if any) is added.

Inside the populate()  method's for  loop, just before

inserting the row, we'll add this code:

# views.py, inside RecordList.populate() for rownum, rowdata in

enumerate(rows): values = [rowdata[cid] for cid in cids] if

rownum in self._inserted: tag = 'inserted' elif rownum in

self._updated: tag = 'updated' else: tag = ''

Now, our treeview.insert()  call just needs to be amended

with this tag value:

self.treeview.insert( '', 'end', iid=str(rownum),

text=str(rownum), values=values, tag=tag )



Run the application and try to insert and update some

records.

You should get something like this:

Figure 9.10: The treeview with styled rows. The light blue corresponds to

updated rows (row 0) and the light green to inserted rows (row 1). Note that

the dark blue row is just the selected row (row 2).

In addition to the Text  and Treeview  widgets, tags are

also used with the Tkinter Canvas  widget, which we'll

learn more about in Chapter 15, Visualizing Data Using the

Canvas Widget.

Working with fonts in

Tkinter

Some of our data entry users have complained that the font

of the application is just a little too small to read easily, but

others dislike the idea of you increasing it because it makes

the application too big for the screen. To accommodate all

the users, we can add a configuration option that allows

them to set a preferred font size and family.



Configuring Tkinter fonts

Any widget in Tkinter that displays text allows us to specify

a font, typically through its font  configuration property. For

widgets that support tags, we can also specify font settings

for each tag. We've been using the font  argument as far

back as Chapter 1, Introduction to Tkinter, but now it's

time to take a deeper look into what Tkinter allows us to do

with fonts.

There are three ways of specifying a widget's font in

Tkinter: using a string, using a tuple, and using a Font

object. Let's take a look at each one.

Configuring fonts with strings and tuples

The simplest way to configure a font in Tkinter is to just

use a font specification string:

tk.Label(text="Format with a string", font="Times 20 italic

bold")

The string takes the format font-family size styles , where:

font-family  is the name of the font family. It can only be

a single word; no spaces are allowed.

size  is an integer describing the size. A positive integer

indicates a size in points, a negative indicates a size in

pixels. Float values are not supported.

styles  can be any valid combination of text style

keywords.

Everything but the font family is optional, though you need

to specify a size if you want to specify any of the styling

keywords. The keywords that can be used for styles

include:



bold  for boldface text, or normal  for normal weight

italic  for italicized text, or roman  for regular slant

underline  for underlined text

overstrike  for struck-out text

The ordering of style keywords doesn't matter, but the

weight and slant keywords are mutually exclusive (that is,

you can't have bold normal  or italic roman ).

While quick and simple, the string approach has its

shortcomings; for one, it can't handle fonts with spaces in

the name, something that is fairly common on modern

systems.

To handle fonts like that, you can use the tuple format:

tk.Label( text="Tuple font format", font=('Noto sans', 15,

'overstrike') )

This format is exactly like the string format, except that the

different components are written as items in a tuple.

The size component can be an integer or a string

containing digits, which provides some flexibility depending

on where the value comes from.

The font module

The string or tuple approach works fine for setting up a

handful of font changes at launch time, but for situations

where we need to dynamically manipulate font settings,

Tkinter offers the font  module. This module offers us a few

font-related functions as well as a Font  class, whose

instances can be assigned to widgets and dynamically

changed.



To use the font  module, it must first be imported:

from tkinter import font

Now, we can create a custom Font  object and assign it to

some widgets:

labelfont = font.Font( family='Courier', size=30, weight='bold',

slant='roman', underline=False, overstrike=False )

tk.Label(text='Using the Font class', font=labelfont).pack()

As you can see, the values passed to the Font  initializer

arguments correlate with the weight and slant values used

in string and tuple font specifications. The weight  argument

also supports the use of the constants font.NORMAL  or

font.BOLD , while slant  supports the use of font.ITALIC  or

font.ROMAN .

Once we've created a Font  object and assigned it to one or

more widgets, we can dynamically alter aspects of it at

runtime. For example, we could create a button that will

toggle the overstrike  property of our font:

def toggle_overstrike(): labelfont['overstrike'] = not

labelfont['overstrike'] tk.Button(text='Toggle Overstrike',

command=toggle_overstrike).pack()

The Font  object is a Python interface to a Tcl/Tk feature

called named fonts. In Tcl/Tk, a named font is just a

collection of font properties associated with a name.

Tk  comes with several named fonts already configured, as

shown in the following table:

Font name Defaults to Used for

TkCaptionFont System title font Window and dialog caption bars



TkDefaultFont System default

font

Items not otherwise specified

TkFixedFont
System fixed-

width font
Text  widget

TkHeadingFont
System heading

font

Column headings in lists and

tables

TkIconFont System icon font Icon captions

TkMenuFont
System menu

font
Menu labels

TkSmallCaptionFont System title Subwindows, tool dialogs

TkTextFont
System input

font

Input widgets: Entry ,

Spinbox , and so on

TkTooltipFont
System tooltip

font
Tooltips

The font  module includes a function called names()  that

returns a list of the current named fonts on the system,

including those that you create yourself (by creating Font

objects). We can use the font.nametofont()  function to

generate a Font  object from a given name.

For example, we can create a small program to

demonstrate all the named fonts included with Tkinter, as

follows:

# named_font_demo.py import tkinter as tk from tkinter import

font root = tk.Tk() for name in font.names(): font_obj =

font.nametofont(name) tk.Label(root, text=name,

font=font_obj).pack() root.mainloop()



In this script, we retrieve a list of all the named fonts using

font.names()  and iterate through it. For each name, we

create a Font  object using font.nametofont() , and then create

a label showing the named font name and using the Font

object as its font.

This script will show what all the built-in named fonts look

like on your system.

For example, on Ubuntu Linux, they look like this:

Figure 9.11: The Tkinter named fonts on Ubuntu Linux Since Tkinter uses its

built-in named fonts by default, we can change the overall look of the whole

application by creating Font  objects for these default named fonts and

overriding their properties. The changes we make will get applied across all

widgets that don't otherwise have an explicit font configuration.

For example, we could add some code to the preceding

script, just before root.mainloop() , to allow us to customize

the built-in fonts:

# named_font_demo.py namedfont = tk.StringVar() family =

tk.StringVar() size = tk.IntVar() tk.OptionMenu(root, namedfont,

*font.names()).pack() tk.OptionMenu(root, family,

*font.families()).pack() tk.Spinbox(root, textvariable=size,

from_=6, to=128).pack() def setFont(): font_obj =

font.nametofont(namedfont.get())

font_obj.configure(family=family.get(), size=size.get())

tk.Button(root, text='Change', command=setFont).pack()



In this code, we set up three control variables to hold the

named font name, family, and size values, and then set up

three widgets to select them. The first OptionMenu  widget

uses font.names()  to retrieve a list of all the named fonts,

and the second uses the font.families()  function to retrieve

a list of the available font families on the operating system

(this is likely to be a very long list on most modern

systems). Then we have a Spinbox  for selecting a font size.

The callback function, setFont() , creates a font object from

the selected named font and then configures it with the

selected family and size. This function is then bound to a

button.

If you run the script now, you should be able to select any

named font and edit its family and size. When you click

Change, you should see the associated label change

according to your selections. You may also note that

changing certain named fonts affects your OptionMenu ,

Spinbox , and Button  widgets as well.

For example, on Ubuntu Linux, it looks like this:



Figure 9.12: The named font editor on Ubuntu Linux

Giving users font options in ABQ Data

Entry

Now that we understand how to work with fonts in Tkinter,

let's add the ability for our users to configure fonts in the

application. We'll allow them to choose a size and a font

family that will be used for all the widgets and data

displayed in the application.

Since users will want to persist this value between

sessions, we should begin by adding keys for font size  and

font family  to our settings model. Open models.py  and

append these to the fields  dictionary, like so:

# models.py, inside SettingsModel fields = { # ... 'font size':

{'type': 'int', 'value': 9}, 'font family': {'type': 'str',

'value': ''} }



We have set the size default to 9 points, but the family

default to a blank string. Configuring a font with a blank

family value will cause Tkinter to use its own default font

family.

Recall that the Application  object will read the fields

dictionary and set up a control variable for each setting,

and that a dictionary of these control variables will be

passed to our MainMenu  object. So, our next task will be to

create menu items for setting the size and family values of

these variables.

Open mainmenu.py  and let's begin by importing the font

module:

# mainmenu.py, at the top from tkinter import font

Now, inside the MainMenu  initializer method, let's create

some sub-menus for the options_menu  cascade:

# mainmenu.py, inside MainMenu.__init__(), # after creating

options_menu size_menu = tk.Menu( options_menu, tearoff=False,

**self.styles ) options_menu.add_cascade(label='Font Size',

menu=size_menu) for size in range(6, 17, 1):

size_menu.add_radiobutton( label=size, value=size,

variable=self.settings['font size'] ) family_menu = tk.Menu(

options_menu, tearoff=False, **self.styles )

options_menu.add_cascade( label='Font Family', menu=family_menu )

for family in font.families(): family_menu.add_radiobutton(

label=family, value=family, variable=self.settings['font family']

)

This should look familiar, since we created a nearly

identical font size menu when learning about the Tkinter

Menu  widget in Chapter 7, Creating Menus with Menu and

Tkinter Dialogs. We're allowing font sizes from 6 to 16,

which should provide plenty of range for our users.

The font family menu is nearly identical, except we're

pulling the list of possible values from font.families() , just



as we did in our demonstration script earlier in this

chapter.

Now that the user can select fonts and store their selection,

let's actually make those settings change the fonts in the

application. To do that, we'll first need to add a method to

the Application  class that will read the values and alter the

appropriate named fonts accordingly.

Open application.py ; add an import statement for font  at

the top, and then let's add this new _set_font()  method to

the Application  class:

# application.py, inside the Application class def

_set_font(self, *_): """Set the application's font""" font_size =

self.settings['font size'].get() font_family =

self.settings['font family'].get() font_names = (

'TkDefaultFont', 'TkMenuFont', 'TkTextFont', 'TkFixedFont' ) for

font_name in font_names: tk_font = font.nametofont(font_name)

tk_font.config(size=font_size, family=font_family)

This method begins by retrieving the size and family

settings from their respective control variables. Next, we're

going to loop through a tuple of built-in named fonts that

we want to change. TkDefaultFont  will change most of the

widgets, TkMenuFont  will affect the main menu, TkTextFont

will change the text-input widgets, and TkFixedFont  will set

the default for our Text  widget.

For each one, we retrieve a Font  object using nametofont()

and reconfigure it with the values retrieved from settings .

This method needs to be called after the settings are

initially loaded, and whenever the size or family values are

changed. So, let's add the following lines to the end of

Application._load_settings() :

# application.py, in Application._load_settings()

self._set_font() self.settings['font size'].trace_add('write',



self._set_font) self.settings['font family'].trace_add( 'write',

self._set_font )

Now, whenever Application()  creates new settings control

variables, it will set up the font and add a trace to

reconfigure the application fonts whenever these values are

changed.

Run the application and try out the font menu. It should

look something like this:

Figure 9.13: Switching our ABQ Data Entry to Comic Sans

Styling Ttk widgets

The final user requests we need to address involve the

styles and colors of our Ttk  widgets; users have asked for

more visual distinction between the form sections, and

more visibility for error messages.

After some thought and discussion, you decide to color-

code the sections of the form as follows:



The Record Information section will use khaki,

suggesting the classic manila folders used for paper

records

The Environment Data section will use light blue,

symbolic of water and air

The Plant Data will have a light green background,

symbolic of plants

The Notes input is distinctive enough, so it will remain

the same default gray

To improve the visibility of error messages, we'd like to

make the background of the fields turn red when they have

errors, and the error text itself display in a dark red color.

To accomplish this, we're going to need to understand how

to style Ttk  widgets.

TTk styling breakdown

Ttk widgets represent a major improvement over standard

Tkinter widgets in terms of the power and flexibility with

which they can be styled. This flexibility is what gives Ttk

widgets the ability to mimic native UI controls across

platforms, but it comes at a cost: Ttk styling is confusing,

complicated, poorly documented, and occasionally

inconsistent.

To understand Ttk styling, let's start with some vocabulary,

from the most basic parts to the most complex:

Ttk starts with elements. An element is one piece of a

widget, such as a border, an arrow, or a field where text

can be typed.

Each element has a set of options that define

properties such as color, size, and font.



Elements are composed using layouts into a complete

widget (a Combobox  or Treeview , for example).

Styles are collections of element option settings that

are applied to widgets. A style is identified by its name.

Usually, the name is "T" plus the name of the widget,

such as TButton  or TEntry , although there are some

exceptions to this.

Widgets also have a number of states, which are flags

that can be turned on or off:

Styles can be configured with a map that

associates element option values with states or

combinations of states.

A collection of layouts and their associated styles is

called a theme. Ttk comes with a different set of

themes on different platforms, and each platform has a

default that aims to match the look of its native widget

set. Because each theme may contain elements with

different style options, not every option is available, nor

has the same effect, in every theme. For example, a

ttk.Button  on the default macOS theme may contain a

different set of elements, applying style settings

differently compared to a ttk.Button  using the default

theme in Windows.

If you're confused at this point, that's understandable. To

make things clearer, let's take a deep dive into the anatomy

of a ttk.Combobox .

Exploring a Ttk widget

To get a better picture of how a Ttk widget is built, open a

shell in IDLE and import tkinter , ttk , and pprint :

>>> import tkinter as tk >>> from tkinter import ttk >>> from

pprint import pprint



Now, create a root  window, Combobox , and Style  object:

>>> root = tk.Tk() >>> cb = ttk.Combobox(root) >>> cb.pack() >>>

style = ttk.Style()

The Style  object is, perhaps, slightly misnamed; it doesn't

point to a single style, but rather gives us a point of access

to examine and alter the styles, layouts, and maps for the

current theme.

In order to examine our Combobox , we'll first get its style

name using the winfo_class()  method:

>>> cb_stylename = cb.winfo_class() >>> print(cb_stylename)

TCombobox

As expected, the name is TCombobox , which is just T  plus the

widget name. We can use this name to find out more about

this Combobox  widget.

For example, we can examine its layout by passing the

name to the Style.layout()  method, as follows:

>>> cb_layout = style.layout(cb_stylename) >>> pprint(cb_layout)

[( 'Combobox.field', { 'children': [ ( 'Combobox.downarrow',

{'side': 'right', 'sticky': 'ns'} ), ( 'Combobox.padding', {

'children': [ ('Combobox.textarea', {'sticky': 'nswe'}) ],

'expand': '1', 'sticky': 'nswe' } ) ], 'sticky': 'nswe' } )]

Note that the output of layout()  may be different on your

system, as the layout contents depend on the theme.

Different operating systems use a different default theme.

The returned layout specification shows the hierarchy of

elements used to construct this widget. The elements, in

this case, are "Combobox.field" , "Combobox.downarrow" ,

"Combobox.padding" , and "Combobox.textarea" . As you can see,

each element has associated positioning properties similar

to what you'd pass into a geometry manager method.



The layout()  method can also be used to replace a style's

layout by passing in a new specification as a second

argument. Unfortunately, since styles are built using

immutable tuples, this requires replacing the entire layout

specification – you can't just adjust or replace a single

element in place.

To see what options are available for the elements in this

layout, we can use the style.element_options()  method. This

method takes an element name and returns a list of options

that can be used to alter it.

For example:

Once again, this list may be different (or even empty)

depending on your operating system and theme settings.

This tells us that the downarrow  element of the Combobox

widget offers the background , relief , borderwidth , arrowcolor ,

and arrowsize  style properties to adjust its appearance. To

change these properties, we can use the style.configure()

method.

For instance, let's change the color of the arrow to red:

>>> style.configure('TCombobox', arrowcolor='red')

If your operating system doesn't support the arrowcolor

option, feel free to try a different option or switch to the alt

theme. See the next section on how to switch themes.

>>> pprint(style.element_options('Combobox.downarrow')) 

('background', 'relief', 'borderwidth', 'arrowcolor', 'arrowsize



You should see that the arrow's color has changed to red.

This is all we need to know to configure widgets for static

changes, but what about dynamic changes, such as when

an input is disabled or invalid?

To make dynamic changes, we'll need to work with our

widget's state and map. We can inspect or alter the state of

our Combobox  using the state()  method, like so:

>>> print(cb.state()) ()

state()  with no arguments will return a tuple with the

currently set state flags; as you can see, the Combobox

widget had no state flags by default. We can also set the

state by passing in a sequence of strings, like so:

>>> cb.state(['active', 'invalid']) ('!active', '!invalid') >>>

print(cb.state()) ('active', 'invalid') >>>

cb.state(['!invalid']) ('invalid',) >>> print(cb.state())

('active',)

Notice that in order to turn off a state flag, we prefix the

flag name with a ! . When you call state()  with an

argument to change the value, the return value is a tuple

containing a set of states (or negated states) that would, if

applied, undo the state change you just set. So, in this case,

when we passed in the list that turned on active  and

invalid , the method returned a tuple that would turn these

states off again. Likewise, when we passed in the negated

invalid  state, we got back a tuple containing invalid . This

might be useful in a situation where you want to

temporarily set a widget's state and then return it to its

previous (possibly unknown) state.

You can't just use any arbitrary strings for state() ; they

must be one of the supported values, listed here in this

table:



State Indicates

active Widget element is being hovered on by the mouse

disabled Interaction with the widget is turned off

focus Widget will receive keyboard events

pressed Widget is currently being clicked on

selected
Widget has been selected by the user (for example, a radio

button)

background Widget is on a window that is not the foreground window

readonly Widget will not allow modification

alternate Different things, depending on the widget

invalid
Widget contains invalid data (that is, the validate command

has returned False )

hover
Like active , but referring to the whole widget rather than

an element

Exactly how different widgets use each of these states

depends on the widget and the theme; not every state is

configured by default to have an effect on every widget. For

example, readonly  has no effect on a Label  widget, since it

is not editable to begin with.

Widget states interact with the theme's widget style

through the use of a style map. We can use the style.map()



method to inspect or set the map for each style.

Take a look at the default map for TCombobox :

>>> pprint(style.map(cb_stylename)) { 'arrowcolor': [

('disabled', '#a3a3a3') ], 'fieldbackground': [ ('readonly',

'#d9d9d9'), ('disabled', '#d9d9d9') ] }

As you can see, TCombobox  has style maps for the arrowcolor

and fieldbackground  options by default. Each style map is a

list of tuples, and each tuple is one or more state flags

followed by a value for the element option. When all of the

state flags match the current state of the widget, the value

(that is, the last string in the tuple) takes effect.

The default map turns the arrow color to a light gray color

when the disabled  flag is set, and turns the field

background to a different light gray color when either the

disabled  or readonly  flags are set.

We can set our own style mapping using the same method:

>>> style.map( 'TCombobox', arrowcolor=[('!invalid', 'blue'),

('invalid', 'focus', 'red')] ) {} >>>

pprint(style.map('TCombobox')) { 'arrowcolor': [ ('!invalid',

'blue'), ('invalid', 'focus', 'red') ], 'fieldbackground': [

('readonly', '#d9d9d9'), ('disabled', '#d9d9d9') ] }

Here, we've configured the arrowcolor  property to be blue

when the invalid flag is not set, and red  when both the

invalid  and focus  flags are set. Notice that while our call to

map()  completely overwrote the arrowcolor  style map, the

fieldbackground  map was unaffected. You can replace style

mappings individually for each option without affecting

other options, though whatever mapping you do specify for

the option overwrites the whole mapping for that option.

So far, we've been operating on the TCombobox  style, which is

the default style for all Combobox  widgets. Any changes we



made would impact every Combobox  widget in the

application. What if we only want to change a particular

widget, or a particular set of widgets? We can do this by

creating custom styles. Custom styles must be derived

from the existing style by prefixing a name and a dot to an

existing style name.

For example:

>>> style.configure('Blue.TCombobox', fieldbackground='blue') 

>>> cb.configure(style='Blue.TCombobox') 

Blue.TCombobox  inherits all of the properties of TCombobox

(including the dynamically colored down arrow we

previously configured), but can add or override them with

settings of its own that won't affect TCombobox . This allows

you to create custom styles for some widgets without

affecting other widgets of the same type.

We can even customize our custom styles by adding more

prefixes; for example, the style MyCB.Blue.TCombobox

would inherit all the styles of TCombobox  and

Blue.TCombobox , along with whatever additional settings

we wanted to add or override in it.

Using themes

We can alter the look of all the Ttk widgets in our

application at once by changing the theme. Remember that

a theme is a collection of styles and layouts; so changing a

theme doesn't just change the appearance, it may also

change the available styling options as well.

Ttk comes with a different set of themes on each OS

platform; to see the themes available on your platform, use



the Style.theme_names()  method:

>>> style.theme_names() ('clam', 'alt', 'default', 'classic')

(These are the themes available on Debian Linux; yours

may differ.) To query the current theme, or to set a new

theme, use the Style.theme_use()  method:

>>> style.theme_use() 'default' >>> style.theme_use('alt')

With no arguments, the method returns the name of the

current theme. With an argument, it sets the theme to the

given theme name. Notice how the previous styling is gone

when you change the theme. If you switch back to the

default, however, you'll see that your changes were

retained. That's because any changes we make using

Style.configure()  only affect the currently running theme.

Adding some color to ABQ Data Entry

Now that you have a firmer grasp of Ttk themes and

styling, let's add some color to our data entry form. To

begin, we will set a different background color for each

LabelFrame  widget in the data record form. Since we want to

configure three widgets of the same type differently, we'll

need to use custom styles. For each frame, we will create a

custom style, configure it with the proper color, and then

assign it to the frame.

Start by opening views.py  and let's add the following code

to the DataRecordForm  initializer method:

# views.py, inside DataRecordForm.__init__() style = ttk.Style()

# Frame styles style.configure( 'RecordInfo.TLabelframe',

background='khaki', padx=10, pady=10 ) style.configure(

'EnvironmentInfo.TLabelframe', background='lightblue', padx=10,

pady=10 ) style.configure( 'PlantInfo.TLabelframe',

background='lightgreen', padx=10, pady=10 )



We begin by creating a Style  object, which we can use to

access and modify the widget styles. We then use the

style.configure()  method to set up three custom styles

based on TLabelframe , the default style for Ttk Labelframe

widgets. We've set the colors according to our plan, and

also added some padding to the style.

Now, we need to assign these styles to each frame.

Remember that our LabelFrame  widgets are being created in

an instance method called _add_frame() . We'll need to

update this method to take a style  argument that we can

pass to the widget. Update the method as follows:

# views.py, inside the DataRecordForm class def _add_frame(self,

label, style='', cols=3): """Add a labelframe to the form"""

frame = ttk.LabelFrame(self, text=label) if style:

frame.configure(style=style) frame.grid(sticky=tk.W + tk.E) for i

in range(cols): frame.columnconfigure(i, weight=1) return frame

In this version, we take a string for the style, and if one is

passed, we'll configure our LabelFrame  widget to use it. Now,

let's update our calls to _add_frame()  in the initializer to pass

in the custom styles we've created, like so:

# views.py, in DataRecordForm.__init__() r_info =

self._add_frame( "Record Information", 'RecordInfo.TLabelframe' )

#... e_info = self._add_frame( "Environment Data",

'EnvironmentInfo.TLabelframe' ) #... p_info =

self._add_frame("Plant Data", 'PlantInfo.TLabelframe')

Now, execute the application and let's take a look at the

form. It should look something like this:



Figure 9.14: Our first attempt at coloring our record form frames As you can

see, that's far from ideal. While there is a small amount of color peeking out

from behind the widgets, the widgets in each section are still the default drab

color, and even the label portion of the LabelFrame  widgets is still gray. Styles

do not propagate to child widgets, so we're going to have to set each widget

individually to get the full effect.

Adding styles to individual form widgets

The first thing we can quickly fix is the label portion of

each LabelFrame  widget. Although each widget has been

assigned to the custom style, the label element of the

widget needs to be explicitly styled. We can do that merely



by adding the following code to the DataRecordForm

initializer:

# views.py, inside DataRecordForm.__init__() style.configure(

'RecordInfo.TLabelframe.Label', background='khaki', padx=10,

pady=10 ) style.configure( 'EnvironmentInfo.TLabelframe.Label',

background='lightblue', padx=10, pady=10 ) style.configure(

'PlantInfo.TLabelframe.Label', background='lightgreen', padx=10,

pady=10 )

This is exactly the same thing we did to create the custom

TLabelframe  styles, except that we have added the name of

the individual element we want to style (in this case, Label ).

If you run the program again, you'll see now that each

frame's label also shares the background color of the

frame. We're still not finished though, because we need all

our widget labels to show the background color of the

frame.

Let's consider which widgets we need to create a custom

style for:

We need a style for the Label  widgets for each section,

since we'll need different colors for these widgets in

Record Information, Environment Data, and Plant Data.

We'll need to style our Checkbutton , since it uses its own

built-in label rather than a separate label widget. Since

there's only one right now, we only need one style for it.

We'll need to style the Radiobutton  widgets, since they

also use a built-in label. We only need one style,

though, since they also appear in only one form section.

Let's create those styles:

# views.py, inside DataRecordForm.__init__() 

    style.configure('RecordInfo.TLabel', background='khaki') 

    style.configure('RecordInfo.TRadiobutton', background='khaki

    style.configure('EnvironmentInfo.TLabel', background='lightb

t l fi (



Now that we've created the styles, we need to add them to

each widget in the form. Remember that the LabelInput

initializer takes a label_args  dictionary for keywords that

need to be passed to its Label  widget, so we'll need to add

the label styles there.

For example, here's what the first line should look like:

w.LabelInput( r_info, "Date", field_spec=fields['Date'],

var=self._vars['Date'], label_args={'style': 'RecordInfo.TLabel'}

).grid(row=0, column=0) w.LabelInput( r_info, "Time",

field_spec=fields['Time'], var=self._vars['Time'], label_args=

{'style': 'RecordInfo.TLabel'} ).grid(row=0, column=1)

w.LabelInput( r_info, "Technician",

field_spec=fields['Technician'], var=self._vars['Technician'],

label_args={'style': 'RecordInfo.TLabel'} ).grid(row=0, column=2)

For the Lab  input, remember that we're using our

ValidatedRadioGroup  widget, which takes a button_args

dictionary for arguments that need to be passed to the

radio buttons. We will have to specify both a label_args

argument and an input_args  argument to get our styles set

on these widgets, like so:

w.LabelInput( r_info, "Lab", field_spec=fields['Lab'],

var=self._vars['Lab'], label_args={'style': 'RecordInfo.TLabel'},

input_args={ 'button_args':{'style': 'RecordInfo.TRadiobutton'} }

).grid(row=1, column=0)

Continue adding these styles to the rest of the LabelInput

widgets; if you get stuck, refer to the code example

included with the book. When you're finished, the

application should look like this:

    style.configure( 

      'EnvironmentInfo.TCheckbutton', 

      background='lightblue' 

    ) 

    style.configure('PlantInfo.TLabel', background='lightgreen')



Figure 9.15: The application with colored labels This is a marked improvement,

but it's not quite there yet; the error labels are still the old, default color. Let's

address that next.

Fixing the error colors

To fix the error labels, we need to edit our LabelInput

widget so that, when it creates the Label  widget for the

error, it uses the style value passed in with the label_args

dictionary. However, we have a complication: we want to

make our error text dark red. How can we honor the

background color of the style passed in, but also customize

the foreground just for this widget?

The answer is that we can further prefix our custom style

to create a new style that inherits all the traits of the

custom, while adding or overriding its own. In other words,

if we were to create a style called Error.RecordInfo.TLabel , it

would inherit all the properties of RecordInfo.TLabel  but

allow us to make additional changes.

Open the widgets.py  file, and let's see if we can implement

this in the LabelInput  initializer method:

# widgets.py, inside LabelInput.__init__() error_style = 'Error.'

+ label_args.get('style', 'TLabel')

ttk.Style().configure(error_style, foreground='darkred')

self.error = getattr(self.input, 'error', tk.StringVar())

ttk.Label( self, textvariable=self.error, style=error_style

).grid(row=2, column=0, sticky=(tk.W + tk.E))



In this code, we've extracted the style  value from the

label_args  dictionary, defaulting to TLabel  if no style was

passed. Then, we create a new style name by prefixing the

given style with Error.  (note the dot, that's important!).

Then, we call Style.configure()  to set the text color of our

new style to a dark red. Note that we don't give the Style

object a name here; since we're only making one change,

it's OK to just call configure()  directly on the created object

and then let the object get thrown away.

Now, you should see that the error display widgets match

the color of your background, but also display in dark red.

Styling input widgets on error

Setting the error text to dark red is a minor improvement

on the error visibility issue, but for our color-blind users in

particular, the improvement is subtle at best, if it's even

noticeable. We can use our knowledge of styling to take

things a bit farther, though. Rather than just changing the

color of the text, let's invert the colors of the input so that

we have light text on a dark background.

To do this, we will want to update the ValidatedMixin  class.

Recall that we previously implemented a _toggle_error()

method that sets the foreground color to red when the

widget is invalid on focus-out. We could update that

command to apply a different style to the widget instead, so

that the background color would change as well. However,

there's a better way.

Earlier in this chapter, we learned that widgets get flagged

with an invalid  state when validation fails, and that Ttk

styles can have colors and other properties tied to different

widget states by means of a style map. Rather than

explicitly changing styles or colors when validation fails, we



can create a style map that changes colors automatically in

response to a failed validation.

To begin, go ahead and remove any calls to

self._toggle_error()  in the ValidatedMixin  class, which can be

found in the _validate()  method and the _focusout_invalid()

method. That will leave the _focusout_invalid()  method

empty, so replace it with pass , like so:

# widget.py, inside the ValidatedMixin class def

_focusout_invalid(self, **kwargs): """Handle invalid data on a

focus event""" pass

Although the method now does nothing, we're leaving it in

place because it's part of the mixin class's API that child

classes can override. You can actually delete the

_toggle_error()  method, however, since its functionality will

be handled by a style map.

Now, in the initializer, let's configure a style and style map

for our widget:

# widget.py, inside ValidatedMixin.__init__() style = ttk.Style()

widget_class = self.winfo_class() validated_style =

'ValidatedInput.' + widget_class style.map( validated_style,

foreground=[('invalid', 'white'), ('!invalid', 'black')],

fieldbackground=[ ('invalid', 'darkred'), ('!invalid', 'white') ]

) self.configure(style=validated_style)

Since this is a mixin class, we don't know the original style

name of the widget we're mixing with, so we've fetched

that using the winfo_class()  method. After getting the

widget class, we're creating a custom style by prefixing the

class with ValidatedInput . Then, we call style.map()  to

configure the foreground and background colors of this

style in both invalid and not-invalid states: an invalid  state

will cause the widget to have white text on dark red

background, and a !invalid  state (that is, if the widget



doesn't have an invalid flag) black on white. Finally, we

apply the style to the widget using self.configure() .

If you try the application now, you might see that fields

with errors now turn a dark red color with white text:

Figure 9.16: Our new validation styles at work That is to say, you will see this

on Linux or macOS; on Microsoft Windows, the field background will remain

unchanged. What's going on here?

Remember that from our earlier discussion in Exploring a

Ttk widget, each platform comes with its own set of distinct

themes, and each theme defines a unique layout for its

widgets. These layouts define the individual elements of

each widget and what properties can be defined for them.

That means that some style properties might work on one

theme, but not on another.

In this case, the default Ttk theme for Windows (the vista

theme) does not allow the background color of our input

widgets to be altered. Our target users for ABQ Data Entry

are on Debian Linux, so this won't impact them. But it

would be nice if we could see this feature working on other

platforms.

Setting themes

Generally speaking, the default Ttk theme on any given

platform is probably the best one to use on that platform,

but looks are subjective and sometimes we might feel that



Tkinter gets it wrong. And sometimes, as we saw in the

previous section, features we require for an application

may not work in the default theme. Having a way to switch

the theme might help to smooth out some rough edges and

make some users feel more comfortable with the look of the

application.

As we've already seen, querying available themes and

setting a new theme is fairly simple. Let's create a

configuration option to change the theme of our

application.

Building a theme selector

Themes aren't something users are going to need to change

often, and as we've seen, changing the theme can undo

style changes we've made to our widgets. In light of this,

we'll play it safe by designing our theme changer in such a

way that it requires a restart of the program to make the

actual change.

We'll start by adding a theme  option to our SettingsModel

class's fields  dictionary:

# models.py, inside the SettingsModel class fields = { #...

'theme': {'type': 'str', 'value': 'default'} }

Every platform has a theme aliased to default , so this is a

safe and sensible default value.

Next, our Application  object will need to check this value

when the settings are loaded and apply it. Add this code to

the end of the Application._load_settings()  method:

# application.py, in Application._load_settings() style =

ttk.Style() theme = self.settings.get('theme').get() if theme in

style.theme_names(): style.theme_use(theme)



This code will create a Style  object, retrieve the theme,

and then set the theme using the theme_use()  method. If we

should happen to give Tkinter a theme that doesn't exist, it

will raise a TCLError  exception; to avoid this, we have added

an if  statement to make sure the given theme is in the list

returned by theme_names() .

What remains now is to create the UI elements required. As

we did with our font options, we will add a sub-menu to our

Options  menu for selecting a theme.

To do this, open mainmenu.py  and add an import statement

for ttk  at the top. Then, add the following code to the

initializer method just after the font menus:

# mainmenu.py, inside MainMenu.__init__() style = ttk.Style()

themes_menu = tk.Menu(self, tearoff=False, **self.styles) for

theme in style.theme_names(): themes_menu.add_radiobutton(

label=theme, value=theme, variable=self.settings['theme'] )

options_menu.add_cascade(label='Theme', menu=themes_menu)

Here, as we did with our font settings, we simply loop

through the available themes retrieved from theme_names()

and add a Radiobutton  item for each theme, tying it to our

settings['theme']  variable.

It may not be obvious to users that changing the theme

requires a restart, so let's make sure to let them know.

We can do that using a variable trace, like so:

self.settings['theme'].trace_add( 'write', self._on_theme_change

)

Whenever the theme is changed, this trace will call the

self._on_theme_change()  method; let's add this method to the

end of the MainMenu  class:

# mainmenu.py, inside MainMenu @staticmethod def

_on_theme_change(*_): message = "Change requires restart" detail



= ( "Theme changes do not take effect" " until application

restart" ) messagebox.showwarning( title='Warning',

message=message, detail=detail )

Note that we don't actually take any action here to change

the theme; this method simply displays the warning

message box and nothing else. The actual change to the

setting is handled by the control variable bound to the

menu checkboxes, so we don't really need to explicitly do

anything. Also, because this method doesn't require access

to the instance or class, we've made it a static method.

Now, you can run the application and try changing the

theme, and then restart the application. You should notice a

change in the application's appearance. For example,

here's the application using the "clam" theme:



Figure 9.17: ABQ Data Entry using the "clam" theme on Windows As you can

see, not every theme looks so good with our changes. Try the different themes

available on your platform. Which theme looks best on your platform? Which

ones work best with our style changes? Try them all out and see.



Summary

In this chapter, we overhauled the look and feel of our

application for both aesthetic and usability improvements.

You learned how to use images and icons in your

application using PhotoImage and BitmapImage, and how

to extend image format support using Pillow. You learned to

assign fonts to widgets, and to change the settings for

built-in fonts. You learned how to work with color and font

settings for default Tkinter widgets and how to use tags to

style individual Treeview  items and Text  widget contents.

We explored the intricate world of Ttk styles and learned to

create custom styles based on the built-in defaults. Finally,

we applied our knowledge of styling to the ABQ Data Entry

application to make it more aesthetically pleasing and user-

friendly.

In the next chapter, we'll take steps to make sure our

program runs effectively across major desktop platforms.

You'll learn strategies to avoid cross-platform pitfalls in

both general Python programming and Tkinter

programming in particular. We'll also explore the various

guidelines platform vendors offer to developers targeting

their platforms.



10

Maintaining Cross-Platform Compatibility

Word has spread throughout ABQ AgriLabs about your

application, and it is being requested as a way to visualize

and work on experimental data files. As a result, it now

needs to run on Windows, macOS, and Linux systems

equally well. Fortunately for you, Python and Tkinter are

supported on these three operating systems, and you'll be

pleasantly surprised to find that your application already

runs unaltered on all three. However, there are some small

issues that you need to address and remain aware of in

order for your application to be a good citizen on each

platform.

In this chapter, we'll learn more about cross-platform

compatibility as we cover the following topics:

In Writing cross-platform Python, you'll learn how to

keep basic Python code functional across multiple

platforms.

In Writing cross-platform Tkinter, you'll learn about

cross-platform issues that affect Tkinter code

specifically.

In Improving our application's cross-platform

compatibility, we'll update our ABQ Data Entry

application for better cross-platform support.



Writing cross-platform

Python

At the time of writing, Python is supported on nearly a

dozen operating system platforms, covering everything

from common desktop systems like Windows to high-end

commercial Unixes like AIX and obscure OS projects such

as Haiku OS.

Across all these platforms, most Python code works without

any significant alteration, as Python has been designed to

translate high-level functionality into appropriate low-level

operations on each system. Even so, there are situations

where OS differences cannot be (or simply have not been)

abstracted away, and careful handling is required to avoid

platform-specific failures.

In this section, we'll look at some of the larger issues that

impact cross-platform Python.

Filenames and file paths across

platforms

Filesystems are probably the biggest source of pitfalls for

cross-platform development. Although most platforms

share the concept of files and directories arranged in a

hierarchy, there are some crucial differences that can trip

up developers who are unfamiliar with a variety of

operating systems.

Path separators and drives



When it comes to identifying locations on a filesystem,

operating systems generally use one of the following two

models:

Windows/DOS: In this model, each partition or storage

device is assigned a volume label (usually a single

letter), and each volume has its own filesystem tree.

Paths are separated by a backslash ( \ ) character. This

system is used by Windows, DOS, and VMS.

Unix: In this model, there is one filesystem tree, into

which devices and partitions are mounted at arbitrary

points. Paths are separated by a forward slash ( / ). This

model is used by macOS, Linux, BSD, iOS, Android, and

other Unix-like operating systems.

Thus, a path like E:\Server\Files\python  is meaningless on

Linux or macOS, while a path like /mnt/disk1/files/python  is

equally meaningless on Windows. This could make it quite

difficult to write code that accesses files in a cross-platform

way, but Python gives us a few tools to deal with the

differences.

Path separator translation

If you use the Unix-style forward slash path separators on a

Windows system, Python will automatically translate them

into backslashes. This is quite useful for cross-platform

purposes because using backslashes in strings can be

problematic. For example, if you try to create the string

C:\Users  in Python, you'll get an exception, because \u  is

an escape sequence for specifying Unicode sequences, and

sers  (the rest of the string after \U ) is not a valid Unicode

sequence.



To use backslashes in a string, you must either escape them

by entering a double-backslash ( \\ ) or you must use a raw

string (by prefixing the string literal with an r ).

Note that there is no Windows-to-Unix path separator

translation: Python will not translate backslashes into Unix-

style forward slashes. Thus, a path like r'\usr\bin\python'

will simply not work on macOS or Linux.

The os.path module

Even with automatic path-separator interpolation, building

or hardcoding paths as strings is a messy business.

Python's powerful string manipulation methods make it

tempting to try to work with paths as strings, and many

programmers attempt to do so.

The result is often ugly, non-portable code like this:

script_dir = '/'.join(some_path.split('/')[:-1])

While this approach might work most of the time (even on

Windows), it's prone to breaking on some edge cases (for

example, if some_path  is /script.sh ). For this reason, the

Python standard library includes the os.path  module for

working with filesystem paths.

The path  module appears to be a collection of functions and

constants that help abstract common filenames and

directory operations, though it's actually a wrapper around

the low-level modules posixpath  for Unix-like systems and

ntpath  for Windows. When you import path , Python simply

detects your operating system and loads the appropriate

low-level library.

The following table shows some common os.path  functions

that are useful for cross-platform developers:



Function Purpose

join()
Joins two or more path segments in a platform-appropriate

way

expanduser()
Expands the ~  or username  shortcuts to the user's home

directory or user name, respectively

expandvars() Expands any shell variables present in a path string

dirname() Extracts the parent directory of the path

isfile() Determines whether the path points to a file

isdir() Determines whether the path points to a directory

exists() Determines whether the given path exists

Using these functions rather than directly manipulating

path strings guarantees that your code will work across

platforms consistently.

The pathlib module

A more recent addition to the Python standard library is the

pathlib  module. The pathlib  module is a more object-

oriented and somewhat higher-level take on filesystem

paths, which we have been using throughout this book.

Unlike os.path , which is just a collection of functions and

constants, pathlib  offers the Path  object, which represents

a filesystem location and provides a variety of methods for

modifying the path and obtaining information about it.



We typically use pathlib  by importing the Path  class from it.

For example:

>>> from pathlib import Path >>> p = Path() >>> print(p) . >>>

print(p.absolute()) '/home/alanm'

Path  defaults to the current working directory, but you can

also provide it with an absolute or relative path string.

Relative paths will be calculated against the current

working directory.

Path  objects have a variety of useful properties and

methods:

# Create a Path object for the current working directory p =

Path() # Find the parent directory parent = p.parent # Check if

the path /var/log exists has_var_log = Path('/var/log').exists()

# Join Paths together, using the division operator image_path =

Path(__file__) / 'images' / 'png'

Refer to the pathlib  module's documentation at

https://docs.python.org/3/library/pathlib.html for

more information on this powerful library.

Should you use os.path  or pathlib.Path ? Generally

speaking, pathlib  is the better choice and results in much

cleaner code overall. However, there are a few edge cases

where you might need os.path . For example, pathlib

has no equivalent to expandvars() ; also, the os.path

module's function-oriented approach may be more useful in

functional programming situations.

Case sensitivity

Platforms also differ in terms of filesystem case sensitivity.

On Linux, BSD, and Unix, for example, the files log.txt ,

LOG.txt , and LoG.TxT  are all different files that can coexist in

the same directory. On Windows or macOS (depending on

your settings), all three names would refer to the same file,

https://docs.python.org/3/library/pathlib.html


and three files with these names could not exist in the same

directory.

The following table breaks down the case sensitivity of

major operating systems:

System Case-sensitive

Windows No

macOS Not by default (configurable)

Linux Yes

BSD, most other Unix systems Yes

Problems with case (in)sensitivity usually depend on which

system you're accustomed to:

Programmers used to a case-insensitive system tend to

run into problems with inconsistent use of cases when

referencing files and paths. For instance, you might

save a file as UserSettings.json  but try to retrieve it as

usersettings.JSON .

Programmers used to a case-sensitive system can have

problems when depending on a case to differentiate

between file or directory names. For example, you

might have the files ImportIngest.txt  and ImportingEst.txt

in the same directory.

Avoiding these issues is fairly simple with the following few

basic rules:



Use all-lowercase names for file and path names unless

there is a good reason not to.

If you do mix cases, follow consistent rules, so that you

don't need to remember arbitrary case usage.

Avoid CamelCase or similar naming schemes that rely

on case to denote word breaks. Use underscores,

hyphens, or spaces (they're valid in all modern

filesystems!).

To put it another way: treat all paths and filenames as if

you had a case-sensitive system, but don't rely on the

system being case-sensitive.

Symbolic links

A symbolic link is a special filesystem-level construct that

appears to be a file or directory but is actually just a

pointer to another file or directory on the system. They're

often used to provide aliases to files or directories, or to

make it appear as though the same file exists in multiple

places without using additional disk space. Although they

exist on Windows, they're far more commonly used on

Linux, macOS, and other Unix-like systems; thus, they can

be a point of confusion for programmers coming from a

Windows environment.

Symbolic links are not to be confused with desktop

shortcuts, which also exist on all three major platforms.

Shortcuts are just metadata files implemented at the

desktop environment level, whereas symbolic links are

implemented at the filesystem level.

File and path operations sometimes need to clarify if

they're working with the symbolic link itself or the file that

the link points to.



For example, suppose we had a symbolic link in our current

directory, secret_stuff.txt , that points to the nonexistent file

/tmp/secret_stuff.txt . Look at how os.path()  responds to

such a file:

>>> from os import path >>> path.exists('secret_stuff.txt') False

>>> path.lexists('secret_stuff.txt') True

The regular path.exists()  function will follow the link and

discover that the actual file in question does not exist.

os.path  also includes a lexists()  function that will tell us if

the link exists, even if the file does not. This situation could

be a problem; for example, your program might be

attempting to create a directory with the same name as a

broken symbolic link. In this case, os.path.exists()  or

Path.exists()  would both return False , but the name conflict

would still exist, and directory creation would fail.

Checking os.path.lexists()  or Path.is_symlink()  as well would

be a good idea in this case.

The following table shows some of the os.path  functions

that help deal with symbolic links:

Method Description

islink() Returns True  if a path is a symbolic link

lexists()
Returns True  if a path exists, even if it's a broken symbolic

link

realpath()
Returns the actual path, resolving any symbolic links to real

files and directories

pathlib.Path  objects also feature these link-related methods:



Method Description

is_symlink() Returns True  if the path is a symbolic link

resolve()
Returns a path with all symbolic links resolved to real files

and directories

lchmod()
Changes permissions on a symbolic link, rather than the

file it is pointed to

lstat()
Returns filesystem information on a symbolic link, rather

than the file it is pointed to

In summary, our code should be mindful of symbolic links in

situations where they might cause it to behave

unexpectedly.

Path variables

Most platforms, including Windows, macOS, and Linux,

support some kind of shell variables, which are often

automatically set up by the system to point to common

filesystem locations. The os.path  module provides the

expandvars()  function to expand these variables into their

actual values ( pathlib  has no equivalent method). While

these variables can be useful in locating common path

locations, the cross-platform developer should understand

that they are not consistent across platforms.

Some commonly used variables across different systems

include the following:

Description Windows macOS Linux



Current user

home directory

%HOME% ,

%USERPROFILE%

$HOME $HOME

Temporary

directory
%TMP% , %TEMP% $TMPDIR None

Path to default

shell
N/A $SHELL $SHELL

Current working

directory
None $PWD $PWD

Configuration

directory

%APPDATA% ,

%LOCALAPPDATA%
None

$XDG_CONFIG_HOME

(often not set)

OS directory
%WINDIR% ,

%SYSTEMROOT%
N/A N/A

Program files

directory

%PROGRAMFILES% ,

%PROGRAMW6432%
N/A N/A

Note that Windows variables can be spelled using the

native %VARIABLENAME%  format or the Unix-style $VARIABLENAME

format; macOS and Linux only accept the Unix-style format.

Using these variables is not necessarily a bad idea (they

can help abstract differences between versions or

configurations of an OS), but be aware that they are not

consistently available, or even meaningful, across

platforms.

Inconsistent library and feature

support



While it's understandable that many third-party Python

libraries only support a limited number of platforms, you

might be surprised to learn that the standard library

contains a slightly different set of modules depending on

the platform. Even those that do exist across platforms

might behave slightly differently, or have inconsistent

contents, depending on the platform.

Naturally, these have to be handled carefully in cross-

platform applications. Let's look at a few examples of these

libraries and features.

Python's platform-limited libraries

In sections 34 and 35 of Python's standard library

documentation

(https://docs.python.org/3/library/index.html),

you'll find a list of libraries available only on Windows or

Unix-like systems, respectively. Careful reading of the

documentation shows that there are a couple more

platform-limited libraries listed in other sections as well.

This is a list of the more common platform-limited libraries

you may encounter:

Library Description Availability

ossaudiodev
Open Sound System (OSS) audio server

interface
Linux, FreeBSD

winsound Windows audio interface Windows

msilib Windows software packaging tools Windows

https://docs.python.org/3/library/index.html


winreg Windows registry tools Windows

syslog Unix system log interface
Linux, macOS,

BSD

pwd , spwd Unix password database interface
Linux, macOS,

BSD

resource System resource limits
Linux, macOS,

BSD

curses Terminal-based UI library
Linux, macOS,

BSD

In some cases, there are higher-level, cross-platform

libraries that you can use to replace these (for example, use

logging  instead of syslog ), but in other cases the

functionality is so platform-specific that you may have no

choice ( winreg , for example). In this case, you'll need to do

a platform check before importing these libraries, as you'll

get an ImportError  exception on unsupported platforms.

Checking low-level function compatibility

Even in universally available libraries, there are sometimes

functions or methods that are unavailable or exhibit

different behaviors depending on the platform. The os

module is perhaps the most notable case.

The os  module is a relatively thin wrapper around system

calls or commands, and while it attempts to abstract some

roughly analogous calls across platforms, many of its

functions are too platform-specific to make available

universally.



The os  module documentation at

https://docs.python.org/3/library/os.html contains

complete details on platform support, but some examples

are listed here:

Library Description Availability

getuid , getgid ,

getgroups , geteuid

Get user or group information for

the current process
Unix-like

setuid , setgid ,

setgroups , seteuid

Set user or group information for

the current process
Unix-like

getpriority ,

setpriority

Get or set the priority of the

current process
Unix-like

chown , lchown
Change the owner of a file or its

symbolic link
Unix-like

startfile
Open a file as if it were double-

clicked
Windows

Attempting to use an unavailable function will cause an

exception, so none of these functions should be in a cross-

platform application without appropriate checks or

exception handling. By far, most of the platform-limited

functions in os  are limited to Unix-like systems (Linux,

macOS, BSD, and so on), and most of the analogous

functions for Windows will be found in the third-party

pywin32  package (which is only available for Windows, of

course).

In general, you need to check the documentation of the

libraries you use to make sure they're available on all the

https://docs.python.org/3/library/os.html


platforms you intend to support. Caution is especially

warranted when using libraries that interact with operating

system functions (such as window management,

filesystems, user authentication, and so on) or with services

that are only available on certain platforms (Microsoft SQL

Server, for example).

The dangers of the subprocess module

The subprocess  module provides tools to launch and manage

other programs and commands from within your Python

application. For programmers already familiar with their

operating system's command-line interface, it often

provides a fast and convenient way to accomplish

filesystem operations or other administrative tasks. It's also

highly effective at sabotaging cross-platform compatibility!

For example, a programmer on Linux or macOS might be

tempted to copy files as follows:

import subprocess subprocess.call(['cp', 'file1.txt',

'file2.txt'])

This would work on Unix-like operating systems but fail on

Windows, as cp  is not a valid Windows shell command. The

better option in this case is to use the shutil  library, which

contains high-level functions for copying files.

To avoid problems here, follow these guidelines:

1. Look for high-level libraries before resorting to

subprocess  to solve a problem.

2. If you must use subprocess , carefully study the called

command on each supported platform, making sure the

syntax, output, and behavior are identical.



3. If they're not, make sure to create different cases for

each platform (see the section Writing code that

changes according to the platform, below).

Naturally, all this advice applies equally to any third-party

modules that allow you to execute operating system

commands from within Python.

Text file encodings and formats

Plaintext files on different platforms use different character

encodings and end-of-line characters by default. Although

most operating systems can handle a wide variety of

encodings, each system has a default (often determined by

language or localization settings) that will be used if none

is specified. Text files on different platforms also use

different character codes for end-of-line characters.

Modern versions of Linux and macOS use UTF-8 as a

default encoding and the line feed character ( \n ) as a line

terminator. Windows 10, however, uses cp1252  as its default

encoding and the combination of the carriage return and

line feed ( \r\n ) characters as a line terminator. Most of the

time, these differences do not represent a problem,

especially if you are only reading and writing files in Python

and working with standard English characters.

Consider, however, a scenario where you attempt to append

a Unicode character to a text file, like so:

with open('testfile.test', 'a') as fh: fh.write('\U0001F34C')

On Windows, or other systems with a non-Unicode default

encoding, the preceding code will raise an exception, like

so:



UnicodeEncodeError: 'charmap' codec can't encode character

'\U0001f34c' in position 0: character maps to <undefined>

To avoid this problem, you can manually specify a character

encoding when opening a file, as follows:

with open('testfile.test', 'a', encoding='utf-8') as fh:

fh.write('\U0001F34C')

The line-terminator character can also be specified when

opening a file using the newline  argument, like so:

with open('testfile.test', 'w', newline='\n') as fh:

fh.write('banana')

We've already been doing this in ABQ Data Entry to work

around a bug in Windows with the csv  module. In a cross-

platform situation, it's a good idea to specify both the

encoding  and newline  arguments whenever saving data you

don't control (such as user-entered data).

Graphical and console modes

On Windows, programs are launched in either GUI mode or

console mode, as determined by metadata in the

executable. The Python distribution for Windows includes a

utility called Python launcher, which is associated with

Python files during installation. Python launcher will launch

your application in either GUI or console mode depending

on its file extension, as follows:

Files ending in the .py  extension will be launched in

console mode using python.exe . This will cause a

command-line window to open in the background,

which must stay open while the program runs.

Files ending in .pyw  will be launched in GUI mode

using pythonw.exe . No command-line window will be



launched, and if run from a command line the program

will not block the console (that is, the prompt will

return immediately, while the program is still running);

however, print()  will have no effect and sys.stderr  and

sys.stdout  will not exist. Trying to access them will

raise an exception.

This distinction often causes confusion for developers

coming from Linux or macOS, where it is common to have

graphical applications that output errors and debugging

information to the terminal. Even for Windows

programmers who are new to GUI applications, the lack of

command-line output for GUI applications can be

problematic.

To avoid issues, simply remember the following:

1. Remove any sys.stdout()  or sys.stderr()  calls from the

code if deploying to Windows.

2. Rely on logging rather than print()  or sys.stderr()  calls

to record debugging information.

3. Create a copy of the main executable script with a .pyw

extension so that Windows users can launch it without

a command-line window.

While macOS does not distinguish between GUI and

console applications (apart from the obvious presence of a

GUI), its desktop launches regular .py  files by launching a

Terminal window, just like Windows. While macOS Python

includes a pythonw.exe  file that launches without the

Terminal, there are two problems with it. First, it is not

associated with the .pyw  extension by default; you'd need

to do that manually if you wanted that behavior. Second,

depending on how you installed Python 3 (for instance, if

you installed it using homebrew ), your installation may not

have pythonw .



There is a way to set up Python programs on macOS so that

they behave like proper GUI applications, which we'll cover

in Chapter 16, Packaging with setuptools and cxFreeze.

Writing code that changes according

to the platform

As you've seen so far, there are certain situations where

you simply can't avoid writing platform-specific code, either

because a high-level library is unavailable or because the

actions that need to be performed are fundamentally

different on a particular platform.

In this case, it becomes necessary to detect the platform.

There are a few ways of doing this in Python, including the

os.system()  function and the sys.platform  attribute, but the

standard library platform  module contains the best set of

functionality for determining the OS details most useful in

making decisions. When called, the platform.system()

function returns a string identifying the operating system:

Windows , Linux , freebsd7 , or Darwin  (for macOS).

Some other useful functions in the platform  module include

release() , which returns the version string of the OS (for

example, "10" on Windows 10, "17.3.0" on macOS High

Sierra, or the running kernel version on Linux); and

architecture() , which tells us if the system is 64 bit or 32

bit.

For simple differences in code, using this information in a

nested if  / else  chain usually suffices:

# simple_cross_platform_demo.py import platform import subprocess

os_name = platform.system() if os_name in ('Darwin', 'freebsd7'):

cmd = ['ps', '-e', '-o', "comm=''", '-c'] elif os_name ==



'Linux': cmd = ['ps', '-e', '--format', 'comm', '--no-heading']

elif os_name == 'Windows': cmd = ['tasklist', '/nh', '/fo',

'CSV'] else: raise NotImplemented("Command unknown for OS")

processes = subprocess.check_output(cmd, text=True)

print(processes)

This example defines a platform-appropriate list of

command tokens based on the value returned by

platform.system() . The correct list is saved as cmd , which is

then passed to subprocess.check_output()  to run the command

and obtain its output.

This works acceptably for the occasional call, but for more

complex situations, it makes sense to bundle platform-

specific code into backend classes that we can then select

on the basis of our platform string. For example, we could

re-implement the above code as follows:

# complex_cross_platform_demo/backend.py import subprocess import

platform class GenericProcessGetter(): cmd = [] def

get_process_list(self): if self.cmd: return

subprocess.check_output(self.cmd) else: raise NotImplementedError

class LinuxProcessGetter(GenericProcessGetter): cmd = ['ps', '-

e', '--format', 'comm', '--no-heading'] class

MacBsdProcessGetter(GenericProcessGetter): cmd = ['ps', '-e', '-

o', "comm=''", '-c'] class

WindowsProcessGetter(GenericProcessGetter): cmd = ['tasklist',

'/nh', '/fo', 'CSV']

In this approach, we have created a generic class to handle

the common logic for getting processes, then subclassed it

to override the cmd  attribute specifically for each platform.

Now, we can create a selector function to return an

appropriate backend class when given an OS name:

# complex_cross_platform_demo/backend.py def

get_process_getter_class(os_name): process_getters = { 'Linux':

LinuxProcessGetter, 'Darwin': MacBsdProcessGetter, 'Windows':

WindowsProcessGetter, 'freebsd7': MacBsdProcessGetter } try:

return process_getters[os_name] except KeyError: raise

NotImplementedError("No backend for OS")



Now, code that needs to use this class can utilize this

function to retrieve a platform-appropriate version. For

example:

# complex_cross_platform_demo/main.py os_name = platform.system()

process_getter = get_process_getter_class(os_name)()

print(process_getter.get_process_list())

This script can now be run on Linux, Windows, macOS, or

BSD to print a process list. Other platforms can be easily

added by creating more GenericProcessGetter  subclasses and

updating get_process_getter_class() .

For even more complex situations, where multiple classes

or functions need to be implemented differently between

platforms, we can take an approach similar to the standard

library's os.path  module: implement completely separate

modules for each platform, then import them with a

common alias depending on the platform. For example:

import platform os_name = platform.system() if os_name ==

'Linux': import linux_backend as backend elif os_name ==

'Windows': import windows_backend as backend elif os_name in

('Darwin', 'freebsd7'): import macos_bsd_backend as backend else:

raise NotImplementedError(f'No backend for {os_name}')

Bear in mind that each backend module should ideally

contain identical class and function names and produce

similar output. That way backend  can be used by the code

without concern for the platform in question.

Writing cross-platform

Tkinter



As you've seen so far, Tkinter mostly works identically

across platforms, and even has the capability to do the

right thing on each platform with minimal effort. However,

there are some minor issues to be aware of as you support

a Tkinter application across multiple operating systems. In

this section, we'll explore the more significant differences.

Tkinter version differences across

platforms

As of 2021, the official Python 3 distributions for major

platforms ship at least Tcl/Tk 8.6; this is the latest major

release of Tcl/Tk and includes all the functionality

discussed in this book. However, not every platform

includes the latest minor version, which may impact bug

fixes and minor features. At the time of writing, the latest

version of Tcl/Tk is 8.6.11.

Historically, some platforms (notably macOS) have lagged

behind in shipping the latest version of Tcl/Tk. While

platform support at the time of writing is fairly consistent,

it's possible that differences may arise again in the future.

To discover the exact version of Tcl/Tk installed on your

system, you can execute the following commands at a

Python prompt:

>>> import tkinter as tk >>> tk.Tcl().call('info', 'patchlevel')

This code uses the Tcl()  function to create a new Tcl

interpreter, then calls the info patchlevel  command. Here's

what this command returns on several platforms using the

most commonly used Python 3 distribution for each

platform:



Platform Python version Tcl/Tk version

Windows 10 3.9 (from python.org) 8.6.9

macOS High Sierra 3.9 (from python.org) 8.6.8

Ubuntu 20.04 3.8 (from the repositories) 8.6.10

Debian 10 3.7 (from the repositories) 8.6.9

As you can see, none of these platforms offer the latest

version of Tcl/Tk, and even those with newer versions of

Python may have older versions of Tcl/Tk. Ultimately, if you

intend to write cross-platform Tkinter code, make sure you

are not relying on features from the very latest version of

Tcl/Tk.

Application menus across platforms

The application menu is probably one of the most visible

areas where both capabilities and conventions vary

between platforms. As mentioned in Chapter 7, Creating

Menus with Menu and Tkinter Dialogs, we should be aware

of both the limitations and the expectations on major

operating systems when designing our menus.

Menu widget capabilities

The Menu  widget, which we learned about in Chapter 7, is

different from most other Tkinter widgets in that it relies

on the menu facilities of the underlying platform. This

allows your application to have a menu that behaves



natively; for example, on macOS, the menu appears in the

global menu area at the top of the screen, while on

Windows it appears in the application window under the

taskbar.

Because of this design, there are some limitations when

working with cross-platform Menu  widgets. To demonstrate

this, let's build an extremely non-cross-platform menu.

We'll begin by creating a simple Tk  window with a menu,

like so:

# non_cross_platform_menu.py import tkinter as tk from

tkinter.messagebox import showinfo root = tk.Tk()

root.geometry("300x200") menu = tk.Menu(root)

Now, we'll create a cascade menu:

smile = tk.PhotoImage(file='smile.gif') smile_menu =

tk.Menu(menu, tearoff=False) smile_menu.add_command( image=smile,

command=lambda: showinfo(message="Smile!") )

smile_menu.add_command(label='test')

menu.add_cascade(image=smile, menu=smile_menu)

The smile_menu  contains two commands, one with a text

label and the other with only an image. We've also used the

image when adding the cascade to the menu, so that it

shouldn't have a text label, just an image.

While we're at it, let's add some colors; in Chapter 9,

Improving the Look with Styles and Themes, we

customized the color of the application menu, mentioning

that it only worked in Linux. Let's see what it does on other

platforms; add in the following code:

menu.configure(foreground='white', background='navy')

smile_menu.configure(foreground='yellow', background='red')

That should make our main menu white text on a black

background, and the cascade yellow on red.



Next, let's add a separator and a command directly to the

main menu, after the smile_menu :

menu.add_separator() menu.add_command( label='Top level command',

command=lambda: showinfo(message='By your command!') )

Last of all, we'll create a Checkbutton  widget directly on the

main menu, and finish with the usual boilerplate to

configure root  and run the mainloop()  method:

boolvar = tk.BooleanVar() menu.add_checkbutton(label="It is

true", variable=boolvar) root.config(menu=menu) root.mainloop()

Save this file and execute the code. Depending on your

operating system, you'll see some different things.

If you are on Linux (in this case, Ubuntu 20.04), it seems to

work mostly as expected:

Figure 10.1: The menu experiment on Ubuntu 20.04

We have our first cascade labeled with the smiley face GIF,

our top-level menu command, and our top-level Checkbutton

(which we've checked, because it is true that our menu

works!). The colors also seem to be correct, although the

background of the GIF is the default grey rather than the

red we would expect (the GIF itself has a transparent

background).



If you're using Windows 10, you should see something more

like this:

Figure 10.2: The menu experiment on Windows 10

Instead of our smiling icon in the top menu, we only have

the text (Image). Even if we specify a label, this text shows

up where the image should be. Fortunately, the image does

appear when we use it in the cascade menu. As for the

colors, they work as expected in the cascade menu, but the

top-level menu ignores them completely. The command in

the main menu appears and works just fine, but the

Checkbutton  widget does not. Its label appears and can be

clicked on, but the check mark itself does not appear.

Finally, let's try this menu on macOS. It should look

something like this:

Figure 10.3: The menu experiment on macOS



On macOS, our menu shows up not in the program window,

but in the global menu at the top of the screen, as macOS

users would expect it to. However, there are some obvious

problems.

First, while our smiling icon appears, it's cut off. Since the

top bar is a fixed height and Tkinter will not resize our icon

for us, images larger than the top bar height get truncated.

There are bigger problems too: neither the top-level

command nor the Checkbutton  widget are anywhere to be

seen. Only our cascade menu shows up. Color-wise, the top-

level menu ignored our colors, while the cascades only

honored the foreground color (resulting in a fairly

unreadable yellow-on-gray combination). Also note that we

have a "Python" cascade menu that we did not create.

On each platform, we're limited by the capabilities of the

menu system, and while it appears that anything goes for

menus on Linux, the other two operating systems require

more care when constructing menus.

To avoid any issues with menus, follow these guidelines:

Avoid command, Checkbutton , and Radiobutton  items in

the main menu; stick to cascade menus only.

Don't use images in the top-level main menu.

Don't use colors to style the menu, at least not on

Windows or macOS.

If you must do any of the preceding points, create

separate menus for each platform.

If you take the approach of building separate menus for

each platform, of course, you can implement whatever

features are supported on the platform in question.

However, just because you can use a feature on a platform



doesn't necessarily mean you should. In the next section,

we'll look at the guidelines and standards that can help you

decide how to implement a menu on each platform.

Menu guidelines and standards

Each of our major platforms offers standards to direct

developers in making user interfaces that meet the

expectations of that system's users. While these standards

should be taken into consideration for the whole

application, one of the most visible areas affected by them

is the layout of the application menu (or menu bar, to use

the standard terminology).

Let's look at the standards available for each platform,

which we'll refer to later in the chapter when we create a

cross-platform main menu.

Windows user experience interaction guidelines

Microsoft's Windows user experience interaction

guidelines, available at https://docs.microsoft.com/en-

us/windows/win32/uxguide/guidelines, offer developers

a wealth of information for designing applications that fit

right in to the Windows desktop. Among many guidelines

offered for menu bar design is a description of the standard

menu items and how they should be arranged.

At the time of writing, Microsoft has just released newer

guidelines aimed at Windows 11 and the Universal Windows

Platform, available at https://docs.microsoft.com/en-

us/windows/apps/design/basics/. However, these newer

guidelines do not offer specific guidance on menu structure,

so we have used the older guidelines instead.

Apple's human interface guidelines

https://docs.microsoft.com/en-us/windows/win32/uxguide/guidelines
https://docs.microsoft.com/en-us/windows/apps/design/basics/


Apple's human interface guidelines are available at

https://developer.apple.com/macos/human-interface-

guidelines/ and offer a detailed set of rules for creating

macOS-friendly interfaces.

While much of the basic advice for menu bar design is

similar to that offered by Microsoft, the layout

recommendations are quite different and much more

specific. For example, the first cascade on a macOS

application should be the App menu, a menu named after

the application, which contains items like About and

Preferences.

Linux and BSD human interface guidelines

In sharp contrast to Windows and macOS, Linux, BSD, and

other X11 systems have no blessed default desktop

environments or controlling entities to dictate UI

standards. There are well over a dozen full desktop

environments available for these platforms, each with its

own goals and ideas about user interaction. While there are

multiple projects working to create human interface

guidelines (HIG) for these platforms, we'll be following

the Gnome HIG from the Gnome project. This set of

guidelines is used by the Gnome, MATE, and XFCE

desktops and is available at

https://developer.gnome.org/hig/. The Gnome desktop

is the default desktop environment on many Linux

distributions, including Red Hat, Ubuntu, and notably

Debian, which is our target Linux environment at ABQ.

Menus and accelerator keys

Accelerator keys are keyboard shortcuts assigned to

common application actions, particularly menu items. Thus

https://developer.apple.com/macos/human-interface-guidelines/
https://developer.gnome.org/hig/


far, we've added no accelerator keys, which is bad for

keyboard-only users.

In Tkinter, accelerator keys can be assigned to a widget

using the bind()  method. We can also use the bind_all()

method, which can be called on any widget and effectively

binds an event globally (that is, even if the widget that

called bind_all()  is not focused). Our menu items also take

an accelerator  argument, which can be used to specify a

string that will be shown in the menu as an accelerator key

hint.

The UI guidelines on each platform define standard

accelerator keys for common actions, most of which are the

same across platforms since they descend from the IBM

Common User Access (CUA) standard established in the

1980s. The most notable difference is the use of the

command ( ) key on macOS in place of the control (Ctrl)

key used by Windows and Linux.

As we rewrite our application menus for cross-platform

compatibility, we'll also add platform-appropriate

accelerator keys.

Cross-platform fonts

In Chapter 9, Improving the Look with Styles and Themes,

we learned how easy it is to customize Tkinter's fonts to

change the look and feel of your application. Doing so,

however, can cause inconsistencies across platforms.

There are around 18 fonts that are shared between macOS

and Windows, but not all of them look identical on both

platforms. As for Linux, most distributions ship with none

of those 18 fonts due to license issues.



Unless you can guarantee that a particular font is available

on all supported platforms, it's best to avoid naming

specific font families in your styles. Fortunately, if you do

happen to specify a nonexistent font, Tkinter will just use

the default, but even that could cause layout or readability

issues in certain cases.

To be safe, stick with Tkinter's named fonts, which are

automatically set to the same defaults on each platform.

Cross-platform theme support

As we saw in Chapter 9, Improving the Look with Styles

and Themes, Ttk provides a number of themes that differ

from platform to platform. Each platform contains an alias

called "default", which points to the most sensible theme

for that platform. Attempting to set a theme that doesn't

exist results in an exception, so avoid hardcoding a theme

setting in your application, and make sure theme choices

are checked against the output of Style.theme_names() .

Window zoomed state

In addition to maximized and minimized windows, many

windowing environments have the concept of a "zoomed"

window, which takes over the screen completely. On

Windows or macOS, it can be activated for a Tkinter

application using the root window's state()  method, as

follows:

from tkinter import * root = Tk() root.state('zoomed')

root.mainloop()

On Windows or macOS, this creates a window that takes

over the screen; on Linux or BSD, however, it raises an



exception because X11 does not provide anything for

setting a zoomed state.

On X11, this is accomplished by turning on the root

window's -zoomed  attribute as follows:

root.attributes('-zoomed', True)

Unfortunately, the preceding code raises an exception on

Windows and macOS. If you need to be able to set this state

in a program, you'll need to use some platform-specific

code.

Now that we've walked through a variety of cross-platform

issues, let's take a look at ABQ Data Entry and see what we

can do to improve its behavior across different operating

systems.

Improving our

application's cross-

platform compatibility

Our application does pretty well across platforms, but there

are some things we can do to improve it:

First, our application stores its preferences in the

user's home folder, which is not ideal on any platform.

Most desktop platforms define specific locations where

configuration files should be placed, so we will fix our

application to use those for the abq_settings.json  file.

Second, we're creating our CSV files without specifying

any encoding; if a user inserted a Unicode character



(say, in the Notes  field), file saving would raise an

exception and fail on non-Unicode platforms.

Finally, the current menu structure does not really

come close to following any of the human interface

guidelines we've discussed. We'll implement separate

menus for each platform to ensure users have a UI that

is consistent with their platform.

Let's get started!

Storing preferences correctly

Each platform defines a proper location for storing user

configuration files:

Linux and other X11 systems store configuration files in

a location defined in the $XDG_CONFIG_HOME  environment

variable, which defaults to $HOME/.config  if it's not

defined.

macOS user configuration files are stored in

$HOME/Library/Application Support/ .

Windows user configuration files are stored in

%USERPROFILE%\AppData\Local . Though if your environment

uses Active Directory (AD) with roaming profiles, you

might prefer to use %HOME%\AppData\Roaming  instead.

To realize this in our application, we'll need to update the

SettingsModel  class. Remember that our SettingsModel  class's

initializer method currently places the configuration file in

Path.home() , which returns the user's home directory on

each platform. Let's update this with some platform-

specific code.



To begin, open models.py  and import the platform  module,

like so:

# models.py, at the top import platform

To figure out the directories required, we're going to need

to get the name of the platform, as well as some

environment variables. The os.environ  variable is a

dictionary containing the environment variables set on the

system. Since we've already imported os  into the models.py

file, we can use os.environ  to retrieve the variables we

need.

In the SettingsModel  class, we'll create a dictionary for

looking up the correct configuration directories, like so:

config_dirs = { "Linux": Path( os.environ.get('$XDG_CONFIG_HOME',

Path.home() / '.config') ), "freebsd7": Path(

os.environ.get('$XDG_CONFIG_HOME', Path.home() / '.config') ),

'Darwin': Path.home() / 'Library' / 'Application Support',

'Windows': Path.home() / 'AppData' / 'Local' }

In each case, we've matched a platform name with a

pathlib.Path  object pointing to the default configuration

directory for each platform. Now, inside the SettingsModel

initializer, we just need to look up the correct directory

using the value of platform.system() .

Update the __init__()  method as follows:

def __init__(self): filename = 'abq_settings.json' filedir =

self.config_dirs.get(platform.system(), Path.home())

self.filepath = filedir / filename self.load()

If the platform is not in our list, we simply default to

Path.home()  to place the configuration file in the user's home

directory. Otherwise, the file should be placed correctly for

the platform.



Now when you run the application, you should find that any

previous preferences are reset to the default (since we're

now looking for the configuration file in a different

location), and that if you save new preferences, the file

abq_settings.json  shows up in your platform's configuration

directory.

Specifying an encoding for our CSV

file

Our application is currently saving CSV files using the

system's default encoding. This could be a problem for

Windows users if they try to use Unicode characters.

In models.py , we need to locate the three instances of open()

in our CSVModel  class and specify an encoding, as in this

example:

# models.py, in CSVModel.save_record() with open( self.filename,

'a', encoding='utf-8', newline='' ) as fh:

Make sure to update all the open()  calls in models.py ,

including those in SettingsModel . With this change, the

Unicode characters should no longer be a problem.

Making platform-appropriate menus

Creating platform-specific menus is going to be a bit more

involved than the previous fixes. Our basic approach will be

to create multiple menu classes and use a selector function

to return an appropriate class as explained in the previous

section.

Before we can do this, we'll need to prepare our MainMenu

class so that it's easier to subclass.



Preparing our MainMenu class

Currently, the bulk of the configuration of our MainMenu  class

takes place in __init__() . For each platform, though, we're

going to need to build the menu with a different structure,

and with some different details for certain commands. To

make this simpler, we're going to take a compositional

approach, in which we'll break the menu creation into

many discrete methods that we can then compose in each

subclass as needed.

The first thing we'll do is change its name to explain its role

more clearly:

class GenericMainMenu(tk.Menu): styles = dict()

We've also created an empty styles  dictionary as a class

attribute. Since menu styles are not supported across all

platforms well, this empty dictionary can act as a

placeholder so that we can apply styles when desired by

simply overriding this attribute.

Next, we're going to create individual methods for creating

each menu item. Because these items may be added to

different menus depending on the platform, each method

will take a menu  argument that will be used to specify which

Menu  object it will be added to.

Let's begin with methods for creating our Select file and

Quit command entries:

def _add_file_open(self, menu): menu.add_command( label='Select

file…', command=self._event('<<FileSelect>>'),

image=self.icons.get('file'), compound=tk.LEFT ) def

_add_quit(self, menu): menu.add_command( label='Quit',

command=self._event('<<FileQuit>>'),

image=self.icons.get('quit'), compound=tk.LEFT )



Next, create the methods to add the auto-fill settings

options:

def _add_autofill_date(self, menu): menu.add_checkbutton(

label='Autofill Date', variable=self.settings['autofill date'] )

def _add_autofill_sheet(self, menu): menu.add_checkbutton(

label='Autofill Sheet data', variable=self.settings['autofill

sheet data'] )

For our font options that have their own sub-menus, we'll

create methods that create the whole sub-menu, like so:

def _add_font_size_menu(self, menu): font_size_menu =

tk.Menu(self, tearoff=False, **self.styles) for size in range(6,

17, 1): font_size_menu.add_radiobutton( label=size, value=size,

variable=self.settings['font size'] )

menu.add_cascade(label='Font size', menu=font_size_menu) def

_add_font_family_menu(self, menu): font_family_menu =

tk.Menu(self, tearoff=False, **self.styles) for family in

font.families(): font_family_menu.add_radiobutton( label=family,

value=family, variable=self.settings['font family'] )

menu.add_cascade(label='Font family', menu=font_family_menu)

Note that we've used the self.styles  dict in defining our

cascade menus; although it's empty in this class, we want

the styles to apply to all menus if we define them.

For the themes menu, we'll do the same, and also set up

the trace that displays the warning message, as follows:

def _add_themes_menu(self, menu): style = ttk.Style() themes_menu

= tk.Menu(self, tearoff=False, **self.styles) for theme in

style.theme_names(): themes_menu.add_radiobutton( label=theme,

value=theme, variable=self.settings['theme'] )

menu.add_cascade(label='Theme', menu=themes_menu)

self.settings['theme'].trace_add('write', self._on_theme_change)

Finally, let's add the last three methods for our navigation

and About commands:

def _add_go_record_list(self, menu): menu.add_command(

label="Record List", command=self._event('<<ShowRecordlist>>'),

image=self.icons.get('record_list'), compound=tk.LEFT ) def

_add_go_new_record(self, menu): menu.add_command( label="New



Record", command=self._event('<<NewRecord>>'),

image=self.icons.get('new_record'), compound=tk.LEFT ) def

_add_about(self, menu): menu.add_command( label='About…',

command=self.show_about, image=self.icons.get('about'),

compound=tk.LEFT )

Now, to compose these methods into a menu, we'll create a

new method called _build_menu() . This method can be

overridden by our subclasses, leaving __init__()  to take

care of the common setup tasks.

To see how this will work, let's create a version of this

method that will recreate our generic menu:

def _build_menu(self): # The file menu self._menus['File'] =

tk.Menu(self, tearoff=False, **self.styles)

self._add_file_open(self._menus['File'])

self._menus['File'].add_separator()

self._add_quit(self._menus['File']) # The options menu

self._menus['Options'] = tk.Menu( self, tearoff=False,

**self.styles ) self._add_autofill_date(self._menus['Options'])

self._add_autofill_sheet(self._menus['Options'])

self._add_font_size_menu(self._menus['Options'])

self._add_font_family_menu(self._menus['Options'])

self._add_themes_menu(self._menus['Options']) # switch from

recordlist to recordform self._menus['Go'] = tk.Menu(self,

tearoff=False, **self.styles)

self._add_go_record_list(self._menus['Go'])

self._add_go_new_record(self._menus['Go']) # The help menu

self._menus['Help'] = tk.Menu(self, tearoff=False, **self.styles)

self.add_cascade(label='Help', menu=self._menus['Help'])

self._add_about(self._menus['Help']) for label, menu in

self._menus.items(): self.add_cascade(label=label, menu=menu)

Here, we're creating our File, Options, Go, and Help

cascade menus, and passing each one to the appropriate

item-adding methods to set up its items. We're storing

these in a dictionary, self._menus , rather than as local

variables. At the end of the method, we iterate through the

dictionary to add each cascade to the main menu.



Now, we can reduce the initializer of this class to a bare

skeleton of method calls, like so:

def __init__(self, parent, settings, **kwargs):

super().__init__(parent, **kwargs) self.settings = settings

self._create_icons() self._menus = dict() self._build_menu()

self.configure(**self.styles)

After calling the superclass initializer, this method just

saves the settings, creates the icons and the _menus

dictionary, then calls _build_menu() . If any styles are set,

those are applied to the main menu by self.configure() .

Adding accelerators

Before we start building subclasses of GenericMainMenu , let's

make it possible to add platform-specific accelerator keys

to each menu. These are simply keyboard shortcuts that

can activate our menu items. We don't need these for every

menu item, just a few commands that will be commonly

used.

To create a key binding to menu items, there are two steps:

1. Bind the keyboard event to the callback using the

bind_all()  method.

2. Label the menu item with the keyboard sequence using

the menu entry's accelerator argument.

It's important to understand that we need to do both; the

accelerator  argument does not automatically set up the key

binding, it just determines how the menu item will be

labeled. Likewise, the bind_all()  method will not cause

menu items to be labeled, it will just create the event

binding.



To accomplish both, we'll create two class attribute

dictionaries, one for the accelerators and one for the key

bindings, like so:

class GenericMainMenu(tk.Menu): accelerators = { 'file_open':

'Ctrl+O', 'quit': 'Ctrl+Q', 'record_list': 'Ctrl+L',

'new_record': 'Ctrl+R', } keybinds = { '<Control-o>':

'<<FileSelect>>', '<Control-q>': '<<FileQuit>>', '<Control-n>':

'<<NewRecord>>', '<Control-l>': '<<ShowRecordlist>>' }

The first dictionary simply matches accelerator strings with

keys that we can use in our menu definition methods. To

use this dictionary, we just need to update those methods to

include the accelerator; for example, update the

_add_file_open()  method like so:

# mainmenu.py, inside the GenericMainMenu class def

_add_file_open(self, menu): menu.add_command( label='Select

file…', command=self._event('<<FileSelect>>'),

accelerator=self.accelerators.get('file_open'),

image=self.icons.get('file'), compound=tk.LEFT )

Go ahead and add the accelerator  argument to the

add_command()  calls in _add_quit() , _add_go_record_list() , and

_add_go_new_record()  as well.

To handle the key bindings, we just need to create a

method that will make the key bindings. Add this

_bind_accelerators()  method to the class:

# mainmenu.py, inside the GenericMainMenu class def

_bind_accelerators(self): for key, sequence in

self.keybinds.items(): self.bind_all(key, self._event(sequence))

The _bind_accelerators()  method iterates the keybinds

dictionary and binds each key sequence to a function

created by the _event()  method that will generate the given

event. Note that we've used bind_all()  here; unlike the

bind()  method, which only responds to events on the

widget, the bind_all()  method will cause the callback to be

executed when the event is generated on any widget. Thus,



regardless of what widget is selected or in focus, a Control

+ Q keystroke will quit the program, for example.

The final piece is to call this new method from our

initializer. Add this to the end of GenericMainMenu.__init__() :

self._bind_accelerators()

Now the GenericMainMenu  class is ready for subclassing. Let's

go through one platform at a time and figure out what

needs to be updated.

Building the Windows menu

After studying the Windows user experience interaction

guidelines, you deem the following changes are necessary

to make our menu Windows-friendly:

File | Quit should be changed to File | Exit, and there

should be no accelerator for it. Windows uses Alt + F4

to close programs, and this is handled by Windows

automatically.

Windows can handle commands in the menu bar just

fine, and the guidelines encourage this for frequently

used functionality. We'll move our Record List and New

Record commands directly to the main menu. We'll

have to remove the icons, though, since it can't handle

icons in the main menu.

Configuration option items are supposed to go under a

Tools menu, separated from the rest of the items in

tools (if there are any). We'll need to create a Tools

menu and move our options there.

Let's implement these changes and create our Windows

menu class. Start by subclassing the GenericMainMenu  class

like so:



class WindowsMainMenu(GenericMainMenu):

The first thing we'll do is override the initializer so we can

remove the keybinding for File | Exit:

# mainmenu.py, inside WindowsMainMenu def __init__(self, *args,

**kwargs): del(self.keybinds['<Control-q>'])

super().__init__(*args, **kwargs)

Next, we'll need to override the _add_quit()  method to

relabel it and remove the accelerator:

def _add_quit(self, menu): menu.add_command( label='Exit',

command=self._event('<<FileQuit>>'),

image=self.icons.get('quit'), compound=tk.LEFT )

We need to remove the icons for the two navigation

commands, so that we don't have the (Image) string

showing up in our menu. To do that, we'll next override the

_create_icons()  method, as follows:

# mainmenu.py, inside WindowsMainMenu def _create_icons(self):

super()._create_icons() del(self.icons['new_record'])

del(self.icons['record_list'])

The superclass version of the method creates self.icons , so

we just need to run it and delete the icons we don't want.

Now that those are fixed, we can create the _build_menu()

method to compose our menu, starting with the three

cascades like so:

def _build_menu(self): # The File menu self._menus['File'] =

tk.Menu(self, tearoff=False)

self._add_file_open(self._menus['File'])

self._menus['File'].add_separator()

self._add_quit(self._menus['File']) # The Tools menu

self._menus['Tools'] = tk.Menu(self, tearoff=False)

self._add_autofill_date(self._menus['Tools'])

self._add_autofill_sheet(self._menus['Tools'])

self._add_font_size_menu(self._menus['Tools'])

self._add_font_family_menu(self._menus['Tools'])

self._add_themes_menu(self._menus['Tools']) # The Help menu



self._menus['Help'] = tk.Menu(self, tearoff=False)

self._add_about(self._menus['Help'])

Since we'd like to add our navigation command entries for

Record List and New  Record directly to the main menu

rather than to a cascade menu, we can't just iterate over

the _menus  dictionary to add the cascades. Instead, we'll

have to manually add the entries to the top-level menu, like

so:

self.add_cascade(label='File', menu=self._menus['File'])

self.add_cascade(label='Tools', menu=self._menus['Tools'])

self._add_go_record_list(self) self._add_go_new_record(self)

self.add_cascade(label='Help', menu=self._menus['Help'])

The Windows menu is now complete and ready to use. Let's

move on to the next platform!

Building the Linux menu

Our GenericMainMenu  class is pretty close to the Gnome HIG,

but there is one change to be made: our Options menu

doesn't really belong; rather, we need to split its items into

two categories:

The autofill options, since they change the way data is

entered in the form, belong in an Edit menu.

The font and theme options, since they only change the

appearance of the application and not the actual data,

belong in a View menu.

Since Linux also fully supports menu colors, we'll add our

color styles back to this version of the menu.

Let's start by subclassing GenericMainMenu  and defining some

styles:

# mainmenu.py class LinuxMainMenu(GenericMainMenu): styles = {

'background': '#333', 'foreground': 'white', 'activebackground':



'#777', 'activeforeground': 'white', 'relief': tk.GROOVE }

These menu styles aren't strictly necessary, but if we're

going to make a separate menu for Linux, we may as well

take advantage of some of its features!

Now let's begin the _build_menu()  method with the File and

Edit menus:

def _build_menu(self): self._menus['File'] = tk.Menu(self,

tearoff=False, **self.styles)

self._add_file_open(self._menus['File'])

self._menus['File'].add_separator()

self._add_quit(self._menus['File']) self._menus['Edit'] =

tk.Menu(self, tearoff=False, **self.styles)

self._add_autofill_date(self._menus['Edit'])

self._add_autofill_sheet(self._menus['Edit'])

Note that we've added back **self.styles  to each Menu()

call to apply the styles. We'll do the same building the next

three cascades, as follows:

self._menus['View'] = tk.Menu(self, tearoff=False, **self.styles)

self._add_font_size_menu(self._menus['View'])

self._add_font_family_menu(self._menus['View'])

self._add_themes_menu(self._menus['View']) self._menus['Go'] =

tk.Menu(self, tearoff=False, **self.styles)

self._add_go_record_list(self._menus['Go'])

self._add_go_new_record(self._menus['Go']) self._menus['Help'] =

tk.Menu(self, tearoff=False, **self.styles)

self._add_about(self._menus['Help'])

Finally, we'll iterate over the _menus  dictionary and add all

the cascades:

for label, menu in self._menus.items():

self.add_cascade(label=label, menu=menu)

We don't need to change anything else; our accelerators

and the rest of the menu line up pretty well with the Gnome

HIG.



Building the macOS menu

Of the three platform-specific menus, the macOS menu will

need the most extensive changes. Unlike the Windows and

Gnome guidelines, which mostly suggest categories, the

Apple guidelines are very specific about which menus

should be created and which items belong in them.

Furthermore, macOS also creates and pre-populates some

of these menus with default commands, so we'll need to use

special arguments to hook into those menus and add our

own items.

The changes we need to make to comply with Apple's HIG

are as follows:

We need to create an App menu. This is the first menu

macOS creates, just to the right of the Apple icon on

the menu bar. It's created by default, but we'll need to

hook into it to add some custom items.

The About command belongs in the App menu; we'll

move it there and remove the unused Help menu.

Since macOS will provide a Quit command for us, we'll

remove ours.

As we did with the Linux menu, our options will be split

between the Edit and View menus.

We need to add a Window menu; this is another

autogenerated menu that macOS fills with window

management and navigation functions. Our navigation

items will be moved from the Go menu to this menu.

Finally, macOS uses the command key rather than the

Control key to activate accelerators. We need to update

both our key bindings and accelerator dictionaries

accordingly.



As before, we'll start by creating a subclass of

GenericMainMenu :

class MacOsMainMenu(GenericMainMenu): keybinds = { '<Command-o>':

'<<FileSelect>>', '<Command-n>': '<<NewRecord>>', '<Command-l>':

'<<ShowRecordlist>>' } accelerators = { 'file_open': 'Cmd-O',

'record_list': 'Cmd-L', 'new_record': 'Cmd-R', }

The first thing we've done is redefine the keybinds  and

accelerators  dictionaries to remove the Quit  entries and

change " Control " to  " Command ". Note that, when the menu

displays, Tkinter will automatically replace the strings

Command  or Cmd  with the symbol for the command key ( ),

so make sure to use one or the other when specifying

accelerators.

Now, let's start working on the _build_menu()  method, as

follows:

def _build_menu(self): self._menus['ABQ Data Entry'] = tk.Menu(

self, tearoff=False, name='apple' )

self._add_about(self._menus['ABQ Data Entry']) self._menus['ABQ

Data Entry'].add_separator()

The first order of business is the App menu. To access this

built-in menu, all we need to do is pass in a name  argument

set to apple  when we create the Menu  object. The App menu

should contain both our About option and our Quit option,

but we only need to add the former since macOS

automatically adds a Quit action. Note that we've also

added a separator, which should always be added after the

About command.

The App menu should always be the first menu you add to

the main menu on macOS. If you add anything else first,

your customized app menu items will be added in their own

menu rather than in the generated App menu.



Before moving on, we need to make one correction to our

About command. Apple's HIG specifies that this command

should read About <program name> rather than just

About. So, we'll need to override _add_about()  to correct

this, like so:

# mainmenu.py, inside MacOSMainMenu def _add_about(self, menu):

menu.add_command( label='About ABQ Data Entry',

command=self.show_about, image=self.icons.get('about'),

compound=tk.LEFT )

Your App menu will currently read "Python" rather than

"ABQ Data Entry". We'll address this when we package our

application in Chapter 16, Packaging with setuptools and

cxFreeze.

After the App menu is created, let's create our File, Edit,

and View menus, like so:

# mainmenu.py, inside MacOSMainMenu._build_menu()

self._menus['File'] = tk.Menu(self, tearoff=False)

self.add_cascade(label='File', menu=self._menus['File'])

self._add_file_open(self._menus['File']) self._menus['Edit'] =

tk.Menu(self, tearoff=False)

self._add_autofill_date(self._menus['Edit'])

self._add_autofill_sheet(self._menus['Edit']) self._menus['View']

= tk.Menu(self, tearoff=False)

self._add_font_size_menu(self._menus['View'])

self._add_font_family_menu(self._menus['View'])

self._add_themes_menu(self._menus['View'])

We don't really need to do anything different there;

however, the Window  menu is another automatically

generated menu created by macOS, so we will once again

need to use the name  argument when creating it:

self._menus['Window'] = tk.Menu( self, name='window',

tearoff=False ) self._add_go_record_list(self._menus['Window'])

self._add_go_new_record(self._menus['Window'])



Finally, let's iterate over the _menus  dictionary and add all

the cascades:

for label, menu in self._menus.items():

self.add_cascade(label=label, menu=menu)

Even though macOS automatically creates the App and

Window menus, you still need to explicitly add the Menu

objects to the main menu using add_cascade() , or your

added items will not appear on the automatically created

menu.

That completes our macOS menu class.

Creating and using our selector function

With our classes created, let's add a simple selector

function to return the appropriate class for each platform;

add this code to mainmenu.py :

# mainmenu.py, at the end def get_main_menu_for_os(os_name):

menus = { 'Linux': LinuxMainMenu, 'Darwin': MacOsMainMenu,

'freebsd7': LinuxMainMenu, 'Windows': WindowsMainMenu } return

menus.get(os_name, GenericMainMenu)

The keys in this dictionary are the output strings from

platform.system() , which we have pointed to a platform-

appropriate menu class. In the event we're running on

some new, unknown system, we default to the

GenericMainMenu  class.

Now, back in application.py , we'll change our import

statement from mainmenu  to only import this function, like

so:

# application.py, at the top from .mainmenu import

get_main_menu_for_os import platform



Note that we've also imported platform , which we'll use to

determine the running operating system.

Now, instead of calling v.MainMenu()  (which no longer

exists), we use the following function:

# application.py, inside Application.__init__() # menu =

MainMenu(self, self.settings) menu_class =

get_main_menu_for_os(platform.system()) menu = menu_class(self,

self.settings) self.config(menu=menu)

Now when you run the application, your menu appearance

will change according to the platform. On Windows, you

should see something like this:

Figure 10.4: The menu system on a Windows computer On macOS, you'll see

something like this:

Figure 10.5: The menu system on macOS



On Linux or BSD, you'll see a menu as shown in the

following screenshot:

Figure 10.6: The menu system on Ubuntu Linux

Summary

In this chapter, you learned how to write Python software

that works well across multiple platforms. You learned how

to avoid common platform pitfalls in Python code such as

filesystem differences and library support, and how to write

software that intelligently adapts to the needs of different

operating systems. You also learned about published

guidelines that help developers write software that meets

platform users' expectations, and you used these guidelines

to create platform-specific menus for ABQ Data Entry.

In the next chapter, we're going to learn about automated

testing. You'll learn to write tests that ensure your code

works correctly, both for regular Python code and

specifically for Tkinter code, and to take advantage of the

testing framework included in the Python standard library.



11

Creating Automated Tests with unittest

With the size and complexity of your application rapidly

expanding, you've become nervous about making changes.

What if you break something? How will you know? You can,

of course, run through all the features of the program

manually with various input and watch for errors, but this

approach gets harder and more time consuming as you add

more features. What you really need is a fast and reliable

way to make sure your program is working properly

whenever you make a code change.

Fortunately, there is a way: automated testing. In this

chapter, you'll learn about automated testing in the

following topics:

In Automated testing basics, you'll discover the

fundamentals of automated testing in Python using

unittest .

In Testing Tkinter code, we'll discuss specific strategies

for testing Tkinter applications.

In Writing tests for our application, we'll apply this

knowledge to the ABQ Data Entry application.

Automated testing basics

Up until now, testing our application has been a process of

launching it, running it through a few basic procedures,



and verifying that it did what we expected it to do. This

approach works acceptably on a very small script, but, as

our application grows, it becomes an increasingly time-

consuming and error-prone process to verify the

application's behavior.

Using automated testing, we can consistently verify our

application logic within seconds. There are several forms of

automated testing, but the two most common are unit

testing and integration testing. Unit tests work with

discrete pieces of code in isolation, allowing us to quickly

verify the behavior of specific sections. Integration tests

verify the interactions of multiple units of code. We'll be

writing both kinds of tests to verify the behavior of our

application.

A simple unit test

At its most basic, a unit test is just a short program that

runs a unit of code under different conditions and

compares its output against expected results.

Consider the following calculation class:

# unittest_demo/mycalc.py import random class MyCalc: def

__init__(self, a, b): self.a = a self.b = b def add(self): return

self.a + self.b def mod_divide(self): if self.b == 0: raise

ValueError("Cannot divide by zero") return (int(self.a / self.b),

self.a % self.b) def rand_between(self): return (

(random.random() * abs(self.a - self.b)) + min(self.a, self.b) )

This class is initialized with two numbers on which it can

subsequently perform a variety of mathematical operations.

Suppose we want to write some code to test if this class

works as it should. A naive approach might look like this:



# unittest_demo/test_mycalc_no_unittest.py from mycalc import

MyCalc mc1 = MyCalc(1, 100) mc2 = MyCalc(10, 4) try: assert

mc1.add() == 101, "Test of add() failed." assert mc2.mod_divide()

== (2, 2), "Test of mod_divide() failed." except AssertionError

as e: print("Test failed: ", e) else: print("Tests succeeded!")

This test code creates a MyCalc  object and then uses assert

statements to check the output of add()  and mod_divide()

against expected values. The assert  keyword in Python is a

special statement that raises an AssertionError  exception if

the expression that follows it evaluates to False . The

message string after the comma is the error string that will

be passed to the AssertionError  exception's initializer.

In other words, the statement assert expression, "message"  is

equivalent to:

if not expression: raise AssertionError("message")

Currently, all tests pass if you run the test script for MyCalc .

Let's try changing the add()  method to make it fail:

def add(self): return self.a - self.b

Now, running the test gives this error:

Test failed: Test of add() failed.

What is the value of such tests? With such a simple

function, it seems pointless. But suppose someone decides

to refactor our mod_divide()  method as follows:

def mod_divide(self): #... return (self.a // self.b, self.a %

self.b)

This method is a little more complex, and you may or may

not be familiar with all the operators involved. However,

since this passes our tests, we have some evidence that this

algorithm is correct, even if we didn't completely

understand the code. If there were a problem with the



refactor, our tests could help us identify the problem

quickly.

Testing pure mathematical functions is fairly simple;

unfortunately, testing real application code presents us

with some challenges that demand a more sophisticated

approach.

Consider these issues:

Code units often rely on a pre-existing state that must

be set up before the test and cleared up afterward.

Code may have side effects that change objects outside

the code unit.

Code may interact with resources that are slow,

unreliable, or unpredictable.

Real applications contain many functions and classes

that require testing, and ideally we'd like to be alerted

to all problems at once. Our test script, as written,

would stop on the first failed assertion, so we'd only get

alerted to one problem at a time.

To address these issues and others, programmers rely on

testing frameworks to make writing and executing

automated tests as simple, efficient, and reliable as

possible.

The unittest module

The unittest  module is the Python standard library's

automated testing framework. It provides us with some

powerful tools to make testing our code reasonably easy,

and is based on some standard unit testing concepts found

in many test frameworks. These concepts include:



Test: A test is a single method that will either finish or

raise an exception. Tests generally focus on one unit of

code, such as a function, method, or process. A test can

either pass, meaning the test was successful; fail,

meaning the code failed the test; or error, meaning the

test itself encountered a problem.

Test case: A test case is a collection of tests that

should be run together and contain similar setup and

tear-down requirements, typically corresponding to a

class or module. Test cases can have fixtures, which

are items that need to be set up before each test and

torn down after each test to provide a clean,

predictable environment in which the test can run.

Test suite: A test suite is a collection of test cases that

cover all the code for an application or module.

Mock: A mock is an object that stands in for another

object. Typically, they're used to replace an external

resource, such as a file, database, or library module.

Mocks are patched over those resources during the test

to provide a fast and predictable stand-in with no side

effects.

To explore these concepts in depth, let's test our MyCalc

class using unittest .

Writing a test case

Let's create a test case for the MyCalc  class. Create a new

file called test_mycalc.py , and enter this code:

# unittest_demo/test_mycalc.py import mycalc import unittest

class TestMyCalc(unittest.TestCase): def test_add(self): mc =

mycalc.MyCalc(1, 10) assert mc.add() == 11 if __name__ ==

'__main__': unittest.main()



The names of both your test modules and your test methods

should be prefixed with test_ . Doing so allows the

unittest  runner to automatically find test modules and

distinguish test methods from other methods in your test

case classes.

As you probably guessed, the TestCase  class represents a

test case. To make our test case for MyCalc , we have

subclassed TestCase  and added a test_  method that will test

some aspect of our class. Inside the test_add()  method, we

created a MyCalc  object, then made an assertion about the

output of add() .

At the end of the file, we've added a call to unittest.main() ,

which will cause all test cases in the file to be executed.

If you run your test file at the command line, you should get

the following output:

. ---------------------------------------------------------------

------ Ran 1 test in 0.000s OK

The single dot on the first line represents our one test

( test_add() ). For each test method, unittest.main()  will

output one of the following:

A dot, which means the test passed

F , which means it failed

E , meaning the test caused an error

At the end, we get a summary of what happened, including

the number of tests run and how long it took. The OK

indicates that all tests passed successfully.

To see what happens when a test fails, let's alter our test so

that it intentionally fails:



def test_add(self): mc = mycalc.MyCalc(1, 10) assert mc.add() ==

12

Now when you run the test module, you should see output

like this:

F

=================================================================

==== FAIL: test_add (__main__.TestMyCalc) -----------------------

----------------------------------------------Traceback (most

recent call last): File "test_mycalc.py", line 8, in test_add

assert mc.add() == 12 AssertionError ----------------------------

-----------------------------------------Ran 1 test in 0.000s

FAILED (failures=1)

Note the single F  at the top, representing our failed test.

After all the tests have run, we get the full traceback of any

failed tests, so that we can easily locate the failing code

and correct it.

This traceback output isn't very ideal, though; we can see

that mc.add()  didn't return 12 , but we don't know what it

did return. We could add a comment string to our assert

call, but unittest  provides a nicer approach: TestCase

assertion methods.

TestCase assertion methods

TestCase  objects have a number of assertion methods that

provide a cleaner and more robust way to run various tests

on our code output.

For example, there is the TestCase.assertEqual()  method to

test equality, which we can use as follows:

def test_add(self): mc = mycalc.MyCalc(1, 10)

self.assertEqual(mc.add(), 12)



When we run our test case with this code, you can see that

the traceback is improved:

Traceback (most recent call last): File "test_mycalc.py", line

11, in test_add self.assertEqual(mc.add(), 12) AssertionError: 11

!= 12

Now, we can see the value that mc.add()  returned, which is

much more helpful for debugging. TestCase  contains more

than 20 assertion methods that can simplify testing for a

variety of conditions such as class inheritance, raised

exceptions, and sequence membership.

Some more commonly used ones are listed in the following

table:

Method Tests

assertEqual(a ,  b) a  ==  b

assertTrue(a) a  is  True

assertFalse(a) a  is  False

assertIn(item ,  sequence) item  in  sequence

assertRaises(exception ,

callable ,  *args)

callable  raises exception  when

called with args

assertGreater(a ,  b) a  is greater than b

assertLess(a ,  b) a  is less than b



A full list of the available assertion methods can be found in

the unittest  documentation at

https://docs.python.org/3/library/unittest.html#uni

ttest.TestCase.

Let's use an assertion method to test that mod_divide()

raises a ValueError  exception when b  is 0 :

def test_mod_divide(self): mc = mycalc.MyCalc(1, 0)

self.assertRaises(ValueError, mc.mod_divide)

assertRaises()  passes if the function raises the given

exception when called. If we need to pass any arguments

into the tested function, they can be specified as additional

arguments to assertRaises() .

assertRaises()  can also be used as a context manager like

so:

def test_mod_divide(self): mc = mycalc.MyCalc(1, 0) with

self.assertRaises(ValueError): mc.mod_divide()

This code accomplishes the exact same thing, but is a little

clearer and more flexible, since it allows us to put multiple

lines of code in the block.

You can easily add your own custom assertion methods to

your test case as well; it's simply a matter of creating a

method that raises an AssertionError  exception under

some condition.

Fixtures

It should be clear that each test in our test case is going to

need access to a MyCalc  object. It would be nice if we didn't

have to do this manually in each test method. To help us

avoid this tedious task, the TestCase  object offers a setUp()

https://docs.python.org/3/library/unittest.html#unittest.TestCase


method. This method is run before every test case is run,

and by overriding it we can take care of any setup that

needs to be done for each test.

For example, we can use it to create MyCalc  objects, like so:

def setUp(self): self.mycalc1_0 = mycalc.MyCalc(1, 0)

self.mycalc36_12 = mycalc.MyCalc(36, 12)

Now, every test case can use these objects to run its tests

rather than creating their own. Understand that the setUp()

method will be rerun before every test, so these objects will

always be reset between test methods. If we have items

that need to be cleaned up after each test, we can override

the tearDown()  method as well, which is run after each test

(in this case, it's not necessary).

Now that we have a setUp()  method, our test_add()  method

can be much simpler:

def test_add(self): self.assertEqual(self.mycalc1_0.add(), 1)

self.assertEqual(self.mycalc36_12.add(), 48)

In addition to the instance methods setUp()  and tearDown() ,

TestCase  also has class methods for setup and tear-down of

the object itself as well; these are setUpClass()  and

tearDownClass() . These two methods can be used for slower

operations that can be run when the test case is created

and destroyed, rather than needing to be refreshed

between each test; for example, you might use them to

create complex objects that are required for your tests, but

won't be altered by any of them.

Using Mock and patch

The MyCalc.rand_between()  method generates a random

number between a  and b . Because we can't possibly



predict its output, we can't provide a fixed value to test it

against. How can we test this method?

A naive approach might look something like this:

def test_rand_between(self): rv = self.mycalc1_0.rand_between()

self.assertLessEqual(rv, 1) self.assertGreaterEqual(rv, 0)

This test passes if our code is correct, but it doesn't

necessarily fail if the code is wrong; in fact, if the code is

wrong, it may pass or fail unpredictably since the return

value of rand_between()  is random. For example, if

MyCalc(1,10).rand_between()  was incorrectly returning values

between 2 and 11, the test would pass if it returned 2

through 10, and only fail if it returned 11. Thus, even

though the code is wrong, there would be only a 10%

chance that the test would fail on each run of the test suite.

For the purposes of our tests, we can safely assume that a

standard library function such as random()  works correctly;

so our unit test should really test whether our method

correctly handles the number provided to it by random() . If

we could temporarily replace random()  with a function that

returns a predictable fixed value, it would be simple to test

the correctness of our subsequent calculations.

The unittest.mock  module provides us with the Mock  class for

this purpose. Mock  objects can be used to predictably

simulate the behavior of another class, method, or library.

We can give our Mock  objects return values, side effects,

properties, methods, and other features needed to fake the

behavior of another class, object, function, or module, then

drop them in place before running our tests.

To see this in action, let's create a fake random()  function

using Mock , like so:



from unittest.mock import Mock #... inside TestMyCalc def

test_rand_between(self): fakerandom = Mock(return_value=.5)

The Mock  object's return_value  argument allows us to hard-

code a value to be returned whenever it's called as a

function. Here, our mock object fakerandom  will behave like

a function that always returns 0.5 .

Now we can put fakerandom  in place of random()  as follows:

#... orig_random = mycalc.random.random mycalc.random.random =

fakerandom rv = self.mycalc1_0.rand_between()

self.assertEqual(rv, 0.5) mycalc.random.random = orig_random

We start by saving a reference to mycalc.random.random  before

replacing it. Note that we're specifically replacing only the

version of random  being used in mycalc.py  so that we don't

affect calls to random()  anywhere else. It's a best practice to

be as specific as possible when patching libraries to avoid

unforeseen side effects.

With fakerandom  in place, we can call rand_between()  and test

the output. Because fakerandom()  will always return 0.5 , we

know that the answer when a  is 1  and b  is 0  should be

(0.5 × 1 + 0) = 0.5 . Any other value would indicate an error

in our algorithm. At the end of the test code, we revert

random  to the original standard library function so that

other tests (or the classes or functions they call) don't

accidentally use the mock.

Having to store or revert the original library each time is

an annoyance we can do without, so unittest.mock  provides

a cleaner approach using patch() . The patch()  function can

be used as either a context manager or a decorator, and

either approach makes patching a Mock  object into our code

much cleaner.



Swapping in fakerandom()  using patch()  as a context

manager looks like this:

# test_mycalc.py from unittest.mock import patch #... inside

TestMyCalc def test_rand_between(self): with

patch('mycalc.random.random') as fakerandom:

fakerandom.return_value = 0.5 rv = self.mycalc1_0.rand_between()

self.assertEqual(rv, 0.5)

The patch()  command takes an import path string and

provides us with a new Mock  object that it has patched in

place of the object at that path. Inside the context manager

block, we can set methods and properties on the Mock

object, then run our actual tests. The patched function will

be reverted to its original version when the block ends.

Using patch()  as a decorator is similar:

@patch('mycalc.random.random') def test_rand_between2(self,

fakerandom): fakerandom.return_value = 0.5 rv =

self.mycalc1_0.rand_between() self.assertEqual(rv, 0.5)

In this case, the Mock  object created by patch()  is passed as

an argument to our test method and will remain patched

for the duration of the decorated function. This approach

works well if we plan to use the mock multiple times in a

test method.

Running multiple unit tests

While we can run our unit tests by including a call to

unittest.main()  at the end of the file, that approach doesn't

scale well. As our application grows, we're going to write

many test files, which we'll want to run in groups or all at

once.

Fortunately, unittest  can discover and run all tests in a

project with one command:

$ python -m unittest



So long as you have followed the recommended naming

scheme of prefixing your test modules with test_ , running

this command in your project's root directory should run all

your test scripts.

Testing Tkinter code

Testing Tkinter code presents us with a few particular

challenges. First, Tkinter handles many callbacks and

methods asynchronously, meaning that we can't count on

the results of some code to be apparent immediately. Also,

testing GUI behaviors often relies on external factors such

as window management or visual cues that our tests cannot

detect.

In this section, we're going to learn some tools and

strategies to address these issues and help you craft tests

for your Tkinter code.

Managing asynchronous code

Whenever you interact with a Tkinter UI – whether it's

clicking a button, typing in a field, or raising a window, for

example – the response is not executed immediately in

place.

Instead, these actions are placed in a sort of to-do list,

called an event queue, to be handled later while code

execution continues. While these actions seem instant to

users, test code cannot count on a requested action being

completed before the next line of code is run.



To solve this problem, Tkinter widgets have some methods

that allow us to manage the event queue:

wait_visibility() : This method causes the code to wait

until a widget is fully drawn on-screen before executing

the next line of code.

update_idletasks() : This method forces Tkinter to

process any idle tasks currently outstanding on the

widget. Idle tasks are low-priority tasks such as

drawing and rendering.

update() : This method forces Tkinter to process all

events that are outstanding on a widget, including

calling callbacks, redraws, and geometry management.

It includes everything that update_idletasks()  does and

more.

The event queue will be discussed in more detail in Chapter

14, Asynchronous Programming with Thread and Queue.

Simulating user actions

When automating GUI tests, we may wish to know what

happens when a user clicks on a certain widget, or types a

certain keystroke. When these actions happen in the GUI,

Tkinter generates an Event  object for the widget and passes

it to the event queue. We can do the same thing in code,

using a widget's event_generate()  method.

Specifying an event sequence

As we learned in Chapter 6, Planning for the Expansion of

Our Application, we can cause an event to be registered on

a widget by passing an event sequence string to



event_generate()  in the format <EventModifier-EventType-

EventDetail> . Let's look at sequence strings in more detail.

The core part of a sequence string is the event type. It

specifies the kind of event we're sending, such as a

keystroke, mouse click, windowing event, and so on.

Tkinter has around 30 event types, but you will typically

only need to work with the following:

Event types Action represented

ButtonPress

or Button
Mouse-button click

ButtonRelease Lifting off a mouse button

KeyPress  or

Key
Pressing a keyboard key

KeyRelease Lifting off a keyboard key

FocusIn Giving focus to a widget, such as a button or input widget

FocusOut Exiting a focused widget

Enter The mouse cursor entering a widget

Leave The mouse cursor moving off a widget

Configure
A change in the widget's configuration, for example, a

config()  call, or the user resizing the window, and so on



Event modifiers are optional words that can alter the

event type; for example, Control , Alt , and Shift  can be

used to indicate that one of those modifier keys is held

down; Double  or Triple  can be used with Button  to indicate

a double- or triple-click of the described button. Multiple

modifiers can be strung together if required.

Event detail, only valid for keyboard or mouse events,

describes which key or button was pressed. For example,

<Button-1>  refers to the left mouse button, while <Button-3>

refers to the right. For letter and number keys, the literal

letter or number can be used, such as <Control-KeyPress-a> ;

most symbols, however, are described by a word ( minus ,

colon , semicolon , and so on) to avoid syntactic clashes.

For button presses and keypresses, the event type is

technically optional; for example, you could use <Control-

a>  instead of <Control-KeyPress-a> . However, it's

probably a good idea to leave it in for the sake of clarity. For

example, <1>  is a valid event, but does it refer to pressing

the left mouse button or the 1 key? You may be surprised to

find that it's the mouse button.

The following table shows some examples of valid event

sequences:

Sequence Meaning

<Double-Button-3> Double-clicking the right mouse button

<Alt-KeyPress-exclam> Holding Alt and typing an exclamation point

<Control-Alt-Key-m> Holding Control and Alt and pressing the M key



<KeyRelease-minus> Lifting off a pressed minus key

In addition to the sequence, we can pass other arguments

to event_generate()  that describe various aspects of the

event. Many of these are redundant, but, in some cases, we

need to provide extra information for the event to have any

meaning; for example, mouse button events need to include

an x  and a y  argument that specify the coordinates of the

click.

Single brackets around a sequence indicate a built-in event

type. Double brackets are used for custom events, such as

those we have been using in our main menu and elsewhere.

Managing focus and grab

Focus refers to the widget or window that is currently

receiving keyboard input. Widgets can also grab focus,

preventing mouse movements or keystrokes outside their

bounds.

Tkinter gives us these widget methods for managing focus

and grab, some of which are useful for running tests:

Method Description

focus_set()
Focuses the widget whenever its window next gains

focus

focus_force() Focuses a widget and the window it's in, immediately

grab_set() The widget grabs all events for the application



grab_set_global() The widget grabs all screen events

grab_release() The widget relinquishes its grab

In a test environment, we can use these methods to make

sure that our generated keyboard and mouse events are

going to the correct widget or window.

Most of the time the focus_set()  method will be adequate,

but depending on the behavior of your application and your

operating system's windowing environment, you may need

the more extreme enforcement of focus_force()  or

grab_set() .

Getting widget information

Tkinter widgets have a set of winfo_  methods that give us

access to information about the widget. While the available

functionality leaves much to be desired, these methods

include some information we can use in tests to provide

feedback about the state of a given widget.

The following are a few winfo_  methods that we will find

useful:

Method Description

winfo_height() ,

winfo_width()
Get the height and width of the widget

winfo_children() Get a list of child widgets

winfo_geometry() Get the size and location of the widget



winfo_ismapped()
Determine whether the widget is mapped (that is, it's

been added to a layout using a geometry manager)

winfo_viewable()
Determine whether a widget is viewable (that is, it and

all its parents have been mapped)

winfo_x() ,

winfo_y()

Get the x or y coordinate of the widget's top-left

corner

Writing tests for our

application

Let's put our knowledge of unittest  and Tkinter to work

and write some automated tests for our application. To get

started, we need to create a test module. Make a directory

called test  inside the abq_data_entry  package, and create

the customary empty __init__.py  file inside. We'll create all

of our test modules inside this directory.

Testing the data model

Our CSVModel  class is fairly self-contained apart from its

need to read and write files. We'll need to mock out this

functionality so that the tests don't disturb the filesystem.

Since file operations are one of the more common things

that need to be mocked out in a test, the mock  module

provides mock_open() , a Mock  subclass ready-made to replace

Python's open()  method. When called, a mock_open  object

returns a mock file handle object, complete with support

for the read() , write() , and readlines()  methods.



Create a new file in the test  directory called test_models.py .

This will be our test module for our data model classes.

Begin it with some module imports:

# test_models.py from .. import models from unittest import

TestCase from unittest import mock from pathlib import Path

In addition to the models  module, we'll need TestCase  and

mock , of course, as well as the Path  class since our CSVModel

works with Path  objects internally.

Now, we'll begin a test case for the CSVModel  class, like so:

class TestCSVModel(TestCase): def setUp(self): self.file1_open =

mock.mock_open( read_data=( "Date,Time,Technician,Lab,Plot,Seed

Sample," "Humidity,Light,Temperature,Equipment Fault,"

"Plants,Blossoms,Fruit,Min Height,Max Height," "Med

Height,Notes\r\n" "2021-06-01,8:00,J

Simms,A,2,AX478,24.47,1.01,21.44,"

"False,14,27,1,2.35,9.2,5.09,\r\n" "2021-06-01,8:00,J

Simms,A,3,AX479,24.15,1,20.82,"

"False,18,49,6,2.47,14.2,11.83,\r\n" ) ) self.file2_open =

mock.mock_open(read_data='') self.model1 =

models.CSVModel('file1') self.model2 = models.CSVModel('file2')

In the setUp()  method for this case, we've created two

mocked data files. The first contains a CSV header and two

rows of CSV data, while the second is empty. The mock_open

object's read_data  argument allows us to specify a string

that will be returned when code attempts to read data from

it.

We've also created two CSVModel  objects, one with a

filename of file1  and the other with a filename of file2 .

It's worth mentioning that there's no actual connection

between our models and our mock_open  objects; the

filenames given are arbitrary, since we won't actually be

opening a file, and the choice of which mock_open  object we

use will be made in our test methods using patch() .



Testing file reading in get_all_records()

To see how we use these, let's start a test for the

get_all_records()  method as follows:

# test_models.py, inside TestCSVModel

@mock.patch('abq_data_entry.models.Path.exists') def

test_get_all_records(self, mock_path_exists):

mock_path_exists.return_value = True

Since our filenames don't actually exist, we're using the

decorator version of patch()  to replace Path.exists()  with a

mock function that always returns True . We can later

change the return_value  value property of this object if we

want to test a scenario where the file doesn't exist.

To run the get_all_records()  method against one of our

mock_open  objects, we'll use the context manager form of

patch()  as follows:

with mock.patch( 'abq_data_entry.models.open', self.file1_open ):

records = self.model1.get_all_records()

Any call to open()  in models.py  initiated by code inside this

context manager block will be replaced by our mock_open

object, and the file handle returned will contain the

read_data  string we specified.

Now we can start making assertions about the records that

have been returned:

# test_models.py, inside TestCSVModel.test_get_all_records()

self.assertEqual(len(records), 2) self.assertIsInstance(records,

list) self.assertIsInstance(records[0], dict)

Here, we're checking that records  contains two lines (since

our read data contained two CSV records), that it's a list

object, and that its first member is a dict  object (or a

subclass of dict ).



Next, let's make sure all our fields made it through and that

our Boolean conversion worked:

fields = ( 'Date', 'Time', 'Technician', 'Lab', 'Plot', 'Seed

Sample', 'Humidity', 'Light', 'Temperature', 'Equipment Fault',

'Plants', 'Blossoms', 'Fruit', 'Min Height', 'Max Height', 'Med

Height', 'Notes') for field in fields: self.assertIn(field,

records[0].keys()) self.assertFalse(records[0]['Equipment

Fault'])

By iterating over a tuple of all our field names, we can

check that all our fields are present in the record output.

Don't be afraid to use loops in a test this way to check a

large amount of content quickly.

A Mock  object can do more than just stand in for another

class or function; it also has its own assertion methods that

can tell us if it's been called, how many times, and with

what arguments.

For example, we can check our mock_open  object to make

sure it was called with the expected arguments:

self.file1_open.assert_called_with( Path('file1'), 'r',

encoding='utf-8', newline='' )

assert_called_with()  takes any number of positional and

keyword arguments and checks if the last call to the mock

object included those exact arguments. We expected

file1_open()  to be called with a Path  object containing the

filename file1 , a mode of r , a newline  set to a blank string,

and an encoding  value of utf-8 . By confirming that a

mocked function was called with the correct arguments,

and assuming the correctness of the real function (the

built-in open()  function, in this case), we can avoid having

to test the actual outcome.

Note that the order in which the keyword arguments are

passed does not matter for this method.



Testing file saving in save_record()

To demonstrate how to test file-writing with mock_open , let's

test save_record() . Begin by creating a test method that

defines some data:

@mock.patch('abq_data_entry.models.Path.exists') def

test_save_record(self, mock_path_exists): record = { "Date":

'2021-07-01', "Time": '12:00', "Technician": 'Test Technician',

"Lab": 'C', "Plot": '17', "Seed Sample": 'test sample',

"Humidity": '10', "Light": '99', "Temperature": '20', "Equipment

Fault": False, "Plants": '10', "Blossoms": '200', "Fruit": '250',

"Min Height": '40', "Max Height": '50', "Med Height": '55',

"Notes": 'Test Note\r\nTest Note\r\n' } record_as_csv = ( '2021-

07-01,12:00,Test Technician,C,17,test sample,10,99,'

'20,False,10,200,250,40,50,55,"Test Note\r\nTest Note\r\n"'

'\r\n')

This method begins by once again mocking Path.exists  and

creating a dictionary of data, and the same data

represented as a row of CSV data.

You may be tempted to generate either the record or its

expected CSV output using code, but it's always better to

stick to literal values in tests; doing so makes the

expectations of the test explicit and avoids logic errors in

your tests.

Now, for our first test scenario, let's simulate writing to an

empty but existing file by using file2_open  and model2  as

follows:

mock_path_exists.return_value = True with

mock.patch('abq_data_entry.models.open', self.file2_open):

self.model2.save_record(record, None)

Setting our mock_path_exists.return_value  to True  to tell our

method that the file already exists, we then patch over



open()  with our second mock_open  object (the one

representing an empty file) and call the

CSVModel.save_record()  method. Since we passed in a record

with no row number (which indicates a record insert), this

should result in our code trying to open file2  in append

mode and writing in the CSV-formatted record.

assert_called_with()  will test that assumption as follows:

self.file2_open.assert_called_with( Path('file2'), 'a',

encoding='utf-8', newline='' )

While this method can tell us that file2_open  was called

with the expected parameters, how do we access its actual

file handler so that we can see what was written to it?

It turns out we can just call our mock_open  object and

retrieve the mock file handle object, like so:

file2_handle = self.file2_open()

file2_handle.write.assert_called_with(record_as_csv)

Once we have the mock file handle (which is itself a Mock

object), we can run test methods on its write()  member to

find out if it was called with the CSV data as expected. In

this case, the file handle's write()  method should have been

called with the CSV-format record string.

Let's do a similar set of tests, passing in a row number to

simulate a record update:

with mock.patch('abq_data_entry.models.open', self.file1_open):

self.model1.save_record(record, 1)

self.file1_open.assert_called_with( Path('file1'), 'w',

encoding='utf-8' )

Checking that our update was done correctly presents a

problem: assert_called_with()  only checks the last call made

to the mock function. When we update our CSV file, the

entire CSV file is updated, with one write()  call per row. We



can't just check that the last call was correct; we need to

make sure the write()  calls for all the rows were correct.

To accomplish this, Mock  contains a method called

assert_has_calls() , which we can use to test the history of

calls made to the object.

To use it, we need to create a list of Call  objects. Each Call

object represents a call to the mock object. We create Call

objects using the mock.call()  function as follows:

file1_handle = self.file1_open()

file1_handle.write.assert_has_calls([ mock.call(

'Date,Time,Technician,Lab,Plot,Seed Sample,'

'Humidity,Light,Temperature,Equipment Fault,Plants,'

'Blossoms,Fruit,Min Height,Max Height,Med Height,Notes' '\r\n'),

mock.call( '2021-06-01,8:00,J Simms,A,2,AX478,24.47,1.01,21.44,'

'False,14,27,1,2.35,9.2,5.09,\r\n'), mock.call( '2021-07-

01,12:00,Test Technician,C,17,test sample,'

'10,99,20,False,10,200,250,40,50,55,' '"Test Note\r\nTest

Note\r\n"\r\n') ])

The arguments to mock.call()  represent the arguments that

should have been passed to the function call, which in our

cases should just be single strings of CSV row data. The list

of Call  objects we pass to assert_has_calls()  represents

each call that should have been made to the mocked file

handle's write()  method, in order. The assert_has_calls()

method's in_order  argument can also be set to False , in

which case the order won't need to match. In our case,

order matters, since a wrong order would result in a

corrupt CSV file.

More tests on the models

Testing the remainder of the CSVModel  class and the

SettingsModel  class methods should be essentially along the

same lines as these two methods. A few more tests are

included in the sample code, but see if you can come up

with some of your own as well.



Testing our Application object

We've implemented our application as a Tk object that acts

not only as a main window but also as a controller, patching

together models and views defined elsewhere in the

application. As you may expect, then, patch()  is going to

figure heavily into our testing code as we mock out all of

those other components to isolate the Application  object.

Open a new file under the test  directory called

test_application.py , and we'll begin with our imports:

# test_application.py from unittest import TestCase from

unittest.mock import patch from .. import application

Now, let's begin our test case class like so:

class TestApplication(TestCase): records = [ {'Date': '2018-06-

01', 'Time': '8:00', 'Technician': 'J Simms', 'Lab': 'A', 'Plot':

'1', 'Seed Sample': 'AX477', 'Humidity': '24.09', 'Light':

'1.03', 'Temperature': '22.01', 'Equipment Fault': False,

'Plants': '9', 'Blossoms': '21', 'Fruit': '3', 'Max Height':

'8.7', 'Med Height': '2.73', 'Min Height': '1.67', 'Notes':

'\n\n', }, {'Date': '2018-06-01', 'Time': '8:00', 'Technician':

'J Simms', 'Lab': 'A', 'Plot': '2', 'Seed Sample': 'AX478',

'Humidity': '24.47', 'Light': '1.01', 'Temperature': '21.44',

'Equipment Fault': False, 'Plants': '14', 'Blossoms': '27',

'Fruit': '1', 'Max Height': '9.2', 'Med Height': '5.09', 'Min

Height': '2.35', 'Notes': '' } ] settings = { 'autofill date':

{'type': 'bool', 'value': True}, 'autofill sheet data': {'type':

'bool', 'value': True}, 'font size': {'type': 'int', 'value': 9},

'font family': {'type': 'str', 'value': ''}, 'theme': {'type':

'str', 'value': 'default'} }

As our TestApplication  class will be using mocks in place of

our data and settings models, we've created some class

properties here to store samples of the data that Application

expects to retrieve from those models. The setUp()  method

is going to patch out all the external classes with mocks,

configure the mocked models to return our sample data,



and then create an Application  instance that our tests can

use.

Note that while the Boolean values in the test records are

bool  objects, the numeric values are strings. This is

actually how CSVModel  returns the data, since no actual

data type conversion is done at this point in the model.

Now, let's create our setUp()  method, which looks like this:

# test_application.py, inside TestApplication class def

setUp(self): with \ patch(

'abq_data_entry.application.m.CSVModel' ) as csvmodel,\ patch(

'abq_data_entry.application.m.SettingsModel' ) as settingsmodel,\

patch( 'abq_data_entry.application.Application._show_login' ) as

show_login,\

patch('abq_data_entry.application.v.DataRecordForm'),\

patch('abq_data_entry.application.v.RecordList'),\

patch('abq_data_entry.application.ttk.Notebook'),\

patch('abq_data_entry.application.get_main_menu_for_os')\ :

show_login.return_value = True settingsmodel().fields =

self.settings csvmodel().get_all_records.return_value =

self.records self.app = application.Application()

Here, we've created a with  block using seven patch()

context managers, one for each class, method, or function

that we're mocking out, including:

The CSV and Settings models. These have been

patched out with aliases, so that we can configure them

to return the appropriate data.

The show_login()  method, whose return value we hard-

code to True  so login will always succeed. Note that if

we were going to write full test coverage of this class,

we'd want to test this function too, but for now we'll

just mock it out.

The record form and record list classes, since we don't

want issues in those classes to cause errors in our



Application  test code. Those classes will have their own

test cases, so we aren't interested in testing them in

this case. We don't need to configure anything about

them, so we have not aliased these mock objects.

The Notebook  class. Without mocking this, we'd be

passing Mock  objects to its add()  method, causing an

unnecessary error. We can assume Tkinter classes work

correctly, so we mock this out.

The get_main_menu_for_os  class, since we don't want to

deal with an actual menu object. Like the record form

and record list, our menu classes will have their own

test cases, so we are better off just taking them out of

the equation here.

Since Python 3.2, you can create a block with multiple

context managers by separating each context manager call

with a comma. Unfortunately, in Python 3.9 or lower, you

can't put them in parentheses, so we're using the

comparatively ugly escaped-newline method of breaking

this gigantic call into multiple lines. If you're using Python

3.10 or later, you can use parentheses around your list of

context managers for a cleaner layout.

Notice that we're creating instances of our settingsmodel

and csvmodel  objects and configuring methods on the return

values from the mock objects rather than the mocks

themselves. Remember that our mocks are replacing the

classes, not the objects, and it is the objects that will

contain the methods our Application  object will be calling.

Therefore, we need to call the mocked classes to access the

actual Mock  object that will be used by Application  as the

data or settings model.

Unlike the actual class that it stands in for, a Mock  object

called as a function will return the same object every time

it's called. Thus, we don't have to save a reference to the



object created by calling a mocked class; we can just call

the mocked class repeatedly to access that object. Note,

however, that a unique Mock  object is created by the Mock

class itself each time.

Because Application  is a subclass of Tk, it's a good idea for

us to safely dispose of it after each use; even though we're

reassigning its variable name, the Tcl/Tk object will go on

existing and cause problems with our tests. To solve this,

create a tearDown()  method in TestApplication :

def tearDown(self): self.app.update() self.app.destroy()

Notice the call to app.update() . If we don't call this before

destroying app , there may be tasks in the event queue that

will try to access it after it's gone. This won't break our

code, but it will clutter up our test output with error

messages.

Now that our fixtures are taken care of, let's write a test:

def test_show_recordlist(self): self.app._show_recordlist()

self.app.notebook.select.assert_called_with(self.app.recordlist)

Application._show_recordlist()  contains one line of code,

which is merely a call to self.notebook.select() . Because we

made recordlist  a mock object, all of its members

(including select ) are also mock objects. Thus we can use

the mock assertion methods to check that select()  was

called and with what arguments.

We can use a similar technique to check

_populate_recordlist()  as follows:

def test_populate_recordlist(self):

self.app._populate_recordlist()

self.app.model.get_all_records.assert_called()

self.app.recordlist.populate.assert_called_with(self.records)



In this case, we're also using the assert_called()  method to

see if CSVModel.get_all_records()  was called, which it should

have been as part of populating the recordlist. Unlike

assert_called_with() , assert_called()  merely checks to see if a

function was called, and as such is useful for functions that

take no arguments.

Under some circumstances, get_all_records()  can raise an

exception, in which case we're supposed to show an error

message box. But since we've mocked out our data model,

how can we get the Mock  object to raise an exception? The

solution is to use mock's side_effect  property as follows:

self.app.model.get_all_records.side_effect = Exception( 'Test

message' )

side_effect  can be used to simulate more complex

functionality in a mocked function or method. It can be set

to a function, in which case the mock will run that function

and return the results when called; it can be set to an

iterable, in which case the mock will return the next item in

the iterable each time it's called; or, as in this case, it can

be set to an exception, which will be raised when the mock

is called.

Before we can use this, we'll need to patch out messagebox  as

follows:

with patch('abq_data_entry.application.messagebox'):

self.app._populate_recordlist()

application.messagebox.showerror.assert_called_with(

title='Error', message='Problem reading file', detail='Test

message' )

This time when we call _populate_recordlist() , our mocked

CSVModel  object raises an exception, which should result in

the method calling messagebox.showerror() . Since we've

mocked showerror() , we can assert that it was called with

the expected arguments using assert_called_with() .



Clearly, the hardest part of testing our Application  object is

patching in all the mocked components and making sure

they behave enough like the real thing to satisfy

Application . Once we've done that, writing the actual tests

is fairly straightforward.

Testing our widgets

So far, we've done well testing our components with

patch() , Mock , and the default TestCase  class, but testing our

widgets module is going to present some new challenges.

To begin with, our widgets will need a Tk instance to be

their root window. We can create this in each case's setUp()

method, but this will slow down the tests considerably, and

it isn't really necessary to do it over and over again: our

tests aren't going to modify the root window, so one root

window will suffice for each test case. To keep things

running at a reasonable pace, we can take advantage of the

setUpClass()  method to create a single instance of Tk just

once when the test case instance is created.

Secondly, we have a large number of widgets to test, each

of which will need its own TestCase  class. As a result, we'll

need to create a large number of test cases requiring this

same Tk setup and tear down. To address this, we'll create

a custom TestCase  base class to handle the root window

setup and tear-down, then subclass it for each of our

widget test cases. Open a new file under the test  directory

called test_widgets.py , and begin with this code:

# test_widgets.py from .. import widgets from unittest import

TestCase from unittest.mock import Mock import tkinter as tk from

tkinter import ttk class TkTestCase(TestCase): """A test case

designed for Tkinter widgets and views""" @classmethod def

setUpClass(cls): cls.root = tk.Tk() cls.root.wait_visibility()

@classmethod def tearDownClass(cls): cls.root.update()

cls.root.destroy()



The setUpClass()  method creates the Tk object and calls

wait_visibility()  just to make sure the root window is

visible and completely drawn before our tests start working

with it. We've also supplied a complementary tear-down

method that updates the Tk instance (to finish out any

events in the queue) and destroys it.

Now, for each widget test case, we will subclass TkTestCase

to ensure we have a proper testing environment for the

widget.

Unit testing the ValidatedSpinbox widget

ValidatedSpinbox  is one of the more complicated widgets we

created for our application, so it's a good place to start

writing tests.

Subclass the TkTestCase  class to create a test case for

ValidatedSpinbox  as follows:

class TestValidatedSpinbox(TkTestCase): def setUp(self):

self.value = tk.DoubleVar() self.vsb = widgets.ValidatedSpinbox(

self.root, textvariable=self.value, from_=-10, to=10, increment=1

) self.vsb.pack() self.vsb.wait_visibility() def tearDown(self):

self.vsb.destroy()

Our setUp()  method creates a control variable in which to

store the widget's value, then creates an instance of the

ValidatedSpinbox  widget with some basic settings: a

minimum value of -10 , a maximum of 10 , and an increment

of 1 . After creating it, we pack it and wait for it to become

visible. For our tear-down method, we simply destroy the

widget.

Now, let's begin writing tests. We'll start with a unit test of

the _key_validate()  method:

def test_key_validate(self): for x in range(10): x = str(x)

p_valid = self.vsb._key_validate(x, 'end', '', x, '1') n_valid =



self.vsb._key_validate(x, 'end', '-', '-' + x, '1')

self.assertTrue(p_valid) self.assertTrue(n_valid)

In this test, we're simply iterating from 0 to 9 and testing

both the positive and negative of the number against

_key_validate() , which should return True  for all of these

values.

Note that the _key_validate()  method takes a lot of

positional arguments, and most of them are redundant; it

might be nice to have a wrapper method that makes it

easier to call, since a proper test of this function will likely

need to call it dozens of times.

Let's call that method key_validate()  and add it to our

TestValidatedSpinbox  class as follows:

def key_validate(self, new, current=''): return

self.vsb._key_validate( new, # inserted char 'end', # position to

insert current, # current value current + new, # proposed value

'1' # action code (1 == insert) )

This will make future calls to the method shorter and less

error-prone. Let's use this method now to test some invalid

input, like so:

def test_key_validate_letters(self): valid =

self.key_validate('a') self.assertFalse(valid) def

test_key_validate_increment(self): valid = self.key_validate('1',

'0.') self.assertFalse(valid) def test_key_validate_high(self):

valid = self.key_validate('0', '10') self.assertFalse(valid))

In the first example, we're entering the letter a ; in the

second, a 1  character when 0.  is already in the box

(resulting in a proposed value of 0.1 ); in the third, a 0

character when 10  is in the box (resulting in a proposed

value of 100 ). All of these scenarios should fail the

validation method, causing it to return False .



Integration testing the ValidatedSpinbox

widget

In the preceding tests, we weren't actually entering any

data into the widget; we were simply calling the key

validation method directly and evaluating its output. This is

good unit testing, but as a test of our widget's functionality

it isn't very satisfying, is it? Since our custom widget is so

deeply interactive with Tkinter's validation API, we'd like to

test that we've actually interfaced with this API correctly.

After all, that aspect of the code was more challenging than

the actual logic in our validation methods.

We can accomplish this by creating some integration tests

that simulate actual user actions and then check the results

of those actions. To do this cleanly, we'll first need to create

some supporting methods.

First of all, we'll need a way to simulate typing text into the

widget. Let's start a new type_in_widget()  method in the

TkTestCase  class that will do this:

# test_widgets.py, in TkTestCase def type_in_widget(self, widget,

string): widget.focus_force()

The first thing this method does is force the focus to the

widget; recall that focus_force()  gives the widget focus even

if the containing window is not in focus; we need to use this

because our test Tk window is unlikely to be in focus when

the test is being run.

Once we have focus, we'll need to iterate through the

characters in the string and translate the raw character

into the appropriate key symbols for our event sequence.

Recall that some characters, particularly symbols, must be

represented as name strings, such as minus  or colon . To

make this work, we'll need a way to translate between



characters and their key symbols. We can do this with a

dictionary added as a class property, like so:

# test_widgets.py, in TkTestCase keysyms = { '-': 'minus', ' ':

'space', ':': 'colon', }

More key symbols can be found at

http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm, but

these should do for now. Let's finish the type_in_widget()

method like so:

# test_widgets.py, in TkTestCase.type_in_widget() for char in

string: char = self.keysyms.get(char, char)

widget.event_generate(f'<KeyPress-{char}>')

self.root.update_idletasks()

In this loop, we start by checking to see if our char  value

has a name string in keysyms . Then we generate a KeyPress

event on the widget with the given character or key

symbol. Note that we call self.root.update_idletasks()  after

generating the keypress event. This ensures that the typed

characters register after being generated.

In addition to simulating keyboard input, we'll need to be

able to simulate mouse clicks. We can create a similar

method, click_on_widget() , for simulating mouse button

clicks as follows:

def click_on_widget(self, widget, x, y, button=1):

widget.focus_force() widget.event_generate(f'<ButtonPress-

{button}>', x=x, y=y) self.root.update_idletasks()

This method takes a widget, an x  and y  coordinate for the

click, and optionally a mouse button that will be clicked

(defaulting to 1 , which is the left mouse button). Just as we

did with our keystroke method, we first force focus,

generate our events, then update the application. The x

and y  coordinates for the mouse click specify where the

widget is clicked, relative to its upper-left corner.

http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm


With these methods in place, return to the

TestValidatedSpinbox  class and write a new test:

# test_widgets.py, in TestValidatedSpinbox def

test__key_validate_integration(self): self.vsb.delete(0, 'end')

self.type_in_widget(self.vsb, '10')

self.assertEqual(self.vsb.get(), '10')

This method starts by clearing the widget, then simulates

some valid input with type_in_widget() . Then we retrieve the

value from the widget using get() , checking that it matches

the expected value. Note that in these integration tests

we'll need to clear the widget each time because we are

simulating keystrokes in an actual widget and triggering all

the side effects of that action.

Next, let's test some invalid input; add the following to the

test method:

self.vsb.delete(0, 'end') self.type_in_widget(self.vsb, 'abcdef')

self.assertEqual(self.vsb.get(), '') self.vsb.delete(0, 'end')

self.type_in_widget(self.vsb, '200')

self.assertEqual(self.vsb.get(), '2')

This time, we've simulated typing non-numeric or out-of-

range values into the widget and check the widget to make

sure it has properly rejected the invalid keystrokes. In the

first example, the ValidatedSpinbox  should reject all the

keystrokes since they are letters; in the second, only the

initial 2  should be accepted since the subsequent 0

keystrokes would put the number out of range.

We can use our mouse click method to test the functionality

of the ValidatedSpinbox  widget's arrow buttons as well. To

make this simpler, we could create a helper method in our

test case class to click on the arrow we want. Of course, to

click a particular arrow, we have to figure out how to locate

that element within the widget.



One approach would be to just estimate a hard-coded

number of pixels. In most default themes, the arrows are on

the right side of the box, and the box is about 20 pixels

high. So, something like this method could work:

# test_widgets.py, inside TestValidatedSpinbox def

click_arrow_naive(self, arrow='inc', times=1): x =

self.vsb.winfo_width() – 5 y = 5 if arrow == 'inc' else 15 for _

in range(times): self.click_on_widget(self.vsb, x=x, y=y)

This approach actually works fairly well and may be

sufficient for your needs. However, it's a little brittle as it

makes assumptions about your theme and screen

resolution. For more complex custom widgets, you may

have a hard time locating elements this way. What would be

better is a way to find the actual coordinates of widget

elements.

Unfortunately, Tkinter widgets don't offer us a way to

locate the x and y coordinates of elements within a widget;

Ttk elements, however, do offer us a way to see which

element is at a given set of coordinates, using the

identify()  method. Using this, we can write a method that

scans through a widget looking for a particular element

and returns the first set of x and y coordinates where it can

be found.

Let's add this as a static method to the TkTestCase  class, like

so:

# test_widgets.py, inside TkTestCase @staticmethod def

find_element(widget, element): widget.update_idletasks() x_coords

= range(widget.winfo_width()) y_coords =

range(widget.winfo_height()) for x in x_coords: for y in

y_coords: if widget.identify(x, y) == element: return (x + 1, y +

1) raise Exception(f'{element} was not found in widget')

The method begins by updating the widget's idle tasks.

Without this call, it's possible that all the elements are not



yet drawn, and identify()  will return an empty string. Next,

we get a list of all the x and y coordinates in the widget by

passing its width and height into the range()  function. We

iterate through these lists, calling widget.identify()  on each

pixel coordinate in the widget. If the returned element

name matches the element name we're looking for, we

return the current coordinates as a tuple. If we make it all

the way through the widget without returning, we raise an

exception stating that the element was not found.

Note that we add 1 to each of the x and y coordinates;

that's because this element returns the upper-left corner

coordinate of the widget. In some cases, clicking on these

corner coordinates doesn't register as a click on the

widget. To be sure we're actually clicking in the widget, we

return coordinates 1 pixel right and down from the corner.

Of course, there's a snag here: what is the name of the

element we're looking for? Recall from Chapter 9,

Improving the Look with Styles and Themes, that the

elements that compose a widget are determined by the

theme, and that different themes may have completely

different elements. For example, if you're looking for the

increment arrow element, the default theme on Windows

calls it Spinbox.uparrow . The default theme on Linux,

however, calls it simply uparrow , and the default theme on

macOS doesn't even have a separate element for it (both

arrows are a single element called Spinbox.spinbutton )!

To address this, we need to force our test window to a

specific theme so that we can rely on the names being

consistent. In the TestValidatedSpinbox.setUp()  method, we'll

add some code to force an explicit theme:

# test_widgets.py, inside TestValidatedSpinbox.setUp()

ttk.Style().theme_use('classic') self.vsb.update_idletasks()



The classic  theme should be available on all platforms, and

it uses the simple element names uparrow  and downarrow  for

the Spinbox  arrow elements. We've added a call to

update_idletasks()  to make sure the theme changes have

taken effect in the widget before our tests start.

Now, we can write a better click_arrow()  method for

TestValidatedSpinbox  that relies on element names instead of

hard-coded pixel values. Add this method to the class:

# test_widgets.py, inside TestValidatedSpinbox def

click_arrow(self, arrow, times=1): element = f'{arrow}arrow' x, y

= self.find_element(self.vsb, element) for _ in range(times):

self.click_on_widget(self.vsb, x=x, y=y)

Just as with our naive version, this method takes an arrow

direction and a number of times. We use the arrow

direction to build an element name, then use our

find_element()  method to locate the appropriate arrow

inside the ValidatedSpinbox  widget. Once we have the

coordinates, we can use the click_on_widget()  method we

wrote to click on it.

Let's put this method to work and test our arrow key

functionality in a new test method:

# test_widgets.py, inside TestValidatedSpinbox def

test_arrows(self): self.value.set(0) self.click_arrow('up',

times=1) self.assertEqual(self.vsb.get(), '1')

self.click_arrow('up', times=5) self.assertEqual(self.vsb.get(),

'6') self.click_arrow(arrow='down', times=1)

self.assertEqual(self.vsb.get(), '5')

By setting the value of the widget, then clicking the

appropriate arrow a specified number of times, we can test

that the arrows did their jobs according to the rules we

created in our widget class.



Testing our mixin class

One additional challenge we haven't approached yet is

testing our mixin class. Unlike our other widget classes,

our mixin cannot really exist on its own: it depends on

methods and properties found in the Ttk widget with which

it's combined.

One approach to testing this class would be to mix it with a

Mock  object that mocks out any inherited methods. This

approach has merit, but a simpler (if less theoretically

pure) approach is to subclass it with the simplest possible

Ttk  widget and test the resulting child class.

We'll create a test case that uses the latter approach. Start

it in test_widgets.py , like so:

# test_widgets.py class TestValidatedMixin(TkTestCase): def

setUp(self): class TestClass(widgets.ValidatedMixin, ttk.Entry):

pass self.vw1 = TestClass(self.root)

Here, the setUp()  method creates just a basic child class of

ValidatedMixin  and ttk.Entry  with no other modifications,

then creates an instance of it.

Now let's write a test case for the _validate()  method, like

so:

def test__validate(self): args = { 'proposed': 'abc', 'current':

'ab', 'char': 'c', 'event': 'key', 'index': '2', 'action': '1' }

self.assertTrue( self.vw1._validate(**args) )

Because we're sending a key event to _validate() , it routes

the request to _key_validate() , which simply returns True  by

default. We'll need to verify that _validate()  does what is

needed when _key_validate()  returns False  as well.

We'll employ Mock  to do this:



fake_key_val = Mock(return_value=False) self.vw1._key_validate =

fake_key_val self.assertFalse( self.vw1._validate(**args) )

fake_key_val.assert_called_with(**args)

By testing that False  is returned and that _key_validate()

was called with the correct arguments, we've demonstrated

that _validate()  is properly routing events to the right

validation methods.

By updating the event  value in args, we can check that

focus-out events also work:

args['event'] = 'focusout'

self.assertTrue(self.vw1._validate(**args)) fake_focusout_val =

Mock(return_value=False) self.vw1._focusout_validate =

fake_focusout_val self.assertFalse(self.vw1._validate(**args))

fake_focusout_val.assert_called_with(event='focusout')

We've taken an identical approach here, just mocking out

_focusout_validate()  to make it return False .

As you can see, once we've created our test class, testing

ValidatedMixin  is like testing any other widget class. There

are other test method examples in the included source

code; these should be enough to get you started with

creating a complete test suite.

Summary

In this chapter, you learned about the benefits of

automated testing and the capabilities provided by Python's

unittest  library. You learned how to isolate units of code by

using Mock  and patch()  to replace external modules,

classes, and functions. You learned strategies for

controlling Tkinter's event queue and simulating user input

to automate tests of our GUI components, and wrote both



unit tests and integration tests against sections of the ABQ

application.

In the next chapter, we'll upgrade our backend to use a

relational database. In the process, you'll learn about

relational database design and data normalization. You'll

also learn to work with the PostgreSQL database server

and Python's psycopg2  PostgreSQL interface library.



12

Improving Data Storage with SQL

As weeks have passed by, there is a growing problem at the

lab: CSV files are everywhere! Conflicting copies, missing

files, records getting changed by non-data entry staff, and

other CSV-related frustrations are plaguing the project.

Unfortunately, the password protection in the application

does nothing meaningful to prevent anyone from editing

the files and corrupting data. It's clear that the current

data storage solution is not working out. Something better

is needed!

The facility has an older Linux server with a PostgreSQL

database installed. You've been asked to update your

program so that it stores data in the PostgreSQL database

rather than in the CSV files, and authenticates users

against the database. This way there can be one

authoritative source of data to which the support staff can

easily manage access. In addition, the SQL database will

help enforce correct data types and allow for more complex

data relationships than the simple flat file. This promises to

be a major update to your application!

In this chapter, you'll learn the following topics:

In PostgreSQL, we'll install and configure the

PostgreSQL database system.

In Modeling relational data, we'll discuss the art of

structuring data in a database for good performance

and reliability.



In Creating the ABQ database, we'll build a SQL

database for the ABQ Data Entry application.

In Connecting to PostgreSQL with psycopg2, we'll use

the psycopg2  library to connect our program to

PostgreSQL.

Finally, in Integrating SQL into our application, we'll

update ABQ Data Entry to utilize the new SQL

database.

This chapter assumes you have a basic knowledge of SQL. If

you don't, please see Appendix B, A Quick SQL Tutorial.

PostgreSQL

Python can interact with a wide variety of relational

databases, including Microsoft SQL Server, Oracle,

MariaDB, MySQL, and SQLite; in this book, we're going to

focus on a very popular choice in the Python world,

PostgreSQL. PostgreSQL (usually pronounced post-gress,

with the "QL" silent) is a free, open source, cross-platform

relational database system. It runs as a network service

with which you can communicate using client programs or

software libraries. At the time of writing, version 13 is the

current stable.

Although ABQ has provided a PostgreSQL server that is

already installed and configured, you'll need to download

and install the software on your workstation for

development purposes. Let's take a look at how we can get

our workstation ready for PostgreSQL development.



Shared production resources such as databases and web

services should never be used for testing or development.

Always set up a separate development copy of these

resources on your own workstation or a separate server

machine.

Installing and configuring PostgreSQL

To download PostgreSQL, visit

https://www.postgresql.org/download and download an

installation package for your operating system. Installation

packages are provided for Windows, macOS, Linux, BSD,

and Solaris by EnterpriseDB, a commercial entity that

provides paid support for PostgreSQL. These installers

include the server, command-line client, and pgAdmin

graphical client all in one package. To install the software,

launch the installer using an account with administrative

rights and follow the screens in the installation wizard.

During installation, you'll be asked to set a password for

the postgres  superuser account; make sure to take note of

this password.

Configuring PostgreSQL using the GUI utility

Once installed, you can configure and interact with

PostgreSQL using the pgAdmin graphical utility. Go ahead

and launch pgAdmin from your application menu and follow

these steps to create a new admin user for yourself:

1. Select Servers from the Browser pane on the left.

You'll be prompted for your superuser password.

2. Once authenticated, select Object | Create |

Login/Group Role. Enter a username to use for

database access on the General tab. Then visit the

https://www.postgresql.org/download


Privileges tab to check Superuser and Can Login,

and the Definition tab to set a password.

3. Click the Save button at the bottom of the window.

Next, we need to create a database. To do that, follow these

steps:

1. Select Object | Create | Database from the menu.

2. Name the database abq , and set your new user account

as the owner.

3. Click the Save button at the bottom of the window.

Your database is now ready to work with. You can begin

entering SQL to run against your database by selecting the

database in the Browser pane and clicking on Tools |

Query Tool in the menu.

Configuring PostgreSQL using the command

line

If you prefer to work directly in the command line,

PostgreSQL includes several command-line utilities,

including the following:

Command Description

createuser Create PostgreSQL user accounts

dropuser Delete PostgreSQL user accounts

createdb Create PostgreSQL databases

dropdb Delete PostgreSQL databases



psql Command-line SQL shell

For example, on macOS or Linux, we can complete the

configuration of our database with the following

commands:

$ sudo -u postgres createuser -sP myusername 

$ sudo -u postgres createdb -O myusername abq 

$ psql -d abq -U myusername 

These three commands create the user, create the

database, and open a SQL shell where queries can be

entered. Note that we use the sudo  command to run these

as the postgres  user. Remember that this is the superuser

account you set up during installation.

Although EnterpriseDB provides binary installers for Linux,

most Linux users will prefer to use packages supplied by

their distribution. You may end up with a slightly older

version of PostgreSQL, but that won't matter for most basic

use cases. Be aware that pgAdmin is usually part of a

separate package, and also may be at a slightly older

version. Regardless, you should have no trouble following

this chapter with the older version.

Modeling relational data

Our application currently stores data in a single CSV file; a

file like this is often called a flat file, because the data has

been flattened to two dimensions. While this format works

acceptably for our application and could be translated

directly to a SQL table, a more accurate and useful data

model requires more complexity. In this section, we're



going to go through some concepts of data modeling that

will help us convert our CSV data into effective relational

tables.

Primary keys

Every table in a relational database should have something

called a primary key. The primary key is a value, or set of

values, that uniquely identifies a record in the table; as

such, it should be a value or set of values that is unique and

non-null for every row in a table. Other tables in the

database can use this field to reference particular rows of

the table. This is called a foreign key relationship.

How do we figure out what the primary key is for a set of

data? Consider this table:

Fruit Classification

Banana Berry

Kiwi Berry

Orange Citrus

Lemon Citrus

In this table, each row represents a type of fruit. It would

make no sense for the Fruit  column to be empty in this

table, or for two rows to have the same value for Fruit .

This makes the column a perfect candidate for a primary

key.



Now consider a different table:

Fruit Variety Quantity

Banana Cavendish 452

Banana Red 72

Orange Navel 1023

Orange Red 875

In this table, each row represents a subvariety of fruit;

however, there is no one field that uniquely defines a single

variety of a single fruit. Instead, it requires both the Fruit

and Variety  fields. When we need multiple fields to

determine the primary key, we call this a composite

primary key. In this case, our composite primary key uses

both the Fruit  and Variety  fields.

Using surrogate primary keys

Consider this table of employees :

First Last Title

Bob Smith Manager

Alice Jones Analyst

Pat Thompson Developer



Suppose this table were to use First  and Last  as a

composite primary key, and suppose that other tables in the

database reference rows using the primary keys. Leaving

aside the obvious problem that two people can have the

same first and last name, what would happen if Bob Smith

decided he would prefer to be called Robert, or if Alice

Jones married and took a new last name? Remember that

other tables use the primary key value to reference rows in

the table; if we change the contents of the primary key

field, all the tables referencing these employees would

either have to be updated as well or they would be unable

to locate the record in the employees  table.

While using actual data fields to build a primary key value

is arguably the most theoretically pure approach, there are

two big downsides that come up when you start relating

tables using foreign keys:

You have to duplicate the data in every table that needs

to reference your table. This can particularly become

onerous if you have a composite key of many fields.

You can't change the values in the original table

without breaking foreign key references.

For this reason, database engineers may opt for using

surrogate keys. These are typically integer or globally

unique identifier (GUID) values stored in an identity

column that are automatically added to a record when it is

inserted into a table. In the case of the employees  table, we

could simply add an ID  field containing an auto-

incrementing integer value, like so:

ID First Last Title

1 Bob Smith Manager



2 Alice Jones Analyst

3 Pat Thompson Developer

Now other tables can simply refer to employees.ID=1 , or

employees.ID=2 , leaving Bob  and Alice  free to change their

names without consequence.

The use of surrogate keys arguably breaks the theoretical

purity of a database; it also may require us to manually

specify uniqueness or non-null constraints on columns that

are implicit when they are used as a primary key.

Sometimes, though, the practical advantages of surrogate

keys outweigh these concerns. You will need to evaluate

which option works best with your application and its data.

One rule of thumb in making this determination is to

consider whether the data you propose to use as a key

describes or defines the item represented by the row. For

example, a name does not define a person: a person can

change their name and still be the same person. On the

other hand, the plot checks stored in our CSV files are

defined by the date, time, lab, and plot values. Change any

one of those values and you are referring to a different plot

check.

Normalization

The process of breaking out a flat data file into multiple

tables is called normalization. The normalization process

is broken into a series of levels called normal forms,

which progressively remove duplication and create a more

precise model of the data we're storing. Although there are



many normal forms, most issues encountered in common

business data can be handled by conforming to the first

three.

The purpose of conforming data to these forms is to

eliminate the potential for redundant, conflicting, or

undefined data situations. Let's briefly look at each of the

first three normal forms, and what kind of issues it

prevents.

First normal form

The first normal form requires that each field contains

only one value, and that repeating columns must be

eliminated. For example, suppose we have a flat file that

looks like this:

Fruit Varieties

Banana Cavendish, Red, Apple

Orange Navel, Valencia, Blood, Cara Cara

The Varieties  field in this table has multiple values in a

single column, so this table is not in the first normal form.

We might try to fix it like so:

Fruit Variety_1 Variety_2 Variety_3 Variety_4

Banana Cavendish Red Apple

Orange Navel Valencia Blood Cara Cara



This is an improvement, but it's still not in the first normal

form, because we have repeating columns. All of the

Variety_  columns represent the same attribute (the variety

of fruit), but have been arbitrarily broken out into distinct

columns. One way to tell if you have repeating columns is if

the data is equally valid whether it goes in one column or

the other; for example, Cavendish  could just as well go in the

Variety_2 , Variety_3 , or Variety_4  columns.

Consider some of the problems with this format:

What would it mean if we had the same data in multiple

Variety  fields; for example, if the Banana  row had

Cavendish  for Variety_1  and Variety_4 ? Or what would it

indicate for Variety_1  to be blank, but Variety_2  to have

a value? These ambiguous situations are known as

anomalies and can lead to conflicting or confusing

data in the database.

How complex would it be to query the table to see if

two fruits share a variety name? We would have to

check each Variety_  field against every other Variety_

field. What if we needed more than four varieties for a

particular fruit? We would have to add columns,

meaning our query would get exponentially more

complex.

To bring this table to the first normal form, we would need

to create one Fruit  and one Variety  column, something like

this:

Fruit Variety

Banana Cavendish

Banana Red



Banana Apple

Orange Navel

Orange Valencia

Orange Blood

Orange Cara Cara

Note that this changes the nature of our table, as it's no

longer one row per Fruit , but rather one row per Fruit-

Variety  combination. In other words, the primary key has

changed from Fruit  to Fruit + Variety . What if there are

additional fields in the table that relate specifically to the

Fruit  type without respect to Variety ? We'll address that as

we look at the second normal form.

Second normal form

The second normal form requires the first normal form,

and additionally that every value must be dependent on the

entire primary key. In other words, if a table has primary

key fields A, B, and C, and the value of column X depends

solely on the value of column A without respect to B or C,

the table violates the second normal form. For example,

suppose we added a Classification  field to our table, like so:

Fruit Variety Classification

Banana Cavendish Berry



Banana Red Berry

Orange Navel Citrus

Orange Valencia Citrus

In this table, Fruit  and Variety  comprise the primary key of

each row. Classification  only depends on Fruit , though,

since all bananas are berries, and all oranges are citrus.

Consider the problems with this format:

First, we have a data redundancy, since every Fruit

type is going to have its Classification  listed multiple

times (once each time the Fruit  value is repeated).

The redundancy creates the potential for an anomaly

where the same Fruit  value has a different

Classification  value in different rows. This would make

no sense.

To address this, we'd need to break our table into two

tables; one containing Fruit  and Classification , with a

primary key of Fruit , and one containing Fruit  and Variety ,

with both fields comprising the primary key.

Third normal form

The third normal form requires the second normal form,

and additionally that every value in the table is dependent

only on the primary key. In other words, given a table with

primary key A, and data fields X and Y, the value of Y can't

depend on the value of X. It can only depend on A.

For example, consider this table:



Fruit Leading Export Country Leading Export Continent

Banana Ecuador South America

Orange Brazil South America

Apples China Asia

This table complies with the second normal form, because

both columns are distinct to the primary key – each fruit

can only have one leading export country, and one leading

export continent. However, the Leading Export Continent  value

depends on the Leading Export Country  value (a non-primary

key field), because a country is on a continent without any

respect to its fruit exports. The problems with this format

are:

There is data redundancy, as any country appearing

multiple times would result in its continent appearing

multiple times.

Once again, the redundancy creates the potential for an

anomaly, where the same country could have two

different continents listed. That makes no sense.

To bring this to the third normal form, we would need to

create a separate table of countries that could contain the

continent column and any other column that depended on

the country.

More normalization forms

Database theorists propose other higher normalization

forms that can help further eliminate ambiguities and

redundancies in data, but for this book the first three



should suffice to organize our data. Be aware that it is

possible to over-normalize data for an application.

Deciding what constitutes over-normalization really

depends on the data and the users.

For example, if you have a contacts database that contains

the columns telephone_1  and telephone_2 , the first normal

form would dictate that you put telephone numbers in their

own table to eliminate the repeating field. But if your users

never need more than two fields, rarely use the second one,

and never do complex queries on the data, it may not be

worth complicating your database and application to

conform to a theoretically pure model.

Entity-relationship diagrams

One effective way to help normalize our data and prepare it

for a relational database is to create an entity-

relationship diagram, or ERD. An ERD is a way of

diagramming the things that our database is storing

information about and the relationships between those

things.

Those "things" are called entities. An entity is a uniquely

identifiable object; it corresponds to a single row of a single

table. Entities have attributes, which correspond to the

columns of a table. Entities also have relationships with

other entities, which correspond to the foreign key

relationships we define in SQL.

Let's consider the entities in our lab scenario with their

attributes and relationships:

There are labs. Each lab has a name.



There are plots. Each plot belongs to a lab and has a

number. A single seed sample is planted in each plot.

There are lab technicians, who each have a name.

There are lab checks, which are performed by a lab

tech at a given lab. Each lab check has a date and time.

There are plot checks, which are the data gathered at

a single plot during a lab check. Each plot check has

various plant and environmental data recorded on it.

The following diagram shows these entities and their

relationships:

Figure 12.1: An entity-relationship diagram of our ABQ data

In this diagram, the entities are represented by rectangles.

We have five entities: Lab , Plot , Lab Tech , Lab Check , and

Plot Check . Each entity has attributes, represented by the

ovals. The relationships between entities are represented

by diamonds, with the words describing the left-to-right

relationship. For example, a Lab Tech  performs a Lab Check ,

and a Lab Check  is performed in a Lab . Note the small 1 and



n characters around the relationship: these show the

cardinality of the relationship. There are three types of

cardinality commonly seen in a database:

A one-to-many (1 to n) relationship, where one row in

the left table is related to many rows in the right table.

For example, one Lab Tech  performs many Lab Checks .

A many-to-one (n to 1) relationship, where many rows

in the left table are related to the same row in the

right. For example, multiple Lab Checks  are performed in

the same Lab .

A many-to-many (n to n) relationship, where many

rows in the left table are related to many rows in the

right. For example, if we needed to update our

database to allow more than one tech to work on the

same lab check, then one lab tech would still perform

many checks, but one check would have multiple techs

(fortunately, we don't need to implement this!).

This diagram represents a reasonably normalized structure

for our data. To implement it in SQL, we'd just make a table

for each entity, a column for each attribute, and a foreign

key relationship for each relationship. Before we can do

that, though, let's consider one more thing: SQL data types.

Assigning data types

Standard SQL defines 16 data types, including types for

integers and floating-point numbers of various sizes, ASCII

or Unicode strings of either fixed or variable sizes, date and

time types, and single-bit types. In addition to

implementing standard types, nearly every SQL engine

extends this list with yet more types to accommodate

things like binary data, JSON data, currency values,



network addresses, and other special types of strings or

numbers. Many data types seem a little redundant, and

several have aliases that may be different between

implementations. Choosing data types for your columns can

be surprisingly confusing!

For PostgreSQL, the following chart provides some

reasonable choices:

Data being

stored

Recommended

type
Notes

Fixed-length

strings
CHAR

Requires a length, for example,

CHAR(256) .

Short-to-

medium

strings

VARCHAR
Requires a max length argument, for

example, VARCHAR(256) .

Long, freeform

text
TEXT Unlimited length, slower performance.

Smaller

integers
SMALLINT Up to ±32,767.

Most integers INT Up to around ±2.1 billion.

Larger

integers
BIGINT Up to around ±922 quadrillion.

Decimal

numbers
NUMERIC

Takes optional length and precision

arguments.

Integer

primary key

SERIAL,

BIGSERIAL

Auto-incrementing integers or big

integers.



Boolean BOOLEAN Can be TRUE, FALSE, or NULL.

Date and time
TIMESTAMP WITH

TIMEZONE

Stores date, time, and timezone.

Accurate to 1 µs.

Date without

time
DATE Stores date.

Time without

date
TIME Can be with or without time zone.

These types will probably meet the vast majority of your

needs in most applications, and we'll be using a subset of

these for our ABQ database. As we create our tables, we'll

refer to our data dictionary and choose appropriate data

types for our columns.

Be careful not to choose overly specific or restrictive data

types. Any data can ultimately be stored in a TEXT  field;

the purpose of choosing more specific types is mainly to

enable the use of operators, functions, or sorting specific to

that type of data. If those aren't required, consider a more

generic type. For example, phone numbers and U.S. social

security numbers can be represented purely with digits, but

that's no reason to make them INTEGER  or NUMERIC  fields;

after all, you wouldn't do arithmetic with them!

Creating the ABQ

database



Now that we've modeled our data and gotten a feel for the

data types available, it's time to build our database. Make

sure you've installed PostgreSQL and created the abq

database as described in the first section of this chapter,

and let's begin writing SQL to create our database

structure.

Under your project root folder, create a new directory

called sql . Inside the sql  folder, create a file called

create_db.sql . We'll start writing our table definition queries

in this file.

Creating our tables

The order in which we create our tables is significant. Any

table referred to in a foreign key relationship will need to

exist before the relationship is defined. Because of this, it's

best to start with your lookup tables and follow the chain of

one-to-many relationships until all the tables are created.

In our ERD, that takes us from roughly the upper left to the

lower right.

Creating the lookup tables

We need to create the following three lookup tables:

labs : This lookup table will contain the ID strings for

our laboratories. Since the names of the labs aren't

going to change, we'll just use the single-letter names

as the primary key values.

lab_techs : This lookup table will have the names of the

lab technicians. Since we don't want to use employee

names for primary keys, we'll create a column for the

employee ID number and use it for the primary key.



plots : This lookup table will have one row for each

physical plot, identified by lab and plot numbers. It will

also keep track of the current seed sample planted in

the plot.

Add the SQL query for creating these tables to

create_db.sql , as follows:

# create_db.sql

CREATE TABLE labs (id CHAR(1) PRIMARY KEY); 

CREATE TABLE lab_techs ( 

  id SMALLINT PRIMARY KEY, 

  name VARCHAR(512) UNIQUE NOT NULL 

); 

CREATE TABLE plots ( 

  lab_id CHAR(1) NOT NULL REFERENCES labs(id), 

  plot SMALLINT NOT NULL, 

  current_seed_sample CHAR(6), 

  PRIMARY KEY(lab_id, plot), 

  CONSTRAINT valid_plot CHECK (plot BETWEEN 1 AND 20) 

); 

Once created, the three tables look something like this:

lab_id

A

B

C

The labs table

id name



4291 J Simms

4319 P Taylor

The lab_techs table

lab_id plot current_seed_sample

A 1 AXM477

A 2 AXM478

A 3 AXM479

The plots table

While these tables may seem very simple, they will help

enforce data integrity and make it simple to build an

interface dynamically from the database. For example,

since we'll be populating our Labs  widget from the

database, adding a new lab to the application is simply a

matter of adding a row to the database.

The lab_checks table

The rows of the lab_checks  table each represent an instance

of a technician checking all the plots of a lab at a given

time on a given date. We will define it using the following

SQL:

CREATE TABLE lab_checks( date DATE NOT NULL, time TIME NOT NULL,

lab_id CHAR(1) NOT NULL REFERENCES labs(id), lab_tech_id SMALLINT

NOT NULL REFERENCES lab_techs(id), PRIMARY KEY(date, time,

lab_id) );

When created and populated, the table will look like this:



date time lab_id lab_tech_id

2021-10-01 8:00 A 4291

The lab_checks table

The date , time , and lab_id  columns together uniquely

identify a lab check, and so we designate them collectively

as the primary key. The ID of the lab technician performing

the check is the lone attribute in this table, and creates a

foreign key relationship to the lab_techs  table.

The plot_checks table

Plot checks are the actual data records collected at

individual plots. These each belong to a lab check, and so

must refer back to an existing lab check using the three

key values, date , time , and lab_id .

We'll begin with the primary key columns:

CREATE TABLE plot_checks( 

  date DATE NOT NULL, 

  time TIME NOT NULL, 

  lab_id CHAR(1) NOT NULL REFERENCES labs(id), 

  plot SMALLINT NOT NULL, 

The plot_checks  primary key is essentially the primary key

of a lab_check  table with the addition of a plot number; its

key constraints look like this:

PRIMARY KEY(date, time, lab_id, plot), FOREIGN KEY(date, time,

lab_id) REFERENCES lab_checks(date, time, lab_id), FOREIGN

KEY(lab_id, plot) REFERENCES plots(lab_id, plot),

Now that we've defined the key columns, we can add the

attribute columns:



When created and populated, the first several columns of

the table look something like this:

date time lab plot seed_sample humidity light (etc...)

2021-

10-01
08:00:00 A 1 AXM477 24.19 0.97

2021-

10-01
08:00:00 A 2 AXM478 23.62 1.03

The plot_checks table

Notice our use of data types and the CHECK  constraint to

duplicate the limits defined in the specification's data

dictionary. Using these, we've leveraged the power of the

database to safeguard against invalid data. This completes

our table definitions for the ABQ database.

  seed_sample CHAR(6) NOT NULL, 

  humidity NUMERIC(4, 2) CHECK (humidity BETWEEN 0.5 AND 52.0), 

  light NUMERIC(5, 2) CHECK (light BETWEEN 0 AND 100), 

  temperature NUMERIC(4, 2) CHECK (temperature BETWEEN 4 AND 40)

  equipment_fault BOOLEAN NOT NULL, 

  blossoms SMALLINT NOT NULL CHECK (blossoms BETWEEN 0 AND 1000)

  plants SMALLINT NOT NULL CHECK (plants BETWEEN 0 AND 20), 

  fruit SMALLINT NOT NULL CHECK (fruit BETWEEN 0 AND 1000), 

  max_height NUMERIC(6, 2) NOT NULL 

    CHECK (max_height BETWEEN 0 AND 1000), 

  min_height NUMERIC(6, 2) NOT NULL 

    CHECK (min_height BETWEEN 0 AND 1000), 

  median_height NUMERIC(6, 2) NOT NULL 

  CHECK (median_height BETWEEN min_height AND max_height), 

  notes TEXT 

); 



Creating a view

Before we finish our database design, we're going to create

a view that will simplify access to our data. A view behaves

like a table in most respects, but contains no actual data;

it's really just a stored SELECT  query. We'll create a view

called data_record_view  to rearrange our data for easier

interaction with the GUI.

Views are created using the CREATE VIEW  command, which

begins like this:

# create_db.sql

CREATE VIEW data_record_view AS ( 

Next, inside the parentheses, we put the SELECT  query that

will return the table data we want in our view:

We're selecting the plot_checks  table, and joining it to

lab_checks  and lab_techs  by way of our foreign key

relationships. Notice that we've aliased these tables by

using the AS  keyword. Short aliases like this can help make

a large query more readable. We're also aliasing each field

SELECT pc.date AS "Date", to_char(pc.time, 'FMHH24:MI') AS "Time

  lt.name AS "Technician", pc.lab_id AS "Lab", pc.plot AS "Plot"

  pc.seed_sample AS "Seed Sample", pc.humidity AS "Humidity", 

  pc.light AS "Light", pc.temperature AS "Temperature", 

  pc.plants AS "Plants", pc.blossoms AS "Blossoms", 

  pc.fruit AS "Fruit", pc.max_height AS "Max Height", 

  pc.min_height AS "Min Height", pc.median_height AS "Med Height

  pc.notes AS "Notes" 

FROM plot_checks AS pc 

  JOIN lab_checks AS lc ON pc.lab_id = lc.lab_id 

  AND pc.date = lc.date AND pc.time = lc.time 

  JOIN lab_techs AS lt ON lc.lab_tech_id = lt.id 

 ); 



to the name used in the application's data structures. These

must be enclosed in double quotes to allow for the use of

spaces and to preserve casing. By making the column

names match the data dictionary keys in our application,

we won't need to translate field names in our application

code.

The first several columns of the view look like this;

compare this to the raw plot_checks  table above:

Date Time Technician Lab Plot
Seed

Sample
Humidity Light

2021-

10-01
8:00 J Simms A 1 AXM477 24.19 0.97

2021-

10-01
8:00 J Simms A 2 AXM478 23.62 1.03

SQL database engines such as PostgreSQL are highly

efficient at joining and transforming tabular data.

Whenever possible, leverage this power and make the

database do the work of formatting the data for the

convenience of your application.

This completes our database creation script. Run this script

in your PostgreSQL client and verify that the four tables

and the view have been created. To execute the script in

pgAdmin, first open the Query Tool from Tools | Query

Tool, then open the file by clicking the folder icon above

the Query Editor window. Once the file is opened, click the

play button icon to execute it. To run the script at the

command line, execute the following at a terminal:

$ cd ABQ_Data_Entry/sql $ psql -U myuser -d abq < create_db.sql



Populating the lookup tables

Although the tables are all created, the lookup tables will

need to be populated before we can use them; specifically:

labs  should have values A  through C , representing the

three labs.

lab_techs  needs the name and ID number for our four

lab technicians: J Simms (4291), P Taylor (4319), Q

Murphy (4478), and L Taniff (5607).

plots  needs all 60 of the plots, numbers 1 through 20

for each lab. The seed sample rotates between four

values such as AXM477, AXM478, AXM479, and

AXM480.

You can populate these tables by hand using pgAdmin, or

by using the lookup_populate.sql  script included with the

example code. Execute it just as you did the create_db.sql

script.

Now our database is ready to use with the application. Let's

get the application ready to work with the database!

Connecting to PostgreSQL

with psycopg2

Now that we have a nice database to work with, how do we

get our application to use it? To make SQL queries from our

application, we'll need to install a Python library that can

talk directly to our database. In Python, each different SQL

product has one or more libraries available that can be

used to integrate with it.



For PostgreSQL, the most popular choice is psycopg2 . The

psycopg2  library is not a part of the Python standard library,

so you'll need to install it on any machine running your

application. You can find the most current installation

instructions at

http://initd.org/psycopg/docs/install.html; however,

the preferred method is to use pip .

For Windows, macOS, and Linux, the following command

should work:

$ pip install --user psycopg2-binary 

If that doesn't work, or if you'd rather install it from the

source, check the requirements on the website. Take note

that the psycopg2  library is written in C, not Python, so it

requires a C compiler and a few other development

packages to install from source.

Linux users can usually install psycopg2  from their

distribution's package management system.

psycopg2 basics

The essential workflow of using psycopg2  is as follows:

1. First, we create a Connection  object using

psycopg2.connect() . This object represents our connection

to the database engine and is used to manage our login

session.

2. Next, we create a Cursor  object from our connection

using the Connection  object's cursor()  method. A cursor

is our point of interaction with the database engine.

http://initd.org/psycopg/docs/install.html


3. We can run queries by passing SQL strings to the

cursor's execute()  method.

4. If our queries return data, we can retrieve the data

using the cursor's fetchone()  or fetchall()  methods.

The following script demonstrates the basic use of psycopg2 :

# psycopg2_demo.py

import psycopg2 as pg 

from getpass import getpass 

cx = pg.connect( 

  host='localhost',  database='abq', 

  user=input('Username: '), 

  password=getpass('Password: ') 

) 

cur = cx.cursor() 

cur.execute("""

  CREATE TABLE test

  (id SERIAL PRIMARY KEY, val TEXT)

""") 

cur.execute("""

  INSERT INTO test (val)

  VALUES ('Banana'), ('Orange'), ('Apple');

""") 

We begin by importing psycopg2  and aliasing it to pg  for

brevity's sake; we also import getpass  for prompting the

user for a password. Next, we generate a connection

object, cx , using the connect()  function, passing in all the

details required to locate the database server and

authenticate to it. These details include the host name of

the server, the name of the database, and the

authentication credentials. The host  argument can be the

server name, IP address, or fully qualified domain name of

the system running the PostgreSQL server. Since we're

running PostgreSQL on our local system, we've used

localhost  here, which points back to our local system.



From the connection, we create a cursor object, cur .

Finally, we've used the cursor's execute()  method to execute

two SQL queries.

Now let's retrieve some data from the database, like so:

cur.execute("SELECT * FROM test") 

num_rows = cur.rowcount 

data = cur.fetchall() 

print(f'Got {num_rows} rows from database:') 

print(data) 

You might expect that the data retrieved from the query is

found in the return value of execute() ; however, that's not

how it works. Instead, we execute the query, then use

cursor methods and attributes to retrieve the data and the

metadata about the execution. In this case, we've used

fetchall()  to retrieve all the rows of data at once. We have

also used the rowcount  attribute of the cursor to see how

many rows were returned from the database.

PostgreSQL is a transactional database, meaning that

modification operations (like our CREATE  and INSERT

statements) are not automatically saved to disk. To do that,

we need to commit our transaction. We can do this in

psycopg2  using the connection object's commit()  method, like

so:

cx.commit()

If we do not commit, the changes we make will not be

saved when our connection exits. The connection will exit

automatically when our application or script quits, but we

can also explicitly exit using the connection's close()

method, like this:

cx.close()



You can specify autocommit=True  when creating a

Connection  object to have psycopg2  implicitly commit

the transaction after every query. This is a handy

convenience, especially when working with PostgreSQL in

the shell.

Parameterized queries

Quite often, we need to include runtime data, such as that

entered by our users, in a SQL query. You might be tempted

to do this using Python's powerful string-formatting

capabilities, like this:

new_item = input('Enter new item: ') cur.execute(f"INSERT INTO

test (val) VALUES ('{new_item}')") cur.execute('SELECT * FROM

test') print(cur.fetchall())

Never, never do this! While it initially works, it creates a

vulnerability known as a SQL injection vulnerability. In

other words, it will allow a user of the program to enter any

SQL command they wish. For example, we could execute

our script and add malicious data like this:

$ python psycopg2_demo.py Username: alanm Password: Got 3 rows

from database: [(1, 'Banana'), (2, 'Orange'), (3, 'Apple')] Enter

new item: '); DROP TABLE test; SELECT (' Traceback (most recent

call last): File "/home/alanm/psycopg2_demo.py", line 37, in

<module> cur.execute('SELECT * FROM test')

psycopg2.errors.UndefinedTable: relation "test" does not exist

LINE 1: SELECT * FROM test

In this example, we've executed the program and entered a

string that closes our coded SQL statement and adds on a

DROP TABLE  statement. It then adds a partial SELECT

statement to avoid a syntax error from the SQL engine. The

result is that the test  table is deleted, and we get an

exception trying to query data from it!



SQL injection vulnerabilities have plagued applications for

decades and been the source of many high-profile hacking

disasters. Fortunately, psycopg2  gives us a way to avoid this

by using parameterized queries. A parameterized version

of the previous code looks like this:

new_item = input('Enter new item: ') cur.execute("INSERT INTO

test (val) VALUES (%s)", (new_item,)) cur.execute('SELECT * FROM

test') print(cur.fetchall())

To parameterize a query, we use the %s  string to stand in

for values we want to be inserted into the query. The values

themselves are passed into execute()  as a second argument.

For multiple values, the parameter values should be passed

in as a list or tuple, and will replace the %s  occurrences in

order.

For complicated queries, we can also give each parameter

a name, and pass in a dictionary to match up the values; for

example:

cur.execute( 

  "INSERT INTO test (val) VALUES (%(item)s)", 

  {'item': new_item} 

) 

The parameter's name is put in parentheses between the

percent sign and s  character. The name will then be

matched to a key in the parameters value dictionary and

substituted when the query is executed by the database.

The s  in this parameter string is called a format

specifier, and derives from the original Python syntax for

string substitution. It is required and should always be s .

If your parameterized query causes an Invalid Format

Specifier error, it's because you have forgotten the s  or

used a different character.



Parameterized queries take care of properly escaping and

sanitizing our data so that SQL injection attacks are largely

impossible. For example, if we try our previous hack with

the parameterized code, we get the following:

Enter new item: '); DROP TABLE test; SELECT (' [(1, 'Banana'),

(2, 'Orange'), (3, 'Apple'), (4, "'); DROP TABLE test; SELECT

('")]

Not only do parameterized queries protect us from SQL

injection, but they also perform automatic conversion of

certain Python types to SQL values; for example, Python

date  and datetime  objects are automatically converted to

strings that SQL will recognize as dates, and None  is

automatically converted to SQL NULL .

Note that parameters only work for data values; there is no

way to parameterize other query content like table names

or commands.

Special cursor classes

By default, Cursor.fetchall()  returns our query results as a

list of tuples. This might be acceptable if we have a table of

one or two columns, but for large tables like those in our

ABQ database, it quickly becomes a problem remembering

which tuple index corresponds to which field. Ideally, we'd

like to be able to reference a field by name.

To accommodate this, psycopg2  allows us to specify a

cursor factory class for our connection object that allows

us to use cursor objects with customized behavior. One

such custom cursor class included with psycop2  is the

DictCursor  class. We use it like so:



# psycopg2_demo.py from psycopg2.extras import DictCursor cx =

pg.connect( host='localhost', database='abq',

user=input('Username: '), password=getpass('Password: '),

cursor_factory=DictCursor )

DictCursor  is found in the psycopg2.extras  module, so we have

to import it separately from the main module. Once

imported, we pass it to the connect()  function's

cursor_factory  argument. Now, rows will be returned as

DictRow  objects, which can be treated just like dictionaries:

cur.execute("SELECT * FROM test") data = cur.fetchall() for row

in data: print(row['val'])

This is much handier when dealing with a large number of

columns.

More information about the use of psycopg2  can be found

in its official documentation at

https://www.psycopg.org/docs/.

Integrating SQL into our

application

Converting our application to a SQL backend will be no

small task. The application was built around the

assumption of the CSV files, and although we've taken care

to separate our concerns, many things are going to need to

change.

Let's break down the steps we'll need to take:

https://www.psycopg.org/docs/


We'll need to create a new model to interface with the

SQL database.

Our Application  class will need to use the SQL model,

and may need to adjust some behaviors as a result.

The record form will need to be reordered to prioritize

our key fields, use the new lookup tables, and auto-

populate using information in the database.

The record list will need to be adjusted to work with

the new data model and primary keys.

Let's get started!

Creating a new model

We'll start in models.py  by importing psycopg2  and DictCursor :

# models.py import psycopg2 as pg from psycopg2.extras import

DictCursor

As you learned in the previous section, DictCursor  will allow

us to fetch results in a Python dictionary rather than the

default tuples, which is easier to work with in our

application.

Now, begin a new model class called SQLModel  and copy over

the fields  property from the CSVModel , like so:

# models.py class SQLModel: """Data Model for SQL data storage"""

fields = { "Date": {'req': True, 'type': FT.iso_date_string},

"Time": {'req': True, 'type': FT.string_list, 'values': ['8:00',

'12:00', '16:00', '20:00']}, # etc. ...

We need to make a few changes to this dictionary, however.

First, our valid Lab and Plot values are going to be pulled

from the database rather than being hardcoded here, so

we'll specify them as empty lists and populate them in the

initializer. Also, the Technician field will become a drop-



down select, also populated from the database, so we need

to make it a string_list  type with an empty list for the

values  argument.

Those three entries should look like this:

# models.py, in the SQLModel.fields property 

    "Technician": { 

      'req': True, 'type':  FT.string_list, 'values': [] 

    }, 

    "Lab": { 

      'req': True, 'type': FT.short_string_list, 'values': [] 

    }, 

    "Plot": { 

      'req': True, 'type': FT.string_list, 'values': [] 

    }, 

Before we write our initializer, let's create a method to

encapsulate a lot of the boilerplate code around querying

and retrieving data. We'll call this method query() ; add it to

the SQLModel  class like so:

# models.py, inside SQLModel def query(self, query,

parameters=None): with self.connection: with

self.connection.cursor() as cursor: cursor.execute(query,

parameters) if cursor.description is not None: return

cursor.fetchall()

This method takes a query string and, optionally, a

sequence of parameters. Inside the method, we begin by

opening a context block using the Connection  object. Using

the connection this way means that psycopg2  will

automatically commit the transaction if the query is

successful. Next, we generate our Cursor  object, also using

a context manager. By using the cursor as a context

manager, psycopg2  will automatically roll back our

transaction if an exception is thrown by the execute()

method. Rolling back is the opposite of committing the

database: instead of saving the changes, we throw them



away and start with the database as it was the last time we

committed (or the beginning of the session, if we haven't

called commit()  yet). After rolling back, the exception will be

re-raised so that we can handle it in our calling code, and,

in either case, the cursor will be closed when the block

exits. Essentially, it's equivalent to the following:

cursor = self.connection.cursor() try: cursor.execute(query,

parameters) except (pg.Error) as e: self.connection.rollback()

raise e finally: cursor.close()

If we successfully execute the query and it returns data,

the method will need to return that data. To determine if

data was returned, we check the cursor. description

property. The cursor.description  property returns a list of

the headers for the table returned by our query; in the

event that our query returns no data (such as an INSERT

query), it is set to None . It's important to realize that

fetchall()  will raise an exception if there is no data

returned from the query, so we should check description

before executing it.

Now that we have this method, we can easily retrieve

results from our database like so:

  def some_method(self): 

    return self.query('SELECT * FROM table') 

To see how we can use the query method, let's go ahead

and add an initializer method to this class:

# models.py, inside SQLModel 

  def __init__(self, host, database, user, password): 

    self.connection = pg.connect( 

      host=host, database=database, 

      user=user, password=password, 

      cursor_factory=DictCursor 

    ) 

t h lf ("SELECT FROM l b t h ORDER BY



The __init__()  method takes the database connection

details and establishes a connection to the database using

psycopg2.connect() , setting the cursor_factory  to DictCursor .

Then, we use our new query()  method to query the

database for the pertinent columns in our three lookup

tables, using a list comprehension to flatten the results of

each query for the respective values  list.

Next, we need to write the methods that the application

calls to retrieve data from the model. We'll start with

get_all_records() , which looks like this:

def get_all_records(self, all_dates=False): query = ( 'SELECT *

FROM data_record_view ' 'WHERE NOT %(all_dates)s OR "Date" =

CURRENT_DATE ' 'ORDER BY "Date" DESC, "Time", "Lab", "Plot"' )

return self.query(query, {'all_dates': all_dates})

Since our users are used to working with only the current

day's data, we'll only show that data by default, but add an

optional flag should we ever need to retrieve all data for all

time. To retrieve the current date in PostgreSQL, we can

use the CURRENT_DATE  constant, which always holds the

current date according to the server. Note that we use a

prepared query to pass the all_dates  value to the query.

Next, let's create get_record() :

    techs = self.query("SELECT name FROM lab_techs ORDER BY name

    labs = self.query("SELECT id FROM labs ORDER BY id") 

    plots = self.query( 

      "SELECT DISTINCT plot FROM plots ORDER BY plot" 

    ) 

    self.fields['Technician']['values'] = [ 

      x['name'] for x in techs 

    ] 

    self.fields['Lab']['values'] = [x['id'] for x in labs] 

    self.fields['Plot']['values'] = [ 

      str(x['plot']) for x in plots 

    ] 



  def get_record(self, rowkey): 

    date, time, lab, plot = rowkey 

    query = ( 

      'SELECT * FROM data_record_view ' 

      'WHERE "Date" = %(date)s AND "Time" = %(time)s ' 

      'AND "Lab" = %(lab)s AND "Plot" = %(plot)s' 

    ) 

    result = self.query( 

      query, 

      {"date": date, "time": time, "lab": lab, "plot": plot} 

    ) 

    return result[0] if result else dict() 

This method represents a change in interface from the

CSVModel  class. We're no longer dealing in row numbers;

instead, rows are identified by their primary key values. In

the case of our records (that is, plot checks), we need Date,

Time, Lab, and Plot to identify a record. For convenience,

we'll be passing this value around as a tuple in the format

( date , time , lab , plot ). Thus, the first thing our method

does is extract the rowkey  tuple into those four values.

Once we have these values, we can use a prepared query to

retrieve all the record data from the view we created. Keep

in mind that, even when the query results are a single row,

the query()  method is going to return the results in a list.

However, our application expects a single dictionary of data

from get_record() , so our return  statement extracts the first

item in result  if the list is not empty, or an empty

dictionary if it is.

Retrieving a lab check record is very similar:

  def get_lab_check(self, date, time, lab): 

    query = ( 

      'SELECT date, time, lab_id, lab_tech_id, ' 

      'lt.name as lab_tech FROM lab_checks JOIN lab_techs lt ' 

      'ON lab_checks.lab_tech_id = lt.id WHERE ' 

      'lab_id = %(lab)s AND date = %(date)s AND time = %(time)s'

)



In this query, we're using a join to make sure we have the

technician name available and not just the ID. This method

did not exist in CSVModel , because we had not yet

normalized the data; but it will come in handy in our

save_record()  method and in our form automation methods.

Saving data

Saving data in our SQL model is a little more complex than

the CSV, since each data record is represented by rows in

two different tables: the lab_checks  and the plot_checks

tables. When we try to save a record, there are three

possibilities that we need to account for:

Neither a lab check nor a plot check record exists for

the given date, time, lab, and plot. In this case, both the

lab check and plot check records will need to be

created.

The lab check exists for the given date, time, and lab,

but no corresponding plot check exists for the given

plot. In this case, the lab check record will need to be

updated (in case the user wants to correct the

technician value), and the plot check record will need

to be added.

Both the lab check and plot check exist. In this case,

both will need to be updated with the submitted non-

primary key values.

The save_record()  method we implement will need to check

for these conditions and run the appropriate INSERT  or

    ) 

    results = self.query( 

      query, {'date': date, 'time': time, 'lab': lab} 

    ) 

    return results[0] if results else dict() 



UPDATE  queries on each table.

We also need to consider the possibility that a user will

update one of the primary key fields when editing an

existing record. What should the model do in this case?

Let's consider:

From the user's point of view, each record they fill out

in the application corresponds to a plot check.

A plot check is associated with a lab check on the basis

of its date, time, and lab.

Thus, if a user alters one of those key fields, their

intention is most likely to associate the plot check

record with a different lab check, rather than to alter

the lab check record it is already associated with.

Since, from a GUI standpoint, the user is updating an

existing record rather than adding a new one, though,

it makes sense to update the plot check identified by

the pre-change date, time, lab, and plot values with the

newly entered values for those fields.

Therefore, when we're determining whether to run our

INSERT  or UPDATE  queries, we should determine this based

on the entered data for the lab check, but the key data for

the plot check.

Let's begin implementing this logic by writing our queries,

which we will store in class variables to keep our

save_record()  method more concise.

We'll start with the lab check queries:

# models.py, in SQLModel 

  lc_update_query = ( 

    'UPDATE lab_checks SET lab_tech_id = ' 

    '(SELECT id FROM lab_techs WHERE name = %(Technician)s) ' 

'WHERE d t %(D t ) AND ti %(Ti ) AND l b %(L b) '



These queries are fairly straightforward, though note our

use of a subquery to populate lab_tech_id  in each case. Our

application will have no idea what a lab tech's ID is, so we'll

need to look the ID up by name. Also, take note that our

parameter names match the names used in our model's

fields  dictionary. This will save us from having to reformat

the record data acquired from our form.

The plot check queries are longer but not any more

complicated:

Note that the parameter names used in the UPDATE  query's

WHERE  clause are prefixed with key_ ; this will allow us to

update the record identified by the date, time, lab, and plot

values from the row key, as explained previously.

    'WHERE date=%(Date)s AND time=%(Time)s AND lab=%(Lab)s' 

  ) 

  lc_insert_query = ( 

    'INSERT INTO lab_checks VALUES (%(Date)s, %(Time)s, %(Lab)s,

    '(SELECT id FROM lab_techs WHERE name LIKE %(Technician)s))'

  ) 

  pc_update_query = ( 

    'UPDATE plot_checks SET seed_sample = %(Seed Sample)s, ' 

    'humidity = %(Humidity)s, light = %(Light)s, ' 

    'temperature = %(Temperature)s, ' 

    'equipment_fault = %(Equipment Fault)s, ' 

    'blossoms = %(Blossoms)s, plants = %(Plants)s, ' 

    'fruit = %(Fruit)s, max_height = %(Max Height)s, ' 

    'min_height = %(Min Height)s, median_height = %(Med Height)s

    'notes = %(Notes)s WHERE date=%(key_date)s AND time=%(key_ti

    'AND lab_id=%(key_lab)s AND plot=%(key_plot)s') 

  pc_insert_query = ( 

    'INSERT INTO plot_checks VALUES (%(Date)s, %(Time)s, %(Lab)s

    ' %(Plot)s, %(Seed Sample)s, %(Humidity)s, %(Light)s,' 

    ' %(Temperature)s, %(Equipment Fault)s, %(Blossoms)s,' 

    ' %(Plants)s, %(Fruit)s, %(Max Height)s, %(Min Height)s,' 

    ' %(Med Height)s, %(Notes)s)') 



With the queries in place, we can start writing the

save_record()  method:

# models.py, inside SQLModel 

  def save_record(self, record, rowkey): 

    if rowkey: 

      key_date, key_time, key_lab, key_plot = rowkey 

      record.update({ 

        "key_date": key_date, 

        "key_time": key_time, 

        "key_lab": key_lab, 

        "key_plot": key_plot 

      }) 

The CSVModel.save_record()  method took a record dictionary

and an integer value, rownum , to determine which record

would be updated (or None  if it was a new record). In our

database, we're using a compound key to identify a plot

check, which we'll expect as a tuple of the date, time, lab,

and plot. Therefore, if a rowkey  is passed in, we'll extract its

values to variables and add them to the record dictionary

so that we can pass them to the queries.

Next, we need to determine what kind of query to run for

the lab check table:

    if self.get_lab_check( 

      record['Date'], record['Time'], record['Lab'] 

    ): 

      lc_query = self.lc_update_query 

    else: 

      lc_query = self.lc_insert_query 

If there is an existing lab check record with the entered

date, time, and lab, we'll just update it (which will really

just change the technician value to what was entered). If

there is not, we'll create one.



Next, let's determine which plot check operation to do:

    if rowkey: 

      pc_query = self.pc_update_query 

    else: 

      pc_query = self.pc_insert_query 

This time we only need to know if a row key tuple was

given to the method. If it was, this should be an existing

record and we just want to update it. If not, we'll need to

insert a new record.

Now, we finish off the method by just running the two

queries, passing in the record  dictionary as the parameter

list:

    self.query(lc_query, record) 

    self.query(pc_query, record) 

Note that psycopg2  has no problem with us passing a

dictionary with extra parameters that aren't referenced in

the query, so we don't need to bother with filtering

unneeded items from record .

Getting the current seed sample for the plot

There is one last method this model needs; since our

database knows what seed sample is currently in each plot,

we want our form to populate this automatically for the

user. We'll need a method that takes a lab  and plot_id  and

returns the seed sample name.

We'll call it get_current_seed_sample() :

  def get_current_seed_sample(self, lab, plot): 

    result = self.query( 



      'SELECT current_seed_sample FROM plots ' 

      'WHERE lab_id=%(lab)s AND plot=%(plot)s', 

      {'lab': lab, 'plot': plot} 

    ) 

    return result[0]['current_seed_sample'] if result else ''

This time, our return  statement is not just extracting the

first row of results, but the value of the current_seed_sample

column from that first row. If there's no result, we return

an empty string.

That completes our model class; now let's incorporate it

into the application.

Adjusting the Application class for

the SQL backend

Before it can create a SQLModel  instance, the Application

class will need the database connection information to pass

to the model: the server name, database name, user, and

password. The host and database names aren't going to

change often, if at all, so we don't need to make the user

enter those each time. Instead, we can just add them as

settings in the SettingsModel :

# models.py, inside SettingsModel class SettingsModel: fields = {

#... 'db_host': {'type': 'str', 'value': 'localhost'}, 'db_name':

{'type': 'str', 'value': 'abq'} }

These can be saved in our JSON config file, which can be

edited to switch from development to production, but the

username and password used for authentication will need

to be entered by the user. For that, we can use our login

dialog.

Implementing SQL logins



The login dialog currently authenticates using hardcoded

credentials in the Application._simple_login()  method. This is

far from ideal, so we're going to use our PostgreSQL server

as a production-quality authentication backend. To start,

let's create a new Application  method called

_database_login() , like so:

# application.py, inside Application def _database_login(self,

username, password): db_host = self.settings['db_host'].get()

db_name = self.settings['db_name'].get() try: self.model =

m.SQLModel( db_host, db_name, username, password ) except

m.pg.OperationalError as e: print(e) return False return True

This method is analogous to our _simple_login()  method, in

that the Application._show_login()  method will call it to

authenticate the credentials entered by the user. Unlike

_simple_login() , however, this method is an instance

method, as it needs access to the settings and needs to

save the SQLModel  instance that it creates.

The method begins by pulling the database host and

database name from the settings  dictionary, then attempts

to create a SQLModel  instance using them. A

psycopg2.OperationalError  indicates a failure to connect to the

database, most likely due to failed credentials; in this case,

we'll return False  from the method. Otherwise, if the

connection is successful, we'll return True .

Note that we print the error message to the console. Since

other problems could potentially cause an

OperationalError , it would be smart to log the exception

or otherwise make it accessible for debugging, rather than

just silencing it.

To use this login backend, we need only change a single

line in the _show_login()  method:



# application.py, in Application 

  def _show_login(self): 

    #... 

      if self._database_login(username, password): 

        return True

The last change we need for SQL logins is in the Application

class's initializer. We need to make sure that the settings

dictionary is available before we show the login dialog,

since our database logins depend on the db_host  and

db_name  settings. Simply move the lines that load the

settings to the top of __init__() , just after calling

super().__init__() , as shown here:

# application.py, in Application def __init__(self, *args,

**kwargs): super().__init__(*args, **kwargs) self.settings_model

= m.SettingsModel() self._load_settings() self.withdraw() if not

self._show_login(): self.destroy() return self.deiconify()

Updating the Application._on_save() method

Since our record keys have changed from a single integer

to a tuple, we need to make some small adjustments to our

_on_save()  method. Thanks to our efforts to keep the model

object's interface intact, the core functionality of this

method actually works just fine. However, when it comes to

saving references to the rows that have been changed or

updated, we can no longer rely on calculating the row

numbers; we'll have to rely on the keys instead.

Starting in the second half of the Application._on_save()

method, just after the if errors:  block, change the code as

follows:

# application,py, in Application._on_save() data =

self.recordform.get() rowkey = self.recordform.current_record

self.model.save_record(data, rowkey) if rowkey is not None:

self.recordlist.add_updated_row(rowkey) else: rowkey = (

data['Date'], data['Time'], data['Lab'], data['Plot'] )



self.recordlist.add_inserted_row(rowkey) # remainder of method as

before

First, we've changed the rownum  variable to rowkey  to make

it more descriptive of what the variable contains. Second,

when we have a new record, we construct a new row key

using the Date, Time, Lab, and Plot values that were passed

in with the record. Note that now the contents of the

RecordList  widget's _updated  and _inserted  lists will be

tuples rather than integers, so we'll need to update its code

as well. We'll do that later in this chapter.

Removing file-based code

Before we move on from the Application  class, we need to

remove some of the file-based code that we'll no longer

need. Delete or comment out the following code:

In __init__() , remove the line that creates the CSVModel

instance. We no longer want to do this.

Also in __init__() , remove the <<FileSelect>>  event from

the event_callbacks  dictionary.

Remove the self._on_file_select()  method definition.

Finally, over in mainmenu.py , we can comment out calls to

the _add_file_open()  method in each of our menu

classes.

Now the Application  object is ready for SQL, let's check out

our view code.

Adjusting the DataRecordForm for

SQL data



Currently our DataRecordForm  keeps track of its record using

a row number. This is no longer going to work, since

records are identified by a compound primary key. We'll

need to adjust the way records are loaded, and how the

record form is labeled, so that we can accurately identify

the row we're working on. We also need to reorder the

fields so that the key values are entered first, which will

help the auto-populate to work more smoothly.

Also, our database presents us with new possibilities for

auto-filling data. Once we know enough to identify a Lab

Check record, we can auto-fill the Technician field, and

once we know which plot we're working with, we can auto-

fill the Seed Sample field.

Reordering fields

The first change we can make to DataRecordForm  is the

simplest. We just need to reorder the fields so that the key

fields Date, Time, Lab, and Plot appear first.

The updated calls (with some arguments left out) should be

ordered like so:

# views.py, inside DataRecordForm.__init__() 

    # line 1 

    w.LabelInput( 

      r_info, "Date", 

      #... 

    ).grid(row=0, column=0) 

    w.LabelInput( 

      r_info, "Time", 

      #... 

    ).grid(row=0, column=1) 

    # swap order for chapter 12 

    w.LabelInput( 

      r_info, "Lab", 

      #... 

    ).grid(row=0, column=2) 



    # line 2 

    w.LabelInput( 

      r_info, "Plot", 

      #... 

    ).grid(row=1, column=0) 

    w.LabelInput( 

      r_info, "Technician", 

      #... 

    ).grid(row=1, column=1) 

    w.LabelInput( 

      r_info, "Seed Sample", 

      #... 

    ).grid(row=1, column=2) 

Note that you need to change the row  and column

arguments of the grid()  method calls, not just the ordering

of the LabelInput  calls.

Fixing the load_record() method

The load_record()  method only needs two adjustments.

First, we'll replace the rownum  variable with rowkey , to be

consistent with the Application  class. Second, we need to

update the title text generated to identify the record, like

so:

#views.py, inside DataRecordForm.load_record() if rowkey is None:

self.reset() self.record_label.config(text='New Record') else:

date, time, lab, plot = rowkey title = f'Record for Lab {lab},

Plot {plot} at {date} {time}'

self.record_label.config(text=title)

Once again, we have extracted the date , time , lab , and

plot  values from the key and used them to identify which

record the user is currently editing. The remainder of the

method can stay the same.

Improving auto-fill



There are two auto-population callbacks we want to have

for our record form. First, when the user enters a lab  and

plot  value, we want to automatically populate the Seed

Sample field with the seed value that is currently planted in

that plot . Second, when the date , time , and lab  values

have been entered, and we have an existing lab check that

matches, we should populate the name of the lab tech who

did that check. Of course, if our user prefers not to have

data auto-filled, we shouldn't do either of these things.

Let's start with the seed sample callback:

We begin by checking whether or not the user wants data

auto-filled. If not, we return from the method. If they do, we

fetch the Plot and Lab values from the form's control

variables dictionary. If we have both, we use them to fetch

the Seed Sample value from the model and set it in the

form accordingly.

We'll do something similar with the Technician value:

# views.py, inside DataRecordForm 

  def _populate_tech_for_lab_check(self, *_): 

    """Populate technician based on the current lab check""" 

    if not self.settings['autofill sheet data'].get(): 

      return 

    date = self._vars['Date'].get() 

# views.py, inside DataRecordForm 

  def _populate_current_seed_sample(self, *_): 

    """Auto-populate the current seed sample for Lab and Plot"""

    if not self.settings['autofill sheet data'].get(): 

      return 

    plot = self._vars['Plot'].get() 

    lab = self._vars['Lab'].get() 

    if plot and lab: 

      seed = self.model.get_current_seed_sample(lab, plot) 

      self._vars['Seed Sample'].set(seed) 



    try: 

      datetime.fromisoformat(date) 

    except ValueError: 

      return 

    time = self._vars['Time'].get() 

    lab = self._vars['Lab'].get() 

    if all([date, time, lab]): 

      check = self.model.get_lab_check(date, time, lab) 

      tech = check['lab_tech'] if check else '' 

      self._vars['Technician'].set(tech) 

This time, we use the form's date , time , and lab  values to

fetch the lab check record, then set the Technician value

from the results (or a blank string if there are no results).

Note that we've added error handling around the date

value; that's because we plan to trigger these methods

from a variable trace. Lab  and Time  are both selected from

Combobox  widgets, so they will only change to a complete

value, but Date  is a text-entry field, so it's possible we'll be

getting a partially entered date. There's no point in running

a SQL query (a relatively time-consuming operation) if the

date  string isn't valid, so we've used datetime.fromisoformat()

to determine if the entered date  string is valid. If it's not,

we just return from the method since there's nothing more

to do.

To complete this functionality, we just need to add triggers

to run the methods whenever the appropriate variables are

updated. Add this code to DataRecordForm.__init__() :

# views.py, inside DataRecordForm.__init__() for field in ('Lab',

'Plot'): self._vars[field].trace_add( 'write',

self._populate_current_seed_sample ) for field in ('Date',

'Time', 'Lab'): self._vars[field].trace_add( 'write',

self._populate_tech_for_lab_check )

Using a for  loop, we've added a trace to each variable

involved in determining the Seed Sample and Technician

values. Now, these fields should get auto-populated



whenever sufficient information is entered to determine

their values.

Updating the RecordList for the

SQLModel

One of our RecordList  object's most important features is

the ability to select a record so that the Application  object

can open it in the DataRecordForm  view. To do this, we have to

store each record's key in its respective Treeview  item's IID

value. This worked easily with integer row number values,

but now there is a problem. Recall from Chapter 8,

Navigating Records with Treeview and Notebook, that an

IID value must be a string. We cannot use a tuple.

To solve this problem, we just need to come up with a

consistent way to connect our row key tuple to a string

value that can be used as an IID. We'll create a dictionary

as an instance variable that will map row keys to IID

values.

In RecordList.__init__() , add this line that creates our

mapping:

# views.py, near the beginning of RecordList.__init__() 

    self.iid_map = dict() 

Now we need to update the populate()  method to utilize the

dictionary rather than integer values. First, at the

beginning of the method just after deleting the existing

rows, let's clear the dictionary of any current information,

like so:

# views.py, in RecordList.populate() self.iid_map.clear()



Then, find the for  loop in this method that populates the

Treeview  and let's edit the code as follows:

for rowdata in rows: values = [rowdata[key] for key in cids]

rowkey = tuple([str(v) for v in values]) if rowkey in

self._inserted: tag = 'inserted' elif rowkey in self._updated:

tag = 'updated' else: tag = '' iid = self.treeview.insert( '',

'end', values=values, tag=tag ) self.iid_map[iid] = rowkey

Since row numbers are no longer in the picture, we can

remove the enumerate()  call and just deal with the row data.

It so happens that the four columns in the cids  list are the

same four that make up the key, and in the same order. So,

we can just convert that list to a tuple  object to create our

rowkey . Note that we do need to convert each item in the

key to a string; they come out of the database as Python

objects like date  and int , and we need to match them

against the keys in the _ inserted  and _ updated  lists. Those

values, pulled from our DataRecordForm , are all string values.

Once we have the key, we check if it is in one of the lists

and set the tag  value appropriately. Then, we'll save the

output from Treeview.insert()  as iid . When insert()  is

called without an explicit IID value, one is generated

automatically and returned by the method. We then add our

rowkey  value to the mapping dictionary using the generated

IID value as a key.

After the for  loop, the last part of this method focuses the

first row for keyboard users. To focus the first row before,

we relied on the fact that the first IID was always 0 . Now

the first IID will be an automatically generated value that

we cannot predict before the data is loaded, so we'll have

to retrieve the IID before we can set the selection and

focus.

We can do this by using the Treeview.identify_row()  method:



# views.py, in RecordList.populate() 

    if len(rows) > 0: 

      firstrow = self.treeview.identify_row(0) 

      self.treeview.focus_set() 

      self.treeview.selection_set(firstrow) 

      self.treeview.focus(firstrow) 

The identify_row()  method takes a row number and returns

the IID of that row. Once we have that, we can pass it to

selection_set()  and focus() .

We've taken care of mapping the row keys to our IIDs; now

we need to update the selected_id()  property method so

that it returns a row key tuple. Update that method as

follows:

# views.py, in RecordList @property def selected_id(self):

selection = self.treeview.selection() return

self.iid_map[selection[0]] if selection else None

Just as before, we're retrieving the selected IID using the

self.treeview.selection()  method. This time, though, we need

to look up the row key value in the mapping dictionary

before returning it.

The last change to RecordList  needs to be done in the

initializer. Currently, our first column, Row , displays the IID

on the pretext that it is the row number. That's no longer

the case, and as our updated call to insert()  did not specify

a value to display, the column is just empty. So, the best

thing we can do is remove this column.

However, that's not possible. The #0  column is required

and cannot be removed. It can, however, be hidden. To do

that, we need to set the Treeview  widget's show  property,

like so:

# views.py, inside RecordList.__init__()

self.treeview.config(show='headings')



The show  property essentially determines if the #0  column

will be displayed or not. It can be set to tree , in which case

the column will be shown, or headings , in which case it will

be hidden. The default is tree , so we've changed this to

headings . Now only our four data columns will be shown.

We're done!

Phew! That was quite a journey, but our SQL conversion is

more or less complete. You should be able to launch the

application, log in using your PostgreSQL credentials, and

load and save records using the database. This represents a

huge improvement in the application and a major shift from

a simple script to append a file to a full-blown database

application.

In the real world, of course, we aren't quite done here. Unit

tests and documentation would all need to be updated to

reflect the new model layer and other code changes. In

addition, existing data may need to be imported into the

database and users would need retraining to adjust to the

move away from flat files. We won't be addressing all this in

the book, but keep it in mind if you're undertaking a change

like this in a real production environment!

Summary

In this chapter, you learned how to work with a relational

SQL database. You installed and configured PostgreSQL.

You converted a flat-file dataset into relational tables by

identifying the primary key fields, choosing correct data

types, and normalizing the data structure to reduce the

possibility of inconsistencies, redundancies, and anomalies.



You learned how to install and work with the psycopg2

library for retrieving and storing data in PostgreSQL.

Finally, you went through the arduous task of building a

SQL database to hold your ABQ data, building a database

model class to interface with the database, and converting

the application code to use the new SQL backend.

In the next chapter, we'll be reaching out to the cloud. We'll

need to contact some remote servers using different

networking protocols to exchange data. You'll learn about

the Python standard library's module for working with

HTTP, as well as third-party packages for connecting with

REST services and transferring files over SFTP.



13

Connecting to the Cloud

It seems that nearly every application needs to talk to the

outside world sooner or later, and your ABQ Data Entry

application is no exception. You've received some new

feature requests that will require some interactions with

remote servers and services.

First, the quality assurance division is doing a study of how

local weather conditions are impacting the environmental

data in each lab; they've requested a way to download and

store local weather data in the database on demand. The

second request is from your manager, who is still required

to upload daily CSV files to the central corporate servers.

She would like this process streamlined and available at a

mouse click.

In this chapter, you will learn to interface with the cloud in

the following topics:

In HTTP using urllib, you'll connect to web services and

download data using urllib .

In RESTful HTTP using requests, you'll learn to interact

with REST services using the requests  library.

In SFTP using paramiko, you'll upload files over SSH

using paramiko .

HTTP using urllib



Every time you open a website in your browser, you're

using the Hypertext Transfer Protocol, or HTTP. HTTP was

created over 30 years ago as a way for web browsers to

download HTML documents, but has evolved into one of

the most popular client-server communication protocols for

any number of purposes.

Not only do we use it in the browser to view everything

from plain text to streaming video across the internet, but

applications can also use it to transfer data, initiate remote

procedures, or distribute computing tasks.

HTTP transaction fundamentals

A basic HTTP transaction between a client and server goes

like this:

1. First, the client creates a request, which it will send to

the server. The request contains the following:

A URL, which specifies the host, port, and path to

which the request is being made.

A method, also known as a verb, which tells the

server what operation the client is requesting. The

most common methods are GET , for retrieving data,

and POST , for submitting data.

A header, which includes metadata in key-value

pairs; for example, the type of content being

submitted, how the content is encoded, or

authorization tokens.

Finally, the request may have a payload, which

would contain the data being submitted to a server;

for example, a file being uploaded, or a set of key-

value pairs from a form.



2. When the server receives the request, it returns a

response. The response contains the following:

A header containing metadata such as the size or

content type of the response.

A payload containing the actual content of the

response, such as HTML, XML, JSON, or binary

data.

In a web browser, these interactions take place in the

background, but our application code will deal directly with

request and response objects in order to talk to remote

HTTP servers.

HTTP status codes

Every HTTP request includes a status code in its header,

which is a 3-digit number indicating the disposition of the

request. The codes, defined in the HTTP standard, are

organized as follows:

1XX status codes are informational messages sent

during the processing of the request.

2XX status codes indicate a successful request; for

example, 200 is the most common response, indicating

the request was successful.

3XX status codes indicate a redirection. For example, a

301 is used to redirect the client to a new URL, and

304 indicates that the content hasn't been modified

since it was last downloaded (redirecting the client to

its cache).

4XX status codes indicate an error in the client's

request. For example, a 403 error indicates a forbidden

request (such as a request to secure documents without



authentication), while the well-known 404 error

indicates that a non-existent document was requested.

5XX status codes indicate an error on the server's side,

such as the generic 500 error issued when the server

encounters a bug in the web service.

While web browser users typically only encounter the 4XX

and 5XX errors, you will encounter a few different status

codes as you work directly with HTTP through urllib .

Basic downloading with urllib.request

The urllib.request  module is a Python module for

implementing HTTP interactions. It contains a number of

functions and classes for generating requests, the most

basic of which is the urlopen()  function. This function can

create a GET  or POST  request, send it to a remote server,

and return an object containing the server's response.

Let's explore how urllib  works; open a Python shell and

execute the following commands:

>>> from urllib.request import urlopen 

>>> response = urlopen('http://python.org') 

The urlopen()  function takes, at a minimum, a URL string.

By default, it makes a GET  request to the URL and returns

an object that wraps the response received from the server.

This response object exposes metadata or content received

from the server, which we can use in our application. Much

of the response's metadata is found in the header, which we

can extract using its getheader()  method, like so:



>>> response.getheader('Content-Type') 

'text/html; charset=utf-8' 

>>> response.getheader('Server') 

'nginx' 

The getheader()  method requires a key name, and returns

the value of that key if it is found in the header. If the key

isn't found, it returns None .

We can also extract the status code and a text explanation

of the code using the status  and reason  attributes, like so:

>>> response.status 

200 

>>> response.reason 

'OK' 

Remember that a 200  status means a successful request.

The OK  string is just a more human-readable form of the

status code.

The payload of the response object can be retrieved using

an interface similar to a file handle; for example:

>>> html = response.read() 

>>> html[:15] 

b'<!doctype html>' 

Just like a file handle, the response can only be read once,

using the read()  method; unlike a file handle, it can't be

"rewound" using seek() , so it's important to save the

response data in another variable if it needs to be accessed

more than once. Note that the output of response.read()  is a

bytes object, which should be cast or decoded into an

appropriate object depending on the content downloaded.



In this case, we know from the Content-Type  header that the

content is a UTF-8 string, so we should convert it to str

using decode() , like so:

>>> html.decode('utf-8')[:15] 

'<!doctype html>' 

Generating POST requests

The urlopen()  function can also generate POST  requests. To

do this, we just need to include a data  argument, as

follows:

The data  value needs to be a URL-encoded bytes  object. A

URL-encoded data string consists of key-value pairs

separated by ampersand ( & ) symbols, with certain

reserved characters encoded to URL-safe alternatives (for

example, the space character is %20 , or sometimes just + ).

A string like this can be created by hand, but it's easier to

use the urlencode()  function provided by the urllib.parse

module, as demonstrated here:

>>> from urllib.parse import urlencode 

>>> url = 'http://duckduckgo.com'

>>> data = {'q': 'tkinter, python', 'ko': '-2', 'kz': '-1'} 

>>> u_data = urlencode(data) 

>>> u_data 

'q=tkinter%2C+python&ko=-2&kz=-1' 

>>> response = urlopen(url, data=u_data.encode()) 

Note that the data  argument must be bytes , not a string, so

encode()  must be called on the URL-encoded string before

>>> response = urlopen('http://duckduckgo.com', data=b'q=tkinter



urlopen()  will accept it.

Downloading weather data to ABQ

Data Entry

Let's try downloading the weather data needed for our

application. The site we'll be using is http://weather.gov,

which provides weather data within the United States. The

actual URL we'll be downloading is

https://w1.weather.gov/xml/current_obs/STATION.xml,

where STATION  is replaced by the call-sign of the local

weather station. In the case of ABQ, we'll be using KBMG ,

located in Bloomington, Indiana.

The QA team wants you to record the temperature (in

degrees Celsius), relative humidity, air pressure (in

millibars), and sky conditions (a string, like "overcast" or

"fair"). They also need the date and time at which the

weather was observed by the station.

Creating a weather data model

While it would be simple enough to put urlopen()  calls in an

Application  class callback, it's more consistent with our

MVC design to wrap our interactions with the weather data

service in a model class. Our model class will be

responsible for acquiring the weather data from the web

service and translating it into a format our other

components can use easily.

Open the models.py  file and let's begin by importing

urlopen() :

http://weather.gov/
http://w1.weather.gov/xml/current_obs/STATION.xml


# models.py

from urllib.request import urlopen 

Now, at the end of the file, let's start a new model class to

wrap our data download:

class WeatherDataModel: 

  base_url = 'http://w1.weather.gov/xml/current_obs/{}.xml' 

  def __init__(self, station): 

    self.url = self.base_url.format(station) 

Our initializer will take a station  string as an argument and

use it with the base URL value to build the download URL

for the weather data. By making the station  value a

variable, we can set the station in the user's configuration

file, allowing users at other ABQ facilities to use the feature

as well.

Now, let's begin writing a public method for this class to

retrieve the weather data:

# models.py, inside WeatherDataModel 

  def get_weather_data(self): 

    response = urlopen(self.url) 

We start the method by sending a GET request to the

model's URL and retrieve a response. Note that this may

raise an exception (for example, if the site can't be reached

for some reason), which code calling this method will need

to handle.

Assuming things went okay, we just need to parse out the

data in this response and put it into a form that the

Application  class can pass to the SQL model. To determine

how we'll handle the response, let's go back to the Python

shell and examine the data there:



>>> url = 'http://w1.weather.gov/xml/current_obs/KBMG.xml'

>>> response = urlopen(url) 

>>> print(response.read().decode()) 

  <?xml version="1.0" encoding="ISO-8859-1"?> 

  <?xml-stylesheet href="latest_ob.xsl" type="text/xsl"?> 

  <current_observation version="1.0" 

  xmlns:xsd=http://www.w3.org/2001/XMLSchema 

  xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance 

  xsi:noNamespaceSchemaLocation= 

    "http://www.weather.gov/view/current_observation.xsd"> 

  <credit>NOAA's National Weather Service</credit> 

  <credit_URL>http://weather.gov/</credit_URL> 

.... 

As the URL indicated, the payload of the response is an

XML document, most of which we won't need. After some

searching, though, you should be able to locate the fields

we need, shown here:

<observation_time_rfc822> 

  Tue, 29 Jun 2021 15:53:00 -0400 

</observation_time_rfc822> 

<weather>Mostly Cloudy</weather> 

<temp_c>32.8</temp_c> 

<relative_humidity>54</relative_humidity> 

<pressure_mb>1020.0</pressure_mb> 

Good, the data we need is there, so we just need to extract

it from the XML string into a format our application can

use. Let's take a moment to learn about parsing XML data.

Parsing the XML weather data

The Python standard library contains an xml  package,

which consists of several sub-modules for parsing or

creating XML data. Of these, the xml.etree.ElementTree  sub-

module is a simple, lightweight parser that should meet our

needs.



Let's import ElementTree  into our models.py  file as follows:

# models.py

from xml.etree import ElementTree 

Now, back at the end of our get_weather_data()  method, we'll

parse the XML data in our response object as follows:

# models.py, inside WeatherDataModel.get_weather_data() 

  xmlroot = ElementTree.fromstring(response.read()) 

The fromstring()  method takes an XML string and returns

an Element  object. To get at the data we need, we'll first

need to understand what an Element  object represents, and

how to work with it.

XML is a hierarchical representation of data; an element

represents a node in this hierarchy. An element begins with

a tag, which is a text string inside angle brackets. Each tag

has a matching closing tag, which is just the tag with a

forward-slash prefixed to the tag name.

Between the opening and closing tags, an element may

have other child elements or it may have text. An element

can also have attributes, which are key-value pairs placed

inside the angle brackets of the opening tag, just after the

tag name.

Take a look at the following example of XML:

<star_system starname="Sol"> 

  <planet>Mercury</planet> 

  <planet>Venus</planet> 

  <planet>Earth 

    <moon>Luna</moon> 

  </planet> 

  <planet>Mars 



    <moon>Phobos</moon> 

    <moon>Deimos</moon> 

  </planet> 

  <dwarf_planet>Ceres</dwarf_planet> 

</star_system> 

This example is an (incomplete) XML description of the

solar system. The root element has a tag of <star_system>

with an attribute of starname . Under this root element, we

have four <planet>  elements and a <dwarf_planet>  element,

each of which contains a text node with the planet's name.

Some of the planet nodes also have child <moon>  nodes,

each containing a text node with the moon's name.

Arguably, this data could have been structured differently;

for example, planet names could have been in a child

<name>  node inside the planet elements, or listed as an

attribute of the <planet>  tag. While XML syntax is well-

defined, the actual structure of an XML document is up to

its creator, so fully parsing XML data requires a knowledge

of the way the data is laid out in the document.

If you look at the XML weather data that we downloaded in

the shell earlier, you'll notice it's a fairly shallow hierarchy.

Under the <current_observations>  node, there are a number of

child elements whose tags represent specific data fields

like temperature, humidity, wind chill, and so on.

To access and extract these child elements, the Element

object offers us the following variety of methods:

Method Returns

iter() An iterator of all child nodes (recursively)

find(tag) The first element matching the given tag



findall(tag) A list of elements matching the given tag

getchildren() A list of the immediate child nodes

iterfind(tag)
An iterator of all child nodes matching the given tag

(recursive)

When we downloaded the XML data earlier, we identified

five tags containing the data we want to extract from this

document: <observation_time_rfc822> , <weather> , <temp_c> ,

<relative_humidity> , and <pressure_mb> . We'll want our

function to return a Python dictionary containing each of

these tags as keys.

So, inside get_weather_data() , let's create a dictionary

containing the tags we want, like so:

  weatherdata = { 

    'observation_time_rfc822': None, 

    'temp_c': None, 

    'relative_humidity': None, 

    'pressure_mb': None, 

    'weather': None 

  } 

Now, let's get the values from the Element  object and add

them to the dictionary:

  for tag in weatherdata: 

    element = xmlroot.find(tag) 

    if element is not None: 

      weatherdata[tag] = element.text 

  return weatherdata 



For each of our tag names, we're going to use the find()

method to try to locate the element with a matching tag in

xmlroot . This particular XML document does not use

duplicate tags (since it would make no sense for a single

observation to have multiple times, temperature values,

humidity values, and so on), so the first instance of any tag

should be the only one. If the tag is matched, we'll get back

an Element  object of the matched node; if not, we get back

None , so we need to make sure element  is not None  before

trying to access its text  attribute.

Once we've done that for all the tags, we can finish the

function by returning the dictionary.

You can test this function in the Python shell; from a

command line, navigate to the ABQ_Data_Entry  directory and

start a Python shell. Then enter these commands:

>>> from abq_data_entry.models import WeatherDataModel 

>>> wdm = WeatherDataModel('KBMG') 

>>> wdm.get_weather_data() 

{'observation_time_rfc822': 'Mon, 09 Aug 2021 15:53:00 -0400', 

'temp_c': '26.1', 'relative_humidity': '74', 

'pressure_mb': '1013.7', 'weather': 'Fair'} 

You should get back a dictionary with the current weather

conditions in Bloomington, Indiana.

You can find the station codes for other cities inside the U.S.

at http://w1.weather.gov/xml/current_obs/.

Now that we have our weather data model, we just need to

build the table for storing the data and the interface for

triggering the operation.

http://w1.weather.gov/xml/current_obs/


Implementing weather data storage

To store our weather data, we'll start by creating a table in

the ABQ database to hold the individual observation data,

then build a SQLModel  method to store the retrieved data in

it. We don't need to worry about writing code to retrieve

data back from the database, since our laboratory's QA

team has their own reporting tools that they'll use to access

it.

Creating the SQL table

Under the application's sql  folder, open the create_db.sql

file, and add a new CREATE TABLE  statement as follows:

# create_db.sql

CREATE TABLE local_weather ( 

  datetime TIMESTAMP(0) WITH TIME ZONE PRIMARY KEY, 

  temperature NUMERIC(5,2), 

  rel_hum NUMERIC(5, 2), 

  pressure NUMERIC(7,2), 

  conditions VARCHAR(32) 

); 

In this table, we're using the TIMESTAMP  data type on the

record as a primary key; there's no point in saving the

same timestamped observation twice, so this makes an

adequate primary key. The (0)  size after the TIMESTAMP  data

type indicates how many decimal places we need for the

seconds measurement. Since these measurements are

taken approximately hourly, and we only need one every

four hours or so (when the lab checks are done), we don't

need fractions of seconds in our timestamp.

Notice that we're saving the time zone; always store time

zone data with timestamps when it's available! It may not

seem necessary, especially when your application will be



run in a workplace that will never change time zones, but

there are many edge cases such as daylight savings time

changes, where the lack of a time zone can create major

problems.

Run this CREATE  query in your database to build the table,

and let's move on to creating our SQLModel  method.

Implementing the SQLModel.add_weather_data()

method

Over in models.py , let's add a new method to the SQLModel

class called add_weather_data() , which takes a dictionary as

its only argument. Start this method by creating an INSERT

query as follows:

# models.py, inside SQLModel 

  def add_weather_data(self, data): 

    query = ( 

      'INSERT INTO local_weather VALUES ' 

      '(%(observation_time_rfc822)s, %(temp_c)s, ' 

      '%(relative_humidity)s, %(pressure_mb)s, ' 

      '%(weather)s)' 

    ) 

This is a straightforward parameterized INSERT  query using

variable names that match the dictionary keys which the

get_local_weather()  function extracts from the XML data. We

should only need to pass this query and the data  dictionary

into our query()  method.

There is one problem, however; if we get a duplicate

timestamp, our query will fail due to a duplicate primary

key. We could do another query to check first, but that

would be slightly redundant, since PostgreSQL itself checks

for duplicate keys before inserting a new row.



When it detects such an error, psycopg2  raises an

IntegrityError  exception, so we can just catch this exception

and, if it gets raised, do nothing.

To do this, we'll wrap our query()  call in the try / except

block, like so:

    try: 

      self.query(query, data) 

    except pg.IntegrityError: 

      # already have weather for this datetime 

      pass

Now, our data entry staff can call this method as often as

they wish, but it will only save a record when there is a

fresh observation to save.

Updating the SettingsModel class

Before leaving models.py , we will need to add a new

application setting to store the preferred weather station.

Add the following new entry in the SettingsModel.fields

dictionary:

# models.py, inside SettingsModel 

  fields = { 

    # ... 

    'weather_station': {'type': 'str', 'value': 'KBMG'}, 

  } 

We won't add a GUI to change this setting, since users

won't need to update it. It'll be up to us, or the system

admin at other lab sites, to make sure this is properly set

on each workstation by editing the abq_settings.json  file.



Adding the GUI elements for weather

download

The Application  object now needs to connect the weather

download method from WeatherDataModel  to the database

method in SQLModel  with an appropriate callback method

that the main menu classes can call.

Open application.py  and start a new method in the

Application  class called _update_weather_data() :

# application.py, inside Application 

  def _update_weather_data(self, *_): 

    weather_data_model = m.WeatherDataModel( 

      self.settings['weather_station'].get() 

    ) 

    try: 

      weather_data = weather_data_model.get_weather_data() 

This method begins by creating a WeatherDataModel  instance

using the weather_station  value pulled from the settings

dictionary. Then, it attempts to call get_weather_data()  inside

a try  block.

Recall that in an error scenario, urlopen()  can raise any

number of exceptions, depending on what went wrong with

the HTTP transaction. There isn't really anything the

application can do to handle such exceptions other than

informing the user and exiting the method. Therefore, we'll

catch the generic Exception  and display the text in a

messagebox  dialogbox, like so:

    except Exception as e: 

      messagebox.showerror( 

        title='Error', 

        message='Problem retrieving weather data', 

        detail=str(e) 



      ) 

      self.status.set('Problem retrieving weather data') 

In the event that get_local_weather()  succeeds, we simply

need to pass the data on to our model method. We can add

this in an else  clause:

    else: 

      self.data_model.add_weather_data(weather_data) 

      time = weather_data['observation_time_rfc822'] 

      self.status.set(f"Weather data recorded for {time}") 

In addition to saving the data, we've notified the user in the

status bar that the weather was updated and displayed the

timestamp of the update.

With the callback method done, let's add it to our callbacks

dictionary:

# application.py, in Application.__init__() 

    event_callbacks = { 

      #... 

      '<<UpdateWeatherData>>': self._update_weather_data 

    } 

Now we can add a command  item for the callback in the main

menu. In keeping with the main menu guidelines we

learned in Chapter 10, Maintaining Cross-Platform

Compatibility, we should consider an appropriate sub-menu

for the command. On Windows, functionality like this goes

in the Tools  menu, and since neither the Gnome nor macOS

guidelines seem to indicate a more appropriate location,

we'll implement a Tools  menu in the LinuxMainMenu  and

MacOsMainMenu  classes to hold this command, just to be

consistent.



Open mainmenu.py , and starting in the generic menu class,

let's add a private method that will add the command  item:

# mainmenu.py, inside GenericMainMenu 

  def _add_weather_download(self, menu): 

    menu.add_command( 

      label="Update Weather Data", 

      command=self._event('<<UpdateWeatherData>>') 

    ) 

Now, in each menu class's initializer, we'll create a Tools

menu and add the command to it:

# mainmenu.py, inside GenericMainMenu.__init__() 

    # Put between the File and Options menus 

    self._menus['Tools'] = tk.Menu(self, tearoff=False) 

    self._add_weather_download(self._menus['Tools']) 

Add this same code to the macOS and Linux menu classes'

initializers. In the WindowsMainMenu  class's initializer, you only

need to add the second line, since the Tools  menu already

exists. After updating the menus, you can run the

application and try the new command from the Tools  menu.

If all went well, you should see an indication in the status

bar as shown in the following screenshot:

Figure 13.1: Success downloading the weather data

You should also connect to the database with your

PostgreSQL client and check that the table contains some



weather data now by executing the following SQL

command:

SELECT * FROM local_weather; 

That SQL statement should return output similar to the

following:

datetime temperature rel_hum pressure conditions

2021-08-12 18:53:00-05 26.10 74.00 1013.70 Fair

As you've seen, urllib  is fairly simple to work with for

downloading files from the web; most of the work involves

parsing the downloaded file and utilizing it in the

application. However, not all web transactions are as

simple as a single GET  or POST  request. In the next section,

we'll look at a more powerful tool for HTTP interactions,

requests .

RESTful HTTP using

requests

You've been asked by your manager to create a function in

your program that will allow her to upload a CSV extract of

the daily data to ABQ's corporate web services, which uses

an authenticated REST API. REST stands for

REpresentational State Transfer and refers to an

approach to web services that is built around advanced

HTTP semantics to provide a more code-friendly interface.



Services designed around the REST concept are described

as RESTful. Let's take a deeper look at how REST

interactions work.

Understanding RESTful web services

A RESTful service is built around the idea of accessing

resources. A resource is typically a data record or file,

though it could also be something like a remote procedure

or hardware interface. We access resources via endpoints,

which are URLs that represent a particular resource.

We have seen that web servers typically allow you to fetch

data using GET  and submit data using POST . REST APIs,

however, employ additional HTTP methods like DELETE , PUT ,

and PATCH  to indicate different operations. Depending on

which method we use when requesting an endpoint, we can

perform different actions on the resource.

While implementations of REST services vary, the following

table shows the generally-agreed-upon functions of HTTP

methods by a typical API:

Method Function

GET Retrieve a resource

HEAD Retrieve only metadata (headers) about a resource

POST Create or update a resource based on the submitted data

PUT Upload a resource as-is (typically for files)



PATCH Update an existing resource with partial data (rarely

implemented)

DELETE Delete a resource

In addition to a more robust set of methods, REST services

also exchange data in a way that is more code-friendly.

While browser-oriented services accept data in URL-

encoded strings and return HTML documents, RESTful

services may accept requests and return responses in

formats like JSON or XML. In some cases, clients can even

request the data format to be returned.

It's critical to understand that, while some standards for

RESTful services exist, the organization and behavior of

REST sites (including their precise responses to different

methods) vary widely. In order to interact with a REST API,

you will need to consult its specific documentation.

The Python requests library

As we saw in the first section of this chapter, urllib  is fairly

simple to use for basic GET  and POST  requests, and being in

the standard library makes it a good choice when that's all

we require. However, more complex HTTP interactions

involving authentication, file uploads, or additional HTTP

methods can be frustrating and complicated using urllib

alone. To get this done, we'll turn to the third-party

requests  library. This library is highly recommended by the

Python community for any serious work involving HTTP. As

you'll see, requests  removes many of the rough edges and

outdated assumptions left in urllib , providing convenient

classes and wrapper functions for more modern HTTP

transactions like REST. Complete documentation on



requests  can be found at https://docs.python-

requests.org, but the next section will cover most of what

you need to know to use it effectively.

Installing and using requests

The requests  package is written in pure Python, so

installing it with pip  requires no compiling or binary

downloads. Simply type pip install --user requests  in the

terminal and it will be added to your system.

Let's check out how requests  works in the Python shell;

open a shell and enter the following:

The requests.request()  function requires, at a minimum, an

HTTP method and a URL. Just like urlopen() , it constructs

the appropriate request packet, sends it to the URL, and

returns an object representing the server's response. Here,

we're making a GET  request to this author's website.

In addition to the request()  function, requests  has shortcut

functions that correspond to the most common HTTP

methods. Thus, the same request can be made as follows:

>>> response = requests.get('http://www.alandmoore.com') 

The get()  method requires only the URL and performs a

GET  request. Likewise, the post() , put() , patch() , delete() ,

and head()  functions send requests using the corresponding

HTTP method. All of these request functions take additional

optional arguments.

>>> import requests 

>>> response = requests.request('GET', 'http://www.alandmoore.co

https://docs.python-requests.org/


For example, we can send data with a POST  request as

follows:

>>> data = {'q': 'tkinter', 'ko': '-2', 'kz': '-1'} 

>>> url = 'https://duckduckgo.com'

>>> response = requests.post(url, data) 

Notice that, unlike urlopen() , we can use a Python

dictionary directly as a data  argument; requests  does the

job of converting it to the proper URL-encoded bytes  object

for us.

Some of the more common arguments used with request

functions are as follows:

Argument Purpose

params
Like data , but added to the query string rather than the

payload

json JSON data to include in the payload

headers A dictionary of header data to use for the request

files
A dictionary of {fieldnames: file_objects}  to send as a

multipart form data request

auth
Username and password tuple to use for basic HTTP digest

authentication

Note that the auth  argument here only works to

authenticate against HTTP digest authentication; this is an

older method of authentication that is implemented at the

web server level rather than in the actual web application,



and it's rarely used on modern websites. To work with

modern authentication systems, we need to understand the

use of sessions.

Interacting with authenticated sites using

Session

HTTP is a stateless protocol, meaning that each HTTP

request stands on its own and is not connected to any other

requests, even between the same client and server.

Although it may seem like you are "connected" to your

social media or banking website when you log in, in reality

there is no underlying ongoing connection between you and

the server, only a series of unrelated requests and

responses.

How, then, do such sites manage to keep your interactions

secure?

On modern sites, this is typically done using either a

session cookie or authentication token. In both of these

approaches, when the client authenticates to the server,

the server returns a piece of data that the client can

include with future requests to identify itself as the same

entity that successfully authenticated. In this way, both

client and server can simulate a stateful connection by

associating the requests and responses between them into

a session.

The differences between session cookies and authentication

tokens are immaterial for us on the client side; just know

that both require us to store something from the server

after authentication and provide it with each future request.



The requests  module makes this kind of interaction simple

by providing the Session  class. A Session  object persists

settings, cookies, and tokens across multiple requests,

allowing you to interact with services that require

authentication or special client settings. To create a Session

object, use the requests.session()  factory function as follows:

>>> s = requests.session() 

Now, we can call request methods like get() , post() , and

others on our Session  object, for example:

Token and cookie handling like this happens in the

background, without any explicit action from us. Cookies

are stored in a CookieJar  object in the Session  object's

cookies  property.

We can also set configuration options on our Session  object

that will persist across requests; for example:

>>> s.headers['User-Agent'] = 'Mozilla'

>>> s.params['uid'] = 12345

# will be sent with a user-agent string of "Mozilla"

# and a parameter of "uid=12345"

>>> s.get('http://example.com') 

In this example, we've set the user-agent string to Mozilla ,

which will then be used for all requests made from this

Session  object. We also set a default URL parameter using

# Assume this is a valid authentication service that returns an 

>>> s.post('http://example.com/login', data={'u': 'test', 'p': '

# Now we would have an auth token stored in s

>>> response = s.get('http://example.com/protected_content') 

# Our token cookie would be listed here

>>> print(s.cookies.items()) 



the params  attribute; thus, the actual URL that was

requested was http://example.com?uid=12345 .

The requests.Response object

All the request functions and methods in requests  return a

Response  object. These Response  objects are not the same as

those returned by urlopen() ; they contain all the same data,

but in a slightly different (and generally more convenient)

form. In addition, they have some helpful methods that

make quick work of translating their contents.

For example, the response headers are already translated

into a Python dictionary for us, as demonstrated here:

>>> r = requests.get('http://python.org') 

>>> r.headers 

{'Connection': 'keep-alive', 'Content-Length': '49812', 

'Server': 'nginx', 'Content-Type': 'text/html; charset=utf-8', 

 # ... etc

Another difference from urllib  is that requests  does not

automatically raise an exception on HTTP errors. However,

the .raise_for_status()  response method can be called to do

so.

For example, let's make a request to a URL that will give an

HTTP 404  error:

>>> r = requests.get('http://www.example.com/does-not-exist') 

>>> r.status_code 

404 

>>> r.raise_for_status() 

Traceback (most recent call last): 

File "<stdin>", line 1, in <module> 

File "/usr/lib/python3.9/site-packages/requests/models.py", line

raise_for_status 

raise HTTPError(http_error_msg, response=self) 

t ti HTTPE 404 Cli t E N t F d f



This gives us the option of dealing with HTTP errors using

exception handling or more traditional flow control logic if

we prefer, or to defer our exception handling to a more

convenient moment.

Implementing a REST backend

To start implementing our interactions with the ABQ

corporate REST server, we need to figure out what kind of

requests we're going to send. We've been provided with

some documentation from the corporate office that

describes how to interact with the REST API.

The API documentation tells us the following things:

Before accessing any other endpoints, we'll need to

obtain an authentication token. We do this by

submitting a POST  request to the /auth  endpoint. The

payload of the POST  request should include username  and

password  as URL-encoded data. If our credentials fail,

we'll get an HTTP 401 error. If we don't have a token,

any other requests will fail with an HTTP 403 error.

Once we have a token, we can work with files using the

/files  endpoint:

We can upload files using a PUT  request. The file is

uploaded as multipart form data specified in a

parameter called file .

We can retrieve a file by sending a GET  request in

the form of /files/FILENAME , where FILENAME  is the

name of the file.

requests.exceptions.HTTPError: 404 Client Error: Not Found for u

http://www.example.com/does-not-exist 



Alternatively, we can retrieve only metadata about

a file by sending a HEAD  request to /files/FILENAME .

All HTTP errors are accompanied by a JSON payload

that includes the status code and a message indicating

what caused the error.

An example script, sample_rest_service.py , is included

with the example code for this book that replicates the

functionality of the ABQ Corporate REST services. To use it,

you'll need to install the flask  library using the command

pip install -u flask , then run the command python

sample_rest_service.py  at a terminal prompt.

Once again, in keeping with our MVC design, we're going

to implement a model that encapsulates all these

interactions. We'll begin in models.py  by importing the

requests  library like so:

# models.py

import requests 

Now, at the end of the file, let's start a new model class,

CorporateRestModel , for the REST site:

# models.py

class CorporateRestModel: 

  def __init__(self, base_url): 

    self.auth_url = f'{base_url}/auth' 

    self.files_url = f'{base_url}/files' 

    self.session = requests.session() 

The class initializer takes a base_url  argument defining the

base URL of the REST service we want to contact. It then

uses this URL to construct the endpoint URLs for upload,

authentication, and file retrieval. Finally, since we're going



to need to store authentication tokens, we create a session

object for each method to use.

We could have just specified the base_url  as a class

attribute like we did with the WeatherDataModel ; however, to

enable us to test this class against the test service, or to

accommodate the possibility of a change to the corporate

servers, we'll store this value in the user's settings so it can

be easily swapped out.

Before we go on, let's add a setting to our SettingsModel  for

the REST base URL:

# models.py, inside SettingsModel 

  fields = { 

    #... 

    'abq_rest_url': { 

      'type': 'str', 

      'value': 'http://localhost:8000' 

    } 

  } 

The default value of http://localhost:8000  is the base URL of

the example server provided for testing; in production, this

setting can be altered by technical support for each user by

editing their abq_settings.json  file.

Now, back in our CorporateRestModel  class, we need to

implement four methods:

An authenticate()  method to send credentials via a POST

request to the /auth  endpoint.

An upload_file()  method to send a file via a PUT  request

to the /files  endpoint.

A check_file()  method to retrieve only metadata from

the /files  endpoint.



A get_file()  method to download a file from the /files

endpoint.

Let's get started!

The authenticate() method

Since we can't do anything else without an authentication

token, let's start with the authenticate()  method:

# models.py, inside CorporateRestModel 

  def authenticate(self, username, password): 

    response = self.session.post( 

      self.auth_url, 

      data={'username': username, 'password': password} 

    ) 

This method will take a username and password and post

them to the auth_url  using our model's Session  object. The

session will automatically store the token we receive if

we're successful. Recall that the server will return an HTTP

401 error if we provide invalid credentials; we could simply

check the status code of the response and return True  or

False  from this method. However, since there are a variety

of other ways that a call to a remote HTTP server can fail

(for example, a problem on the server might result in a 500

error), it would be better if we could report back to the

calling code some more detailed information about the

failure. We could do this by calling the Response  object's

raise_for_status()  method to send an HTTPError  exception

back to the calling code. That might give us an error dialog

like this:



Figure 13.2: An ugly 401 error

Of course, we can, and should, do a bit better. Most users

won't know what an HTTP 401 error means.

Remember from the API specification that the server also

returns a JSON object with the error that contains a more

meaningful message about the failure. We can write a static

method for our model that will handle an HTTPError  and

convert it to an exception with a more human-friendly

message. Add this method to the model:

  @staticmethod 

  def _raise_for_status(response): 

    try: 

      response.raise_for_status() 

    except requests.HTTPError: 

      raise Exception(response.json().get('message')) 

This method accepts a Response  object, then calls its

raise_for_status()  method. If the status was a success (200),

then nothing will happen and the method returns. If it

raises an HTTPError , however, we'll extract the message  value

from the Response  object's JSON payload and raise a new

Exception  error using that message.

Back in authenticate() , let's end the method by passing the

response to this static method:



# models.py, inside CorporateRestModel.authenticate() 

    self._raise_for_status(response) 

Now a failed login looks more like this:

Figure 13.3: A much nicer failure message

If no exception is raised, we don't need to do anything else.

The session has the token and we can proceed to other

operations.

The upload_file() method

Our next method will implement actually uploading a file.

Remember from the API documentation that this requires a

PUT  request to the /files  endpoint. The method looks like

this:

  def upload_file(self, filepath): 

    with open(filepath, 'rb') as fh: 

      files = {'file': fh} 

      response = self.session.put( 

        self.files_url, files=files 

      ) 

    self._raise_for_status(response) 

To send a file using requests , we have to actually open it

and retrieve a file handle, then place the file handle in a



dictionary, which we pass to the request method's files

argument. Multiple files can be sent if each one receives a

different key in the dictionary; our API only allows one file

at a time, however, and it must have a key of file . Once

again, we finish the method by checking the response for

an error code with our _raise_for_status()  method.

Notice we open the file in binary-read mode ( rb ). The

requests  documentation recommends this, as it ensures

the correct Content-length  value will be calculated for

the request header.

The check_file() method

The next method we need is the check_file()  method, which

will retrieve header information about a file on the server

without actually downloading it. The API documentation

tells us that we can get metadata about the file by sending

a HEAD  request to the files/FILENAME  endpoint, where

FILENAME  is the name of the file we want information about.

HEAD  requests are useful when dealing with slow

connections or large files, as they allow us to find out

information about the file (for example, its size or whether

it exists or not) without actually downloading the entire

file.

Let's implement this method like so:

  def check_file(self, filename): 

    url = f"{self.files_url}/{filename}" 

    response = self.session.head(url) 

    if response.status_code == 200: 

      return True 

    elif response.status_code == 404: 

      return False 

    self._raise_for_status(response) 



For our purposes, we are mostly interested in whether files

on the server exist or not, so we're going to return a

Boolean value from this method depending on whether we

get a status 200 (success) or 404 (file not found). Of course,

other things can go wrong with the request too, so we'll

also pass the response to our _raise_for_status()  method if it

has a different status code.

The get_file() method

The last method we'll implement is the get_file()  method,

for downloading file data. Add the following method to

CorporateRestModel :

  def get_file(self, filename): 

    """Download a file from the server""" 

    url = f"{self.files_url}/{filename}" 

    response = self.session.get(url) 

    self._raise_for_status(response) 

    return response.text 

Unlike other endpoints in this API, a GET  request to the

/files  endpoint does not return JSON, but rather the

contents of the file. We can retrieve these contents from

the Response  object's text  attribute, which we're returning

from the method. It will be up to the code that calls this

method to do something suitable with the content returned

from the method. We'll do this in our Application  class,

where we'll save the downloaded content to a file.

As our model is now complete, let's head over to the

Application  class to begin working on the front end.

Integrating REST upload into the

application



After discussions with your manager, who is responsible for

performing the REST upload, you determine that the

workflow for the REST upload operation needs to go

something like this:

When a REST upload is run from the GUI, it should first

check if there is any data in the database for that day,

and abort if there is not. It looks bad on your manager

if they upload empty files!

If there is data, it should create a CSV extract of the

day's data using the original naming format that was

used before the facility went to SQL storage, since this

is the filename format expected by ABQ Corporate.

Next, it should prompt for authentication credentials

for the REST API.

After that, the program should check if a file has

already been uploaded for that day's data. If not, go

ahead and upload the file.

If there is a file (sometimes she forgets and uploads

twice), the program should prompt whether the file

should be overwritten or not.

In the event we're not overwriting the file, there should

be an option to download the file from the server so it

can be manually compared with the data in SQL.

Let's begin implementing this code!

Creating a CSV extract

Before we can upload anything, we need to implement a

way to create a CSV extract of the daily data. This will be

used by more than one function, so we'll implement it as a

separate method.



Start a new private method in Application  called

_create_csv_extract() , like so:

The method begins by creating a new instance of our

CSVModel  class; even though we're no longer storing our

data in the CSV files, we can still use the model to export a

CSV file. We are not passing in any arguments, just using

the default file path of the file. Next, we call the

get_all_records()  method of the application's SQLModel

instance. Remember that our SQLModel.get_all_records()

method returns a list of all records for the current day by

default. Since your boss doesn't want to upload empty files,

we'll raise an exception if there are no records to build a

CSV with. Our calling code can catch that and display the

appropriate warning. If there are records to save, the

method iterates through them, saving each one to the CSV,

then returns the CSVModel  object's file  attribute (that is, a

Path  object pointing to the saved file).

Creating the upload callback

Now that we have a way to create a CSV extract file, we

can write the actual callback method as follows:

# application.py, inside Application 

  def _upload_to_corporate_rest(self, *_): 

    try: 

# application.py, inside Application 

  def _create_csv_extract(self): 

    csvmodel = m.CSVModel() 

    records = self.model.get_all_records() 

    if not records: 

      raise Exception('No records were found to build a CSV file

    for record in records: 

      csvmodel.save_record(record) 

    return csvmodel.file 



      csvfile = self._create_csv_extract() 

    except Exception as e: 

      messagebox.showwarning( 

        title='Error', message=str(e) 

      ) 

      return

To begin, we attempt to create a CSV extract file; if we get

any exceptions (for example, the "No records" exception we

created, or perhaps a database issue) we'll display an error

message and exit the method.

If we've created a CSV file successfully, our next step is to

authenticate to the REST API. To do that, we need to get a

username and password from the user. Fortunately, we

have the perfect class for this:

    d = v.LoginDialog( 

      self, 'Login to ABQ Corporate REST API' 

    ) 

    if d.result is not None: 

      username, password = d.result 

    else: 

      return

Our LoginDialog  class serves us well here. Unlike with our

database login, we're not going to run this in an endless

loop; if the password is wrong, we will just return from the

function and the user can rerun the command if need be.

Recall that dialog's result  attribute will be None  if the user

clicks Cancel , so we'll just exit the callback method in that

case.

Now that we have credentials and a filename, we can try to

authenticate to the server:

    rest_model = m.CorporateRestModel( 

      self.settings['abq_rest_url'].get() 



    ) 

    try: 

      rest_model.authenticate(username, password) 

    except Exception as e: 

      messagebox.showerror('Error authenticating', str(e)) 

      return

We begin by creating a CorporateRestModel  instance based on

the user's abq_rest_url  setting, then passing our credentials

to its authenticate()  method. Recall that in the event of an

HTTP problem (including invalid credentials), our model

will raise an Exception  with a human-friendly message, so

we can simply display that in a message box and exit the

callback.

Our next step is to check if a file for today's date already

exists on the server. We'll do that using our model's

check_file()  method, like so:

    try: 

      exists = rest_model.check_file(csvfile.name) 

    except Exception as e: 

      messagebox.showerror('Error checking for file', str(e)) 

      return

Remember that check_file()  will return a Boolean value

indicating if the file exists on the server or not, or it might

raise an exception if some other HTTP issue arises. As

before, in the event of an error we'll just show a dialog and

exit the function.

If the file already exists, we need to determine what the

user wants to do about it; first, whether they want to just

overwrite it, and if not, whether they want to download it.

We can do that using some message boxes, like so:



Remember from Chapter 7, Creating Menus with Menu and

Tkinter Dialogs, that askyesno()  returns a Boolean value

depending on whether the user clicks Yes or No.

If the user wants to download the file, we can do that using

our model, like so:

        if download: 

          filename = filedialog.asksaveasfilename() 

          if not filename: 

            return 

          try: 

            data = rest_model.get_file(csvfile.name) 

          except Exception as e: 

            messagebox.showerror('Error downloading', str(e)) 

            return 

          with open(filename, 'w', encoding='utf-8') as fh: 

            fh.write(data) 

          messagebox.showinfo( 

            'Download Complete', 'Download Complete.' 

            ) 

        return

Here, we first retrieve the filename the user wants to save

the downloaded file to using a filedialog  function. If they

cancel the dialog, we'll just exit the function doing nothing.

Otherwise, we attempt to download the file using our

model's get_file()  method. As before, if it fails we display

    if exists: 

      overwrite = messagebox.askyesno( 

        'File exists', 

        f'The file {csvfile.name} already exists on the server, 

        'do you want to overwrite it?' 

      ) 

      if not overwrite: 

        download = messagebox.askyesno( 

          'Download file', 

          'Do you want to download the file to inspect it?' 

        ) 



the error and exit. If it succeeds, we'll open a new UTF-8

file and save the data to it. Finally, we display a success

dialog once the file is written. The final return  statement

exits the method whether or not the user decides to

download the file; since at this point, they've opted not to

overwrite the file in either case.

If they have opted to overwrite the file, our method

continues outside that if  block as follows:

    try: 

      rest_model.upload_file(csvfile) 

    except Exception as e: 

      messagebox.showerror('Error uploading', str(e)) 

    else: 

      messagebox.showinfo( 

        'Success', 

        f'{csvfile} successfully uploaded to REST API.' 

      ) 

At this point, if the method has not yet returned due to an

error or user selection, we can go ahead and upload the

file. This is done using our model's upload_file()  method.

We'll either get a success dialog or an error dialog

depending on whether the operation succeeds or fails. In

either case, our method is finished at this point.

Finishing up

The last thing we need to do is add a menu option for

running the REST upload. First, add the method to the

Application  class's event callbacks as follows:

# application.py, inside Application.__init__() 

    event_callbacks = { 

      #... 

      '<<UploadToCorporateREST>>': self._upload_to_corporate_res

    } 



Finally, let's add the command item to our main menu. We'll

start by adding a method to create the REST upload entry

in the menu, as follows:

# mainmenu.py, inside GenericMainMenu 

  def _add_rest_upload(self, menu): 

    menu.add_command( 

      label="Upload CSV to corporate REST", 

      command=self._event('<<UploadToCorporateREST>>') 

    ) 

Next, we'll need to add a call to this method in the

GenericMainMenu  class initializer and each of the platform-

specific menus; in each case, it should look like this:

# mainmenu.py, in each menu class initializer 

    # after creation of Tools menu 

    self._add_rest_upload(self._menus['Tools']) 

Now, run the application and let's try it out. To make it

work, you'll need to have at least one record saved in the

database, and you'll need to start up the

sample_rest_service.py  script from the example code.

If all goes well, you should get a dialog like this:



Figure 13.4: A successful upload to the REST server

Your server should also have printed some output to the

terminal similar to this:

Notice the POST , HEAD , and PUT  requests, as well as the

filename of the CSV file in the payload of PUT .

You can also run the upload a second time, in which case

you should get the dialogs asking if you want to overwrite

the file, and then if you want to download it, like this:

127.0.0.1 - - [07/Sep/2021 17:10:27] "POST /auth HTTP/1.1" 200 –

127.0.0.1 - - [07/Sep/2021 17:10:27] 

  "HEAD /files/abq_data_record_2021-09-07.csv HTTP/1.1" 200 – 

Uploaded abq_data_record_2021-09-07.csv 

127.0.0.1 - - [07/Sep/2021 17:10:34] "PUT /files HTTP/1.1" 200 -



Figure 13.5: Download dialog

That completes the functionality we needed for this

application. Good job!

SFTP using paramiko

While custom-written RESTful web APIs may be common

with large companies and third-party services, our

programs are often called upon to exchange files or data

with servers using standard communication protocols. In

the Linux and Unix world, the secure shell or SSH protocol

has long been the de-facto standard for communication

between systems. Most implementations of SSH include

SFTP (Secure File Transfer Protocol), an encrypted

replacement for the archaic FTP service.

In addition to uploading the CSV extract to the corporate

REST service, your manager has to upload a second copy to

a remote server using SFTP. The user workflow needs to be

the same, though there is a requirement to upload the file

into a particular directory on the server. You need to

implement this upload in your application just as you did

for the REST service.



Setting up SSH services for testing

In order to test the SFTP features we're going to code in

our application, we need to have an SSH server available to

us. If you don't have access to a device that runs SSH, you

can easily install it on your own workstation, depending on

your operating system:

On macOS, SSH is preinstalled but needs to be

enabled. You can enable it from the Sharing page in

System Preferences.

On most Linux distributions, you can find SSH in your

package manager as ssh , ssh-server , or openssh  if it's

not already installed. Most distributions will enable the

server by default after installation.

On Windows 10 and above, you can install OpenSSH

server using the Optional Features tool under

Settings | Apps | Apps & features. Once installed,

start the service by opening the Services app,

selecting OpenSSH server, and clicking Start the

service.

Once the service is installed and running, you can connect

to your computer using an SSH client like OpenSSH Client,

and log in using a local username and password. You can

use your normal user account, but since our application will

be creating directories and copying files under the home

directory of whatever user you use to connect to SSH, you

may also wish to create a test user account for login so that

the application does not accidentally overwrite any of your

files.

Installing and using paramiko



Although the standard library offers nothing in the way of

SSH or SFTP support, the third-party paramiko  library

provides a full suite of tools for working with both. Install

paramiko  from PyPI using the following command:

$ pip install --user paramiko 

paramiko  is pure Python, so it should not require

compilation or additional programs to be installed. You can

learn more about paramiko  on its website,

https://www.paramiko.org.

Using paramiko

The main class we'll work with in paramiko  is the SSHClient

class, through which we'll connect and interact with remote

servers. Open a Python shell and let's create one like so:

>>> import paramiko 

>>> ssh_client = paramiko.SSHClient() 

Before we can connect to any servers with the object, we

need to configure its key management policy. As part of the

secure design of SSH, SSH clients exchange encryption

keys with the server the first time they connect; thus, when

connecting to a new server for the first time with an SSH

client, you'll likely see a message like this:

The authenticity of host 'myserver (::1)' can't be established. 

ED25519 key fingerprint is 

  SHA256:fwefogdhFa2Bh6wnbXSGY8WG6nl7SzOw3fxmI8Ii2oVs. 

This key is not known by any other names 

Are you sure you want to continue connecting (yes/no/[fingerprin

https://www.paramiko.org/


If you choose to continue, the server's key (or fingerprint)

will be stored with the hostname in a file usually called

known_hosts . When connecting to the server again, SSH

consults the known hosts list to verify that we're

connecting to the same server. If the keys differ, the

connection will fail.

So, the first thing we need to do is load any available key

store that we have; if your SSH keys are stored in a

standard location, calling the load_system_host_keys()  method

will suffice:

>>> ssh_client.load_system_host_keys() 

You can also specify a known hosts file explicitly using the

load_host_keys()  method, like so:

>>> ssh.load_host_keys('/home/alanm/.ssh/known_hosts2') 

A prompt for adding an unknown host to the known hosts

list may be OK for an interactive client, but within a

programming library it is obviously not so practical.

Instead, we need to set a policy of what the SSHClient  object

will do when we try to connect to an unknown host. By

default, it will simply fail, but we can force it to

automatically trust new hosts using the

set_missing_host_key_policy() , like so:

Here we've set the policy to an instance of AutoAddPolicy ,

which means any new host keys will automatically be

trusted. paramiko  also provides a RejectPolicy  class (which is

the default) that automatically rejects all new keys, and for

>>> ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolic



advanced use cases we can define our own policy class for

more nuanced behaviors. We're using AutoAddPolicy  for

convenience in this case; in a real-world, secure

environment you should leave the default RejectPolicy

setting and manage the known_hosts  list outside the script.

You can add servers to your known_hosts  file simply by

logging into them using OpenSSH Client and choosing

yes  when prompted to add the key, or by retrieving the

key using the ssh-keyscan  command included with

OpenSSH Client and adding them to the file manually.

Once we've settled the issue of key management, we can

connect to a host. This is done using the connect()  method,

like so:

In addition to taking a hostname or IP address as a

positional argument, connect()  accepts a number of

keyword arguments, including:

Argument Default Description

username
Local

username
Username to use for authentication.

password None
Password for authentication. If blank, SSHClient

will attempt key-based authentication.

port 22 TCP port to connect to.

pkey None A private key string to use for authentication.

>>> ssh_client.connect('localhost', username='test', password='t



key_file None
A file containing private keys or certificates for

authentication.

compress False Enable or disable compression of transmitted data.

timeout None
A timeout in seconds before giving up on the

connection.

Inspecting our connection

Once connected to a server, our code might need to get

some information about the connection. This can be done

by accessing the Transport  object associated with the client.

This object represents the connection and contains a

number of methods and attributes to set or retrieve

information about it.

We can retrieve the Transport  object using the

get_transport()  method of the SSHClient , like so:

>>> transport = ssh_client.get_transport() 

Now we can inspect our connection in various ways, for

example:

# See if the connection is still active

>>>  transport.is_active() 

True 

# See our remote username

>>> transport.get_username() 

'alanm' 

# See if we're authenticated

>>> transport.is_authenticated() 

True 

# Get the name or IP of the connected server

>>> transport.getpeername() 



('::1', 22, 0, 0) 

# Get the compression used by the server

>>> transport.remote_compression 

'none' 

These properties can be particularly useful in situations

where the user is connecting using default values detected

from the environment.

Using SFTP

Now that we've established an SSH connection to a server,

we can begin using SFTP. To do this, we'll create an

instance of SFTPClient  using the open_sftp()  method, like so:

>>> sftp_client = ssh_client.open_sftp() 

We can use the methods of the SFTPClient  object to execute

various file management commands on the remote server

over SFTP. Some of the more useful of these are shown in

the following table:

Method Arguments Description

chdir() path Set the current working directory.

getcwd() None

Return the path of the current working

directory. Note that it returns None  if the

directory was not set with chdir() .

listdir()
path

(optional)

Return a list of the files and directories in

path , or in the current working directory if

not specified.

mkdir() path Create a directory on the server at path .



rmdir() path
Remove the directory from the server

described by path .

get()
remotepath ,

localpath

Download the file on the server at

remotepath  and save it to the client at

localpath .

put()
localpath ,

remotepath

Upload the file on the client at localpath

and save it on the server at remotepath .

stat() path
Return an object containing information about

the file or directory at path .

remove() path

Remove the file from the server described by

path . Does not work if path  is a directory

(use rmdir()  instead).

close() None Close the SFTP connection.

For example, suppose we need to create a folder called

Bananas  in the Fruit  directory on our server, and upload a

file called cavendish.ban  from /home/alanm/bananas/  to the new

directory on the server. That exchange would look like this:

Notice that, in the destination path of the put()  call, we did

not include the Fruit  directory. That's because it's our

current working directory, so our remote paths are

understood to be relative to it.

>>> sftp_client.chdir('Fruit') 

>>> sftp_client.mkdir('Bananas') 

>>> sftp_client.put('/home/alanm/bananas/cavendish.ban', 'Banana



Let's see if we can use our understanding of paramiko  and

SFTP to implement an SFTP upload in ABQ Data Entry.

Implementing an SFTP model

As we did with our REST upload, we'll begin by

encapsulating our interactions with the SFTP server in a

model class.

Open models.py  and we'll begin by importing paramiko :

# models.py

import paramiko 

Now, let's begin our model class:

# models.py

class SFTPModel: 

  def __init__(self, host, port=22): 

    self.host = host 

    self.port = port 

Our class initializer will take a hostname for the server and

optionally a port number. SSH typically runs on port 22 ,

though it's not uncommon for system administrators to run

it on another port for security reasons, so it's good to

provide this as an option.

Next, we'll continue our initializer by configuring our

SSHClient  object:

    self._client = paramiko.SSHClient() 

    self._client.set_missing_host_key_policy( 

      paramiko.AutoAddPolicy() 

    ) 

    self._client.load_system_host_keys() 



After creating our client instance and saving it to an

instance property, we're configuring it to automatically add

new host keys. Finally, we load in the known hosts from the

default system location.

In a secure production environment, you may want to leave

this policy at the default RestrictPolicy  setting and

manage the known hosts list outside of your application.

Note, however, that the AutoAddPolicy  only impacts

connections to new hosts; if SSHClient  receives an invalid

fingerprint when connecting to a known host, it will still

raise an exception.

That takes care of our initializer, so let's create an

authenticate()  method to establish a connection to the

server:

This method will take a username  and password  and use them

to establish a connection using the connect()  method. If

authentication fails, paramiko  will raise an

AuthenticationException . We could simply allow this to pass

back to the calling code, but as we did with our REST

model, we're cleaning it up a little so that our Application

object can display a more user-friendly message.

# models.py, inside SFTPModel 

  def authenticate(self, username, password): 

    try: 

      self._client.connect( 

        self.host, username=username, 

        password=password, port=self.port 

      ) 

    except paramiko.AuthenticationException: 

      raise Exception( 

        'The username and password were not accepted by the serv

      ) 



As with our RESTModel , we're going to create three more

methods: one to upload a file, one to download a file, and

one to check if a file exists on the server. Because all of

these require that we're connected and authenticated,

though, it would be handy to have another method that

raises an exception if we're not.

We'll create a private method for this called _check_auth() ,

like so:

As you saw in the previous section, our connection's active

and authenticated statuses can be retrieved from its

Transport  object; so, this method retrieves the transport,

then raises an exception if it's not both active and

authenticated.

To see how we'll use this, let's create our get_file()  method

first:

  def get_file(self, remote_path, local_path): 

    self._check_auth() 

    sftp = self._client.open_sftp() 

    sftp.get(remote_path, local_path) 

This method will take a remote path and a local path and

copy the file down from the remote path to the local one.

Note that we start with a call to _check_auth()  to ensure that

we're properly connected to the server. Then we create our

SFTP client and run the get()  method. That's all there is to

it!

  def _check_auth(self): 

    transport = self._client.get_transport() 

    if not transport.is_active() and transport.is_authenticated(

      raise Exception('Not connected to a server.') 



When creating a command or function that copies or moves

data, it's a long-standing convention to put your arguments

in the order (SOURCE, DESTINATION) . Mixing this up may

rightly earn you the extreme displeasure of your users or

fellow developers.

Uploading files

Creating an upload method will be slightly more complex.

Unlike the REST client, which was working with a single

endpoint, the SFTP server has a filesystem structure and

we have the possibility of uploading to a subdirectory on

the server. If we try to upload a file to a directory that

doesn't exist, paramiko  will raise an exception.

So, before we upload a file, we'll need to connect to the

server and make sure all the directories in the destination

path are there first. If any of them are not, we'll need to

create that directory.

We'll begin our method as before by checking the

connection and creating an SFTPClient instance:

  def upload_file(self, local_path, remote_path): 

    self._check_auth() 

    sftp = self._client.open_sftp() 

Now, we'll check the directories:

    remote_path = Path(remote_path) 

    for directory in remote_path.parent.parts: 

      if directory not in sftp.listdir(): 

        sftp.mkdir(directory) 

      sftp.chdir(directory) 

Our remote_path  will likely be a string, so the first thing we

do is convert it to a pathlib.Path  object for easier



manipulation. remote_path.parent.parts  gives us a list of all

the directories that contain the file, in order from the

topmost to the bottom-most. For example, if the remote_path

value was Food/Fruit/Bananas/cavendish.ban , this attribute

would give us the list ['Food', 'Fruit', 'Bananas'] .

Once we have that list, we iterate through it, checking to

see if the directory is in the contents of the current working

directory. If not, we create it. Once we know that the

directory exists, we change the current working directory

to it and repeat with the next directory in the list.

Once the directory structure is established, we can upload

the actual file:

    sftp.put(local_path, remote_path.name) 

The put()  method takes our local path to the file and the

remote path where we want to copy it. Note, however, that

we're only using the name  portion of the remote path; that's

because the for  loop that iterated over our directories has

left our current working directory at the proper parent

directory where the file needs to be put. Thus, we should

just pass the file's name as a destination.

Checking a file's existence

The last method we need is one that checks for a file's

existence on the server. For this, we'll rely on the stat()

method. The stat()  method of SFTPClient  can be used to

fetch metadata about a file on the server, such as size and

modification time. We don't need that information, but one

useful side effect of stat()  is that it raises a

FileNotFoundError  if passed a path that doesn't exist.



We can use that in our method, as shown here:

  def check_file(self, remote_path): 

    self._check_auth() 

    sftp = self._client.open_sftp() 

    try: 

      sftp.stat(remote_path) 

    except FileNotFoundError: 

      return False 

    return True

As with the other methods, this one begins by checking for

authentication, then creating our SFTPClient  object. Then, it

attempts to stat()  the file at remote_path . If a

FileNotFoundError  is raised, we return False . Otherwise, we

return True .

This completes our SFTPModel , at least for the operation our

application needs to perform; but before we leave

models.py , jump up to the SettingsModel  class and let's add a

few SFTP-related settings:

# models.py, inside SettingsModel 

  fields = { 

    # ... 

    'abq_sftp_host': {'type': 'str', 'value': 'localhost'}, 

    'abq_sftp_port': {'type': 'int', 'value': 22}, 

    'abq_sftp_path': {'type': 'str', 'value': 'ABQ/BLTN_IN'} 

  } 

These settings define the host and port of the server, as

well as the subdirectory path on the server where our files

will need to be uploaded. With these added, we're ready to

work on the GUI side.

Using SFTPModel in our application



The SFTP upload process we need to implement is identical

to the REST upload process: we need to authenticate to the

server, then check to see if the file already exists. If it does,

we ask the user if they want to overwrite it. If not, we offer

to download the file for their inspection.

Let's begin this method in Application :

try: 

      csvfile = self._create_csv_extract() 

    except Exception as e: 

      messagebox.showwarning( 

        title='Error', message=str(e) 

      ) 

      return

Just as before, we begin by attempting to create a CSV file

from the day's data; if we get an exception, we'll display it

and exit.

Now, we'll authenticate:

    d = v.LoginDialog(self, 'Login to ABQ Corporate SFTP') 

    if d.result is None: 

      return 

    username, password = d.result 

    host = self.settings['abq_sftp_host'].get() 

    port = self.settings['abq_sftp_port'].get() 

    sftp_model = m.SFTPModel(host, port) 

    try: 

      sftp_model.authenticate(username, password) 

    except Exception as e: 

      messagebox.showerror('Error Authenticating', str(e)) 

      return

Again, just like before, we request a username and

password from the user using our LoginDialog , simply

adjusting the label text for SFTP. Then we create our

SFTPModel  instance using the host and port values from the



settings  object and attempt to authenticate. Any

authentication errors will be displayed in a message box.

Next, we need to check the destination path to see if it

exists:

    destination_dir = self.settings['abq_sftp_path'].get() 

    destination_path = f'{destination_dir}/{csvfile.name}' 

    try: 

      exists = sftp_model.check_file(destination_path) 

    except Exception as e: 

      messagebox.showerror( 

        f'Error checking file {destination_path}', 

        str(e) 

      ) 

      return

This time, we need to construct a complete destination path

by combining the abq_sftp_path  value from settings  with the

generated CSV filename. Notice that we're building the

path using string formatting rather than with a Path  object.

That's because Path  will join path components using the

path separator character (forward-slash or backslash) used

on our local system. The path we're creating needs to be

compatible with the remote filesystem. Fortunately,

paramiko  will use forward-slashes (Unix-style path

separators) regardless of whether the remote server uses

Windows or a Unix-like system. For that reason, we're

explicitly formatting our paths using forward-slashes.

If the file exists, we need to ask the user what to do next:

    if exists: 

      overwrite = messagebox.askyesno( 

        'File exists', 

        f'The file {destination_path} already exists on the serv

        ' do you want to overwrite it?' 

      ) 

      if not overwrite: 

d l d b k (



Once again, this is identical to our REST-based code, except

that we need to remember we're dealing with paths, not

just filenames. Thus, we've used destination_path  where we

previously used csvfile.name .

If the method has not yet returned at this point, we can go

ahead and attempt to upload our file:

    try: 

      sftp_model.upload_file(csvfile, destination_path) 

    except Exception as e: 

      messagebox.showerror('Error uploading', str(e)) 

    else: 

      messagebox.showinfo( 

        'Success', 

        f'{csvfile} successfully uploaded to SFTP server.' 

      ) 

That finishes up our SFTP upload callback.

Some readers might wonder why our model checks its

authenticated status for each call, when our callback

method only runs its operations after it has successfully

authenticated. First, this is a defensive programming move.

We don't know how our model class may be used in the

        download = messagebox.askyesno( 

          'Download file', 

          'Do you want to download the file to inspect it?' 

        ) 

        if download: 

          filename = filedialog.asksaveasfilename() 

          try: 

            sftp_model.get_file(destination_path, filename) 

          except Exception as e: 

            messagebox.showerror('Error downloading', str(e)) 

            return 

          messagebox.showinfo( 

            'Download Complete', 'Download Complete.' 

            ) 

        return



future, and the model can't always count on well-behaved

views and controllers ensuring authentication before other

operations. Secondly, it's because, unlike HTTP, SSH is a

stateful protocol. That means there is an active session

created when we connect which must be maintained for any

operations to be done. If this session is interrupted (say, by

a temporary network outage, or a laptop user switching

networks) between authentication and subsequent

operations, those operations would fail and we'd need to

start over again. Thus, when working with stateful

protocols, it's a good idea to check connection and

authentication status before individual operations.

Finishing up

All that remains to do now is to add the new feature to our

menu. Back in Application.__init__() , add the callback to our

event_callbacks  dictionary:

Now, head over to mainmenu.py  and add a new private

method to GenericMainMenu :

# mainmenu.py, inside GenericMainMenu 

  def _add_sftp_upload(self, menu): 

    menu.add_command( 

      label="Upload CSV to corporate SFTP", 

      command=self._event('<<UploadToCorporateSFTP>>'), 

    ) 

Then, in each menu subclass, add the entry to the Tools

menu, like so:

# application.py, inside Application.__init__() 

    event_callbacks = { 

      #... 

      '<<UploadToCorporateSFTP>>': self._upload_to_corporate_sft

     } 



# mainmenu.py, inside each class's _build_menu() method 

    self._add_sftp_upload(self._menus['Tools']) 

Our new upload feature is now complete! Make sure SSH is

running on your system, launch ABQ Data Entry, make sure

there's at least one record saved for the day, and run the

upload from the Tools menu. You should see a success

dialog like this:

Figure 13.6: Success dialog for SFTP upload

Run the feature a second time, and you should get your

warning dialog, like this:

Figure 13.7: Overwrite dialog for SFTP upload

Follow through and make sure you can download the file.

Excellent work!



Summary

In this chapter, we reached out to the cloud using the

network protocols HTTP and SSH. You learned how to

download data over HTTP using urllib , and how to parse

XML data structures using the ElementTree  module. You also

discovered an alternative way to interact with HTTP using

the requests  library and learned the basics of interacting

with a REST API. You learned to work with HTTP

interactions that required authentications and session

cookies, and uploaded a file. Finally, you learned how to

transfer and manage remote files over SSH with SFTP

services using the paramiko  library.

In the next chapter, we'll stop long-running processes from

freezing up our application and improve our application's

performance by learning about asynchronous

programming. We'll learn to manipulate the Tkinter event

loop for better responsiveness as well as advanced

asynchronous programming using Python's threading

library.



14

Asynchronous Programming with Thread and

Queue

Many times, code that works flawlessly in the simplicity of

a test environment encounters problems in the real world;

unfortunately, this seems to be the case for the ABQ Data

Entry application. While your network functions ran

instantaneously in your localhost-only test environment, the

lab's slow VPN uplink has exposed some shortcomings in

your programming. Users report that the application

freezes or becomes unresponsive when network

transactions are taking place. Although it does work, it

looks unprofessional and is an annoyance to users.

To solve this problem, we're going to need to apply

asynchronous programming techniques, which we'll learn

about in the following topics:

In The Tkinter event queue, we'll learn how to

manipulate Tkinter's event processing to improve the

responsiveness of the application.

In Running code in the background with threads, we'll

explore writing multi-threaded applications using

Python's threading  module.

In Passing messages using a queue, you'll learn how to

use Queue  objects to implement inter-thread

communication.

In Using locks to protect shared resources, we'll utilize

a Lock  object to keep threads from overwriting one

another.



Let's get started!

Tkinter's event queue

As we discussed in Chapter 11, Creating Automated Tests

with unittest, many tasks in Tkinter, such as drawing and

updating widgets, are done asynchronously rather than

taking immediate action when called in code. More

specifically, the actions you perform in Tkinter, such as

clicking a button, triggering a key bind or trace, or resizing

a window, place an event in the event queue. On each

iteration of the main loop, Tkinter pulls all outstanding

events from the queue and processes them one at a time.

For each event, Tkinter executes any tasks (that is,

callbacks or internal operations like redrawing widgets)

bound to the event before proceeding to the next event in

the queue.

Tasks are roughly prioritized by Tkinter as either regular

or do-when-idle (often referred to as idle tasks). During

event processing, regular tasks are processed first,

followed by idle tasks when all the regular tasks are

finished. Most drawing or widget-updating tasks are

classified as idle tasks, while actions like callback functions

are, by default, regular priority.

Event queue control

Most of the time, we get the behavior we need from Tkinter

by relying on higher-level constructs like command  callbacks

and bind() . However, there are situations where we might

want to directly interact with the event queue and manually



control how events are processed. We've already seen some

of the functionality available to do this, but let's take a

deeper look at them here.

The update() methods

In Chapter 11, Creating Automated Tests with unittest, you

learned about the update()  and update_idletasks()  methods.

To review, these methods will cause Tkinter to execute any

tasks for events currently in the queue; update()  runs tasks

for all events currently waiting in the queue until it's

entirely clear, while update_idletasks()  only runs the idle

tasks.

Since idle tasks are generally smaller and safer operations,

it's recommended to use update_idletasks()  unless you find it

doesn't do the job.

Note that update()  and update_idletasks()  will cause

the processing of all outstanding events for all widgets,

regardless of what widget the method is called on. There is

no way to only process events for a particular widget or

Tkinter object.

The after() methods

In addition to allowing us to control the processing of the

queue, Tkinter widgets have two methods for adding

arbitrary code to the event queue on a delay: after()  and

after_idle() .

Basic use of after()  looks like this:

# basic_after_demo.py import tkinter as tk root = tk.Tk()

root.after(1000, root.quit) root.mainloop()



In this example, we're setting the root.quit()  method to run

after 1 second (1,000 milliseconds). What actually happens

here is that an event bound to root.quit  is added to the

event queue, but with the condition that it shouldn't be

executed until at least 1,000 milliseconds from the moment

when after()  is called. During that time period, any other

events in the queue will be processed first. As a result,

while the command will not be executed sooner than 1,000

milliseconds, it will very likely be executed later, depending

on what else is being processed already in the event queue.

The after_idle()  method also adds a task to the event

queue, but rather than giving it an explicit delay it simply

adds it as an idle task, ensuring that it will be run after any

regular tasks.

In both methods, any additional arguments after the

callback reference are simply passed to the callback as

positional arguments; for example:

root.after(1000, print, 'hello', 'Python', 'programmers!')

In this example, we're passing the arguments 'hello' ,

'Python' , and 'programmers'  to a print()  call. This statement

will schedule the statement print('hello', 'Python',

'programmers!')  to be run as soon as possible after 1 second

has elapsed.

Note that after()  and after_idle()  cannot take

keyword arguments for the passed callable, only positional

arguments.

Code scheduled with after()  can also be un-scheduled

using the after_cancel()  method. The method takes a task

ID number, which is returned when we call after() .



For example, we could amend our previous example like so:

# basic_after_cancel_demo.py import tkinter as tk root = tk.Tk()

task_id = root.after(3000, root.quit) tk.Button( root, text='Do

not quit!', command=lambda: root.after_cancel(task_id) ).pack()

root.mainloop()

In this script, we save the return value of after() , which

gives us the ID of the scheduled task. Then, in the callback

for our button, we call after_cancel() , passing in the ID

value. Clicking the button before the 3 seconds is up

results in the root.quit  task being canceled and the

application remaining open.

Common uses of event queue control

In Chapter 11, Creating Automated Tests with unittest, we

made good use of queue control methods to make sure our

tests ran quickly and efficiently without having to wait on

human interaction. There are a few different ways we can

use these methods in actual applications though, which

we'll look at here.

Smoothing out display changes

In an application with dynamic GUI changes, the

smoothness of these changes may suffer a bit as the

windows resize in response to elements appearing and

reappearing. For example, in the ABQ application, you may

notice a smaller application window appearing just after

login, which gets quickly resized as the GUI is built. This is

not a major issue, but it detracts from the overall

presentation of the application.

We can correct this by delaying the deiconify()  call after

login using after() . Inside Application.__init__() , let's alter



that line as follows:

# application.py, inside Application.__init__() self.after(250,

self.deiconify)

Now, instead of immediately restoring the application

window after login, we have delayed the restore by a

quarter of a second. While barely perceptible to the user, it

gives Tkinter enough time to build and redraw the GUI

before displaying the window, smoothing out the operation.

Use delayed code sparingly, and don't rely on it in situations

where the delayed code's stability or security depends on

some other process finishing first. This can lead to a race

condition, in which some unforeseen circumstance like a

slow disk or network connection can cause your delay to be

insufficient to properly order the execution of code. In the

case of our application, our delay is merely a cosmetic fix;

nothing disastrous will happen if the application window is

restored before it finishes drawing.

Mitigating GUI freezes

Because callback tasks are prioritized over screen-updating

tasks, a callback task that blocks code execution for an

extended period of time can cause the program to seem

frozen or stuck at an awkward point while the redrawing

tasks wait for it to complete. One way to address this is to

use the after()  and update()  methods to control the event

queue processing manually. To see how this works, we'll

build a simple application that uses these methods to keep

the UI responsive during a long-running task.

Start with this simple, but slow, application:

# after_demo.py import tkinter as tk from time import sleep class

App(tk.Tk): def __init__(self): super().__init__() self.status =

tk.StringVar() tk.Label(self, textvariable=self.status).pack()

tk.Button( self, text="Run Process", command=self.run_process



).pack() def run_process(self): self.status.set("Starting

process") sleep(2) for phase in range(1, 5):

self.status.set(f"Phase {phase}") self.process_phase(phase, 2)

self.status.set('Complete') def process_phase(self, n, length): #

some kind of heavy processing here sleep(length) App().mainloop()

This application uses time.sleep()  to simulate some heavy

processing task done in multiple phases. The GUI presents

the user with a button, which launches the processes, and a

status indicator to show progress.

When the user clicks the button, the status indicator is

supposed to do the following:

Show Starting process for 2 seconds.

Show Phase 1, Phase 2, through Phase 4 for 2

seconds each.

Finally, it should read Complete.

If you try it, though, you'll see it does no such thing.

Instead, it freezes up the moment the button goes down

and does not unfreeze until all the phases are complete and

the status reads Complete. Why does this happen?

When the button-click event is processed by the main loop,

the run_process()  callback takes priority over any drawing

tasks (since those are idle tasks) and is immediately

executed, blocking the main loop until it returns. When the

callback calls self.status.set() , the status  variable's write

events are placed in the queue (where they will eventually

trigger a redraw event on the Label  widget). However,

processing of the queue is currently halted, waiting on the

run_process()  method to return. When it finally does return,

all the updates to status  that were waiting in the event

queue are executed in a fraction of a second.



To make this a bit better, let's schedule run_process()  using

after() :

# after_demo2.py def run_process(self): self.status.set("Starting

process") self.after(50, self._run_phases) def _run_phases(self):

for phase in range(1, 5): self.status.set(f"Phase {phase}")

self.process_phase(phase, 2) self.status.set('Complete')

This time, the loop part of run_process()  is split off into a

separate method called _run_phases() . The run_process()

method itself just sets the starting status, then schedules

_run_phases()  to run 50 milliseconds later. This delay gives

Tkinter time to finish up any drawing tasks and to update

the status before kicking off the long blocking loop. The

exact amount of time isn't critical in this case, just so long

as it's sufficient for Tkinter to finish drawing operations,

but short enough that users aren't likely to notice it; 50

milliseconds seems to do the job just fine.

We still aren't seeing individual phase status messages with

this version, though; it goes directly from Starting

process to Complete because the _run_phases()  method is

still blocking the event loop when it eventually runs.

To fix this, we can use update_idletasks()  in the loop:

# after_demo_update.py def _run_phases(self): for phase in

range(1, 5): self.status.set(f"Phase {phase}")

self.update_idletasks() self.process_phase(phase, 2)

self.status.set('Complete')

By forcing Tkinter to run the remaining idle tasks in the

queue before starting the long blocking method, our GUI

kept is up to date. Unfortunately, there are some

shortcomings to this approach:

Firstly, the individual tasks still block the application

while they're running. No matter how we break them



up, the application will still be frozen while the

individual units of the process are executing.

Secondly, this approach is problematic for separation of

concerns. In a real application, our processing phases

are likely going to be running in a backend or model

class of some kind. Those classes should not be

manipulating GUI widgets.

While these queue control methods can be useful for

managing GUI-layer processes, it's clear we need a better

solution for working with slow background processes like

the ABQ network upload functions. For those, we'll need to

use something more powerful: threads.

Running code in the

background with threads

All of the code we have written up to this point in the book

can be described as single-threaded; that is, every

statement is executed one at a time, the prior statement

finishing before the next one is begun. Even asynchronous

elements such as our Tkinter event queue, though they may

change the order in which tasks are executed, still execute

only one task at a time. This means that a long-running

procedure like a slow network transaction or file read will

unavoidably freeze up our application while it runs.

To see this in action, run the sample_rest_service.py  script

included with the example code for Chapter 14 (make sure

you run the Chapter 14 version, not the Chapter 13

version!). Now run ABQ Data Entry, make sure you've got

some data in the database for today, and run the REST



upload. The upload should take about 20 seconds, during

which time the service script should be printing status

messages like these:

File 0% uploaded File 5% uploaded File 10% uploaded File 15%

uploaded File 20% uploaded File 25% uploaded

Meanwhile, though, our GUI application is frozen. You'll

find you cannot interact with any of the controls, and

moving or resizing it may result in a blank gray window.

Only when the upload process completes will your

application become responsive again.

To truly get around this problem, we need to create a

multi-threaded application, in which multiple pieces of

code can be run concurrently without needing to wait for

one another. In Python, we can do this using the threading

module.

The threading module

Multi-threaded application programming can be quite

challenging to grasp fully, but the standard library's

threading  module makes working with threads about as

simple as it can be.

To demonstrate the basic use of threading , let's first create

an intentionally slow function:

# basic_threading_demo.py from time import sleep def

print_slowly(string): words = string.split() for word in words:

sleep(1) print(word)

This function takes a string and prints it at a rate of one

word per second. This will simulate a long-running,

computationally expensive process and give us some

feedback that it's still running.



Let's create a Tkinter GUI frontend for this function:

# basic_threading_demo.py import tkinter as tk # print_slowly()

function goes here # ... class App(tk.Tk): def __init__(self):

super().__init__() self.text = tk.StringVar() tk.Entry(self,

textvariable=self.text).pack() tk.Button( self, text="Run

unthreaded", command=self.print_unthreaded ).pack() def

print_unthreaded(self): print_slowly(self.text.get())

App().mainloop()

This simple application has a text entry and a button; when

the button is pushed, the text in the entry is sent to the

print_slowly()  function. Run this code, then enter or paste a

long sentence into the Entry  widget.

When you click the button, you'll see that the entire

application freezes up as the words are printed to the

console. That's because it's all running in a single execution

thread.

Now let's add the threading code:

# basic_threading_demo.py from threading import Thread # at the

end of App.__init__() tk.Button( self, text="Run threaded",

command=self.print_threaded ).pack() def print_threaded(self):

thread = Thread( target=print_slowly, args=(self.text.get(),) )

thread.start()

This time, we've imported the Thread  class and created a

new callback called print_threaded() . This callback uses a

Thread  object to run print_slowly()  in its own execution

thread.

A Thread  object takes a target  argument that points to the

callable which will be run in the new execution thread. It

can also take an args  tuple, which contains arguments to

be passed into the target  argument, and a kwargs

dictionary, which will also be expanded in the target

function's argument list.



To execute the Thread  object, we call its start()  method.

This method does not block, so the print_threaded()  callback

immediately returns, allowing Tkinter to resume its event

loop while thread  executes in the background.

If you try this code, you'll see that the GUI no longer

freezes while the sentence is printed. No matter how long

the sentence, the GUI remains responsive the whole time.

Tkinter and thread safety

Threading introduces a great deal of complication into a

code base, and not all code is written to behave properly in

a multi-threaded environment.

We refer to code that is written with threading in mind as

being thread-safe.

It's often repeated that Tkinter is not thread-safe; this isn't

entirely true. Assuming your Tcl/Tk binaries have been

compiled with thread support (which those included with

the official Python distributions for Linux, Windows, and

macOS have been), Tkinter should work fine in a multi-

threaded program. However, the Python documentation

warns us that there are still some edge cases where Tkinter

calls across threads do not behave properly.

The best way to avoid these issues is to keep our Tkinter

code within a single thread and restrict our use of threads

to non-Tkinter code (such as our model classes).

More information about Tkinter and threading can be found

at

https://docs.python.org/3/library/tkinter.html#thr

eading-model.

https://docs.python.org/3/library/tkinter.html#threading-model


Converting our network functions to

threaded execution

Passing a function to a Thread  object's target  argument is

one way of running code in a thread; a more flexible and

powerful approach is to subclass the Thread  class and

override its run()  method with the code you want to

execute. To demonstrate this approach, let's update the

corporate REST upload feature we created for ABQ Data

Entry in Chapter 13, Connecting to the Cloud, so that it

runs the slow upload operation in a separate thread.

To begin, open up models.py  and let's import the Thread

class, like so:

# models.py, at the top from threading import Thread

Rather than having a CorporateRestModel  method execute the

upload, we're going to create a class based on Thread

whose instances will be able to execute the upload

operation in a separate thread. We'll call it ThreadedUploader .

To execute its upload, the ThreadedUploader  instance will

need an endpoint URL and a local file path; we can simply

pass those to the object in its initializer. It will also need

access to an authenticated session; that presents more of a

problem. We might be able to get away with passing our

authenticated Session  object to the thread, but at the time

of writing there is a great deal of uncertainty as to whether

Session  objects are thread-safe, so it's best to avoid sharing

them between threads.

However, we don't really need the whole Session  object,

just the authentication token or session cookie.



It turns out that when we authenticate to the REST server,

a cookie called session  is placed in our cookie jar, which we

can see by inspecting the Session.cookies  object from a

terminal, like so:

# execute this with the sample REST server running in another

terminal >>> import requests >>> s = requests.Session() >>>

s.post('http://localhost:8000/auth', data={'username': 'test',

'password': 'test'}) <Response [200]> >>> dict(s.cookies)

{'session':

'eyJhdXRoZW50aWNhdGVkIjp0cnVlfQ.YTu7xA.c5ZOSuHQbckhasRFRF'}

The cookies  attribute is a requests.CookieJar  object, which

behaves in many ways like a dictionary. Each cookie has a

unique name, which can be used to retrieve the cookie

itself. In this case, our session cookie is called session .

Since the cookie itself is just a string, we can safely pass it

to another thread. Once there, we'll create a new Session

object and give it the cookie, after which it can

authenticate requests.

Immutable objects, including strings, integers, and floats,

are always thread-safe. Since immutable objects can't be

altered after creation, we don't have to worry that two

threads will try to change the object at the same time.

Let's start our new uploader class as follows:

# models.py class ThreadedUploader(Thread): def __init__(self,

session_cookie, files_url, filepath): super().__init__()

self.files_url = files_url self.filepath = filepath # Create the

new session and hand it the cookie self.session =

requests.Session() self.session.cookies['session'] =

session_cookie

The initializer method starts by calling the superclass

initializer to set up the Thread  object, then assigns the

passed files_url  and filepath  strings to instance attributes.



Next, we create a new Session  object and add the passed

cookie value to the cookie jar by assigning it to the session

key (the same key used in the original session's cookie jar).

Now we have all the information we need to execute an

upload process. The actual process to be executed in the

thread is implemented in its run()  method, which we'll add

next:

def run(self, *args, **kwargs): with open(self.filepath, 'rb') as

fh: files = {'file': fh} response = self.session.put(

self.files_url, files=files ) response.raise_for_status()

Note that this code is essentially the code from the model's

upload()  method, except that the function arguments have

been changed to instance properties.

Now, let's head over to our model and see how we can use

this class.

The Python documentation recommends that you only

override run()  and __init__()  when subclassing

Thread . Other methods should be left alone for proper

operation.

Using the threaded uploader

Now that we've created a threaded uploader, we just need

to make CorporateRestModel  use it. Find your model class and

let's rewrite the upload_file()  method as follows:

# models.py, inside CorporateRestModel def upload_file(self,

filepath): """PUT a file on the server""" cookie =

self.session.cookies.get('session') uploader = ThreadedUploader(

cookie, self.files_url, filepath ) uploader.start()

Here, we start by extracting the session cookie from our

Session  object, then pass it along with the URL and the file



path to the ThreadedUploader  initializer. Finally, we call the

thread's start()  method to begin execution of the upload.

Now, give your REST upload another try and you'll see that

the application doesn't freeze up. Great job! However, it

doesn't quite behave how we'd like it to yet...

Remember, you override the run()  method, but call the

start()  method. Mixing these up will cause your code to

either do nothing or block like a normal single-threaded

call.

Passing messages using a queue

We've solved the problem of the program freezing up, but

now we have some new problems. The most obvious

problem is that our callback immediately shows a message

box claiming that we've successfully uploaded the file, even

though you can see from the server output that the process

is still ongoing in the background. A subtler and far worse

problem is that we aren't alerted to errors. If you try

terminating the test service while the upload is running (so

that the callback should fail), it will still immediately claim

that the upload succeeded, even though you can see on the

terminal that exceptions are being raised. What's going on

here?

The first problem here is that the Thread.start()  method

doesn't block code execution. This is what we wanted, of

course, but it now means our success dialog isn't waiting

until the upload process is complete before it displays. As

soon as the new thread is launched, the execution of code

in the main thread continues in parallel with the new

thread, immediately showing the success dialog.



The second problem is that code running in its own thread

cannot pass exceptions caused in the thread's run()

method back to the main thread. Those exceptions are

raised within the new thread, and can only be caught in the

new thread. As far as our main thread is concerned, the

code in the try  block executed just fine. In fact, the upload

operation can't communicate failures or successes.

In order to solve these problems, we need a way for the

GUI and model threads to communicate, so that the upload

thread can send error or progress messages back to the

main thread to be handled appropriately. We can do this

using a queue.

The Queue object

Python's queue.Queue  class provides a first-in first-out

(FIFO) data structure. Python objects can be placed into a

Queue  object using the put()  method, and retrieved using

the get()  method; to see how this works, execute this in

the Python shell:

>>> from queue import Queue >>> q = Queue() >>> q.put('My item')

>>> q.get() 'My item'

This may not seem terribly exciting; after all, you can do

essentially the same thing with a list  object. What makes

Queue  useful, though, is that it is thread-safe. One thread

can place messages on the queue, and another can retrieve

them and respond appropriately.

By default, the queue's get()  method will block execution

until an item is received. This behavior can be altered by

passing False  as its first argument, or using the

get_nowait()  method. In no-wait mode, the method will

return immediately, raising an exception if the queue is

empty.



To see how this works, execute the following in the shell:

>>> q = Queue() >>> q.get_nowait() Traceback (most recent call

last): File "<stdin>", line 1, in <module> File

"/usr/lib/python3.9/queue.py", line 199, in get_nowait return

self.get(block=False) File "/usr/lib/python3.9/queue.py", line

168, in get raise Empty _queue.Empty

We can also check whether the queue is empty using the

empty()  or qsize()  methods; for example:

>>> q.empty() True >>> q.qsize() 0 >>> q.put(1) >>> q.empty()

False >>> q.qsize() 1

As you can see, empty()  returns a Boolean indicating if the

queue is empty, and qsize()  returns the number of items in

the queue. Queue  has several other methods that are useful

in more advanced multi-threading situations, but get() ,

put() , and empty()  will be sufficient to solve our problems.

Using queues to communicate between threads

Before editing our application code, let's create a simple

example application to make sure we understand how to

use Queue  to communicate between threads.

Start with a long-running thread:

# threading_queue_demo.py from threading import Thread from time

import sleep class Backend(Thread): def __init__(self, queue,

*args, **kwargs): super().__init__(*args, **kwargs) self.queue =

queue def run(self): self.queue.put('ready') for n in range(1,

5): self.queue.put(f'stage {n}') print(f'stage {n}') sleep(2)

self.queue.put('done')

The Backend  object is a subclass of Thread  that takes a Queue

object as an argument and saves it as an instance property.

Its run()  method simulates a long-running four-phase

process using print()  and sleep() . At the beginning, at the



end, and before each phase, we use queue.put()  to place a

status message into the queue module.

Now we'll create a frontend for this process in Tkinter:

# threading_queue_demo.py import tkinter as tk from queue import

Queue class App(tk.Tk): def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs) self.status =

tk.StringVar(self, value='ready') tk.Label(self,

textvariable=self.status).pack() tk.Button(self, text="Run

process", command=self.go).pack() self.queue = Queue()

This simple application contains a Label  object bound to a

status  control variable, a Button  widget bound to a callback

method, go() , and a Queue  object stored as an instance

variable. The idea is that, when we click the Run process

button, the go()  method will run our Backend  class and the

queued messages will be displayed in the label by way of

the status  control variable.

Let's create the go()  method:

def go(self): p = Backend(self.queue) p.start()

The go()  method creates an instance of the Backend  class,

passing in the application's Queue  object, and starts it.

Because both threads now have a reference to queue , we

can use it to communicate between them. We've already

seen how Backend  places status messages on the queue, so

how should App()  retrieve them?

Maybe we could start a loop, like this:

def go(self): p = Backend(self.queue) p.start() while True:

status = self.queue.get() self.status.set(status) if status ==

'done': break

That won't work, of course, because the loop will block; the

Tkinter event loop would be stuck executing go() , freezing

up the GUI and defeating the purpose of using a second



thread. Instead, we need a way to periodically poll the

queue  object for status messages and update the status

whenever one is received.

We'll start by writing a method that can check the queue

and respond appropriately:

def check_queue(self): msg = '' while not self.queue.empty(): msg

= self.queue.get() self.status.set(msg)

Using the Queue.empty()  method, we first find out if the

queue is empty or not. If it is, we don't want to do anything,

because get()  will, by default, block until it receives a

message, and we don't want to block execution. If the queue

object contains items, we'll want to get those items and

send them to our status  variable. We're doing this in a

while  loop so that we only leave the function when the

queue is empty.

This only performs one check, of course; we want to keep

polling the queue module until the thread sends a done

message. Thus, if our status is not done , we need to

schedule another queue check.

That can be done with a call to after()  at the end of

check_queue() , like this:

if msg != 'done': self.after(100, self.check_queue)

Now check_queue()  will do its job, then schedule itself to run

again every 100  milliseconds until the status is done . All

that remains is to kick off the process at the end of go() ,

like so:

def go(self): p = Backend(self.queue) p.start()

self.check_queue()

If you run this application, you'll see that we get status

messages in (relatively) real time. Unlike the single-



threaded application we created earlier in the chapter,

there is no freezing, even while the tasks are running.

Adding a communication queue to

our threaded uploader

Let's apply our knowledge of queues to fix the problems

with the ThreadedUploader  class. To begin, we'll update the

initializer signature so that we can pass in a Queue  object,

then store the object as an instance attribute, like so:

# models.py, in ThreadedUploader def __init__( self,

session_cookie, files_url, filepath, queue ): # ... self.queue =

queue

Just as we did in our example application, we'll create the

Queue  object in the CorporateRestModel  object so that both the

uploader and the model have a reference to it. In addition,

we'll save the queue as a public attribute of the model so

that the application object can also reference it. To do that,

we'll first need to import Queue  into models.py , so add this

import at the top:

# models.py, at the top from queue import Queue

Now, back down in the CorporateRestModel  initializer, create a

Queue  object:

# models.py, inside CorporateRestModel def __init__(self,

base_url): #... self.queue = Queue()

Next, we need to update the upload_file()  method so that it

passes the queue into the ThreadedUploader  object:

def upload_file(self, filepath): cookie =

self.session.cookies.get('session') uploader = ThreadedUploader(

cookie, self.files_url, filepath, self.queue ) uploader.start()



Now the GUI can access the queue from rest_model.queue ,

and we can use that connection to send messages from our

upload thread back to the GUI. Before we can use that

connection, however, we need to develop a communications

protocol.

Creating a communications protocol

Now that we have established a channel for inter-thread

communication, we have to decide how our two threads will

communicate. In other words, what exactly will our

uploader thread place on the queue, and how should our

application thread respond to it? We could just throw

anything into the queue and keep writing if  statements on

the app-side to deal with whatever shows up, but a better

approach is to standardize communications by defining a

simple protocol.

Our uploader thread will mainly be sending status-related

information back to the application so that it can display

updates about what's happening in message boxes or on

the status bar. We will create a message format that we can

use to determine what the thread is doing and

communicate that to the user.

The message structure will look like this:

Field Description

status One word indicating the type of message, such as info or error

subject A short sentence summarizing the message

body A longer string with details about the message



We could create a structure like this using dictionary or a

class, but simple collections of named fields like this are a

great use-case for named tuples. The

collections.namedtuple()  function allows us to quickly create

mini-classes that contain only named properties.

Creating a namedtuple  class looks like this:

from collections import namedtuple MyClass =

namedtuple('MyClass', ['prop1', 'prop2'])

This is equivalent to writing:

class MyClass(): def __init__(self, prop1, prop2): self.prop1 =

prop1 self.prop2 = prop2

The namedtuple()  method is much faster to create than a

class, and unlike a dictionary it enforces uniformity—that

is, every MyClass  object must have a prop1  and a prop2

attribute, whereas a dictionary is never required to have

any particular keys.

At the top of the models.py  file, let's import namedtuple  and

use it to define a class called Message :

# models.py, at the top from collections import namedtuple

Message = namedtuple('Message', ['status', 'subject', 'body'])

Now that we've created the Message  class, making a new

Message  object is just like making an instance of any other

class:

message = Message( 'info', 'Testing the class', 'We are testing

the Message class' )

Let's implement the use of these Message  objects in our

queue.



Sending messages from the uploader

Now that we have established a protocol, it's time to put it

to use. Locate the ThreadedUploader  class, and let's update

the run()  method to send messages, starting with an

informational message:

# models.py, in ThreadedUploader def run(self, *args, **kwargs):

self.queue.put( Message( 'info', 'Upload Started', f'Begin upload

of {self.filepath}' ) )

Our first message is just an informational message

indicating that the upload is starting. Next, we'll begin the

upload and return some messages indicating the success or

failure of the operation:

with open(self.filepath, 'rb') as fh: files = {'file': fh}

response = self.session.put( self.files_url, files=files ) try:

response.raise_for_status() except Exception as e:

self.queue.put(Message('error', 'Upload Error', str(e))) else:

self.queue.put( Message( 'done', 'Upload Succeeded', f'Upload of

{self.filepath} to REST succeeded' ) )

As before, we begin the upload process by opening the file

and making our PUT  request to the web service. This time,

though, we run raise_for_status()  in a try  block. If we catch

an exception from the operation, we put a message with a

status of error  on the queue along with the text of the

exception. If we succeed, we place a success message on

the queue.

That's all that our ThreadedUploader  needs to do; now we

need to head over the GUI to implement a response to

these messages.

Handling queue messages



Back in the Application  object, we need to add some code to

monitor the queue and take appropriate actions when a

message is sent from the thread. As we did in our queue

demo application, we'll create a method that uses the

Tkinter event loop to periodically poll the queue and handle

any messages sent from the model's queue object.

Start the Application._check_queue()  method like so:

# application.py, inside Application def _check_queue(self,

queue): while not queue.empty(): item = queue.get()

The method accepts a Queue  object, and starts by checking

to see whether it has any items. If so, it retrieves one. Once

we have one, we need to examine it and determine what to

do with it based on the status  value.

First, let's handle a done  status; add this code under the if

block:

# application.py, inside Application._check_queue() if

item.status == 'done': messagebox.showinfo( item.status,

message=item.subject, detail=item.body )

self.status.set(item.subject) return

When our upload finishes successfully, we want to show a

message box and set the status, then return without doing

anything else.

The Message  object's status , subject , and body  attributes

map nicely to the title , message , and detail  arguments of

the message box, so we've just passed those directly to it.

We also show the subject of the message in the

application's status bar by setting the status  variable.

Next, we'll handle error  messages from the queue:

elif item.status == 'error': messagebox.showerror( item.status,

message=item.subject, detail=item.body )

self.status.set(item.subject) return



Once again, we show a message box, this time using

showerror() . We also want to exit the method, since the

thread has presumably quit and we don't need to schedule

the next queue check.

Finally, let's handle the info  statuses:

else: self.status.set(f'{item.subject}: {item.body}')

Informational messages don't really warrant a modal

message box, so we're just sending them to the status bar.

The last thing we need to do in this method is make sure it

gets called again if the thread is still going. Since done  and

error  messages cause the method to return, if we've

reached this point in the function the thread is still running

and we should continue to poll it. So, we'll add a call to

after() :

self.after(100, self._check_queue, queue)

With _check_queue()  written, we just need to eliminate the

exception handling around rest_model.upload_file()  at the

end of _upload_to_corporate_rest()  and call _check_queue()

instead:

# application.py, in Application._upload_to_corporate_rest()

rest_model.upload_file(csvfile)

self._check_queue(self.rest_queue)

This call doesn't need to be scheduled with after()  since

there will most likely not be a message on the first call,

causing _check_queue()  to just schedule its next call and

return.

Now that we've finished that update, launch the test server

and the application and try the REST upload again. Watch

the status bar and you'll see the progress getting displayed,

ending with a message box when the process completes.



Try it with the HTTP server turned off, and you should see

an error message pop up right away.

Using locks to protect

shared resources

While it's great that our application no longer freezes up

during slow file uploads, it raises a potential problem.

Suppose a user tries to start a second REST upload while

the first is ongoing? Go ahead and try this; launch the

sample HTTP server and the application, and try to launch

two REST uploads in quick succession, so that the second

begins before the first finishes. Note the output from the

REST server; depending on your timing, you may see

confusing log messages with percentages going up and

down as both threads upload files at the same time.

Of course, our sample REST server only simulates a slow

link with sleep() ; the actual file upload happens so fast it's

unlikely to cause a problem. In a situation with a genuinely

slow network, concurrent uploads could be more

problematic. While it's possible that the receiving server is

robust enough to sensibly handle two threads trying to

upload the same file, it's best if we avoid that situation in

the first place.

What we need is some kind of flag that is shared between

threads which can indicate if a thread is currently

uploading so that others will know not to do so. We can do

this using the threading  module's Lock  object.



Understanding the Lock object

A lock is a very simple object with two states: acquired

and released. When a Lock  object is in the released state,

any thread may call its acquire()  method to put it in the

acquired state. Once a thread has acquired the lock, the

acquire()  method will block until the lock has been released

by calling its release()  method. That means that if another

thread calls acquire() , its execution will wait until the lock

is released by the first thread.

To see how this works, look at the basic_threading_demo.py

script we created earlier in this chapter. Run that script

from a terminal prompt, enter a sentence into the Entry

widget, and click the Run threaded button.

As we noted earlier, the sentence prints out at one word

per second to the terminal output. But now, click the Run

threaded button twice in quick succession. Notice that the

output is a jumble of repeated words as the two threads

simultaneously output text to the terminal. You can just

imagine the havoc multiple threads could wreak upon a file

or network session in a situation like this.

To correct this, let's create a lock. First, import Lock  from

the threading  module and create an instance of it:

# basic_threading_demo_with_lock.py from threading import Thread,

Lock print_lock = Lock()

Now, inside the print_slowly()  function, let's add calls to

acquire()  and release()  around the method, like so:

def print_slowly(string): print_lock.acquire() words =

string.split() for word in words: sleep(1) print(word)

print_lock.release()



Save this file as basic_threading_demo_with_lock.py  and run it

again. Now, when you click the Run threaded button

multiple times, each run waits for the previous one to

release the lock before beginning. In this way, we can force

threads to wait for each other while still maintaining a

responsive application.

The Lock  object can also be used as a context manager so

that acquire()  is called on entering the block and release()

upon exiting. Thus, we could rewrite the preceding

example like so:

with print_lock: words = string.split() for word in words:

sleep(1) print(word)

Using a Lock object to prevent

concurrent uploads

Let's apply our understanding of the Lock  object to prevent

concurrent uploading to the corporate REST server. To

begin, we need to import Lock  into models.py , like so:

from threading import Thread, Lock

Next, we'll create a Lock  object as a class attribute of the

ThreadedUploader  class, like so:

class ThreadedUploader(Thread): rest_upload_lock = Lock()

Recall from Chapter 4, Organizing Our Code with Classes,

that objects assigned to class attributes are shared by all

instances of the class. Therefore, by creating the lock as a

class attribute, any ThreadedUploader  thread will have access

to the lock.

Now, inside the run()  method, we need to utilize our lock.

The cleanest approach is to use it as a context manager,



like so:

# models.py, inside ThreadedUploader.run() with self.upload_lock:

with open(self.filepath, 'rb') as fh: files = {'file': fh}

response = self.session.put( self.files_url, files=files ) #...

remainder of method in this block

Whether the put()  call returns or raises an exception, the

context manager will ensure that release()  is called when

the block exits so that other calls to run()  can acquire the

lock.

After adding this code, run the test HTTP server and the

application again and try launching two REST uploads in

quick succession. Now you should see that the second

upload doesn't start until the first has completed.

Threading and the GIL

Whenever we discuss threading in Python, it's important to

understand Python's Global Interpreter Lock (GIL) and

how it affects threading.

The GIL is a lock mechanism that protects Python's

memory management by preventing more than one thread

from executing Python commands at the same time. Similar

to the lock we implemented in our ThreadedUploader  class,

the GIL can be thought of like a token that can be held by

only one thread at a time; whichever thread holds the token

may execute Python instructions, and the rest have to wait.

It may seem like this defeats the idea of multi-threading on

Python, However, there are two factors that mitigate the

impact of the GIL:

First, the GIL only limits the execution of Python code;

many libraries execute code in other languages. For

example, Tkinter executes TCL code, and psycopg2



executes compiled C code. Non-Python code like this

can run in a separate thread while Python code runs in

another.

Second, Input/Output (I/O) operations like disk access

or network requests can run concurrently with Python

code. For instance, when we make an HTTP request

using requests , the GIL is released while waiting for the

server to respond.

The only situation where the GIL really limits the utility of

multi-threading is when we have computationally expensive

Python code. Slow operations in typical data-oriented

applications like ABQ are likely to be I/O-based operations,

and for heavy-computation situations we can use non-

Python libraries like numpy . Even so, it's good to be aware of

the GIL and know that it may impact the effectiveness of a

multi-threaded design.

Summary

In this chapter, you learned how to use asynchronous and

multi-threaded programming techniques to remove

unresponsive behavior from your program. You learned

how to work with and control Tkinter's event queue using

the after()  and update()  methods, and how to apply these

methods to solve problems in your application. You also

learned how to use Python's threading  module to run

processes in the background, and how to utilize Queue

objects to communicate between threads. Finally, you

learned to use the Lock  object to prevent shared resources

from getting corrupted.



In the next chapter, we're going to explore the most

powerful widget in Tkinter: the Canvas. We'll learn how to

draw images and animate them, and create useful and

informative charts.



15

Visualizing Data Using the Canvas Widget

With months of experimental data logged in the database,

it's time to begin the process of visualizing and interpreting

it. Rather than exporting data into a spreadsheet to create

charts and graphs, your fellow analysts have asked whether

the program itself can create graphical data visualizations.

Indeed it can! To implement this feature, you're going to

need to learn about Tkinter's Canvas  widget.

In this chapter, you'll implement data visualizations as you

learn the following topics:

In Drawing and animation with Tkinter's Canvas, you'll

learn to use the Canvas  widget for drawing and

animation

In Creating simple graphs using Canvas, we'll build a

simple line graph using the Tkinter Canvas

In Advanced graphs using Matplotlib, we'll learn to

integrate the Matplotlib library for more powerful

charting and graphic capabilities

Drawing and animation

with Tkinter's Canvas

The Canvas  widget is undoubtedly one of the most powerful

widgets available in Tkinter. It can be used to build



anything from custom widgets and views to complete user

interfaces.

As the name implies, a Canvas  widget is a blank area on

which figures and images can be drawn. To understand its

basic usage, let's create a small demo script.

Begin the script by creating a root window and a Canvas

object:

# simple_canvas_demo.py import tkinter as tk root = tk.Tk()

canvas = tk.Canvas( root, background='black', width=1024,

height=768 ) canvas.pack()

Creating a Canvas  object is just like creating any other

Tkinter widget. In addition to the parent widget and

background  argument, we can also specify width  and height

arguments to set the size of the Canvas . Setting the size of a

Canvas  widget is important, because it defines not only the

size of the widget but also the viewport; that is, the area in

which our drawn objects will be visible. We can actually

draw anywhere on the Canvas 's virtually infinite surface, but

only the area inside the viewport will be visible.

We'll learn how to see the area outside the viewport below

in the Scrolling the Canvas section.

Drawing on the Canvas

Once we have a Canvas  object, we can start drawing items

on it using its many create_()  methods. These methods

allow us to draw shapes, lines, images, and text. Let's

explore these methods in more detail as we develop the

simple_canvas_demo.py  script.



Rectangles and squares

Rectangles or squares can be drawn on the Canvas  using

the create_rectangle()  method, like so:

# simple_canvas_demo.py canvas.create_rectangle(240, 240, 260,

260, fill='orange')

The first four arguments of create_rectangle()  are the

coordinates of the upper-left and lower-right corners,

counted in pixels from the upper-left corner of the Canvas .

Each create_()  method begins with positional arguments

that define the position and size of the shape. Following

those, we can specify a variety of keyword arguments to

describe other aspects of the shape; for example, the fill

option used here specifies the color of the inside of the

object.

It's vital to understand that vertical coordinates on the

Canvas , unlike coordinates on a typical chart, extend down

from the top. For example, the coordinate (200, 100) is 100

pixels above (200, 200). The same is true for coordinates on

all Tkinter widgets, and in many other GUI programming

environments as well.

Coordinates can also be specified as tuple pairs, like so:

canvas.create_rectangle( (300, 240), (320, 260), fill='#FF8800' )

Although this requires more characters, it improves

readability considerably. The create_rectangle()  method

supports several other keyword arguments to configure the

rectangle's fill and outline, including the following:

Argument Values Description

dash Tuple of Defines a dash pattern (see below) for the



integers outline

outline Color string Specifies a color for the border

width Integer Specifies a width for the border

stipple Bitmap name Name of a bitmap pattern to use for the fill

Dashed or dotted lines can be defined on Canvas  objects

using a dash pattern. This is a tuple of integers that

describes the number of pixels before switching between

line and blank. For example, a dash  value of (5, 1, 2, 1)

would produce a repeating pattern of five pixels of line, one

blank pixel, two pixels of line, and one blank.

The stipple  value allows you to specify a bitmap to be used

for filling the shape instead of a solid fill. Tkinter comes

with some built-in bitmap files, such as gray75 , gray50 ,

gray25 , and gray12  (each of which is filled with evenly

spaced pixels at the specified percentage), or you can load

in a .xbm  file of your own using the format @filename.xbm .

Ovals, circles, and arcs

In addition to rectangles, we can also create ovals and

circles using the create_oval()  method. Add an oval to the

demo as follows:

canvas.create_oval( (350, 200), (450, 250), fill='blue' )

As with creating a rectangle, we begin by specifying the

coordinates to describe the shape; however, this time the

coordinates determine the upper-left and lower-right

corners of its bounding box. A bounding box is the

smallest rectangle that will contain an item. For example,



in the case of this oval, the bounding box has corners at

(350, 200)  and (450, 250) . To make a circle, of course, we

simply define an oval with a square bounding box.

create_oval()  allows the same keyword arguments as

create_rectangle()  to configure the fill and outline of the

shape.

If we want to draw only a sector of the oval, we can use the

create_arc()  method. This method works identically to

create_oval() , but also takes extent  and start  keyword

arguments. The start  argument specifies the number of

degrees from the origin at the left middle of the circle to

the point where the drawing starts, and the extent

argument specifies how many degrees counter-clockwise

the arc will extend. For example, an extent  of 90  and start

of 180  will draw a quarter of the oval starting at the right

side and going to the bottom, as shown here:

Figure 15.1: Drawing an arc Let's add an arc to our demo:

canvas.create_arc( (100, 200), (200, 300), fill='yellow', extent=315, start=25 )

Lines



We can also draw lines on the Canvas  using the create_line()

method. As with rectangles, ovals, and arcs, we begin by

specifying coordinates to define the line. Unlike with the

shapes, the coordinates do not define a bounding box, but

rather a set of points that define the line.

Let's add a line to our demo script, like so:

canvas.create_line( (0, 180), (1024, 180), width=5, fill='cyan' )

In this example, a straight line will be drawn from the first

point at (0, 180)  to the second at (1024, 180) . The fill

argument in this case defines the color of the line, and

width  determines how wide it is.

The create_line()  method is not limited to a single line

between two points. We can specify any number of

coordinate pairs as positional arguments, and Tkinter will

connect them all from first to last. For example, add this to

the demo:

canvas.create_line( (0, 320), (500, 320), (500, 768), (640, 768),

(640, 320), (1024, 320), width=5, fill='cyan' )

This time we've created a more complex line with six

points.

Some of the additional arguments for create_line()  are

shown here:

Argument Values Description

arrow

FIRST ,

LAST , or

BOTH

If specified, will draw arrows at the end of the

line. Default is no value, indicating no arrows.

capstyle BUTT ,

PROJECTING ,

Specifies the style for the end of the line.

Default is BUTT .



or ROUND

dash
Tuple of

integers
Defines the dash style for the line.

joinstyle

ROUND ,

BEVEL , or

MITER

Specifies the style of corner joins. Default is

ROUND .

smooth Boolean

Whether to draw the line with spline curves

or straight lines. Default is False  (straight

lines).

tags
Tuple of

strings
Any number of tags to assign to the line.

Polygons

The Canvas  also allows us to draw arbitrary polygons; it

works in a similar fashion to lines, in which each coordinate

defines a point that will be connected to draw the outline of

the polygon. The difference is that the last point and the

first point will also be connected to form a closed shape.

Add a polygon to our demo script like so:

canvas.create_polygon( (350, 225), (350, 300), (375, 275), (400,

300), (425, 275), (450, 300), (450, 225), fill='blue' )

Note that, unlike with create_line() , the fill  argument

defines the color of the polygon's interior, not the color of

the outline. The appearance of the polygon's outline can be

configured using the same arguments that

create_rectangle()  and create_oval()  use.

Text



In addition to simple shapes, we can also place text directly

on the Canvas .

For example, let's add some text to our demo:

canvas.create_text( (500, 100), text='Insert a Quarter',

fill='yellow', font='TkDefaultFont 64' )

The single coordinate argument determines the point

where the text will be anchored to the Canvas . By default,

the text is attached at its own center point to the anchor

point. In this case, that means that the middle of our string

(somewhere around the "a") will be at x=500 , y=100 .

However, the anchor  argument can be used to specify which

part of the text item is attached to the anchor point; it can

be any of the cardinal direction constants ( N , NW , W , and so

on) or CENTER , which is the default.

The fill  argument in this case determines the color of the

text, and we can use font  to determine the font properties

of the text. Tkinter 8.6 and later also offers an angle

argument that can rotate the text by the given number of

degrees.

Images

Of course, we aren't limited to just drawing lines and

simple shapes on the Canvas ; we can also place raster

images using the create_image()  method. This method allows

us to place a PhotoImage  or BitmapImage  object on the Canvas ,

like so:

# simple_canvas_demo.py smiley = tk.PhotoImage(file='smile.gif')

canvas.create_image((570, 250), image=smiley)

As with text, the image is attached to the anchor coordinate

at its center by default, but the anchor  argument can be



used to change that to any side or corner of the image's

bounding box.

Tkinter widgets

The last thing we can place on the Canvas  is another Tkinter

widget. Of course, since the Canvas  is a widget, we can just

do this using a geometry manager like pack()  or grid() , but

we gain a lot more control if we add it as a Canvas  item

using create_window() .

To add a widget using create_window() , the widget need only

be a child of a widget on the same parent window as the

Canvas  widget. We can then pass a reference to the widget

to the method's window  argument. We can also specify a

width  and height  argument to determine the size of the

window area to which the widget will be added; the widget

will expand into that area by default.

For example, let's add a quit button to the demo:

quit = tk.Button( root, text='Quit', bg='black', fg='cyan',

font='TkFixedFont 24', activeforeground='black',

activebackground='cyan', command=root.quit )

canvas.create_window((100, 700), height=100, width=100,

window=quit)

Just as with text and images, the widget is anchored to the

given coordinate at its center by default, and the anchor

argument can be used to attach it at a side or corner

instead.

Canvas items and state

Note the use of the activeforeground  and activebackground

arguments in the code example above. Just like widgets,

Canvas  items can have various states set that can be used to



dynamically change the appearance. The table below shows

the available states for items, and what result they have:

State Trigger Result

normal Default Normal appearance

disabled Manual setting Disabled appearance

active Mouse hovers over Active appearance

hidden Manual setting Not shown

All drawn items (that is, not images) have state-based

versions of their fill , outline , dash , width , stipple , and

outlinestipple  arguments, which are simply the argument

with active  or disabled  prefixed to it. For example,

activefill  sets the fill  value when the item is hovered

over by the mouse, while disabledoutline  sets the outline

color when the item is set to a disabled  state. Image items

have disabledimage  and activeimage  arguments that can be

set to display a different image when the item is disabled or

active.

The active  state is automatically set when an item is

hovered over by the mouse; the disabled  and hidden  states

can be set using the Canvas.itemconfigure()  method, which is

discussed below in the Canvas object methods section.

Canvas object methods

Canvas  items are not represented by a Python object;

instead, the return value of any create_()  method is an



integer that uniquely identifies the item in the context of

the Canvas  object. To manipulate Canvas  items after they've

been created, we need to save that identification value and

pass it to various Canvas  methods.

For example, we could save the ID of the image we added,

then bind the image to a callback using the Canvas.tag_bind()

method:

# simple_canvas_demo.py image_item = canvas.create_image((570,

250), image=smiley) canvas.tag_bind( image_item, '<Button-1>',

lambda e: canvas.delete(image_item) )

Here, we've used the tag_bind()  method to bind a left-

mouse click on our image object to the Canvas 's delete()

method, which (when given an item identifier) deletes the

item.

The Canvas  object has many methods that can operate on a

Canvas  item; some of the more useful ones are listed in this

table:

Method Arguments Description

bbox() Item ID
Returns a tuple describing the

bounding box of the item.

coords()
Item ID,

coordinates

If only the ID is provided, returns the

coordinates of the item. Otherwise,

moves the item to the given

coordinates.

delete() Item ID Deletes the item from the Canvas .

find_overlapping()
Box

coordinates

Returns a list of item IDs that overlap

the box described by the coordinates.



itemcget() Item ID,

option

Returns the value of option  for the

given item.

itemconfigure()
Item ID,

option

Sets one or more configuration

options on the specified item.

move()
Item ID, X,

Y

Moves the item on the Canvas

relative to its current position by the

given X  and Y  amounts.

type() Item ID

Returns a string describing the type

of object (rectangle, oval, arc, and so

on).

Note that any of these methods that take an item ID can

also take a tag. Recall from Chapter 9, Improving the Look

with Styles and Themes, that a tag is just a string that can

be assigned to an item when created, allowing us to refer

to multiple items at once. The Canvas  has two tags built in

by default, all  and current . As you might expect, all  refers

to all items on the Canvas , and current  refers to the item

that currently has focus.

All create_()  methods allow the option of specifying a tuple

of tag strings to attach to the object.

By the way, if you haven't yet, add root.mainloop()  to the

demo script and execute it to see what we've drawn!

Scrolling the Canvas

As mentioned earlier, the width and height of a Canvas

widget determines the size of the viewport, but the actual

drawable area on the widget stretches endlessly out in all



directions. To actually see objects outside the viewport

area, we need to enable scrolling.

To see how this works, let's create a scrollable starfield;

open a new file called canvas_scroll.py  and let's begin like

so:

# canvas_scroll.py import tkinter as tk from random import

randint, choice # Create root and canvas root = tk.Tk() width =

1024 height = 768 canvas = tk.Canvas( root, background='black',

width=width, height=height, ) canvas.grid(row=0, column=0)

Here, we've imported tkinter  and some functions from

random , then created a root window and a Canvas  object with

a viewport size of 1024x768. Finally, we've placed the

Canvas  on the root window using grid() .

Now, let's draw some "stars":

colors = ['#FCC', '#CFC', '#CCF', '#FFC', '#FFF', '#CFF'] for _

in range(1000): x = randint(0, width * 2) y = randint(0, height *

2) z = randint(1, 10) c = choice(colors) canvas.create_oval((x -

z, y - z), (x + z, y + z), fill=c)

We begin by defining a list of color values, then start a for

loop that will iterate 1000 times. Inside the loop, we'll

generate random X  and Y  coordinates, a random size ( Z ),

and choose one of the colors at random. We'll then have the

Canvas  draw a circle centered on the random point filled

with the random color.

Notice that the ranges supplied for X  and Y  are double the

size of the Canvas  object. Because of this, the loop will be

creating circles out to the right and down from our

viewport area.

To enable scrolling of the Canvas , we first have to define a

scrollregion  value for it, like so:

canvas.configure(scrollregion=(0, 0, width * 2, height * 2))



The scrollregion  value is a tuple of four integers that

describe the bounding box of the area we want to be able

to scroll. Essentially, the first two integers are the X  and Y

coordinates of the upper-left corner of the box, and the

second two are the coordinates of the lower right.

To actually scroll the Canvas , we'll need some Scrollbar

widgets. We've already encountered these in Chapter 8,

Navigating Records with Treeview and Notebook,

remember that to use them we need to create the widgets,

add them to the layout, and connect the appropriate

callbacks so that the scrollbars can communicate with the

widget being scrolled.

Add the following code to the script:

xscroll = tk.Scrollbar( root, command=canvas.xview,

orient=tk.HORIZONTAL ) xscroll.grid(row=1, column=0,

sticky='new') yscroll = tk.Scrollbar(root, command=canvas.yview)

yscroll.grid(row=0, column=1, sticky='nsw')

canvas.configure(yscrollcommand=yscroll.set)

canvas.configure(xscrollcommand=xscroll.set)

Here, we've created two Scrollbar  widgets, one for

horizontal scrolling and one for vertical. We've added them

to the layout just below and to the right of the Canvas ,

respectively. Then, we connect each scrollbar's command

argument to the Canvas 's xview  or yview  method, and

configure the Canvas 's yscrollcommand  and xscrollcommand

arguments to call the respective scrollbar's set()  method.

Finish off this script with a call to root.mainloop()  and

execute it; you should see something like the picture here:



Figure 15.2: Scrolling through the stars!

A handy trick to properly configure the scroll region after

drawing runtime-defined points on the Canvas  (for

example, drawing based on user input) is to set

scrollregion  to the output of canvas.bbox('all')  after

creating the items. When passed a tag of all , the bbox()

method returns a bounding box that contains the entirety of

all items on the Canvas . You can set this value directly to

scrollregion  to make sure all your items can be viewed.

Animating Canvas objects



Tkinter's Canvas  widget doesn't have a built-in animation

framework, but we can still create simple animations by

combining its move()  method with our understanding of the

event queue.

To demonstrate this, we'll create a bug race simulator, in

which two bugs (represented by colored circles) will race

haphazardly toward a finish line on the other side of the

screen. Like real bugs, they won't have any notion that

they're in a race and will move relatively randomly, the

winner being whichever bug incidentally hits the finish line

first.

To begin, open a new Python file and start with a basic

object-oriented pattern, like so:

# bug_race.py import tkinter as tk class App(tk.Tk): def

__init__(self, *args, **kwargs): super().__init__(*args,

**kwargs) self.canvas = tk.Canvas(self, background='black')

self.canvas.pack(fill='both', expand=1) self.geometry('800x600')

App().mainloop()

This is just a simple OOP Tkinter boilerplate application

with a Canvas  object added to the root window. This will be

the basic platform on which we'll build our game code.

Setting up the playing field

Now that we have the basic framework, let's set up the

playing field. We want to be able to reset the playing field

after each round, so rather than doing this in the initializer,

we'll create a separate method called setup() , as follows:

def setup(self): self.canvas.left = 0 self.canvas.top = 0

self.canvas.right = self.canvas.winfo_width() self.canvas.bottom

= self.canvas.winfo_height() self.canvas.center_x =

self.canvas.right // 2 self.canvas.center_y = self.canvas.bottom

// 2 self.finish_line = self.canvas.create_rectangle(

(self.canvas.right - 50, 0), (self.canvas.right,

self.canvas.bottom), fill='yellow', stipple='gray50' )



The setup()  method begins by calculating some relative

locations on the Canvas  object and saving them as instance

properties, which will simplify the placement of objects on

the Canvas  object. Calculating these at runtime means we

can resize the window between rounds for a longer or

shorter racecourse.

The finish line is implemented as a rectangle across the

right edge of the window. Note the use of the stipple

argument to specify a bitmap that will overlay the solid

color to give it some texture; in this case, gray50  is a built-

in bitmap that alternates filled and transparent pixels. This

gives us something a little more interesting than a flat

color.

Add a call to setup()  at the end of App.__init__()  as follows:

# bug_race.py, in App.__init__() self.canvas.wait_visibility()

self.setup()

Because setup()  relies on the width and height values of

the Canvas  object, we need to make sure it isn't called until

the operating system's window manager has drawn and

sized the window. The simplest way of doing this is to call

wait_visibility()  on the Canvas  object, which will block

execution until the object has been drawn.

Setting our players

Now that we have the playing field, we need to create our

players. We'll create a Racer  class to represent a player;

start it like so:

# bug_race.py class Racer: def __init__(self, canvas, color):

self.canvas = canvas self.name = f"{color.title()} player" size =

50 self.id = canvas.create_oval( (canvas.left, canvas.center_y),

(canvas.left + size, canvas.center_y + size), fill=color )



The Racer  class will be created with a reference to the

Canvas  object and a color string, from which its color and

name will be derived. We'll draw the racer initially at the

middle left of the screen and make it 50 pixels in size.

Finally, we save a reference to its item ID string in self.id .

Now, back in App.setup() , we'll create two racers by adding

the following:

# bug_race.py, in App.setup() self.racers = [ Racer(self.canvas,

'red'), Racer(self.canvas, 'green') ]

At this point, all the objects in our game are set up. Run the

program and you should see a yellow-stippled finish line on

the right and a green circle on the left (the red circle will

be hidden under the green, since they're at the same

coordinates).

Animating the racers

To animate our racers, we're going to use the Canvas.move()

method. As we learned earlier, move()  takes an item ID, a

number of X  pixels, and a number of Y  pixels, and moves

the item by that amount. By combining this with the

random.randint()  function and some simple logic, we can

generate a series of moves that will send each racer on a

meandering path toward the finish line.

A simple implementation may look like this:

from random import randint # inside Racer def move_racer(self): x

= randint(0, 100) y = randint(-50, 50) t = randint(500, 2000)

self.canvas.after(t, self.canvas.move, self.id, x, y) if

self.canvas.bbox(self.id)[0] < self.canvas.right:

self.canvas.after(t, self.move_racer)

This method generates a random forward X  movement, a

random up-or-down Y  movement, and a random time

interval. We then use the after()  method to schedule a call



to move()  for the generated X  and Y  movements after the

random time interval. The if  statement determines

whether the racer's bounding box is currently at or beyond

the right side of the screen; if this test evaluates to False ,

we schedule another call to move_racer() .

This method gets the racers to the finish line, but it isn't

quite what we want. The problem is that move()  acts

instantaneously, causing the bug to jump across the screen

in jerky movements rather than moving smoothly.

To make the bugs move smoothly, we're going to need to

take a more complex approach:

1. First, we'll calculate a series of linear moves, each with

a random delta x , delta y , and interval, that will reach

the finish line

2. Then, we'll break each individual move into a number

of steps determined by dividing the movement interval

into a regular animation frame interval

3. Next, we'll add each step of each movement to a queue

4. Finally, we'll call a method once each animation frame

interval that will pull the next step from the queue and

pass it to move()

Let's start by defining our frame interval; in the Racer  class,

create a class attribute for this:

class Racer: FRAME_RES = 50

FRAME_RES  (short for frame resolution) defines the number of

milliseconds between each Canvas.move()  call. 50

milliseconds gives us 20 frames per second and should be

sufficient for smooth movements.



Next, we need to import the Queue  class and create an

instance inside the Racer  object's initializer:

# bug_race.py, at top from queue import Queue # inside

Racer.__init__() self.movement_queue = Queue()

Now, we will create the method that will plot the course to

the finish line:

# bug_race.py, inside Racer def plot_course(self): start_x =

self.canvas.left start_y = self.canvas.center_y total_dx,

total_dy = (0, 0) while start_x + total_dx < self.canvas.right:

dx = randint(0, 100) dy = randint(-50, 50) target_y = start_y +

total_dy + dy if not (self.canvas.top < target_y <

self.canvas.bottom): dy = -dy total_dx += dx total_dy += dy time

= randint(500, 2000) self.queue_move(dx, dy, time)

This method plots a course from the left center of the

Canvas  to a random point on the right side by generating

random x  and y  movements until the total change in x  is

greater than the width of the Canvas  object. The change in

x  will always be positive, keeping our bugs moving toward

the finish line, but the change in y  can be positive or

negative, to allow both upward and downward movement.

To keep our bugs on the screen, we constrain the total y

movements by negating any change in y  that would put the

player outside the top or bottom bounds of the Canvas .

In addition to the random dx  and dy  values, we generate a

random time interval for the move to take, between half a

second and two seconds. Finally, the generated dx , dy , and

time  values are passed to a queue_move()  method.

The queue_move()  method will need to break the large move

into individual frames of movement that describe how the

racer should move in one FRAME_RES  interval. To make this

calculation, we will need a partition function, a

mathematical function that will break an integer N  into K

approximately equal integers. For example, if we wanted to



break -10  into four parts, our function should return a list

like [-2, -2, -3, -3] .

Let's create partition()  as a static method on Racer :

# bug_race.py, inside Racer @staticmethod def partition(n, k):

"""Return a list of k integers that sum to n""" if n == 0: return

[0] * k

We start the method with the easy case: when n  is 0 ,

return a list of k  zeros.

Now, we'll deal with the more complicated cases:

base_step = n // k parts = [base_step] * k for i in range(n % k):

parts[i] += 1 return parts

For a non-zero n , we first calculate the base_step  by

dividing n  by k  using floor division, which rounds our

result down to the nearest integer. Then, we create a list of

length k  that is made up of base_step  values. Next, we need

to distribute the remainder of n / k  among this list as

evenly as we can. To accomplish this, we will add 1 to the

first n % k  items in the parts list.

Follow the math here using our example of n = -10  and k =

4 :

The base step is calculated as -10 / 4 = -3  (remember,

floor division always rounds down, so -2.5  gets

rounded to -3 ).

We then create a list of four base step values: [-3, -3,

-3, -3] .

-10 % 4 = 2 , so we add 1  to the first two items in the

list.

We arrive at an answer of [-2, -2, -3, -3] . Perfect!



Operations like this partition function are part of discrete

mathematics, a branch of mathematics that deals with

operations on whole numbers. Discrete mathematics is

often used for solving spatial problems such as those

encountered in drawing and animation.

Now that we have the partition method, we can write the

queue_move()  method:

def queue_move(self, dx, dy, time): num_steps = time //

self.FRAME_RES steps = zip( self.partition(dx, num_steps),

self.partition(dy, num_steps) ) for step in steps:

self.movement_queue.put(step)

We first determine the necessary number of steps in this

move by dividing the time interval by FRAME_RES  using floor

division. We then create a list of X  moves and a list of Y

moves by passing dx  and dy  each to our partition()

method. Those two lists are combined with zip()  to form a

single list of (dx, dy)  pairs, which we iterate to add each

pair to the animation queue.

To make the animation actually happen, we'll need a

method to check the queue and make each move; we'll call

it next_move() :

def next_move(self): if not self.movement_queue.empty(): nextmove

= self.movement_queue.get() self.canvas.move(self.id, *nextmove)

The next_move()  method first checks the queue for a

movement step. If there is one, canvas.move()  is called with

the racer's ID and the X  and Y  values for the step. When

the game starts, this method will be called repeatedly from

the App  object until one of the racers has won.

Finally, we need to add a call to plot_course()  to the Racer

class's initializer, like so:

# bug_race.py, at the end of Racer.__init__() self.plot_course()



Thus, as soon as a Racer  object is created, it will plot the

course to the finish line, and wait for the App  class to tell it

to move.

Running the game loop and detecting a win

condition

To actually run the game, we need to start a game loop. Of

course, we know from Chapter 14, Asynchronous

Programming with Thread and Queue, that we can't simply

use a Python for  or while  loop, since this would block

Tkinter drawing operations and simply make the game

freeze up until it was over. Instead, we need to create a

method that executes a single "frame" of the game

animation, then schedules itself on the Tkinter event loop

to run again.

That method begins like this:

# bug_race.py, inside App def execute_frame(self): for racer in

self.racers: racer.next_move()

It begins by iterating through the racer objects and

executing their next_move() methods. After moving each

racer, our next step is to determine if one of them has

crossed the finish line and won.

To detect this condition, we need to check whether a racer

is overlapping with the finish line item.

Collision detection between items is slightly awkward with

the Tkinter Canvas  widget. We have to pass a set of

bounding box coordinates to find_overlapping() , which

returns a tuple of item identifiers that overlap with the

bounding box.

Let's create an overlapping()  method for our Racer  class:



# bug_race.py, inside Racer @property def overlapping(self): bbox

= self.canvas.bbox(self.id) overlappers =

self.canvas.find_overlapping(*bbox) return [x for x in

overlappers if x!=self.id]

This method retrieves the bounding box of the Racer  item

using the Canvas 's bbox()  method. It then fetches a tuple of

items overlapping this bounding box using

find_overlapping() . Since this would include the ID of the

Racer  item itself, we'll filter that out of the tuple using a list

comprehension. The result is a list of items overlapping

with this Racer  object's Canvas  item. Since this method

doesn't require any arguments and only returns a value,

we've made it a property.

Back in our execute_frame()  method, we'll check each racer

to see if it has crossed the finish line:

# bug_race.py, inside App def execute_frame(self): for racer in

self.racers: racer.next_move() if self.finish_line in

racer.overlapping: self.declare_winner(racer) return

self.after(Racer.FRAME_RES, self.execute_frame)

If the finish_line  ID is in the list returned by the racer's

overlapping()  method, the racer has hit the finish line and

will be declared the winner by calling a declare_winner()

method and returning from the method.

If no player was declared the winner, the execute_frame()

method is scheduled to run again after Racer.FRAME_RES

milliseconds. This effectively implements a game loop using

the Tkinter event loop, which will run until one racer wins.

We handle a win condition in the declare_winner()  method:

def declare_winner(self, racer): wintext =

self.canvas.create_text( (self.canvas.center_x,

self.canvas.center_y), text=f'{racer.name} wins!\nClick to play

again.', fill='white', font='TkDefaultFont 32',



activefill='violet' ) self.canvas.tag_bind(wintext, '<Button-1>',

self.reset)

In this method, we've just created a text item declaring

racer.name  as the winner in the center of the Canvas . The

activefill  argument causes the color to appear violet when

the mouse is hovered over it, indicating to the user that this

text is clickable.

When that text is clicked, it calls the reset()  method:

def reset(self, *args): self.canvas.delete('all') self.setup()

The reset()  method needs to clear off the Canvas , so it calls

the delete()  method with an argument of all . Remember

that all  is a built-in tag that applies to all items on the

Canvas , so this line effectively deletes all Canvas  items. Once

the Canvas  is clear, we call setup()  to reset and restart the

game.

The last thing we need to do is make sure the game starts

whenever setup()  is called. To do that, add a call to

execute_frame()  to the end of setup() :

# bug_race.py, in App.setup() def setup(): # ...

self.execute_frame()

The game is now complete; run the script and you should

see something like this:



Figure 15.3: The bug race game. Red wins!

While not exactly simple, animation in Tkinter can provide

smooth and satisfactory results with some careful planning

and a bit of math. Enough games, though; let's get back to

the lab and figure out how to use the Tkinter Canvas  widget

to visualize data.

Creating simple graphs

using Canvas



The first graph we want to produce is a simple line graph

that shows the growth of our plants over time. Each lab has

varying climate conditions, and we want to see how those

conditions are affecting the growth of all plants, so the

chart will have one line per lab showing the average of the

median height measurements for all plots in the lab over

the days of the experiment.

We'll start by creating a model method to return the raw

data, then create a Canvas -based line-chart view, and finally

create an application callback to pull the data and send it

to the chart view.

Creating the model method

Working with another data analyst at ABQ, you develop a

SQL query that determines the day number of a plot check

by subtracting its date from the oldest date in the

plot_checks  table, then pulls lab_id  and the average of

median_height  for all plants in the given lab on the given day.

The query looks like this:

SELECT date - (SELECT min(date) FROM plot_checks) AS "Day",

lab_id, avg(median_height) AS "Average Height (cm)" FROM

plot_checks GROUP BY date, lab_id ORDER BY "Day", lab_id;

The query returns a table of data that looks something like

this:

Day lab_id Average Height (cm)

0 A 1.4198750000000000

0 B 1.3320000000000000



0 C 1.5377500000000000

1 A 1.7266250000000000

1 B 1.8503750000000000

1 C 1.4633750000000000

Using this query, let's create a new SQLModel  method called

get_growth_by_lab()  to return the needed data:

# models.py, inside SQLModel def get_growth_by_lab(self): query =

( 'SELECT date - (SELECT min(date) FROM plot_checks) AS "Day", '

'lab_id, avg(median_height) AS "Avg Height (cm)" ' 'FROM

plot_checks ' 'GROUP BY date, lab_id ORDER BY "Day", lab_id;' )

return self.query(query)

This is a fairly straightforward method; it just runs the

query and returns the results. Recall that the

SQLModel.query()  method returns results as a list of

dictionaries; in this case, each of the dictionaries contains

three fields: Day , lab_id , and Avg Height (cm) . Now we just

need to develop a chart view that can visualize this data for

the user.

Creating the chart view

The chart view we're going to create will need to take the

data structure from our model method and use it to plot a

line chart. Head over to views.py , where we'll create the

LineChartView  class:

# views.py class LineChartView(tk.Canvas): """A generic view for

plotting a line chart""" margin = 20 colors = [ 'red', 'orange',

'yellow', 'green', 'blue', 'purple', 'violet' ]



LineChartView  is a subclass of Canvas , so we'll be able to draw

items directly on it. This view will not only contain the data

plots, but the axes, labels, and legend as well. It will be

constructed for re-usability, so we're going to design it

without any specific reference to the data we're charting in

this instance. Ideally, we'd like to be able to send arbitrary

datasets to it to generate line graphs. The two class

attributes defined here provide a default value for the

margin  around the chart (in pixels) and a list of colors  to

use for each subsequent line plot. The growth chart we're

making only has three plots (one for each lab), but the

additional colors allow us to specify up to seven. You could

provide additional colors in this list if you wanted to use it

for charts with more than seven plots.

Now, we'll begin the initializer method:

# views.py, inside LineChartView def __init__( self, parent,

data, plot_size, x_field, y_field, plot_by_field ): self.data =

data self.x_field = x_field self.y_field = y_field

self.plot_by_field = plot_by_field

Apart from the usual parent widget argument, we've

specified these additional positional arguments:

data  will be our list of dictionaries containing the data

from the query.

plot_size  will be a tuple of integers specifying the width

and height of the plot area in pixels.

x_field  and y_field  will be the field names to use for

the X  and Y  values of the plot. For the growth chart

this will be Day  and Avg Height (cm) , respectively.

plot_by_field  will be the field whose value will be used

to categorize the rows into individual plots. For the

growth chart, this will be lab_id , since we want one

line plot for each lab.



All these values are stored to instance variables so we can

access them from our methods.

We're going to implement the plot area of this widget as a

second Canvas  placed on the LineChartView . The size of the

LineChartView  then will need to be the size of the chart plus

the margins around the outside where the axes and labels

will be drawn. We'll calculate that size, then pass it to the

LineChartView  superclass initializer, as follows:

self.plot_width, self.plot_height = plot_size view_width =

self.plot_width + (2 * self.margin) view_height =

self.plot_height + (2 * self.margin) super().__init__( parent,

width=view_width, height=view_height, background='lightgrey' )

Note that we've saved the plot area's width and height as

instance variables, as we'll need them in some of our

methods.

Now that we've initialized the superclass, we can begin

drawing on the main Canvas ; to begin, let's draw the axes:

self.origin = (self.margin, view_height - self.margin) # X axis

self.create_line( self.origin, (view_width - self.margin,

view_height - self.margin) ) # Y axis self.create_line(

self.origin, (self.margin, self.margin), width=2 )

Our chart's origin will be self.margin  pixels from the

bottom-left corner, and we'll draw the X  and Y  axes as

simple black lines moving right and up from the origin to

the edge of the chart. Remember that the Canvas  Y

coordinates count down from the top, not up from the

bottom, so the Y  coordinate for the origin is the height of

the view area minus the margin.

Next, we'll label the axes:

self.create_text( (view_width // 2, view_height - self.margin),

text=x_field, anchor='n' ) self.create_text( (self.margin,

view_height // 2), text=y_field, angle=90, anchor='s' )



Here, we're creating the text items set to the labels for the

X  and Y  axes, using the field names passed into the object

for the text labels. Note the use of anchor  to set which side

of the text's bounding box is attached to the coordinates

provided. In the case of the X  axis, for instance, we've

specified n  (north), so the top of our text will be under the

X -axis line. For the Y -axis label, we want the text to be

sideways, so we've specified angle=90  to rotate it. Also, note

that we've used south ( s ) as the anchor  position for the

rotated text; even though it's rotated, the cardinal

directions here are relative to the object before rotation.

Thus, "south" will always be the bottom of the text as

normally written, even if the object is rotated.

With the axes labeled, we need to create a second Canvas

that will contain the plot area:

self.plot_area = tk.Canvas( self, background='#555',

width=self.plot_width, height=self.plot_height )

self.create_window( self.origin, window=self.plot_area,

anchor='sw' )

This Canvas  object is where the actual plots will be drawn.

While we could draw our plots on the LineChartView  directly,

embedding a second Canvas  makes it easier to calculate the

coordinate points for the plot, since we won't have to factor

in the margin. It also allows us to use a different

background color for a nicer look.

Before we can draw data on the chart, we need to create a

method that can do so. Let's create a private instance

method called _plot_line()  to draw a single line plot on the

chart, which begins like this:

def _plot_line(self, data, color): max_x = max([row[0] for row in

data]) max_y = max([row[1] for row in data]) x_scale =

self.plot_width / max_x y_scale = self.plot_height / max_y



This method will receive a data  argument containing the X

and Y  points for the line as a list of tuples. Since our chart

is a fixed number of pixels, and our data values may have

any arbitrary range, the first thing we need to do is scale

the data to fit just inside the size of our chart. To do this,

we first find the maximum values of the X  and Y  fields,

then create a scaling ratio for each axis by dividing the set

height of the chart by the maximum value (note that this

assumes the minimum value is 0. This particular chart class

isn't designed to handle negative values).

Once we have the scale values, we can then transform our

data points to coordinates by using a list comprehension

that multiplies each data point by the scale value, as

follows:

coords = [ (round(x * x_scale), self.plot_height - round(y *

y_scale)) for x, y in data ]

Note that we are rounding the values, since we can't plot to

fractional pixel values. Also, once again, since data is

usually graphed with the origin in the bottom left, but

coordinates on the Canvas  measure from the top left, we'll

need to flip the Y  coordinates; this is done in our list

comprehension as well by subtracting the new Y  value

from the plot height.

These coordinates can now be passed to create_line()  along

with a reasonable width and the color argument passed in

by the caller, like so:

self.plot_area.create_line( *coords, width=4, fill=color,

smooth=True )

Note that we've also used the smooth  argument to round out

the curve a bit and make it appear more organic.



To use this method, we need to head back to the initializer

and do some calculations. Since the _plot_line()  method

only handles one plot at a time, we'll need to filter out our

data by the plot_by_field  field and render the lines one at a

time.

Add this code at the end of LineChartView.__init__() :

# views.py, in LineChartView.__init__() plot_names = sorted(set([

row[self.plot_by_field] for row in self.data ])) color_map =

list(zip(plot_names, self.colors))

First, we get the individual plot names by retrieving the

unique plot_by_field  values from the data. These are sorted

and cast to a set  object so that we only have the unique

values. Then, we create a color mapping using zip()  to

build a list of name-to-color tuples. Since zip()  returns a

generator and we're going to want to use this map more

than once, it's cast to a list  object.

Now, let's plot our lines:

for plot_name, color in color_map: dataxy = [ (row[x_field],

row[y_field]) for row in data if row[plot_by_field] == plot_name

] self._plot_line(dataxy, color)

For each distinct plot name and color, we first format the

data into a list of ( X , Y ) pairs using a list comprehension.

Then we call _plot_line()  with the data and the color. Our

lines are now plotted!

One last thing we need is a legend, to tell the user what

each color on the chart represents. Without that, this chart

would be meaningless to the user. To create it, we'll write a

_draw_legend()  method:

# views.py, inside LineChartView def _draw_legend(self,

color_map): for i, (label, color) in enumerate(color_map):

self.plot_area.create_text( (10, 10 + (i * 20), text=label,

fill=color, anchor='w' )



Our method takes the color map list that we created in the

initializer and iterates over it, using the enumerate()  function

to also generate an incrementing number for each

iteration. For each mapping, we simply draw a text item

containing the label text with the associated fill color. This

is drawn starting at ten pixels from the top-left corner of

the chart, with each item twenty pixels below the last.

Finally, let's call this method from the initializer:

# views.py, inside LineChartView.__init__()

self._draw_legend(color_map)

The LineChartView  is ready to go; now we just need to create

the supporting code to invoke it.

Updating the application

Back in the Application  class, create a new method for

showing our chart:

# application.py, in Application def show_growth_chart(self, *_):

data = self.model.get_growth_by_lab() popup = tk.Toplevel() chart

= v.LineChartView( popup, data, (800, 400), 'Day', 'Avg Height

(cm)', 'lab_id' ) chart.pack(fill='both', expand=1)

The first order of business is to fetch the data from our

get_growth_by_lab()  method. Then, we build a TopLevel  widget

to hold our LineChartView  object. On this widget, we add the

LineChartView  object, configuring it to be 800  by 400  pixels

and specifying the fields for X  ( Day ), Y  ( Avg Height (cm) ),

and the plot_by_field  value ( lab_id ). This chart gets packed

into the Toplevel .

The Toplevel  widget creates a new, blank window outside

the root window. You should use it as a base for new

windows that aren't simple dialogs or message boxes.



With this method complete, add it to the event_callbacks

dictionary in the Application  initializer:

# application.py, inside Application.__init__() event_callbacks =

{ #... '<<ShowGrowthChart>>': self.show_growth_chart }

Finally, we need to add a menu item to launch the chart.

Add the following method to the GenericMainMenu  class:

def _add_growth_chart(self, menu): menu.add_command( label='Show

Growth Chart', command=self._event('<<ShowGrowthChart>>') )

Then use this method in each menu class's _build_menu()

method to add this option to the Tools menu. For example:

# mainmenu.py, in any class's _build_menu() method

self._add_growth_chart(self._menus['Tools'])

When you call your function, you should see something like

this:

Figure 15.4: The growth chart on Ubuntu Linux



Your graph won't look like much without some sample data.

Unless you just like doing data entry, there is a script for

loading sample data in the sql  directory. Run this script

against your database before testing your chart.

Advanced graphs using

Matplotlib

Our line graph is pretty, but it still needs considerable work

to be a truly professional-looking visualization: it lacks a

scale, grid lines, zoom capabilities, and other features that

would make it a completely useful chart.

We could spend a lot of time making it more complete, but

there's a faster way to get much more satisfactory graphs

and charts in our Tkinter application: Matplotlib.

Matplotlib is a third-party Python library for generating

professional-quality, interactive graphs of all types. It's a

vast library with many add-ons, and we won't cover much

of its actual usage, but we will look at how to integrate

Matplotlib charts into a Tkinter application. To demonstrate

this, we'll create a bubble chart showing the yield of each

plot as it relates to humidity and temperature.

You should be able to install the matplotlib  library using pip

with this command:

$ pip install --user matplotlib

For complete instructions on installation, please see

https://matplotlib.org/users/installing.html.

https://matplotlib.org/users/installing.html


Data model method

Before we can make a chart, we'll need another SQLModel

method to extract the data for the chart. Once again, you've

been provided with a SQL query that returns the required

data:

SELECT seed_sample, MAX(fruit) AS yield, AVG(humidity) AS

avg_humidity, AVG(temperature) AS avg_temperature FROM

plot_checks WHERE NOT equipment_fault GROUP BY lab_id, plot,

seed_sample

The purpose of this chart is to find the sweet spot of

temperature and humidity for each seed sample. Therefore,

we need one row per plot that includes the maximum fruit

measurement, average humidity and temperature at the

plot column, and the seed sample. Since we don't want any

bad data, we'll filter out rows that have an Equipment

Fault.

The query returns data that looks something like this:

seed_sample yield avg_humidity avg_temperature

AXM480 11 27.7582142857142857 23.7485714285714286

AXM480 20 27.2146428571428571 23.8032142857142857

AXM480 15 26.2896428571428571 23.6750000000000000

AXM478 31 27.2928571428571429 23.8317857142857143

AXM477 39 27.1003571428571429 23.7360714285714286

AXM478 39 26.8550000000000000 23.7632142857142857



To provide this data to the application, let's put the query

into another model method called get_yield_by_plot() :

# models.py, in SQLModel def get_yield_by_plot(self): query = (

'SELECT seed_sample, MAX(fruit) AS yield, ' 'AVG(humidity) AS

avg_humidity, ' 'AVG(temperature) AS avg_temperature ' 'FROM

plot_checks WHERE NOT equipment_fault ' 'GROUP BY lab_id, plot,

seed_sample' ) return self.query(query)

That's all the model needs, so let's move on to the views.

Creating the bubble chart view

To integrate Matplotlib into a Tkinter application, there are

several module imports we need to make into views.py .

The first is matplotlib  itself:

import matplotlib matplotlib.use('TkAgg')

It may seem odd to execute methods in the import section

of a script, and your code editor or IDE may even complain

about it. According to Matplotlib's documentation, though,

use()  should be called before other modules are imported

from matplotlib  to tell it which rendering backend it should

use. In this case, we want the TkAgg  backend, which is

made to integrate into Tkinter.

Matplotlib has backends for a variety of GUI toolkits such

as PyQt, wxWidgets, and Gtk3, as well as backends for non-

GUI situations (for example, rendering plots directly to a

file) like SVG rendering or web usage. See the

documentation at

https://matplotlib.org/stable/api/index_backend_api

.html for more details.

https://matplotlib.org/stable/api/index_backend_api.html


Now that we've set the backend, we can import a few other

items from matplotlib :

from matplotlib.figure import Figure from

matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg,

NavigationToolbar2Tk )

The Figure  class represents the basic drawing area on

which matplotlib  charts can be drawn. The FigureCanvasTkAgg

class is an interface between the Figure  and the Tkinter

Canvas , and NavigationToolbar2Tk  allows us to place a pre-

made navigation toolbar for the Figure  object on our GUI.

To see how these fit together, let's start our YieldChartView

class in views.py :

# views.py class YieldChartView(tk.Frame): def __init__(self,

parent, x_axis, y_axis, title): super().__init__(parent)

self.figure = Figure(figsize=(6, 4), dpi=100) self.canvas_tkagg =

FigureCanvasTkAgg(self.figure, master=self)

After calling the superclass initializer to create the Frame

object, we create a Figure  object to hold our chart. Instead

of a size in pixels, the Figure  object takes a size in inches

and a dots-per-inch ( dpi ) setting. In this case, our

arguments of 6 by 4 inches and 100 dots per inch result in

a 600-by-400-pixel Figure  object. Next, we create a

FigureCanvasTkAgg  object that will be used to connect our

Figure  object with a Tkinter Canvas .

The FigureCanvasTkAgg  object is not itself a Canvas  object or

subclass, but it contains a Canvas  object we can place in our

application. A reference to this Canvas  object can be

retrieved using the FigureCanvasTkAgg  object's get_tk_widget()

method. We'll go ahead and get a reference to the Canvas

and pack it into the YieldChartView  widget:

canvas = self.canvas_tkagg.get_tk_widget()

canvas.pack(fill='both', expand=True)



Next, we'll add the toolbar and attach it to our

FigureCanvasTkAgg  object:

self.toolbar = NavigationToolbar2Tk(self.canvas_tkagg, self)

Note that we don't need to use a geometry manager to add

the toolbar; instead we just pass the FigureCanvasTkAgg  object

and the parent widget ( self , which is our YiedChartView

object in this case) to the toolbar's initializer, and this will

attach it to our Figure .

The next step is to set up the axes:

self.axes = self.figure.add_subplot(1, 1, 1)

self.axes.set_xlabel(x_axis) self.axes.set_ylabel(y_axis)

self.axes.set_title(title)

In matplotlib , an Axes  object represents a single set of X

and Y  axes on which data can be plotted, and is created

using the Figure.add_subplot()  method. The three integers

passed to add_subplot()  establish that this is the first set of

axes out of one row of one column of subplots. Our figure

could conceivably contain multiple subplots arranged in a

table-like format, but we only need one, thus we're passing

all 1s here. After it's created, we set the labels on the Axes

object.

To create a bubble chart, we're going to use the scatter

plot feature of Matplotlib, using the size of each dot to

indicate the fruit yield. We'll also color code the dots to

indicate which seed sample the data point represents.

Let's implement a method to draw our scatter plots:

def draw_scatter(self, data, color, label): x, y, size =

zip(*data) scaled_size = [(s ** 2)//2 for s in size] scatter =

self.axes.scatter( x, y, scaled_size, c=color, label=label,

alpha=0.5 )



The data passed in should contain three columns per

record, and we're breaking those out into three separate

lists containing the x , y , and size  values. Next, we're

going to amplify the differences between the size  values to

make them more apparent by squaring each value then

dividing it by two. This isn't strictly necessary, but it helps

make the chart more readable when differences are

relatively small.

Finally, we draw the data onto the axes  object by calling

scatter() , also passing along the color and label values for

the dots, and making them semi-transparent with the alpha

argument.

zip(*data)  is a Python idiom for breaking a list of n-

length tuples into n lists of values, essentially the reverse of

zip(x, y, s) .

To draw a legend for our Axes  object, we need two things: a

list of our scatter objects and a list of their labels. To get

these, we'll have to create a couple of blank lists in

__init__()  and append the appropriate values to them

whenever draw_scatter()  is called.

In __init__() , add some empty lists:

# views.py, in YieldChartView.__init__() self.scatters = list()

self.scatter_labels = list()

Now, at the end of draw_scatter() , append the lists and

update the legend()  method:

# views.py, in YieldChartView.draw_scatter()

self.scatters.append(scatter) self.scatter_labels.append(label)

self.axes.legend(self.scatters, self.scatter_labels)



Note that we can call legend()  repeatedly and it will simply

destroy and redraw the legend each time.

Updating the Application class

Back in Application , let's create the method to show our

yield data chart.

Start by creating a method to display a Toplevel  widget

with our chart view:

# application.py, inside Application def show_yield_chart(self,

*_): popup = tk.Toplevel() chart = v.YieldChartView( popup,

'Average plot humidity', 'Average plot temperature', 'Yield as a

product of humidity and temperature' ) chart.pack(fill='both',

expand=True)

Now let's set up the data for our scatters:

data = self.data_model.get_yield_by_plot() seed_colors = {

'AXM477': 'red', 'AXM478': 'yellow', 'AXM479': 'green', 'AXM480':

'blue' }

We've retrieved the yield data from the data model and

created a dictionary that will hold the colors we want to

use for each seed sample. Now we just need to iterate

through the seed samples and draw the scatters:

for seed, color in seed_colors.items(): seed_data = [

(x['avg_humidity'], x['avg_temperature'], x['yield']) for x in

data if x['seed_sample'] == seed ] chart.draw_scatter(seed_data,

color, seed)

Once again, we're formatting and filtering down our data

using a list comprehension, providing average humidity for

x , average temperature for y , and yield for s .

Add the method to the callbacks dictionary and create a

menu item for it just under the growth chart option.



Your bubble chart should look something like this:

Figure 15.5: Our scatter plot showing how seed samples performed under

different conditions Take a moment to play with this chart using the navigation

toolbar. Notice how you can zoom and pan, adjust the size of the chart, and

save the image. These powerful tools are provided by Matplotlib automatically,

and make for very professional-looking charts.

This wraps up our charting needs for the time being, but as

you've seen it's quite simple to integrate Matplotlib's

powerful charts and graphs into our application. And, of

course, with enough effort, the sky is the limit with

generating visualizations using the Canvas  widget.

Summary



In this chapter, you learned about Tkinter's graphical

capabilities. You learned about the Canvas  widget, and how

to draw shapes, lines, images, text, and widgets on it. You

implemented animations on the Canvas  by queuing item

movements in the Tkinter event queue. You implemented a

simple line chart class using a plain Canvas  to provide basic

data visualization for SQL query results. Finally, you

learned how to integrate the powerful Matplotlib library

with its wide variety of charts and graphs into your

application.

In the next chapter, we'll learn how to package up our

application for distribution. We'll learn how to arrange the

directory for distribution as Python code, and how to use

third-party tools to create executables across Windows,

macOS, and Linux.



16

Packaging with setuptools and cxFreeze

Word of your application has spread throughout the ABQ

corporation, and you've been asked to provide it for use at other

facilities. Unfortunately, running and installing the application is

not a very friendly process; you've been installing it through a

tedious and error-prone copy-and-paste procedure, and users

launch it from a batch or shell script you create by hand on each

machine. You need to package your application in a professional

way that makes it easy to install and run across Windows,

macOS, and Linux.

In this chapter, you will learn the following topics:

In Creating distributable packages with setuptools, you'll

learn to create distributable Python source and wheel

packages using the setuptools  library.

In Creating executables with cx_Freeze, you'll learn to

create a standalone executable of your application,

including specific instructions for Windows and macOS.

Creating distributable

packages with setuptools

The distribution process has often been cited as a major

shortcoming for Python; it is an area with a storied history of

ever-evolving tools and approaches, often caught between the

vestiges of the past and competing visions of the future.



That said, it works surprisingly well, as evidenced by the ease

with which we have installed components using pip  throughout

this book. The aim of this section is to cut through some of the

confusion and provide you with a process that respects both

traditional approaches and future trends.

The standard library contains the distutils  library, a collection

of functionalities related to packaging and distributing Python

code. However, both the distutils  documentation

(https://docs.python.org/3/library/distutils.html) and

the official packaging guide recommend against using it and

instead direct you to use setuptools .

The setuptools  library is an extension of the distutils  library

that adds some important functionality such as dependency

handling, bundling non-Python files, and generation of

executables. Although setuptools  is not part of the standard

library, it is included in the official Python distributions for

Windows and macOS, and is readily available from the package

repositories of most Linux distributions. setuptools  is used by

the pip  package installer, and we can use it to create packages

that can be installed on any system with Python and pip .

If you want to create packages that can be uploaded to PyPI,

setuptools  is what you need. For more information about

preparing and uploading packages to PyPI, see the official Python

packaging guide at https://packaging.python.org.

Preparing our package for distribution

Although the restructuring of our project directory we did in

Chapter 6, Planning for the Expansion of Our Application, left us

in fairly good shape for packaging our application, there are a

few minor additions and changes we need to make for our

Python package to be a good citizen as a distributed package.

Let's go through what those are.

https://docs.python.org/3/library/distutils.html
https://packaging.python.org/


Creating a requirements.txt file

The requirements.txt  file is a plaintext file, typically placed in the

application root directory, that lists all the third-party modules

that we used to develop our application. Although not used by

setuptools , this file can be used by pip  to install a package's

dependencies.

Create a requirements.txt  file that contains the following:

# requirements.txt 

--index-url https://pypi.python.org/simple/ 

# Runtime: 

Requests 

Paramiko 

psycopg2 

matplotlib 

# for testing REST: 

flask 

The first line of the file specifies the index from which we want

to install packages; strictly speaking, this line isn't necessary

since PyPI will be used by default. However, we can override

this URL if we want to use a different package index; for

example, if ABQ decided to create its own private Python

package index for security reasons, we could redirect pip  to

that server instead.

Next, we've specified runtime requirements. Our application

depends on four external libraries: requests , paramiko , psycopg2 ,

and matplotlib , and these are simply specified one per line. Note

that we can also add comments to the file by beginning a line

with a #  sign.

Finally, we've included flask  as a requirement, which is not

used by the application but was required by the test service we

used for REST. It might seem odd to include these kinds of

requirements, but the purpose of the requirements.txt  file is to

make it simple for other developers (including your future self)

to reproduce the development environment for this application.



You might choose to place non-runtime requirements like this in

a separate file, for example, requirements.development.txt  or

requirements.testing.txt.

This file can then be used to direct pip  to install these

dependencies using the following command:

$ pip install -r requirements.txt 

This command causes pip  to read through the file one line at a

time to install the dependencies. For each dependency, pip  will

first check to see if the package is already installed; if not, it will

install the latest version of the package from the specified

package index.

This presents a small problem, though; what if our code

depends on a newer version of the package than the user has

installed on their system? Or, what if an incompatible change in

a newer version of a library requires that we run an older

version than the latest in the index?

To address this, we can include version specifier strings in

requirements.txt , like so:

# These are examples, don't include this in our requirements.txt 

requests==2.26.0 

paramiko>=2.6 

psycopg2<3.0 

matplotlib>3.2,<=3.3

A version specifier consists of a comparison operator followed

by a version string. This will direct pip  to ensure that the

version installed matches the requirement; in this case, it would

specify the following:

requests  would have to be exactly version 2.26.0

paramiko  would have to be at least 2.6 or higher

psycopg2  would have to be less than 3.0



matplotlib  would have to be greater than 3.2 (not including

3.2!), but 3.3 or lower

Whether you include version specifiers, and how specific you

make them, depends somewhat on the needs of your project and

users. In general, you shouldn't limit pip  from installing newer

versions of a library so that you don't miss out on bug fixes and

security patches, but in situations where there are known bugs

with newer versions, it may be essential.

The command pip freeze  will print a list of all your installed

packages with exact versions specified. Developers in mission-

critical environments who want to guarantee the ability to

reproduce their exact development environment often just copy

this output directly to requirements.txt .

Creating a pyproject.toml file

Although setuptools  is still the de facto standard for packaging

Python projects, the Python community is moving toward tool-

agnostic configuration to accommodate newer options as well.

As part of this move, the official packaging guide recommends

creating a pyproject.toml  file in your project's root directory.

Currently, this file is only used to specify your project's build

system and build system requirements, but there is indication

that more project settings will migrate to this file in the future.

For our project, the file should contain the following:

[build-system] 

requires = [ 

    "setuptools", 

    "wheel" 

] 

build-backend = "setuptools.build_meta"

This file indicates that our project requires the setuptools  and

wheel  packages, and that we're using setuptools.build_meta  to



actually build our project. These are the recommended

configurations if you wish to use setuptools  to build your project.

Note that the requirements listed here are build requirements,

meaning they are the packages required by the build tool used

to create a distributable package. This is distinct from the

requirements we listed in requirements.txt , which are the

packages needed to use the package.

TOML (Tom's Obvious, Minimal Language) is a relatively new

configuration file format introduced in 2013. It extends the

traditional INI-style format with new features like hierarchical

structures and nested lists. It is growing in popularity particularly

as a configuration format for build tools in languages like Rust,

JavaScript, and of course Python. Learn more about TOML at

https://toml.io.

Adding a license file

When you distribute code, it's important that the recipients

know what they're allowed to do with that code. Unlike

compiled languages such as C or Java, Python source code is

necessarily included when you distribute your project using

setuptools . To make sure that recipients use the code

appropriately, we need to include a license file with our code.

When deciding on a license, there are a few concerns you need

to consider.

First, if you're developing software as part of your job (such as

our ABQ Data Entry program), your employer typically owns the

code and you need to make sure you're specifying their

preferred license for the code. Consult your employer for their

policy on this issue.

Second, if you've used third-party libraries, you'll need to make

sure your license is compatible with the license of those

libraries. For example, if you are using a software library

licensed under the GNU Public License (GPL), you may be

https://toml.io/


required to release your software under the GPL or a similar,

compatible license. Python and Tkinter are distributed under

fairly permissive licenses; here are the licenses of our four

dependencies:

Package License Reference

requests Apache2
https://2.python-

requests.org/projects/3/user/intro/

paramiko LGPL 2.1
https://github.com/paramiko/paramiko ( LICENSE

file)

psycopg2 LGPL 2.1 https://www.psycopg.org/license

matplotlib

Matplotlib

License

(BSD-

based)

https://matplotlib.org/stable/users/license.html

Be sure to consult these licenses before distributing your

package to make sure you're complying with the requirements

for software using the libraries. If neither of these situations

applies, you should simply consider what license best suits the

project and describes the intention you have in distributing it.

Whichever you choose, this should be included in your project

root directory in a file called LICENSE .

Making our package executable

Up to this point in the project, we've been executing our

application by running the abq_data_entry.py  file, which we've

placed in the project root directory outside the package. Ideally,

though, we'd like all our Python code – even this trivial launcher

script – to be located inside the package. We could just copy

abq_data_entry.py  into the package directory, right? It would seem

https://2.python-requests.org/projects/3/user/intro/
https://github.com/paramiko/paramiko
https://www.psycopg.org/license
https://matplotlib.org/stable/users/license.html


that simple, but when we execute the script now we get an

error:

$ python abq_data_entry/abq_data_entry.py 

Traceback (most recent call last): 

  File ".../abq_data_entry/abq_data_entry.py", line 1, in <module> 

    from abq_data_entry.application import Application 

  File ".../abq_data_entry/abq_data_entry.py", line 1, in <module> 

    from abq_data_entry.application import Application 

ModuleNotFoundError: No module named 'abq_data_entry.application'; 

  'abq_data_entry' is not a package 

Unfortunately, the relative imports we have in the package will

not work correctly when executing code inside the package.

However, Python provides a solution here: we can make our

package executable, rather than relying on a particular Python

script for execution.

To do that, we need to create a __main__.py  file inside our

package. This special file inside a Python package makes the

package executable; when the module is executed, Python will

run the __main__.py  script. However, it will run it in a slightly

special way that will allow our relative imports to work.

Create a new file called abq_data_entry/__main__.py  and add the

following:

# abq_data_entry/__main__.py

from abq_data_entry.application import Application 

def main(): 

  app = Application() 

  app.mainloop() 

if __name__ == '__main__': 

    main() 

The contents of __main__.py  are nearly identical to

abq_data_entry.py ; the only difference is that we've put the

creation of Application  and the execution of mainloop()  in a

function called main() . The reason for this will be explained

shortly when we start building our package.



Once we've created __main__.py , we can execute the module like

so:

$ python -m abq_data_entry 

The -m  flag tells Python to load and execute the provided

module. Note that, for the moment, this command must be

executed inside the project root folder. Once we create and

install our Python package, we'll be able to run it from

anywhere.

Configuring a setup.py script

Now that our code is ready, we can start creating our setuptools

configuration. To package our project using setuptools , we need

to create a setup script; by convention, this is called setup.py

and is created in the application's root directory.

The setuptools  configuration can also be created as an INI-style

configuration file, setup.cfg . Eventually, this may replace

setup.py , but in this book we're going to stick with the Python

script approach, because it allows us to execute some necessary

Python code.

The basic structure of a setup.py  file looks like this:

# setup.py

from setuptools import setup 

setup( 

  # Configuration arguments here 

) 

The vast majority of our configuration will be passed as

arguments to the setup()  function, defining the basic metadata

for our package, what will be packaged, and providing some

functionality after installation.



Basic metadata arguments

To begin, let's define some basic metadata about our application

using these arguments in setup.py :

setup( 

  name='ABQ_Data_Entry', 

  version='1.0', 

  author='Alan D Moore', 

  author_email='alandmoore@example.com', 

  description='Data entry application for ABQ AgriLabs', 

  url="http://abq.example.com", 

  license="ABQ corporate license", 

  #... 

) 

Metadata such as this will be used in naming the package as

well as providing information for PyPI. Not all of the fields are

necessary if you are just packaging for personal or internal use,

but if you plan to upload to PyPI, you should include all these

fields as well as long_description , which should be a

reStructuredText string that provides extended information

about the program.

Often, the README.rst  file can simply be used. Since this

configuration script is just a Python script, we can use normal

Python to read the file and use its contents for this configuration

option, like so:

# setup.py, near the top

with open('README.rst', 'r') as fh: 

  long_description = fh.read() 

# inside the setup() call: 

setup( 

  #... 

  long_description=long_description, 

) 

Packages and dependencies



Once we have specified the metadata, we need to tell setuptools

which packages we're actually bundling using the packages

argument. In our case, we only have the abq_data_entry  package,

so we'll specify it as follows:

setup( 

  #... 

  packages=[ 

    'abq_data_entry', 

    'abq_data_entry.images', 

    'abq_data_entry.test' 

  ], 

Note that we've specified both the main package and the sub-

modules images  and test . We need to specify all the sub-

modules we want to include explicitly here, as setuptools  will not

automatically include them.

That could get tedious with very complex packages, so

setuptools  also includes the find_packages()  function, which can

be used instead like so:

from setuptools import setup, find_packages 

setup( 

  #... 

  packages=find_packages(),

This will locate and include all the packages in our project

directory automatically.

In addition to the modules defined in our project, our

application depends on third-party modules such as psycopg2 ,

requests , paramiko , and matplotlib . We can specify these

dependencies in setup() , and, assuming they're available from

PyPI, pip  will install them automatically when our package is

installed.

This is done using the install_requires  argument as shown here:



setup( 

  #... 

  install_requires=[ 

    'psycopg2', 'requests', 'paramiko', 'matplotlib' 

  ], 

Note that these required packages may have their own

dependencies as well; for example, matplotlib  requires several

other libraries including numpy  and pillow . We don't have to

specify all of those sub-dependencies; they will also be

automatically installed by pip .

If the package requires particular versions of these modules, we

can specify that as well:

# Just an example, do not add to your setup.py!   

  install_requires=[ 

    'psycopg2==2.9.1', 'requests>=2.26', 

    'paramiko', 'matplotlib<3.3.5' 

  ] 

This looks rather familiar, doesn't it? These are the same kind of

rules we can put in requirements.txt , and the same list of runtime

dependencies. Some developers take the approach of just

reading in requirements.txt  and sending its contents to the

install_requires  list; there are even tools available to help

translate some of the incompatible syntax between them.

Remember, though, that the intention of our requirements.txt  file

was to recreate our specific development environment. As such,

it contains non-runtime packages, and may have very specific

version specifiers for the sake of testing consistency. The

install_requires  list, by contrast, is meant solely for runtime

requirements, and in general should be more abstract about

versions and package sources. For example, while it might be

helpful to specify psycopg2  version 2.9.1  for the development

environment, unless we know for certain that it only works

correctly with that one version, we would specify something

more general here like psycopg2<3.0 .



Just as we can specify package version requirements, we can

also specify the version of Python required by our application

using the python_requires  argument, like so:

setup( 

  #... 

  python_requires='>= 3.6', 

This is always a good idea to do if you're using Python features

not found in earlier releases (for example, the f-strings used in

our application do not work before Python 3.6), or if you want to

be sure that only a specific, tested version of Python is used. If

the user is not running a matching version of Python, pip install

will abort with an error.

The syntax for version specifiers used in setuptools  is laid out

in PEP 440, which you can find at

https://www.python.org/dev/peps/pep-0440/.

Adding extra files

By default, setuptools  will only copy Python files into your

package. Our package contains more than that, though: we have

documentation in RST, SQL scripts, and most importantly our

PNG images, without which our program won't run correctly.

Non-Python files that are located inside our package structure

can be specified using the package_data  argument:

setup( 

  #... 

  package_data={'abq_data_entry.images': ['*.png', '*.xbm']}, 

) 

The package_data  argument takes a dictionary that matches

module paths to a list of files (or globbing expressions that

match a list of files) to be included in that module. Here, we're

https://www.python.org/dev/peps/pep-0440/


telling setuptools  to include all the PNG and XBM files in the

images  module.

Our project also contains necessary files outside the

abq_data_entry  module; these aren't needed for the program to

operate, but should nevertheless be distributed with the

package. We cannot specify these in setup() , since it only deals

with the in-package files.

To add these, we need to create a separate file in the project

root directory called MANIFEST.in . For our application, the file

should contain this:

# MANIFEST.in 

include README.rst 

include requirements.txt 

include docs/* 

include sql/*.sql 

The MANIFEST.in  file contains a series of the include  directives

with filenames or globbing expressions that match files we want

to include. Here, we're including all files in our docs  directory,

all the .sql  files in the sql  directory, the requirements.txt  file,

and the README.rst  file. Since setup.py  relies on the README.rst

and requirements.txt  files for setup data, it's imperative that we

include it in the package. Otherwise, our package won't be

buildable on other systems.

Defining commands

Earlier, we created a __main__.py  file in our package that allows

our package to be run using the command python -m

abq_data_entry . This is certainly cleaner than having to hunt down

the right Python script to execute, but ideally we'd like our

package to set up a simple command that a user can execute to

launch the program.

The setuptools  library offers a way to add executable commands

in our package using the entry_points  argument. Entry points



are ways for external environments to access our code. One

particular entry point, console_scripts , defines a list of module

functions that will be mapped to external commands. When the

package is installed, setuptools  will create a simple, platform-

appropriate executable file for each console_scripts  item that,

when executed, will run the function specified.

We can't point console_scripts  to a Python file or package,

however; it must point instead to a function inside the package.

This is why we created the main()  function in our __main__.py  file

earlier, so that we can specify __main__.main()  as a console script

entry point, like so:

setup( 

  #... 

  entry_points={ 

    'console_scripts': [ 

    'abq = abq_data_entry.__main__:main' 

  ]} 

) 

Each item in the console_scripts  list is a string in the format

{executable_name} = {module}.{submodule}:{function_name} . Our code

here will cause setuptools  to create an executable called abq ,

which will run the main()  function we defined in __main__.py .

Thus, after installation, we can execute the application by just

typing abq  at a command line. You could define other scripts

here if there were functions in the package that could run

standalone.

Testing the configuration

Before we move on to creating distributable packages from our

configuration, we can check it for proper syntax and content by

running the following command in the project root directory:

$ python setup.py check 



If all is well, this will simply return the string running check  with

no other output. If something were missing, you would get an

error message. For example, if you comment out the name  and

version  arguments to setup()  and run the check, you'll get the

following output:

running check 

warning: check: missing required meta-data: name, version 

While it won't find every potential problem with your setup.py ,

the check  command will at least ensure you have the essential

metadata specified, which is especially important if you wish to

upload your package to PyPI.

Creating and using source distributions

With our configuration files all set, we can now create a source

distribution. This kind of distribution bundles all the relevant

files for building our package from source into a .tar.gz  archive.

To create the source distribution, run setup.py  with the sdist

option in the project root directory:

$ python setup.py sdist 

After doing this, two new directories will appear under the

project root:

ABQ_Data_Entry.egg-info : This directory contains the metadata

files generated by setuptools . If you explore this directory,

you'll find that all the information we passed to setup()  is

here in some form or other.

dist : This directory contains the files generated for

distribution; in this case, there is just a single .tar.gz  file

that contains our source package.



To install the source distribution on another computer, it first

needs to be extracted. This can be done with GUI utilities or in a

terminal with the tar  command, as shown in the following

example:

$ tar -xzf ABQ_Data_Entry-1.0.tar.gz 

Once extracted, we can install the package by running setup.py

inside the extracted directory using the install  option, like so:

$ cd ABQ_Data_Entry/ 

$ python3 setup.py install 

Testing our source distribution

If you don't have a second computer handy to test your source

installer on, you can use a Python virtual environment instead.

A virtual environment is a clean, isolated Python installation

that can be activated on demand to keep installed packages

from polluting your system's main Python environment.

To create one, first make sure you have the virtualenv  package

installed using pip :

$ pip install --user virtualenv 

Next, create a directory anywhere on your system and generate

a Python 3 environment in it with these commands:

$ mkdir testenv 

$ python -m virtualenv -p python3 testenv 

This will create a virtual environment, essentially a copy of the

Python interpreter and standard library, in the testenv  directory

along with some supporting scripts and files. This environment

can be modified in any way you wish without affecting your

system's Python environment.



To use the new virtual environment, you need to activate it by

executing the following code in a terminal:

# On Linux, macOS, and other unix-like systems:

$ source testenv/bin/activate 

# On Windows

> testenv\Scripts\activate 

Activating a virtual environment means that invocations of

python  will use the binaries and libraries in the virtual

environment rather than your system installation. This includes

Python-related commands like pip , meaning that a pip install

will install packages to the environment's library rather than to

your system or user Python libraries.

With your test environment active, you can now run setup.py

install  on your source distribution. You'll notice that Python will

install psycopg2 , requests , paramiko , and matplotlib , as well as

their individual dependencies, even if you already have those

packages on your system. That's because the virtual

environment starts clean with no third-party packages, so

everything must be installed again in the new environment.

If the install was successful, you should find the following

things:

You have a command called abq  available in your virtual

environment, which launches the ABQ Data Entry

application.

You can open a Python prompt from any directory on the

system (not just in the project root) and import

abq_data_entry .

The abq_data_entry  package directory can be found in

testenv/lib/python3.9/sitepackages .

When finished with your virtual environment, you can type

deactivate  in the terminal to go back to your system Python. If

you want to remove the environment, just delete the testenv

directory.



Building a wheel distribution

While a source distribution may be fine for simple software such

as our application, packages with complicated build steps such

as code compilation may benefit from a built distribution. As

the name implies, a built distribution is one where any building

operations (compilation or code generation, for example) has

already been done. The current format used by setuptools  for

built distributions is the wheel format.

The wheel format replaces an older distutils  distribution

format called egg . You will still see references to egg  when

using setuptools  or other distutils  derivatives.

A wheel  ( .whl ) file is basically a ZIP-format archive file

containing pre-built code. It comes in the following three types:

Universal: This type of wheel  file contains only Python code

that will run on any platform with any major version of

Python (2 and 3).

Pure Python: This type of wheel  file contains only Python

code that will run on any platform, but is compatible with

only one version of Python.

Platform: This wheel  file is limited to a particular OS,

platform, or architecture, usually because it contains

compiled binary code.

The default wheel  file created by setuptools  is a pure Python

wheel, which is what our application should be (since we have

no compiled code, but are compatible only with Python 3).

Creating one is simply a matter of calling setup.py  with the

bdist_wheel  option, like so:

$ python3 setup.py bdist_wheel 

Like sdist , this command creates a new file in the dist

directory, only this time it's a .whl  file. The filename will be



ABQ_Data_Entry-1.0-py3-none-any.whl , the segments of which

represent the following information:

The package name, in this case ABQ_Data_Entry .

The version, in this case 1.0 .

Whether it's Python 3, Python 2, or universal; in this case,

py3  for Python 3.

The Application Binary Interface (ABI) tag, which would

indicate a particular implementation of Python (for example,

CPython vs. IronPython). In this case, it's none , since we

have no particular ABI requirements.

The supported platform, in this case any , since our

application is not platform-specific. Note that this

component can include a CPU architecture as well as an

operating system.

Notice that the bdist_wheel  process also creates a build

directory, which is where built code is staged before it is

compressed into the wheel  file. You can inspect this directory to

make sure that your package is being assembled correctly.

Once built, your wheel  file can be installed using pip , like so:

$ pip install ABQ_Data_Entry-1.0-py3-none-any.whl 

As with the source install, pip  will first install any dependencies

specified in the setup configuration, then install the package

itself to the environment's site-packages  directory. The

executable abq  file will also be created and copied to an

executable location appropriate to your platform.

If you get an error when trying to use bdist_wheel , you may

need to install the wheel  module, as it's not always included with

setuptools . This module can be installed with the command

pip install --user wheel . Recall that we specified wheel  as

a build dependency in pyproject.toml , though, so this step

should be taken care of by setuptools .



Creating executables with

cx_Freeze

While source and wheel distributions are useful, they both

require that Python and any third-party library dependencies be

installed on the system before the program can be run. Often, it

would be much handier if we could provide a file or set of files

that can simply be copied and run on a system without installing

anything else first. Better yet, we'd like to have platform-

appropriate installation packages that set up desktop shortcuts

and perform other common system configurations.

There are several ways to go about this with Python code, and

several projects to choose from; in this book, we're going to look

at one called cx_Freeze .

The basic idea of cx_Freeze  is to bundle up all the code and

shared library files for a Python project along with a Python

interpreter, and then generate a small executable file that will

launch the code with the bundled interpreter. This approach is

commonly known as freezing the code (hence the package

name), and it works fairly well most of the time. However, as

we'll see, there are some limitations and difficulties to work

around. One significant limitation is that cx_Freeze  can only

make executables for the platform that it's running on; in other

words, if you want a Windows executable, you'll need to build it

on Windows; if you want a Linux executable, you'll have to build

it on Linux, and so on.

Complete documentation on cx_Freeze  can be found at

https://cx-freeze.readthedocs.io.

First steps with cx_Freeze

Install cx_Freeze  using pip  as shown in the following command:

https://cx-freeze.readthedocs.io/


$ pip install --user cx-Freeze 

Linux users may also need to install the patchelf  utility,

generally available in your distribution's package manager.

Like setuptools , cx_Freeze  is an extension of distutils ; it shares

many similarities with setuptools , but as you'll see, it takes a

different approach to solving certain problems. Just like

setuptools , we'll start with a script in the project directory that

calls the setup()  function. To distinguish this script from our

setuptools  script, we'll call it cxsetup.py . Open this file and enter

the following:

# cxsetup.py

import cx_Freeze as cx 

cx.setup( 

  name='ABQ_Data_Entry', 

  version='1.0', 

  author='Alan D Moore', 

  author_email='alandmoore@example.com', 

  description='Data entry application for ABQ Agrilabs', 

  url="http://abq.example.com", 

  packages=['abq_data_entry'], 

) 

So far, this is identical to a setuptools  script apart from us using

the cx_Freeze.setup()  function instead of the setuptools  one. From

here, though, things will diverge considerably.

Where setuptools  uses the entry_points  argument, cx_Freeze  uses

an executables  argument. This argument takes a list of

cx_Freeze.Excecutable  objects, each of which describes various

attributes of an executable file we want to generate. Add the

following code that does this for ABQ Data Entry:

cx.setup( 

  #...

  executables=[

    cx.Executable(

 'abq_data_entry/__main__.py',

      target_name='abq',



      icon='abq.ico'

      )

    ], 

) 

At a minimum, we need to provide a Python script that should

be executed when the executable will run; we're using our

abq_data_entry/__main__.py  script for this purpose.

By default, the generated executable will be the script name

without the .py  extension. In this case, that would be __main__ ,

which is not a terribly descriptive name for our application.

Fortunately, we can override this default with the target_name

argument, as we've done here. By specifying abq  here, cx_Freeze

will build an executable file called abq .

We can also specify an icon to use for the application using the

icon  argument. This needs to be a path to a .ico  file, so you'll

need to convert PNG or other formats to .ico  before using

them. The path to the file is relative to the project directory

where the cxsetup.py  file is, and does not need to be inside the

package itself.

The build_exe options

Arguments to specific cx_Freeze  operations can be passed into

setup()  using the options  argument. This argument takes a

dictionary in which each item is a cx_Freeze  operation name

paired with a dict  object of operation-specific arguments. The

first operation we're going to look at is build_exe , which is a

universal first step for all other operations. As the name implies,

this is the stage where the executable and its accompanying

files are built.

Among other things, this is where we specify the package

dependencies:

cx.setup( 

  #...



  options={

 'build_exe': {

 'packages': [

 'psycopg2', 'requests',

 'matplotlib', 'numpy',

 'paramiko'

      ],

 'includes': [],

The packages  argument is a list of the packages that need to be

installed. It's similar to the install_requires  argument for

setuptools , with the important difference that it does not support

version specifiers. Also, note that we've included some things

beyond our three main dependencies. Unfortunately, because

cx_Freeze  doesn't always do a great job at identifying all the

dependencies, it's often necessary to explicitly list sub-

dependencies.

Where packages  is a list of the packages that should be included,

we can also specify specific modules to be included using the

includes  argument. In theory, we shouldn't need to specify

anything here, but in practice cx_Freeze  sometimes fails to

bundle modules that our program needs.

Using the includes  directive, we can explicitly request modules

to ensure that they are included.

To figure out what should go in the list, follow a basic trial-and-

error procedure:

1. Build the executable.

2. Run the executable.

3. If you get a ModuleNotFoundError  exception stating that a

module cannot be found, add the module to the includes  list

and run the build command again.

4. If you find several modules from the same package are

missing, it may be more effective to add the package to the

packages  list and rebuild.



For example, suppose you build ABQ Data Entry and get the

following error when running abq :

ModuleNotFoundError: No module named 'zlib' 

In this situation, zlib  would be a dependency of one of our

required packages that for some reason cx_Freeze  did not

identify as necessary. To fix this, we would simply force its

inclusion by updating the configuration:

cx.setup( 

  #... 

  options={ 

    'build_exe': { 

      #... 

      'includes': ['zlib'], 

After that, a rebuilt executable should include the missing

module. Generally, you don't need to do this for widely used

modules, but depending on your platform and the packages you

require, these issues do come up.

Including external files

As with setuptools , cx_Freeze  only includes Python files by

default. To get other files like images and documentation

included, we can use the include_files  argument to build_exe .

However, there is a problem: because of the way that cx_Freeze

bundles our Python module in a compressed archive, accessing

file paths inside the module takes some extra code.

Our images  module presents such a problem: it contains PNG

files that our application accesses by calculating a relative path

from its __init__.py  file.

To address the issue, the PNG files will need to be relocated to a

directory outside the package during the build process. Our



code will then have to find them in the new location when it's

been frozen, and in the original location when not.

To make it work, modify images/__init__.py  as follows:

# abq_data_entry/images/__init__.py

from pathlib import Path 

import sys 

if getattr(sys, 'frozen', False): 

  IMAGE_DIRECTORY = Path(sys.executable).parent / 'images'

else: 

  IMAGE_DIRECTORY = Path(__file__).parent / 'images'

When running a Python script that has been frozen using

cx_Freeze , the sys  module has an attribute called frozen . We can

test for the presence of this attribute to specify behavior that

changes when the app is frozen. In this case, when our app is

frozen, we're going to look for our images in an images  directory

located in the same directory as the executable file. The location

of the executable can be found from the sys.executable  variable.

If the application is not frozen, we'll look for the images in the

module directory as before.

Now that the script knows where to look for the images, we

need to configure our cx_Freeze  setup to copy the images into

the location we set. To do that, we need to update our build_exe

options like so:

# cxsetup.py 

cx.setup( 

  #... 

  options={ 

    'build_exe': { 

      #... 

      'include_files': [('abq_data_entry/images', 'images')]

The include_files  argument is a list of two-tuples. The first tuple

member is a source path relative to the cxsetup.py  script, while

the second is a destination path relative to the executable file.

In this case, we're telling it to copy the files in the



abq_data_entry/images  directory to a directory called images  in the

generated executable directory.

Building executables

At this point, we can build an executable by running the

following command line:

$ python cxsetup.py build 

The build  command runs all steps up to build_exe , leaving you

with the built code in a platform-specific directory under ./build

in the format exe.(os)-(cpu_arch)-(python_version) . For example, if

you ran this command on 64-bit Linux with Python 3.9, you'd

have a build/exe.linux-x86_64-3.9  directory containing the

compiled code. You can inspect this directory to make sure files

are being copied over and created properly, as well as testing

the generated executable binary file. In the case of our

application, cx_Freeze  should have created a binary executable

file called abq , which will launch your application when run. It

should also have created lib  and images  directories, and copied

the abq.ico  file.

Note that all files in the platform-specific build directory must be

present for the program to run; cx_Freeze  does not support the

creation of single-file standalone executables.

For Linux and BSD, this build directory can be zipped up and

distributed as is; users on other computers should be able to

just extract the directory and execute the file. For Windows and

macOS, though, we're going to need to do some more work to

get it ready for distribution. In fact, you may even have gotten

an error running the build command or executing the binary.

We'll talk about the platform-specific tweaks and configurations

that need to happen in the next section.



cx_Freeze  supports the creation of RPM files, the package

format used by certain Linux distributions such as Fedora or

SUSE. If you're on an RPM-based distribution, you may want to

investigate this option. Unfortunately, there is no build operation

to build packages for non-RPM distributions such as Debian,

Ubuntu, or Arch.

Cleaning up the build

Although we have a working executable file, you might have

noticed that the distributable folder is extremely large for such

a simple project as ours.

Before calling it a day, it's worth poking around inside the build

directories to see what files cx_Freeze  is bundling into your

application and whether you really need all of it.

If you look in the platform-specific build directory under

lib/python(python_version)/ , you'll find all the libraries that were

pulled in as dependencies of our package. You may find that

some of these aren't actually necessary for running our

application. For example, if you happen to have alternative GUI

libraries like PyQt or PySide installed on your system, matplotlib

may pull them in as dependencies.

If we do end up with extra packages like this, we can remove

them using the excludes  option of build_exe , like this:

cx.setup( 

  #... 

  options={ 

    #... 

    'build_exe': { 

      #... 

      'excludes': [ 

        'PyQt4', 'PyQt5', 'PySide', 'IPython', 'jupyter_client', 

        'jupyter_core', 'ipykernel','ipython_genutils' 

      ], 

After adding this change, delete your build  directory and rerun

the build command. You'll see that all these packages are no



longer there, and the size of your build is significantly smaller.

Knowing what can be included or excluded takes research and

some trial and error, but with careful pruning we can bring

down the size of our distributable files and the build time for our

package considerably.

Building Windows executables with

cx_Freeze

To build executables on Microsoft Windows, we need to properly

set the base  argument to the Executable  initializer. Recall from

Chapter 10, Maintaining Cross-Platform Compatibility, that

Windows programs launch in either console or GUI mode. For

each platform, cx_Freeze  has one or more base executables from

which it builds the frozen executable; on Linux, BSD, and

macOS the default base executable is acceptable, but on

Windows the default base launches the application in console

mode.

We need to specify a base that will launch our script in GUI

mode instead. This can be done by passing a value of Win32GUI  to

the base  argument. So, at the top of our cxsetup.py  script, add

this code:

# cxsetup.py

import platform 

base = None 

target_name = 'abq'

if platform.system() == "Windows": 

  base = "Win32GUI"

# Inside cx.setup() 

  #... 

  executables=[ 

    cx.Executable( 

      'abq_data_entry.py', 

      base=base, 

      target_name=target_name, 

      icon='abq.ico' 

    ) 

  ], 



As we learned to do in Chapter 10, Maintaining Cross-Platform

Compatibility, we've used platform.system()  to determine the

operating system we're running on; if it's Windows, we'll set the

base to Win32GUI . For other platforms, base  should just be None ,

causing it to use the default base executable.

The application should now build successfully on Windows using

python cxsetup.py build , and you should find abq.exe  in the

build/exe.win-amd64-(python_version)  directory.

Building a Windows installer file

In addition to building a Windows executable, we can build a

Windows installer file ( .msi ) using the bdist_msi  operation.

While our application could be distributed as is by simply

zipping up the build folder and extracting it on the target

system, there are a few advantages to using MSI files:

MSI files can be more easily deployed by system

administrators in a large-scale Windows environment.

MSI files register the application with the OS when

installed, making operations like upgrades, repairs, and

uninstallations cleaner.

MSI files have additional setup capabilities, such as an

install wizard and desktop shortcut generation.

To get started generating an MSI file with cx_Freeze , we'll need

to configure some aspects of our MSI by setting values in the

bdist_msi  dictionary of the options  argument.

We'll start by specifying an upgrade code:

cx.setup( 

  #... 

  options = { 

    #... 

    'bdist_msi': { 

      'upgrade_code': '{12345678-90AB-CDEF-1234-567890ABCDEF}', 



The upgrade code is a globally unique identifier (GUID) value

that will identify this program on the OS. By specifying this,

subsequent builds of this .msi  file will remove and replace any

existing installations of the same program.

Upgrade codes consist of five segments of 8, 4, 4, 4, and 12

characters from 0 to 9 and A to F. They can be created in

Microsoft Visual Studio, or using this PowerShell command:

[System.Guid]::NewGuid().ToString().ToUpper()  

Once specified, you should not change the upgrade code in

subsequent builds of your application.

The MSI installation process can also create application

shortcuts, which will be placed on the desktop and/or programs

menu when the package is installed. To do this, we'll need to

define our shortcuts by creating a list of shortcut table tuples

like these:

# cxsetup.py, after the imports 

shortcut_data = [ 

  ( 

    'DesktopShortcut', 'DesktopFolder', 'ABQ Data Entry', 

    'TARGETDIR', '[TARGETDIR]' + target_name, None, 

    'Data Entry application for ABQ Agrilabs', None, 

    None, None, None, 'TARGETDIR' 

  ), 

  ( 

    'MenuShortcut', 'ProgramMenuFolder', 'ABQ Data Entry', 

    'TARGETDIR', '[TARGETDIR]' + target_name, None, 

    'Data Entry application for ABQ Agrilabs', None, 

    None, None, None, 'TARGETDIR' 

  ) 

] 

The preceding two tuples define a shortcut for the desktop and

menu, respectively. The data contained in them matches the

shortcut table layout described by Microsoft at

https://msdn.microsoft.com/en-

us/library/windows/desktop/aa371847.aspx.

https://docs.microsoft.com/en-us/windows/win32/msi/shortcut-table?redirectedfrom=MSDN


Those fields, in order, are defined by Microsoft as follows:

Shortcut: The type of shortcut to create; in our case either

DesktopShortcut  or MenuShortcut .

Directory: A special directory key into which the shortcut

will be copied. Here, DesktopFolder  points to the desktop, and

ProgramMenuFolder  points to the programs folder in the menu.

Name: The name of the shortcut; in our case, ABQ Data Entry .

Component: This indicates a program whose installed or

uninstalled state determines whether our shortcut should be

installed or uninstalled. By specifying TARGETDIR , the

install/uninstall state of our shortcuts matches the

install/uninstall state of the program directory.

Target: The executable file that is launched by the shortcut.

This will be our target_name  attribute, located inside

TARGETDIR .

Arguments: A string of arguments passed to the command.

Whatever you specify here is simply appended to the target

executable for the shortcut and available in our program

from sys.argv . You might use this to, for example, create a

second shortcut that launches your application in a test

mode. In our case, the ABQ program expects no command-

line arguments, so this is None .

Description: A string used in the description field of the

shortcut.

Icon and IconIndex: These are used to locate an icon for

the shortcut, if we want it to be different from the icon of

the executable. These can be left as None  since our

executable's icon will be used by default.

ShowCmd: Specifies if the program will be launched

minimized, maximized, or normally. Leaving this as None  will

launch it normally.

WkDir: Indicates the working directory to be used. We want

this to be the program's directory, so we use TARGETDIR  here.



Once created, these shortcut tables need to be included in the

data argument of our bdist_msi  options, like so:

cx.setup( 

  #... 

  options={ 

  #... 

    'bdist_msi': { 

      #... 

      'data': {'Shortcut': shortcut_data} 

Currently, data  is not documented in the cx_Freeze

documentation; cx_Freeze  uses the standard library's msilib

module to build the .msi  files, and anything passed into this

argument is passed along to the add_data()  function of

msilib . Refer to the standard library documentation for msilib

at https://docs.python.org/3/library/msilib.html if you're

interested in exploring this option further.

With the bdist_msi  options specified, let's build the .msi  file as

follows:

$ python cxsetup.py bdist_msi 

This command creates a new installer file in the dist  directory,

which you should be able to install on any compatible Windows

system, as shown in the following screenshot:

https://docs.python.org/3/library/msilib.html


Figure 16.1: The MSI install wizard for ABQ Data Entry

Keep in mind that cx_Freeze  uses Python binaries from your

build environment in the application build; as a result, 64-bit

Python will build a 64-bit executable, and 32-bit Python will

build a 32-bit executable. Additionally, builds created on newer

versions of Windows may not be compatible with older versions

of Windows. For maximum compatibility, build your binaries on

a 32-bit version of the oldest release of Windows you plan to

support.

Building macOS executables with

cx_Freeze

There are two build operations that cx_Freeze  implements that

are specific to macOS: bdist_mac  and bdist_dmg . These operations

create an application bundle and a compressed disk image

file, respectively. Let's look at each operation in more detail.

Building macOS application bundles

The bdist_mac  build operation creates an application bundle, a

specially formatted directory with an .app  extension that the



Mac desktop treats as though it were an executable file.

bdist_mac  has several configuration options, but we're only going

to use two:

cx.setup( 

  #... 

  options={ 

    #... 

    'bdist_mac': {

 'bundle_name': 'ABQ-Data-Entry',

 'iconfile': 'abq.icns'

    }

Here, bundle_name  sets the name of our application bundle

directory, without the .app  extension. Normally, this would

default to the name  argument passed to setup() , which in our

case is ABQ_Data_Entry . We're overriding it here to use dashes

instead of underscores, as it looks a little less technical for end

users. Note that using spaces in this value, while technically

valid, tends to create problems for cx_Freeze  and is best avoided.

The iconfile  setting allows us to point to an ICNS file that

macOS will use for the application's icon. The dimensions of this

image file need to be a square number of pixels that is a power

of 2 between 16 and 1,024. A compatible ABQ logo is included

in the example code.

Refer to the cx_Freeze  documentation for additional options

here, which include code signing and explicitly specifying

additional frameworks for the bundle.

Once your configuration options are added, run the cxsetup.py

script by using the following command:

$ python3 cxsetup.py bdist_mac 

When this process completes, ABQ-Data-Entry.app  should appear in

the build directory. You can double-click this directory in the

macOS GUI to run it from any location, or drag it to the

/Applications  directory to install it.



It should appear something like what is shown in the following

screenshot:

Figure 16.2: ABQ-Data-Entry bundle in the build directory

If you launch the application from this bundle, you'll see that the

app menu no longer reads Python, as we first saw in Chapter

10, Maintaining Cross-Platform Compatibility; it now reads abq,

the name of the executable file, which is what we want.

As with Windows executables, cx_Freeze -generated bundles for

macOS are not necessarily backward-compatible, so it's best to

create them on the oldest version of macOS that you need to

support.

Building macOS .dmg files

Applications on macOS are generally distributed inside a

compressed disk image ( .dmg ) file. The cx_Freeze  build_dmg

operation allows you to build an application bundle and package

it in a DMG file for easy distribution.

To do this, simply execute this command instead of the bdist_mac

command:

$ python3 cxsetup.py bdist_dmg 



This command first runs bdist_mac  to build the application

bundle and then packages it into a DMG file. The configuration

options for bdist_dmg  allow you to override the filename and

include a shortcut to the /Applications  directory for easy

installation. The built file will appear in the build  directory, from

which you can copy it to another Macintosh to be mounted and

used.

Summary

In this chapter, you learned how to prepare and package your

application for distribution. You learned how to make your

package executable, and how to use setuptools  to create source

and built distributions of it for internal use within your

organization or for distribution in a public index such as PyPI.

You also learned how to use cx_Freeze  to convert your Python

script into an executable file that can be distributed to other

systems without installing Python or dependent packages, and

how to make application installation packages for Windows and

macOS.

Congratulations on finishing this book! Together we've taken a

simple CSV file and turned it into a complex and robust

graphical application. You now have the knowledge and

confidence to create user-friendly GUI applications that work

with files, databases, networks, and APIs across all major

platforms.

As for your career with ABQ, you've just received a promotion

offer to work with the corporate office as a software developer.

There will be much more to learn, but with the skills you've

learned so far you are ready for whatever challenges come next.

Good luck!



Appendices



A

A Quick Primer on reStructuredText

When it comes to writing software documentation, software

developers generally prefer to use a lightweight markup

language over binary formats such as DOCX or other word

processor files. Such languages aim to provide a

standardized way of notating basic rich-text features like

bullet lists, emphasized text, section headings, tables, and

inline code within the limits of a plaintext file, while

remaining human-readable. Documents written in

lightweight markup languages can be read as-is, or

compiled into other formats like PDF, DOCX, or HTML.

This approach has several advantages over the use of

binary word processor files:

The documentation can be treated like code: it can be

edited with the code editor and easily managed with

tools like a Version Control System (VCS).

The documentation has universal access: it can be read

from any system with a text editor, or even from a

terminal prompt.

The writing process is less distracting: as markup

languages typically focus on semantic objects like

headings, paragraphs, tables, and so forth rather than

cosmetic concerns like colors, font faces, or text size,

the developer is less distracted with appearance details

and more focused on organization and correct

information.



In the 1990s and earlier, developers tended to use various

ASCII-art contrivances to convey rich-text features visually,

such as tables made of pipes and underscores, bullet lists

made with asterisks, or headings denoted with a second

line of dashes. In the early 2000s, several projects worked

to formalize and define these structures and develop tools

that would allow developers to compile their markup into

binary rich-text formats for distribution or publication.

This book was actually written in a code editor using a

markup language, and then subsequently converted by

scripts to the format required by the publisher.

The reStructuredText

markup language

Though several markup language options exist, the Python

community tends to prefer reStructuredText (RST). The

reStructuredText markup language is part of the Python

Docutils project, located at

http://docutils.sourceforge.net. The Docutils project

develops the RST standard and provides utilities for

converting RST to formats like PDF, ODT, HTML, and

LaTeX.

Document structure

RST is geared toward the creation of structured

documents; as such, the first thing we should create is a

http://docutils.sourceforge.net/


title for our document. This is denoted using a line of

symbols above and below a single line of text, like so:

========================= 

The reStructuredText saga 

=========================

In this case, we've used the equals sign on either side of

the title to denote it as our document title. We can also add

a subtitle by adding another line underlined with a different

symbol:

========================= 

The reStructuredText saga 

========================= 

An adventure in markup languages. 

---------------------------------

The exact symbols used here are not important; they can be

any of the following:

What establishes one as a title and the other as a subtitle is

the order. Whichever symbol we choose to use first in the

document will become the top-level title. Whichever we use

second will become a second-level title, and so on. By

convention, the equals sign is typically used for level one,

the hyphen for level two, the tilde for level three, and the

plus symbol for level four. This is only convention, however;

within a document, the hierarchy is determined by the

order in which you use the symbols.

We can write titles without the top line of symbols as well,

like so:

! " # $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] ^ _ ` { | } ~ 



Chapter 1 

=========

While not required, this style is usually preferred for

section titles over the document title. The document title is

denoted by creating a top-level section header with no

content inside, whereas regular section headers have

content.

For example, they can contain paragraphs of text.

Paragraphs in RST are indicated by a blank line between

blocks of text, like so:

Note that paragraphs should not be indented. Indenting a

line of text would indicate some other structure, as we'll

see below.

Lists

RST is capable of denoting both bullet and number lists,

both of which can contain nested lists.

Bullet lists are created by starting a line with any of * , - ,

or +  followed by a space, as shown here:

Lightweight markup languages include: 

- reStructuredText 

- emacs org-mode 

- markdown 

To create a sub-list, simply indent two spaces, like so:

Long ago the world had many markup languages, but they were ugly

Then, one day, everything changed... 



Lightweight markup languages include: 

- reStructuredText 

  - released in 2002 

  - widely used in Python 

- emacs org-mode 

  + released in 2003 

  + included with the emacs editor 

- markdown 

  * released in 2004 

  * Several variants exist, 

    including Github-flavored, 

    markdown extra, and multimarkdown.

Note that the actual symbol used for the list doesn't have

any syntactic meaning, though it can be helpful for

plaintext readers to distinguish sub-lists. Also notice that

we've created a multi-line bullet point (the last point under

markdown ) by indenting the subsequent lines to the same

indent as the text in the first line of the bullet.

Note the blank lines before the first point in the list, and

around each sub-list. Lists should always have a blank line

before the first item in the list and after the last. Lists can

optionally contain blank lines between their bullet points,

which is sometimes helpful for readability.

Numbered lists are created like bullet lists, but using either

digits or the #  symbol, followed by a dot, as a bullet; for

example:

Take these steps to use RST: 

#. Learn RST 

#. Write a document in RST 

#. Install docutils: 

  1. Open a terminal 

  2. type pip install docutils 

#. Convert your RST to another format using a command-line utili

  * rst2pdf converts to PDF 

* t2ht l t t HTML



While the #  symbol is not very helpful to plaintext readers,

conversion programs will automatically generate a

numbered list in this case. Note that we can nest numbered

lists or bullet lists within this numbered list.

Character styles

With reStructuredText we can denote a variety of inline

character styles, the most common of which are emphasis,

strong emphasis, and inline literals.

This is done by surrounding the text with particular

symbols, as shown in this table:

Syntax Use for Typical rendering

*Single asterisks indicate

emphasized text*
Mild emphasis Italic text

**Double asterisks are for

strongly emphasized text**

Strong

emphasis
Bold text

``Double backticks are for

inline literals``

Literal

examples, such

as code

Monospace text, inline

whitespace preserved

Note that there should be no space between the symbol

and the text being marked up.

  * rst2html converts to HTML 

  * rst2odt converts to ODT 



Blocks and quotes

When documenting code, it's quite common that we might

need to include a block quote from some other source.

Simple block quotes can be done in RST by indenting a

paragraph with four spaces, like so:

In the immortal words of my late, great uncle Fred, 

    Please pass the banana pudding! 

Heaven rest his soul. 

In situations where we need to preserve whitespace like

indentation and line breaks, we can use a line block, in

which each line begins with a vertical bar and a space. For

example:

A banana haiku: 

| In a skin of gold 

|     To be peeled and discarded – 

|     Pale treasure awaits. 

While your documentation may contain a handful of poems

or literary quotes, it's far more likely to need code blocks. A

code block in RST is indicated by an indented block

preceded by a paragraph containing only a double colon,

like so:

The Fibonacci series can be calculated in 

a generator function like so: 

:: 

    def fibonacci(): 

        a, b = 0, 1 

        while True: 

            b, a = a + b, b 

            yield a 



Within a code block, whitespace will be preserved (ignoring

the initial indent, of course), and no RST markup will be

interpreted, just as you would expect for quoting actual

code.

Tables

Tables are commonly needed in documentation, and RST

provides two ways of denoting them. The simpler but more

limited approach looks like this:

===== ============= ==========================

 

Fruit Variety       Description 

===== ============= ==========================

 

Apple Gala          Sweet and flavorful 

Apple Fuji          Crisp and tangy, yet sweet 

Apple Red Delicious Large, bland, insipid 

===== ============= ==========================

Using this syntax, we arrange the data in columns using

spaces, and surround the table and header row with =

symbols. An empty space through the whole table denotes a

column break. Note that the symbols must extend as wide

as the width of the longest cell. This syntax is limited in

that it cannot represent multi-line cells or cells that span

multiple rows or columns.

For that, we can use the more verbose table format:

+---------+-----------+------------------------------+ 

| Fruit   | Variety   | Description                  | 

+=========+===========+==============================+ 



| Orange  | All varieties are sweet with orange rind | 

+         +-----------+------------------------------+ 

|         | Navel     | Seedless, thick skin         | 

+         +-----------+------------------------------+ 

|         | Valencia  | Thin skin, very juicy        | 

+         +-----------+------------------------------+ 

|         | Blood     | Smaller, red inside          | 

+---------+-----------+------------------------------+ 

In this format, the table cells are defined using hyphens

and pipes, with plus symbols at the corners of each cell. A

cell can be made to span multiple rows or columns by

simply omitting the border characters between them. For

example, in the above table, the cell containing Orange

extends to the bottom of the table, and the first row under

the header spans the second and third columns. Note that

table headers are denoted by using an equals symbol rather

than a hyphen.

Tables can be tedious to create in a plaintext editor, but

some programming tools have plugins to generate RST

tables. If you plan to make a lot of tables in an RST

document, you may want to see if your editor has a tool for

this.

Converting RST to other

formats

If nothing else, following the reStructuredText syntax leads

to a very readable and expressive plaintext file. However,

the real power in using a standardized markup language is

in converting it to other formats.



The docutils  package, available in PyPI, comes with several

command-line utilities for converting RST files. The more

useful ones are listed here:

Command Format Format description

rst2html
Hypertext Markup

Language (HTML)

Standard markup language for the

web, useful for publishing to a website.

rst2html5

Hypertext Markup

Language version 5

(HTML 5)

More modern version of HTML,

preferred for web use.

rst2pdf
Portable Document

Format (PDF)

Good for printable documents, or for

distributing read-only documentation.

rst2odt
Open Document Text

(ODT)

Word processing format, useful when

you want to do further editing in a

word processor.

rst2latex
LaTeX markup

language

Very powerful markup language often

used in scientific publications.

rst2man MAN  page markup

Markup used by UNIX man pages.

Useful for documentation on Linux,

BSD, or macOS.

rst2s5

Simple standards-

based slideshow

system (S5)

HTML-based slideshow format. Good

for presentations.

To use any of these commands, simply call it with the name

of the RST file.



Depending on the command, an output file can be specified

by either an -o  switch or as a second positional argument,

for example:

# uses the -o switch

$ rst2pdf README.rst -o README.pdf 

# uses the positional argument

$ rst2html5 README.rst README.html 

The scripts interpret the markup in the RST file and build a

nicely formatted PDF or HTML file. You can try these

commands on the README.rst  file included with the example

code for this appendix, which is a README for the binary

release of ABQ Data Entry. For example, if you render a

default HTML file, it will look something like this in your

browser:



Figure A.1: Default HTML5 rendering of README.rst

Each command has a large number of options available,

which you can view by calling the command with the --help

switch, like so:

$ rst2html5 --help

For example, the rst2html  command allows us to specify a

CSS style sheet that will be embedded into the generated

HTML file. We can use that to change the look of our

generated document, like so:



An abq_stylesheet.css  file is included with the example code

for this book, though you can create your own if you know

CSS. If you used the bundled file, the resulting HTML looks

like this in the browser:

Figure A.2: The README.rst file, but with a style sheet added

Other ways to render RST

$ rst2html5 --stylesheet abq_stylesheet.css  README.rst README.a



In addition to docutils , there are other tools that can make

use of an RST file:

The pandoc  utility, available from https://pandoc.org,

can convert RST files to a wider variety of output

formats with a number of additional rendering options.

Many popular code-sharing services like GitHub,

GitLab, and Bitbucket will automatically render RST

files to HTML for display in their web interfaces.

The Sphinx project, available from https://sphinx-

doc.org, is a comprehensive documentation generator

for Python projects. It can generate complete

documentation for your project by rendering RST it

finds in docstrings, README files, and other

documentation in your code. Sphinx is widely used by

Python projects, including the official Python

documentation at https://docs.python.org.

Since RST is widely accepted as the standard for Python

documentation, you can safely assume that any

documentation-oriented tools for Python will expect to

work with it.

This tutorial only scratched the surface of reStructuredText

syntax! For a quick syntax reference, see

https://docutils.sourceforge.io/docs/user/rst/quick

ref.html. For complete documentation, see

https://docutils.sourceforge.io/rst.html.

https://pandoc.org/
https://sphinx-doc.org/
https://docs.python.org/
https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://docutils.sourceforge.io/rst.html


B

A Quick SQL Tutorial

For over three decades, relational database systems have

remained a de facto standard for storing business data.

They are more commonly known as SQL databases, after

the Structured Query Language (SQL) used to interact

with them. Although a full treatment of SQL warrants a

book of its own, this appendix will provide a brief coverage

of its basic concepts and syntax that will be adequate for

following its usage in this book.

SQL concepts

SQL databases are made up of tables. A table is something

like a CSV or spreadsheet file, in that it has rows

representing individual items and columns representing

data values associated with each item. A SQL table has

some important differences from a spreadsheet, though:

First, each column in the table is assigned a data type,

which is strictly enforced. Just as Python will produce

an error when you try to convert "abcd"  to an int  or

0.03  into a date , a SQL database will return an error if

you try to insert letters into a numeric column or

decimal values into a date column. SQL databases

typically support basic data types like text, numbers,

dates and times, Boolean values, and binary data; in

addition, some implementations have specialized data



types for things like IP addresses, JSON data, currency,

or images.

SQL tables can also have constraints, which further

enforce the validity of data inserted into the table. For

example, a column can be given a unique constraint,

which prevents two rows from having the same value in

that column, or a not null constraint, which means

that every row must have a value.

SQL databases commonly contain many tables, and these

can be joined together to represent much more

complicated data structures. By breaking data into multiple

linked tables, we can store it in a way that is much more

efficient and resilient than a two-dimensional plaintext CSV

file.

Syntax differences from Python

If you've only ever programmed in Python, SQL may feel

odd at first, as the rules and syntax are very different. We'll

be going over the individual commands and keywords, but

here are some general differences from Python:

SQL is (mostly) case-insensitive: Although it's

conventional for readability purposes to type the SQL

keywords in all caps, most SQL implementations are

not case-sensitive. There are a few small exceptions

here and there, but, for the most part, you can type

SQL in whatever case is easiest for you.

Whitespace is not significant: In Python, new lines and

indentation can change the meaning of a piece of code.

In SQL, whitespace is not significant and statements

are terminated with a semicolon. Indents and new lines

in a query are only there for readability.



SQL is declarative: Python could be described as an

imperative programming language: we tell Python

what we want it to do by telling it how to do it. SQL is

more of a declarative language: we describe what we

want done, and the SQL engine figures out how to do it.

We'll encounter additional syntax differences as we look at

specific SQL code examples.

SQL operations and syntax

SQL is a powerful and expressive language for doing mass

manipulations of tabular data, but the basics can be

grasped quickly. SQL code is executed as individual queries

that either define, manipulate, or select data in the

database. SQL dialects vary somewhat between different

relational database products, but most of them support

ANSI/ISO-standard SQL for core operations.

While most of the basic concepts and keywords covered

here will work across SQL implementations, we'll be using

PostgreSQL's dialect for the examples in this section. If you

wish to try these examples on a different SQL

implementation, be prepared to make some adjustments to

the syntax.

To follow along with this section, connect to an empty

database on your PostgreSQL database server, either using

the psql  command-line tool, the pgAdmin  graphical tool, or

another database client software of your choosing.

Defining tables and inserting data



SQL tables are created using the CREATE TABLE  command, as

shown in the following SQL query:

CREATE TABLE musicians ( id SERIAL PRIMARY KEY, name TEXT NOT

NULL, born DATE, died DATE CHECK(died > born) );

In this example, we're creating a table called musicians .

After the name, we specify a list of column definitions. Each

column definition follows the format column_name data_type

constraints .

Let's break down the details of these columns we've

defined:

The id  column will be an arbitrary ID value for the row.

Its type is SERIAL , which means it will be an auto-

incrementing integer field, and its constraint is PRIMARY

KEY , which means it will be used as the unique identifier

for the row.

The name  field is of type TEXT , so it can hold a string of

any length. Its constraint of NOT NULL  means that a NULL

value is not allowed in this field.

The born  and died  fields are of type DATE , so they can

only hold a date value.

The born  field has no constraints but died  has a CHECK

constraint enforcing that its value must be greater than

the value of born  for any given row.

Although it's not required, it's a good practice to specify a

primary key for each table. Primary keys can be one field,

or a combination of fields, but the value must be unique for

any given row. For example, if we made name  the primary

key field, we couldn't have two musicians with the same

name in our table.



To add rows of data to this table, we use the INSERT INTO

command as follows:

INSERT INTO musicians (name, born, died) VALUES ('Robert

Fripp','1946-05-16', NULL), ('Keith Emerson', '1944-11-02',

'2016-03-11'), ('Greg Lake', '1947-11-10', '2016-12-7'), ('Bill

Bruford', '1949-05-17', NULL), ('David Gilmour', '1946-03-06',

NULL);

The INSERT INTO  command takes a table name and an

optional list specifying the fields to receive data; other

fields will receive their default value ( NULL  if not otherwise

specified in the CREATE  statement). The VALUES  keyword

indicates that a list of data values will follow, formatted as a

comma-separated list of tuples. Each tuple corresponds to

one table row and must match the order of the field list

specified after the table name.

Note that strings are delimited by the single quote

character. Unlike Python, single quotes and double quotes

have different meanings in SQL: a single quote indicates a

string literal, while double quotes are used for object

names that include spaces or need to preserve case. For

example, if we had called our table Musicians of the '70s , we

would need to enclose that name in double-quotes due to

the spaces, apostrophe, and capitalization.

Using double-quotes to enclose a string literal results in an

error, for example:

INSERT INTO musicians (name, born, died) 

VALUES 

  ("Brian May", "1947-07-19", NULL); 

-- Produces error: 

ERROR:  column "Brian May" does not exist 

To make our database more interesting, let's create and

populate another table; this time, an instruments  table:



CREATE TABLE instruments (id SERIAL PRIMARY KEY, name TEXT NOT

NULL); INSERT INTO instruments (name) VALUES ('bass'), ('drums'),

('guitar'), ('keyboards'), ('sax');

Note that the VALUES  lists must always use parentheses

around each row, even if there's only one value per row.

To relate the musicians  table to the instruments  table, we'll

need to add a column to it. Tables can be changed after

they are created using the ALTER TABLE  command. For

example, we can add our new column like this:

ALTER TABLE musicians ADD COLUMN main_instrument INT REFERENCES

instruments(id);

The ALTER TABLE  command takes a table name, then a

command altering some aspect of the table. In this case,

we're adding a new column called main_instrument , which

will be an integer.

The REFERENCES  constraint we've specified is known as a

foreign key constraint; it limits the possible values of

main_instrument  to existing ID numbers in the instruments

table.

Retrieving data from tables

To retrieve data from tables, we can use a SELECT

statement, as follows:

SELECT name FROM musicians;

The SELECT  command takes a column or comma-separated

list of columns followed by a FROM  clause, which specifies

the table or tables containing the specified columns. This

query asks for the name  column from the musicians  table.



Its output is as follows:

name

Bill Bruford

Keith Emerson

Greg Lake

Robert Fripp

David Gilmour

Instead of a list of columns, we can also specify an asterisk,

which means "all columns." For example:

SELECT * FROM musicians;

The preceding SQL query returns the following table of

data:

ID name born died main_instrument

4 Bill Bruford 1949-05-17

2 Keith Emerson 1944-11-02 2016-03-11

3 Greg Lake 1947-11-10 2016-12-07

1 Robert Fripp 1946-05-16



ID name born died main_instrument

5 David Gilmour 1946-03-06

To filter out rows we don't want, we can specify a WHERE

clause, like so:

SELECT name FROM musicians WHERE died IS NULL;

The WHERE  command must be followed by a conditional

expression that evaluates to True  or False ; rows for which

the expression evaluates True  are shown, while rows for

which it evaluates False  are left out.

In this case, we have asked for the names of musicians for

which the died  date is NULL . We can specify more complex

conditions by combining expressions with the AND  and OR

operators, like so:

SELECT name FROM musicians WHERE born < '1945-01-01' AND died IS

NULL;

In this case, we would only get musicians born before 1945

who don't have a died date in the database.

The SELECT  command can also do operations on fields, or re-

order the results by certain columns:

SELECT name, age(born), (died - born)/365 AS "age at death" FROM

musicians ORDER BY born DESC;

In this example, we're using the age()  function to

determine the age of the musicians from their birth dates.

We're also doing math on the died  and born  dates to

determine the age at death for those who have passed.

Notice that we're using the AS  keyword to alias, or

rename, the generated column.



When you run this query, you should get output like this:

name age age at death

Bill Bruford 72 years 4 mons 18 days

Greg Lake 73 years 10 mons 24 days 69

Robert Fripp 75 years 4 mons 19 days

David Gilmour 75 years 6 mons 29 days

Keith Emerson 76 years 11 mons 2 days 71

Notice that age at death  is NULL  for those without a date of

death. Mathematical or logical operations on a NULL  value

always return an answer of NULL .

The ORDER BY  clause specifies a column or list of columns by

which the results should be ordered. It also takes an

argument of DESC  or ASC  to specify descending or

ascending order, respectively.

We have ordered the output here by date of birth in

descending order. Note that each data type has its own

rules for sorting data, just like in Python. Dates are ordered

by their calendar position, strings by alphabetical order,

and numbers by their numeric value.

Updating rows, deleting rows, and

more WHERE clauses



To update or delete existing rows, we use the UPDATE  and

DELETE FROM  keywords in conjunction with a WHERE  clause to

select the affected rows.

Deleting is fairly simple; for example, if we wanted to

delete the instrument  record with an id  value of 5 , it would

look like this:

DELETE FROM instruments WHERE id=5;

The DELETE FROM  command will delete any rows that match

the WHERE  conditions. In this case, we match the primary

key to ensure only one row is deleted. If no rows match the

WHERE  conditions, no rows will be deleted. Note, however,

that the WHERE  clause is technically optional: DELETE FROM

instruments  will simply delete all rows in the table.

Updating is similar, except it includes a SET  clause to

specify new column values, as follows:

UPDATE musicians SET main_instrument=3 WHERE id=1; UPDATE

musicians SET main_instrument=2 WHERE name='Bill Bruford';

Here, we are setting main_instrument  in the musicians  table to

the primary key value from the instruments  table that

identifies the instrument we want to associate with each

musician.

We can select the musician  records we want to update using

the primary key, name, or any combination of conditions.

Like DELETE , omitting the WHERE  clause would cause the

query to affect all rows.

Any number of columns can be updated in the SET  clause;

for example:

UPDATE musicians SET main_instrument=4, name='Keith Noel Emerson'

WHERE name LIKE 'Keith%';



Additional columns to be updated are just separated by

commas. Note that we've also matched the record using

the LIKE  operator in tandem with the %  wildcard character.

LIKE  can be used with text and string data types to match

partial values. Standard SQL supports two wildcard

characters: % , which matches zero or more characters, and

_ , which matches a single character.

We can also match against transformed column values:

Here, we've used the LOWER  function to match our string

against the lowercase version of the column value. This

doesn't permanently change the data in the table; it just

temporarily changes the value for the purpose of the

comparison.

Standard SQL specifies that LIKE  is a case-sensitive

match. PostgreSQL offers an ILIKE  operator that does

case-insensitive matching, as well as a SIMILAR TO

operator that matches using more advanced regular

expression syntax.

Subqueries

Inserting data using meaningless primary key values is not

very user-friendly. To make inserting these values a little

more intuitive, we can use a subquery, as shown in the

following SQL query:

UPDATE musicians SET main_instrument=( SELECT id FROM instruments

WHERE name='guitar' ) WHERE name IN ('Robert Fripp', 'David

Gilmour');

UPDATE musicians SET main_instrument=1 WHERE LOWER (name) LIKE '



A subquery is a SQL query within a SQL query. If your

subquery can be guaranteed to return a single value, it can

be used anywhere you would use a literal value.

In this case, we're letting our database do the work of

figuring out what the primary key of 'guitar'  is, and

inserting the returned integer for our main_instrument  value.

In the WHERE  clause, we've also used the IN  operator to

match the musician's name. Just like the Python in

keyword, this SQL keyword allows us to match against a

list of values. IN  can be used with a subquery as well; for

example:

SELECT name FROM musicians WHERE main_instrument IN ( SELECT id

FROM instruments WHERE name LIKE '%r%' )

In this example, we've asked the database to give us every

musician whose main instrument contains the letter "r".

Since IN  is meant to be used with a list of values, any

query that returns a single column with any number of

rows is valid. In this case, our subquery returns several

rows with only the id  column, so it works with IN  just fine.

Subqueries that return multiple rows and multiple columns

can be used anywhere that a table can be used; for

example, we can use a subquery in a FROM  clause, like so:

SELECT name FROM ( SELECT * FROM musicians WHERE died IS NULL )

AS living_musicians;

In this case, SQL treats our subquery as though it were a

table in the database. Note that subqueries used in a FROM

clause require an alias; we've aliased this subquery as

living_musicians .

Joining tables



Subqueries are one way of using multiple tables together,

but a more flexible and powerful way is to use JOIN . JOIN  is

used in the FROM  clause of a SQL statement, for example:

SELECT musicians.name, instruments.name as main_instrument FROM

musicians JOIN instruments ON musicians.main_instrument =

instrument.id;

A JOIN  statement requires an ON  clause that specifies the

conditions used to match rows in each table. The ON  clause

acts like a filter, much like the WHERE  clause does; you can

imagine that the JOIN  creates a new table containing every

possible combination of rows from both tables, then filters

out the ones that don't match the ON  conditions.

Tables are typically joined by matching the values in

common fields, such as those specified in a foreign key

constraint. In this case, our musicians.main_instrument  column

contains the id  values from the instrument  table, so we can

join the two tables based on this.

Joins are used to implement four types of table

relationships:

One-to-one joins match exactly one row in the first

table to exactly one row in the second.

Many-to-one joins match multiple rows in the first

table to exactly one row in the second.

One-to-many joins match one row in the first table to

multiple rows in the second.

Many-to-many joins match multiple rows in both

tables. This kind of join requires the use of an

intermediary table.

The previous query shows a many-to-one join, since many

musicians  can have the same main instrument. Many-to-one

joins are often used when a column's value should be



limited to a set of options, such as fields that our GUI might

represent with a Combobox  widget. The table joined is often

called a lookup table.

If we were to reverse our last query, it would be one-to-

many:

One-to-many joins are commonly used when a record has a

list of sub-records associated with it; in this case, each

instrument has a list of musicians who consider it their

main instrument. The joined table is often called a detail

table. The preceding SQL query will give you the following

output:

instrument musician

drums Bill Bruford

keyboards Keith Emerson

bass Greg Lake

guitar Robert Fripp

guitar David Gilmour

Notice that guitar  is duplicated in the instrument  list. When

two tables are joined, the rows of the result no longer refer

SELECT instruments.name AS instrument, musicians.name AS musicia

FROM instruments 

  JOIN musicians ON musicians.main_instrument = instruments.id; 



to the same entity. One row in the instrument  table

represents an instrument.

One row in the musician  table represents one musician. One

row in this table represents an instrument-musician

relationship.

Suppose we wanted to keep the output such that one row

represented one instrument, but still include information

about associated musicians in each row. To do this, we'll

need to combine the matched musician rows using an

aggregate function and a GROUP BY  clause, as shown in the

following SQL query:

SELECT instruments.name AS instrument, count(musicians.id) as

musicians FROM instruments JOIN musicians ON

musicians.main_instrument = instruments.id GROUP BY

instruments.name;

The GROUP BY  clause specifies which column or columns

describe what each row in the output table represents.

Output columns not in the GROUP BY  clause must then be

reduced to single values using an aggregate function.

In this case, we're using the count()  aggregate function to

count the total number of musician records associated with

each instrument. Its output looks like this:

instrument musicians

drums 1

keyboards 1

bass 1



instrument musicians

guitar 2

Standard SQL contains several more aggregate functions,

such as min() , max() , and sum() , and most SQL

implementations extend this with their own functions as

well.

Many-to-one and one-to-many joins don't quite cover every

possible situation that databases need to model; quite

often, a many-to-many relationship is required.

To demonstrate a many-to-many join, let's create a new

table called bands , like so:

CREATE TABLE bands (id SERIAL PRIMARY KEY, name TEXT NOT NULL);

INSERT INTO bands(name) VALUES ('ABWH'), ('ELP'), ('King

Crimson'), ('Pink Floyd'), ('Yes');

A band has multiple musicians, and musicians can be part

of multiple bands. How can we create a relationship

between musicians and bands? If we added a band  field to

the musicians  table, this would limit each musician to one

band. If we added a musician  field to the band  table, this

would limit each band to one musician. To make the

connection, we need to create a junction table, in which

each row represents a musician's membership in a band.

Create the musicians_bands  table like so:

CREATE TABLE musicians_bands ( 

  musician_id INT REFERENCES musicians(id), 

  band_id INT REFERENCES bands(id), 

  PRIMARY KEY (musician_id, band_id) 

); 

INSERT INTO musicians_bands(musician_id, band_id) 



VALUES (1, 3), (2, 2), (3, 2), (3, 3), 

  (4, 1), (4, 2), (4, 5), (5,4); 

The musicians_bands  table simply contains two foreign key

fields, one to point to a musician's ID and one to point to

the band's ID.

Notice that instead of creating or specifying one field as the

primary key, we use the combination of both fields as the

primary key. It wouldn't make sense to have multiple rows

with the same two values in them, so the combination

makes an acceptable primary key.

To write a query that uses this relationship, our FROM  clause

needs to specify two JOIN  statements: one from musicians  to

musicians_bands  and one from bands  to musicians_bands .

For example, let's get the names of the bands each

musician has been in:

This query ties musicians to bands using the junction table,

then displays musician names next to an aggregated list of

the bands they've been in, and orders it by the musician's

name. It gives you the following output:

name bands

Bill Bruford {ABWH,"King Crimson",Yes}

SELECT musicians.name, array_agg(bands.name) AS bands 

FROM musicians 

  JOIN musicians_bands ON musicians.id = musicians_bands.musicia

  JOIN bands ON bands.id = musicians_bands.band_id 

GROUP BY musicians.name 

ORDER BY musicians.name ASC; 



name bands

David Gilmour {"Pink Floyd"}

Greg Lake {ELP,"King Crimson"}

Keith Emerson {ELP}

Robert Fripp {"King Crimson"}

The array_agg()  function used here aggregates string values

into an array structure. This method, and the ARRAY  data

type, are specific to PostgreSQL.

There is no SQL standard function for aggregating string

values, though most SQL implementations have a solution

for it.

Managing transactions

While we can accomplish a lot of data manipulation in a

single SQL query, there are times when a change requires

multiple queries. Often in these cases, if one query fails,

the whole set of queries must be reversed or else the data

would be corrupted.

For example, suppose we want to insert 'Vocals'  as a value

in the instruments  table, but we want it to be ID #1. To do

that, we'd need to first move the other ID values in the

instruments  table up by one, adjust the foreign key values in

the musicians  table, then add the new row. The queries

would look like this:



UPDATE instruments SET id=id+1; UPDATE musicians SET

main_instrument=main_instrument+1; INSERT INTO instruments(id,

name) VALUES (1, 'Vocals');

In this example, all three queries must run successfully in

order to effect the change we want, and at the very least

the first two must run to avoid data corruption. If only the

first query ran, our data would be corrupt.

To do this safely, we need to use a transaction.

Using transactions in PostgreSQL involves three keywords,

as shown here:

Keyword Function

BEGIN Start a transaction

ROLLBACK Undo the transaction and start fresh

COMMIT Permanently save the transaction

To put our queries in a transaction, we simply add BEGIN

before the queries and COMMIT  afterward, like so:

BEGIN; UPDATE instruments SET id=id+1; UPDATE musicians SET

main_instrument=main_instrument+1; INSERT INTO instruments(id,

name) VALUES (1, 'Vocals'); COMMIT;

Now, if anything goes wrong with one of our queries, we

can execute a ROLLBACK  statement to revert the database to

the state it was in when we called BEGIN .

In DBAPI2-compatible modules like the psycopg2  module

that we use in Chapter 12, Improving Data Storage with

SQL, transaction management is often handled implicitly



through connection settings, or explicitly through

connection object methods, rather than using SQL

statements.

Learning more

This has been a quick overview of SQL concepts and

syntax; we've covered most of what you need to know to

write a simple database application, but there's much more

to learn. The PostgreSQL manual, available at

https://www.postgresql.org/docs/manuals, is a great

resource and reference for SQL syntax and the specific

features of PostgreSQL.

https://www.postgresql.org/docs/manuals


packt.com

Subscribe to our online digital library for full access to over

7,000 books and videos, as well as industry leading tools to

help you plan your personal development and advance your

career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with

practical eBooks and Videos from over 4,000 industry

professionals

Improve your learning with Skill Plans built especially

for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free

technical articles, sign up for a range of free newsletters,

and receive exclusive discounts and offers on Packt books

and eBooks.

http://packt.com/
http://www.packt.com/


Other Books You May

Enjoy

If you enjoyed this book, you may be interested in these

other books by Packt: 

Expert Python Programming - Fourth Edition

Michal Jaworski

Tarek Ziade

ISBN: 9781801071109

Explore modern ways of setting up repeatable and

consistent Python development environments

https://www.packtpub.com/product/expert-python-programming-fourth-edition/9781801071109


Effectively package Python code for community and

production use

Learn modern syntax elements of Python programming,

such as f-strings, enums, and lambda functions

Demystify metaprogramming in Python with

metaclasses

Write concurrent code in Python

Extend and integrate Python with code written in C and

C++

Python Object-Oriented Programming - Fourth

Edition

Steven F. Lott

Dusty Phillips

ISBN: 9781801077262

https://www.packtpub.com/product/python-object-oriented-programming-fourth-edition/9781801077262


Implement objects in Python by creating classes and

defining methods

Extend class functionality using inheritance

Use exceptions to handle unusual situations cleanly

Understand when to use object-oriented features, and

more importantly, when not to use them

Discover several widely used design patterns and how

they are implemented in Python

Uncover the simplicity of unit and integration testing

and understand why they are so important

Learn to statically type check your dynamic code

Understand concurrency with asyncio and how it

speeds up programs

Learn Python Programming - Third Edition

Fabrizio Romano

https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093


Heinrich Kruger

ISBN: 9781801815093

Get Python up and running on Windows, Mac, and

Linux

Write elegant, reusable, and efficient code in any

situation

Avoid common pitfalls like duplication, complicated

design, and over-engineering

Understand when to use the functional or object-

oriented approach to programming

Build a simple API with FastAPI and program GUI

applications with Tkinter

Get an initial overview of more complex topics such as

data persistence and cryptography

Fetch, clean, and manipulate data, making efficient use

of Python's built-in data structures

Packt is searching for

authors like you

If you're interested in becoming an author for Packt, please

visit authors.packtpub.com and apply today. We have

worked with thousands of developers and tech

professionals, just like you, to help them share their insight

with the global tech community. You can make a general

application, apply for a specific hot topic that we are

recruiting an author for, or submit your own idea.

http://authors.packtpub.com/


Share Your Thoughts

Now you've finished Python GUI Programming with Tkinter,

Second Edition, we'd love to hear your thoughts! If you

purchased the book from Amazon, please click here to

go straight to the Amazon review page for this book

and share your feedback or leave a review on the site that

you purchased it from.

Your review is important to us and the tech community and

will help us make sure we're delivering excellent quality

content.

https://packt.link/r/1801815925


Symbols

_new_record() method 265

_on_save() method 267

_open_record() method 266

_populate_recordlist() method 264

_show_recordlist() method 263

A

ABQ AgriLabs

data, recording 31, 32, 33

problem, analyzing 29, 30

problem, assessing 30

problem, information gathering 30, 31

ABQ AgriLabs, data analyzing

about 33

from application user 35, 36

from data consumer 37

from data originators 34

from technical support 36

ABQ application menu

File menu, adding 217, 218, 220



Help menu, adding 216

implementing 215, 216

main menu, viewing 223

settings menu, adding 220, 221, 222

ABQ database

creating 415

lookup tables, populating 420

tables, creating 415

view, creating 419, 420

ABQ Data Entry

color, adding to 313, 314, 316

company logo, adding to 278

error dialogs, displaying 199, 200

image path problem, dealing with 278, 279, 280

users font options, providing 302, 303, 304, 305

weather data, downloading to 451

ABQ Data Entry application

callback functions, writing 73

cross-platform compatibility, improving 349

data record form, building 66

encoding, specifying for CSV file 351

implementing 64

platform-appropriate menus, creating 351



preferences, storing 349, 350

Python modules, importing 65

rewriting, with classes 100

starting 65

testing 78

ABQ Data Entry application, rewriting with classes

application class, creating 112, 113, 114

form class, creating 106, 107, 108, 109, 110, 111

LabelInput class, creating 103, 104, 105, 106

StringVar, adding to Text widget 100, 101

ABQ data entry program specification

writing 39, 40, 41, 42

abq_data_entry.py file 168

accelerator keys 347

accelerators

adding 355, 356

after() methods 495, 496

aggregate function 613

ANSI/ISO-standard SQL 604

API documentation 466

Apple human interface guidelines



reference link 346

application

problems, solving 194

record list, adding to 254

REST upload, integrating into 471

running 188

SFTPModel, using 487, 488, 489

splitting, into multiple files 172

testing 268

Application Binary Interface (ABI) 574

application bundle 586

application callbacks

adding 262

_new_record() method 265

_on_save() method 267

_open_record() method 266

_populate_recordlist() method 264

_show_recordlist() method 263

updating 262

application directory

structuring 167

application file



creating 186, 187

application layout

notebook, adding to 261, 262

Ttk Notebook widget 259, 260, 261

updating 257, 258

application menu

designing 211

items 211

application menus across platforms 342

accelerator keys 347

guidelines and standards 346

Menu widget capabilities 342, 343, 344, 345

Application object

testing 387, 388, 389, 390, 391

application root 167

asynchronous code

managing 378

attributes 83, 412, 453

authenticated sites

interacting, with sessions 463, 464

authenticate() method 468, 469



authentication token 464

automated testing 367

B

base class 131

basic directory structure 167, 168

abq_data_entry.py file 168

README.rst file 169

BitmapImage

using 286, 287

BooleanVar 22

bounding box 524

bubble chart view

creating 552, 553, 554, 555

built distribution 573

buttons

icons, adding to 282, 283, 284, 285

Button widget 62

C

callback 19



callback functions

Reset function 73, 74

Save callback 74, 75, 76, 77

writing 73

Canvas

application, updating 549, 550

chart view, creating 544, 545, 547, 548

items 528

model method, creating 543

scrolling 530, 531, 532

state 528

used, for creating graphs 542

Canvas drawing methods

arcs 524

circles 524

images 527

lines 525

oval 524

polygons 526

rectangles 522, 523

squares 522, 523

text 526, 527

Tkinter widget 527, 528



Canvas object methods 528, 529, 530

Canvas objects

animating 533

game loop, running 539, 540, 541, 542

players, setting 534, 535

playing field, setting up 533, 534

racers, animating 535, 536, 537, 538, 539

win condition, detecting 540, 541, 542

cardinality 413

cardinality, types

many-to-many (n to n) 413

many-to-one (n to 1) 413

one-to-many (1 to n) 413

carriage return 336

case sensitivity

issues, avoiding 331, 332

issues with 331

of operating systems 331

chart view

creating 544, 545, 546, 547, 548

Checkbutton item

using 213, 214, 215



Checkbutton widget 56

check_file() method 470, 471

child class 90

class attributes 83, 84

classes

ABQ Data Entry application, rewriting with 100

using, with Tkinter code 91

classes, using with Tkinter code

compound widgets, creating 93, 95

encapsulated components, building 95, 96, 97

Tkinter classes, improving 91, 92, 93

class methods 85

closing tag 453

code

adding 190

committing 191

running, in background 500

color

adding, to ABQ Data Entry 313, 314, 316

color names recognized by Tk

reference link 288



column identifier (CID) 239

Combobox widget 58

validating 138, 139

command line

used, for configuring PostgreSQL 405, 406

comma-separated values (CSV) 74

commit hash 192

commits

using 192

viewing 191

communication queue

adding, to threaded uploader 510, 511

communications protocol

creating 511, 512

company logo

adding, to ABQ Data Entry 277

composite primary key 407

compositional approach 351

compound widgets

creating 93, 94



compressed disk image 586

concurrent uploads

preventing, Lock object used 518

console mode 337, 338

constraints 604

constructor 88

controller 166

control variables

BooleanVar 22

data handling with 21, 22, 23, 24, 25

DoubleVar 22

IntVar 22

significance 28

StringVar 22

using, in callback function 26, 27

convenience functions 197

cross-platform Python

console mode 337

feature support 334

filenames and file paths 328

GUI mode 337

library inconsistance 334



text file encodings and formats 336

writing 327

cross-platform Tkinter

application menus across platforms 342

fonts 347

theme support 348

version 341, 342

window zoomed state 348

writing 341

CSV extract

creating 472

CSV file

encoding, specifying 351

CSV model

read and update, implementing 231, 232

CSVModel class

get_all_records(), implementing 233, 234, 235

get_record(), implementing 235, 236

read and update, adding to 232

update capability, adding to save_record() 236, 237

CSV Writer object 76

current record property



adding 255

cursor classes 425, 426

custom dialog

creating 204, 205

custom events

using, to remove tight coupling 185

custom style 311

creating, widgets consideration 316, 317

cx_Freeze

build_exe options 577, 578

external files, including 578, 579

macOS executables, building with 586

reference link 575

steps with 575, 577

used, for creating executables 575

Windows executables, building with 581

D

dash pattern 523

data

inserting, in SQL 605, 606, 607

retrieving, from tables 607, 608, 609



Treeview, populating with 242, 243

data entry application

designing 42

fields, grouping 44, 45

form, laying out 46

input widgets 42, 44

laying out 47, 48

data errors

preventing, strategies 118, 119

data model

testing 381, 382

data model method 551, 552

data record form

building 66

Environment Data section 69, 70

GUI 72

Plant Data section 70, 71

Record Information section 67, 68, 69

data type 603

data types

assigning 414, 415



date automation 160

Date field

creating 125, 126, 127, 128

date widget

creating 137

decorator 85

detail table 612

dictionary comprehension 97

discrete mathematics 538

distributable packages

creating, with setuptools 559, 560

preparing, for distribution 560

distributable packages, for distribution

license file, adding 563, 564

package executable, making 564, 565

pyproject.toml file, creating 562, 563

requirements.txt file, creating 560, 561, 562

docs folder

populating 170

docstring 7, 65, 83

double brackets 380



DoubleVar 22

dunder methods 86

E

Edit menu 359

editor mode, IDLE

using 5, 6

element 453

elements 306

encapsulated components

building 96, 97

endpoints 461

entities 412

entity-relationship diagram (ERD) 412, 413, 414

entry points 570

Entry widget 11, 53, 54

Environment Data fields

disabling 154, 155, 156

error

input widgets, styling on 319, 320



error colors

fixing 318, 319

error conditions

testing 269

error dialogs

displaying, in ABQ Data Entry 199, 200

with Tkinter messagebox 196, 197, 198, 199

event 494

event loop 9

event queue 378, 494

event queue control 494

after() methods 495, 496

display changes, smoothing out 496

GUI freezes, mitigating 497, 498, 499

update() methods 494

uses 496

events 9, 19, 185

event sequence

specifying 379

event sequences

examples 380



event type 379

executables

build, cleaning up 580

building 580

creating, with cx_Freeze 575

F

file browser

building 239

Treeview, configuring 240, 242

Treeview, creating 240, 242

Treeview, populating with data 242, 243

Treeview records, sorting 244, 245, 246

Treeview virtual events, using 247

filedialog 201

using 201, 202, 203, 204

File menu 211

adding 217, 218

file reading

testing, in get_all_records() 383, 384

file saving

testing, in save_record() 385, 386, 387



filesystems 328

case sensitivity 331, 332

locations, identifying on OS 328

path separators and drives 328

path variables 333, 334

symbolic link 332, 333

fingerprint 479

first-in first-out (FIFO) data structure 506

first normal form 409, 410

fixtures 370, 374

floating-point error 141

focus 380

foreign key 406

foreign key constraint 607

form class

creating 106, 107, 108, 109, 110, 111

form GUI

updating, with validated widgets 146, 148

form widgets

styles, adding to 316, 317, 318

validation interaction, implementing between 149



freezing 575

G

geometry manager method 8

geometry manager methods

grid() 14

pack() 14

place() 15

widgets, arranging with 14, 15, 16, 17, 18

get_all_records()

file reading, testing in 383, 384

implementing 233, 234, 235

get_file() method 471

get_record()

implementing 235, 236

Git

download link 190

using 189

Git repository

configuring 190

initializing 190



Global Interpreter Lock (GIL) 518, 519

globally unique identifier (GUID) 408, 583

global namespace 7

Gnome HIG 347

GNU Public License (GPL) 564

grab focus 380

graphs

creating, with Canvas 542

with Matplotlib 551

GUI

building, with Tkinter widgets 10, 11, 13

validated widgets, implementing 129

GUI elements

adding, for weather download 458, 459, 460

GUI mode 337, 338

GUI utility

used, for configuring PostgreSQL 405

H

header 448



header widgets 239

Help menu 211

adding 216, 217

hierarchical data 238

human interface guidelines (HIG) 347

Hypertext Transfer Protocol (HTTP) 447

status code 448, 449

transaction fundamentals 448

with urllib 447

I

IBM Common User Access (CUA) 347

icon column 239

iconphoto

using, on different platforms 281

icons

adding, to buttons 282, 283, 284, 285

adding, to menus 282, 283, 284, 285

workflow 284

IDLE 4, 5

as Tkinter example 6, 7



configuration settings 7

editor mode 5, 6

shell mode 5

user interface 7

idle tasks 494

image path problem

dealing with 278, 279, 280

images

PhotoImage object 272, 273

Pillow, using for extended image support 274, 275, 276

variable scope 273

working with 272

imperative programming language 604

index values 60

inheritance 90, 91

initializer method 87

input

automating 159, 160

Input/Output (I/O) operations 519

input widgets

styling, on error 319, 320



instance 82

instance method 84, 85

instance variable 99

integration testing 368

ValidatedSpinbox widget 395, 396, 397, 398, 399, 400

IntVar 22

invalidcommand argument 122, 123

issues

solutions, planning to 194, 196

item 238

item identifier (IID) 239

J

JavaScript Object Notation (JSON) 91

joins

many-to-many joins 612

many-to-one joins 612

one-to-many joins 612

one-to-one joins 612

junction table 613



K

key binding

creating, to menu items 355

L

Lab

automating 161, 162

lab_checks table 417

label

adding, to display edits 255, 256

LabelFrame widget 62, 63

LabelInput class

creating 103, 104, 105, 106

Label widget 52, 53

arguments 11, 14

Lambda expressions

reference link 218

late binding 246

layout() method 308

layouts 306



lexical order 247

lightweight markup language 591

advantages 591

line block 596

line feed character 336

Linux

Python 3 installation 4

Tkinter installation 4

Linux menu

building 359, 360

load_record() method

adding 256, 257

Lock object

using 516, 517

using, for preventing concurrent uploads 518

login dialog

creating, with simpledialog 205, 206, 207

LoginDialog

incorporating, in class 208, 209, 210

lookup table 612



lookup tables

creating 415, 417

loose coupling 185

low-level function compatibility

checking 335

M

macOS

Python 3 installation 4

macOS application bundles

building 586, 587

macOS .dmg files

building 587

macOS executables

building, with cx_Freeze 586

macOS menu

building 360, 361, 362, 363

magic attributes 86, 87, 88

magic methods 86, 87, 88

main menu changes 267



MainMenu class

preparing 351, 352, 353, 355

map 306

master widget 8

Matplotlib

Application class, updating 555, 556, 557

bubble chart view, creating 552, 553, 554, 555

data model method 551, 552

used, for advanced graphs 551

Matplotlib backends

reference link 553

Matplotlib installation instructions

reference link 551

members 83

menu guidelines and standards 346

Apple human interface guidelines 346

BSD human interface guidelines 347

Linux human interface guidelines 347

Windows user experience interaction guidelines 346

menus

icons, adding to 282, 283, 284, 285



Menu widget capabilities 342, 343, 344, 345

messages

passing, queue used 506

sending to threaded uploader 513

method 448

Method Resolution Order 131

methods 84

minimum viable product (MVP) 51

mixin class 129

testing 400, 401

mock 371

using 375, 376

modal 198

model 165

model method

creating 543

models module

creating 172, 173, 174, 176, 177, 178, 179

model-view-controller (MVC) pattern 164

controller 166



model 165

view 165

module 171

multiple files

application, splitting into 172

multiple inheritance 129, 130, 131

multiple unit tests

running 377

multi-threaded application

creating 500

N

named fonts 299

named tuples 512

network functions

converting, to threaded execution 503, 504, 505

nodes 238

normal forms 408, 411

normalization

about 408



first normal form 409, 410

second normal form 410, 411

third normal form 411

notebook 258

adding, to application 261

not null constraint 604

O

object 82

Open-Iconic project

reference link 282

options for element 306

Options menu 211

os module

reference link 335

os.path module 329, 330

P

pandoc

URL 601

parameterized queries 423, 424, 425



paramiko

URL 479

using, for Secure File Transfer Protocol (SFTP) 478

parent class 90, 94

parent item 242

parent widget 8, 11, 94

partition function 537

Pascal Case 83

patch

using 375, 376

pathlib module 330

reference link 330

path separator translation 328, 329

path variables 333, 334

payload 448

pgAdmin graphical client 404

Pillow

URL 274

using, for extended image support 274, 275, 276

platform-appropriate menus



accelerators, adding 355, 356

creating 351

Linux menu, building 359, 360

macOS menu, building 360, 361, 362, 363

MainMenu class, preparing 351, 352, 353, 355

selector function, creating 363, 364, 365

selector function, using 363, 364, 365

Windows menu, building 357, 358, 359

platform-limited libraries 334, 335

platform-specific code

writing 338, 339, 340, 341

Plot

automating 161, 162

plot_checks table 417, 418

positional arguments 545

PostgreSQL

about 404

configuring 404

configuring, with command line 405, 406

configuring, with GUI utility 405

connecting, with psycopg2 420, 421

installing 404

reference link 404



POST requests

generating 450, 451

primary key , 406, 407

private members 88

property 251

protected members 88

psycopg2

basics 421, 422, 423

reference link 426

used, for connecting PostgreSQL 420, 421

public members 88

pyproject.toml file

creating 562, 563

Python

platform-limited libraries 334, 335

Python 3

download link, for macOS 4

installing, on Linux 4

installing, on macOS 4

Python 3.9

download link, for Windows 3



installing, on Windows 3, 4

Python classes 81

creation syntax 83

inheritance 90, 91

sub-classes 90, 91

using, advantages 82, 83

Python Imaging Library (PIL) 274

Python launcher 337

Python package

creating 170, 171, 172

Python Package Index (PyPI) 274

Python requests library 462

authenticated sites interacting with session 463, 464

installing 462, 463

requests.Response object 465

requests using 462, 463

Python standard library

displaying, options for storing data 223

Python Standard Library

reference link 334

Q



queue

used, for communicating between threads 508, 509

used, for passing messages 506

queue messages

handling 514, 515

Queue object 506, 507

R

race condition 497

Radiobutton item

using 213, 214, 215

Radiobutton widget 57

validating 144, 145, 146

raw string 279

Read-Evaluate-Print-Loop (REPL) 5

README.rst file 169

record form

current record property, adding 255

label, adding to display edits 255

load_record() method, adding 256, 257

modifying, for read and update 255



record list

adding, to application 254

implementing, with Treeview 248

styling, with tags 294, 295, 296

RecordList class

creating 249

scrollbar, adding for Treeview 252, 253

Treeview, populating 253, 254

Treeview widget, configuring 250, 251

recursive function 244

regular variables 99

relational data

data types, assigning 414, 415

entity-relationship diagram (ERD) 412, 413, 414

modeling 406

normalization 408

primary key 406, 407

relationships 412

relative import 174

requests

header 448

method 448



payload 448

URL 448

using 462, 463

using for RESTful HTTP 461

requests documentation

reference link 462

requests.Response object 465

requirements.txt file

creating 560, 561, 562

Reset function 73, 74

resources 461

response

header 448

payload 448

REST backend

authenticate() method 468, 469

check_file() method 470, 471

get_file() method 471

implementing 466, 467

upload_file() method 470

RESTful HTTP



with requests 461

RESTful web services 461

reStructuredText 169

reStructuredText markup language , 39

block quotes 595, 596

character styles 595

document structure 592, 593

lists 593, 594, 595

tables 596, 597

reStructuredText (RST) 592

converting, to other formats 597, 599, 600

rendering, ways 601

reStructuredText syntax

reference link 601

REST upload

CSV extract, creating 472

integrating, into application 471, 472

menu option, adding 476

running 477

upload callback, creating 473, 474, 475

revision control 189

root window 8



S

Save callback 74, 75, 76, 77

save_record()

file saving, testing in 385, 386, 387

update capability, adding to 236, 237

scatter plot 554

scrollbar

adding, for Treeview 252, 253

second normal form 410

Secure File Transfer Protocol (SFTP)

connection, inspecting 481

installing 479

using 481, 482

with paramiko 478, 479, 480

secure shell (SSH) 478

selector function

creating 363, 364, 365

using 363, 364, 365

separation of concerns 164

sequence string 379



session cookie 464

sessions

used, for interacting with authenticated sites 463, 464

settings menu

adding 220, 221, 222

SettingsModel class

updating 458

settings persistence 223, 224

model, building for 224, 225, 226, 227

model, using in application 228, 229

setup.py script

commands, defining 570, 571

configuration, testing 571

configuring 565, 566

dependencies 567, 568, 569

extra files, adding 569, 570

metadata arguments 566, 567

packages 567, 568, 569

setuptools

distributable packages, creating with 559, 560

SFTP model



files existence, checking 486

files, uploading 485, 486

implementing 482, 483, 484

SFTPModel

menu, adding 490

running 491

using, in application 487, 488, 489

shared resources

protecting, locks used 516

shell mode, IDLE

using 5

simpledialog

used, for creating Login dialog 205, 206, 207

using 204, 205

single brackets 380

single-threaded 500

snake case 84

software specification

contents 38

requirement documenting 37

source code management 189



source distributions

creating 571, 572

testing 572, 573

using 571, 572

special constant 13

Sphinx

URL 601

Spinbox 12

Spinbox range

updating, dynamically 149, 150, 151, 152, 153, 154

Spinbox widget 54, 55

validating 140, 141, 142, 143

SQL application

integrating 426

RecordList, updating 441, 443, 444

SQL application, application class for SQL backend

about 435

file-based code, removing 438

_on_save() method, updating 437

SQL login, implementing 435, 436

SQL application, DataRecordForm for SQL data



about 438

auto-fill, improving 440, 441

fields, reordering 438, 439

load_record() method, fixing 439

SQL application, model creation

about 427, 428, 429, 430

data, saving 431, 432, 434

seed sample, obtaining for plot 434

SQL databases 603

SQL injection vulnerability 423

SQLModel.add_weather_data() method

implementing 457, 458

SQL operations 605

data, inserting 605, 606, 607

data, retrieving from tables 607, 608, 609

rows, deleting 609, 610

rows, updating 609, 610

subqueries 610, 611

tables, defining 605, 606, 607

tables, joining 611, 613, 615

transactions, managing 615, 616

WHERE clauses 609, 610

SQL table



creating 456

SSH services

setting up, for testing 478

stateful protocol 490

stateless protocol 463

states of widgets 306

static method 86

static methods 85

status code 448, 449

strings

fonts, configuring with 298

StringVar 22

StringVar, adding to Text widget 100, 101

variable, passing 101

variable, synchronizing to widget 102, 103

widget, synchronizing to variable 101, 102

Structured Query Language (SQL)

concepts 603, 604

syntax 604

style map 310



styles 306

adding, to individual form widgets 316, 317, 318

sub-class 90, 91

subprocess module 336

guidelines, for avoiding issue 336

subquery 610

substitution codes 120, 121

super-class 90

surrogate primary key

using 407, 408

symbolic link 332, 333

T

tables 596, 597, 603

data, retrieving from 607, 608, 609

defining, in SQL 605, 606, 607

lab_checks table 417

lookup tables, creating 415, 417

plot_checks table 417, 418

tag 453, 529

tags



used, for styling record list 294, 295, 296

used, for styling widget content 291, 292, 293

tasks 494

do-when-idle 494

regular 494

Tcl/Tk documentation

reference link 289

TCombobox 310

tearable submenus 212

Technician

automating 161, 162

technology options

evaluating 49, 50

test 370

test case 370

writing 371, 372

TestCase assertion

methods 373, 374

TestCase assertion, methods

reference link 373



testing frameworks 370

tests

writing, for application 381

test suite 371

text file encodings and formats 336, 337

Text widget 59, 60

indices 60, 61

StringVar, adding to 100, 101

themes 306

setting 321

using 312

theme selector

building 321, 323, 324

third normal form 411

threaded uploader

communication queue, adding 510, 511

messages, sending to 513

using 505, 506

threading module

reference link 503

safety 502, 503



using 500, 501, 502

threads

communicating between, queue used 508, 509

thread-safe 502

tight coupling 185

Time

automating 161, 162

Tk 2

sub-classing 97, 98, 99

Tkinter 2

advantages 2

data handling, with control variables 21, 22, 23, 24, 25

disadvantages 3

form, creating 19, 20, 21

GUI, building with Tkinter widgets 10, 11, 13

installing 3

installing, on Linux 4

overview 9

selecting 2

widgets, arranging with geometry managers 14, 15, 16,

17, 18

Tkinter Canvas



animation 521, 522

drawing 521, 522

Tkinter classes

improving 91, 93

Tkinter code

classes, using with 91

testing 377

Tkinter dialogs

custom dialog, creating 204

error dialogs, with Tkinter messagebox 196, 197, 198,

199

filedialog, using 201, 202, 203, 204

implementing 196

simpledialog, using 204

Tkinter fonts

configuring 297

configuring, with strings 298

configuring, with tuples 298

module 299, 300, 301, 302

working with 297

Tkinter Hello World

creating 7, 8, 9



Tkinter Menu widget 211, 212, 213

Tkinter messagebox

error dialogs with 196, 197, 198, 199

Tkinter PhotoImage 272, 273

Tkinter, standard library documentation

reference link 2

Tkinter validation

configuration arguments 119

invalidcommand argument 122, 123

validate argument 120

validatecommand argument 120, 121, 122

Tkinter widgets

color properties 287

styling 287

widget content, styling with tags 291

tk.Menu widget

accepting, appearance-related arguments 288

Tom�s Obvious, Minimal Language (TOML) 563

URL 563

Tool Command Language (Tcl) 2

trace , 22



transactional database 423

transactions

managing 615, 616

Treeview

configuring 240, 242, 250, 251

creating 240, 242

populating 253, 254

populating, with data 242, 243

record list, implementing with 248

records, sorting 244, 245, 246

scrollbar, adding 252, 253

virtual events, using 247, 248

Ttk Notebook widget 259, 260, 261

TTk styling breakdown 306

Ttk Treeview 237

anatomy 238, 239

file browser, building 239

Ttk widget

exploring 307, 308, 309, 311

Ttk widgets

styling 305



Ttk widget set 51, 52

Button 62

Checkbutton 56

Combobox 58

Entry 53, 54

Label 52, 53

LabelFrame 62, 63

Radiobutton 57

Spinbox 54, 55

Text 59, 60, 61

tuples

fonts, configuring with 298

two-way binding 22

U

unique constraint 604

unit test 368, 369, 370

unit testing 368

ValidatedSpinbox widget 393, 394

unittest module 370

Unix

filesystem, locations identifying on 328



update capability

adding, to save_record() 236, 237

update() methods 494

upload callback

creating 473, 474, 475

upload_file() method 470

URL 448

urllib

using, for Hypertext Transfer Protocol (HTTP) 447

urllib.request module

POST requests generating 450, 451

used for basic downloading 449, 450

user actions

simulating 378

user configuration files

storing 349, 350

user input

data errors, preventing strategies 118, 119

Tkinter, validating 119

validating 117, 118



users font options

providing, in ABQ Data Entry 302, 303, 304, 305

UTF-8 336

V

validate argument 120

validatecommand argument 120, 121, 122

ValidatedMixin

used for building, validation input widgets 136

ValidatedSpinbox widget

integration testing 395, 396, 397, 398, 399, 400

unit testing 393, 394

validated widget classes

creating 123, 124, 125

Date field, creating 125, 126, 127, 128

validated widgets

errors, displaying 156, 157

form submission on error, preventing 157, 158, 159

implementing, in GUI 129

used, for updating form GUI 146, 148

validation input widgets building with ValidatedMixin



data requiring 136

validation input widgets, building with ValidatedMixin

136

Combobox widget 138, 139

data widget, creating 137

Radiobutton widgets, validating 144, 145, 146

range-limited Spinbox widget 140, 141, 142, 143

validation interaction

implementing, between form widgets 149

validation mixin class

building 132, 133, 134, 135

verb 448

version control 189

version control system (VCS)

using 189

Version Control System (VCS) 591

view 165

creating 419, 420

view logic

redundancy, removing 181, 182, 183, 184

View menu 359



viewport 522

views

moving 180

virtual environment 572

virtual events 247

W

weather data

downloading, to ABQ Data Entry 451

weather data model

creating 451, 452, 453

weather data storage

implementing 456

SettingsModel class, updating 458

SQLModel.add_weather_data() method, implementing

457, 458

SQL table, creating 456

weather download

GUI elements, adding 458, 459, 460

wheel distributio

building 573, 574



wheel distribution

types 574

WHERE clauses 609, 610

widget color properties 287

using, on MainMenu 288, 289, 290

widget content

styling, with tags 291, 292, 293

widget information

obtaining 381

widgets

moving 179

testing 392

wildcard import 7

window icon

setting 281

Windows

Python 3.9 installation 3, 4

Windows apps design basics

reference link 346

Windows/DOS



filesystem, locations identifying on 328

Windows executables

building, with cx_Freeze 581

Windows installer file

building 582, 584, 585, 586

Windows menu

building 357, 358, 359

Windows user experience interaction guidelines

reference link 346

window zoomed state 348

X

XBM files 286

XML weather data

parsing 453, 455, 456



Index


	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Get in touch

	Introduction to Tkinter
	Introducing Tkinter and Tk
	Choosing Tkinter
	Installing Tkinter
	Installing Python 3.9 on Windows
	Installing Python 3 on macOS
	Installing Python 3 and Tkinter on Linux

	Introducing IDLE
	Using the shell mode of IDLE
	Using the editor mode of IDLE
	IDLE as a Tkinter example

	Creating a Tkinter Hello World

	An overview of basic Tkinter
	Building a GUI with Tkinter widgets
	Arranging our widgets with geometry managers
	Making the form actually do something
	Handling data with Tkinter control variables
	Using control variables in a callback function
	The importance of control variables


	Summary

	Designing GUI Applications
	Analyzing a problem at ABQ AgriLabs
	Assessing the problem
	Gathering information about the problem
	Interviewing the interested parties

	Analyzing what we've found out
	Information from the data originators
	Information from the users of the application
	Information from technical support
	Information from the data consumer


	Documenting specification requirements
	Contents of a simple specification
	Writing the ABQ data entry program specification

	Designing the application
	Deciding on input widgets
	Grouping our fields
	Laying out the form
	Laying out the application

	Evaluating technology options
	Summary

	Creating Basic Forms with Tkinter and Ttk Widgets
	The Ttk widget set
	The Label widget
	The Entry widget
	The Spinbox widget
	The Checkbutton widget
	The Radiobutton widget
	The Combobox widget
	The Text widget
	Text widget indices

	The Button widget
	The LabelFrame widget

	Implementing the application
	First steps
	Building the data record form
	The Record Information section
	The Environment Data section
	The Plant Data section
	Finishing the GUI

	Writing the callback functions
	The Reset function
	The Save callback

	Finishing up and testing

	Summary

	Organizing Our Code with Classes
	A primer on Python classes
	The advantages of using classes
	Classes are an integral part of Python
	Classes make relationships between data and functions explicit
	Classes help create reusable code

	Syntax of class creation
	Attributes and methods
	Magic attributes and methods
	Public, private, and protected members

	Inheritance and subclasses

	Using classes with Tkinter
	Improving Tkinter classes
	Creating compound widgets
	Building encapsulated components
	Subclassing Tk


	Rewriting our application using classes
	Adding a StringVar to the Text widget
	Passing in a variable
	Synchronizing the widget to the variable
	Synchronizing the variable to the widget

	Creating a more advanced LabelInput()
	Creating a form class
	Creating an application class

	Summary

	Reducing User Error with Validation and Automation
	Validating user input
	Strategies to prevent data errors
	Validation in Tkinter
	The validate argument
	The validatecommand argument
	The invalidcommand argument


	Creating validated widget classes
	Creating a Date field

	Implementing validated widgets in our GUI
	Introducing the power of multiple inheritance
	Building a validating mixin class
	Building validating input widgets with ValidatedMixin
	Requiring data
	Creating a Date widget
	A better Combobox widget
	A range-limited Spinbox widget
	Validating Radiobutton widgets

	Updating our form with validated widgets
	Implementing validation interaction between form widgets
	Dynamically updating the Spinbox range
	Dynamic disabling of fields

	Displaying errors
	Preventing form submission on error

	Automating input
	Date automation
	Automating Plot, Lab, Time, and Technician

	Summary

	Planning for the Expansion of Our Application
	Separating concerns
	The MVC pattern
	What is a model?
	What is a view?
	What is a controller?

	Why complicate our design?

	Structuring our application directory
	Basic directory structure
	The abq_data_entry.py file
	The README.rst file
	Populating the docs folder
	Making a Python package


	Splitting our application into multiple files
	Creating the models module
	Moving the widgets
	Moving the views
	Removing redundancy in our view logic
	Using custom events to remove tight coupling

	Creating the application file
	Running the application

	Using version control software
	A super-quick guide to using Git
	Initializing and configuring a Git repository
	Adding and committing code
	Viewing and using our commits


	Summary

	Creating Menus with Menu and Tkinter Dialogs
	Solving problems in our application
	Planning solutions to the issues

	Implementing Tkinter dialogs
	Error dialogs with the Tkinter messagebox
	Showing error dialogs in ABQ Data Entry
	Using filedialog
	Using simpledialog and creating a custom dialog
	Creating a Login dialog using simpledialog
	Incorporating the LoginDialog in our class


	Designing the application menu
	The Tkinter Menu widget
	Using Checkbutton and Radiobutton items

	Implementing the ABQ application menu
	Adding a Help menu
	Adding a File menu
	Adding a settings menu
	Finishing the menu

	Persisting settings
	Building a model for settings persistence
	Using the settings model in our application


	Summary

	Navigating Records with Treeview and Notebook
	Implementing read and update in the model
	Adding read and update to the CSVModel class
	Implementing get_all_records()
	Implementing get_record()
	Adding update capability to save_record()


	The Ttk Treeview
	Anatomy of a Treeview
	Building a file browser
	Creating and configuring a Treeview
	Populating a Treeview with data
	Sorting Treeview records
	Using Treeview virtual events


	Implementing a record list with Treeview
	Creating the RecordList class
	Configuring a Treeview widget
	Adding a scrollbar for the Treeview
	Populating the Treeview


	Adding the record list to the application
	Modifying the record form for read and update
	Adding a current record property
	Adding a label to show what is being edited
	Adding a load_record() method

	Updating the application layout
	The Ttk Notebook widget
	Adding a notebook to our application

	Adding and updating application callbacks
	The _show_recordlist() method
	The _populate_recordlist() method
	The _new_record() method
	The _open_record() method
	The _on_save() method

	Main menu changes
	Testing our program

	Summary

	Improving the Look with Styles and Themes
	Working with images in Tkinter
	Tkinter PhotoImage
	PhotoImage and variable scope

	Using Pillow for extended image support
	Adding the company logo to ABQ Data Entry
	Dealing with the image path problem

	Setting a window icon
	Adding icons to buttons and menus
	Using BitmapImage


	Styling Tkinter widgets
	Widget color properties
	Using widget properties on the MainMenu

	Styling widget content with tags
	Styling our record list with tags


	Working with fonts in Tkinter
	Configuring Tkinter fonts
	Configuring fonts with strings and tuples
	The font module

	Giving users font options in ABQ Data Entry

	Styling Ttk widgets
	TTk styling breakdown
	Exploring a Ttk widget
	Using themes

	Adding some color to ABQ Data Entry
	Adding styles to individual form widgets
	Fixing the error colors
	Styling input widgets on error

	Setting themes
	Building a theme selector


	Summary

	Maintaining Cross-Platform Compatibility
	Writing cross-platform Python
	Filenames and file paths across platforms
	Path separators and drives
	Case sensitivity
	Symbolic links
	Path variables

	Inconsistent library and feature support
	Python's platform-limited libraries
	Checking low-level function compatibility
	The dangers of the subprocess module

	Text file encodings and formats
	Graphical and console modes
	Writing code that changes according to the platform

	Writing cross-platform Tkinter
	Tkinter version differences across platforms
	Application menus across platforms
	Menu widget capabilities
	Menu guidelines and standards
	Menus and accelerator keys

	Cross-platform fonts
	Cross-platform theme support
	Window zoomed state

	Improving our application's cross-platform compatibility
	Storing preferences correctly
	Specifying an encoding for our CSV file
	Making platform-appropriate menus
	Preparing our MainMenu class
	Adding accelerators
	Building the Windows menu
	Building the Linux menu
	Building the macOS menu
	Creating and using our selector function


	Summary

	Creating Automated Tests with unittest
	Automated testing basics
	A simple unit test
	The unittest module
	Writing a test case
	TestCase assertion methods
	Fixtures
	Using Mock and patch
	Running multiple unit tests


	Testing Tkinter code
	Managing asynchronous code
	Simulating user actions
	Specifying an event sequence

	Managing focus and grab
	Getting widget information

	Writing tests for our application
	Testing the data model
	Testing file reading in get_all_records()
	Testing file saving in save_record()
	More tests on the models

	Testing our Application object
	Testing our widgets
	Unit testing the ValidatedSpinbox widget
	Integration testing the ValidatedSpinbox widget

	Testing our mixin class

	Summary

	Improving Data Storage with SQL
	PostgreSQL
	Installing and configuring PostgreSQL
	Configuring PostgreSQL using the GUI utility
	Configuring PostgreSQL using the command line


	Modeling relational data
	Primary keys
	Using surrogate primary keys

	Normalization
	First normal form
	Second normal form
	Third normal form
	More normalization forms

	Entity-relationship diagrams
	Assigning data types

	Creating the ABQ database
	Creating our tables
	Creating the lookup tables
	The lab_checks table
	The plot_checks table

	Creating a view
	Populating the lookup tables

	Connecting to PostgreSQL with psycopg2
	psycopg2 basics
	Parameterized queries
	Special cursor classes

	Integrating SQL into our application
	Creating a new model
	Saving data
	Getting the current seed sample for the plot

	Adjusting the Application class for the SQL backend
	Implementing SQL logins
	Updating the Application._on_save() method
	Removing file-based code

	Adjusting the DataRecordForm for SQL data
	Reordering fields
	Fixing the load_record() method
	Improving auto-fill

	Updating the RecordList for the SQLModel
	We're done!

	Summary

	Connecting to the Cloud
	HTTP using urllib
	HTTP transaction fundamentals
	HTTP status codes

	Basic downloading with urllib.request
	Generating POST requests

	Downloading weather data to ABQ Data Entry
	Creating a weather data model
	Parsing the XML weather data
	Implementing weather data storage

	Adding the GUI elements for weather download

	RESTful HTTP using requests
	Understanding RESTful web services
	The Python requests library
	Installing and using requests
	Interacting with authenticated sites using Session
	The requests.Response object

	Implementing a REST backend
	The authenticate() method
	The upload_file() method
	The check_file() method
	The get_file() method

	Integrating REST upload into the application
	Creating a CSV extract
	Creating the upload callback
	Finishing up


	SFTP using paramiko
	Setting up SSH services for testing
	Installing and using paramiko
	Using paramiko
	Inspecting our connection
	Using SFTP

	Implementing an SFTP model
	Uploading files
	Checking a file's existence

	Using SFTPModel in our application
	Finishing up


	Summary

	Asynchronous Programming with Thread and Queue
	Tkinter's event queue
	Event queue control
	The update() methods
	The after() methods

	Common uses of event queue control
	Smoothing out display changes
	Mitigating GUI freezes


	Running code in the background with threads
	The threading module
	Tkinter and thread safety

	Converting our network functions to threaded execution
	Using the threaded uploader
	Passing messages using a queue
	The Queue object
	Using queues to communicate between threads

	Adding a communication queue to our threaded uploader
	Creating a communications protocol
	Sending messages from the uploader
	Handling queue messages

	Using locks to protect shared resources
	Understanding the Lock object
	Using a Lock object to prevent concurrent uploads
	Threading and the GIL


	Summary

	Visualizing Data Using the Canvas Widget
	Drawing and animation with Tkinter's Canvas
	Drawing on the Canvas
	Rectangles and squares
	Ovals, circles, and arcs
	Lines
	Polygons
	Text
	Images
	Tkinter widgets
	Canvas items and state

	Canvas object methods
	Scrolling the Canvas
	Animating Canvas objects
	Setting up the playing field
	Setting our players
	Animating the racers
	Running the game loop and detecting a win condition


	Creating simple graphs using Canvas
	Creating the model method
	Creating the chart view
	Updating the application

	Advanced graphs using Matplotlib
	Data model method
	Creating the bubble chart view
	Updating the Application class

	Summary

	Packaging with setuptools and cxFreeze
	Creating distributable packages with setuptools
	Preparing our package for distribution
	Creating a requirements.txt file
	Creating a pyproject.toml file
	Adding a license file
	Making our package executable

	Configuring a setup.py script
	Basic metadata arguments
	Packages and dependencies
	Adding extra files
	Defining commands
	Testing the configuration

	Creating and using source distributions
	Testing our source distribution

	Building a wheel distribution

	Creating executables with cx_Freeze
	First steps with cx_Freeze
	The build_exe options
	Including external files
	Building executables
	Cleaning up the build

	Building Windows executables with cx_Freeze
	Building a Windows installer file

	Building macOS executables with cx_Freeze
	Building macOS application bundles
	Building macOS .dmg files


	Summary

	Appendices
	A: A Quick Primer on reStructuredText
	The reStructuredText markup language
	Document structure
	Lists
	Character styles
	Blocks and quotes
	Tables

	Converting RST to other formats
	Other ways to render RST


	B: A Quick SQL Tutorial
	SQL concepts
	Syntax differences from Python

	SQL operations and syntax
	Defining tables and inserting data
	Retrieving data from tables
	Updating rows, deleting rows, and more WHERE clauses
	Subqueries
	Joining tables
	Managing transactions

	Learning more

	Other Books You May Enjoy
	Index

