
Beginning
PyQt

A Hands-on Approach to GUI Programming
—
Joshua M. Willman

Beginning PyQt
A Hands-on Approach to GUI

Programming

Joshua M. Willman

Beginning PyQt: A Hands-on Approach to GUI Programming

ISBN-13 (pbk): 978-1-4842-5856-9 ISBN-13 (electronic): 978-1-4842-5857-6
https://doi.org/10.1007/978-1-4842-5857-6

Copyright © 2020 by Joshua M. Willman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5856-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joshua M. Willman
Hampton, VA, USA

https://doi.org/10.1007/978-1-4842-5857-6

To my daughter, Kalani.
Pursue what inspires you.

v

Table of Contents

Chapter 1: Charting the Course �� 1

Who Should Read This Book ��� 2

Introduction to User Interfaces ��� 2

What Is a Graphical User Interface? �� 2

Concepts for Creating Good Interface Design �� 3

The PyQt Framework ��� 4

Why Choose PyQt? ��� 4

Requirements �� 5

Links to Source Code �� 5

How This Book Is Organized �� 6

Reader Feedback �� 6

Chapter 2: Getting Started with PyQt�� 7

Project 2�1 – User Profile GUI �� 8

Design the GUI Layout ��� 9

Create an Empty Window �� 10

The QLabel Widget ��� 13

User Profile GUI Solution ��� 16

Summary��� 20

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

vi

Chapter 3: Adding More Functionality to Interfaces ��� 21

Project 3�1 – Login GUI �� 22

Design the Login GUI ��� 23

The QPushButton Widget ��� 24

Events, Signals, and Slots ��� 27

The QLineEdit Widget��� 28

The QCheckBox Widget�� 31

The QMessageBox Dialog Box ��� 35

Login GUI Solution ��� 40

Project 3�2 – Create New User GUI ��� 46

Creating a New User GUI Solution ��� 47

Summary��� 52

Chapter 4: Learning About Layout Management �� 53

Choosing a Layout Manager�� 54

Customizing the Layout ��� 55

Absolute Positioning – Move() �� 55

Project 4�1 – Basic Notepad GUI �� 56

The QTextEdit Widget ��� 57

The QFileDialog Class �� 57

Basic Notepad GUI Solution ��� 58

The QHBoxLayout and QVBoxLayout Classes �� 62

Project 4�2 – Survey GUI �� 62

The QButtonGroup Class �� 63

Survey GUI Solution ��� 64

The QFormLayout Class �� 68

Project 4�3 – Application Form GUI �� 68

The QSpinBox and QComboBox Widgets ��� 69

Application Form GUI Solution ��� 73

Table of ConTenTs

vii

The QGridLayout Class �� 77

Project 4�4 – To-Do List GUI ��� 78

To-Do List GUI Solution �� 79

Summary��� 83

Chapter 5: Menus, Toolbars, and More ��� 85

Create a Basic Menu ��� 86

Explanation �� 88

Setting Icons with the QIcon Class ��� 91

Explanation �� 94

Project 5�1 – Rich Text Notepad GUI �� 95

Design the Rich Text Notepad GUI ��� 96

More Types of Dialog Boxes in PyQt �� 97

The QInputDialog Class �� 97

The QFontDialog Class ��� 98

The QColorDialog Class ��� 99

The About Dialog Box��� 101

Rich Text Notepad GUI Solution ��� 101

Explanation �� 109

Project 5�2 – Simple Photo Editor GUI ��� 110

Design the Photo Editor GUI ��� 111

QDockWidget, QStatusBar, and More �� 112

Explanation �� 116

Photo Editor GUI Solution �� 120

Explanation �� 131

Summary��� 134

Chapter 6: Styling Your GUIs ��� 135

Changing GUI Appearances with Qt Style Sheets�� 135

Customizing Individual Widget Properties ��� 136

Customizing the QApplication Style Sheet �� 137

Table of ConTenTs

viii

Project 6�1 – Food Ordering GUI �� 138

Design the Food Ordering GUI ��� 140

The QRadioButton Widget �� 141

The QGroupBox Class �� 141

The QTabWidget Class ��� 142

Food Ordering GUI Solution ��� 147

Explanation �� 156

Event Handling in PyQt �� 159

Explanation �� 160

Creating Custom Signals ��� 161

Explanation �� 163

Summary��� 164

Chapter 7: Creating GUIs with Qt Designer ��� 165

Getting Started with Qt Designer �� 166

Exploring Qt Designer’s User Interface �� 167

Qt Designer’s Editing Modes ��� 173

Creating an Application in Qt Designer ��� 174

Project 7�1 – Keypad GUI �� 175

Keypad GUI Solution �� 176

Explanation �� 190

Extra Tips for Using Qt Designer ��� 200

Setting Up Main Windows and Menus ��� 200

Display Images in Qt Designer �� 202

Summary��� 203

Chapter 8: Working with the Clipboard �� 205

The QClipboard Class �� 205

Explanation �� 209

Project 8�1 – Sticky Notes GUI �� 210

Sticky Notes GUI Solution �� 212

Explanation �� 216

Table of ConTenTs

ix

Drag and Drop in PyQt ��� 216

Explanation �� 219

Explanation �� 223

Summary��� 223

Chapter 9: Graphics and Animation in PyQt ��� 225

Introduction to the QPainter Class �� 226

Explanation �� 233

Project 9�1 – Painter GUI ��� 240

Painter GUI Solution �� 241

Explanation �� 249

Project 9�2 – Animation with QPropertyAnimation �� 252

Animation Solution �� 253

Explanation �� 256

Project 9�3 – RGB Slider Custom Widget ��� 257

PyQt’s Image Handling Classes ��� 258

The QSlider Widget �� 259

RGB Slider Solution ��� 260

Explanation �� 267

RGB Slider Demo ��� 270

Explanation �� 272

Summary��� 273

Chapter 10: Introduction to Handling Databases �� 275

The QTableWidget Class �� 276

Explanation �� 282

Introduction to Model/View Programming �� 285

The Components of the Model/View Architecture ��� 285

PyQt’s Model/View Classes ��� 286

Explanation �� 290

Working with SQL Databases in PyQt �� 291

What Is SQL? ��� 291

Table of ConTenTs

x

Project 10�1 – Account Management GUI ��� 294

Working with QtSql �� 295

Example Queries Using QSqlQuery �� 300

Working with QSqlTableModel ��� 303

Working with QSqlRelationalTableModel ��� 306

Account Management GUI Solution ��� 310

Explanation �� 315

Summary��� 316

Chapter 11: Managing Threads �� 319

Introduction to Threading �� 319

Threading in PyQt �� 320

Methods for Processing Long Events in PyQt �� 321

Project 11�1 – File Renaming GUI ��� 322

The QProgressBar Widget �� 323

File Renaming GUI Solution ��� 323

Explanation �� 328

Summary��� 329

Chapter 12: Extra Projects �� 331

Project 12�1 – Directory Viewer GUI �� 332

Explanation �� 335

Project 12�2 – Camera GUI �� 336

Explanation �� 341

Project 12�3 – Simple Clock GUI ��� 342

Explanation �� 345

Project 12�4 – Calendar GUI �� 346

Explanation �� 351

Project 12�5 – Hangman GUI ��� 352

Explanation �� 362

Project 12�6 – Web Browser GUI ��� 364

Explanation �� 373

Summary��� 376

Table of ConTenTs

xi

Appendix A: Reference Guide for PyQt5 �� 379

Installing PyQt5 and Qt Designer �� 379

Getting PyQt for Windows �� 380

Getting PyQt for MacOS ��� 380

Getting PyQt for Linux (Ubuntu) ��� 381

Other Methods for Getting PyQt ��� 381

Selected PyQt5 Modules ��� 382

Selected PyQt Classes �� 383

Classes for Building a GUI Window �� 383

QPainter ��� 387

Layout Managers ��� 388

Button Widgets �� 390

Input Widgets ��� 391

Display Widgets ��� 397

Item Views ��� 400

Container Widgets ��� 402

Qt Style Sheets �� 405

Summary��� 407

Appendix B: Python Refresher �� 409

Installing Python ��� 410

Getting Python for Windows �� 410

Getting Python for MacOS ��� 411

Getting Python for Linux �� 412

Data Types in Python ��� 413

Numeric Data Types ��� 413

String Data Type �� 414

Boolean Data Type ��� 416

Table of ConTenTs

xii

Data Structures in Python ��� 417

Lists ��� 417

Tuples �� 418

Sets ��� 419

Dictionaries ��� 420

Data Type Conversion �� 422

Conditionals and Loops in Python ��� 422

“if-elif-else” Conditional Statements �� 423

“for” Loops �� 424

“while” Loops �� 425

Functions �� 426

Lambda Functions ��� 427

Object-Oriented Programming (OOP) �� 428

Exception Handling in Python ��� 429

Reading and Writing to Files in Python ��� 430

Summary��� 431

Index ��� 433

Table of ConTenTs

xiii

About the Author

Joshua M. Willman began using Python in 2015, when

his first task was to build neural networks using machine

learning libraries, including Keras and TensorFlow, for

image classification. While creating large image datasets for

his research, he needed to build a GUI that would simplify

the workload and labeling process, which introduced him

to PyQt. He currently works as a Python developer and

instructor, designing courses to help others learn about

coding in Python for game development, AI and machine

learning, and programming using microcontrollers. More

recently, he set up the site RedHuli to explore his and others’

interests in using Python and programming for creative

purposes.

xv

About the Technical Reviewer

Lentin Joseph is an author and robotics entrepreneur from

India. He runs a robotics software company called Qbotics

Labs in India. He has 9 years of experience in the robotics

domain primarily in ROS, OpenCV, and PCL.

He has authored eight books in ROS, namely, Learning

Robotics Using Python 1st and 2nd edition, Mastering ROS

for Robotics Programming 1st and 2nd edition, ROS Robotics

Projects, Robot Operating System for Absolute Beginners, and

ROS Programming.

He pursed a master’s degree in robotics from India and also did research at Robotics

Institute, CMU, USA. He is also a TEDx speaker.

xvii

Acknowledgments

Writing this book has truly been an eye-opening experience, and I owe thanks to those

who have helped me reach this point in my life.

I want to begin by thanking those individuals who helped me to take a good, hard

look at my life.

To Joyce Corriere, your lessons and kindness all those years ago have inspired me to

this day.

Thank you to Professor Rong Xiong (熊蓉) for giving me the chance to pursue my

dreams and to get my life back on track.

I owe a debt of gratitude to Lingyan Xu (许凌雁) and Melody for their laughs and

support during some of the toughest times.

When I first started learning Python and PyQt a few years back, I had no idea where

to begin. A big thanks to the Python community and to Jan Bodnar at ZetCode for giving

me the tools to get started in creating my own applications.

Thank you so much to Apress editorial for the serendipitous e-mail that began this

whole journey just as I was researching ways to write a book.

A very immense thank you must be given to my Coordinating Editor, Divya Modi, for

being patient and positively stoic with me all of the times the deadlines flew past.

Thanks to my mother, Valorie, and my sisters, Teesha and Jazzmin, for all of the

support you have given me.

Words cannot express how deeply grateful I am to my wife, Evelyn, who has been the

most patient of all during this time, listening to my incessant rambling about ideas, and

who helped me realize that I cannot put everything into one book.

To Kalani, your laughs have been an enormous uplift.

Lastly, thank you to the readers. I hope the ideas found within this book can help you

in some way.

xix

Introduction

Just getting started is more important than anything else. Coding a graphical user

interface (GUI) can be thought of as a combination between programming and graphic

design skills. An awareness of a user’s needs is crucial for both usability and graphical

appearance. Programming a GUI is often a matter of finding the right component,

referred to as widgets, to complete a task, and then applying the necessary programming

skills to make them operational.

In this book, we will see how to use the Python programming language, along with

the PyQt5 toolkit, to create GUIs. With PyQt5, many of the components are already

created for you. However, if you ever find yourself needing a component that does not

exist, with PyQt5 you can always make your own custom widgets and classes, as well.

If this is your first time creating GUIs at all, then my recommendation is to follow

along with Chapters 2 through 6 to get your bearings with PyQt. Many of the key

concepts and classes that you will use for basic interfaces can be found there, including

creating a window for arranging widgets, making components that are interactive and

can communicate with one another and with the information stored on your computer,

layout management, setting up the menu system, and manipulating a GUI’s appearance.

In the remaining chapters, we will begin looking at more specific examples: looking

at Qt Designer for simplifying the GUI design process in Chapter 7; using the clipboard

in Chapter 8; art and animation and creating your own widgets in Chapter 9; working

with databases in Chapter 10; threading in Chapter 11; and a number of miscellaneous

topics in Chapter 12.

There are also two appendices, Appendix A which gives extra information about

PyQt classes and Appendix B for refreshing your knowledge about Python.

No one chapter has all the tools you will need in it. Widgets and classes are spread

throughout the book, helping you to learn and apply what you have learned as you go.

Nor is every one of PyQt’s classes covered within these pages. Learning is an ongoing

process, and sometimes having to do a bit of extra searching will help ideas better stick

in your mind.

1
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_1

CHAPTER 1

Charting the Course
Hello! Welcome to Beginning PyQt: A Hands-on Approach to GUI Programming. The goal

of this book is to take a more practical approach to learning how to code user interfaces

(UIs), following along and coding numerous examples, both simple and complex, to help

understand and visualize how we can use the concepts taught in each chapter. What that

means is that when you learn how to code QPushButton widgets, for example, you will

first walk through a simple program that helps you build the fundamentals. Then, you

will apply that concept to a slightly larger project.

“When am I ever going to use this?” I can still recall sitting in my math classes

and hearing someone ask that question. The formulas and theories, culminations of

numerous mathematicians’ life’s work, were all amazing to learn, but without some way

to apply them to actual examples beyond the textbook, those concepts faded away into

some dark recess in my mind.

To avoid spiraling down this same path when learning to code, this book aims to help

you jump right into actual examples to get you coding and practicing the concepts with

a hands-on approach. New concepts and PyQt classes are introduced in each chapter,

and later chapters sometimes build upon the previous ones. Of course, not everyone has

the same goal in mind. Therefore, there are a couple of ways to approach the content

of this book. The first way is for readers who want to follow along and practice learning

many of the basics of PyQt. These types of readers are encouraged to code many of the

projects and then play around with the concepts to design their own applications. The

other approach is for those readers who already have a project in mind and need some

help getting started. You are definitely encouraged to use the code in this book as a

foundation to build your own projects and get them off the ground.

2

 Who Should Read This Book
Everyone must begin somewhere. With that idea in mind, this book is targeted for

individuals who already have a fundamental understanding of the Python programming

language and are looking to either expand their skills in Python or have a project where

they need to create a UI, but may have no prior experience creating UI or no idea where

to begin. Having prior knowledge of other Python UI toolkits is not necessary to get

started in this book.

 Introduction to User Interfaces
The user interface (UI) has become a key component of our everyday lives, becoming the

intermediary between us and our ever-growing number of machines. A UI is designed

to facilitate in human-computer interaction. The human needs to operate and control

the machine to serve some purpose; meanwhile the machine needs to simultaneously

provide feedback to aid the human’s decision-making process. UIs are everywhere, from

the mobile applications on our phones to web browsers, to heavy machinery controls,

and even on the appliances in our kitchens. Of course, the ways in which we interact

with technology are not merely limited to our hands, as many UIs also allow interaction

with our other sensory organs.

A good UI is tasked with helping a person produce a desired result while also

allowing for easier, more efficient, and more friendly operation of a machine. Think

about the photo editing apps on your phone. Editing the size, color, or exposure is

practically effortless as you slide your fingers across the screen and watch the images

change almost instantly. The user provides minimal input to achieve the desired output.

 What Is a Graphical User Interface?
For this book, we will be focusing on creating graphical user interfaces (GUIs) which

take advantage of a computer’s graphics capabilities to create visual controls on a

machine’s screen. This makes interaction with machines much easier. Decades ago,

users would have to use the command line and text commands to interact with the

computer. Tasks such as opening, deleting, and moving files or searching through

directories were all done by typing in certain commands. However, these were not

very user friendly or simple to use. So GUIs were created to allow users to interact with

electronic devices using graphical controls, rather than command-line interfaces.

Chapter 1 Charting the Course

3

These graphical control elements, or widgets, such as buttons, menus, and windows,

make such tasks effortless. Interaction now becomes as simple as moving your mouse or

touching the screen depending upon your device and clicking the widget.

 Concepts for Creating Good Interface Design
This, first and foremost, is a technical book written to help those of you who want to

learn how to create and code your own GUI with PyQt and Python. That being said,

if you plan to design any kind of UI that other people will use, then you are no longer

creating a UI just to solve some problem. You must also begin to consider other users

of the application, as well. Think about what you want them to accomplish, or how the

application can help them. Sometimes when we are trying to solve a problem, we get so

caught up in trying to create a product that we forget about the people who actually have

to interact with them.

The following are a list of guidelines to consider when designing your own UI. They

are not set rules and by no means a complete list, but rather ideas that can help to save

you some time and headaches later.

 1. Clarity – Using clear language, hierarchy, and flow with visual

elements to avoid ambiguity. One of the ways this can be achieved

is by considering visual importance to the human eye, laying

out widgets with bigger sizes, darker colors, and so on in such a

manner that we can visually understand the UI.

 2. Conciseness – Simplifying the layout to include only what the user

needs to see or interact with at a given time in order to be brief,

but also comprehensive. Adding more labels or buttons in your

window just to give the user more options is not always better.

 3. Consistency – Design the UI so that there is consistency across the

application. This helps users to recognize patterns in the visual

elements and layout and can be seen in typography that improves

the navigation and readability of the application, image styles, or

even color schemes.

 4. Efficiency – Utilizing good design and shortcuts to help the user

improve productivity. If a task can be accomplished in two steps,

why design it so that it has to be completed in five?

Chapter 1 Charting the Course

4

 5. Familiarity – Consider elements that users normally see in

other UIs and how they would expect them to perform in your

applications. For example, think about how weird it would be

to have to enter your login information and the password entry

field is above the username. It is not wrong, but now you are

unnecessarily making users think about their actions and slowing

them down.

 6. Responsive – Give the user feedback, for example, a toggle that

changes color to “on” or “off,” a small message to notify the user if

their input is correct or incorrect, or even a sound effect to verify a

completed action. The user should never be left wondering if their

action was successful or not.

 The PyQt Framework
The PyQt application is a set of Python 2 and Python 3 bindings for the Qt cross-platform

widget toolkit and application framework. What does that mean?

First, Qt is used for the development of graphical user interfaces and other

applications and is currently being developed by The Qt Company. The framework is

significant because it can run on numerous software and hardware systems such as

Windows, MacOS, Linux, Android, or embedded systems with little to no change to the

underlying code and is still able to maintain capabilities and speed of the system on

which it is being run.

Second, this all means that PyQt combines all the advantages of the Qt C++ cross- platform

widget toolkit with Python, the powerful and simple, cross-platform interpreted language.

For more information about PyQt, check out

www.riverbankcomputing.com/news.

 Why Choose PyQt?
PyQt is capable of more than just creating GUIs, as it also has access to Qt classes that

cover mechanics such as XML handling, SQL databases, network communication,

graphics and animations, and many other technologies. Take the capabilities of Qt and

combine it with the number of extension modules that Python provides, and you have

the ability to create new applications that can build upon these preexisting libraries.

Chapter 1 Charting the Course

http://www.riverbankcomputing.com/news

5

PyQt also includes Qt Designer, which allows for anyone to create a GUI much faster

using a simple drag and drop graphical interface designer.

Using PyQt’s signal and slot mechanism, you can essentially create your own widgets

that can call other Python functions. This will be covered in more detail in Chapter 9.

There are, of course, other toolkits available for creating applications with GUIs using

Python, such as Tkinter or wxPython. The many other toolkits have some advantages

over PyQt. For example, Tkinter comes bundled with Python, meaning that you can find

an abundance of helpful resources by doing a quick search on the Internet.

It is worth noting that if you choose to use PyQt to create commercial applications,

you may need to get a license.

Ultimately, it all comes down to choosing the toolkit that works the best for your project.

 Requirements
In order to use PyQt, you will first need to have Python 3 installed. To check if Python is

already installed on your system or to find out how to download Python, please refer to

Appendix B. You will also find a guide to help you refresh your Python skills to aid you

while learning PyQt in Appendix B.

Note as of this writing, python 2 is set to no longer be maintained. therefore,
all python code in this book will be written using python 3. Many of the projects
that utilize python 2 have already started making their way over to python 3. if you
have any questions about the differences between 2 and 3, i suggest checking out
http://python-future.org/compatible_idioms.html.

PyQt does not come included with your Python installation. For this book we will be

using the PyQt5 toolkit, which is the latest version. Please refer to Appendix A to learn

how to download PyQt for your operating system.

 Links to Source Code
The source code for Beginning PyQt: A Hands-on Approach to GUI Programming can be

found on GitHub via the book’s product page, located at www.apress.com/ISBN.

Chapter 1 Charting the Course

http://python-future.org/compatible_idioms.html
http://www.apress.com/ISBN

6

 How This Book Is Organized
In the beginning chapters, we will walk through the code step-by-step, helping to

guide you through PyQt classes and concepts for designing GUIs. Chapters 2 and 3 will

help you get started using PyQt, adding more and more functionality to your projects.

Each chapter teaches how to use different widgets, such as QLabel, QCheckBox, and

QLineEdit, and gives examples and ideas of how to use them. Chapter 3 will also

introduce you to PyQt’s signals and slots mechanism for handling events.

Chapter 4 focuses on layout managers for arranging widgets. After learning about

different widgets, Chapter 5 guides you through examples that help you to create menus

and toolbars. Chapter 6 presents style sheets for altering the look of your applications

and how to reimplement event handlers.

Since Qt also includes its own graphical user interface to help you create GUIs, we

will take a look at how to use Qt Designer in Chapter 7.

Chapters 8 through 11 begin looking at larger concepts and projects, including

using the clipboard to move between applications, graphics, and animation, creating

custom widgets, utilizing SQL databases and PyQt’s model/view architecture, and

multithreading programming.

Chapter 12 contains extra example projects to help you continue to gain extra

practice and insight into creating applications with PyQt.

Appendix A guides you through the process of downloading PyQt5 and includes

information about different PyQt classes. Appendix B is there to help you set up Python 3

and to refer back to in case you are not sure about some of the Python code used

in this book.

 Reader Feedback
Finally, your feedback, questions, and ideas are very important. If you would like to take

a moment to let me know your thoughts about the book, you can send comments to the

following address:

redhuli.comments@gmail.com

Chapter 1 Charting the Course

7
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_2

CHAPTER 2

Getting Started with PyQt
Hello again! If this is your first time to ever make any kind of UI, then you might be

wondering where to begin. Luckily in this chapter we are going to start you off with

learning some of the fundamentals before jumping into the heavy lifting.

Creating any kind of UI can seem like a formidable task with all the different layouts,

windows, and widgets there are to consider. Widgets are the buttons, menus, sliders,

and other components that will make up our user interfaces. Therefore in every chapter,

we are going to discuss how to build one or more projects and break them down into

incremental steps and tasks in order to better help you understand the larger programs.

For example, in this chapter we are going to be looking at how to create a user profile

GUI in PyQt. First, we will discuss what a user profile is generally comprised of and what

kinds of widgets we will need for this project. Then, we will go step-by-step in learning

how to build a basic window and add images and text to the GUI. Once it’s all done,

you’ll have an application that looks like Figure 2-1.

8

Note For those who already have a project in mind or just need to learn how
to include certain widgets in their applications, many of the chapters will include
smaller programs focused specifically on how to code them.

 Project 2.1 – User Profile GUI
A user profile refers to some kind of visual display used to present a specific user’s

personal data. The data on the profile helps to associate certain characteristics with that

user and allows others to collect information about that individual. User profiles can be

found on a number of different platforms including computer programs, online social

networking sites, such as LinkedIn or Facebook, or operating systems. Depending upon

what environment you are looking at, the appearance of the profile will change to fit the

goals, rules, and needs of that application.

Figure 2-1. User profile that displays your information for others to view

Chapter 2 GettinG Started with pyQt

9

User profiles often have a number of parameters which are either mandatory or

optional and allow for some level of customization to fit the preferences of the user, for

example, a profile image or background colors. Many of them contain features which can

typically be found in all types of profiles, such as the user’s name and the “About” section

to share some information about the user.

For this project, you will

 1. Create an empty window in PyQt and find out

a. About the basic classes and modules needed to set up your GUI

b. How to modify the window size and title

 2. Learn about creating widgets

a. Specifically QLabel to add text and images to your GUI

b. How to organize the widgets in your window using move()

 Design the GUI Layout
Let’s break down the user profile GUI and plan out what widgets you need and how they

will be arranged in the window as seen in Figure 2-2.

Figure 2-2. Layout for the user profile GUI

Chapter 2 GettinG Started with pyQt

10

In real user profile applications, there are often a combination of different widgets.

Some are interactive, allowing the viewer to click the links in the profile or “Like”

buttons, while others are only meant to be read and cannot be altered by the viewer. In

this chapter, we are looking at designing a basic interface in PyQt that shows a way to

display information in the window using the QLabel widget.

The user interface can be divided into two parts:

 1. The background image and profile image on the top.

 2. And the user’s name and information on the bottom. The text on

the bottom can further be broken down into smaller sections that

are delineated by the use of different font sizes.

 Create an Empty Window
A GUI application generally consists of a main window and possibly one or more dialog
boxes. The main window in your program can consist of a menubar, a status bar, and

other widgets, whereas a dialog is made up of buttons and is created to communicate

information to the user and prompt them for input. An alert window that pops up asking

you if you want to save changes to your document is an example of a dialog. Dialog boxes

will be covered further in Chapter 3.

Listing 2-1 walks you through the steps to create an empty GUI window.

Listing 2-1. Create an empty window in PyQt

basic_window.py

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QWidget

class EmptyWindow(QWidget):

 def __init__(self):

 super().__init__() # create default constructor for QWidget

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

Chapter 2 GettinG Started with pyQt

11

 self.setGeometry(100, 100, 400, 300)

 self.setWindowTitle('Empty Window in PyQt')

 self.show()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = EmptyWindow()

 sys.exit(app.exec_())

Your initial window should look similar to the one in Figure 2-3 depending upon

your operating system.

 Explanation

Walking through the code, we first start by importing the sys and PyQt5 modules that

we need to create a window. We commonly use sys in order to pass command-line

arguments to our applications and to close them.

The QtWidgets module provides a set of UI elements that can be used to create

desktop-style GUIs. From the QtWidgets module, we import two classes, QApplication

and QWidget. You only need to create a single instance of the QApplication class, which

manages the application’s main event loop, flow, initialization, and finalization, as well

as session management. Take a quick look at

 app = QApplication(sys.argv)

Figure 2-3. Empty window created with PyQt5

Chapter 2 GettinG Started with pyQt

12

QApplication takes as an argument sys.argv. You can also pass in an empty list if

you know that your program will not be taking any command-line arguments using

 app = QApplication([])

Next we create a window object that inherits from the class we created, EmptyWindow.

Our class actually inherits from QWidget, which is the base class for which all other user

interface objects are derived.

We need to call the show() method on the window object to display it to the screen.

This is located inside the initializeUI() function in our EmptyWindow class. You will

notice app.exec_() in the final line of the program. This function starts the event loop

and will remain here until you quit the application. sys.exit() ensures a clean exit.

If all of this is a little confusing as to why we have to create an application before

we create the window, think of QApplication as the frame that contains our window.

The window, our GUI, is created using QWidget. Before we can create our GUI, we must

create an instance of QApplication that we can place window in. Take a look at the

following code to better see the order of creating a window in PyQt5 using procedural

programming:

1. Import necessary modules

import sys # use sys to accept command-line arguments

from PyQt5.QtWidgets import QApplication, QWidget

app = QApplication(sys.argv) # 2. Create application object

window = QWidget() # 3. Create window

window.show() # 4. Call show to view GUI

sys.exit(app.exec_()) # Start the event loop and use sys.exit # to close

the application

 Modifying the Window

The preceding EmptyWindow class contains a function, initializeUI(), that creates

the window based upon the parameters we specify. The initializeUI() function is

reproduced as follows:

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

Chapter 2 GettinG Started with pyQt

13

 """

 self.setGeometry(100, 100, 400, 300)

 self.setWindowTitle('Empty Window in PyQt')

 self.show()

setGeometry() defines the location of the window on your computer screen and

its dimensions, width and height. So the window we just started is located at x=100,

y=100 in the window and has width=400 and height=300. setWindowTitle() is used to

change the title of our window.

We will look at further customization of the window’s layout in Chapter 4 and

appearance in Chapter 6.

Note throughout the book we will be looking at python code written using
object- oriented programming (OOP). if you need a refresher on OOp, there is a
quick guide that can be found in appendix B.

 The QLabel Widget
Now that we have a fundamental understanding of what it takes to create the window,

we can move on and add more functionality with widgets using QLabel. A QLabel object

acts as a noneditable placeholder to display text, images, or movies. It is also useful for

creating labels around other widgets to specify their roles or give them titles. QLabel

widgets can also display plain text, hyperlinks, or rich text.

In Listing 2-2 we are going to take a look at extending the ability of our window by

showing how to create both text and image labels.

Listing 2-2. Create an empty window in PyQt

labels.py

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QWidget, QLabel

from PyQt5.QtGui import QPixmap

class HelloWorldWindow(QWidget):

Chapter 2 GettinG Started with pyQt

14

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 250, 250)

 self.setWindowTitle('QLabel Example')

 self.displayLabels()

 self.show()

 def displayLabels(self):

 """

 Display text and images using QLabels.

 Check to see if image files exist, if not throw an

exception.

 """

 text = QLabel(self)

 text.setText("Hello")

 text.move(105, 15)

 image = "images/world.png"

 try:

 with open(image):

 world_image = QLabel(self)

 pixmap = QPixmap(image)

 world_image.setPixmap(pixmap)

 world_image.move(25, 40)

 except FileNotFoundError:

 print("Image not found.")

Chapter 2 GettinG Started with pyQt

15

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = HelloWorldWindow()

 sys.exit(app.exec_())

Once you run the program, you should see a window similar to Figure 2-4.

 Explanation

We begin again by first importing the necessary PyQt modules. To create the window,

we need to import the QtWidgets class, and since this time we are going to be using the

QLabel widget, we need to include it as well in our import statement.

This time we also need to import the QtGui module, as well. QtGui handles

numerous graphical elements. QPixmap is a Qt class that is optimized for showing images

on the screen.

We then go through a similar process of creating our application, creating a

HelloWorldWindow class that inherits from the QWidget base class, initializing the size

of the window with setGeometry() and the title of our GUI. Then we use the show()

method to display the window and use exec_() to begin the event loop. Finally, sys.

exit() is used to close our program.

Figure 2-4. Example of using QLabel widgets to create images and text

Chapter 2 GettinG Started with pyQt

16

The HelloWorldWindow class contains a displayLabels() function that we will use

to display text and images. First, you must create a QLabel object and specify what the

label will say using setText(). Here the text is set to “Hello”. In the following line, we use

the move() function to arrange the label in the window:

 text = QLabel(self)

 text.setText("Hello")

 text.move(105, 15)

PyQt5 has a number of layout methods including horizontal layouts, grid layouts, as

well as absolute positioning. For the programs created in this chapter, we will be using

absolute positioning with the move() method. With move(), you only need to specify the

x and y pixel values of the widget’s top-left corner to arrange it in the window. For our

text label, we specify the values to be x=105 and y=15.

Our image is loaded in a similar fashion, creating a QLabel to be placed in the

main window. Then we construct a QPixmap of the image and use setPixmap() to

show the image displayed on the world_image label. The label’s absolute location is

set using move().

Each of PyQt’s different classes has their own methods that can be used to customize

and change their look and functionality. In Appendix B, you can find a list of the widgets

used in this book along with some of the more common methods you are likely to use to

modify them.

 User Profile GUI Solution
You have now learned many of the basic tools used to create the user profile GUI. This

project is comprised of all QLabel widgets and its goal is to help you learn the

fundamentals of creating GUIs in PyQt5. The QLabel widgets are used to display

personal information specified by the user.

After you have followed along with Listing 2-3, it is encouraged to practice

modifying the size of the window, add your own text or images, and practice using

other QLabel methods to see how all of the different parts work together to make the

GUI window.

Chapter 2 GettinG Started with pyQt

17

Listing 2-3. Code for the user profile GUI

user_profile.py

Import necessary modules

import sys, os.path

from PyQt5.QtWidgets import QApplication, QLabel, QWidget

from PyQt5.QtGui import QFont, QPixmap

class UserProfile(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(50, 50, 250, 400)

 self.setWindowTitle("2.1 - User Profile GUI")

 self.displayImages()

 self.displayUserInfo()

 self.show()

 def displayImages(self):

 """

 Display background and profile images.

 Check to see if image files exist, if not throw an exception.

 """

 background_image = "images/skyblue.png"

 profile_image = "images/profile_image.png"

 try:

 with open(background_image):

 background = QLabel(self)

 pixmap = QPixmap(background_image)

 background.setPixmap(pixmap)

 except FileNotFoundError:

 print("Image not found.")

Chapter 2 GettinG Started with pyQt

18

 try:

 with open(profile_image):

 user_image = QLabel(self)

 pixmap = QPixmap(profile_image)

 user_image.setPixmap(pixmap)

 user_image.move(80, 20)

 except FileNotFoundError:

 print("Image not found.")

 def displayUserInfo(self):

 """

 Create the labels to be displayed for the User Profile.

 """

 user_name = QLabel(self)

 user_name.setText("John Doe")

 user_name.move(85, 140)

 user_name.setFont(QFont('Arial', 20))

 bio_title = QLabel(self)

 bio_title.setText("Biography")

 bio_title.move(15, 170)

 bio_title.setFont(QFont('Arial', 17))

 about = QLabel(self)

 about.setText("I'm a Software Engineer with 8 years\

 experience creating awesome code.")

 about.setWordWrap(True)

 about.move(15, 190)

 skills_title = QLabel(self)

 skills_title.setText("Skills")

 skills_title.move(15, 240)

 skills_title.setFont(QFont('Arial', 17))

 skills = QLabel(self)

 skills.setText("Python | PHP | SQL | JavaScript")

 skills.move(15, 260)

Chapter 2 GettinG Started with pyQt

19

 experience_title = QLabel(self)

 experience_title.setText("Experience")

 experience_title.move(15, 290)

 experience_title.setFont(QFont('Arial', 17))

 experience = QLabel(self)

 experience.setText("Python Developer")

 experience.move(15, 310)

 dates = QLabel(self)

 dates.setText("Mar 2011 - Present")

 dates.move(15, 330)

 dates.setFont(QFont('Arial', 10))

 experience = QLabel(self)

 experience.setText("Pizza Delivery Driver")

 experience.move(15, 350)

 dates = QLabel(self)

 dates.setText("Aug 2015 - Dec 2017")

 dates.move(15, 370)

 dates.setFont(QFont('Arial', 10))

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = UserProfile()

 sys.exit(app.exec_())

 Explanation

If you followed along in this chapter, then this project is just a much longer version

containing a background image and more text labels. Images for the labels are loaded

using Python try-except clauses.

Chapter 2 GettinG Started with pyQt

20

A few new things here are as follows:

• We import the QFont class from the QtGui module, allowing us to

modify the size and types of fonts in our application using QLabel’s

setFont() method.

• Using move(), we are able to easily overlap images. Take a look at

the displayImages() function to see how to do so using absolute

positioning.

 Summary
At this point, you should have a fundamental understanding for getting started in

creating your own GUIs with PyQt5. We looked at setting up a basic window with

QApplication and QWidget classes, made some simple modifications to the look of

the window, learned how to create text and image labels with QLabel, and saw how to

arrange them in the window using the move() method. In subsequent chapters, we will

continue to learn about more widgets and classes and learn how to use them to fit the

requirements of the applications we wish to create.

It is worth noting that this user profile is by no means complete. A user’s profile is

generally more interactive, including links, buttons, and menus. As you go through other

chapters, you should come back and improve the user profile GUI as a means to apply

what you have learned.

Chapter 2 GettinG Started with pyQt

21
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_3

CHAPTER 3

Adding More Functionality
to Interfaces
In Chapter 2, we took a look at how to get started in PyQt, set up the main window,

and learned how to create and arrange multiple QLabel widgets to create a simple

application. However, none of what we did was very interactive. What good is a user

interface if all you can do is stare at it?

You’re in luck because this chapter is all about setting you on the path to making

interfaces that are more interactive and responsive. We will take a look at some new

fundamental widgets that will help us to build our next project, a functional login

GUI. To make things clearer and easier for you to follow along, the login GUI will be

divided into two parts, the actual login interface and a new user registration window.

Before we get started, let’s take a look at the new widgets and useful concepts that

will be covered in this chapter.

 1. Learn about new kinds of widgets and classes, including

a. QPushButton – One of the most common widgets for giving our

computer simple commands

b. QLineEdit – Which gives the user fields to input information

c. QCheckBox – Which can act as a binary switch

d. QMessageBox – Useful for displaying alert or information dialog

boxes

 2. Find out about event handling with Signals and Slots in PyQt.

 3. Understand the differences between windows and dialog boxes

when creating UIs.

22

 Project 3.1 – Login GUI
While it might not seem like much, the login GUI, or the login screen, is probably one

of the most common interfaces you interact with on a regular basis. Signing into your

computer, your online bank account, e-mail, or social media accounts, logging into your

phone, or signing up for some new app, the login GUI is everywhere.

The login GUI can appear to be quite a simple user interface. However, it is actually

very complex for a number of reasons. First of all, it acts as the interface that allows us

to access our own personal data. You want to create a GUI that clearly labels its widgets,

differentiates between where to sign in and where to register a new account, and helps

users to better navigate through potential errors, such as if caps lock is on or if the

username is incorrect. Secondly, the appearance of the login GUI and methods in which

we log in to our devices have changed dramatically over the years, allowing users to

log in using Touch ID or their social media accounts. This means that there is no single

design that will work for every platform.

For this project, we are going to focus on creating a simple login UI that

• Allows the user to enter their username and password and calls a

function to check if their information matches one that is stored in a

text file

• Displays appropriate messages depending upon whether login is

successful, if an error has occurred, or if we simply want to close the

window

• Displays or hides the password by clicking a checkbox

• Allows the user to create a new account by clicking a “sign up” button

that will open a new window

Note There are two projects in this chapter, the login GUI and the create
new user GUI. They are actually one entire project that has been separated into
two parts to make it easier for you to follow along, or for those who only need one
part of the project and not the other.

After following along with this chapter, you will be able to make a login GUI like the

one seen in Figure 3-1.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

23

 Design the Login GUI
While the look and layout of the login GUI may change between platforms, they

generally have a few key components that are common throughout, such as

• Username and password entry fields

• Checkboxes that may remember the user’s login information or

reveal the password

• Buttons that users can click to log in or even register for a new

account

For this project, we will focus on trying to implement most of those features. (The

“remember me” checkbox that is common in a lot of login GUIs is beyond the scope of

this chapter as it involves using cookies or working with PyQt’s QSettings class.)

The layout for our login GUI can be seen in Figure 3-2. For this project, we will need

to create a few QLabels to help users understand the purpose of this application and to

give titles to our username and password entry fields.

Figure 3-1. Simple login GUI

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

24

For the areas where users will enter their information, we create two separate

QLineEdit widgets. Under the password line edit widget, there is a checkbox that the user

can check if they want to view or hide the password they entered.

There are two QPushButtons, one that the user can click to log in and the other to

register a new account. When the user clicks the login button, we will create a function

that is called to check if the user exists. If the user information is correct, we will

display a QMessageBox which tells the user that login is successful. Otherwise, another

QMessageBox is displayed to alert the user to an error.

If the user’s information does not exist, they can click the sign up button and a new

window will appear where they can enter their information. This part is covered in the

section “Project 3.2 – Create New User GUI.”

Finally, we will learn how to change the event handler for when the user closes the

window. Rather than just closing the application, we will first display a dialog box that

will confirm whether or not the user really wants to quit.

 The QPushButton Widget
Let’s first take a look at a fundamental widget that you will probably use in almost

every GUI you create, QPushButton. The QPushButton can be used to command the

computer to perform some kind of operation or answer a question. When you click the

QPushButton widget, it sends out a signal that can be connected to a function. Common

buttons you might encounter are OK, Next, Cancel, Close, Yes, and No.

Figure 3-2. Layout for login GUI

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

25

Buttons are typically displayed with either a text label or an icon that describes its

action or purpose. There are a number of different kinds of buttons with different usages

that can be created including QToolButtons and QRadioButtons.

For our first example, we are going to take a look at how to set up a QPushButton

that, when clicked, will call a function that closes our application (Listing 3-1).

Listing 3-1. Code for learning how to add QPushButton widgets to your

application

button.py

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton

class ButtonWindow(QWidget):

 def __init__(self):

 super().__init__() # create default constructor for QWidget

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 200, 150)

 self.setWindowTitle('QPushButton Widget')

 self.displayButton() # call our displayButton function

 self.show()

 def displayButton(self):

 '''

 Setup the button widget.

 '''

 name_label = QLabel(self)

 name_label.setText("Don't push the button.")

 name_label.move(60, 30) # arrange label

 button = QPushButton('Push Me', self)

 button.clicked.connect(self.buttonClicked)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

26

 button.move(80, 70) # arrange button

 def buttonClicked(self):

 '''

 Print message to the terminal,

 and close the window when button is clicked.

 '''

 print("The window has been closed.")

 self.close()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = ButtonWindow()

 sys.exit(app.exec_())

When you finish, your window should look similar to Figure 3-3.

 Explanation

We begin by importing sys and the necessary PyQt classes including QApplication and

QWidget for creating our application object and window, respectively. For this program

we will also import the QLabel and QPushButton widgets which are also part of the

QtWidgets module.

Next let’s create our own ButtonWindow class which inherits from QWidget. Here we

will initialize the window and widgets we need for our GUI. The ButtonWindow class has

Figure 3-3. Example of the QPushButton widget

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

27

two functions, displayButton and buttonClicked. In the displayButton function, we

create a label and set its text using setText(). If you look at the portion of code where

the button is created, we set the text on the button as a parameter of QPushButton. We

could also set the text as follows:

button.setText("Don't push the button.")

When you click the QPushButton with your mouse, it will send out the signal

clicked(). After we create the button, use

button.clicked.connect(self.buttonClicked)

to connect the signal to the action we want the button to perform, in this case self.

buttonClicked. A QPushButton widget can also be set to be activated by the spacebar or

using a keyboard shortcut. The buttonClicked function calls self.close() to close the

application.

Note in the preceding example, the signal clicked() is connected to our
function. There are also other kinds of signals that the QPushButton can send out
including pressed() when the button is down, released() when the button is
released, or toggled() that can be used like a binary switch.

 Events, Signals, and Slots
Before we go on, you should be introduced to an important concept when building

GUI applications in PyQt. GUIs are event-driven, meaning that they respond to events

that are created by the user, from the keyboard or the mouse, or by events caused by

the system, such as a timer or when connecting to Bluetooth. No matter how they are

generated, the application needs to listen for these events and respond to them in

some way, also known as event handling. For example, when exec_() is called, the

application begins listening for events until it is closed.

In PyQt, event handling is performed with signals and slots. Signals are the events

that occur when a widget’s state changes, such as when a button is clicked or a checkbox is

toggled on or off. Those signals then need to be handled in some way. Slots are the methods

that are executed in response to the signal. Slots are simply Python functions or built-in

PyQt functions that are connected to an event and executed when the signal occurs.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

28

Take a look at the following code from the earlier QPushButton program:

button.clicked.connect(self.buttonClicked)

When we push on the button, a clicked() signal is emitted. In order to make use of

that signal, we must connect() to some callable function, in this case buttonClicked(),

which is the slot.

Put simply, widgets send out signals and we collect and use them with slots to make

our application perform some action.

Many widgets have predefined signals and slots, meaning you only need to call them

in order to get the behavior you want for your application.

The topic of signals and slots and how to make some custom signals will be covered

in more detail and with examples in Chapter 6.

 The QLineEdit Widget
The next widget we are going to take a look at is the QLineEdit widget. For our login

GUI, we need to create areas where the user can input the text for their username and

password on a single line. QLineEdit also supports normal text editing functions such as

cut, copy and paste, and redo or undo if you need to add those features to your program.

The QLineEdit widget also has a number of methods to add more functionality to

your GUI, such as hiding text when it is entered, using placeholder text, or even setting a

limit on the length of the text that can be input.

In Listing 3-2 we will take a look at how to set up the QLineEdit widget, retrieve the

text using the text() function, and see how to clear the text that the user inputs.

Note if you need multiple lines to enter text in, use QTextEdit.

Listing 3-2. Code for learning how to add QLineEdit widgets to your application

lineedit.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget,

 QLabel, QLineEdit, QPushButton)

from PyQt5.QtCore import Qt

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

29

class EntryWindow(QWidget): # Inherits QWidget

 def __init__(self): # Constructor

 super().__init__() # Initializer which calls constructor for QWidget

 self.initializeUI() # Call function used to set up window

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 200)

 self.setWindowTitle('QLineEdit Widget')

 self.displayWidgets()

 self.show()

 def displayWidgets(self):

 '''

 Setup the QLineEdit and other widgets.

 '''

 # Create name label and line edit widgets

 QLabel("Please enter your name below.", self).move(100, 10)

 name_label = QLabel("Name:", self)

 name_label.move(70, 50)

 self.name_entry = QLineEdit(self)

 self.name_entry.setAlignment(Qt.AlignLeft) # The default alignment

is AlignLeft

 self.name_entry.move(130, 50)

 self.name_entry.resize(200, 20) # Change size of entry field

 self.clear_button = QPushButton('Clear', self)

 self.clear_button.clicked.connect(self.clearEntries)

 self.clear_button.move(160, 110)

 def clearEntries(self):

 '''

 If button is pressed, clear the line edit input field.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

30

 '''

 sender = self.sender()

 if sender.text() == 'Clear':

 self.name_entry.clear()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = EntryWindow()

 sys.exit(app.exec_())

Take a look at Figure 3-4 to get an idea of how your GUI should look.

 Explanation

The user can enter their name into the QLineEdit widget and click the “Clear”

QPushButton to clear their text. Other features could include clearing multiple widgets’

states when the button is clicked or checking to make sure the text entered fits the

guidelines you need in your application.

We begin by importing the necessary widgets, this time making sure to include the

QLineEdit widget which is a member of the QtWidgets module. We also import Qt from

the QtCore module. Qt contains various miscellaneous methods for creating GUIs. After

initializing our window in the EntryWindow class, the displayWidgets() function is

called that sets up the label, line edit and button widgets. When text is entered into the

name_entry widget, by default, the text starts on the left and is centered vertically.

self.name_entry.setAlignment(Qt.AlignLeft)

Figure 3-4. Example of how to use QLineEdit and QPushButton widgets

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

31

If you wish to change this, you could change the flag in SetAlignment from Qt.

AlignLeft to Qt.AlignRight or Qt.AlignHCenter.

When the clear_button is clicked, it emits a signal that is connected to the

clearEntries() function. In order to determine where the source of a signal is coming

from in your applications, you could also use the sender() method. Here, the signal is

sent from our button when it is clicked, and if the text on the sender is 'Clear', then the

name_entry widget reacts to the signal and clears its current text.

 The QCheckBox Widget
The QCheckBox widget is a selectable button that generally has two states, on or off.

Since checkboxes normally have only two states, they are perfect for representing

features in your GUI that can either be enabled or disabled or for selecting from a list of

options like in a survey.

The QCheckBox can also be used for more dynamic applications, as well. For

example, you could use the checkbox to change the title of the window or even the text of

labels when enabled.

Listing 3-3 shows how to set up a window like in a questionnaire. The user is allowed

to select all checkboxes that apply to them, and each time the user clicks a box, we call a

function to show how to determine the widget’s current state.

Note The checkboxes in QCheckBox are not mutually exclusive, meaning you
can select more than one checkbox at a time. To make them mutually exclusive,
add the checkboxes to a QButtonGroup object.

Listing 3-3. Code for learning how to add QCheckBox widgets to your

application

checkboxes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QCheckBox, QLabel)

from PyQt5.QtCore import Qt

class CheckBoxWindow(QWidget):

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

32

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 250, 250)

 self.setWindowTitle('QCheckBox Widget')

 self.displayCheckBoxes()

 self.show()

 def displayCheckBoxes(self):

 '''

 Setup the checkboxes and other widgets

 '''

 header_label = QLabel(self)

 header_label.setText("Which shifts can you work? (Please check all

that apply)")

 header_label.setWordWrap(True)

 header_label.move(10, 10)

 header_label.resize(230, 60)

 # Set up checkboxes

 morning_cb = QCheckBox("Morning [8 AM-2 PM]", self) # text, parent

 morning_cb.move(20, 80)

 #morning_cb.toggle() # uncomment if you want box to start off checked,

 # shown as an example here.

 morning_cb.stateChanged.connect(self.printToTerminal)

 after_cb = QCheckBox("Afternoon [1 PM-8 PM]", self) # text, parent

 after_cb.move(20, 100)

 after_cb.stateChanged.connect(self.printToTerminal)

 night_cb = QCheckBox("Night [7 PM-3 AM]", self) # text, parent

 night_cb.move(20, 120)

 night_cb.stateChanged.connect(self.printToTerminal)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

33

 def printToTerminal(self, state): # pass state of checkbox

 '''

 Simple function to show how to determine the state of a checkbox.

 Prints the text label of the checkbox by determining which widget

is sending the signal.

 '''

 sender = self.sender()

 if state == Qt.Checked:

 print("{} Selected.".format(sender.text()))

 else:

 print("{} Deselected.".format(sender.text()))

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = CheckBoxWindow()

 sys.exit(app.exec_())

Figure 3-5 shows our application that allows users to select multiple checkboxes.

Figure 3-5. Example of QCheckBox widgets

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

34

 Explanation

Much of this application starts off similar to before, so let’s jump right into the

displayCheckBoxes() method within the CheckBoxWindow class.

A QLabel widget is created so that the person looking at the window can understand

the purpose of the GUI. Then three checkboxes are created, each with a variable name

that is representative of the widget’s purpose. Since the widgets are created in a similar

manner, we will just take a look at the first one, morning_cb.

 morning_cb = QCheckBox("Morning [8 AM-2 PM]", self)

 morning_cb.move(20, 80) # arrange widget in window

 #morning_cb.toggle() # uncomment if you want box to start off

checked, shown as an example here.

 morning_cb.stateChanged.connect(self.printToTerminal)

The checkbox is created by calling the QCheckBox class and then, as parameters,

assigning it text that will appear beside the actual checkbox and its parent window. The

toggle() method can be used to toggle the checkbox, and uncommenting the code will

cause the widget to begin as enabled when starting the program. When a checkbox’s

state changes, rather than using clicked() like with the QPushButton, we can use

stateChanged() to send a signal and then connect to our function, printToTerminal().

The printToTerminal() function takes as a parameter state, the state of the

checkbox. If a checkbox is checked, we can find out by using the isChecked() method.

If the state of the button isChecked(), then use the sender() method to find out which

button is sending a signal and print its text value to the terminal window. An example of

the output to the terminal can be seen in Figure 3-6.

Figure 3-6. Output to terminal from QCheckBox example program

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

35

 The QMessageBox Dialog Box
Often when a user is going to close an application, save their work, or an error occurs,

a dialog box will pop up and display some sort of key information. The user can then

interact with that dialog box, often by clicking a button to respond to the prompt.

The QMessageBox dialog box can not only be used to alert the user to a situation

but also to allow them to decide how to handle the issue. For example, if you close a

document you just modified, you might get a dialog box asking you to Save, Don’t Save,

or Cancel.

There are four types of predefined QMessageBox widgets in PyQt. For more details,

refer to Table 3-1.

 Windows vs. Dialogs

When creating a GUI application, you will more than likely come across the terms

windows and dialogs. However, windows and dialogs are not the same. Using dialog

boxes in an application can make it both easier for you to develop your GUI and for the

user to better understand and navigate through your application.

The window generally consists of menus, a toolbar, and other kinds of widgets within

it that can often act as the main interface in a GUI application.

Table 3-1. Four types of QMessageBox widgets in PyQt. Images

from www.riverbankcomputing.com

QMessageBox Icons Types Details

Question ask the user a question.

information display information during normal operations.

Warning report noncritical errors.

Critical report critical errors.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

http://www.riverbankcomputing.com

36

A dialog box will appear when the user needs to be prompted for additional

information in order to continue, often to gather input such as an image or a file. After

that information is given, the dialog box is normally destroyed. Dialog boxes can also

be used to display options or information while a user is working in the main window.

Most kinds of dialog boxes will have a parent window that will be used to determine the

position of the dialog with respect to its owner. This also means that communication

occurs between the window and the dialog box and allows for updates in the main

window.

There are two kinds of dialog boxes, the modal dialog box and the modeless dialog

box. Modal dialogs block user interaction from the rest of the program until the dialog

box is closed. Modeless dialogs allow the user to interact with both the dialog and the

rest of the application.

How dialog boxes appear and are used can often be influenced by the operating

system you use and the guidelines set by that OS.

 How to Display a QMessageBox

The QMessageBox class produces a modal dialog box, and in Listing 3-4, we will take

a look at how to use two of the predefined QMessageBox message types, Question and

Information.

Listing 3-4. Code for learning how to display QMessageBox dialogs

dialogs.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

 QMessageBox, QLineEdit, QPushButton)

from PyQt5.QtGui import QFont

class DisplayMessageBox(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI() # Call our function used to set up window

 def initializeUI(self):

 """

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

37

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 200)

 self.setWindowTitle('QMessageBox Example')

 self.displayWidgets()

 self.show()

 def displayWidgets(self):

 """

 Set up the widgets.

 """

 catalogue_label = QLabel("Author Catalogue", self)

 catalogue_label.move(20, 20)

 catalogue_label.setFont(QFont('Arial', 20))

 auth_label = QLabel("Enter the name of the author you are searching

for:", self)

 auth_label.move(40, 60)

 # Create author label and line edit widgets

 author_name = QLabel("Name:", self)

 author_name.move(50, 90)

 self.auth_entry = QLineEdit(self)

 self.auth_entry.move(95, 90)

 self.auth_entry.resize(240, 20)

 self.auth_entry.setPlaceholderText("firstname lastname")

 # Create search button

 search_button = QPushButton("Search", self)

 search_button.move(125, 130)

 search_button.resize(150, 40)

 search_button.clicked.connect(self.displayMessageBox)

 def displayMessageBox(self):

 """

 When button is clicked, search through catalogue of names.

 If name is found, display Author Found dialog.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

38

 Otherwise, display Author Not Found dialog.

 """

 # Check if authors.txt exists

 try:

 with open("files/authors.txt", "r") as f:

 # read each line into a list

 authors = [line.rstrip('\n') for line in f]

 except FileNotFoundError:

 print("The file cannot be found.")

 # Check for name in list

 not_found_msg = QMessageBox() # create not_found_msg object to

avoid causing a 'referenced before assignment' error

 if self.auth_entry.text() in authors:

 QMessageBox().information(self, "Author Found", "Author found

in catalogue!", QMessageBox.Ok, QMessageBox.Ok)

 else:

 not_found_msg = QMessageBox.question(self, "Author Not Found",

"Author not found in catalogue.\nDo you wish to continue?", QMessageBox.Yes

| QMessageBox.No, QMessageBox.No)

 if not_found_msg == QMessageBox.No:

 print("Closing application.")

 self.close()

 else:

 pass

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayMessageBox()

 sys.exit(app.exec_())

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

39

Figure 3-7 shows the GUI for the QMessageBox example.

 Explanation

The GUI in this example consists of a few QLabel widgets, a QLineEdit widget, and a

single QPushButton. For this example, you will also see how to set placeholder text in

the QLineEdit widget using setPlaceholderText(). This can be helpful for a number

of reasons, maybe to make the look of the window less cluttered or to give the user extra

information to help them understand the format to use to input text.

The search_button sends a signal that calls the function displayMessageBox().

If the user enters a name that is contained in the authors.txt file, then an information

dialog box appears like the first image in Figure 3-8. Otherwise, a question dialog box

(second image in Figure 3-8) appears asking the user if they want to search again or quit

the program. Let’s take a look at how to create a dialog box using the QMessageBox class.

not_found_msg = QMessageBox.question(self, "Author Not Found", "Author

not found in catalogue.\nDo you wish to continue?", QMessageBox.Yes |

QMessageBox.No, QMessageBox.No)

To create a QMessageBox dialog, we first call QMessageBox and choose one of the

predefined types, in this case question. Then we set the dialog title, "Author Not

Found", and the text that we want to appear inside the dialog. This should inform the

user about the current situation and, if necessary, notify them of actions they could take.

This is followed by the types of buttons that will appear in the dialog, and each button is

separated by a pipe key, |. Other types of buttons include Open, Save, Cancel, and Reset.

Finally, you can specify which button you want to highlight and set as the default button.

Figure 3-7. GUI to search for author’s name in a text file

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

40

Note on Mac os X, when a message box appears, the title is generally ignored
due to Mac os X guidelines. if you are using a Mac and don’t see a title in the
dialog boxes, don’t fear! you haven’t done anything wrong.

You can also specify each of these fields in separate lines by calling setText(),

setWindowTitle(), and other methods.

 Login GUI Solution
Now that we have covered the key widgets in this chapter and how to implement dialog

boxes, we should have all the necessary concepts down to tackle the login GUI (Listing 3-5).

Refer to Figures 3-1 and 3-2 for the look and layout of the login GUI.

Listing 3-5. Code for login GUI

loginUI.py

Import necessary modules

import sys

Figure 3-8. Information dialog box (top) that lets the user know that their search
was successful. However, if the author doesn’t exist, a question dialog box appears
asking the user to take some sort of action by clicking a button (bottom)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

41

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QMessageBox,

QLineEdit, QPushButton, QCheckBox)

from PyQt5.QtGui import QFont

from PyQt5.QtCore import Qt

from Registration import CreateNewUser # Import the registration module

class LoginUI(QWidget):

 def __init__(self): # Constructor

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 230)

 self.setWindowTitle('3.1 – Login GUI')

 self.loginUserInterface()

 self.show()

 def loginUserInterface(self):

 """

 Create the login GUI.

 """

 login_label = QLabel(self)

 login_label.setText("login")

 login_label.move(180, 10)

 login_label.setFont(QFont('Arial', 20))

 # Username and password labels and line edit widgets

 name_label = QLabel("username:", self)

 name_label.move(30, 60)

 self.name_entry = QLineEdit(self)

 self.name_entry.move(110, 60)

 self.name_entry.resize(220, 20)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

42

 password_label = QLabel("password:", self)

 password_label.move(30, 90)

 self.password_entry = QLineEdit(self)

 self.password_entry.move(110, 90)

 self.password_entry.resize(220, 20)

 # Sign in push button

 sign_in_button = QPushButton('login', self)

 sign_in_button.move(100, 140)

 sign_in_button.resize(200, 40)

 sign_in_button.clicked.connect(self.clickLogin)

 # Display show password checkbox

 show_pswd_cb = QCheckBox("show password", self)

 show_pswd_cb.move(110, 115)

 show_pswd_cb.stateChanged.connect(self.showPassword)

 show_pswd_cb.toggle()

 show_pswd_cb.setChecked(False)

 # Display sign up label and push button

 not_a_member = QLabel("not a member?", self)

 not_a_member.move(70, 200)

 sign_up = QPushButton("sign up", self)

 sign_up.move(160, 195)

 sign_up.clicked.connect(self.createNewUser)

 def clickLogin(self):

 """

 When user clicks sign in button, check if username and password

match any existing profiles in users.txt.

 If they exist, display messagebox and close program.

 If they don't, display error messagebox.

 """

 users = {} # Create empty dictionary to store user information

 # Check if users.txt exists, otherwise create new file

 try:

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

43

 with open("files/users.txt", 'r') as f:

 for line in f:

 user_fields = line.split(" ")

 username = user_fields[0]

 password = user_fields[1].strip('\n')

 users[username] = password

 except FileNotFoundError:

 print("The file does not exist. Creating a new file.")

 f = open ("files/users.txt", "w")

 username = self.name_entry.text()

 password = self.password_entry.text()

 if (username, password) in users.items():

 QMessageBox.information(self, "Login Successful!", "Login

Successful!", QMessageBox.Ok, QMessageBox.Ok)

 self.close() # close program

 else:

 QMessageBox.warning(self, "Error Message", "The username or

password is incorrect.", QMessageBox.Close, QMessageBox.Close)

 def showPassword(self, state):

 '''

 If checkbox is enabled, view password.

 Else, mask password so others cannot see it.

 '''

 if state == Qt.Checked:

 self.password_entry.setEchoMode(QLineEdit.Normal)

 else:

 self.password_entry.setEchoMode(QLineEdit.Password)

 def createNewUser(self):

 """

 When the sign up button is clicked, open

 a new window and allow the user to create a new account.

 """

 self.create_new_user_dialog = CreateNewUser()

 self.create_new_user_dialog.show()

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

44

 def closeEvent(self, event):

 """

 Display a QMessageBox when asking the user if they want to quit the

program.

 """

 # Set up message box

 quit_msg = QMessageBox.question(self, "Quit Application?",

 "Are you sure you want to Quit?", QMessageBox.No | QMessageBox.Yes,

 QMessageBox.Yes)

 if quit_msg == QMessageBox.Yes:

 event.accept() # accept the event and close the application

 else:

 event.ignore() # ignore the close event

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = LoginUI()

 sys.exit(app.exec_())

Your GUI should look similar to the window shown in Figure 3-1.

 Explanation

After importing the necessary PyQt5 modules including QtWidgets, QtGui, and QtCore,

we also need to import our Registration module which will allow new users to create a

new account and then return back to the login GUI to sign in. The Registration module

is covered in Project 3.2 in this chapter.

In our LoginUI class that inherits from QWidget, we initialize our GUI and then create

the widgets. Refer to Figure 3-2 for the layout. We create a few QLabel widgets to hold

information about our GUI and labels for the QLineEdit widgets for the username and

password. Widgets are arranged in the window using the move() method.

When the sign_in_button is clicked, it sends a signal that is connected to the

clickLogin() method. This function opens the users.txt file (and creates one if it

doesn’t exist) and stores each line into a Python dictionary, with the keys being the

usernames and the values of the dictionary being the passwords. The text() method is

then used to retrieve the input from the two QLineEdit widgets and checks them to see

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

45

if they match any of the key/value pairs in the users dictionary. While it isn’t the most

practical method, this example is a very small one and demonstrates how to use simple

text files with your applications. Later we will take a look at how to use SQL to search

through databases in Chapter 10.

If the username and password match a key/value pair from the file, then an

information QMessageBox dialog is displayed telling the user that they are successful. They

can then exit the program if they wish (in an actual application at this point you would start

the main window of your program). Otherwise, a warning QMessageBox is displayed if the

username or password is incorrect. These two dialog boxes can be seen in Figure 3-9.

Hiding Input for QLineEdit

The stateChanged signal in the login UI code is connected to the showPassword()

function. If the show_pswd_cb QCheckBox is checked, then the password is displayed

using SetEchoMode().

self.password_entry.setEchoMode(QLineEdit.Normal)

Otherwise, if unchecked, it is hidden using

self.password_entry.setEchoMode(QLineEdit.Password)

Figure 3-9. QMessageBox dialogs that can be displayed. The information dialog
box (top) lets the user know that their information was correct. The other dialog
(bottom) shows a warning QMessageBox

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

46

If you ever need to make the text in a QLineEdit widget hidden from other’s view,

using SetEchoMode() can change the appearance of the text. By default, setEchoMode()

is set to QLineEdit.Normal.

How to Open a New Window

If the user wants to create a new account, then they can click the sign_up button at the

bottom of the GUI. This button sends a signal that is connected to the createNewUser()

method which calls our CreateNewUser class from the Registration module. A new window

is then opened up using show() where the user can enter their personal information.

Changing How the Close Event Works

Finally, currently when we want to quit our programs, we just exit by clicking the button

in the top corner of the window. However, a good practice is to present a dialog box

confirming whether the user really wants to quit or not. In most programs this will

prevent the user from forgetting to save their latest work.

When a QWidget is closed in PyQt, it generates a QCloseEvent. So we need to change

how the closeEvent() method is handled. To do so we create a new method called

closeEvent() that accepts as a parameter an event.

In this function we create a QMessageBox that asks the user if they are sure about

quitting. They then can click either a Yes or No button in the dialog box. We then check

the value of the variable stored in quit_msg. If quit_msg is Yes, then the close event is

accepted and the program is closed. Otherwise, the event is ignored.

 Project 3.2 – Create New User GUI
The first time someone uses your applications you may want them to sign up and create

their own username and passwords. This, of course, can allow them to personalize

their accounts and then save that information for the next time they log in. The kind of

information that you need from the user can range from very simple, name and gender,

all the way to extremely private, Social Security numbers or bank account information.

Making sure that the information that they enter is correct is very important.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

47

 Creating a New User GUI Solution
For the following project, we will have the user enter their desired username, their real

name, a password, and then reenter that password to double check that it is correct.

When the user clicks the sign up button, the text in the password fields will be checked

for a match, and if so, the information will be saved to a text file. The user can then return

to the login screen and log in.

The create new user GUI project contains many of the same widgets, including

QLabel widgets, QLineEdit widgets, a QPushButton, and concepts that were part of

the login UI project. Therefore, we will jump right into talking about the code shown in

Listing 3-6. The completed GUI can be seen in Figure 3-10.

Listing 3-6. Code for creating a new user account GUI

Registration.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QMessageBox,

QPushButton, QLabel, QLineEdit)

Figure 3-10. The create new user GUI

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

48

from PyQt5.QtGui import QFont, QPixmap

class CreateNewUser(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI() # Call our function used to set up window

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 400)

 self.setWindowTitle('3.2 - Create New User')

 self.displayWidgetsToCollectInfo()

 self.show()

 def displayWidgetsToCollectInfo(self):

 """

 Create widgets that will be used to collect information

 from the user to create a new account.

 """

 # Create label for image

 new_user_image = "images/new_user_icon.png"

 try:

 with open(new_user_image):

 new_user = QLabel(self)

 pixmap = QPixmap(new_user_image)

 new_user.setPixmap(pixmap)

 new_user.move(150, 60)

 except FileNotFoundError:

 print("Image not found.")

 login_label = QLabel(self)

 login_label.setText("create new account")

 login_label.move(110, 20)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

49

 login_label.setFont(QFont('Arial', 20))

 # Username and fullname labels and line edit widgets

 name_label = QLabel("username:", self)

 name_label.move(50, 180)

 self.name_entry = QLineEdit(self)

 self.name_entry.move(130, 180)

 self.name_entry.resize(200, 20)

 name_label = QLabel("full name:", self)

 name_label.move(50, 210)

 name_entry = QLineEdit(self)

 name_entry.move(130, 210)

 name_entry.resize(200, 20)

 # Create password and confirm password labels and line edit widgets

 pswd_label = QLabel("password:", self)

 pswd_label.move(50, 240)

 self.pswd_entry = QLineEdit(self)

 self.pswd_entry.setEchoMode(QLineEdit.Password)

 self.pswd_entry.move(130, 240)

 self.pswd_entry.resize(200, 20)

 confirm_label = QLabel("confirm:", self)

 confirm_label.move(50, 270)

 self.confirm_entry = QLineEdit(self)

 self.confirm_entry.setEchoMode(QLineEdit.Password)

 self.confirm_entry.move(130, 270)

 self.confirm_entry.resize(200, 20)

 # Create sign up button

 sign_up_button = QPushButton("sign up", self)

 sign_up_button.move(100, 310)

 sign_up_button.resize(200, 40)

 sign_up_button.clicked.connect(self.confirmSignUp)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

50

 def confirmSignUp(self):

 """

 When user presses sign up, check if the passwords match.

 If they match, then save username and password text to users.txt.

 """

 pswd_text = self.pswd_entry.text()

 confirm_text = self.confirm_entry.text()

 if pswd_text != confirm_text:

 # Display messagebox if passwords don't match

 QMessageBox.warning(self, "Error Message",

 " The passwords you entered do not match. Please try

again.", QMessageBox.Close,

 QMessageBox.Close)

 else:

 # If passwords match, save passwords to file and return to login

 # and test if you can log in with new user information.

 with open("files/users.txt", 'a+') as f:

 f.write(self.name_entry.text() + " ")

 f.write(pswd_text + "\n")

 self.close()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = CreateNewUser()

 sys.exit(app.exec_())

The completed create new user GUI can be seen in Figure 3-10.

 Explanation

The create new user GUI is mainly comprised of a few QLabel widgets, four QLineEdit

widgets, and a QPushButton widget that the user can click when the form is complete as

can be seen in Figure 3-10.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

51

After the user enters their information and clicks the sign_up_button, the

confirmSignUp() function is called and first checks to see if the text in the pswd_entry

and confirm_entry QLineEdit objects match. If they don’t match, then a QMessageBox

like the one in Figure 3-11 is displayed. Otherwise, the text in the name_entry and pswd_

entry fields is saved to a newline in the users.txt file separated by a space which can be

seen in Figure 3-12.

If the user finishes the form and clicks the sign_up_button or closes the window

before completing the form, the window will close but the login UI will still remain open.

If the form was completed, the user can try to enter their new username and password

into the login GUI to log in.

Figure 3-11. The warning dialog displayed if the passwords you entered don’t
match

Figure 3-12. The original users.txt file (top) and the updated one with a new
username and a new password (bottom)

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

52

 Summary
In this chapter we took a look at some new widgets, QPushButton, QLineEdit,

QCheckBox, and QMessageBox class. It is important to use dialog boxes in your program

when you want the user to collect information outside of the application or to relay

important details to the user. But you also should not have a dialog box pop up for every

little nuance or with very little helpful information.

The applications in this chapter are by no means complete. They are the framework

to get you started making your own GUIs. For example, you could make sure that the

user’s password includes capital and lowercase letters and other characters to make it

more safe. Another possibility is to let the user know if the username they want to create

already exists. Once you learn how to implement menus, you could even have the user

search through their files for a profile image. I encourage you to try and implement some

of these ideas or even your own ideas.

In the following chapter, we will learn about layout management in PyQt.

ChapTer 3 adding More FunCTionaliTy To inTerFaCes

53
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_4

CHAPTER 4

Learning About Layout
Management
The previous chapters laid the foundation for getting started in PyQt5 as you learned

to create GUIs with more functionality by adding widgets such as QPushButton and

QCheckBox. Rather than continue to barrage you with PyQt’s numerous widgets, taking

a moment to learn about the various layout managers will save us some trouble moving

forward.

Layout management is the way in which we arrange widgets in our windows. This

can involve a number of different factors, including size and position, resize handling,

and adding or removing widgets. Layout management is also very important to consider

for the user looking at your application. Do a quick image search on the Internet for

“worst GUI layouts” and you will see numerous applications crammed with widgets with

no clear reasoning.

A layout manager is a class that contains methods which we can use to arrange

widgets inside windows. They are useful for communicating between child and parent

widgets to make them utilize the space in a window more efficiently.

In this chapter we are going to take a look at four methods that can be used for layout

management in PyQt:

 1. Absolute positioning with move().

 2. QBoxLayout which is useful for creating simple GUIs with

horizontal or vertical layouts.

 3. QFormLayout is a convenience layout useful for making

application forms.

 4. QGridLayout allows for more control over arranging widgets by

specifying x and y coordinate values.

54

This chapter will also cover the idea of nesting layouts for creating more elaborate

applications.

We will also take a look at a few new widgets and classes:

• QTextEdit – Similar to QLineEdit but creates a text entry field with

more space

• QFileDialog – Native file dialog of PyQt that allows the user to open

or save files

• QButtonGroup – To organize push button and checkbox widgets

• QSpinBox – A text box that displays integer values that the user can

cycle through

• QComboBox – Presents a list of options in a dropdown-style widget

To make things simpler to understand in this chapter, let’s first take a look at a few

key concepts for using layout managers.

 Choosing a Layout Manager
Setting the layout manager or changing the one we want to use in our applications isn’t

very difficult to do.

When you import modules in the beginning of your program, be sure to also include

the layout manager(s) you want to use like so:

from PyQt5.QtWidgets import (QApplication, QWidget, QHBoxLayout,

QFormLayout)

Here we import both the QHBoxLayout and QFormLayout classes from QtWidgets.

Then to set a specific layout manager inside a parent window or widget, we first must

create an instance of that layout manager. In the following code, we call QVBoxLayout

and then set the layout within the parent window using setLayout().

v_box = QVBoxLayout()

parent_window.setLayout(v_box)

Using a layout manager isn’t necessary, but it is definitely preferred in order to make

your applications easier to organize and to rearrange if necessary.

Chapter 4 Learning about Layout ManageMent

55

 Customizing the Layout
So you’ve got your layout manager chosen. You’ve created your widgets. How do you go

about adding them to the window?

name = QTextEdit()

v_box.addWidget(name)

In this code, we create a QTextEdit widget and then call the addWidget() method to

add it in the layout. Be sure to consider what type of layout manager the parent window

or widget is using before adding a child widget. For each layout manager, some of the

parameters may change or you may need to call a different method to add widgets, but

the concept is the same – create a widget, then add that widget into your layout. We will

go over more details when we get to each specific manager.

If you need to create a more complex application with widgets arranged horizontally,

vertically, or maybe even arranged in a grid, it is also possible to nest layouts in PyQt.

Nesting layouts involves placing one layout manager inside of another. This can be

accomplished by calling the addLayout() method and passing the name of a layout as a

parameter.

One of the great things about using a layout manager is that when you resize the

windows, the widgets in the window will all adjust accordingly. However, each layout

manager has its own way of determining the spacing, alignment, size, or border around

the widgets. These can all be manipulated and we will look at a few of these methods in

the upcoming projects.

 Absolute Positioning – Move()
While many people will recommend using layout managers, you can of course create

layouts without them. This idea is called absolute positioning and it involves specifying

the size and position values for each widget. This is the method we used in the previous

chapters when we used move() to arrange widgets.

If you do decide to use absolute positioning, there are a few drawbacks to keep in

mind. First of all, resizing the main window will not cause the widgets in it to adjust their

size or position. Something else to keep in mind is the differences between operating

systems, such as fonts and font sizes which could drastically change the look and layout

of our GUI.

Chapter 4 Learning about Layout ManageMent

56

Absolute positioning can be most useful for setting the position and size values of

widgets that are contained within other widgets.

 Project 4.1 – Basic Notepad GUI
For our first project, let’s take a look at creating a simple interface, a notepad GUI, to

demonstrate how to use absolute positioning. A notepad is a way to capture our ideas or

to take notes. It generally starts off blank and we fill in the information line by line. The

benefit of having a digital notepad is that we can input and edit text much more easily

than with real paper. Electronic notepads don’t just include a blank area to write, but also

tools which can be found at the top of the GUI window to help open, save, or edit notes.

This project, as can be seen in Figure 4-1, lays the foundation for our notepad GUI.

In Chapter 5, we will take a look at how to improve upon this example by creating a

menu interface and adding editing tools.

Figure 4-1. Basic notepad GUI

Chapter 4 Learning about Layout ManageMent

57

 The QTextEdit Widget
If we are going to create a notepad GUI, then we need a text entry field that will allow us

to enter and edit more than one line of text at a time.

The QTextEdit widget allows a user to enter text, either plain or rich text, and permits

editing such as copy, paste, or cut. The widget can handle characters or paragraphs of

text. Paragraphs are simply long strings that are word-wrapped into the widget and end

with a newline character. QTextEdit is also useful for displaying lists, images, and tables

or providing an interface for displaying text using HTML.

Take a look at the Solution code to the notepad GUI to see how to create a QTextEdit

widget.

 The QFileDialog Class
The QFileDialog class can be used to select files or directories found on your computer.

This can be useful for locating and opening a file or looking for a directory to save a file

and giving your file a name.

To open a file, we call the getOpenFileName() method, set the parent, create a title

for the dialog box, display contents of a specific directory, and display files matching

the patterns given in the string "All Files (*);;Text Files (*.txt)". You can also

display image or other file types.

file_name = QFileDialog.getOpenFileName(self, 'Open File', "/Users/user_

name/Desktop/","All Files (*);;Text Files (*.txt)")

Saving a file is done in a similar fashion.

file_name = QFileDialog.getSaveFileName(self, 'Save File', "/Users/user_

name/Desktop/","All Files (*);;Text Files (*.txt)")

The look of the dialog box that appears will also reflect the type of system you are

using. To change these properties, you could access QFileDialog.Options() and alter

the dialog properties and appearance.

options = QFileDialog.Options()

options = QFileDialog.DontUseNativeDialog # By default native dialog is used

Chapter 4 Learning about Layout ManageMent

58

 Basic Notepad GUI Solution
For this project, the GUI will consist of three widgets, two QPushButtons and a QTextEdit

field (Listing 4-1). Users will be able to select the new button to clear the text in the line

edit field or save the text to a file by clicking the save button and opening a dialog box.

Listing 4-1. Code for creating notepad GUI

notepad.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QTextEdit,

QMessageBox, QFileDialog)

class Notepad(QWidget):

 def __init__(self): # constructor

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 300, 400)

 self.setWindowTitle('4.1 – Notepad GUI')

 self.notepadWidgets()

 self.show()

 def notepadWidgets(self):

 """

 Create widgets for notepad GUI and arrange them in window

 """

 # Create push buttons for editing menu

 new_button = QPushButton("New", self)

 new_button.move(10, 20)

Chapter 4 Learning about Layout ManageMent

59

 new_button.clicked.connect(self.clearText)

 save_button = QPushButton("Save", self)

 save_button.move(80, 20)

 save_button.clicked.connect(self.saveText)

 # Create text edit field

 self.text_field = QTextEdit(self)

 self.text_field.resize(280, 330)

 self.text_field.move(10, 60)

 def clearText(self):

 """

 If the new button is clicked, display dialog asking user if they

want to clear the text edit field or not.

 """

 answer = QMessageBox.question(self, "Clear Text",

 "Do you want to clear the text?", QMessageBox.No | QMessageBox.Yes,

 QMessageBox.Yes)

 if answer == QMessageBox.Yes:

 self.text_field.clear()

 else:

 pass

 def saveText(self):

 """

 If the save button is clicked, display dialog to save the text in

the text edit field to a text file.

 """

 options = QFileDialog.Options()

 notepad_text = self.text_field.toPlainText()

 file_name, _ = QFileDialog.getSaveFileName(self, 'Save File',

"","All Files (*);;Text Files (*.txt)", options=options)

 if file_name:

 with open(file_name, 'w') as f:

 f.write(notepad_text)

Chapter 4 Learning about Layout ManageMent

60

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = Notepad()

 sys.exit(app.exec_())

Our notepad can be seen in Figure 4-1. The text displayed in the widgets shows that

the QLineEdit widget can support different fonts, colors, and text sizes.

 Explanation

When you use absolute positioning, you can think of the window as a grid where the top-

left corner has the x and y coordinates (0, 0). If you create a window with height equal

to 100 and width also 100, then the bottom-right corner has values (99, 99). To arrange

widgets using move(), you need to specify values within the height and width range.

For example, the new_button push button is created and positioned as follows:

new_button = QPushButton("New", self)

new_button.move(10, 20) # x = 10, y = 20

Three widgets are created in Listing 4-1, two buttons and a QTextEdit widget for

inputting text. We can use the buttons to either clear text or save the text we have typed.

When the user clicks the save_button, the saveText() method is called which

displays a QFileDialog like the one shown in Figure 4-2.

Chapter 4 Learning about Layout ManageMent

61

The contents of the text file are shown in Figure 4-3. Because we save the file as a text

file, it loses some information but still retains the spacing and paragraphs separated by

newlines. To keep the rich text information, you could save the file using HTML. This will

be covered in Chapter 5.

Figure 4-2. QFileDialog box that opens to save the text from the notepad GUI

Figure 4-3. Text file showing the text saved from notepad GUI

Chapter 4 Learning about Layout ManageMent

62

 The QHBoxLayout and QVBoxLayout Classes
Arranging widgets can be accomplished easily with the QBoxLayout classes. PyQt has

two different QBoxLayout styles, QHBoxLayout and QVBoxLayout:

• QHBoxLayout – Used to arrange widgets horizontally from left to

right in the window

• QVBoxLayout – Used to arrange widgets vertically from top to

bottom in the window

Creating a basic GUI with only one of these layout managers is possible, but the real

potential comes from being able to combine the two of them to create more elaborate

layouts. Together we can combine them, along with the addStretch() method, to place

widgets anywhere in the window. Think of addStretch() as an adjustable blank space

that can be used to help arrange widgets relative to each other or to help place widgets in

the window.

In the following project, we will take a look at how to use QHBoxLayout and

QVBoxLayout in the same program to create a simple survey GUI application.

 Project 4.2 – Survey GUI
Creating a survey to collect data from users can be very useful for businesses or for

research. In the following project, we will take a look at how to use the QBoxLayout class

to create a simple window that displays a question to the user and allows them to select

an answer.

From personal experience, the Python language is very good at automating repetitive

tasks. In university, I needed to collect data from almost a thousand participants in order

to research marketing trends related to how they spent money at sporting events. For my

research I decided to create an application that would ask the user a question and then

store their answers in a Python list. When a participant reached the end of the survey,

their answers were written to a file. This greatly helped later when I needed to use that

same data to create graphs and charts.

Figure 4-4 shows the program we are going to make in Project 4.2.

Chapter 4 Learning about Layout ManageMent

63

 The QButtonGroup Class
You may often have a few checkboxes or buttons that need to be grouped together to

make it easier to manage them. Luckily, PyQt has the QButtonGroup class to help

not only group and arrange buttons together, but also has the ability to make buttons

mutually exclusive. This is also helpful if you only want one checkbox to be checked

at a time.

QButtonGroup is not actually a widget, but a container where you can add widgets.

Therefore, you can’t actually add QButtonGroup to a layout. The following code shows

the method of how to import and set up QButtonGroup in your application:

from PyQt5.QtWidgets import QButtonGroup, QCheckBox

b_group = QButtonGroup() # Create instance of QButtonGroup

Create two checkboxes

cb_1 = QCheckBox("CB 1")

cb_2 = QCheckBox("CB 2")

Add checkboxes into QButtonGroup

b_group.addButton(cb_1)

b_group.addButton(cb_2)

Connect all buttons in a group to one signal

b_group.buttonClicked.connect(cbClicked)

def cbClicked(cb):

print(cb)

Figure 4-4. Survey GUI

Chapter 4 Learning about Layout ManageMent

64

In the above code we create two QCheckBox widgets and add them to the

QButtonGroup using the addButton() method. To make the buttons mutually exclusive,

we check to see if a signal is sent not from each individual button but from the button

group instead. This is done with

b_group.buttonClicked.connect(cbClicked)

 Survey GUI Solution
The survey GUI consists of QLabel widgets to display the title, question, and ratings

labels for each checkbox. For the checkboxes in the window, the text beside each label

could have been left blank, but the numbers are left as a visual cue to the user. Once the

user selects a choice, they can close the window using a QPushButton (Listing 4-2).

Listing 4-2. Code for creating survey GUI

survey.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QPushButton,

QCheckBox, QButtonGroup, QHBoxLayout, QVBoxLayout)

from PyQt5.QtGui import QFont

class DisplaySurvey(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 230)

 self.setWindowTitle('4.2 – Survey GUI')

 self.displayWidgets()

 self.show()

Chapter 4 Learning about Layout ManageMent

65

 def displayWidgets(self):

 """

 Set up widgets using QHBoxLayout and QVBoxLayout.

 """

 # Create label and button widgets

 title = QLabel("Restaurant Name")

 title.setFont(QFont('Arial', 17))

 question = QLabel("How would you rate your service today?")

 # Create horizontal layouts

 title_h_box = QHBoxLayout()

 title_h_box.addStretch()

 title_h_box.addWidget(title)

 title_h_box.addStretch()

 ratings = ["Not Satisfied", "Average", "Satisfied"]

 # Create checkboxes and add them to horizontal layout, and add

stretchable

 # space on both sides of the widgets

 ratings_h_box = QHBoxLayout()

 ratings_h_box.setSpacing(60) # Set spacing between in widgets in

horizontal layout

 ratings_h_box.addStretch()

 for rating in ratings:

 rate_label = QLabel(rating, self)

 ratings_h_box.addWidget(rate_label)

 ratings_h_box.addStretch()

 cb_h_box = QHBoxLayout()

 cb_h_box.setSpacing(100) # Set spacing between in widgets in

horizontal layout

 # Create button group to contain checkboxes

 scale_bg = QButtonGroup(self)

 cb_h_box.addStretch()

 for cb in range(len(ratings)):

Chapter 4 Learning about Layout ManageMent

66

 scale_cb = QCheckBox(str(cb), self)

 cb_h_box.addWidget(scale_cb)

 scale_bg.addButton(scale_cb)

 cb_h_box.addStretch()

 # Check for signal when checkbox is clicked

 scale_bg.buttonClicked.connect(self.checkboxClicked)

 close_button = QPushButton("Close", self)

 close_button.clicked.connect(self.close)

 # Create vertical layout and add widgets and h_box layouts

 v_box = QVBoxLayout()

 v_box.addLayout(title_h_box)

 v_box.addWidget(question)

 v_box.addStretch(1)

 v_box.addLayout(ratings_h_box)

 v_box.addLayout(cb_h_box)

 v_box.addStretch(2)

 v_box.addWidget(close_button)

 # Set main layout of the window

 self.setLayout(v_box)

 def checkboxClicked(self, cb):

 """

 Print the text of checkbox selected.

 """

 print("{} Selected.".format(cb.text()))

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplaySurvey()

 sys.exit(app.exec_())

The survey GUI can be seen in Figure 4-4.

Chapter 4 Learning about Layout ManageMent

67

 Explanation

After importing all of the PyQt classes and setting up the DisplaySurvey class,

we begin by creating some labels, setting up the text for the ratings labels, and

creating the close_button.

The application consists of three separate QHBoxLayout objects – title_h_box,

ratings_h_box, and cb_h_box – and a single QVBoxLayout layout, v_box. For this GUI,

v_box will act as the container for all of the other widgets and layouts, arranged vertically

from top to bottom.

Combining Box Layouts and Arranging Widgets

When we say combining layouts, what that really means is nesting one type of box layout

inside of another type to get the benefit of vertical or horizontal layouts.

The following bit of code shows how to create a QHBoxLayout object and add a

widget to it:

 # Create horizontal layouts

 title_h_box = QHBoxLayout()

 title_h_box.addStretch()

 title_h_box.addWidget(title)

 title_h_box.addStretch()

The addStretch() method acts like an invisible widget that can be used to help

arrange widgets in a layout manager. Widgets in QHBoxLayout are organized left to right,

so in title_h_box, addStretch is added to the left, title in the middle, and another

addStretch to the right. This centers the title in title_h_box.

To add the rating labels and checkboxes to the window, a separate QHBoxLayout is

created for each one. Each widget added is spaced out using the setSpacing() method,

which is useful for creating a fixed amount of space between widgets inside of a layout.

Adding layouts or widgets to a parent layout is as simple as changing the method

called.

 v_box = QVBoxLayout() # Create vertical layout

 v_box.addLayout(title_h_box) # Add horizontal layout

 v_box.addWidget(question) # Add widget

Chapter 4 Learning about Layout ManageMent

68

 The QFormLayout Class
In Chapter 3 we looked at how to make a create new user GUI (Project 3.2) that would

collect a user’s information. In that project, each line consisted of a QLabel widget on the

left and a QLineEdit widget on the right. They were then arranged in the window using

absolute positioning.

For situations like this where you need to create a form to collect information from a

user, PyQt provides the QFormLayout class. It is a layout class that arranges its children

widgets into a two-column layout, the left column consisting of labels and the right one

consisting of entry field widgets such as QLineEdit or QSpinBox. The QFormLayout class

makes designing these kinds of GUIs very convenient.

 Project 4.3 – Application Form GUI
We all have to fill out application forms at some point, applying for a job, when you want

to go to university, trying to get insurance for your car, or signing up for a new bank

account.

For this project let’s take a look at creating an application form that someone could

use to set up an appointment at the hospital like in Figure 4-5. When filling out an

electronic application, you can combine many different widgets to not only reduce the

size of the window but also minimize the amount of clutter from text that you might

usually see on a paper application.

Before getting started on the application form, we should learn about two new

widgets – QSpinBox and QComboBox – that we will use in the application GUI.

Chapter 4 Learning about Layout ManageMent

69

 The QSpinBox and QComboBox Widgets
Rather than using a QLineEdit widget for the user to input information, sometimes you

may want them to only be allowed to select from a list of predetermined values. Both

QSpinBox and QComboBox widgets are very useful for handling this kind of task.

QSpinBox creates an object that is similar to a text box, but allows the user to select

integer values either by typing a value into the widget or by clicking the up and down

arrows. You can also edit the range of the values, set the step size when the arrow is

clicked, set a starting value, or even add prefixes or suffixes in the box. There are also

other kinds of spin boxes in PyQt, such as QDateEdit, to select date and time values.

QComboBox is a way to display a list of options for the user to select from. When a

user clicks the arrow button, a pop-up list appears and displays a collection of possible

selections.

In Listing 4-3 we will take a look at how to create both kinds of objects, add them to

our layout, and find out how to use the values in QSpinBox to update other widgets in

the GUI window.

Figure 4-5. Application form GUI

Chapter 4 Learning about Layout ManageMent

70

Listing 4-3. Code for creating QSpinBox and QComboBox widgets

spin_combo_boxes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QComboBox,

QSpinBox, QHBoxLayout, QVBoxLayout)

from PyQt5.QtGui import QFont

from PyQt5.QtCore import Qt

class SelectItems(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 300, 200)

 self.setWindowTitle('ComboBox and SpinBox')

 self.itemsAndPrices()

 self.show()

 def itemsAndPrices(self):

 """

 Create the widgets so users can select an item from the combo boxes

 and a price from the spin boxes

 """

 info_label = QLabel("Select 2 items you had for lunch and their prices.")

 info_label.setFont(QFont('Arial', 16))

 info_label.setAlignment(Qt.AlignCenter)

 self.display_total_label = QLabel("Total Spent: $")

 self.display_total_label.setFont(QFont('Arial', 16))

 self.display_total_label.setAlignment(Qt.AlignRight)

Chapter 4 Learning about Layout ManageMent

71

 # Create list of food items and add those items to two separate

combo boxes

 lunch_list = ["egg", "turkey sandwich", "ham sandwich", "cheese",

"hummus", "yogurt", "apple", "banana", "orange", "waffle", "baby

carrots", "bread", "pasta", "crackers", "pretzels", "pita chips",

"coffee", "soda", "water"]

 lunch_cb1 = QComboBox()

 lunch_cb1.addItems(lunch_list)

 lunch_cb2 = QComboBox()

 lunch_cb2.addItems(lunch_list)

 # Create two separate price spin boxes

 self.price_sb1 = QSpinBox()

 self.price_sb1.setRange(0,100)

 self.price_sb1.setPrefix("$")

 self.price_sb1.valueChanged.connect(self.calculateTotal)

 self.price_sb2 = QSpinBox()

 self.price_sb2.setRange(0,100)

 self.price_sb2.setPrefix("$")

 self.price_sb2.valueChanged.connect(self.calculateTotal)

 # Create horizontal boxes to hold combo boxes and spin boxes

 h_box1 = QHBoxLayout()

 h_box2 = QHBoxLayout()

 h_box1.addWidget(lunch_cb1)

 h_box1.addWidget(self.price_sb1)

 h_box2.addWidget(lunch_cb2)

 h_box2.addWidget(self.price_sb2)

 # Add widgets and layouts to QVBoxLayout

 v_box = QVBoxLayout()

 v_box.addWidget(info_label)

 v_box.addLayout(h_box1)

 v_box.addLayout(h_box2)

 v_box.addWidget(self.display_total_label)

Chapter 4 Learning about Layout ManageMent

72

 self.setLayout(v_box)

 def calculateTotal(self):

 """

 Calculate and display total price from spin boxes and change value

shown in QLabel

 """

 total = self.price_sb1.value() + self.price_sb2.value()

 self.display_total_label.setText("Total Spent: ${}".

format(str(total)))

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = SelectItems()

 sys.exit(app.exec_())

Your window should look similar to the one seen in Figure 4-6.

Figure 4-6. GUI to show how to create QSpinBox and QComboBox widgets

 Explanation

The code for this application is also another demonstration of how to create nested

layouts in PyQt. Here we create two instances of QHBoxLayout and add them to a vertical

layout.

Chapter 4 Learning about Layout ManageMent

73

We create two separate combo boxes, lunch_cb1 and lunch_cb2, and add the list of

items that we want to be displayed to each of them using the addItems() method. Then

two separate spin boxes are created, price_sb1 and price_sb2.

 self.price_sb1.setRange(0,100)

 self.price_sb1.setPrefix("$")

The setRange() method is used to set the upper and lower boundaries for a spin

box and setPrefix() can be used to display other text inside of the text box, in this case

a dollar sign. This can be helpful to give the user more information about the widget’s

purpose. All of these widgets are then added to two separate horizontal layouts, h_box1

and h_box2.

Note Since the two QCombobox objects and the two QSpinbox objects each
contain the same values, you may have the urge to just try and use them over
again when adding them to QVboxLayout. this won’t work. When you add an item
to a widget or to a layout, that widget takes ownership of the item. this means you
cannot add an item to more than one widget or layout. you will need to create a
new instance.

Finally, as we change the values in the spin boxes, they both send a signal that is

connected to the calculateTotal() method. This will dynamically update the value for

display_total_label in the window.

 Application Form GUI Solution
The application form GUI consists of a number of different widgets, including QLabel,

QLineEdit, QSpinBox, QComboBox, QTextEdit, and QPushButton (Listing 4-4). Nesting

layouts is also possible with the QFormLayout manager.

Listing 4-4. Code for creating application form GUI

application.py

Import necessary modules

import sys

Chapter 4 Learning about Layout ManageMent

74

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QPushButton,
QFormLayout, QLineEdit, QTextEdit, QSpinBox, QComboBox, QHBoxLayout)
from PyQt5.QtGui import QFont
from PyQt5.QtCore import Qt

class GetApptForm(QWidget):
 def __init__(self):
 super().__init__()

 self.initializeUI()

 def initializeUI(self):
 """
 Initialize the window and display its contents to the screen
 """
 self.setGeometry(100, 100, 300, 400)
 self.setWindowTitle('4.3 – Application Form GUI')
 self.formWidgets()

 self.show()

 def formWidgets(self):
 """
 Create widgets that will be used in the application form.
 """
 # Create widgets
 title = QLabel("Appointment Submission Form")
 title.setFont(QFont('Arial', 18))
 title.setAlignment(Qt.AlignCenter)

 name = QLineEdit()
 name.resize(100, 100)
 address = QLineEdit()
 mobile_num = QLineEdit()
 mobile_num.setInputMask("000-000-0000;")

 age_label = QLabel("Age")
 age = QSpinBox()

 age.setRange(1, 110)

Chapter 4 Learning about Layout ManageMent

75

 height_label = QLabel("Height")

 height = QLineEdit()

 height.setPlaceholderText("cm")

 weight_label = QLabel("Weight")

 weight = QLineEdit()

 weight.setPlaceholderText("kg")

 gender = QComboBox()

 gender.addItems(["Male", "Female"])

 surgery = QTextEdit()

 surgery.setPlaceholderText("separate by ','")

 blood_type = QComboBox()

 blood_type.addItems(["A", "B", "AB", "O"])

 hours = QSpinBox()

 hours.setRange(1, 12)

 minutes = QComboBox()

 minutes.addItems([":00", ":15", ":30", ":45"])

 am_pm = QComboBox()

 am_pm.addItems(["AM", "PM"])

 submit_button = QPushButton("Submit Appointment")

 submit_button.clicked.connect(self.close)

 # Create horizontal layout and add age, height, and weight to h_box

 h_box = QHBoxLayout()

 h_box.addSpacing(10)

 h_box.addWidget(age_label)

 h_box.addWidget(age)

 h_box.addWidget(height_label)

 h_box.addWidget(height)

 h_box.addWidget(weight_label)

 h_box.addWidget(weight)

 # Create horizontal layout and add time information

 desired_time_h_box = QHBoxLayout()

 desired_time_h_box.addSpacing(10)

Chapter 4 Learning about Layout ManageMent

76

 desired_time_h_box.addWidget(hours)

 desired_time_h_box.addWidget(minutes)

 desired_time_h_box.addWidget(am_pm)

 # Create form layout

 app_form_layout = QFormLayout()

 # Add all widgets to form layout

 app_form_layout.addRow(title)

 app_form_layout.addRow("Full Name", name)

 app_form_layout.addRow("Address", address)

 app_form_layout.addRow("Mobile Number", mobile_num)

 app_form_layout.addRow(h_box)

 app_form_layout.addRow("Gender", gender)

 app_form_layout.addRow("Past Surgeries ", surgery)

 app_form_layout.addRow("Blood Type", blood_type)

 app_form_layout.addRow("Desired Time", desired_time_h_box)

 app_form_layout.addRow(submit_button)

 self.setLayout(app_form_layout)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = GetApptForm()

 sys.exit(app.exec_())

When completed, your GUI should look similar to Figure 4-5.

Note Depending upon what system you are working on, the look and layout of
the widgets in your window will change.

 Explanation

Using the QFormLayout class is pretty straightforward. In the formWidgets() method,

the widgets that will be used in this GUI are instantiated in the beginning. An important

one to point out is the mobile_num line edit object.

Chapter 4 Learning about Layout ManageMent

77

Any type of character can naturally be typed into the QLineEdit entry field. However,

if you want to limit the type, size, or manner in which characters can be input, then you

can create an input mask by calling the setInputMask() method. setInputMask() also

can be used to set the maximum number of characters.

Two parts of this application have widgets arranged horizontally. For these widgets

we will add them in QHBoxLayout objects.

The QFormLayout object is created by

 app_form_layout = QFormLayout()

Next, all widgets and layouts are added to the form layout using the addRow()

method. Finally, the layout for our window is set using self.setLayout(app_form_

layout).

Widgets and layouts can be added to a QFormLayout object in the following ways:

 form_layout.addRow(QWidget)

 form_layout.addRow("text", QWidget)

 form_layout.addRow(layout)

The first one will add a widget and may cause it to stretch to fit the window. The

second fits the text and its widget into a two-column layout. The last one can be used to

nest layouts.

 The QGridLayout Class
The QGridLayout layout manager is used to arrange widgets in rows and columns

similar to a spreadsheet or matrix. The layout manager takes the space within its parent

window or widget and divides it up according to the sizes of the widgets within that row

(or column). Adding space between widgets, creating a border, or stretching widgets

across multiple rows or columns is also possible.

Understanding how to add and manipulate widgets using QGridLayout is also easier.

The grid for the layout manager starts at value (0, 0) which is the top leftmost cell. To

add a widget underneath it (the next row), simply add 1 to the left value, (1, 0). To keep

moving down the rows, keep increasing the left value. To move across columns, increase

the right value.

Let’s take a look at how to make a to-do list using QGridLayout.

Chapter 4 Learning about Layout ManageMent

78

 Project 4.4 – To-Do List GUI
We all have things that we must do every day, and many of us need a way to help

organize our busy lives. For this project we will take a look at creating a basic layout for a

to-do list.

Some to-do lists are broken down by hours of the day, by importance of goals, or by

various other tasks we may need to do for that day, week, or even month. Once a goal is

complete, we need some way to check off a task or remove it.

The project will consist of a to-do list made up of two parts, a list of things you

must do on the left and daily appointments on the right. The “Must Dos” will consist of

QCheckBox and QLineEdit widgets. The “Appointments” will be separated into three

sections, morning, noon, and evening, and will use QTextEdit widgets to give the user an

area to write down their tasks. You can see the GUI we will be building in Figure 4-7.

Figure 4-7. To-do list GUI

Chapter 4 Learning about Layout ManageMent

79

 To-Do List GUI Solution
For this project (Listing 4-5), we will be focusing mainly on how to create the GUI and

arrange widgets using the QGridLayout class as the main layout. This project also

includes a nested QVBoxLayout for the “Appointments” layout.

Listing 4-5. Code for the to-do list GUI

todolist.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QTextEdit,

QLineEdit, QPushButton, QCheckBox, QGridLayout, QVBoxLayout)

from PyQt5.QtGui import QFont

from PyQt5.QtCore import Qt

class ToDoList(QWidget):

 def __init__(self): # Constructor

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 500, 350)

 self.setWindowTitle('4.4 – ToDo List GUI')

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """

 Create widgets for to-do list GUI and arrange them in the window

 """

 # Create grid layout

Chapter 4 Learning about Layout ManageMent

80

 main_grid = QGridLayout()

 todo_title = QLabel("To Do List")

 todo_title.setFont(QFont('Arial', 24))

 todo_title.setAlignment(Qt.AlignCenter)

 close_button = QPushButton("Close")

 close_button.clicked.connect(self.close)

 # Create section labels for to-do list

 mustdo_label = QLabel("Must Dos")

 mustdo_label.setFont(QFont('Arial', 20))

 mustdo_label.setAlignment(Qt.AlignCenter)

 appts_label = QLabel("Appointments")

 appts_label.setFont(QFont('Arial', 20))

 appts_label.setAlignment(Qt.AlignCenter)

 # Create must-do section

 mustdo_grid = QGridLayout()

 mustdo_grid.setContentsMargins(5, 5, 5, 5)

 mustdo_grid.addWidget(mustdo_label, 0, 0, 1, 2)

 # Create checkboxes and line edit widgets

 for position in range(1, 15):

 checkbox = QCheckBox()

 checkbox.setChecked(False)

 linedit = QLineEdit()

 linedit.setMinimumWidth(200)

 mustdo_grid.addWidget(checkbox, position, 0)

 mustdo_grid.addWidget(linedit, position, 1)

 # Create labels for appointments section

 morning_label = QLabel("Morning")

 morning_label.setFont(QFont('Arial', 16))

 morning_entry = QTextEdit()

 noon_label = QLabel("Noon")

 noon_label.setFont(QFont('Arial', 16))

Chapter 4 Learning about Layout ManageMent

81

 noon_entry = QTextEdit()

 evening_label = QLabel("Evening")

 evening_label.setFont(QFont('Arial', 16))

 evening_entry = QTextEdit()

 # Create vertical layout and add widgets

 appt_v_box = QVBoxLayout()

 appt_v_box.setContentsMargins(5, 5, 5, 5)

 appt_v_box.addWidget(appts_label)

 appt_v_box.addWidget(morning_label)

 appt_v_box.addWidget(morning_entry)

 appt_v_box.addWidget(noon_label)

 appt_v_box.addWidget(noon_entry)

 appt_v_box.addWidget(evening_label)

 appt_v_box.addWidget(evening_entry)

 # Add other layouts to main grid layout

 main_grid.addWidget(todo_title, 0, 0, 1, 2)

 main_grid.addLayout(mustdo_grid, 1, 0)

 main_grid.addLayout(appt_v_box, 1, 1)

 main_grid.addWidget(close_button, 2, 0, 1, 2)

 self.setLayout(main_grid)

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = ToDoList()

 sys.exit(app.exec_())

When you are finished, your GUI should look similar to Figure 4-7.

 Explanation

Here we start by creating our ToDoList class which inherits from QWidget. In the

setupWidgets() method, a few QLabel widgets which will serve as header labels for the

GUI and the different sections are created. A QPushButton, which will close the program,

is also instantiated.

Chapter 4 Learning about Layout ManageMent

82

The must-do section uses the QGridLayout class. A margin can be set to frame a

layout using the setContentMargins() method.

mustdo_grid.setContentsMargins(5, 5, 5, 5)

Each integer specifies the size of the border in pixels, (left, top, right, bottom).

Then the layout managers, mustdo_grid and appt_v_box, and their widgets are

created and added. Finally, the title, the two layouts, and the close button are added to

the main_grid layout, and main_grid is set as the main layout using setLayout().

Adding Widgets and Spanning Rows and Columns with QGridLayout

Since widgets will be placed in a grid-like structure, when you add a new object to the

layout, you must specify the row and column values as parameters of the addWidget() or

addLayout() methods. Take a look at the following lines:

main_grid.addWidget(todo_title, 0, 0)

main_grid.addLayout(mustdo_grid, 1, 0)

main_grid.addLayout(appt_v_box, 1, 1)

The todo_title QLabel widget is added to the main_grid layout at the position

where the row equals 0 and column equals 0, which is also the top-left corner. Then, the

mustdo_grid is added directly below it by increasing the row value to 1 and leaving the

column value equal to 0. Finally, we move over one column for the appt_v_box layout

by setting the column value to 1. If you want to build a GUI with more widgets using

QGridLayout, then you would just continue in this manner moving away from 0, 0.

But what happens if you have a widget in a column or a row that is next to another

widget that needs to take up more space in the vertical or horizontal direction?

QGridLayout allows us to specify the number of rows or columns that we want a single

widget or layout to span. Spanning can be thought of as stretching a widget horizontally

or vertically to help us better arrange our GUI.

main_grid.addWidget(clear_button, 2, 0, 1, 3)

The extra two parameters at the end, 1 and 3, tell the layout manager that we want to

span one row and three columns. This causes the widget to stretch horizontally.

Chapter 4 Learning about Layout ManageMent

83

 Summary
Taking the time to learn about layout management will save you time and effort when

coding your own GUI applications. In this chapter we reviewed absolute positioning

using the move() method and learned about three of PyQt’s layout managers –

QBoxLayout, QFormLayout, and QGridLayout. Each of these classes has their own

special purpose, but one of the real powers of PyQt is how convenient it is to nest them

into other layouts to make more complex GUIs.

It is important to note that any of the subclasses within QWidget can also use a layout

manager to manage their children. The advantages of using a layout manager include

• Positioning of child widgets

• Setting default sizes for windows

• Handling resizing of windows

• Updating content in the window or parent widget when something

changes, such as type of font, font size, and hiding, showing, or

removing of a child widget

You can actually design and lay out your interface graphically using the Qt Designer

Application. We will take a brief look at how to do this in Chapter 7.

In Chapter 5 we are going to take a look at how to add menus to our applications.

Chapter 4 Learning about Layout ManageMent

85
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_5

CHAPTER 5

Menus, Toolbars,
and More
As you add more and more features to your applications, you will need some way to

present all of the individual options to the user. A menu is a list of commands that a

computer program can perform presented in a more manageable and organized fashion.

No matter what type of device or application you are using or what kind of menu system

it has, if it has a menu in place, its role is to help you navigate through the various

operations in order to help you select the tasks you wish to perform.

Graphical user interfaces have numerous kinds of menus, such as context menus

or pull-down menus, and can contain a variety of text and symbols. These symbols can

be selected to give the computer an instruction. Think about a text editing program and

all the various icons at the top, for example, open a file, save a file, select font, or select

color. All of these symbols and text represent some task that the application can perform

presented to the user in a manner that should promote better ease of use.

In this chapter we are going to take a look at how to create menus and toolbars for

GUI applications in PyQt5. Everything up until now has been used to build a foundation

for creating user interfaces, from PyQt classes and widgets to layout design.

Different from previous chapters, here we will be looking at how to make completely

functioning programs, a notepad GUI and a simple photo editor GUI. These applications

can either be used right away or as a starting point for building your own GUI program.

There is a fair amount of information, from new concepts to additional widgets and

classes, covered in this chapter.

For menus using PyQt, you will take a look at

 1. The QMainWindow class for setting up the main window

 2. Creating QMenubar and QMenu objects

 3. Adding actions to menus using the QAction class

86

 4. Setting up the status bar using QStatusBar to display information

about actions

 5. Using QDockWidget to build detachable widgets to hold an

application’s tools

 6. How to create submenus and checkable menu items

Other concepts and widgets covered include

• Setting and changing icons in the main window and on widgets with

QIcon

• New types of dialogs including QInputDialog, QColorDialog,

QFontDialog, and QMessageBox’s About dialog box

• How to handle and manipulate images using QPixmap and

QTransform classes

• How to print images using QPrinter and QPainter

Let’s jump right into coding a basic menu framework that will help you learn about

creating menus with PyQt5 and some new classes, QMainWindow and QMenu.

 Create a Basic Menu
For this first part, we will be taking a look at how to create a simple menubar. A menubar

is a set of pull-down menus with list commands that we can use to interact with the

program. In this program, the menubar will contain one menu with only one command,

Exit (Listing 5-1).

Listing 5-1. Basic structure for creating the menu in an application

menu_framework.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction)

class BasicMenu(QMainWindow):

Chapter 5 Menus, toolbars, and More

87

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 350, 350) # x, y, width, height

 self.setWindowTitle('Basic Menu Example')

 self.createMenu()

 self.show()

 def createMenu(self):

 """

 Create skeleton application with a menubar

 """

 # Create actions for file menu

 exit_act = QAction('Exit', self)

 exit_act.setShortcut('Ctrl+Q')

 exit_act.triggered.connect(self.close)

 # Create menubar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(exit_act)

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = BasicMenu()

 sys.exit(app.exec_())

Chapter 5 Menus, toolbars, and More

88

Figure 5-1 shows what adding a simple menu will look like on MacOS. Notice how

in the left image File is displayed in the menubar, and when we scroll over it using our

mouse, the Exit option is shown in the image on the right.

Figure 5-1. A menubar is created (left) displaying our File menu. A pull-down
menu is displayed (right) with one command, Exit

 Explanation
The framework for this program contains no widgets, but does show how to set up a
simple File menu located in the top-left corner of the GUI. Take a look at the beginning
of the program and notice the classes being imported from QtWidgets. We still import
QApplication, but there are also two new classes, QMainWindow and QAction. You may
also notice that this time there is no QWidget.

The QMainWindow class provides the necessary tools for building an application’s
graphical user interface. Notice that the BasicMenu class in the preceding code is written as

class BasicMenu(QMainWindow)

The class to build our window inherits from QMainWindow instead of QWidget.

 QMainWindow vs. QWidget
The QMainWindow class focuses on creating and managing the layout for the main
window of an application. It allows you to set up a window with a status bar, a toolbar,
dock widgets, or other menu options in predefined places all designed around functions

that the main window should have.

Chapter 5 Menus, toolbars, and More

89

The QWidget class is the base class for all user interface objects in Qt. The widget

is the basic building block of GUIs. It is interactive, allowing the user to communicate

with the computer to perform some task. Many of the widgets you have already looked

at, such as QPushButton and QTextEdit, are just subclasses of QWidget that give

functionality to your programs.

A window in an application is really just a widget that is not embedded in a parent

widget. What is important to understand is that QMainWindow actually inherits from

the QWidget class. It is a special purpose class focusing mainly on creating menus and

housing widgets in your program. In Figure 5-2, you can see how the different widgets

that QMainWindow can use have areas specifically assigned for them. Take a look at the

image to see how the menubar, dock widgets, and the central widget can be arranged

inside of the main window.

The central widget in the center of the window must be set if you are going to use

QMainWindow as your base class. For example, you could use a single QTextEdit widget

or create a QWidget object to act as a parent to a number of other widgets, then use

setCentralWidget(), and set your central widget for the main window.

Figure 5-2. Example layout for QMainWindow class (Adapted from
https://doc.qt.io/ web site)

 Creating the Menubar and Adding Actions

At the top of the window in Figure 5-1, you will see the menubar which contains one

menu, File. In order to create a menubar, you must create an instance of the QMenuBar

class, which we created by

menu_bar = self.menuBar()

Chapter 5 Menus, toolbars, and More

https://doc.qt.io/

90

You could create a menubar by actually calling the QMenuBar class, but it is just as

easy to create a menubar using the menuBar() function provided by QMainWindow.

Note due to guidelines set by the Macos system, you must set the property to
use the platform’s native settings to False. otherwise, the menu will not appear
in the window. You can do this with menu_bar.setNativeMenuBar(False).
For those using Windows or linux, you can comment this line out or delete it
completely from your code.

Adding menus to the menubar is also really simple in PyQt:

file_menu = menu_bar.addMenu('File')

Here we are using the addMenu() method to add a menu named File to the menu_

bar. Using addMenu() adds a QMenu object to our menubar. Once again, it is just as

simple to use the functions provided by the QMainWindow class.

A menu contains a list of action items such as Open, Close, and Find. In PyQt, these

actions are created from the QAction class, defining actions for menus and toolbars.

Many actions in an application are also given shortcut keys making it easier to perform

that task, for example, Ctrl+V for the paste action (Cmd+V on MacOS) or Ctrl+X for the

cut action (Cmd+X on MacOS). Take a look at how the Exit action is created and then

added to file_menu.

exit_act = QAction('Exit', self)

exit_act.setShortcut('Ctrl+Q')

exit_act.triggered.connect(self.close)

The Exit action, exit_act, is an instance of the QAction class. In the next line the

shortcut for the exit_act is set explicitly using the setShortcut() method with the key

combination Ctrl+Q. Another way to set the shortcut is to use the ampersand key, &, in

front of the letter you want to use as the shortcut. For example,

open_act = QAction('&Open', self)

Note by default, on Macos shortcuts are disabled. the best way to use them is
with setShortcut().

Chapter 5 Menus, toolbars, and More

91

Similar to QPushButtons, actions in the menu emit a signal and need to be

connected to a slot in order to perform an action. This is done using triggered.

connect(). Using the QAction class is very useful since many common commands can

be invoked through the menu, toolbars, or shortcuts and need to be able to perform

correctly no matter which widget invokes the action.

 Setting Icons with the QIcon Class
In GUI applications, icons are small graphical images or symbols that can represent an

action the user can perform. They are often used to help the user more quickly locate

common actions and better navigate an application. For example, in a word editing

program such as Microsoft Word, the toolbar at the top of the GUI contains a large

amount of icons, each with icon and textual descriptions.

Chapter 2 briefly introduced the QPixmap class which is used for handling images.

The QIcon class provides methods that can use pixmaps and modify their style or size

to be used in an application. One really great use of QIcon is to set the appearance of an

icon representing an action to active or disabled.

Setting icons is very useful not only for the actions in a toolbar but also for setting the

application icon that is displayed in the title bar of the GUI window. Actions can be in

four states, represented by icons: Normal, Disabled, Active, or Selected. QIcon can also

be used when setting the icons on other widgets, as well.

Listing 5-2 shows how to reset the application icon displayed in the main window

and how to set the icon on a QPushButton.

Note For Macos users, the application window cannot be changed due to
system guidelines. You should still take a look at this program though, as it also
shows how to set icons for other widgets in pyQt.

Listing 5-2. Code to show how to set icons for the main window and on

QPushButtons

change_icons.py

Import necessary modules

import sys

Chapter 5 Menus, toolbars, and More

92

from PyQt5.QtWidgets import (QApplication, QLabel, QWidget, QPushButton,

QVBoxLayout)

from PyQt5.QtGui import QIcon

from PyQt5.QtCore import QSize

import random

class ChangeIcon(QWidget):

 def __init__(self):

 super().__init__()

 self.initializezUI()

 def initializezUI(self):

 self.setGeometry(100, 100, 200, 200)

 self.setWindowTitle('Set Icons Example')

 self.setWindowIcon(QIcon('images/pyqt_logo.png'))

 self.createWidgets()

 self.show()

 def createWidgets(self):

 """

 Set up widgets.

 """

 info_label = QLabel("Click on the button and select a fruit.")

 self.images = [

 "images/1_apple.png",

 "images/2_pineapple.png",

 "images/3_watermelon.png",

 "images/4_banana.png"

]

Chapter 5 Menus, toolbars, and More

93

 self.icon_button = QPushButton(self)

 self.icon_button.setIcon(QIcon(random.choice(self.images)))

 self.icon_button.setIconSize(QSize(60, 60))

 self.icon_button.clicked.connect(self.changeButtonIcon)

 # Create vertical layout and add widgets

 v_box = QVBoxLayout()

 v_box.addWidget(info_label)

 v_box.addWidget(self.icon_button)

 # Set main layout of window

 self.setLayout(v_box)

 def changeButtonIcon(self):

 """

 When the button is clicked, change the icon to one of the images in

the list.

 """

 self.icon_button.setIcon(QIcon(random.choice(self.images)))

 self.icon_button.setIconSize(QSize(60, 60))

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = ChangeIcon()

 sys.exit(app.exec_())

You can see what the application should look like on Windows in Figure 5-3. The

application icon normally displayed in the top-left corner is changed to the PyQt logo

in the right image. Notice how the application icon is missing in the MacOS version in

Figure 5-4.

Chapter 5 Menus, toolbars, and More

94

 Explanation
The preceding example contains a simple button that, when clicked, will select an image

randomly from the images list.

Setting the main window’s application icon can be done by calling the

setWindowIcon() method and setting as the argument for QIcon the location of the

image file. This can be seen in the following line:

self.setWindowIcon(QIcon('images/pyqt_logo.png'))

Figure 5-3. The original application icon in the top-left corner of the window
(left) can be set to new a new icon (right) using the setWindowIcon() method.
On Windows and Linux systems, changing the icon isn’t an issue

Figure 5-4. The application icon is not displayed in the title area on MacOS systems

Chapter 5 Menus, toolbars, and More

95

If a widget is created that can display an icon, then calling the setIcon() method on

that widget will allow you to display an image on it.

icon_button.setIcon(QIcon(random.choice(self.images)))

icon_button.setIconSize(QSize(60, 60))

Here, the icon for icon_button is chosen randomly and passed as an argument to be

handled by QIcon. Calling the setIconSize() method on a widget can be used to change

the size of the icon. PyQt will handle the sizing and style of the widget based on your

parameters in the main window. The button is then connected to a slot that is used to

change the icon.

Finally, the label and button widgets are arranged using QVBoxLayout and set as the

main window’s layout.

 Project 5.1 – Rich Text Notepad GUI
For the first project, let’s take a look at how to improve the notepad GUI we saw back in

Chapter 4. It’s important to actually build a complete program to help you to learn how

to make your own GUIs from start to finish.

This time we will add a proper menubar with menus and actions. The user will also

have the ability to open and save their text, either as HTML or plain text, and edit the

text’s font, color, or size to give more functionality and creativity to their notes.

Figure 5-5 shows an example of the completed application with text of different sizes,

colors, fonts, and highlights.

Chapter 5 Menus, toolbars, and More

96

 Design the Rich Text Notepad GUI
Usually before creating interfaces, you should think about and map out what kind of

functionality you want your application to have and what kind of widgets you might need

in order to achieve those tasks.

For a text editing application, the layout is generally very basic – a menubar at the

top of the window with different menus for the various functions and tools, and an area

for displaying and editing text. For the text field, we will be using a QTextEdit widget

which will also serve as the central widget for the QMainWindow object.

This application will consist of four menus in the menubar – File, Edit, Tools,

and Help. Having different menus in the menubar can help to organize actions under

different categories as well as help the user to more easily locate actions they want to

use. Take a look at Figure 5-6 to see the various menu items that will be included in this

project.

Figure 5-5. Notepad GUI with menubar and QTextEdit widget

Chapter 5 Menus, toolbars, and More

97

 More Types of Dialog Boxes in PyQt
In this project there are a number of different dialog boxes native to PyQt that are used

including QInputDialog, QFileDialog, QFontDialog, QColorDialog, and QMessageBox.

Let’s take a moment to get familiar with some new types of dialog boxes and find out

how to include them in our code.

 The QInputDialog Class
QInputDialog is a native dialog box in PyQt that can be used to receive input from the

user. The input is a single value that can be a string, a number, or an item from a list.

To create an input dialog and get text from the user:

find_text, ok = QInputDialog.getText(self, "Search Text", "Find:")

Figure 5-6. Design showing the layout for the notepad GUI and the different
menus and actions

Chapter 5 Menus, toolbars, and More

98

In this example, shown in Figure 5-7, an input dialog object is created by calling

QInputDialog. The getText() method takes a single string input from the user. The

second argument, "Search Text", is the title for the dialog and Find: is the message

displayed in the dialog box. An input dialog returns two values – the input from the user

and a Boolean value. If the OK button is clicked, then the ok variable is set to True.

Figure 5-7. Example of QInputDialog dialog box

For other types of input, you can use one of the following methods:

• getMultiLineText() – Method to get a multiline string from the user

• getInt() – Method to get an integer from the user

• getDouble() – Method to get a floating-point number from the user

• getItem() – Method to let the user select an item from a list of strings

 The QFontDialog Class
QFontDialog provides a dialog box that allows the user to select and manipulate

different types of fonts. To create a font dialog box and choose a font, use the getFont()

method. The font dialog that is native to PyQt is shown in Figure 5-8.

font, ok = QFontDialog.getFont()

The font keyword is the particular font returned from getFont() and ok is a Boolean

variable to check whether the user selected a font and clicked the OK button.

Chapter 5 Menus, toolbars, and More

99

When the user clicks OK, a font is selected. However, if Cancel is clicked, then the
initial font is returned. If you have a default font that you would like to use in case the
user does not select OK, you could do the following:

font, ok = QFontDialog.getFont(QFont("Helvetica", 10), self)
self.text_edit_widget.setCurrentFont(font)

In order to change the font if a new one has been chosen, use the setCurrentFont()
method and change it to the new font.

 The QColorDialog Class
The QColorDialog class creates a dialog box for selecting colors like the one in
Figure 5-9. Selecting colors can be useful for changing the color of the text, a window’s

background color, and many other actions.

Figure 5-8. QFontDialog dialog box

Chapter 5 Menus, toolbars, and More

100

To create a color dialog box and select a color, use the following line of code:

color = QColorDialog.getColor()

Then check if the user selected a color and clicked the OK button by using the

isValid() method. If so, you could use setTextColor() to change the color of the text

or setBackgroundColor() to change the color of the background.

if color.isValid():

 self.text_field.setTextColor(color)

Figure 5-9. QColorDialog dialog box

Chapter 5 Menus, toolbars, and More

101

 The About Dialog Box
In many applications you can often find an About item in the menu. Clicking this item

will open a dialog box that displays information about the application such as the

software’s logo, title, latest version number, and other legal information.

The QMessageBox class that we looked at in Chapter 3 also provides an about()

method for creating a dialog for displaying a title and text. To create an about dialog box

like the one in Figure 5-10, try

QMessageBox.about(self, "About Notepad", "Beginner's Practical Guide to

PyQt\n\nProject 5.1 - Notepad GUI")

You can also display an application icon in the window. If an icon is not provided,

the about() method will try and find one from parent widget. To provide an icon, call the

setWindowIcon() method on the QApplication object in the program’s main() method.

app.setWindowIcon(QIcon("images/app_logo.png"))

Figure 5-10. Example About dialog box from the notepad GUI

 Rich Text Notepad GUI Solution
The QTextEdit widget already provides functionality for writing in either plain text or

rich text formats. In this program, you will explore how to use the different methods of

QTextEdit, such undo() and redo(), as well as the different dialog classes to create a

notepad application. This program also allows you to save your text in either plain text

format or HTML format if you want to preserve the rich text (Listing 5-3).

Chapter 5 Menus, toolbars, and More

102

Listing 5-3. Rich text notepad GUI code

richtext_notepad.py

#Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction,

QMessageBox, QTextEdit, QFileDialog, QInputDialog, QFontDialog,

QColorDialog)

from PyQt5.QtGui import QIcon, QTextCursor, QColor

from PyQt5.QtCore import Qt

class Notepad(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 500)

 self.setWindowTitle('5.1 – Rich Text Notepad GUI')

 self.createNotepadWidget()

 self.notepadMenu()

 self.show()

 def createNotepadWidget(self):

 """

 Set the central widget for QMainWindow, which is the QTextEdit

widget for the notepad.

 """

 self.text_field = QTextEdit()

 self.setCentralWidget(self.text_field)

Chapter 5 Menus, toolbars, and More

103

 def notepadMenu(self):

 """

 Create menu for notepad GUI

 """

 # Create actions for file menu

 new_act = QAction(QIcon('images/new_file.png'), 'New', self)

 new_act.setShortcut('Ctrl+N')

 new_act.triggered.connect(self.clearText)

 open_act = QAction(QIcon('images/open_file.png'), 'Open', self)

 open_act.setShortcut('Ctrl+O')

 open_act.triggered.connect(self.openFile)

 save_act = QAction(QIcon('images/save_file.png'), 'Save', self)

 save_act.setShortcut('Ctrl+S')

 save_act.triggered.connect(self.saveToFile)

 exit_act = QAction(QIcon('images/exit.png'), 'Exit', self)

 exit_act.setShortcut('Ctrl+Q')

 exit_act.triggered.connect(self.close)

 # Create actions for edit menu

 undo_act = QAction(QIcon('images/undo.png'),'Undo', self)

 undo_act.setShortcut('Ctrl+Z')

 undo_act.triggered.connect(self.text_field.undo)

 redo_act = QAction(QIcon('images/redo.png'),'Redo', self)

 redo_act.setShortcut('Ctrl+Shift+Z')

 redo_act.triggered.connect(self.text_field.redo)

 cut_act = QAction(QIcon('images/cut.png'),'Cut', self)

 cut_act.setShortcut('Ctrl+X')

 cut_act.triggered.connect(self.text_field.cut)

 copy_act = QAction(QIcon('images/copy.png'),'Copy', self)

 copy_act.setShortcut('Ctrl+C')

 copy_act.triggered.connect(self.text_field.copy)

Chapter 5 Menus, toolbars, and More

104

 paste_act = QAction(QIcon('images/paste.png'),'Paste', self)

 paste_act.setShortcut('Ctrl+V')

 paste_act.triggered.connect(self.text_field.paste)

 find_act = QAction(QIcon('images/find.png'), 'Find', self)

 find_act.setShortcut('Ctrl+F')

 find_act.triggered.connect(self.findTextDialog)

 # Create actions for tools menu

 font_act = QAction(QIcon('images/font.png'), 'Font', self)

 font_act.setShortcut('Ctrl+T')

 font_act.triggered.connect(self.chooseFont)

 color_act = QAction(QIcon('images/color.png'), 'Color', self)

 color_act.setShortcut('Ctrl+Shift+C')

 color_act.triggered.connect(self.chooseFontColor)

 highlight_act = QAction(QIcon('images/highlight.png'), 'Highlight', self)

 highlight_act.setShortcut('Ctrl+Shift+H')

 highlight_act.triggered.connect(self.chooseFontBackgroundColor)

 about_act = QAction('About', self)

 about_act.triggered.connect(self.aboutDialog)

 # Create menubar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(new_act)

 file_menu.addSeparator()

 file_menu.addAction(open_act)

 file_menu.addAction(save_act)

 file_menu.addSeparator()

 file_menu.addAction(exit_act)

 # Create edit menu and add actions

 edit_menu = menu_bar.addMenu('Edit')

 edit_menu.addAction(undo_act)

Chapter 5 Menus, toolbars, and More

105

 edit_menu.addAction(redo_act)

 edit_menu.addSeparator()

 edit_menu.addAction(cut_act)

 edit_menu.addAction(copy_act)

 edit_menu.addAction(paste_act)

 edit_menu.addSeparator()

 edit_menu.addAction(find_act)

 # Create tools menu and add actions

 tool_menu = menu_bar.addMenu('Tools')

 tool_menu.addAction(font_act)

 tool_menu.addAction(color_act)

 tool_menu.addAction(highlight_act)

 # Create help menu and add actions

 help_menu = menu_bar.addMenu('Help')

 help_menu.addAction(about_act)

 def openFile(self):

 """

 Open a text or html file and display its contents in

 the text edit field.

 """

 file_name, _ = QFileDialog.getOpenFileName(self, "Open File",

 "", "HTML Files (*.html);;Text Files (*.txt)")

 if file_name:

 with open(file_name, 'r') as f:

 notepad_text = f.read()

 self.text_field.setText(notepad_text)

 else:

 QMessageBox.information(self, "Error",

 "Unable to open file.", QMessageBox.Ok)

 def saveToFile(self):

 """

 If the save button is clicked, display dialog asking user if

 they want to save the text in the text edit field to a text file.

Chapter 5 Menus, toolbars, and More

106

 """

 file_name, _ = QFileDialog.getSaveFileName(self, 'Save File',

 "","HTML Files (*.html);;Text Files (*.txt)")

 if file_name.endswith('.txt'):

 notepad_text = self.text_field.toPlainText()

 with open(file_name, 'w') as f:

 f.write(notepad_text)

 elif file_name.endswith('.html'):

 notepad_richtext = self.text_field.toHtml()

 with open(file_name, 'w') as f:

 f.write(notepad_richtext)

 else:

 QMessageBox.information(self, "Error",

 "Unable to save file.", QMessageBox.Ok)

 def clearText(self):

 """

 If the new button is clicked, display dialog asking user if

 they want to clear the text edit field or not.

 """

 answer = QMessageBox.question(self, "Clear Text",

 "Do you want to clear the text?", QMessageBox.No | QMessageBox.Yes,

 QMessageBox.Yes)

 if answer == QMessageBox.Yes:

 self.text_field.clear()

 else:

 pass

 def findTextDialog(self):

 """

 Search for text in QTextEdit widget

 """

 # Display input dialog to ask user for text to search for

 find_text, ok = QInputDialog.getText(self, "Search Text", "Find:")

 extra_selections = []

Chapter 5 Menus, toolbars, and More

107

 # Check to make sure the text can be modified

 if ok and not self.text_field.isReadOnly():

 # set the cursor in the textedit field to the beginning

 self.text_field.moveCursor(QTextCursor.Start)

 color = QColor(Qt.yellow)

 # Look for next occurrence of text

 while(self.text_field.find(find_text)):

 # Use ExtraSelections to mark the text you are

 # searching for as yellow

 selection = QTextEdit.ExtraSelection()

 selection.format.setBackground(color)

 # Set the cursor of the selection

 selection.cursor = self.text_field.textCursor()

 # Add selection to list

 extra_selections.append(selection)

 # Highlight selections in text edit widget

 for i in extra_selections:

 self.text_field.setExtraSelections(extra_selections)

 def chooseFont(self):

 """

 Select font for text

 """

 current = self.text_field.currentFont()

 font, ok = QFontDialog.getFont(current, self, options=QFontDialog.

DontUseNativeDialog)

 if ok:

 self.text_field.setCurrentFont(font) # Use setFont() to set all

text to one type of font

 def chooseFontColor(self):

 """

 Select color for text

 """

Chapter 5 Menus, toolbars, and More

108

 color = QColorDialog.getColor()

 if color.isValid():

 self.text_field.setTextColor(color)

 def chooseFontBackgroundColor(self):

 """

 Select color for text's background

 """

 color = QColorDialog.getColor()

 if color.isValid():

 self.text_field.setTextBackgroundColor(color)

 def aboutDialog(self):

 """

 Display information about program dialog box

 """

 QMessageBox.about(self, "About Notepad", "Beginner's Practical

Guide to PyQt\n\nProject 5.1 - Notepad GUI")

Run program

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = Notepad()

 sys.exit(app.exec_())

Your program with its menubar and different menus should look similar to the

images in Figure 5-11.

Figure 5-11. The notepad GUI with its different menus displayed, File menu (left),
Edit menu (middle), and Tools menu (right)

Chapter 5 Menus, toolbars, and More

109

 Explanation
There are quite a few classes to import for the notepad application. From the QtWidgets

module, we need to import QMainWindow and QAction for creating the menubar

and menu items. We also need to include the different PyQt dialog classes such as

QFileDialog and QInputDialog. From QtGui, which provides many of the basic classes

for creating GUI applications, QIcon is used for handling icons, QTextCursor can be used

to get information about the cursor in text documents, and QColor provides methods to

create colors in PyQt.

The main window is initialized in the Notepad class which inherits from

QMainWindow. The createNotepadWidget() method creates a QTextEdit widget and sets

it as the central widget for the QMainWindow using

self.setCentralWidget(self.text_field)

Next, the notepadMenu() method sets up the menubar object along with the different

menu items. The menu for the notepad application, which can be seen in Figure 5- 10,

contains four menus, File, Edit, Tools, and Help. Each menu is given its own

menu items for the most part based on guidelines that we have come to expect from

applications. For example, a general File menu creates actions that allow the user to

open, save, import, export, or print files.

The following bit of code shows how to create the action to open a file:

open_act = QAction(QIcon('images/open_file.png'), 'Open', self)

open_act.setShortcut('Ctrl+O')

open_act.triggered.connect(self.openFile)

The open_act object is generated by the QAction class. QIcon is used to set an icon

next to the action’s text in the menu. Then the action is given text to display, Open. Many

of the actions in the notepad program are given a textual shortcut using setShortcut().

Finally, we connect the open_act signal that is produced when it is triggered to a slot, in

this case the openFile() method. Other actions are created in a similar manner.

QTextEdit already has predefined slots, such as cut(), copy(), and paste(), to

interact with text. For most of the actions in the Edit menu, their signals are connected

to these special slots rather than creating new ones.

Chapter 5 Menus, toolbars, and More

110

Once all the actions are defined, the menu_bar is created and the different menus are

created by using the addMenu() method.

file_menu = menu_bar.addMenu('File')

Each of the actions is added to a menu by calling the addAction() method on the

appropriate menu. To add a divider between categories in a menu, use addSeparator().

file_menu.addAction(new_act)

file_menu.addSeparator()

There are a number of functions that are called on when a menu item is clicked.

Each one of them opens a dialog box and returns some kind of input from the user,

such as a new file, text or background color, or a keyword from a text search using the

QInputDialog class.

 Project 5.2 – Simple Photo Editor GUI
With the introduction of smartphones that have the latest technology to take amazing

photos, more pictures are taken and modified every day. However, not every picture is

perfect as soon as it is taken and technology also gives us tools to edit those images to

our liking. Some photo editors are very simple, allowing the user to rotate, crop, or add

text to images. Others let the user change the contrast and exposure, reduce noise, or

even add special effects.

In the following project, we will be taking a look at how to create a basic image editor,

Figure 5-12, that can give you a foundation to build your own application.

Chapter 5 Menus, toolbars, and More

111

 Design the Photo Editor GUI
Similar to Project 5.1, this GUI will also have a menubar that will contain various

menus – File, Edit, and View. The layout for this project can be seen in Figure 5-13.

Under the menubar is the toolbar created using the QToolBar class which contains

icons that represent actions the user can take such as open a file, save a file, and print.

This project will also introduce the QDockWidget class for creating widgets that can

be docked inside the main window or left floating, the QStatusBar class for displaying

information to the user, and checkable menu items which we will use to hide or show the

dock widget.

Figure 5-12. Photo editor GUI displaying the menubar at the top, the toolbar with
icons underneath the menubar, the central widget which displays the image, the
status bar at the bottom, and the dock widget on the right containing simple tools
for editing the photo. Earth photo from nasa.org

Chapter 5 Menus, toolbars, and More

http://nasa.org

112

 QDockWidget, QStatusBar, and More
Let’s take a look at some of the important features that will be introduced in the photo
editor program:

• The QDockWidget class

• The QStatusBar class

• Creating submenus

• Creating checkable menu items

Listing 5-4 creates a more detailed GUI framework that demonstrates these concepts.

Listing 5-4. Code to demonstrate how to create dock widgets, status bars, and
toolbars

menu_framework2.py
Import necessary modules

import sys

Figure 5-13. Layout for the photo editor GUI. The main window is much busier
than before containing a toolbar, a dock widget, and a status bar

Chapter 5 Menus, toolbars, and More

113

from PyQt5.QtWidgets import (QApplication, QMainWindow, QStatusBar,

QAction, QTextEdit, QToolBar, QDockWidget)

from PyQt5.QtCore import Qt, QSize

from PyQt5.QtGui import QIcon

class BasicMenu(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 350, 350) # x, y, width, height

 self.setWindowTitle('Basic Menu Example 2')

 # Set central widget for main window

 self.setCentralWidget(QTextEdit())

 self.createMenu()

 self.createToolBar()

 self.createDockWidget()

 self.show()

 def createMenu(self):

 """

 Create menubar and menu actions

 """

 # Create actions for file menu

 self.exit_act = QAction(QIcon('images/exit.png'), 'Exit', self)

 self.exit_act.setShortcut('Ctrl+Q')

 self.exit_act.setStatusTip('Quit program')

 self.exit_act.triggered.connect(self.close)

Chapter 5 Menus, toolbars, and More

114

 # Create actions for view menu

 full_screen_act = QAction('Full Screen', self, checkable=True)

 full_screen_act.setStatusTip('Switch to full screen mode')

 full_screen_act.triggered.connect(self.switchToFullScreen)

 # Create menubar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(self.exit_act)

 # Create view menu, Appearance submenu, and add actions

 view_menu = menu_bar.addMenu('View')

 appearance_submenu = view_menu.addMenu('Appearance')

 appearance_submenu.addAction(full_screen_act)

 # Display info about tools, menu, and view in the status bar

 self.setStatusBar(QStatusBar(self))

 def createToolBar(self):

 """

 Create toolbar for GUI

 """

 # Set up toolbar

 tool_bar = QToolBar("Main Toolbar")

 tool_bar.setIconSize(QSize(16, 16))

 self.addToolBar(tool_bar)

 # Add actions to toolbar

 tool_bar.addAction(self.exit_act)

 def createDockWidget(self):

 """

 Create dock widget

Chapter 5 Menus, toolbars, and More

115

 """

 # Set up dock widget

 dock_widget = QDockWidget()

 dock_widget.setWindowTitle("Example Dock")

 dock_widget.setAllowedAreas(Qt.AllDockWidgetAreas)

 # Set main widget for the dock widget

 dock_widget.setWidget(QTextEdit())

 # Set initial location of dock widget in main window

 self.addDockWidget(Qt.LeftDockWidgetArea, dock_widget)

 def switchToFullScreen(self, state):

 """

 If state is True, then display the main window in full screen.

 Otherwise, return the window to normal.

 """

 if state:

 self.showFullScreen()

 else:

 self.showNormal()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = BasicMenu()

 sys.exit(app.exec_())

Your GUI created from this program should look similar to the one in Figure 5-14.

Chapter 5 Menus, toolbars, and More

116

 Explanation
A few new classes from the QtWidgets module are imported including QStatusBar,

QToolBar, and QDockWidget. Getting to learn a little bit about these classes will be useful

for creating more complex GUIs.

 The QStatusBar Class

At the bottom of the GUI in Figure 5-14, there is a horizontal bar with the text “Quit

program” displayed inside of it. This bar is known as the status bar as is created from

the QStatusBar class. Sometimes an icon’s or menu item’s function is not explicitly

understood. This widget is very useful for displaying extra information to the user about

the capabilities of an action.

To create a status bar object, you can use the setStatusBar() method which is

part of the QMainWindow class. To create an empty status bar, pass QStatusBar as an

argument.

self.setStatusBar(QStatusBar(self))

Figure 5-14. Framework program for creating GUIs with toolbars, status bars,
and dock widgets. The status bar on the bottom displays the text “Quit program”
when the mouse hovers over the Exit icon in the toolbar

Chapter 5 Menus, toolbars, and More

117

The first time this method is called, it creates the status bar, and following calls will

return the status bar object.

In order to display a message in the status bar when the mouse hovers over an icon,

you need to call the setStatusTip() method on an action object. For example:

exit_act.setStatusTip('Quit program')

will display the text “Quit program” when the mouse is over the exit_act icon or menu

command.

To display text in the status bar when the program begins or when a function is

called, use the showMessage() method.

self.statusBar().showMessage('Welcome back!')

 The QToolBar Class

When the user is performing a number of routine tasks, having to open up the menu

to select an action multiple times can become tedious. Luckily, the QToolBar class

provides ways to create a toolbar with icons, text, or standard Qt widgets for quick access

to frequently used commands.

Toolbars are generally located under the menubar like in Figure 5-14, but can also be

placed vertically or at the bottom of the main window above the status bar. Refer to the

image in Figure 5-2 for an idea of arranging the different widgets in the main window.

A GUI can only have one menubar but it can have multiple toolbars. To create a

toolbar object, create an instance of the QToolBar class and give it a title and then add it

to the main window using QMainWindow’s addToolBar() method.

tool_bar = QToolBar("Main Toolbar")

tool_bar.setIconSize(QSize(16, 16))

self.addToolBar(tool_bar)

You should set the size of the icons in the toolbar using the setIconSize() method

with QSize() to avoid extra padding when PyQt tries to figure out the arrangement by

itself.

To add an action to the toolbar, use addAction():

tool_bar.addAction(self.exit_act)

Chapter 5 Menus, toolbars, and More

118

If you need to add widgets in your toolbar, you should also use QAction to take

advantage of the classes’ ability to handle multiple interface elements.

 The QDockWidget Class

The QDockWidget class is used to create detachable or floating tool palettes or widget

panels. Dock widgets are secondary windows that provide additional functionality to

GUI windows.

To create the dock widget object, create an instance of QDockWidget and set the

widget’s title using the setWindowTitle() method.

dock_widget = QDockWidget()

dock_widget.setWindowTitle("Example Dock")

When the dock widget is docked inside of the main window, PyQt handles the

resizing of the dock window and the central widget. You can also specify the areas you

want the dock to be placed in the main window using setAllowedAreas().

dock_widget.setAllowedAreas(Qt.AllDockWidgetAreas)

In the preceding line of code, the dock widget can be placed on any of the four sides

of the window. To limit the allowable dock areas, use the following Qt methods:

• LeftDockWidgetArea

• RightDockWidgetArea

• TopDockWidgetArea

• BottomDockWidgetArea

The dock widget can act as a parent for a single widget using setWidget().

dock_widget.setWidget(QTextEdit())

In order to place multiple widgets inside the dock, you could use a single QWidget as

the parent for multiple child widgets and arrange them using one of the layout mangers

from Chapter 4. Then, pass that QWidget as the argument to setWidget().

Finally, to set the initial location of the dock widget in the main window, use

self.addDockWidget(Qt.LeftDockWidgetArea, dock_widget)

Chapter 5 Menus, toolbars, and More

119

In this application if the dock widget is closed, we cannot get it back. In the “Photo

Editor GUI Solution,” we will take a look at how to use checkable menu items to hide or

show the dock widget.

 Creating Submenus with Checkable Menu Items

When an application becomes very complex and filled with actions, its menus can also

begin to turn into a cluttered mess. Using submenus, we can organize similar categories

together and simplify the menu system. Figure 5-15 displays an example of a submenu.

Similar to creating a regular menu, use the addMenu() method to create submenus.

view_menu = menu_bar.addMenu('View')

appearance_submenu = view_menu.addMenu('Appearance')

appearance_submenu.addAction(full_screen_act)

Here we first create the View menu and add it to the menubar. The appearance_

submenu is then created and added to the View menu. Don’t forget to also add an action

to the submenu using the addAction() method.

The appearance_submenu in the example has a full_screen_act action added to

it that allows the user to switch between full screen and normal screen modes. Menu

items can also be created so that they act just like switches, being able to be turned on

and off. To set an action as checkable, include the option checkable=True in the QAction

parameters.

full_screen_act = QAction('Full Screen', self, checkable=True)

Then, when the action is clicked, it will send a signal and you can use a slot to check

the state of the menu item, whether it is on or off. This could be useful for showing or

hiding dock widgets or the status bar.

To make the action checked and active from the start, you can call the trigger()

method on the action.

Chapter 5 Menus, toolbars, and More

120

 Photo Editor GUI Solution
Now that we have gone over how to set up the different types of menus, we can finally get

started on coding the photo editor application (Listing 5-5).

Listing 5-5. Photo editor code

photo_editor.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QAction, QFileDialog, QDesktopWidget, QMessageBox, QSizePolicy, QToolBar,

QStatusBar, QDockWidget, QVBoxLayout, QPushButton)

from PyQt5.QtGui import QIcon, QPixmap, QTransform, QPainter

from PyQt5.QtCore import Qt, QSize, QRect

from PyQt5.QtPrintSupport import QPrinter, QPrintDialog

Figure 5-15. Example submenu that also contains a checkable action to switch
between full screen and normal modes

Chapter 5 Menus, toolbars, and More

121

class PhotoEditor(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setFixedSize(650, 650)

 self.setWindowTitle('5.2 - Photo Editor GUI')

 self.centerMainWindow()

 self.createToolsDockWidget()

 self.createMenu()

 self.createToolBar()

 self.photoEditorWidgets()

 self.show()

 def createMenu(self):

 """

 Create menu for photo editor GUI

 """

 # Create actions for file menu

 self.open_act = QAction(QIcon('images/open_file.png'),"Open", self)

 self.open_act.setShortcut('Ctrl+O')

 self.open_act.setStatusTip('Open a new image')

 self.open_act.triggered.connect(self.openImage)

 self.save_act = QAction(QIcon('images/save_file.png'),"Save", self)

 self.save_act.setShortcut('Ctrl+S')

 self.save_act.setStatusTip('Save image')

 self.save_act.triggered.connect(self.saveImage)

 self.print_act = QAction(QIcon('images/print.png'), "Print", self)

 self.print_act.setShortcut('Ctrl+P')

 self.print_act.setStatusTip('Print image')

Chapter 5 Menus, toolbars, and More

122

 self.print_act.triggered.connect(self.printImage)

 self.print_act.setEnabled(False)

 self.exit_act = QAction(QIcon('images/exit.png'), 'Exit', self)

 self.exit_act.setShortcut('Ctrl+Q')

 self.exit_act.setStatusTip('Quit program')

 self.exit_act.triggered.connect(self.close)

 # Create actions for edit menu

 self.rotate90_act = QAction("Rotate 90°", self)

 self.rotate90_act.setStatusTip('Rotate image 90° clockwise')

 self.rotate90_act.triggered.connect(self.rotateImage90)

 self.rotate180_act = QAction("Rotate 180°", self)

 self.rotate180_act.setStatusTip('Rotate image 180° clockwise')

 self.rotate180_act.triggered.connect(self.rotateImage180)

 self.flip_hor_act = QAction("Flip Horizontal", self)

 self.flip_hor_act.setStatusTip('Flip image across horizontal axis')

 self.flip_hor_act.triggered.connect(self.flipImageHorizontal)

 self.flip_ver_act = QAction("Flip Vertical", self)

 self.flip_ver_act.setStatusTip('Flip image across vertical axis')

 self.flip_ver_act.triggered.connect(self.flipImageVertical)

 self.resize_act = QAction("Resize Half", self)

 self.resize_act.setStatusTip('Resize image to half the original size')

 self.resize_act.triggered.connect(self.resizeImageHalf)

 self.clear_act = QAction(QIcon('images/clear.png'), "Clear Image", self)

 self.clear_act.setShortcut("Ctrl+D")

 self.clear_act.setStatusTip('Clear the current image')

 self.clear_act.triggered.connect(self.clearImage)

 # Create menubar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

Chapter 5 Menus, toolbars, and More

123

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(self.open_act)

 file_menu.addAction(self.save_act)

 file_menu.addSeparator()

 file_menu.addAction(self.print_act)

 file_menu.addSeparator()

 file_menu.addAction(self.exit_act)

 # Create edit menu and add actions

 edit_menu = menu_bar.addMenu('Edit')

 edit_menu.addAction(self.rotate90_act)

 edit_menu.addAction(self.rotate180_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.flip_hor_act)

 edit_menu.addAction(self.flip_ver_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.resize_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.clear_act)

 # Create view menu and add actions

 view_menu = menu_bar.addMenu('View')

 view_menu.addAction(self.toggle_dock_tools_act)

 # Display info about tools, menu, and view in the status bar

 self.setStatusBar(QStatusBar(self))

 def createToolBar(self):

 """

 Create toolbar for photo editor GUI

 """

 tool_bar = QToolBar("Photo Editor Toolbar")

 tool_bar.setIconSize(QSize(24,24))

 self.addToolBar(tool_bar)

Chapter 5 Menus, toolbars, and More

124

 # Add actions to toolbar

 tool_bar.addAction(self.open_act)

 tool_bar.addAction(self.save_act)

 tool_bar.addAction(self.print_act)

 tool_bar.addAction(self.clear_act)

 tool_bar.addSeparator()

 tool_bar.addAction(self.exit_act)

 def createToolsDockWidget(self):

 """

 Use View -> Edit Image Tools menu and click the dock widget on or off.

 Tools dock can be placed on the left or right of the main window.

 """

 # Set up QDockWidget

 self.dock_tools_view = QDockWidget()

 self.dock_tools_view.setWindowTitle("Edit Image Tools")

 self.dock_tools_view.setAllowedAreas(Qt.LeftDockWidgetArea |

 Qt.RightDockWidgetArea)

 # Create container QWidget to hold all widgets inside dock widget

 self.tools_contents = QWidget()

 # Create tool push buttons

 self.rotate90 = QPushButton("Rotate 90°")

 self.rotate90.setMinimumSize(QSize(130, 40))

 self.rotate90.setStatusTip('Rotate image 90° clockwise')

 self.rotate90.clicked.connect(self.rotateImage90)

 self.rotate180 = QPushButton("Rotate 180°")

 self.rotate180.setMinimumSize(QSize(130, 40))

 self.rotate180.setStatusTip('Rotate image 180° clockwise')

 self.rotate180.clicked.connect(self.rotateImage180)

 self.flip_horizontal = QPushButton("Flip Horizontal")

 self.flip_horizontal.setMinimumSize(QSize(130, 40))

 self.flip_horizontal.setStatusTip('Flip image across horizontal axis')

 self.flip_horizontal.clicked.connect(self.flipImageHorizontal)

Chapter 5 Menus, toolbars, and More

125

 self.flip_vertical = QPushButton("Flip Vertical")

 self.flip_vertical.setMinimumSize(QSize(130, 40))

 self.flip_vertical.setStatusTip('Flip image across vertical axis')

 self.flip_vertical.clicked.connect(self.flipImageVertical)

 self.resize_half = QPushButton("Resize Half")

 self.resize_half.setMinimumSize(QSize(130, 40))

 self.resize_half.setStatusTip('Resize image to half the original size')

 self.resize_half.clicked.connect(self.resizeImageHalf)

 # Set up vertical layout to contain all the push buttons

 dock_v_box = QVBoxLayout()

 dock_v_box.addWidget(self.rotate90)

 dock_v_box.addWidget(self.rotate180)

 dock_v_box.addStretch(1)

 dock_v_box.addWidget(self.flip_horizontal)

 dock_v_box.addWidget(self.flip_vertical)

 dock_v_box.addStretch(1)

 dock_v_box.addWidget(self.resize_half)

 dock_v_box.addStretch(6)

 # Set the main layout for the QWidget, tools_contents,

 # then set the main widget of the dock widget

 self.tools_contents.setLayout(dock_v_box)

 self.dock_tools_view.setWidget(self.tools_contents)

 # Set initial location of dock widget

 self.addDockWidget(Qt.RightDockWidgetArea, self.dock_tools_view)

 # Handles the visibility of the dock widget

 self.toggle_dock_tools_act = self.dock_tools_view.

toggleViewAction()

 def photoEditorWidgets(self):

 """

 Set up instances of widgets for photo editor GUI

 """

 self.image = QPixmap()

Chapter 5 Menus, toolbars, and More

126

 self.image_label = QLabel()

 self.image_label.setAlignment(Qt.AlignCenter)

 # Use setSizePolicy to specify how the widget can be resized,

horizontally and vertically. Here, the image will stretch

horizontally, but not vertically.

 self.image_label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.

Ignored)

 self.setCentralWidget(self.image_label)

 def openImage(self):

 """

 Open an image file and display its contents in label widget.

 Display error message if image can't be opened.

 """

 image_file, _ = QFileDialog.getOpenFileName(self, "Open Image", "",

 "JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;Bitmap Files

(*.bmp);;\

 GIF Files (*.gif)")

 if image_file:

 self.image = QPixmap(image_file)

 self.image_label.setPixmap(self.image.scaled(self.image_label.

size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 else:

 QMessageBox.information(self, "Error",

 "Unable to open image.", QMessageBox.Ok)

 self.print_act.setEnabled(True)

 def saveImage(self):

 """

 Save the image.

 Display error message if image can't be saved.

 """

Chapter 5 Menus, toolbars, and More

127

 image_file, _ = QFileDialog.getSaveFileName(self, "Save Image", "",

 "JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;Bitmap Files

(*.bmp);;\

 GIF Files (*.gif)")

 if image_file and self.image.isNull() == False:

 self.image.save(image_file)

 else:

 QMessageBox.information(self, "Error",

 "Unable to save image.", QMessageBox.Ok)

 def printImage(self):

 """

 Print image.

 """

 # Create printer object and print output defined by the platform

 # the program is being run on.

 # QPrinter.NativeFormat is the default

 printer = QPrinter()

 printer.setOutputFormat(QPrinter.NativeFormat)

 # Create printer dialog to configure printer

 print_dialog = QPrintDialog(printer)

 # If the dialog is accepted by the user, begin printing

 if (print_dialog.exec_() == QPrintDialog.Accepted):

 # Use QPainter to output a PDF file

 painter = QPainter()

 # Begin painting device

 painter.begin(printer)

 # Set QRect to hold painter's current viewport, which

 # is the image_label

 rect = QRect(painter.viewport())

 # Get the size of image_label and use it to set the size

 # of the viewport

 size = QSize(self.image_label.pixmap().size())

 size.scale(rect.size(), Qt.KeepAspectRatio)

Chapter 5 Menus, toolbars, and More

128

 painter.setViewport(rect.x(), rect.y(), size.width(), size.

height())

 painter.setWindow(self.image_label.pixmap().rect())

 # Scale the image_label to fit the rect source (0, 0)

 painter.drawPixmap(0, 0, self.image_label.pixmap())

 # End painting

 painter.end()

 def clearImage(self):

 """

 Clears current image in QLabel widget

 """

 self.image_label.clear()

 self.image = QPixmap() # reset pixmap so that isNull() = True

 def rotateImage90(self):

 """

 Rotate image 90° clockwise

 """

 if self.image.isNull() == False:

 transform90 = QTransform().rotate(90)

 pixmap = QPixmap(self.image)

 rotated = pixmap.transformed(transform90, mode=Qt.

SmoothTransformation)

 self.image_label.setPixmap(rotated.scaled(self.image_label.

size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 self.image = QPixmap(rotated)

 self.image_label.repaint() # repaint the child widget

 else:

 # No image to rotate

 pass

Chapter 5 Menus, toolbars, and More

129

 def rotateImage180(self):

 """

 Rotate image 180° clockwise

 """

 if self.image.isNull() == False:

 transform180 = QTransform().rotate(180)

 pixmap = QPixmap(self.image)

 rotated = pixmap.transformed(transform180, mode=Qt.

SmoothTransformation)

 self.image_label.setPixmap(rotated.scaled(self.image_label.

size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 # In order to keep being allowed to rotate the image, set the

rotated image as self.image

 self.image = QPixmap(rotated)

 self.image_label.repaint() # repaint the child widget

 else:

 # No image to rotate

 pass

 def flipImageHorizontal(self):

 """

 Mirror the image across the horizontal axis

 """

 if self.image.isNull() == False:

 flip_h = QTransform().scale(-1, 1)

 pixmap = QPixmap(self.image)

 flipped = pixmap.transformed(flip_h)

 self.image_label.setPixmap(flipped.scaled(self.image_label.

size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 self.image = QPixmap(flipped)

 self.image_label.repaint()

Chapter 5 Menus, toolbars, and More

130

 else:

 # No image to flip

 pass

 def flipImageVertical(self):

 """

 Mirror the image across the vertical axis

 """

 if self.image.isNull() == False:

 flip_v = QTransform().scale(1, -1)

 pixmap = QPixmap(self.image)

 flipped = pixmap.transformed(flip_v)

 self.image_label.setPixmap(flipped.scaled(self.image_label.

size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 self.image = QPixmap(flipped)

 self.image_label.repaint()

 else:

 # No image to flip

 pass

 def resizeImageHalf(self):

 """

 Resize the image to half its current size.

 """

 if self.image.isNull() == False:

 resize = QTransform().scale(0.5, 0.5)

 pixmap = QPixmap(self.image)

 resized = pixmap.transformed(resize)

 self.image_label.setPixmap(resized.scaled(self.image_label.size(),

 Qt.KeepAspectRatio, Qt.SmoothTransformation))

 self.image = QPixmap(resized)

 self.image_label.repaint()

Chapter 5 Menus, toolbars, and More

131

 else:

 # No image to resize

 pass

 def centerMainWindow(self):

 """

 Use QDesktopWidget class to access information about your screen

 and use it to center the application window.

 """

 desktop = QDesktopWidget().screenGeometry()

 screen_width = desktop.width()

 screen_height = desktop.height()

 self.move((screen_width - self.width()) / 2, (screen_height - self.

height()) / 2)

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setAttribute(Qt.AA_DontShowIconsInMenus, True)

 window = PhotoEditor()

 sys.exit(app.exec_())

Once complete, your application should look similar to the one in Figure 5-12.

 Explanation
The photo editor application imports an assortment of new classes from different

modules. From QtWidgets there are two new classes, QDesktopWidget and QSizePolicy.

The QDesktopWidget class is used to access information about the screen on your

computer. We will use it later to learn how to center a GUI on your desktop. The

QSizePolicy class is used for resizing widgets.

From the QtGui module, we use QPixmap for handling images, QTransform for

performing transformations on images, and QPainter which is useful for drawing,

painting, and printing.

QRect, from QtCore, is used for creating rectangles. This will be used in the

printImage() method.

Chapter 5 Menus, toolbars, and More

132

The QPrintSupport module and its classes provide cross-platform support for

accessing printers and printing documents.

The window is initialized like before except this time the setFixedSize() method is

used to set the window’s geometry so that it cannot be resized.

All of the menus, actions, icons, and status tips are also created in the createMenu()

method. One important concept to note is that in this application only the toolbar

displays icons, not in the menu. This is set with

app.setAttribute(Qt.AA_DontShowIconsInMenus, True)

The File menu contains the Open, Save, Print, and Exit actions. Setting the

setEnabled() method on the print_act to False shows a disabled menu item and icon

in the toolbar. The print_act only becomes enabled after an image is opened in the

openImage() method.

 Handling Images in PyQt

The Edit menu contains tools for rotating, flipping, resizing, and clearing images.

self.image = QPixmap(image_file)

 self.image_label.setPixmap(self.image.scaled(self.image_label.

size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

When an image file is opened using QFileDialog, we create a QPixmap object using

that image, and then setPixmap() is called on the image_label to scale and set the

image in the QLabel widget. Finally, the label is set as the central widget in the main

window and resized according to the parameters in the setSizePolicy() method.

QPixmap and other classes to handle images are covered further in Chapter 9.

The QTransform class provides a number of methods to use transformations on

images. The photo editor application provides five actions for manipulating images:

Flip 90°, Flip 180°, Flip Horizontal, Flip Vertical, and Resize Half. Figure 5-16 displays an

example of an image being rotated 90°.

The tools located in the Edit menu could also be located in the toolbar. Instead, they

are placed in a dock widget which contains push buttons with the different actions as an

example of how to create a dock widget. The dock widget can also be toggled on and off

in the View menu. To handle when the dock widget is checked or unchecked in the menu

or if the user has closed the dock widget with the close button, use the QDockWidget

method toggleViewAction().

Chapter 5 Menus, toolbars, and More

133

 The QPrinter Class

If you need to create a printing method for your applications, the photo editor includes a

function adopted from the Qt document web site.1

Take a look at the code and the comments to see how to use the QPrinter class to set

up the printer and QPainter to set up the PDF file to be printed.

 Center GUI Application on Your Desktop

The following bit of code shows how to use the QDesktopWidget class to find out

information about the screen you are using in order to center the widget on the screen

when the application starts:

1 https://doc.qt.io/qt-5/qprinter.html#OutputFormat-enum

Figure 5-16. Example of 90° rotation in the photo editor GUI. The image is
stretched horizontally to fit in the main window

Chapter 5 Menus, toolbars, and More

https://doc.qt.io/qt-5/qprinter.html%23OutputFormat-enum

134

desktop = QDesktopWidget().screenGeometry() # Create QDesktopWidget

screen_width = desktop.width() # Get screen width

screen_height = desktop.height() # Get screen height

Use absolute positioning to place the GUI in the center of the screen

self.move((screen_width - self.width()) / 2, (screen_height - self.

height()) / 2)

 Summary
By taking you through some actual examples of programs with working menus, my

hope is that you can see how many classes are working together just to make a single

application. The examples in this chapter are by no means all that can be done with

menus. There are still plenty of other ways to organize the actions and widgets in your

own projects including context menus (often referred to as pop-up menus), tabbed

widgets with the QToolBox class, stacked widgets using the QStackedWidget class, and

more.

Chapter 5 focused on the QMainWindow class for integrating menus easily into

GUIs. A menubar consists of several menus, each of which is broken down into several

commands. Each of these commands could themselves also be checkable or even

submenus. Toolbars are often composed of icons that allow the user to more easily

locate commands. The QDockWidget class creates movable and floating widgets that can

be used to hold a number of different tools, widgets, or commands. Finally, the status bar

created from the QStatusBar class establishes a space to give further textual information

about each of the menu items.

The class that acts like the glue to keep track of all the different functions and

whether they have been triggered or not is the QAction class. The QAction class

manages these actions to ensure that no matter where the action is triggered, whether

from a menu, the toolbar, or from shortcut keys, the application can perform the next

appropriate action.

In Chapter 6 we will see how to modify the appearance of widgets with style sheets

and learn about how to create custom signals in PyQt.

Chapter 5 Menus, toolbars, and More

135
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_6

CHAPTER 6

Styling Your GUIs
The GUIs you have created up until now have all focused mainly on function and less

on appearance and customization. Creating a layout to organize widgets in a coherent

manner is just as important as modifying the look and feel of each and every widget. By

choosing the right styles, colors, and fonts, a user can also more easily navigate their way

around a user interface.

In this chapter, we will be taking a look at why customizing the look of widgets,

windows, and actions is also necessary for designing great GUIs.

In the final section of the chapter, we will take another look at event handling in PyQt

and see how we can modify signals and slots to create custom signals to further improve

the potential of applications.

Chapter 6 illustrates how to

• Modify the appearance of widgets with Qt Style Sheets

• Utilize new Qt widgets and classes, including QRadioButton,

QGroupBox, and QTabWidget

• Reimplement event handlers

• Create custom signals using pyqtSignal and QObject

 Changing GUI Appearances with Qt Style Sheets
When you use PyQt, the appearance of your applications is handled by Qt’s QStyle class.

QStyle contains a number of subclasses that imitate the look of the system on which

the application is being run. This makes your GUI look like a native MacOS, Linux, or

Windows application. Custom styles can be made either by modifying existing QStyle

classes, creating new classes, or using Qt Style Sheets.

136

This chapter will take a look at how to create custom styles by using style sheets. Qt
Style Sheets provide a technique for customizing the look of widgets. The syntax used in

Qt Style Sheets is inspired by HTML Cascading Style Sheets (CSS).

With style sheets, you can customize the look of a number of different widget

properties, pseudostates, and subcontrols. Some of the properties that you can modify

include background color, font size and font color, border type, width or style, as well

as add padding to widgets. Pseudostates are used to define special states of a widget,

such as when a mouse hovers over a widget or when a widget changes states from active

to disabled. Subcontrols allow you to access a widget’s subelements and change their

appearance, location, or other properties. For example, you could change the indicator

of a QCheckButton to a different color when it is checked or unchecked.

Customizations can either be applied to individual widgets or to the QApplication

object by using setStyleSheet().

 Customizing Individual Widget Properties
Let’s start by seeing how to apply changes to widgets. The following code changes the

background color to blue:

line_edit.setStyleSheet("background-color: blue")

Colors in a style sheet can be specified using either hexadecimal, RGB, or color

keyword formats. To change the foreground color (the text color) of a widget

line_edit.setStyleSheet("color: rgb(244, 160, 25") # orange

For some widgets as well the main window, you can even set a background image.

self.setStyleSheet("background-image: url(images/logo.png)")

Now let’s take a look at more a detailed example. For the following QLabel widget,

we will see how to change the color, the border, some font properties, and the text

alignment. The results are shown in Figure 6-1.

label = QLabel("Test", self)

label.setStyleSheet("""background-color: skyblue;

 color: white;

 border-style: outset;

 border-width: 3px;

Chapter 6 Styling your guiS

137

 border-radius: 5px;

 font: bold 24px 'Times New Roman';

 qproperty-alignment: AlignCenter""")

Of course, this is but one example. Each of the different kinds of widgets in Qt has its

own parameters that can be customized. For a list of properties that are supported by Qt

Style Sheets, refer to Appendix A.

Figure 6-1. A customized QLabel widget with sky blue background and
rounded corners

 Customizing the QApplication Style Sheet
If you have multiple widgets of the same type in an application, you could set each

individual widget’s style one by one. However, if those widgets all have the same

properties, then a much simpler method is to specify all of the modifications at one time.

app = QApplication(sys.argv)

app.setStyleSheet("QPushButton{background-color: #C92108}")

This will apply a red color to all QPushButton widgets in the GUI. However, if

you only want the properties to apply to a specific QPushButton, you can give it an

ID selector using setObjectName(). The following excerpt of code shows how to use

the ID selector to refer to a particular button. When the button is pressed, a different

background color is used.

Chapter 6 Styling your guiS

138

style_sheet = """

 QPushButton#Warning_Button{

 background-color: #C92108;

 border-radius: 10px;

 padding: 6px;

 color: #FFFFFF

 }

 QPushButton#Warning_Button:pressed{

 background-color: #F4B519;

 }

"""

button = QPushButton("Warning!", self)

button.setObjectName("Warning_Button") # Set ID selector

app = QApplication(sys.argv)

app.setStyleSheet(style_sheet) # Set style of QApplication

The preceding code also demonstrates how to create a style_sheet variable that

contains the different properties for each widget. To add a different type of class, simply

include the widget type such as QCheckBox followed by the attributes to be changed.

 Project 6.1 – Food Ordering GUI
Food delivery service apps are everywhere – on your phone, on the Internet, and even on

kiosks when you go to actual restaurants themselves. They simplify the ordering process

while also giving the user a feeling of control over their choices, asking us to select our

own foods and items as we scroll through a list of organized categories.

These types of GUIs may possibly need to contain hundreds of different items that fit

into multiple groups. Rather than just throwing all of the products into the interface and

letting the user waste their own time sorting through the items, goods are usually placed

into categories often differentiated by tabs. These tabs contain titles for the products that

can be found on those corresponding pages, such as Frozen Foods or Fruits/Vegetables.

The GUI in this project allows the user to place an order for a pizza. It lays a foundation

for a food ordering application, using tab widgets to organize items onto separate pages.

The project also shows how you can use style sheets to give a GUI made using PyQt5 a

more visually pleasing appearance. The application can be seen in Figure 6-2.

Chapter 6 Styling your guiS

139

Figure 6-2. The food ordering GUI. The GUI contains two tabs, Pizza (top) and
Wings (bottom), to separate the types of food a customer can see at one time. The
choices that can be selected, which are QRadioButton widgets, are separated using
QGroupBox widgets. The main window has a red background, and each tab has a
tan background. These colors and other styles are created by using a style sheet

Chapter 6 Styling your guiS

140

 Design the Food Ordering GUI
This application consists of two main tabs (displayed in Figure 6-3), but more could be easily

added. Each tab consists of a QWidget that acts as a container for all of the other widgets. The

first tab, Pizza, contains an image and text to convey the purpose of the tab to the user. This is

followed by two QGroupBox widgets that each consist of a number of QRadioButton widgets.

While the radio buttons in the “Crust” group box are mutually exclusive, the ones in the

“Toppings” group box are not, so that the user can select multiple options at one time.

The second tab, Wings, is set up in a similar fashion with the “Flavor” radio buttons

being mutually exclusive.

At the bottom of each page is an “Add to Order” QPushButton that will update the

user’s order in the widget on the right-hand side of the window.

Figure 6-3. The design for the food ordering GUI

Before we look at the code for the food ordering GUI, let’s take a moment to learn

about the new Qt classes in this project – QGroupBox, QRadioButton, and QTabWidget.

Chapter 6 Styling your guiS

141

 The QRadioButton Widget
The QRadioButton class allows you to create option buttons that can be switched on

when checked or off when unchecked. Each radio button consists of a round button and

a corresponding label or icon. Radio buttons are generally used for situations where you

need to provide a user with multiple choices, but only one choice can be checked at a

time. As the user selects a new radio button, the other radio buttons are unchecked.

When you place multiple radio buttons in a parent widget, those buttons become

auto-exclusive, meaning they automatically become exclusive members of that group.

If one radio button is checked inside of the parent, all of the other buttons will become

unchecked. To change this functionality, you can set the setAutoExclusive() attribute

to False.

Also, if you want to place multiple exclusive groups of radio buttons into the same

parent widget, then use the QButtonGroup class to keep the different groups separate.

Refer back to Chapter 4 for information about QButtonGroup.

Radio buttons are similar to the QCheckBox class when emitting signals. A radio

button emits the toggled() signal when checked on or off and can be connected to this

signal to trigger an action.

An example of creating QRadioButton widgets can be seen in Listing 6-1.

 The QGroupBox Class
The QGroupBox widget provides a container for grouping other widgets with similar

purposes together. A group box has a border with a title on the top. The title can also

be checkable so that the child widgets inside the group box can be enabled or disabled

when the checkbox is checked or unchecked.

A group box object can contain any kind of widget. Since QGroupBox does

not automatically lay out its child widgets, you will need to apply a layout such as

QHBoxLayout or QGridLayout. The following snippet of code demonstrates how to

create a QGroupBox widget, add two radio buttons, and apply a layout:

effects_gb = QGroupBox("Effects") # The title can either be set in the

constructor or with the setTitle() method

Create instances of radio buttons

effect1_rb = QRadioButton("Strikethrough")

Chapter 6 Styling your guiS

142

effect2_rb = QRadioButton("Outline")

Set up layout and add child widgets to the layout

h_box = QHBoxLayout()

h_box.addWidget(effect1_rb)

h_box.addWidget(effect2_rb)

Set the layout of the group box

effects_gb.setLayout(h_box)

For an example of another type of container in PyQt, check out the QFrame class in

Chapter 7.

 The QTabWidget Class
Sometimes you may need to organize related information onto separate pages rather

than create a cluttered GUI. The QTabWidget class provides a tab bar (created from the

QTabBar class) with an area under each tab (referred to as a page) to present information

and widgets related to each tab. Only one page is displayed at a time, and the user can

view a different page by clicking the tab or by using a shortcut (if one is set for the tab).

There are a few different ways to interact with and keep track of the different tabs. For

example, if the user switches to a different tab, the currentChanged() signal is emitted.

You can also keep track of a current page’s index with currentIndex(), or the widget of

the current page with currentWidget(). A tab can also be enabled or disabled with the

setTabEnabled() method.

Tip if you want to create an interface with multiple pages, but without the tab
bar, then you should consider using a QStackedWidget. however, if you do use
QStackedWidget, then you will need to provide some other means to switch
between the windows, such as a QComboBox or a QListWidget, since there are
no tabs.

The following example creates a simple application that includes QRadioButton,

QGroupBox, and QTabWidget and a few other classes. The program shows how to set up

a tab widget and organize the other widgets on the different pages.

Chapter 6 Styling your guiS

143

Listing 6-1. Example that shows how to use QTabWidget, QRadioButton, and

QGroupBox classes

contact_form.py
Import necessary modules
import sys
from PyQt5.QtWidgets import (QApplication, QWidget, QTabWidget, QLabel,
QRadioButton, QGroupBox, QLineEdit, QHBoxLayout, QVBoxLayout)

class ContactForm(QWidget):

 def __init__(self):
 super().__init__()
 self.initializeUI()

 def initializeUI(self):
 """
 Initialize the window and display its contents to the screen.
 """
 self.setGeometry(100, 100, 400, 300)
 self.setWindowTitle('Contact Form Example')

 self.setupTabs()

 self.show()

 def setupTabs(self):
 """
 Set up tab bar and different tab widgets. Each tab is a QWidget

that serves as a container for each page.
 """
 # Create tab bar and different tabs
 self.tab_bar = QTabWidget(self)

 self.prof_details_tab = QWidget()
 self.background_tab = QWidget()

 self.tab_bar.addTab(self.prof_details_tab, "Profile Details")
 self.tab_bar.addTab(self.background_tab, "Background")

Chapter 6 Styling your guiS

144

 # Call methods that contain the widgets for each tab
 self.profileDetailsTab()
 self.backgroundTab()

 # Create layout for main window
 main_h_box = QHBoxLayout()
 main_h_box.addWidget(self.tab_bar)

 # Set main window's layout
 self.setLayout(main_h_box)

 def profileDetailsTab(self):
 """
 Create the profile tab. Allows the user enter their name,
 address and select their gender.
 """
 # Set up labels and line edit widgets
 name_label = QLabel("Name")
 name_entry = QLineEdit()

 address_label = QLabel("Address")
 address_entry = QLineEdit()

 # Create group box to contain radio buttons
 sex_gb = QGroupBox("Sex")

 male_rb = QRadioButton("Male")
 female_rb = QRadioButton("Female")

 # Create and set layout for sex_gb widget
 sex_h_box = QHBoxLayout()
 sex_h_box.addWidget(male_rb)
 sex_h_box.addWidget(female_rb)

 sex_gb.setLayout(sex_h_box)

 # Add all widgets to the profile details page layout
 tab_v_box = QVBoxLayout()
 tab_v_box.addWidget(name_label)
 tab_v_box.addWidget(name_entry)
 tab_v_box.addStretch()

Chapter 6 Styling your guiS

145

 tab_v_box.addWidget(address_label)
 tab_v_box.addWidget(address_entry)
 tab_v_box.addStretch()
 tab_v_box.addWidget(sex_gb)

 # Set layout for profile details tab
 self.prof_details_tab.setLayout(tab_v_box)

 def backgroundTab(self):
 """
 Create the background tab. The user can select a
 """
 # Set up group box to hold radio buttons
 self.education_gb = QGroupBox("Highest Level of Education")

 # Layout for education_gb
 ed_v_box = QVBoxLayout()

 # Create and add radio buttons to ed_v_box
 education_list = ["High School Diploma", "Associate's Degree",

"Bachelor's Degree", "Master's Degree", "Doctorate or Higher"]
 for ed in education_list:
 self.education_rb = QRadioButton(ed)
 ed_v_box.addWidget(self.education_rb)
 # Set layout for group box
 self.education_gb.setLayout(ed_v_box)

 # Create and set for background tab
 tab_v_box = QVBoxLayout()
 tab_v_box.addWidget(self.education_gb)

 self.background_tab.setLayout(tab_v_box)

if __name__ == '__main__':
 app = QApplication(sys.argv)
 window = ContactForm()

 sys.exit(app.exec_())

Figure 6-4 shows you how the GUI should look for each tab.

Chapter 6 Styling your guiS

146

 Explanation

Let’s take a look at how to set up the tab widget and its child widgets in this example.

We begin by importing the necessary classes, including QRadioButton, QTabWidget,

and QGroupBox from the QtWidgets module. Next, we set up the ContactForm class and

initialize the window’s size and title.

The next step is to set up the tab widget and each page in the setupTabs() method.

The process to use QTabWidget is to first create an instance of the tab widget. Here we

create tab_bar. Then, create a QWidget object for each page in the tab bar. There are two

pages for this project, profile_details_tab and background_tab.

Insert the two pages into the tab widget using addTab(). Give each tab an

appropriate label.

Finally, create the child widgets for each page and use layouts to arrange them. Two

separate methods are created, profileDetailsTab() and backgroundTab(), to organize

the two different pages. The labels and line edit widgets are set up like normal. For the

QRadioButton objects, they are added to group boxes on their respective pages. In the

backgroundTab() method, a for loop is used to instantiate each radio button and add it

to the page’s layout.

Figure 6-4. The contact form GUI. The Profile Details tab (left) contains two
labels and two line edit widgets as well as a group box with two radio buttons.
The Background tab (right) consists of a single group box container with five radio
buttons

Chapter 6 Styling your guiS

147

 Food Ordering GUI Solution
Now that we have taken a look at the new widgets in this chapter, we can finally move

onto the code for the food ordering interface in Listing 6-2.

Listing 6-2. Code for food ordering GUI

food_order.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QTabWidget, QLabel,

QRadioButton, QButtonGroup, QGroupBox, QPushButton, QVBoxLayout,

QHBoxLayout, QGridLayout)

from PyQt5.QtGui import QPixmap

from PyQt5.QtCore import Qt

Set up style sheet for the entire GUI

style_sheet = """

 QWidget{

 background-color: #C92108;

 }

 QWidget#Tabs{

 background-color: #FCEBCD;

 border-radius: 4px

 }

 QWidget#ImageBorder{

 background-color: #FCF9F3;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;
 border-color: #FABB4C
 }

 QWidget#Side{
 background-color: #EFD096;
 border-radius: 4px

 }

Chapter 6 Styling your guiS

148

 QLabel{

 background-color: #EFD096;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 border-color: #EFD096

 }

 QLabel#Header{

 background-color: #EFD096;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 border-color: #EFD096;

 padding-left: 10px;

 color: #961A07

 }

 QLabel#ImageInfo{

 background-color: #FCF9F3;

 border-radius: 4px

 }

 QGroupBox{

 background-color: #FCEBCD;

 color: #961A07

 }

 QRadioButton{

 background-color: #FCF9F3

 }

 QPushButton{

 background-color: #C92108;

 border-radius: 4px;

 padding: 6px;

 color: #FFFFFF

 }

Chapter 6 Styling your guiS

149

 QPushButton:pressed{

 background-color: #C86354;

 border-radius: 4px;

 padding: 6px;

 color: #DFD8D7

 }

"""

class FoodOrderGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(600, 700)

 self.setWindowTitle('6.1 – Food Order GUI')

 self.setupTabsAndLayout()

 self.show()

 def setupTabsAndLayout(self):

 """

 Set up tab bar and different tab widgets.

 Also, create the side widget to display items selected.

 """

 # Create tab bar, different tabs, and set object names

 self.tab_bar = QTabWidget(self)

 self.pizza_tab = QWidget()

 self.pizza_tab.setObjectName("Tabs")

 self.wings_tab = QWidget()

 self.wings_tab.setObjectName("Tabs")

Chapter 6 Styling your guiS

150

 self.tab_bar.addTab(self.pizza_tab, "Pizza")

 self.tab_bar.addTab(self.wings_tab, "Wings")

 # Call methods that contain the widgets for each tab

 self.pizzaTab()

 self.wingsTab()

 # Set up side widget which is not part of the tab widget

 self.side_widget = QWidget()

 self.side_widget.setObjectName("Tabs")

 order_label = QLabel("YOUR ORDER")

 order_label.setObjectName("Header")

 items_box = QWidget()

 items_box.setObjectName("Side")

 pizza_label = QLabel("Pizza Type: ")

 self.display_pizza_label = QLabel("")

 toppings_label = QLabel("Toppings: ")

 self.display_toppings_label = QLabel("")

 extra_label = QLabel("Extra: ")

 self.display_wings_label = QLabel("")

 # Set grid layout for objects in side widget

 items_grid = QGridLayout()

 items_grid.addWidget(pizza_label, 0, 0, Qt.AlignRight)

 items_grid.addWidget(self.display_pizza_label, 0, 1)

 items_grid.addWidget(toppings_label, 1, 0, Qt.AlignRight)

 items_grid.addWidget(self.display_toppings_label, 1, 1)

 items_grid.addWidget(extra_label, 2, 0, Qt.AlignRight)

 items_grid.addWidget(self.display_wings_label, 2, 1)

 items_box.setLayout(items_grid)

 # Set main layout for side widget

 side_v_box = QVBoxLayout()

 side_v_box.addWidget(order_label)

 side_v_box.addWidget(items_box)

 side_v_box.addStretch()

 self.side_widget.setLayout(side_v_box)

Chapter 6 Styling your guiS

151

 # Add widgets to main window and set layout

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.tab_bar)

 main_h_box.addWidget(self.side_widget)

 self.setLayout(main_h_box)

 def pizzaTab(self):

 """

 Create the pizza tab. Allows the user to select the type of pizza

and topping using radio buttons.

 """

 # Set up widgets and layouts to display information

 # to the user about the page

 tab_pizza_label = QLabel("BUILD YOUR OWN PIZZA")

 tab_pizza_label.setObjectName("Header")

 description_box = QWidget()

 description_box.setObjectName("ImageBorder")

 pizza_image_path = "images/pizza.png"

 pizza_image = self.loadImage(pizza_image_path)

 pizza_desc = QLabel()

 pizza_desc.setObjectName("ImageInfo")

 pizza_desc.setText("Build a custom pizza for you. Start with your

favorite crust and add any toppings, plus the perfect amount of

cheese and sauce.")

 pizza_desc.setWordWrap(True)

 h_box = QHBoxLayout()

 h_box.addWidget(pizza_image)

 h_box.addWidget(pizza_desc)

 description_box.setLayout(h_box)

 # Create group box that will contain crust choices

 crust_gbox = QGroupBox()

 crust_gbox.setTitle("CHOOSE YOUR CRUST")

Chapter 6 Styling your guiS

152

 # The group box is used to group the widgets together,

 # while the button group is used to get information

 # about which radio button is checked

 self.crust_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

 crust_list = ["Hand-Tossed", "Flat", "Stuffed"]

 # Create radio buttons for the different crusts and

 # add to layout

 for cr in crust_list:

 crust_rb = QRadioButton(cr)

 gb_v_box.addWidget(crust_rb)

 self.crust_group.addButton(crust_rb)

 crust_gbox.setLayout(gb_v_box)

 # Create group box that will contain toppings choices

 toppings_gbox = QGroupBox()

 toppings_gbox.setTitle("CHOOSE YOUR TOPPINGS")

 # Set up button group for toppings radio buttons

 self.toppings_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

 toppings_list = ["Pepperoni", "Sausage", "Bacon", "Canadian Bacon",

"Beef", "Pineapple", "Mushroom", "Onion", "Olive", "Green Pepper",

"Tomato", "Spinach", "Cheese"]

 # Create radio buttons for the different toppings and

 # add to layout

 for top in toppings_list:

 toppings_rb = QRadioButton(top)

 gb_v_box.addWidget(toppings_rb)

 self.toppings_group.addButton(toppings_rb)

 self.toppings_group.setExclusive(False)

 toppings_gbox.setLayout(gb_v_box)

Chapter 6 Styling your guiS

153

 # Create button to add information to side widget

 # when clicked

 add_to_order_button1 = QPushButton("Add To Order")

 add_to_order_button1.clicked.connect(self.displayPizzaInOrder)

 # Create layout for pizza tab (page 1)

 page1_v_box = QVBoxLayout()

 page1_v_box.addWidget(tab_pizza_label)

 page1_v_box.addWidget(description_box)

 page1_v_box.addWidget(crust_gbox)

 page1_v_box.addWidget(toppings_gbox)

 page1_v_box.addStretch()

 page1_v_box.addWidget(add_to_order_button1, alignment=Qt.

AlignRight)

 self.pizza_tab.setLayout(page1_v_box)

 def wingsTab(self):

 # Set up widgets and layouts to display information

 # to the user about the page

 tab_wings_label = QLabel("TRY OUR AMAZING WINGS")

 tab_wings_label.setObjectName("Header")

 description_box = QWidget()

 description_box.setObjectName("ImageBorder")

 wings_image_path = "images/wings.png"

 wings_image = self.loadImage(wings_image_path)

 wings_desc = QLabel()

 wings_desc.setObjectName("ImageInfo")

 wings_desc.setText("6 pieces of rich-tasting, white meat chicken

that will have you coming back for more.")

 wings_desc.setWordWrap(True)

 h_box = QHBoxLayout()

 h_box.addWidget(wings_image)

 h_box.addWidget(wings_desc)

 description_box.setLayout(h_box)

Chapter 6 Styling your guiS

154

 wings_gbox = QGroupBox()

 wings_gbox.setTitle("CHOOSE YOUR FLAVOR")

 self.wings_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

 wings_list = ["Buffalo", "Sweet-Sour", "Teriyaki", "Barbecue"]

 # Create radio buttons for the different flavors and

 # add to layout

 for fl in wings_list:

 flavor_rb = QRadioButton(fl)

 gb_v_box.addWidget(flavor_rb)

 self.wings_group.addButton(flavor_rb)

 wings_gbox.setLayout(gb_v_box)

 # Create button to add information to side widget

 # when clicked

 add_to_order_button2 = QPushButton("Add To Order")

 add_to_order_button2.clicked.connect(self.displayWingsInOrder)

 # Create layout for wings tab (page 2)

 page2_v_box = QVBoxLayout()

 page2_v_box.addWidget(tab_wings_label)

 page2_v_box.addWidget(description_box)

 page2_v_box.addWidget(wings_gbox)

 page2_v_box.addWidget(add_to_order_button2, alignment=Qt.

AlignRight)

 page2_v_box.addStretch()

 self.wings_tab.setLayout(page2_v_box)

 def loadImage(self, img_path):

 """

 Load and scale images.

 """

Chapter 6 Styling your guiS

155

 try:

 with open(img_path):

 image = QLabel(self)

 image.setObjectName("ImageInfo")

 pixmap = QPixmap(img_path)

 image.setPixmap(pixmap.scaled(image.size(),

Qt.KeepAspectRatioByExpanding, Qt.SmoothTransformation))

 return image

 except FileNotFoundError:

 print("Image not found.")

 def collectToppingsInList(self):

 """

 Create list of all checked toppings radio buttons.

 """

 toppings_list = [button.text() for i, button in enumerate(self.

toppings_group.buttons()) if button.isChecked()]

 return toppings_list

 def displayPizzaInOrder(self):

 """

 Collect the text from the radio buttons that are checked on pizza

page. Display text in side widget.

 checkedButton() returns the buttons that are checked in the

QButtonGroup.

 """

 try:

 pizza_text = self.crust_group.checkedButton().text()

 self.display_pizza_label.setText(pizza_text)

 toppings = self.collectToppingsInList()

 toppings_str = '\n'.join(toppings)

 self.display_toppings_label.setText(toppings_str)

 self.repaint()

 except AttributeError:

 print("No value selected.")

 pass

Chapter 6 Styling your guiS

156

 def displayWingsInOrder(self):

 """

 Collect the text from the radio buttons that are checked on wings

page. Display text in side widget.

 """

 try:

 text = self.wings_group.checkedButton().text() + " Wings"

 self.display_wings_label.setText(text)

 self.repaint()

 except AttributeError:

 print("No value selected.")

 pass

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = FoodOrderGUI()

 sys.exit(app.exec_())

When finished, your GUI should look similar to the one in Figure 6-2.

 Explanation
Let’s first import the modules we need for this project. Next, the properties for the

widgets in this application are prepared in the style_sheet variable. We will get to how

this works shortly.

Create the structure for the tabs and layout for the main window in

setupTabsAndLayout(). Set up instances of the QTabWidget and QWidget objects that will

be used for the pages of the tabs. The two tabs are the pizza_tab, to display choices for

building your own pizza, and the wings_tab, to show choices for wings flavors.

Some of the widgets in this GUI are given an ID selector using the setObjectName()

method. For example, pizza_tab is given the Tabs ID selector. This name will be used in

the style_sheet to differentiate this widget from other QWidget objects with a different

style.

Chapter 6 Styling your guiS

157

 self.pizza_tab = QWidget()

 self.pizza_tab.setObjectName("Tabs")

The side_widget is used to give feedback to users of their choices and can be seen

even if the user switches tabs. All of the child widgets for side_widget are then arranged

in a nested layout and added to the main QHBoxLayout.

The pizzaTab() method creates and arranges the child widgets for the first tab,

pizza_tab. The top of the first page gives users information about the purpose of the tab

using images and text. The wingsTab() method is set up in a similar manner.

QRadioButton widgets are grouped together using group boxes. This allows each

group to have a title. The QGroupBox class does provide exclusivity to radio buttons, but

to get the type of functionality to find out which buttons are checked and return their

text values, the QRadioButton objects are also grouped using QGroupButton. Refer to

Chapter 4 for more information about QButtonGroup. While only one radio button can

be selected in the Crust group, users need to be able to select more than one topping.

This is achieved by setting the exclusivity of the toppings_group to False.

 self.toppings_group.setExclusive(False)

If users press the add_to_order_button on either page, the text from the selected

radio buttons is displayed in the side_widget. A Python try-except clause is used to

ensure that the user has selected radio buttons.

 Applying the Style Sheet

If a style sheet is not applied to the food ordering GUI, then it will use your system’s

native settings to style the application. Figure 6-5 shows what this looks like on MacOS.

Chapter 6 Styling your guiS

158

In the beginning of the program, you will notice the style_sheet variable that holds

all of the different style specifications for the different widgets.

To apply a general style to all widgets of one type, you only need to specify the class.

For example, the following code gives all QWidget objects a red background:

 QWidget{

 background-color: #C92108;

 }

But if a QWidget object has a specified ID selector such as Tabs, then it will get a tan

background and rounded corners.

Figure 6-5. The food ordering GUI before the style sheet is applied

Chapter 6 Styling your guiS

159

 QWidget#Tabs{

 background-color: #FCEBCD;

 border-radius: 4px

 }

Other widget’s properties are set up in a similar manner. The style sheet is applied to

the entire application by calling setStyleSheet() on the QApplication object.

 app.setStyleSheet(style_sheet)

The final GUI with customized colors, borders, and fonts can be seen in Figure 6-2.

 Event Handling in PyQt
The concept of signals and slots in PyQt was briefly introduced in Chapter 3. Event

handling in PyQt uses signals and slots to communicate between objects. Signals

are typically generated by a user’s actions, and slots are methods that are executed

in response to the signal. For example, when a QPushButton is pushed, it emits a

clicked() signal. This signal could be connected to the PyQt slot close() so that a user

can quit the application when the button is pressed.

The clicked() signal is but one of many predefined Qt signals. The type of signals

that can be emitted differs according to the widget class. PyQt delivers events to widgets

by calling specific, predefined handler functions. These can range from functions

related to window operations, such as show() or close(), to GUI appearances with

setStyleSheet(), to mouse press and release events, and more.

The way in which event handlers deal with events can also be reimplemented. You

saw an example of this back in Chapter 3 when the closeEvent() function was modified

to display dialog boxes before closing the application.

The following example, Listing 6-3, shows a very simple example of how to

reimplement the keyPressEvent() function.

Listing 6-3. Code to demonstrate how to modify event handlers

close_event.py

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QMainWindow

from PyQt5.QtCore import Qt

Chapter 6 Styling your guiS

160

class Example(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 300, 200)

 self.setWindowTitle('Event Handling Example')

 self.show()

 def keyPressEvent(self, event):

 if event.key() == Qt.Key_Escape:

 print("Application closed.")

 self.close()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = Example()

 sys.exit(app.exec_())

 Explanation
Whenever a user presses a key on the keyboard, it sends a signal to the computer. If you

want to give certain keys abilities, then you will need to use the keyPressEvent().

The keyPressEvent() function checks for events, which in this case are the signals

being sent from keys. If the key pressed is the Escape key, then the application calls the

close() function to quit the application.

Of course, you can check for any type of key with the keyPressEvent() and cause it

to perform any number of actions.

Chapter 6 Styling your guiS

161

 Creating Custom Signals
We have taken a look at some of PyQt’s predefined signals and slots. For many of the

projects in previous chapters, we have also created custom slots to handle the signals

emitted from widgets.

Now let’s see how we can create a custom signal using pyqtSignal to change a

widget’s style sheet in Listing 6-4.

Listing 6-4. Creating a custom signal to change the background color of a

QLabel widget

color_event.py

Import necessary modules
import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel
from PyQt5.QtCore import Qt, pyqtSignal, QObject

class SendSignal(QObject):
 """
 Define a signal change_style that takes no arguments.
 """
 change_style = pyqtSignal()

class Example(QMainWindow):

 def __init__(self):
 super().__init__()
 self.initializeUI()

 def initializeUI(self):
 """
 Initialize the window and display its contents to the screen.
 """
 self.setGeometry(100, 100, 300, 200)
 self.setWindowTitle('Create Custom Signals')

 self.setupLabel()

 self.show()

Chapter 6 Styling your guiS

162

 def setupLabel(self):

 """

 Create label and connect custom signal to slot.

 """

 self.index = 0 # index of items in list

 self.direction = ""

 self.colors_list = ["red", "orange", "yellow", "green", "blue",

"purple"]

 self.label = QLabel()

 self.label.setStyleSheet("background-color: {}".format(self.colors_

list[self.index]))

 self.setCentralWidget(self.label)

 # Create instance of SendSignal class, and

 # connect change_style signal to a slot.

 self.sig = SendSignal()

 self.sig.change_style.connect(self.changeBackground)

 def keyPressEvent(self, event):

 """

 Reimplement how the key press event is handled.

 """

 if (event.key() == Qt.Key_Up):

 self.direction = "up"

 self.sig.change_style.emit()

 elif event.key() == Qt.Key_Down:

 self.direction = "down"

 self.sig.change_style.emit()

 def changeBackground(self):

 """

 Change the background of the label widget when a keyPressEvent

signal is emitted.

 """

Chapter 6 Styling your guiS

163

 if self.direction == "up" and self.index < len(self.colors_list) - 1:

 self.index = self.index + 1

 self.label.setStyleSheet("background-color: {}".format(self.

colors_list[self.index]))

 elif self.direction == "down" and self.index > 0:

 self.index = self.index - 1

 self.label.setStyleSheet("background-color: {}".format(self.

colors_list[self.index]))

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = Example()

 sys.exit(app.exec_())

This example creates a simple GUI with a QLabel widget as the central widget of the

main window.

 Explanation
The pyqtSignal factory and QObject classes are imported from the QtCore module. The

QtCore module and QObject classes provide the mechanics for signals and slots.

The SendSignal class creates a new signal called change_style from the pyqtSignal

factory. This signal will be generated whenever the user presses either the up arrow key

or the down arrow key. By pressing up or down, the user can change the background

color of the QLabel object.

 self.sig.change_style.connect(self.changeBackground)

When the user presses Key_Up, direction is set equal to "up", and a change_style

signal is emitted.

 self.sig.change_style.emit()

This signal is connected to the changeBackground() slot which updates the color of

the label by calling the setStyleSheet() method.

It works in a similar fashion when the down key is pressed.

Chapter 6 Styling your guiS

164

 Summary
In this chapter, we saw how to use Qt Style Sheets to modify the appearance of widgets to

better fit the purpose and look of an application. Applying customizations in a consistent

and attentive manner can greatly influence the usability of a user interface.

Allowing the user to also have some control over the look of the window can improve

the user’s experience. This can be done in a number of ways – through the menu or

toolbar, using a context menu, or even through simple presses of keys on the keyboard.

Chapter 7 will introduce Qt Designer, a tool that will make the process for designing

GUIs much simpler.

Chapter 6 Styling your guiS

165
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_7

CHAPTER 7

Creating GUIs with
Qt Designer
The previous chapters have focused on learning how to manually code GUIs using

PyQt. This was done intentionally so that you could have a better fundamental

understanding of the code and processes used to create simple applications.

Chapters 2 and 3 showed you how to create your own GUI from scratch. In Chapter 4,

you learned about layouts and how to arrange widgets by coding them yourself. You

saw how to create applications with menus and toolbars in Chapter 5 and how to style

their look in Chapter 6.

While setting up and arranging GUIs yourself gives you more control over the

design process, not everyone will need or want to take the time to do so. Fortunately,

Qt provides a great application for setting up the layouts and designing main windows,

widgets, or dialogs. Qt Designer is a graphical interface filled with Qt widgets and

other tools used for building GUIs. Using the Qt Designer application’s drag and

drop interface, you are able to create and customize your own dialogs, windows, and

widgets.

The widgets and other applications you create using Qt Designer integrate with

programmed code, using Qt’s signals and slots mechanism, so that you can easily assign

behavior to widgets and graphical elements. This means that rather than focusing

most of your time on layout and design, you can get into coding the functionality of an

application much faster.

In Chapter 7, you will

• Find out about the Qt Designer user interface

• Create an application in Qt Designer, including how to set layouts,

edit object properties, connect signals and slots, and generate

Python code

166

• Learn about the QFrame class for containing other widgets

• Be introduced to a couple new Qt classes including QPalette and

QIntValidator

Tip For references or more help beyond the scope of this chapter, check out the
Qt Documentation for Qt Designer at https://doc.qt.io/qt-5/qtdesigner-
manual.html.

 Getting Started with Qt Designer
Once you have installed PyQt, the first thing you need to do is to launch the Qt Designer

application. After opening Qt Designer, you will see a graphical user interface for

creating your own GUIs like the one in Figure 7-1.

Note For more information about downloading and launching Qt Designer for
Windows, MacOS, and Linux, refer to Appendix A.

Figure 7-1. The Qt Designer user interface

ChApter 7 CreAting gUiS With Qt DeSigner

https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html

167

Tip if you are using a stand-alone version of Qt Designer, then you can
change the configuration of Qt Designer under Settings. Locate the
Preferences menu, and in the dialog box that appears, you can change
the appearance of Qt Designer from a Multi Top-Level Windows user
interface to one using Docked Windows. Otherwise, the multilevel layout is
only available if you use Qt Creator, the integrated development environment
(iDe) for working with Qt.

Before you create your first application, let’s get to know the different menus, tools,

and modes that are displayed in the main window in Figure 7-1.

 Exploring Qt Designer’s User Interface
When you first open up Qt Designer, you will notice a dialog in the center of the window

with the title New Form. This dialog can be seen in Figure 7-2. From here you can select

a template for creating a main window, a widget, or different kinds of dialog boxes. You

can also choose what kinds of widgets to add to your project’s layout. Once you have

selected a template and the application’s size, an empty window, also known as a form,

will appear for you to modify.

ChApter 7 CreAting gUiS With Qt DeSigner

168

At the top of the main window in Figure 7-1, you will notice Qt Designer’s menubar

and toolbar for managing and editing your GUI. On the left side of the main window is

the Widget Box dock widget, shown in Figure 7-3, which provides an organized list of

layouts and widgets that can be dragged and dropped onto the required locations of your

GUI. Other features for tinkering with the form can be accessed by right-clicking and

opening up various context menus.

Another very useful dock widget is the Property Editor displayed in Figure 7-4. The

properties of windows, widgets, and layouts such as an object’s name, size constraints,

status tips, and more can all be altered using the Property Editor. Each widget you add

to a form will have its own set of properties as well as ones that the widget inherits from

other classes. To select a specific widget, you can either click the object in the form or the

widget’s name in the Object Inspector dock widget.

The Object Inspector allows you to view all of the objects that are currently being

used as well as their hierarchical layout. In Figure 7-5, you can see how the MainWindow

is listed first, followed by the centralwidget and all of its widgets. If your form also has

a menu or toolbar, then they will also be listed in the Object Inspector along with their

corresponding actions.

Figure 7-2. The New Form dialog box for selecting what type of application to build

ChApter 7 CreAting gUiS With Qt DeSigner

169

Figure 7-3. The Widget Box dock widget for selecting layouts and widgets

Note the main layout for your gUi is not displayed in the Object Inspector.
A broken layout icon (a red circle with a slash) is displayed on the central widget or
on containers if no layout has been assigned to them.

ChApter 7 CreAting gUiS With Qt DeSigner

170

Figure 7-4. The Property Editor dock widget is used for setting the attributes
of widgets

ChApter 7 CreAting gUiS With Qt DeSigner

171

In Qt Designer, it is also possible to create, edit, and delete signals and slots

between objects using the Signal/Slot Editor. You should be aware that although

you can connect signals and slots, you will not always be able to completely configure

your widgets and will sometimes need to complete that yourself later in the code. The

Signal/Slot Editor can be seen in Figure 7-6. Qt Designer also provides an editing

mode for connecting widgets.

Figure 7-5. The Object Inspector displays the widget, layout, and menu objects

Figure 7-6. The Signal/Slot Editor for connecting the signals and slots of objects

ChApter 7 CreAting gUiS With Qt DeSigner

172

Items in a menu, submenu, or a toolbar are assigned commands by using actions.

These actions can then be given a shortcut key, made checkable, and more. The Action

Editor seen in Figure 7-7 gives you access to working with actions. For more information

about assigning actions, refer to Chapter 5.

Finally, there is the Resource Browser which allows you specify and manage

resources you need to use in your application. These resources can include images and

icons. The Resource Browser dock widget can be seen in Figure 7-8.

If you need to add resources, you first need to create a new resource file. To do

so, click the pencil in the top-left corner of the Resource Browser dock widget. This

will open an Edit Resources dialog similar to the one in Figure 7-9. Next, click the

Create New Resource button, navigate to the correct directory, and enter a name for

the resource file. The file will be saved with a .qrc file extension, which stands for Qt

Resource Collection and contains a list of all the resources used in your program. From

here, create a prefix for managing the types of resources and begin adding files such as

images and icons. When you are finished, click the OK button and the files will be added

to the Resource Browser.

To access files in code found in the resource file, append “:/” to the beginning of the

file’s location. For example, to use the new_file icon

self.label.setPixmap(QtGui.QPixmap(":/icons/images/new_file.png"))

Figure 7-7. The Action Editor is used to manage the actions of menu items

ChApter 7 CreAting gUiS With Qt DeSigner

173

 Qt Designer’s Editing Modes
In Qt Designer there are four different editing modes that can be accessed either in the

Edit menu or from Qt Designer’s toolbar. Take a look at Figure 7-10 to help you locate the

widgets in the toolbar.

 1. Edit Widgets – Widgets can be dragged and dropped to a form,

layouts can be applied, and objects can be edited both on the

form and in the Property Editor. This is the default mode.

Figure 7-8. The Resource Browser for working with resources such as images
and icons

Figure 7-9. The Edit Resources dialog

ChApter 7 CreAting gUiS With Qt DeSigner

174

 2. Edit Signals/Slots – Connect signals and slots for widgets and

layouts. To create connections, click an object and drag the cursor

toward an object that will receive the signal. Items that can be

connected will be highlighted as the mouse cursor moves over

them. To create the connection, release the mouse button once

a line with an arrow connects the two objects. Then configure

the signals and slots. Use in conjunction with the Signal/Slots

Editor dock widget to edit connections.

 3. Edit Buddies – Connect QLabel widgets with shortcuts to

input widgets such as QLineEdit or QTextEdit. The input widget

becomes the QLabel’s “buddy.” When the user enters the label’s

shortcut key, the focus moves to the input widget.

 4. Edit Tab Order – Set the order in which widgets receive focus

when the tab key is pressed. This allows the user to navigate

through the different widgets to make your application easier to use.

 Creating an Application in Qt Designer
When you are creating your GUI’s windows and widgets, you will probably continue to

make slight adjustments to your application before it is finished. Fortunately, there are a

few steps you can follow to simplify the building process.

 1. Select a form – In the New Form dialog (shown in Figure 7-2),

choose from one of the available templates, Main Window,

Widget, or a type of dialog. You can also add and preview widgets

to include in your GUI.

 2. Arrange objects on the form – Use Qt Designer’s drag and drop

mechanics to place widgets on the form. Then assign layouts to

containers and the main window.

Figure 7-10. Qt Designer’s Editing Modes (outlined in red). (From left to right)
Edit Widgets, Edit Signals/Slots, Edit Buddies, Edit Tab Order

ChApter 7 CreAting gUiS With Qt DeSigner

175

 3. Edit the properties of objects – Click the objects in the form and

edit their features in the Property Editor dock widget.

 4. Connect signals and slots – Use the Signal/Slots Editing mode to

link signals to slots.

 5. Preview your GUI – Examine the form before saving it as a UI file

with the .ui extension.

 6. Create and edit Python code – Utilize the pyuic compiler to

convert the UI file to readable and editable Python code.

The following project will cover these steps in addition to many of the basic concepts

for creating GUIs using Qt Designer.

 Project 7.1 – Keypad GUI
To get you started using Qt Designer, the project in this chapter is a simple one – a

keypad GUI. A keypad is a set of buttons with digits, symbols, or letters used as an input

device for passcodes, telephone numbers, and more. They can be found on a number

of devices such as calculators, cell phones, and locks. Figure 7-11 shows the keypad GUI

you will create in this project.

ChApter 7 CreAting gUiS With Qt DeSigner

176

 Keypad GUI Solution
The keypad application is comprised of two Python files, keypad_gui.py and keypad_

main.py. The keypad_gui.py contains all of the Python code generated from the UI file

created using Qt Designer. In order to use that code, we then create a customized class in

a separate file, keypad_main.py, to import and set up the GUI.

The keypad GUI consists of four QLineEdit widgets to input only numeric values,

twelve QPushButton widgets, and a single QLabel to display information about how to

use the interface. The asterisk button allows users to clear the current input and the hash

button is for confirming the user’s four-digit input.

This project introduces the QFrame container for organizing Qt widgets. The

program also utilizes nested layouts to arrange the various widgets and containers.

Figure 7-11. Keypad GUI

ChApter 7 CreAting gUiS With Qt DeSigner

177

Note the following python code in Listing 7-1 is produced from the Ui file using
pyuic. it has not been altered. to help you understand the code, Listing 7-1 is
broken into parts with annotations.

Listing 7-1. Code for keypad created from keypad.ui

keypad_gui.py

Import necessary modules

from PyQt5 import QtCore, QtGui, QtWidgets

class Ui_Keypad(object):

 def setupUi(self, Keypad):

 Keypad.setObjectName("Keypad")

 Keypad.resize(302, 406)

Import modules from PyQt5 and create a class that inherits from QWidget, Keypad.

The member function setupUi() of the class Ui_Keypad is used to build a widget tree

on the parent widget, Keypad. A widget tree is used to represent the organization of

widgets in a UI. So the setupUi() method composes the UI based upon the widgets and

connections we used to create it along with the parameters it inherits from its parent

widget.

palette = QtGui.QPalette()

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush)

brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush)

brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)

brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

ChApter 7 CreAting gUiS With Qt DeSigner

178

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)

brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

brush.setStyle(QtCore.Qt.SolidPattern)

palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)

Keypad.setPalette(palette)

Every widget in Qt has a palette which contains information about how they will

be drawn in the window. The QPalette class contains the color groups for each widget

during one of three possible states – Active, Inactive, or Disabled. The preceding code

changes the color of the main window to dark gray. How to change the settings in the

palette will be introduced in the “Explanation” section of Project 7.1. You can also create

style sheets in Qt Designer.

self.verticalLayout = QtWidgets.QVBoxLayout(Keypad)

self.verticalLayout.setObjectName("verticalLayout")

Create the vertical layout that will be used for the main window.

self.label = QtWidgets.QLabel(Keypad)

palette = QtGui.QPalette()

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)

brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))

brush.setStyle(QtCore.Qt.SolidPattern)

 palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)

self.label.setPalette(palette)

font = QtGui.QFont()

font.setPointSize(20)

self.label.setFont(font)

self.label.setAlignment(QtCore.Qt.AlignCenter)

self.label.setObjectName("label")

self.verticalLayout.addWidget(self.label)

ChApter 7 CreAting gUiS With Qt DeSigner

179

Create the QLabel object, modify its palette settings so that the color of the font is

light gray, and add the label to the vertical layout.

self.frame = QtWidgets.QFrame(Keypad)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(1)

 sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth())

self.frame.setSizePolicy(sizePolicy)

self.frame.setFrameShape(QtWidgets.QFrame.NoFrame)

self.frame.setFrameShadow(QtWidgets.QFrame.Plain)

self.frame.setLineWidth(0)

self.frame.setObjectName("frame")

self.horizontalLayout = QtWidgets.QHBoxLayout(self.frame)

self.horizontalLayout.setObjectName("horizontalLayout")

The first QFrame container, frame, will hold four QLineEdit widgets and use a

horizontal layout. You can adjust the style of a frame object using its setFrameShape(),

setFrameShadow(), and other methods.

self.line_edit1 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.line_edit1.sizePolicy().

hasHeightForWidth())

self.line_edit1.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line_edit1.setFont(font)

self.line_edit1.setAlignment(QtCore.Qt.AlignCenter)

self.line_edit1.setObjectName("line_edit1")

self.horizontalLayout.addWidget(self.line_edit1)

self.line_edit2 = QtWidgets.QLineEdit(self.frame)

ChApter 7 CreAting gUiS With Qt DeSigner

180

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.line_edit2.sizePolicy().

hasHeightForWidth())

self.line_edit2.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line_edit2.setFont(font)

self.line_edit2.setAlignment(QtCore.Qt.AlignCenter)

self.line_edit2.setObjectName("line_edit2")

self.horizontalLayout.addWidget(self.line_edit2)

self.line_edit3 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.line_edit3.sizePolicy().

hasHeightForWidth())

self.line_edit3.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line_edit3.setFont(font)

self.line_edit3.setAlignment(QtCore.Qt.AlignCenter)

self.line_edit3.setObjectName("line_edit3")

self.horizontalLayout.addWidget(self.line_edit3)

self.line_edit4 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.line_edit4.sizePolicy().

hasHeightForWidth())

self.line_edit4.setSizePolicy(sizePolicy)

font = QtGui.QFont()

ChApter 7 CreAting gUiS With Qt DeSigner

181

font.setPointSize(30)

self.line_edit4.setFont(font)

self.line_edit4.setAlignment(QtCore.Qt.AlignCenter)

self.line_edit4.setObjectName("line_edit4")

self.horizontalLayout.addWidget(self.line_edit4)

self.verticalLayout.addWidget(self.frame)

Each of the four line edit widgets has size policies that allow them to stretch if the

window resizes in both the vertical and horizontal directions by using QSizePolicy.

Expanding. They are then arranged in the horizontalLayout of the frame container. The

frame object is then added to the verticalLayout of the main window.

self.frame_2 = QtWidgets.QFrame(Keypad)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(2)

 sizePolicy.setHeightForWidth(self.frame_2.sizePolicy().hasHeightForWidth())

self.frame_2.setSizePolicy(sizePolicy)

self.frame_2.setFrameShape(QtWidgets.QFrame.Box)

self.frame_2.setFrameShadow(QtWidgets.QFrame.Sunken)

self.frame_2.setLineWidth(2)

self.frame_2.setObjectName("frame_2")

self.gridLayout = QtWidgets.QGridLayout(self.frame_2)

self.gridLayout.setObjectName("gridLayout")

Instantiate the second frame container, and set the size policy and style attributes.

The layout inside frame_2 houses the twelve buttons and uses a grid layout.

self.button_7 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_7.sizePolicy().

hasHeightForWidth())

self.button_7.setSizePolicy(sizePolicy)

ChApter 7 CreAting gUiS With Qt DeSigner

182

font = QtGui.QFont()

font.setPointSize(36)

self.button_7.setFont(font)

self.button_7.setObjectName("button_7")

self.gridLayout.addWidget(self.button_7, 0, 0, 1, 1)

self.button_8 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

 sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_8.sizePolicy().

hasHeightForWidth())

self.button_8.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_8.setFont(font)

self.button_8.setObjectName("button_8")

self.gridLayout.addWidget(self.button_8, 0, 1, 1, 1)

self.button_9 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_9.sizePolicy().

hasHeightForWidth())

self.button_9.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_9.setFont(font)

self.button_9.setObjectName("button_9")

self.gridLayout.addWidget(self.button_9, 0, 2, 1, 1)

self.button_4 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

sizePolicy.setHorizontalStretch(0)

ChApter 7 CreAting gUiS With Qt DeSigner

183

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_4.sizePolicy().

hasHeightForWidth())

self.button_4.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_4.setFont(font)

self.button_4.setObjectName("button_4")

self.gridLayout.addWidget(self.button_4, 1, 0, 1, 1)

self.button_5 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_5.sizePolicy().

hasHeightForWidth())

self.button_5.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_5.setFont(font)

self.button_5.setObjectName("button_5")

self.gridLayout.addWidget(self.button_5, 1, 1, 1, 1)

self.button_6 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_6.sizePolicy().

hasHeightForWidth())

self.button_6.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_6.setFont(font)

self.button_6.setObjectName("button_6")

self.gridLayout.addWidget(self.button_6, 1, 2, 1, 1)

ChApter 7 CreAting gUiS With Qt DeSigner

184

self.button_3 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_3.sizePolicy().

hasHeightForWidth())

self.button_3.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_3.setFont(font)

self.button_3.setObjectName("button_3")

self.gridLayout.addWidget(self.button_3, 2, 0, 1, 1)

self.button_2 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_2.sizePolicy().

hasHeightForWidth())

self.button_2.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_2.setFont(font)

self.button_2.setObjectName("button_2")

self.gridLayout.addWidget(self.button_2, 2, 1, 1, 1)

self.button_1 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_1.sizePolicy().

hasHeightForWidth())

self.button_1.setSizePolicy(sizePolicy)

font = QtGui.QFont()

ChApter 7 CreAting gUiS With Qt DeSigner

185

font.setPointSize(36)

self.button_1.setFont(font)

self.button_1.setObjectName("button_1")

self.gridLayout.addWidget(self.button_1, 2, 2, 1, 1)

self.button_star = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_star.sizePolicy().

hasHeightForWidth())

self.button_star.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_star.setFont(font)

self.button_star.setObjectName("button_star")

self.gridLayout.addWidget(self.button_star, 3, 0, 1, 1)

self.button_0 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.Expanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(self.button_0.sizePolicy().

hasHeightForWidth())

self.button_0.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_0.setFont(font)

self.button_0.setObjectName("button_0")

self.gridLayout.addWidget(self.button_0, 3, 1, 1, 1)

self.button_hash = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,

QtWidgets.QSizePolicy.MinimumExpanding)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(0)

ChApter 7 CreAting gUiS With Qt DeSigner

186

 sizePolicy.setHeightForWidth(self.button_hash.sizePolicy().

hasHeightForWidth())

self.button_hash.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_hash.setFont(font)

self.button_hash.setObjectName("button_hash")

self.gridLayout.addWidget(self.button_hash, 3, 2, 1, 1)

self.verticalLayout.addWidget(self.frame_2)

The twelve QPushButton widgets are created, and their properties, such as their

object names and font sizes, are adjusted. Every button is then added to the grid layout

of frame_2 which is then added to the vertical layout of the main window.

self.retranslateUi(Keypad)

self.button_star.clicked.connect(self.line_edit1.clear)

self.button_star.clicked.connect(self.line_edit2.clear)

self.button_star.clicked.connect(self.line_edit3.clear)

self.button_star.clicked.connect(self.line_edit4.clear)

QtCore.QMetaObject.connectSlotsByName(Keypad)

The retranslateUi() method handles how to display text in the GUI in the situation

where a different language is used. In the keypad, the user is given a way to delete their

input and try again. When the button_star is clicked, it sends a signal to clear the text in

all four QLineEdit widgets. This could be handled a different way, but for this example,

this is used as an example to show how to connect signals to slots in Qt Designer.

def retranslateUi(self, Keypad):

_translate = QtCore.QCoreApplication.translate

Keypad.setWindowTitle(_translate("Keypad", "7.1 - Keypad GUI"))

self.label.setText(_translate("Keypad", "Enter a passcode"))

self.button_7.setText(_translate("Keypad", "7"))

self.button_8.setText(_translate("Keypad", "8"))

self.button_9.setText(_translate("Keypad", "9"))

self.button_4.setText(_translate("Keypad", "4"))

self.button_5.setText(_translate("Keypad", "5"))

self.button_6.setText(_translate("Keypad", "6"))

self.button_3.setText(_translate("Keypad", "3"))

ChApter 7 CreAting gUiS With Qt DeSigner

187

self.button_2.setText(_translate("Keypad", "2"))

self.button_1.setText(_translate("Keypad", "1"))

self.button_star.setText(_translate("Keypad", "*"))

self.button_0.setText(_translate("Keypad", "0"))

self.button_hash.setText(_translate("Keypad", "#"))

The following code in Listing 7-2 creates the class that inherits from Ui_Keypad and

sets up the GUI application.

Listing 7-2. Code for the keypad GUI created from keypad.ui

keypad_main.py

Import necessary modules

import sys

from PyQt5 import QtCore, QtGui, QtWidgets

from PyQt5.QtWidgets import QMessageBox

from PyQt5.QtGui import QIntValidator

from keypad_gui import Ui_Keypad

class KeypadGUI(QtWidgets.QWidget):

 def __init__(self):

 super(KeypadGUI, self).__init__()

 self.ui = Ui_Keypad()

 self.ui.setupUi(self)

 self.initializeUI()

 self.show()

 def initializeUI(self):

 # Update other line_edit features

 self.ui.line_edit1.setMaxLength(1) # Set the max number of

characters allowed

 self.ui.line_edit1.setValidator(QIntValidator(0, 9)) # User can

only enter ints from 0-9

 self.ui.line_edit1.setFocusPolicy(QtCore.Qt.NoFocus) # Widget does

not except focus

ChApter 7 CreAting gUiS With Qt DeSigner

188

 self.ui.line_edit2.setMaxLength(1)

 self.ui.line_edit2.setValidator(QIntValidator(0, 9))

 self.ui.line_edit2.setFocusPolicy(QtCore.Qt.NoFocus)

 self.ui.line_edit3.setMaxLength(1)

 self.ui.line_edit3.setValidator(QIntValidator(0, 9))

 self.ui.line_edit3.setFocusPolicy(QtCore.Qt.NoFocus)

 self.ui.line_edit4.setMaxLength(1)

 self.ui.line_edit4.setValidator(QIntValidator(0, 9))

 self.ui.line_edit4.setFocusPolicy(QtCore.Qt.NoFocus)

 # 4-digit passcode

 self.passcode = 8618

 #### Add signal/slot connections for buttons ####

 self.ui.button_0.clicked.connect(lambda: self.numberClicked(self.

ui.button_0.text()))

 self.ui.button_1.clicked.connect(lambda: self.numberClicked(self.

ui.button_1.text()))

 self.ui.button_2.clicked.connect(lambda: self.numberClicked(self.

ui.button_2.text()))

 self.ui.button_3.clicked.connect(lambda: self.numberClicked(self.

ui.button_3.text()))

 self.ui.button_4.clicked.connect(lambda: self.numberClicked(self.

ui.button_4.text()))

 self.ui.button_5.clicked.connect(lambda: self.numberClicked(self.

ui.button_5.text()))

 self.ui.button_6.clicked.connect(lambda: self.numberClicked(self.

ui.button_6.text()))

 self.ui.button_7.clicked.connect(lambda: self.numberClicked(self.

ui.button_7.text()))

 self.ui.button_8.clicked.connect(lambda: self.numberClicked(self.

ui.button_8.text()))

 self.ui.button_9.clicked.connect(lambda: self.numberClicked(self.

ui.button_9.text()))

 self.ui.button_hash.clicked.connect(self.checkPasscode)

ChApter 7 CreAting gUiS With Qt DeSigner

189

 def numberClicked(self, text_value):

 """

 When a button with a digit is pressed, check if the text for

QLineEdit widgets

 are empty. If empty, set the focus to the correct widget and enter

text value.

 """

 if self.ui.line_edit1.text() == "":

 self.ui.line_edit1.setFocus()

 self.ui.line_edit1.setText(text_value)

 self.ui.line_edit1.repaint()

 elif (self.ui.line_edit1.text() != "") and (self.ui.line_edit2.

text() == ""):

 self.ui.line_edit2.setFocus()

 self.ui.line_edit2.setText(text_value)

 self.ui.line_edit2.repaint()

 elif (self.ui.line_edit1.text() != "") and (self.ui.line_edit2.

text() != "") \

 and (self.ui.line_edit3.text() == ""):

 self.ui.line_edit3.setFocus()

 self.ui.line_edit3.setText(text_value)

 self.ui.line_edit3.repaint()

 elif (self.ui.line_edit1.text() != "") and (self.ui.line_edit2.

text() != "") \

 and (self.ui.line_edit3.text() != "") and (self.ui.line_edit4.

text() == ""):

 self.ui.line_edit4.setFocus()

 self.ui.line_edit4.setText(text_value)

 self.ui.line_edit4.repaint()

 def checkPasscode(self):

 """

 Concatenate the text values from the 4 QLineEdit widgets, and

check to see if the passcode entered by user matches the existing

passcode.

 """

ChApter 7 CreAting gUiS With Qt DeSigner

190

 entered_passcode = self.ui.line_edit1.text() + self.ui.line_edit2.

text() + \

 self.ui.line_edit3.text() + self.ui.line_edit4.text()

 if len(entered_passcode) == 4 and int(entered_passcode) == self.

passcode:

 QMessageBox.information(self, "Valid Passcode!", "Valid

Passcode!", QMessageBox.Ok, QMessageBox.Ok)

 self.close()

 else:

 QMessageBox.warning(self, "Error Message", "Invalid Passcode.",

QMessageBox.Close, QMessageBox.Close)

 self.ui.line_edit1.clear()

 self.ui.line_edit2.clear()

 self.ui.line_edit3.clear()

 self.ui.line_edit4.clear()

 self.ui.line_edit1.setFocus()

if __name__ == "__main__":

 app = QtWidgets.QApplication(sys.argv)

 Keypad = KeypadGUI()

 sys.exit(app.exec_())

When you run the code, your GUI should look similar to Figure 7-11.

 Explanation
In order to utilize the Ui_Keypad class that was created using Qt Designer, we create a

new Python file, keypad_main.py. The KeypadGUI class created in keypad_main.py will

inherit from the Ui_Keypad class.

We begin by importing the modules needed for this project, including the Ui_Keypad

class and a new Qt class, QIntValidator. Qt provides a few classes that can be used to

verify the types of input text. QIntValidator will be used to check if the values input into

the QLineEdit widgets are integers.

ChApter 7 CreAting gUiS With Qt DeSigner

191

The KeypadGUI class is created using a single inheritance approach where it inherits

its properties from a single parent class, QWidget. The user interface is set up in the

__init__() method in the following lines:

 self.ui = Ui_Keypad()

 self.ui.setupUi(self)

In the initializeUI() method, local modifications are made to the QLineEdit

widgets. Here the line edit widget’s focus policy is set to NoFocus so that users can only

enter input in the correct order.

Then we connect the signals and slots for the button widgets. When each button

is clicked, it sends a signal that is connected to the numberClicked() slot. Rather than

creating a separate method for each button, the lambda function is used to reuse a

method for signals. lambda calls the numberClicked() function and passes it a new

parameter every time, in this case the specific text from each button.

When a user clicks a button, that button’s number needs to appear in the correct

line edit widget from left to right. A widget receives focus if its text() value is empty. On

MacOS, the repaint() method was used to update the text in the QLineEdit widgets.

repaint() is used to force a widget to update itself.

Finally, if the user presses the # button, the method checkPasscode() checks if the

user entered the passcode that matches self.passcode. If the input does not match, the

line edit widgets are reset. This project could be designed so that the password is read

from a file or from a database.

We have taken a look at the user interface class created from Qt Designer and at the

file that inherits from it. The following section shows in detail how to create the GUI in Qt

Designer.

 Select a Form

Begin by opening up Qt Designer. Choose the Widget template from New Form dialog

box. We will use the default screen size. Select Create. This opens up a blank GUI

window with a grid of dots inside of the Qt Designer interface like in Figure 7-12.

ChApter 7 CreAting gUiS With Qt DeSigner

192

 Arrange Objects on the Form

From here you could immediately begin to adjust certain features of the form such as the

window size or the background color. Instead, let’s begin by adding whatever widgets

you may need for your project by dragging and dropping them into the main window

from the Widget Box on the left of the window.

Start by selecting a QLabel widget and two QFrame containers and place them on

the form like in Figure 7-13. You can resize the frames by clicking them and moving

the edges of the frame. Then drag four QLineEdit widgets and arrange them in the

top QFrame container. They will overlap, but that will be fixed when you apply layouts

to the frames and the main window. When an object is dragged on top of a container

that it can be placed into, the container will be highlighted to indicate that you can

drop the widget inside. In addition, place twelve QPushButton widgets in the bottom

frame.

Figure 7-12. The Qt Designer interface displaying the toolbar and its different
dock widgets for managing GUIs. In the center is the empty Widget form that will
be used to create the keypad

ChApter 7 CreAting gUiS With Qt DeSigner

193

The QFrame Class

The QFrame class is used as a container to group and surround widgets, or to act as

placeholders in GUI applications. You can also apply a frame style to a QFrame container

to visually separate it from nearby widgets. The following bit of code shows an example

of how to create a frame object, modify its properties, and add a widget:

 def frameUI(self):

 self.frame = QFrame(self) # Create QFrame object

 size_policy = QSizePolicy(QSizePolicy.Expanding, QSizePolicy.

Preferred)

 self.frame.setSizePolicy(size_policy)

 self.frame.setFrameShape(QFrame.Box)

 self.frame.setFrameShadow(QFrame.Raised)

 self.frame.setLineWidth(3)

 self.frame.setMidLineWidth(5)

 # Set layout for QFrame object

 self.grid = QGridLayout(self.frame)

 # Place other widgets inside the frame by

 # calling the addWidget() method on the layout.

 self.button = QPushButton("Enter", self)

 self.grid.addWidget(self.button, 0, 0, 1, 0)

Figure 7-13. The form with a label and two frames (left) and with the line edit
widgets and push buttons added (right)

ChApter 7 CreAting gUiS With Qt DeSigner

194

A frame object can have a number of different styles of frames, including boxes,

panels, or lines. The style of the frame can be adjusted using the setFrameShadow(),

setLineWidth(), and setMidLineWidth() methods.

Apply Layouts in Qt Designer

The next step is to add layouts to all of the containers and to the main window, as well.

This is important to make sure that items are placed and resized correctly. Layouts

can be added either from the toolbar or from context menus. It is possible to add more

widgets to existing layouts once they have been set.

Since Qt Designer uses a drag and drop interface, you only need to place the objects

on the form close to where you want them to be and then select one of the four layouts –

QGridLayout, QHBoxLayout, QVBoxLayout, or QFormLayout – and Qt Designer will take

care of placing them by using a widget’s size hint. For more information about the types

of layouts in PyQt, refer to Chapter 4.

Right-click the topmost frame to open a context menu. Scroll down to the last option,

Lay out, and select Layout Out Horizontally. Do the same thing for the bottom frame,

but this time select Layout Out in a Grid. This is demonstrated in Figure 7-14.

Figure 7-14. Open a context menu to select layouts for containers and windows

ChApter 7 CreAting gUiS With Qt DeSigner

195

The top-level layout of a form can be set by right-clicking the form itself in the

main window, and locating the layout you want to use. For the keypad GUI, select

Layout Out Vertically. If the widgets are not aligned properly, you can also open the

context menu, select Break Layout, and rearrange the widgets. Figure 7-15 shows the

form with layouts applied.

 Edit the Properties of Objects

Once you have the layouts prepared, you should begin editing the features of the objects.

This step could also be accomplished earlier when you place objects on the form.

The Property Editor is shown in Figure 7-4. It is organized into two columns,

Property and Value. The properties are organized by Qt Classes.

To access and make changes to specific containers, widgets, layouts, or even the

main window, you can click them in the form or in the Object Inspector. If a property

is edited in the Property Editor, you can locate it by the following pattern:

Qt Class (Property column) ➤ Property name ➤ (submenu, if any) ➤ Value

The following are the steps that you can follow along to create the keypad GUI in Qt

Designer:

 1. Change window title: QWidget ➤ windowTitle ➤ 7.1 ➤

Keypad GUI

 2. Double-click the QLabel. Change text to Enter a passcode.

Figure 7-15. The keypad GUI with layouts

ChApter 7 CreAting gUiS With Qt DeSigner

196

 3. Change QLabel properties:

 a. QWidget ➤ font ➤ font ➤ Point Size ➤ 20

 b. To edit palette colors, you will need to locate the palette property that

opens a dialog box. Here you can change the colors for different parts of

an object. To change the color of the text in the label object: QWidget ➤

palette ➤ Change Palette ➤ Window Text ➤ white

 c. QLabel ➤ alignment ➤ Horizontal ➤ AlignHCenter

 4. Change top frame properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Stretch ➤ 1

 b. QFrame ➤ frameShape ➤ NoFrame

 c. QFrame ➤ frameShadow ➤ Plain

 5. For each of the four QLineEdit widgets, modify their properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Policy ➤ Expanding

 b. QWidget ➤ font ➤ font ➤ Point Size ➤ 30

 c. QLineEdit ➤ alignment ➤ Horizontal ➤ AlignHCenter

 6. Change bottom frame properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Stretch ➤ 2

 b. QFrame ➤ frameShape ➤ Box

 c. QFrame ➤ frameShadow ➤ Sunken

 d. QFrame ➤ lineWidth ➤ 2

 7. Double-click each of the buttons and change their text to 0–9, ∗,

and #.

 8. Edit each of the buttons’ properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Policy ➤ Expanding

 b. QWidget ➤ font ➤ font ➤ Point Size ➤ 36

 9. Resize the main window:

 a. QWidget ➤ geometry ➤ Width ➤ 302

 b. QWidget ➤ geometry ➤ Height ➤ 406

ChApter 7 CreAting gUiS With Qt DeSigner

197

 10. Click the form and change its background color: QWidget ➤

palette ➤ Change Palette ➤ Window ➤ dark gray

 11. In the Object Inspector, double-click each of the default object

names and edit them. The object name is used to reference the

objects in the code.

After you have followed along with each of the steps, the form should look similar to

Figure 7-11.

 Connect Signals and Slots in Qt Designer

Switch to the Edit Signals/Slots mode by selecting it from the toolbar. Qt Designer

has a simple interface for connecting signals and slots. Click the object that will emit a

signal and drag it to the object that will receive the signal, which is the slot.

For the keypad GUI, we are only making one set of connections. The remaining

signals and slots will be handled by manually coding them. When the ‘∗’ button is

clicked, we want to clear all four line edit widgets. Click the button and drag the red

arrow to the first line edit object. A dialog box will appear (displayed in Figure 7-16) that

allows you to select the methods for both the signal and the slot. Select clicked() for the

button and clear() for the line edit. Finish connecting the other three line edit widgets.

Refer to Figure 7-17 as a guide for connecting the widgets.

Tip When connecting signals and slots, make sure to check the “Show signals
and slots inherited from QWidget” checkbox to access more methods.

ChApter 7 CreAting gUiS With Qt DeSigner

198

Figure 7-16. The dialog box for connecting signals and slots

Figure 7-17. The keypad GUI with signal and slot connections

ChApter 7 CreAting gUiS With Qt DeSigner

199

 Preview Your GUI

It is often useful to view and interact with the form before exporting it to code. Not only

can this be useful for checking the visual appearance of your GUI, but previewing also

helps to make sure the signals and slots, resizing the window, and other functions are

working properly.

To preview a form, open the Form menu and select Preview or use the hot keys Ctrl+R

for Windows or Cmd+R for MacOS. If you are satisfied with your form, save it as a UI file

with the .ui extension. Qt Designer UI files are written in XML format and contain the

widget tree representation for creating a GUI.

 Create and Edit Python Code

Qt Designer uses the Qt utility User Interface Compiler (uic) to generate code and create

the user interface. However, since you are using PyQt5, you must use the uic Python

module, pyuic5, to load .ui files and convert the XML file to Python code.

The pyuic5 utility is a command-line interface for interacting with uic. Open up the

command prompt in Windows or Terminal in MacOS and navigate to the directory that

contains the UI file. The format for converting to Python code is

 pyuic5 filename.ui -o filename.py

To output a Python file, you need to include the -o option and the Python file to be

written to, filename.py. This command will generate a single Python class. Generally,

you will need to create a separate file to inherit from your newly created user interface

class. Another option is to create an executable file that can display the GUI. This can be

done by including the -x option.

 pyuic5 -x filename.ui -o filename.py

Note if you make changes to the gUi in Qt Designer after creating the python file,
you will need to call pyuic5 again on the Ui file.

Tip While it is possible to write new code in the newly generated python file, the
best thing to do would be to create a new file that imports the new user interface
class. if you need to make changes to the gUi in Qt Designer and resave the file, it
will erase any new code that you have written.

ChApter 7 CreAting gUiS With Qt DeSigner

200

 Extra Tips for Using Qt Designer
The following section briefly covers two additional topics:

• Creating GUIs with menus

• Displaying images in Qt Designer

 Setting Up Main Windows and Menus
Open Qt Designer and select the Main Window template from the Form Menu in Figure 7- 2.

This creates a main window with a menubar and status bar by default. You can see a main

window form displayed in Figure 7-1.

 Adding Menus and Submenus in Qt Designer

Adding menus in Qt Designer is simple. Double-click the Type Here placeholder text in

the menubar and enter the title of the menu. This process is shown in Figure 7-18. If

you want to create a shortcut, you can also add the ampersand, ‘&’, to the beginning of

the menu’s text. This updates the menubar object in the Object Inspector dialog. You

can also edit the menu’s properties in the Property Editor.

Figure 7-18. Creating menus and menu entries. Type Here placeholder (top-left).
Double-click the placeholder and enter menu’s title (top-right). Add new menu
entry (bottom-left). New menu entry (bottom-right)

ChApter 7 CreAting gUiS With Qt DeSigner

201

From here you can either add more menus, submenus, or actions. To add a

submenu, first create a menu item. Then click the plus symbol next to the new entry

in the menu. This will add a new menu that branches off of the existing menu entry.

Double-click the Type Here placeholder and enter the text for the new item. Refer to

Figure 7-19.

 Adding Toolbars in Qt Designer

Toolbars can be added to the main window by right-clicking the form to open a context

menu. Click the Add Tool Bar option.

The actions in toolbars are created as toolbar buttons and can be dragged between

the menus and the toolbar. You can also add icons to the toolbar. This topic is covered in

the “Display Images in Qt Designer” section. An example of the toolbar with an icon is

shown in Figure 7-20.

Figure 7-19. Adding submenus. Click the plus symbol next to menu entry (left).
Add new entry (right)

Figure 7-20. Toolbar with Open toolbar button

ChApter 7 CreAting gUiS With Qt DeSigner

202

 Adding Actions in Qt Designer

When items are first created in the menu and the toolbar, they are actually actions.

Actions can be created, removed, given an icon, designated a shortcut hot key, and made

checkable all in the Action Editor dock widget (shown in Figure 7-7). Actions can also

be shared between the menu and the toolbar.

To share an action between the menu and the toolbar so that both objects contain

the same item, drag the action from the Action Editor that already exists in the menu

onto the toolbar.

 Display Images in Qt Designer
This last section will take a quick look at how you can include images and icons in your

application. Whether you are looking to add an image to a QLabel widget or trying to add

icons to your toolbar, the process for adding an image is similar.

For example, if you have a QLabel widget on your form, you can access its properties

in the Property Editor, shown below in Figure 7-21. Scroll down until you find the

pixmap property. Click its Value and from here you will be able to search for an image

file. If you want to add an icon, then you will look for the icon property, not pixmap.

You are given two options: Choose Resource... and Choose File.... If you have

added resources to your project, then select Choose Resource.... Otherwise, you can

search for images on your computer.

Figure 7-21. Add images to your application using the pixmap property

ChApter 7 CreAting gUiS With Qt DeSigner

203

 Summary
Qt Designer is definitely a useful tool for creating GUI applications. It provides a drag

and drop interface that makes it easier to lay out widgets; modify the parameters of

objects; create menus, toolbars, and dock widgets; add actions to menus; generate code

that can be used in Python; and more. Qt Designer can make the design process much

quicker and easier.

While this chapter covered a few of the basics for using Qt Designer, there are

still other uses such as creating your own custom widgets that can be included in Qt

Designer or generating dialog boxes.

The following chapters will begin to look at more specific classes that can be used

to further augment a user interface. Chapter 8 takes a look at the QClipboard class and

creating widgets with drag and drop functionality.

ChApter 7 CreAting gUiS With Qt DeSigner

205
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_8

CHAPTER 8

Working with
the Clipboard
One of the major benefits of GUIs is the ability to create programs that can visually

interact with your system and other applications. Previous chapters have shown how

to use dialog boxes to open and save files to your computer, change fonts or colors, and

send images to a printer. In Chapter 8 you will see how to use the clipboard and drag and

drop functions to extend the capabilities of your programs even further.

The clipboard is a location in your computer’s memory that is used to temporarily

store data that you have copied or cut from an application. The clipboard can store a

number of different types of data, including text, images, gifs, and more. Information that

is stored on your system’s clipboard can be pasted into other applications, as long as it

knows how to work with the type of data stored in the clipboard.

QClipboard is a PyQt class that is used to interact with your system’s clipboard,

allowing you to copy and paste between GUIs.

Chapter 8 introduces you to

• The QClipboard and QMimeData classes

• The Drag and Drop system in PyQt

• The QListWidget class for displaying item-based lists

 The QClipboard Class
The QClipboard class makes your system’s clipboard available so that you can copy

and paste data such as text, images, and HTML text between applications. Qt widgets

that can be used to manipulate textual information, such as QLineEdit, QTextEdit, and

QListWidget, support using the clipboard. If you want to paste an image from the clipboard

into an application, be sure to use widgets that support graphics, such as QLabel.

206

Including the clipboard in your project is pretty straightforward in PyQt. In order to

access the QClipboard object in an application, create an instance of the clipboard by

clipboard = QApplication.clipboard()

To see one way to retrieve an image that has been copied to the clipboard, take a look

at the following code:

self.label = QLabel() # Create label to hold image

self.clipboard = QApplication.clipboard() # Create cb object

self.label.setPixmap(self.clipboard.pixmap())

The process for text or HTML text is similar. Another way to get data is to use the

QMimeData class which will be covered in the “Explanation” section of this example.

The events that occur between your system and an application built using PyQt are

handled by QApplication. The clipboard gives you the ability to send or receive data in

your application. This means that you can not only get data from other programs but can

also send it out, as well. However, the clipboard can only hold one object at a time. So if

you copy an image to the clipboard and then copy text, only the text will be available and

the image will have been deleted.

In Listing 8-1 you will see how to set up the clipboard and actually be able to

visualize its contents after copying text from another window.

Listing 8-1. Example code that demonstrates how to use the clipboard

clipboard_ex.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QPushButton,

QTextEdit, QDockWidget, QVBoxLayout, QFrame)

from PyQt5.QtCore import Qt, QSize

class ClipboardEx(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 8 Working With the Clipboard

207

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setMinimumSize(QSize(500, 300))

 self.setWindowTitle("Clipboard Example")

 self.central_widget = QTextEdit()

 self.setCentralWidget(self.central_widget)

 self.createClipboard()

 self.show()

 def createClipboard(self):

 """

 Set up clipboard and dock widget to display text from

 the clipboard.

 """

 # Create dock widget

 clipboard_dock = QDockWidget()

 clipboard_dock.setWindowTitle("Display Clipboard Contents")

 clipboard_dock.setAllowedAreas(Qt.TopDockWidgetArea)

 dock_frame = QFrame()

 self.cb_text = QTextEdit()

 paste_button = QPushButton("Paste")

 paste_button.clicked.connect(self.pasteText)

 dock_v_box = QVBoxLayout()

 dock_v_box.addWidget(self.cb_text)

 dock_v_box.addWidget(paste_button)

 # Set the main layout for the dock widget,

 # then set the main widget of the dock widget

 dock_frame.setLayout(dock_v_box)

 clipboard_dock.setWidget(dock_frame)

Chapter 8 Working With the Clipboard

208

 # Set initial location of dock widget

 self.addDockWidget(Qt.TopDockWidgetArea, clipboard_dock)

 # Create instance of the clipboard

 self.clipboard = QApplication.clipboard()

 self.clipboard.dataChanged.connect(self.copyFromClipboard)

 def copyFromClipboard(self):

 """

 Get the contents of the system clipboard.

 """

 mime_data = self.clipboard.mimeData()

 if mime_data.hasText():

 self.cb_text.setText(mime_data.text())

 #self.cb_text.repaint() # Uncomment if text not updating

 def pasteText(self):

 """

 Paste text from the clipboard if button is clicked.

 """

 self.central_widget.paste()

 #self.central_widget.repaint() # Uncomment if text not updating

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = ClipboardEx()

 sys.exit(app.exec_())

The finished application can be seen in Figure 8-1. The top text edit widget displays

the current contents of the clipboard. The user can then paste it into the main window

which is the lower text edit widget.

Chapter 8 Working With the Clipboard

209

 Explanation
In some applications you may actually want to see the contents of the clipboard in a

separate window before pasting it into the main window. A dock widget, especially one

that can float separate from the main window, is perfect to use as a clipboard manager.

After importing classes and setting up the window, we set the central_widget of the

main window to be a QTextEdit widget. The central widget is where we will edit the text

that is pasted from the clipboard.

Figure 8-1. Example GUI that allows the user to see the contents of the clipboard
in the top dock widget

Chapter 8 Working With the Clipboard

210

The clipboard_dock widget is set up so that it can either float or be attached to the top

of the main window. We need to use a QFrame container to hold the cb_text and paste_

button widgets. If new text is copied from another application, then cb_text will display

the text. If the user wants to retain the text, then they can paste it into the central_widget.

Using a single line, PyQt makes it simple to include the clipboard in an application.

self.clipboard = QApplication.clipboard() # Create the clipboard object

self.clipboard.dataChanged.connect(self.copyFromClipboard)

The dataChanged() method emits a signal if the contents of the clipboard have

changed. If a change has occurred, then the cb_text widget is updated to display the

new clipboard text using the copyFromClipboard() method. To check what kind of data

is stored in the clipboard, we use the QMimeData class.

The QMimeData class is used for both the clipboard and the drag and drop system

in PyQt, the latter of which will be introduced later in this chapter. The Multipurpose

Internet Mail Extensions (MIME) format supports not only text but HTML, URLs,

images, and color data, as well. Objects created from the QMimeData class ensure that

information can be safely moved between applications and also between objects in the

same application.

mime_data = self.clipboard.mimeData()

The method mimeData() returns information about the data currently in the

clipboard. To check if the object can return plain text, we use the hasText() method.

If the data is text, then we get the text using mime_data.text() and set the text of the

QTextEdit widget using setText(). A similar process is also used to access other kinds

of data using QMimeData.

Finally, the QTextEdit method paste() is called in pasteText() to fetch the text in

the clipboard if the button is pressed. The repaint() method is used to force the text of

the widget to update.

 Project 8.1 – Sticky Notes GUI
Sometimes you have an idea, a note, or a bit of information that you need to quickly

jot down. Maybe you need to remind yourself of an appointment and need to make a

note to yourself. You only need a small, temporary, maybe even colorful, area to help

brainstorm and organize those ideas. Sticky notes are perfect for those uses and more.

Chapter 8 Working With the Clipboard

211

The sticky notes GUI, shown in Figure 8-2, allows you to open as many windows

as you want. You can edit the text of each note individually, change the color of a note,

and also paste text from the clipboard. This project demonstrates a practical use for the

clipboard class and acts as a foundation if you choose to build your own sticky notes

application.

Figure 8-2. The sticky notes GUI

Chapter 8 Working With the Clipboard

212

 Sticky Notes GUI Solution
The sticky notes GUI is relatively simple, created of a single QTextEdit widget that serves

as the central widget of the main window (Listing 8-2). The menu system allows you to

create a new note, clear the text in the text edit widget, quit the application, change the

background color, and paste text from the clipboard.

Listing 8-2. Code for sticky notes GUI

stickynotes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction, QTextEdit)

from PyQt5.QtCore import QSize

class StickyNotes(QMainWindow):

 # Static variables

 note_id = 1

 notes = []

 def __init__(self, note_ref=str()):

 super().__init__()

 self.note_ref = note_ref

 StickyNotes.notes.append(self)

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setMinimumSize(QSize(250, 250))

 self.setWindowTitle("8.1 - Sticky Notes GUI")

 self.central_widget = QTextEdit()

 self.setCentralWidget(self.central_widget)

Chapter 8 Working With the Clipboard

213

 self.createMenu()

 self.createClipboard()

 self.show()

 def createMenu(self):

 """

 Create simple menu bar and menu actions

 """

 # Create actions for the file menu

 self.new_note_act = QAction('New Note', self)

 self.new_note_act.setShortcut('Ctrl+N')

 self.new_note_act.triggered.connect(self.newNote)

 self.close_act = QAction('Clear', self)

 self.close_act.setShortcut('Ctrl+W')

 self.close_act.triggered.connect(self.clearNote)

 self.quit_act = QAction('Quit', self)

 self.quit_act.setShortcut('Ctrl+Q')

 self.quit_act.triggered.connect(self.close)

 # Create actions for the color menu

 self.yellow_act = QAction('Yellow', self)

 self.yellow_act.triggered.connect(lambda: self.

changeBackground(self.yellow_act.text()))

 self.blue_act = QAction('Blue', self)

 self.blue_act.triggered.connect(lambda: self.changeBackground(self.

blue_act.text()))

 self.green_act = QAction('Green', self)

 self.green_act.triggered.connect(lambda: self.

changeBackground(self.green_act.text()))

 # Create actions for the paste menu

 self.paste_act = QAction('Paste', self)

 self.paste_act.setShortcut('Ctrl+V')

 self.paste_act.triggered.connect(self.pasteToClipboard)

Chapter 8 Working With the Clipboard

214

 # Create menubar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False) # Uncomment to display menu in

window on MacOS

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(self.new_note_act)

 file_menu.addAction(self.close_act)

 file_menu.addAction(self.quit_act)

 # Create color menu and add actions

 file_menu = menu_bar.addMenu('Color')

 file_menu.addAction(self.yellow_act)

 file_menu.addAction(self.blue_act)

 file_menu.addAction(self.green_act)

 # Create paste menu and add actions

 file_menu = menu_bar.addMenu('Paste')

 file_menu.addAction(self.paste_act)

 def createClipboard(self):

 """

 Set up clipboard.

 """

 self.clipboard = QApplication.clipboard()

 self.clipboard.dataChanged.connect(self.copyToClipboard)

 def newNote(self):

 """

 Create new instance of StickyNotes class.

 """

 self.note_ref = str("note_%d" % StickyNotes.note_id)

 StickyNotes().show()

 StickyNotes.note_id += 1

 def clearNote(self):

 """

Chapter 8 Working With the Clipboard

215

 Delete the current note's text.

 """

 self.central_widget.clear()

 def copyToClipboard(self):

 """

 Get the contents of the system clipboard.

 """

 return self.clipboard.text()

 def pasteToClipboard(self):

 """

 Get the contents of the system clipboard and paste

 into the note.

 """

 text = self.copyToClipboard()

 self.central_widget.insertPlainText(text + '\n')

 def changeBackground(self, color_text):

 """

 Change a note's background color.

 """

 if color_text == "Yellow":

 self.central_widget.setStyleSheet("background-color: rgb(248,

253, 145)")

 elif color_text == "Blue":

 self.central_widget.setStyleSheet("background-color: rgb(145,

253, 251)")

 elif color_text == "Green":

 self.central_widget.setStyleSheet("background-color: rgb(148,

253, 145)")

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = StickyNotes()

 sys.exit(app.exec_())

The completed project can be seen in Figure 8-2.

Chapter 8 Working With the Clipboard

216

 Explanation
The sticky notes GUI is a good project to introduce the concept of single-document
interface (SDI). SDI is a method that organizes GUIs into individual windows that

are handled separately. Even though the sticky notes application allows you to

create multiple instances of the GUI at the same time, each window is separate and

independent from the others. The contrast is multiple-document interface (MDI),

where a single parent window contains and controls multiple nested child windows. An

example of MDI can be found in Chapter 12.

We create the StickyNotes class for the GUI and first include two static variables,

note_id, used to give a unique name to each new window, and notes, to keep track of

the many different windows by appending them to a list. The static variables are shared

by all instances of the class.

The menu system is set up just like in previous chapters. The Color menu allows

the user to select a background color for each note. If the user wants to paste text from

the clipboard into a widget, they can either use the Paste menu entry or the hot key

Ctrl+V.

Let’s take a look at the different class methods. The clipboard object is created and

updated using the dataChanged() signal in createClipboard(). Each new note is given

a new name, note_ref, when they are created based on the current note_id value. The

other functions allow you to interact with the text and clipboard or edit the background

color of the central_widget.

 Drag and Drop in PyQt
The drag and drop mechanism allows a user to perform tasks in a GUI by selecting

items, such as icons or images, and move them into another window or onto another

object. PyQt also makes including this behavior in an application very simple, as

well. To allow widgets to have drag and drop functionality, you only need to set their

setAcceptDrops() and setDragEnabled() properties to True.

With drag and drop functionality enabled, you can move items from one text edit,

list, or table object to another in PyQt. QMimeData can also be used to handle custom

data types.

Listing 8-3 illustrates how to drag and drop icons between two QListWidget objects

in the same GUI window.

Chapter 8 Working With the Clipboard

217

Listing 8-3. Code that demonstrates an example of drag and drop

drag_drop.py

Import necessary modules

import sys, os

from PyQt5.QtWidgets import (QApplication, QWidget, QListWidget, QLabel,

QGridLayout, QListWidgetItem)

from PyQt5.QtCore import QSize

from PyQt5.QtGui import QIcon

class DragAndDropGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 500, 300)

 self.setWindowTitle("Drag and Drop Example")

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """

 Create and arrange widgets in window

 """

 icon_label = QLabel("ICONS", self)

 icon_widget = QListWidget()

 icon_widget.setAcceptDrops(True)

 icon_widget.setDragEnabled(True)

 icon_widget.setViewMode(QListWidget.IconMode)

Chapter 8 Working With the Clipboard

218

 image_path = "images"

 for img in os.listdir(image_path):

 list_item = QListWidgetItem()

 list_item.setText(img.split(".")[0])

 list_item.setIcon(QIcon(os.path.join(image_path,

 "{0}").format(img)))

 icon_widget.setIconSize(QSize(50, 50))

 icon_widget.addItem(list_item)

 list_label = QLabel("LIST", self)

 list_widget = QListWidget()

 list_widget.setAlternatingRowColors(True)

 list_widget.setAcceptDrops(True)

 list_widget.setDragEnabled(True)

 # Create grid layout

 grid = QGridLayout()

 grid.addWidget(icon_label, 0, 0)

 grid.addWidget(list_label, 0, 1)

 grid.addWidget(icon_widget, 1, 0)

 grid.addWidget(list_widget, 1, 1)

 self.setLayout(grid)

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = DragAndDropGUI()

 sys.exit(app.exec_())

The drag and drop GUI can be seen in Figure 8-3.

Chapter 8 Working With the Clipboard

219

 Explanation
There are two instances of the QListWidget class created, icon_widget and list_

widget. The icon_widget object displays objects in IconMode, set by

icon_widget.setViewMode(QListWidget.IconMode)

The QListWidget default setting shows items in a list. To set up the drag and drop

capability for icon_widget, call the setAcceptDrops() and setDragEnabled() methods.

Then repeat the process for list_widget.

 icon_widget = QListWidget()

 icon_widget.setAcceptDrops(True)

 icon_widget.setDragEnabled(True)

When one of the icons that are loaded into the icon_widget is dragged onto the

list_widget, the list updates its contents to include the new item. Dropping an item

from one QListWidget to the other adds a new item to that list.

The next section introduces the QListWidget class and a few of its methods.

Figure 8-3. Two QListWidget objects used to demonstrate drag and drop

Chapter 8 Working With the Clipboard

220

 The QListWidget Class

The QListWidget class creates a widget with an item-based interface that makes it

simpler for adding and removing items. Items can be added either when the widget is

created in code or added on later. The QListWidgetItem class is used in conjunction

with QListWidget to serve as an item that can be used with the list. In the previous

example, list_item creates an item that includes text and an icon to be added to the list

using the addItem() method.

Listing 8-4 briefly demonstrates how to add, insert, remove, and clear all items from

a QListWidget.

Listing 8-4. An example of using the QListWidget class to manage items in a list

listwidget_ex.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QListWidget,

QPushButton, QHBoxLayout, QVBoxLayout, QListWidgetItem, QInputDialog)

class GroceryListGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 400, 200)

 self.setWindowTitle("QListWidget Example")

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """

 Create and arrange widgets in window

 """

Chapter 8 Working With the Clipboard

221

 self.list_widget = QListWidget()

 self.list_widget.setAlternatingRowColors(True)

 # Initialize the QlistWidget with items

 grocery_list = ["grapes", "broccoli", "garlic", “cheese", "bacon",

"eggs", "waffles", "rice", "soda"]

 for item in grocery_list:

 list_item = QListWidgetItem()

 list_item.setText(item)

 self.list_widget.addItem(list_item)

 # Create buttons

 add_button = QPushButton("Add")

 add_button.clicked.connect(self.addListItem)

 insert_button = QPushButton("Insert")

 insert_button.clicked.connect(self.insertItemInList)

 remove_button = QPushButton("Remove")

 remove_button.clicked.connect(self.removeOneItem)

 clear_button = QPushButton("Clear")

 clear_button.clicked.connect(self.list_widget.clear)

 # Create layout

 right_v_box = QVBoxLayout()

 right_v_box.addWidget(add_button)

 right_v_box.addWidget(insert_button)

 right_v_box.addWidget(remove_button)

 right_v_box.addWidget(clear_button)

 left_h_box = QHBoxLayout()

 left_h_box.addWidget(self.list_widget)

 left_h_box.addLayout(right_v_box)

 self.setLayout(left_h_box)

Chapter 8 Working With the Clipboard

222

 def addListItem(self):

 """

 Add a single item to the list widget.

 """

 text, ok = QInputDialog.getText(self, "New Item", "Add item:")

 if ok and text != "":

 list_item = QListWidgetItem()

 list_item.setText(text)

 self.list_widget.addItem(list_item)

 def insertItemInList(self):

 """

 Insert a single item into the list widget under the

 current highlighted row.

 """

 text, ok = QInputDialog.getText(self, "Insert Item", "Insert item:")

 if ok and text != "":

 row = self.list_widget.currentRow()

 row = row + 1 # select row below current row

 new_item = QListWidgetItem()

 new_item.setText(text)

 self.list_widget.insertItem(row, new_item)

 def removeOneItem(self):

 """

 Remove a single item from the list widget.

 """

 row = self.list_widget.currentRow()

 self.list_widget.takeItem(row)

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = GroceryListGUI()

 sys.exit(app.exec_())

Your GUI should look similar to the one in Figure 8-4.

Chapter 8 Working With the Clipboard

223

 Explanation
QListWidget allows you to manage the items displayed in the GUI window. For

alternating row colors, set the setAlternatingRowColors() methods to True.

The list_widget object is populated with items from the list when the program

begins. Using the buttons on the right, the user can edit the list items. Each method in the

GroceryListGUI class is used to demonstrate one of the following QListWidget methods:

• addItem() – Add an item to the end of a list

• insertItem() – Insert an item at the specified row

• takeItem() – Remove an item from the specified row

• clear() – Remove all items from the list

 Summary
The QClipboard class allows GUI applications to receive and send data from the system’s

clipboard. Drag and drop is another type of functionality that GUIs can utilize to pass

data between widgets and other programs. Drag and drop is very simple to include in

your own projects with only a few lines of code. The QMimeData class handles various

kinds of data types for both clipboard and drag and drop systems, ensuring proper data

handling.

Figure 8-4. QListWidget could be used to display objects in an inventory or
items in a directory

Chapter 8 Working With the Clipboard

224

Many of PyQt’s widgets for editing text already include the ability to interact with

the clipboard, so you won’t often need to include the code for the clipboard in your

program.

In the next chapter, we will see how to implement animation and graphics into PyQt

applications and learn how to create custom widgets.

Chapter 8 Working With the Clipboard

225
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_9

CHAPTER 9

Graphics and Animation
in PyQt
After going through many examples in previous chapters that introduce you to the

fundamentals for building GUIs, Chapter 9 finally allows for you to explore your creative

and artistic side through drawing and animation in PyQt5.

Graphics in PyQt is done primarily with the QPainter API. PyQt’s painting system

handles drawing for text, images, and vector graphics and can be done on a variety of

surfaces, including QImage, QWidget, and QPrinter. With QPainter you can enhance the

look of existing widgets or create your own.

The main components of the painting system in PyQt are the QPainter,

QPaintDevice, and QPaintEngine classes. QPainter performs the drawing operations;

a QPaintDevice is an abstraction of two-dimensional space which acts as the surface that

QPainter can paint on; and QPaintEngine is the internal interface used by the QPainter

and QPaintDevice classes for drawing.

In this chapter, we are going to be taking a look at 2D graphics, covering topics such

as drawing simple lines and shapes, designing your own painting application, and

animation. If you are interested in creating GUIs that work with 3D visuals, Qt also has

support for OpenGL, which is software that renders both 2D and 3D graphics.

New concepts introduced in this chapter include

• An introduction to QPainter and other classes used for drawing PyQt

• Creating tool tips using QToolTip

• Animating objects using QPropertyAnimation and pyqtProperty

• How to set up a Graphics View and a Graphics Scene for interacting

with items in a GUI window

• A new widget for selecting values in a bounded range, QSlider

226

• Handling mouse events with event handlers

• PyQt’s four image handling classes

• Creating your own custom widgets using PyQt

 Introduction to the QPainter Class
Whenever you need to draw something in PyQt, you will more than likely need to work

with the QPainter class. QPainter provides functions for drawing simple points and lines,

complex shapes, text, and pixmaps. We have looked at pixmaps in previous chapters in

applications where we needed to display images. QPainter also allows you to customize

a variety of its settings, such as rendering quality or changing the painter’s coordinate

system. Drawing can be done on a paint device, which are two-dimensional objects

created from the different PyQt classes that can be painted on with QPainter.

Drawing relies on a coordinate system for specifying the position of points and

shapes and is typically handled in the paint event of a widget. The default coordinate

system for a paint device has the origin at the top-left corner, beginning at (0, 0). The

x values increase to the right and y values increase going down. Each (x, y) coordinate

defines the location of a single pixel.

The following example illustrates a few of the drawing functions and shows how

to use the QPen and QBrush classes and how to set up the paintEvent() function for

drawing on a widget.

Listing 9-1. This code gives examples for drawing with the QPainter class

paint_basics.py

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QWidget

from PyQt5.QtGui import (QPainter, QPainterPath, QColor, QBrush, QPen,

QFont, QPolygon, QLinearGradient)

from PyQt5.QtCore import Qt, QPoint, QRect

Chapter 9 GraphiCs and animation in pyQt

227

class Drawing(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setFixedSize(600, 600)

 self.setWindowTitle('QPainter Basics')

 # Create a few pen colors

 self.black = '#000000'

 self.blue = '#2041F1'

 self.green = '#12A708'

 self.purple = '#6512F0'

 self.red = '#E00C0C'

 self.orange = '#FF930A'

 self.show()

 def paintEvent(self, event):

 """

 Create QPainter object and handle paint events.

 """

 painter = QPainter()

 painter.begin(self)

 # Use antialiasing to smooth curved edges

 painter.setRenderHint(QPainter.Antialiasing)

 self.drawPoints(painter)

 self.drawDiffLines(painter)

 self.drawText(painter)

 self.drawRectangles(painter)

 self.drawPolygons(painter)

Chapter 9 GraphiCs and animation in pyQt

228

 self.drawRoundedRects(painter)

 self.drawCurves(painter)

 self.drawCircles(painter)

 self.drawGradients(painter)

 painter.end()

 def drawPoints(self, painter):

 """

 Example of how to draw points with QPainter.

 """

 pen = QPen(QColor(self.black))

 for i in range(1, 9):

 pen.setWidth(i * 2)

 painter.setPen(pen)

 painter.drawPoint(i * 20, i * 20)

 def drawDiffLines(self, painter):

 """

 Examples of how to draw lines with QPainter.

 """

 pen = QPen(QColor(self.black), 2)

 painter.setPen(pen)

 painter.drawLine(230, 20, 230, 180)

 pen.setStyle(Qt.DashLine)

 painter.setPen(pen)

 painter.drawLine(260, 20, 260, 180)

 pen.setStyle(Qt.DotLine)

 painter.setPen(pen)

 painter.drawLine(290, 20, 290, 180)

 pen.setStyle(Qt.DashDotLine)

 painter.setPen(pen)

 painter.drawLine(320, 20, 320, 180)

Chapter 9 GraphiCs and animation in pyQt

229

 # Change the color and thickness of the pen

 blue_pen = QPen(QColor(self.blue), 4)

 painter.setPen(blue_pen)

 painter.drawLine(350, 20, 350, 180)

 blue_pen.setStyle(Qt.DashDotDotLine)

 painter.setPen(blue_pen)

 painter.drawLine(380, 20, 380, 180)

 def drawText(self, painter):

 """

 Example of how to draw text with QPainter.

 """

 text = "Don't look behind you."

 pen = QPen(QColor(self.red))

 painter.setFont(QFont("Helvetica", 15))

 painter.setPen(pen)

 painter.drawText(420, 110, text)

 def drawRectangles(self, painter):

 """

 Examples of how to draw rectangles with QPainter.

 """

 pen = QPen(QColor(self.black))

 brush = QBrush(QColor(self.black))

 painter.setPen(pen)

 painter.drawRect(20, 220, 80, 80)

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawRect(120, 220, 80, 80)

 red_pen = QPen(QColor(self.red), 5)

 green_brush = QBrush(QColor(self.green))

Chapter 9 GraphiCs and animation in pyQt

230

 painter.setPen(red_pen)

 painter.setBrush(green_brush)

 painter.drawRect(20, 320, 80, 80)

 # Demonstrate how to change the alpha channel

 # to include transparency

 blue_pen = QPen(QColor(32, 85, 230, 100), 5)

 blue_pen.setStyle(Qt.DashLine)

 painter.setPen(blue_pen)

 painter.setBrush(green_brush)

 painter.drawRect(120, 320, 80, 80)

 def drawPolygons(self, painter):

 """

 Example of how to draw polygons with QPainter.

 """

 pen = QPen(QColor(self.blue), 2)

 brush = QBrush(QColor(self.orange))

 points = QPolygon([QPoint(240, 240), QPoint(380, 250),

 QPoint(230, 380), QPoint(370, 360)])

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawPolygon(points)

 def drawRoundedRects(self, painter):

 """

 Examples of how to draw rectangles with

 rounded corners with QPainter.

 """

 pen = QPen(QColor(self.black))

 brush = QBrush(QColor(self.black))

 rect_1 = QRect(420, 340, 40, 60)

 rect_2 = QRect(480, 300, 50, 40)

 rect_3 = QRect(540, 240, 40, 60)

Chapter 9 GraphiCs and animation in pyQt

231

 painter.setPen(pen)

 brush.setStyle(Qt.Dense1Pattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_1, 8, 8)

 brush.setStyle(Qt.Dense5Pattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_2, 5, 20)

 brush.setStyle(Qt.BDiagPattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_3, 15, 15)

 def drawCurves(self, painter):

 """

 Examples of how to draw curves with QPainterPath.

 """

 pen = QPen(Qt.black, 3)

 brush = QBrush(Qt.white)

 path = QPainterPath()

 path.moveTo(30, 420)

 path.cubicTo(30, 420, 65, 500, 30, 560)

 path.lineTo(163, 540)

 path.cubicTo(125, 360, 110, 440, 30, 420)

 path.closeSubpath()

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawPath(path)

 def drawCircles(self, painter):

 """

 Example of how to draw ellipses with QPainter.

 """

 height, width = self.height(), self.width()

 center_x, center_y = (width / 2), height - 100

 radius_x, radius_y = 60, 60

Chapter 9 GraphiCs and animation in pyQt

232

 pen = QPen(Qt.black, 2, Qt.SolidLine)

 brush = QBrush(Qt.darkMagenta, Qt.Dense5Pattern)

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawEllipse(QPoint(center_x, center_y), radius_x, radius_y)

 def drawGradients(self, painter):

 """

 Example of how to draw fill shapes using gradients.

 """

 pen = QPen(QColor(self.black), 2)

 gradient = QLinearGradient(450, 480, 520, 550)

 gradient.setColorAt(0.0, Qt.blue)

 gradient.setColorAt(0.5, Qt.yellow)

 gradient.setColorAt(1.0, Qt.cyan)

 painter.setPen(pen)

 painter.setBrush(QBrush(gradient))

 painter.drawRect(420, 420, 160, 160)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = Drawing()

 sys.exit(app.exec_())

The results of different QPainter drawing functions can be seen in Figure 9-1.

Chapter 9 GraphiCs and animation in pyQt

233

 Explanation
This program introduces quite a few new classes, a majority of them imported from the

QtGui module. QtGui provides us with the tools we need for 2D graphics, imaging, and

fonts. The QPoint and QRect classes imported from QtCore are used to define points and

rectangles specified by coordinate values in the window’s plane.

The Drawing class inherits from QWidget, and all drawing will occur on the widget’s

surface.

Figure 9-1. The window illustrates a few of the QPainter class’s different functions.
Starting from the top-left corner, the first row presents points, lines, and text; the
second row illustrates shapes and patterns, including rectangles, polygons, and
rectangles with rounded corners; the last row displays drawing curves, circles, and
painting with gradients

Chapter 9 GraphiCs and animation in pyQt

234

 The paintEvent() Method

For general purposes, painting is handled inside the paintEvent() function. Let’s take a

look at how to set up QPainter in the following code to draw a simple line:

def paintEvent(self, event):

 painter = QPainter() # Construct the painter

 painter.begin(self)

 painter.drawLine(260, 20, 260, 180)

 painter.end()

Drawing occurs between the begin() and end() methods on the paint device,

referenced by self. The drawing is handled in between these two methods. Using

begin() and end() is not required. You could construct a painter that takes as a

parameter the paint device. However, begin() and end() can be used to catch any errors

should the painter fail.

Other methods can also be called during the paint event. Since only one painter is

allowed at a time, in the preceding example, we call different methods that all take the

painter object as an argument.

self.drawPoints(painter)

self.drawLines(painter)

One of the settings that we can change in QPainter is the rendering quality using

render hints. QPainter.Antialiasing creates smoother-looking curved edges.

painter.setRenderHint(QPainter.Antialiasing)

 The QColor, QPen, and QBrush Classes

Some of the settings that can be modified include the color, width, and styles used to

draw lines and shapes. The QColor class provides access to different color schemes,

for example, RGB, HSV, and CMYK values. Colors can be specified by using either RGB

hexadecimal strings, '#112233'; predefined color names, Qt.blue or Qt.darkBlue; or

RGB values, (233, 12, 43). QColor also includes an alpha channel used for giving

colors transparency, where 0 is completely transparent and 255 is completely opaque.

Listing 9-1 demonstrates all three of these types.

Chapter 9 GraphiCs and animation in pyQt

235

QPen is used for drawing lines and the outlines of shapes. The following code

creates a black pen with a width of 2 pixels that draws dashed lines. The default style is

Qt.SolidLine.

pen = QPen(QColor('#000000'), 2, Qt.DashLine)

painter.setPen(pen)

QBrush defines how to paint, that is, fill in, shapes. Brushes can have a color, a

pattern, a gradient, or a texture. A magenta brush with the Dense5Pattern style is created

with the following code. The default style is Qt.SolidPattern.

brush = QBrush(Qt.darkMagenta, Qt.Dense5Pattern)

painter.setBrush(brush)

If you wish to create multiple lines or shapes with different pens and brushes, make

sure to call setPen() and/or setBrush() each time they need to be changed. Otherwise,

QPainter will continue to use the pen and brush settings from the previous call.

Note Calling QPainter.begin() will reset all the painter settings to default
values.

 Drawing Points and Lines

The drawPoint() method can be used to draw single pixels. By changing the width of

the pen, you can draw wider points. The x and y values can either be explicitly defined or

specified by using QPoint. An example of points is shown in Figure 9-2.

pen.setWidth(3)

painter.setPen(pen)

 painter.drawPoint(10, 15)

Note the drawPoint() and other methods are specified using integer values.
some of the drawing methods allow you to also use floating-point values. rather
than import the QPoint and QRect classes, you should use QPointF and
QRectF.

Chapter 9 GraphiCs and animation in pyQt

236

For drawing lines, there are the drawLine() or drawLines() methods. Each of the

lines shown in Figure 9-2 displays different styles, widths, or colors. Lines are created by

specifying a set of points, the starting x1 and y1 values and the ending x2 and y2 values.

pen.setStyle(Qt.DashLine) # Specify a style

painter.setPen(pen) # Set the pen

painter.drawLine(260, 20, 260, 180) # x1, y1, x2, y2

 Drawing Text

The drawText() method is used to draw text on the paint device. An example of drawing

text can be seen in Figure 9-3. We can make use of setFont() to apply different font

settings.

painter.setFont(QFont("Helvetica", 15))

painter.setPen(pen)

painter.drawText(420, 110, text)

The text is drawn by first specifying the top-left coordinates on the paint device

(think of text as being placed inside of a rectangle). This is the simplest way to draw text.

For multiple lines or for wrapping text, use a QRect rectangle to contain the text.

Figure 9-2. Example of points and lines drawn using QPainter

Chapter 9 GraphiCs and animation in pyQt

237

 Drawing Two-Dimensional Shapes

There are a few different ways to draw quadrilaterals using the drawRect() method. For

this example, we will specify the top-left corner’s coordinates followed by the width and

height of the shape.

painter.drawRect(120, 220, 80, 80)

For each of the squares shown in the top-left corner of Figure 9-4, we begin by setting

the pen and brush values before calling drawRect() to draw the shape. The first shape

has a black pen with no brush; the second calls setBrush() to fill in the square. The next

shape uses a red pen with a green brush. Finally, the last square shows an example of

how to set the transparency of the pen object’s color to 100.

blue_pen = QPen(QColor(32, 85, 230, 100), 5)

To draw irregular polygons, the QPolygon class can be used by specifying the

point coordinates of each corner. The order that the points are created in the

QPolygon object is the order in which they are drawn. The polygon object is then

drawn using drawPolygon(). The polygon can be seen in the middle of the top row in

Figure 9-4.

painter.drawPolygon(points)

Figure 9-3. A simple example of drawing text with QPainter

Chapter 9 GraphiCs and animation in pyQt

238

QPainter can also draw rectangles with rounded corners. The process for drawing

them is similar to drawing normal rectangles, except we need to specify the x and y

radius values for the corners. Examples can be seen in Figure 9-4 in the top-right corner.

The following snippet of code shows how to create a rounded rectangle by first creating

the QRect rectangle and then specifying the style:

rect_1 = QRect(420, 340, 40, 60) # x, y, width, height

brush.setStyle(Qt.Dense1Pattern)

painter.setBrush(brush)

painter.drawRoundedRect(rect_1, 8, 8) # rect, x_rad, y_rad

For drawing abstract shapes, we need to use QPainterPath. Objects composed of

different components, such as lines, rectangles, or curves, are called painter paths. An

example of a painter path can be seen in the bottom-left corner of Figure 9-4.

Figure 9-4. Different shapes drawn with QPainter

Chapter 9 GraphiCs and animation in pyQt

239

In the drawCurves() method of the earlier program, we first create a black pen and a

white brush and an instance of QPainterPath. The moveTo() method moves to a position

in the window without drawing any other components. We will start drawing at this

position, (30, 420).

path.cubicTo(30, 420, 65, 500, 30, 560)

path.lineTo(163, 540)

path.cubicTo(125, 360, 110, 440, 30, 420)

The cubicTo() method can be used to draw a parametric curve, also called a Bézier

curve, from the starting position we moved to and the ending position, (30, 560). The

first two points, (30, 420) and (65, 500), in cubicTo() are used to influence how

the line curves between the starting and ending points. The next components of path

are a line drawn with lineTo() and another curve. The abstract shape is closed with

closeSubpath(), and the path is drawn using drawPath().

The last shape we are going to look at is the ellipse which is drawn using

drawEllipse(). For an ellipse, we need four values, the location of the center, and two

radii values for the x and y directions. If the radii values are equal, we can draw a circle,

like in the bottom-right corner of Figure 9-4. The following code shows how to draw

an ellipse with a QPoint as the center coordinate, but the shape can also be drawn by

defining a QRect.

painter.drawEllipse(QPoint(center_x, center_y), radius_x, radius_y)

 Drawing Gradients

Gradients can be used along with QBrush to fill the inside of shapes. There are three

different types of gradient styles in PyQt – linear, radial, and conical. For this example,

we will use the QLinearGradient class to interpolate colors between two start and end

points. The result can be seen in Figure 9-5.

The QLinearGradient constructor takes as arguments the area of the paint device

where the gradient will occur, specified by the x1, y1, x2, y2 coordinates.

gradient = QLinearGradient(450, 480, 520, 550)

We can create points to start and stop painting colors using setStopPoint(). This

method defines where one color ends and another color begins.

Chapter 9 GraphiCs and animation in pyQt

240

 Project 9.1 – Painter GUI
There are many digital art applications out there, filled to the brim with tools

for drawing, painting, editing, and creating your own art on the computer. With

QPainter, you could manually code each individual line and shape one by one.

However, rather than going through that painstaking process to create digital

works of art, the painter GUI project lays the foundation for creating your drawing

application that could pave the way for a smoother drawing process. The interface

can be seen in Figure 9-6.

For this first project, we will be looking to combine many of the concepts that you

learned in previous chapters, including menubars, toolbars, status bars, dialog boxes,

creating icons, and reimplementing event handlers, and combine them with the

QPainter class. On top of it all, we will be sprinkling on a few new ideas, focusing on how

to create tool tips and track the mouse’s position.

Figure 9-5. Applying a gradient to a square

Chapter 9 GraphiCs and animation in pyQt

241

 Painter GUI Solution
For the painter GUI in Listing 9-2, users will be able to draw using either a pencil or a

marker tool, erase, and select colors using the QColorDialog. The items in the menu allow

users to clear the current canvas, save their drawing, quit, and turn on or off antialiasing.

Listing 9-2. The code for creating the painter GUI

painter.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction, QLabel,

QToolBar, QStatusBar, QToolTip, QColorDialog, QFileDialog)

from PyQt5.QtGui import (QPainter, QPixmap, QPen, QColor, QIcon, QFont)

from PyQt5.QtCore import Qt, QSize, QPoint, QRect

Create widget to be drawn on

class Canvas(QLabel):

Figure 9-6. The painter GUI with toolbar on the left side of the window and the
mouse’s current coordinates displayed in the status bar

Chapter 9 GraphiCs and animation in pyQt

242

 def __init__(self, parent):

 super().__init__(parent)

 width, height = 900, 600

 self.parent = parent

 self.parent.setFixedSize(width, height)

 # Create pixmap object that will act as the canvas

 pixmap = QPixmap(width, height) # width, height

 pixmap.fill(Qt.white)

 self.setPixmap(pixmap)

 # Keep track of the mouse for getting mouse coordinates

 self.mouse_track_label = QLabel()

 self.setMouseTracking(True)

 # Initialize variables

 self.antialiasing_status = False

 self.eraser_selected = False

 self.last_mouse_pos = QPoint()

 self.drawing = False

 self.pen_color = Qt.black

 self.pen_width = 2

 def selectDrawingTool(self, tool):

 """

 Determine which tool in the toolbar has been selected.

 """

 if tool == "pencil":

 self.eraser_selected = False

 self.pen_width = 2

 elif tool == "marker":

 self.eraser_selected = False

 self.pen_width = 8

 elif tool == "eraser":

 self.eraser_selected = True

Chapter 9 GraphiCs and animation in pyQt

243

 elif tool == "color":

 self.eraser_selected = False

 color = QColorDialog.getColor()

 if color.isValid():

 self.pen_color = color

 def mouseMoveEvent(self, event):

 """

 Handle mouse movements.

 Track coordinates of mouse in window and display in the status bar.

 """

 mouse_pos = event.pos()

 if (event.buttons() and Qt.LeftButton) and self.drawing:

 self.mouse_pos = event.pos()

 self.drawOnCanvas(mouse_pos)

 self.mouse_track_label.setVisible(True)

 sb_text = "Mouse Coordinates: ({}, {})".format(mouse_pos.x(),

mouse_pos.y())

 self.mouse_track_label.setText(sb_text)

 self.parent.status_bar.addWidget(self.mouse_track_label)

 def drawOnCanvas(self, points):

 """

 Performs drawing on canvas.

 """

 painter = QPainter(self.pixmap())

 if self.antialiasing_status:

 painter.setRenderHint(QPainter.Antialiasing)

 if self.eraser_selected == False:

 pen = QPen(QColor(self.pen_color), self.pen_width)

 painter.setPen(pen)

 painter.drawLine(self.last_mouse_pos, points)

 # Update the mouse's position for next movement

 self.last_mouse_pos = points

Chapter 9 GraphiCs and animation in pyQt

244

 elif self.eraser_selected == True:

 # Use the eraser

 eraser = QRect(points.x(), points.y(), 12, 12)

 painter.eraseRect(eraser)

 painter.end()

 self.update()

 def newCanvas(self):

 """

 Clears the current canvas.

 """

 self.pixmap().fill(Qt.white)

 self.update()

 def saveFile(self):

 """

 Save a .png image file of current pixmap area.

 """

 file_format = "png"

 default_name = os.path.curdir + "/untitled." + file_format

 file_name, _ = QFileDialog.getSaveFileName(self, "Save As",

 default_name, "PNG Format (*.png)")

 if file_name:

 self.pixmap().save(file_name, file_format)

 def mousePressEvent(self, event):

 """

 Handle when mouse is pressed.

 """

 if event.button() == Qt.LeftButton:

 self.last_mouse_pos = event.pos()

 self.drawing = True

 def mouseReleaseEvent(self, event):

 """

 Handle when mouse is released.

Chapter 9 GraphiCs and animation in pyQt

245

 Check when eraser is no longer being used.

 """

 if event.button() == Qt.LeftButton:

 self.drawing = False

 elif self.eraser_selected == True:

 self.eraser_selected = False

 def paintEvent(self, event):

 """

 Create QPainter object.

 This is to prevent the chance of the painting being lost

 if the user changes windows.

 """

 painter = QPainter(self)

 target_rect = QRect()

 target_rect = event.rect()

 painter.drawPixmap(target_rect, self.pixmap(), target_rect)

class PainterWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 #self.setMinimumSize(700, 600)

 self.setWindowTitle('9.1 – Painter GUI')

 QToolTip.setFont(QFont('Helvetica', 12))

 self.createCanvas()

 self.createMenu()

 self.createToolbar()

 self.show()

Chapter 9 GraphiCs and animation in pyQt

246

 def createCanvas(self):

 """

 Create the canvas object that inherits from QLabel.

 """

 self.canvas = Canvas(self)

 # Set the main window's central widget

 self.setCentralWidget(self.canvas)

 def createMenu(self):

 """

 Set up the menu bar and status bar.

 """

 # Create file menu actions

 new_act = QAction('New Canvas', self)

 new_act.setShortcut('Ctrl+N')

 new_act.triggered.connect(self.canvas.newCanvas)

 save_file_act = QAction('Save File', self)

 save_file_act.setShortcut('Ctrl+S')

 save_file_act.triggered.connect(self.canvas.saveFile)

 quit_act = QAction("Quit", self)

 quit_act.setShortcut('Ctrl+Q')

 quit_act.triggered.connect(self.close)

 # Create tool menu actions

 anti_al_act = QAction('AntiAliasing', self, checkable=True)

 anti_al_act.triggered.connect(self.turnAntialiasingOn)

 # Create the menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(new_act)

 file_menu.addAction(save_file_act)

Chapter 9 GraphiCs and animation in pyQt

247

 file_menu.addSeparator()

 file_menu.addAction(quit_act)

 # Create tools menu and add actions

 file_menu = menu_bar.addMenu('Tools')

 file_menu.addAction(anti_al_act)

 self.status_bar = QStatusBar()

 self.setStatusBar(self.status_bar)

 def createToolbar(self):

 """

 Create toolbar to contain painting tools.

 """

 tool_bar = QToolBar("Painting Toolbar")

 tool_bar.setIconSize(QSize(24, 24))

 # Set orientation of toolbar to the left side

 self.addToolBar(Qt.LeftToolBarArea, tool_bar)

 tool_bar.setMovable(False)

 # Create actions and tool tips and add them to the toolbar

 pencil_act = QAction(QIcon("icons/pencil.png"), 'Pencil', tool_bar)

 pencil_act.setToolTip('This is the Pencil.')

 pencil_act.triggered.connect(lambda: self.canvas.

selectDrawingTool("pencil"))

 marker_act = QAction(QIcon("icons/marker.png"), 'Marker', tool_bar)

 marker_act.setToolTip('This is the Marker.')

 marker_act.triggered.connect(lambda: self.canvas.

selectDrawingTool("marker"))

 eraser_act = QAction(QIcon("icons/eraser.png"), "Eraser", tool_bar)

 eraser_act.setToolTip('Use the Eraser to make it all

disappear.')

 eraser_act.triggered.connect(lambda: self.canvas.

selectDrawingTool("eraser"))

Chapter 9 GraphiCs and animation in pyQt

248

 color_act = QAction(QIcon("icons/colors.png"), "Colors", tool_bar)

 color_act.setToolTip('Choose a Color from the Color dialog.')

 color_act.triggered.connect(lambda: self.canvas.

selectDrawingTool("color"))

 tool_bar.addAction(pencil_act)

 tool_bar.addAction(marker_act)

 tool_bar.addAction(eraser_act)

 tool_bar.addAction(color_act)

 def turnAntialiasingOn(self, state):

 """

 Turn antialiasing on or off.

 """

 if state:

 self.canvas.antialiasing_status = True

 else:

 self.canvas.antialiasing_status = False

 def leaveEvent(self, event):

 """

 QEvent class that is called when mouse leaves screen's space. Hide

mouse coordinates in status bar if mouse leaves

 the window.

 """

 self.canvas.mouse_track_label.setVisible(False)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setAttribute(Qt.AA_DontShowIconsInMenus, True)

 window = PainterWindow()

 sys.exit(app.exec_())

The final GUI can be seen in Figure 9-6.

Chapter 9 GraphiCs and animation in pyQt

249

 Explanation
The painter GUI allows users to draw images on the canvas area. Unlike in the previous

example where painting occurred on the main widget, for this example we will see

how to subclass QLabel and reimplement its painting and mouse event handlers. The

handling for some of the event handlers in this application was adapted from the Qt

document web site.1

The program contains two classes – the Canvas class for drawing and the

PainterWindow class for creating the menu and toolbar.

 Creating the Canvas Class

Subclassing QLabel and reimplementing its paintEvent() method is a much easier

way to manage drawing on a label object. We then create a pixmap and pass it to

setPixmap(). Since QPixmap can be used as a QPaintDevice, using a pixmap makes

handling the drawing and displaying of pixels much simpler. Also, using QPixmap means

that we can set an initial background color using fill().

Next, we need to initialize a few variables and objects.

• mouse_track_label – A label for displaying the mouse’s current

position

• eraser_selected – True if the eraser is selected

• antialiasing_status – True if the user has checked the menu item

for using antialiasing

• last_mouse_pos – Keep track of the mouse’s last position when the

left mouse button is pressed or when the mouse moves

• drawing – True if the left mouse button is pressed, indicating the user

might be drawing

• pen_color, pen_width – Variables that hold the initial values of the

pen and brush

1 https://doc.qt.io/qt-5/qtwidgets-widgets-scribble-example.html

Chapter 9 GraphiCs and animation in pyQt

https://doc.qt.io/qt-5/qtwidgets-widgets-scribble-example.html

250

Since the user will use the mouse to draw in the GUI window, we need to handle the

events when the mouse button is pressed or released and when the mouse is moved.

We can use setMouseTracking() to keep track of the mouse cursor and return its

coordinates in mouseMoveEvent(). Those coordinates are displayed in the status bar.

If the user presses the left mouse button while the cursor is in the window, we set

drawing equal to True and store the current value of the mouse in last_mouse_pos. Then

drawOnCanvas() is called in the moveMouseEvent().

The user has four choices in the toolbar, including a pencil, marker, eraser,

and a color selector. If a user selects a tool from the toolbar, a signal triggers the

selectDrawingTool() slot, updating the current tool and painter settings.

The actual drawing is handled in drawOnCanvas(). An instance of QPainter is

created that draws on the pixmap. We also check whether the eraser_selected is True or

False to test whether we can draw or erase. The reimplementation of the paintEvent()

creates a painter for the canvas area and draws the pixmap using drawPixmap(). By first

drawing on a QPixmap in the drawOnCanvas() method and then copying the QPixmap

onto the screen in the paintEvent(), we can ensure that our drawing won’t be lost if the

window is minimized.

The Canvas class also includes methods for clearing and saving the pixmap.

 Creating the PainterWindow Class

The PainterWindow class creates the main menu, toolbar, tool tips for each of the buttons

in the toolbar, and an instance of the Canvas class.

The File menu contains actions for clearing the canvas, saving the image, and

quitting the application. The Tools menu contains a checkable menu item that turns

antialiasing on or off.

The toolbar creates the actions and icons for the drawing tools. If a button is clicked,

it triggers the Canvas class’s selectDrawingTool() slot.

The reimplemented leaveEvent() handles if the mouse cursor moves outside the

main window and sets the mouse_track_label’s visibility to False.

 Handling Mouse Movement Events

This project displays the mouse’s current x and y coordinates in the status bar. You may

not want this kind of functionality, so the following code shows the basics for turning

mouse tracking on and setting up mouseMoveEvent() to return the x and y values:

Chapter 9 GraphiCs and animation in pyQt

251

Turn mouse tracking on

self.setMouseTracking(True)

 def mouseMoveEvent(self, event):

 mouse_pos = event.pos()

 pos_text = "Mouse Coordinates: ({}, {})".format(mouse_pos.x(),

mouse_pos.y())

 print(pos_text)

Mouse move events occur whenever the mouse is moved, or when a mouse button is

pressed or released.

 Creating Tool Tips for Widgets

A user may often find themselves wondering about what some widget or action in a

menu or toolbar actually does in an application. Tool tips are useful little bits of text

that can be displayed to inform someone of a widget’s function. Tool tips can be applied

to any widget by using the setToolTip() method. Tips can display rich text formatted

strings as shown in the following sample of code and in Figure 9-7. The font style and

appearance of a tool tip can be adapted to fit your preferences.

 eraser_act.setToolTip('Use the Eraser to make it all disappear.')

Figure 9-7. The tool tip that is displayed when the user hovers over the eraser
button

Chapter 9 GraphiCs and animation in pyQt

252

 Project 9.2 – Animation with QPropertyAnimation
The following project serves as an introduction to Qt’s Graphics View Framework and

the QAnimationProperty class. With the framework, applications can be created that

allow users to interact with the items in the window.

A Graphics View is comprised of three components:

 1. A scene created from the QGraphicsScene class. The scene creates

the surface for managing 2D graphical items and must be created

along with a view to visualize a scene.

 2. QGraphicsView provides the view widget for visualizing the

elements of a scene, creating a scroll area that allows user to

navigate in the scene.

 3. Items in the scene are based on the QGraphicsItem class. Users

can interact with graphical items through mouse and key events,

and drag and drop. Items also support collision detection.

QAnimationProperty is used to animate the properties of widgets and items.

Animations in GUIs can be used for animating widgets. For example, you could animate

a button that grows, shrinks, or rotates, or text that smoothly moves around in the

window, or create widgets that fade in and out or change colors. QAnimationProperty

only works with objects that inherit the QObject class. QObject is the base class for all

objects created in PyQt.

Qt provides a number of simple items that inherit QGraphicsItem, including basic

shapes, text, and pixmaps. These items already provide support for mouse and keyboard

interaction. However, QGraphicsItem does not inherit QObject. Therefore, if you want to

animate a graphics item with QPropertyAnimation, you must first create a new class that

inherits from QObject and define new properties for the item.

Figure 9-8 shows an example of the scene we are going to create in this project.

Chapter 9 GraphiCs and animation in pyQt

253

 Animation Solution
In the following application, you will find out how to create new properties for items

using pyqtProperty, learn how to animate objects using the QPropertyAnimation class,

and create a Qt Graphics View for displaying the items and animations. The code for

creating simple animations can be found in Listing 9-3.

Listing 9-3. Code for animating objects in Qt’s Graphics View Framework

animation.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QGraphicsView, QGraphicsScene,

QGraphicsPixmapItem)

from PyQt5.QtCore import (QObject, QPointF, QRectF,

 QPropertyAnimation, pyqtProperty)

from PyQt5.QtGui import QPixmap

Figure 9-8. The car and tree objects that move across the scene in the window

Chapter 9 GraphiCs and animation in pyQt

254

Create Objects class that defines the position property of

instances of the class using pyqtProperty.

class Objects(QObject):

 def __init__(self, image_path):

 super().__init__()

 item_pixmap = QPixmap(image_path)

 resize_item = item_pixmap.scaledToWidth(150)

 self.item = QGraphicsPixmapItem(resize_item)

 def _set_position(self, position):

 self.item.setPos(position)

 position = pyqtProperty(QPointF, fset=_set_position)

class AnimationScene(QGraphicsView):

 def __init__(self):

 super().__init__()

 self.initializeView()

 def initializeView(self):

 """

 Initialize the graphics view and display its contents

 to the screen.

 """

 self.setGeometry(100, 100, 700, 450)

 self.setWindowTitle('9.2 - Animation Example')

 self.createObjects()

 self.createScene()

 self.show()

 def createObjects(self):

 """

 Create instances of the Objects class, and set up the objects

 animations.

 """

Chapter 9 GraphiCs and animation in pyQt

255

 # List that holds all of the animations.

 animations = []

 # Create the car object and car animation.

 self.car = Objects('images/car.png')

 self.car_anim = QPropertyAnimation(self.car, b"position")

 self.car_anim.setDuration(6000)

 self.car_anim.setStartValue(QPointF(-50, 350))

 self.car_anim.setKeyValueAt(0.3, QPointF(150, 350))

 self.car_anim.setKeyValueAt(0.6, QPointF(170, 350))

 self.car_anim.setEndValue(QPointF(750, 350))

 # Create the tree object and tree animation.

 self.tree = Objects('images/trees.png')

 self.tree_anim = QPropertyAnimation(self.tree, b"position")

 self.tree_anim.setDuration(6000)

 self.tree_anim.setStartValue(QPointF(750, 150))

 self.tree_anim.setKeyValueAt(0.3, QPointF(170, 150))

 self.tree_anim.setKeyValueAt(0.6, QPointF(150, 150))

 self.tree_anim.setEndValue(QPointF(-150, 150))

 # Add animations to the animations list, and start the

 # animations once the program begins running.

 animations.append(self.car_anim)

 animations.append(self.tree_anim)

 for anim in animations:

 anim.start()

 def createScene(self):

 """

 Create the graphics scene and add Objects instances

 to the scene.

 """

 self.scene = QGraphicsScene(self)

 self.scene.setSceneRect(0, 0, 700, 450)

Chapter 9 GraphiCs and animation in pyQt

256

 self.scene.addItem(self.car.item)

 self.scene.addItem(self.tree.item)

 self.setScene(self.scene)

 def drawBackground(self, painter, rect):

 """

 Reimplement QGraphicsView's drawBackground() method.

 """

 scene_rect = self.scene.sceneRect()

 background = QPixmap("images/highway.jpg")

 bg_rectf = QRectF(background.rect())

 painter.drawPixmap(scene_rect, background, bg_rectf)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = AnimationScene()

 sys.exit(app.exec_())

A still image from the animation project is shown in Figure 9-8.

 Explanation
Since we are going to create a Graphics Scene, we need to import QGraphicsScene,

QGraphicsView, and one of the QGraphicsItem classes. For this program, we import

QGraphicsPixmapItem since we will be working with pixmaps. New Qt properties can be

made using pyqtProperty.

Since QObject does not have a position property, we need to define one with

pyqtProperty in the Objects class. QGraphicsPixmapItem() creates a pixmap that can be

added into the QGraphicsScene. We create a position property that allows us to set and

update the position of the object using fset. _set_position() passes the position to

the QGraphicsItem.setPos() method, setting the position of the item to the coordinates

specified by QPointF. Underscores in front of variable, method, or class names are used

to denote private functions.

 def _set_position(self, position):

 self.item.setPos(position)

 position = pyqtProperty(QPointF, fset=_set_position)

Chapter 9 GraphiCs and animation in pyQt

257

The goal of this project is to animate two items, a car and a tree, in a

QGraphicsScene. Let’s first create the objects and the animations that will be placed into

the scene. For this scene, the two items will move at the same time. Qt provides other

classes for handling groups of animations, but for this example, the QPropertyAnimation

and the animations list are used to keep track of the multiple animations.

Create the car item as an instance of the Objects class, and pass car and the

position setter to QPropertyAnimation(). QPropertyAnimation will update the

position’s value so that the car moves across the scene. To animate items, use

setDuration() to set the amount of time the object moves in milliseconds, and specify

start and end values of the property with setStartValue() and setEndValue(). The

animation for the car is 6 seconds and starts off-screen on the left side and travels to the

right. The tree is set up in a similar manner, but traveling in the opposite direction.

The setKeyValueAt() method allows us to create key frames at the given steps with

the specified QPointF values. Using the key frames, the car and tree will appear to slow

down as they pass in the scene. The start() method begins the animation.

Setting up a scene is simple. Create an instance of the scene, set the scene’s size, add

objects and their animations using addItem(), and then call setScene().

Finally, a scene can be given a background using QBrush. If you want to

use a background image, you will need to reimplement the QGraphicView’s

drawBackground() method like we do in this example.

 Project 9.3 – RGB Slider Custom Widget
For this chapter’s final project, we are going to take a look at making a custom, functional

widget in PyQt. While PyQt offers a variety of widgets for building GUIs, every once in a

while you might find yourself needing to create your own. One of the benefits of creating

a customized widget is that you can either design a general widget that can be used by

many different applications or create an application-specific widget that allows you to

solve a specific problem.

There are quite a few techniques that you can use to create your own widgets, most

which we have already seen in previous examples.

• Modifying the properties of PyQt’s widgets by using built-in methods,

such as setAlignment(), setTextColor(), and setRange()

• Creating style sheets to change a widget’s existing behavior and

appearances

Chapter 9 GraphiCs and animation in pyQt

258

• Subclassing widgets and reimplementing event handlers, or adding

properties dynamically to QObject classes

• Creating composite widgets which are made up of two more types of

widgets and arranged together using a layout

• Designing a completely new widget that subclasses QWidget and has

its own unique properties and appearance

The RGB slider, shown in Figure 9-9, actually is created by combining a few of

the preceding techniques listed. The widget uses Qt’s QSlider and QSpinBox widgets

for selecting RGB values and displays the color on a QLabel. The look of the sliders is

modified by using style sheets. All of the widgets are then assembled into a parent widget

which we can then import into other PyQt applications.

 PyQt’s Image Handling Classes
In previous examples, we have only worked with QPixmap for handling image data. Qt

actually provides four different classes for working with images, each with their own

special purposes.

QPixmap is the go-to choice for displaying images on the screen. Pixmaps can be

used on QLabel widgets, or even on push buttons and other widgets that can display

icons. QImage is optimized for reading, writing, and manipulating images, allowing

direct access to an image’s pixel data. QImage can also act as paint device.

Conversion between QImage and QPixmap is also possible. One possibility for

using the two classes together is to load an image file with QImage, manipulate

the image data, and then convert the image to a pixmap before displaying it on the

screen. The RGB slider widget shows an example of how to convert between the

two classes.

QBitmap is a subclass of QPixmap and provides monochrome (1-bit depth)

pixmaps. QPicture is a paint device that replays QPainter commands, that is, you

can create a picture from whatever device you are painting on. Pictures created with

QPicture are resolution independent, appearing the same on any device.

Chapter 9 GraphiCs and animation in pyQt

259

Our custom widget uses two types of widgets for selecting RGB values – QSpinBox,

which was introduced in Chapter 4, and a new widget, QSlider.

 The QSlider Widget
The QSlider class provides a developer with a tool for selecting integer values within

a bounded range. Sliders provide users with a convenient means for quickly selecting

values or changing settings with only the movement of a simple handle. By default,

sliders are arranged vertically, but that can be changed by passing Qt.Horizontal to the

constructor.

Figure 9-9. A custom widget used to select colors using sliders and spin boxes

Chapter 9 GraphiCs and animation in pyQt

260

In the following bit of code, you can see how to create an instance of QSlider, set the

slider’s maximum range value, and connect to valueChanged() to emit a signal when the

slider’s value has changed:

slider = QSlider(Qt.Horizontal, self)

Default values are from 0 to 99

slider.setMaximum(200)

slider.valueChanged[int].connect(self.printSliderValue)

def printSliderValue(self, value):

 print(value)

An example of stylized slider widgets can be seen in Figure 9-9.

 RGB Slider Solution
The RGB slider, which can be found in Listing 9-4, is a custom widget created by

combining a few of Qt’s built-in widgets – QLabel, QSlider, and QSpinBox. The

appearance of the sliders is adjusted using style sheets so that they give visual feedback

to the user about which RGB value they are adjusting. The sliders and spin boxes are

connected together so that their values are in sync and so that the user can see the

integer value on the RGB scale. The RGB values are also converted to hexadecimal

format and displayed on the widget.

The sliders and spin boxes can be used to either find out the RGB or hexadecimal

values for a color or use the reimplemented mousePressEvent() method so that a user

can click a pixel in an image to find out its value. An example of this is shown in

Listing 9-5, where you will also see how to import the RGB slider in a demo application.

Listing 9-4. Code for the RGB slider custom widget

rgb_slider.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

 QSlider, QSpinBox, QHBoxLayout, QVBoxLayout, QGridLayout)

from PyQt5.QtGui import QImage, QPixmap, QColor, qRgb, QFont

from PyQt5.QtCore import Qt

Chapter 9 GraphiCs and animation in pyQt

261

style_sheet = """

 QSlider:groove:horizontal{

 border: 1px solid #000000;

 background: white;

 height: 10 px;

 border-radius: 4px

 }

 QSlider#Red:sub-page:horizontal{

 background: qlineargradient(x1: 1, y1: 0, x2: 0, y2: 1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1: 0, y1: 1, x2: 1, y2: 1,

 stop: 0 #1C1C1C, stop: 1 #FF0000);

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider::add-page:horizontal {

 background: #FFFFFF;

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider::handle:horizontal {

 background: qlineargradient(x1:0, y1:0, x2:1, y2:1,

 stop:0 #EEEEEE, stop:1 #CCCCCC);

 border: 1px solid #4C4B4B;

 width: 13px;

 margin-top: -3px;

 margin-bottom: -3px;

 border-radius: 4px;

 }

 QSlider::handle:horizontal:hover {

 background: qlineargradient(x1:0, y1:0, x2:1, y2:1,

 stop:0 #FFFFFF, stop:1 #DDDDDD);

Chapter 9 GraphiCs and animation in pyQt

262

 border: 1px solid #393838;

 border-radius: 4px;

 }

 QSlider#Green:sub-page:horizontal{

 background: qlineargradient(x1: 1, y1: 0, x2: 0, y2: 1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1: 0, y1: 1, x2: 1, y2: 1,

 stop: 0 #1C1C1C, stop: 1 #00FF00);

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider#Blue:sub-page:horizontal{

 background: qlineargradient(x1: 1, y1: 0, x2: 0, y2: 1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1: 0, y1: 1, x2: 1, y2: 1,

 stop: 0 #1C1C1C, stop: 1 #0000FF);

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

"""

class RGBSlider(QWidget):

 def __init__(self, _image=None, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self._image = _image

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

Chapter 9 GraphiCs and animation in pyQt

263

 self.setMinimumSize(225, 300)

 self.setWindowTitle('9.3 - RGB Slider')

 # Store the current pixel value

 self.current_val = QColor()

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """

 Create instances of widgets and arrange them in layouts.

 """

 # Image that will display the current color set by

 # slider/spin_box values

 self.color_display = QImage(100, 100, QImage.Format_RGBX64)

 self.color_display.fill(Qt.black)

 self.cd_label = QLabel()

 self.cd_label.setPixmap(QPixmap.fromImage(self.color_display))

 self.cd_label.setScaledContents(True)

 # Create RGB sliders and spin boxes

 red_label = QLabel("Red")

 red_label.setFont(QFont('Helvetica', 14))

 self.red_slider = QSlider(Qt.Horizontal)

 self.red_slider.setObjectName("Red")

 self.red_slider.setMaximum(255)

 self.red_spinbox = QSpinBox()

 self.red_spinbox.setMaximum(255)

 green_label = QLabel("Green")

 green_label.setFont(QFont('Helvetica', 14))

 self.green_slider = QSlider(Qt.Horizontal)

 self.green_slider.setObjectName("Green")

 self.green_slider.setMaximum(255)

Chapter 9 GraphiCs and animation in pyQt

264

 self.green_spinbox = QSpinBox()

 self.green_spinbox.setMaximum(255)

 blue_label = QLabel("Blue")

 blue_label.setFont(QFont('Helvetica', 14))

 self.blue_slider = QSlider(Qt.Horizontal)

 self.blue_slider.setObjectName("Blue")

 self.blue_slider.setMaximum(255)

 self.blue_spinbox = QSpinBox()

 self.blue_spinbox.setMaximum(255)

 # Use the hex labels to display color values in hex format

 hex_label = QLabel("Hex Color ")

 self.hex_values_label = QLabel()

 hex_h_box = QHBoxLayout()

 hex_h_box.addWidget(hex_label, Qt.AlignRight)

 hex_h_box.addWidget(self.hex_values_label, Qt.AlignRight)

 hex_container = QWidget()

 hex_container.setLayout(hex_h_box)

 # Create grid layout for sliders and spin boxes

 grid = QGridLayout()

 grid.addWidget(red_label, 0, 0, Qt.AlignLeft)

 grid.addWidget(self.red_slider, 1, 0)

 grid.addWidget(self.red_spinbox, 1, 1)

 grid.addWidget(green_label, 2, 0, Qt.AlignLeft)

 grid.addWidget(self.green_slider, 3, 0)

 grid.addWidget(self.green_spinbox, 3, 1)

 grid.addWidget(blue_label, 4, 0, Qt.AlignLeft)

 grid.addWidget(self.blue_slider, 5, 0)

 grid.addWidget(self.blue_spinbox, 5, 1)

 grid.addWidget(hex_container, 6, 0, 1, 0)

 # Use [] to pass arguments to the valueChanged signal

 # The sliders and spin boxes for each color should display the same

values and be updated at the same time.

Chapter 9 GraphiCs and animation in pyQt

265

 self.red_slider.valueChanged['int'].connect(self.updateRedSpinBox)

 self.red_spinbox.valueChanged['int'].connect(self.updateRedSlider)

 self.green_slider.valueChanged['int'].connect(self.

updateGreenSpinBox)

 self.green_spinbox.valueChanged['int'].connect(self.

updateGreenSlider)

 self.blue_slider.valueChanged['int'].connect(self.

updateBlueSpinBox)

 self.blue_spinbox.valueChanged['int'].connect(self.

updateBlueSlider)

 # Create container for rgb widgets

 rgb_widgets = QWidget()

 rgb_widgets.setLayout(grid)

 v_box = QVBoxLayout()

 v_box.addWidget(self.cd_label)

 v_box.addWidget(rgb_widgets)

 self.setLayout(v_box)

 # The following methods update the red, green, and blue

 # sliders and spin boxes.

 def updateRedSpinBox(self, value):

 self.red_spinbox.setValue(value)

 self.redValue(value)

 def updateRedSlider(self, value):

 self.red_slider.setValue(value)

 self.redValue(value)

 def updateGreenSpinBox(self, value):

 self.green_spinbox.setValue(value)

 self.greenValue(value)

Chapter 9 GraphiCs and animation in pyQt

266

 def updateGreenSlider(self, value):

 self.green_slider.setValue(value)

 self.greenValue(value)

 def updateBlueSpinBox(self, value):

 self.blue_spinbox.setValue(value)

 self.blueValue(value)

 def updateBlueSlider(self, value):

 self.blue_slider.setValue(value)

 self.blueValue(value)

 # Create new colors based upon the changes to the RGB values

 def redValue(self, value):

 new_color = qRgb(value, self.current_val.green(), self.current_val.

blue())

 self.updateColorInfo(new_color)

 def greenValue(self, value):

 new_color = qRgb(self.current_val.red(), value, self.current_val.

blue())

 self.updateColorInfo(new_color)

 def blueValue(self, value):

 new_color = qRgb(self.current_val.red(), self.current_val.green(),

value)

 self.updateColorInfo(new_color)

 def updateColorInfo(self, color):

 """

 Update color displayed in image and set the hex values accordingly.

 """

 self.current_val = QColor(color)

 self.color_display.fill(color)

 self.cd_label.setPixmap(QPixmap.fromImage(self.color_display))

 self.hex_values_label.setText("{}".format(self.current_val.name()))

Chapter 9 GraphiCs and animation in pyQt

267

 def getPixelValues(self, event):

 """

 The method reimplements the mousePressEvent method.

To use, set a widget's mousePressEvent equal to getPixelValues, like so:

 image_label.mousePressEvent = rgb_slider.getPixelValues

 If an _image != None, then the user can select pixels in the

images, and update the sliders to get view the color, and get the

 rgb and hex values.

 """

 x = event.x()

 y = event.y()

 # valid() returns true if the point selected is a valid

 # coordinate pair within the image

 if self._image.valid(x, y):

 self.current_val = QColor(self._image.pixel(x, y))

 red_val = self.current_val.red()

 green_val = self.current_val.green()

 blue_val = self.current_val.blue()

 self.updateRedSpinBox(red_val)

 self.updateRedSlider(red_val)

 self.updateGreenSpinBox(green_val)

 self.updateGreenSlider(green_val)

 self.updateBlueSpinBox(blue_val)

 self.updateBlueSlider(blue_val)

An example of the stand-alone widget can be seen in Figure 9-9.

 Explanation
We need to import quite a few classes. One worth noting, qRgb, is actually a typedef that

creates an unsigned int representing the RGB value triplet (r, g, b).

The style sheet that follows the imports is used for changing the appearance of the

sliders. We want to modify their appearance so that they give the user more feedback

about which RGB values are being changed. Each slider is given an ID selector using the

Chapter 9 GraphiCs and animation in pyQt

268

setObjectName() method. If no ID selector is used in the style sheet, then that style is

applied to all of the QSlider objects. The sliders use linear gradients so that users can get

a visual representation of how much of the red, green, and blue colors are being used.

Refer back to Chapter 6 for a refresher about style sheets.

The RGBSlider class inherits from QWidget. For this class, the user can pass an image

and other arguments as parameters in the constructor.

class RGBSlider(QWidget):

 def __init__(self, _image=None, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self._image = _image

In setupWidgets(), a QImage object is created that will display the color created

from the RGB values. To display the image in the widget, convert the QImage to a QPixmap

using

self.cd_label.setPixmap(QPixmap.fromImage(self.color_display))

The contents of the label are then scaled to fit the window’s size.

Next, we create each of the red, green, and blue QSlider and QSpinBox widgets and

the labels for displaying the hexadecimal value. The sliders’ maximum values are set to

255, since RGB values are in the range of 0–255. These widgets are then arranged using

QGridLayout.

 Updating the Sliders and Spin Boxes

QSlider and QSpinBox can both emit the valueChanged() signal. We can connect the

sliders and spin boxes so that their values change relative to each other. For example,

when the red_slider emits a signal, it triggers the updateRedSpinBox() slot, which then

updates the red_spinbox value using setValue(). A similar process happens for the

red_spinbox and for the green and blue sliders and spin boxes.

red_slider.valueChanged['int'].connect(self.updateRedSpinBox)

red_spinbox.valueChanged['int'].connect(self.updateRedSlider)

def updateRedSpinBox(self, value):

 self.red_spinbox.setValue(value)

 self.redValue(value)

Chapter 9 GraphiCs and animation in pyQt

269

These widgets are contained in the rgb_widgets QWidget. The last thing to do is to

arrange the widgets in the main layout.

 Updating the Colors

When a signal triggers a slot, it uses value to update the corresponding slider or spin box

and then calls a function that will create a new color from the red, green, or blue values.

The redValue() function shown in the following code creates a new qRgb color, using

the new red value and the current_val’s green() and blue() colors. current_val is an

instance of QColor. The QColor class has functions that we can use to access an image’s

RGB (or other color formats) value.

def redValue(self, value):

 new_color = qRgb(value, self.current_val.green(), self.current_val.

blue())

 self.updateColorInfo(new_color)

The new_color is then passed to updateColorInfo(). Green and blue colors are

handled in a similar fashion. Next we have to create a QColor from the qRgb value and

store it in current_val. The QImage color_display is updated with fill(), which is

then converted to a QPixmap and displayed on the cd_label.

The last thing to do is to update the hexadecimal labels using QColor.name(). This

function returns the name of the color in the format “#RRGGBB”.

 Adding Methods to a Custom Widget

The options for methods that you could create for a custom widget are numerous. One

option is to create methods that allow the user to modify the behavior or appearance of

your custom widget. Another option is to use the event handlers to check for keyboard or

mouse events that could be used to interact with your GUI.

getPixelValue() is a reimplementation of the mousePressEvent() event handler. If

an image is passed into the RGBSlider constructor, then _image is not None, and the user

can click points in the image to get their corresponding pixel values. QColor.pixel()

gets a pixel’s RGB values. Then, we update current_val to use the selected pixel’s red,

blue, and green values. These values are then passed back into the functions that will

update the sliders, spin boxes, labels, and QImage.

The following example demonstrates how to implement the color selecting feature.

Chapter 9 GraphiCs and animation in pyQt

270

 RGB Slider Demo
One reason for creating a custom widget is so that it can be used in other applications.

The following program is a short example of how to import and set up the RGB

slider shown in Project 9.3. For this example, an image is displayed in the window

alongside the RGB slider. Users can click points within the image and see the RGB and

hexadecimal values change in real time.

This short program’s GUI can be seen in Figure 9-10.

Listing 9-5. Code that shows an example for using the RGB slider widget

rgb_demo.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

 QHBoxLayout)

from PyQt5.QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt

from rgb_slider import RGBSlider, style_sheet

class ImageDemo(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(225, 300)

 self.setWindowTitle('9.3 - Custom Widget')

 # Load image

 image = QImage("images/chameleon.png")

Chapter 9 GraphiCs and animation in pyQt

271

 # Create instance of RGB slider widget and pass the image as an

argument to RGBSlider

 rgb_slider = RGBSlider(image)

 image_label = QLabel()

 image_label.setAlignment(Qt.AlignTop)

 image_label.setPixmap(QPixmap().fromImage(image))

 # Reimplement the label's mousePressEvent

 image_label.mousePressEvent = rgb_slider.getPixelValues

 h_box = QHBoxLayout()

 h_box.addWidget(rgb_slider)

 h_box.addWidget(image_label)

 self.setLayout(h_box)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 # Use the style_sheet from rgb_slider

 app.setStyleSheet(style_sheet)

 window = ImageDemo()

 sys.exit(app.exec_())

The RGB slider is a general widget and can be imported into different types of

programs. An example can be seen in Figure 9-10.

Chapter 9 GraphiCs and animation in pyQt

272

 Explanation
Let’s get started by importing the classes we need, including the RGB slider and style

sheet from rgb_slider.py.

from rgb_slider import RGBSlider, style_sheet

In the ImageDemo class, set up the window, create an instance of the RGB slider,

and load an image. For this application, we are still creating the image as an instance of

QImage and then converting it to a QPixmap. QImage is used so that we can get access to

the image’s pixel information.

If you only want to use the slider to get different RGB or hexadecimal values, then the

application is finished. Or you could add other functionality to the RGB slider to use in

your own projects.

Figure 9-10. An example of including the custom RGB slider in an application

Chapter 9 GraphiCs and animation in pyQt

273

However, we could also reimplement the QLabel object’s mouse event handler.

When the mouse is clicked over a point in the label, we can use the x and y coordinates

from the event to update the values in the RGB slider widget using the RGBSlider class’s

getPixelValues() method.

image_label.mousePressEvent = rgb_slider.getPixelValues

 Summary
PyQt5’s graphics and painting system is an extensive topic that could be an entire book

by itself. The QPainter class is important for performing the painting on widgets and on

other paint devices. QPainter works together with the QPaintEngine and QPaintDevice

classes to provide the tools you need for creating two-dimensional drawing applications.

In Chapter 9, we have taken a look at some of QPainter’s functions for drawing lines,

primitive and abstract shapes. Together with QPen, QBrush, and QColor, QPainter is able

to create some rather beautiful digital images. To materialize this concept, we created

a simple painting application. Hopefully, you use that application and add even more

drawing features.

We also saw how to create properties for objects made from the QObject class and

then animate those objects in Qt Graphics View Framework. It is not covered in this

book, but you could use the Graphics View to create a GUI with items that are interactive.

Finally, one of PyQt’s strengths comes from being able to customize the built-in

widgets or to create your own widget that can then be imported seamlessly into other

applications.

In Chapter 10, we will learn about data handling using databases and PyQt.

Chapter 9 GraphiCs and animation in pyQt

275
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_10

CHAPTER 10

Introduction to Handling
Databases
Data is fundamental to the ways that modern business, communications, science,

and even our personal lives are changing. The information we create from our online

shopping, social media posts, search-engine queries, and location data is collected,

managed, and analyzed and can be used for a number of reasons, including to track

consumer patterns, to train artificial intelligence algorithms, or even to study the

geographic distribution of particular events such as diseases.

Data analysis is an important process, and this chapter will have a look at working

with structured data for GUI development. Data can be stored in many different formats,

including textual, visual, and multimedia.

In order to analyze data, we need to organize it into structures that we can store

and then access electronically through a computer system. Sometimes you may only be

working with a small dataset consisting of one or two files. Other times, you may need to

access certain portions of an entire database filled with private information. A database

is an organized collection of multiple datasets.

We generally view the data from files and databases in tables. The rows and columns

of a table typically work best for handling the style of data in data files. If we had a dataset

of employees in a company, each row might represent an individual employee in the

company, while each column depicts the different types of attributes for each employee,

such as their age, salary, and employee ID number.

This chapter will focus only on using PyQt’s table classes for displaying and

manipulating data. We will see how to use tables for creating the foundation for a

spreadsheet editor, for working with CSV files, and for working with the SQL database

management language. Of course, there are also other formats for viewing data, namely,

lists and trees, should they better fit your application’s requirements.

276

In Chapter 10, we are going to take a look at creating GUIs that will

• Take a look at PyQt’s convenience class for making tables,

QTableWidget

• Find out how to add context menus to GUI applications

• Learn about Qt’s model/view architecture for working with data

using the QTableView class

• See an example of how to work with CSV files in PyQt

• Introduce the QtSql module for working with SQL and databases

 The QTableWidget Class
The QTableWidget class provides a means to display and organize data in tabular form,
presenting the information in rows and columns. Using tables breaks down data into a
more quickly readable layout. An example of PyQt’s tables can be seen in Figure 10-1.

QTableWidget provides you with the standard tools that you will need to create
tables, including the ability to edit cells, set the number of rows and columns, and add
vertical or horizontal header labels.

To create a QTableWidget object, you could pass the number of rows and columns as
parameters to the QTableWidget, like in the following code:

table_widget = QTableWidget(10, 10, self)

Or you could construct a table using the setRowCount() and setColumnCount()
methods.

table_widget = QTableWidget()
Set initial row and column values
table_widget.setRowCount(10)
table_widget.setColumnCount(10)

You can also add items to the table programmatically using the setItem() method.
This allows you to set the row and column values, and an item for the cell using
QTableWidgetItem. In the following code, the item Kalani is inserted in row 0 and
column 0:

self.table_widget.setItem(0,0, QTableWidgetItem("Name"))

self.table_widget.setItem(1,0, QTableWidgetItem("Kalani"))

Chapter 10 IntroduCtIon to handlIng databases

277

Setting either horizontal or vertical header labels is done with

setHorizontalHeaderItem() or setHorizontalHeaderLabels(). Change Horizontal to

Vertical for the vertical header.

For the first example in this chapter, Listing 10-1, we will be taking a look at how to

use QTableWidget to create the foundation for an application to edit spreadsheets and

how to use a context menu to manipulate the contents of the table widget.

Listing 10-1. Example code that uses the QTableWidget class and some of its

functions

spreadsheet.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow,

 QTableWidget, QTableWidgetItem, QMenu, QAction,

 QInputDialog)

class SpreadsheetFramework(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initUI()

 def initUI(self):

 self.setMinimumSize(1000, 500)

 self.setWindowTitle("Spreadsheet - Table Example")

 # Used for copy and paste actions

 self.item_text = None

 self.createMenu()

 self.createTable()

 self.show()

 def createTable(self):

 """

 Set up table widget.

Chapter 10 IntroduCtIon to handlIng databases

278

 """

 self.table_widget = QTableWidget()

 # Set initial row and column values

 self.table_widget.setRowCount(10)

 self.table_widget.setColumnCount(10)

 # Set focus on cell in the table

 self.table_widget.setCurrentCell(0, 0)

 # When the horizontal headers are double-clicked, emit a signal

 self.table_widget.horizontalHeader().sectionDoubleClicked.

connect(self.changeHeader)

 self.setCentralWidget(self.table_widget)

 def createMenu(self):

 """

 Set up the menu bar.

 """

 # Create file menu actions

 quit_act = QAction("Quit", self)

 quit_act.setShortcut('Ctrl+Q')

 quit_act.triggered.connect(self.close)

 # Create table menu actions

 self.add_row_above_act = QAction("Add Row Above", self)

 self.add_row_above_act.triggered.connect(self.addRowAbove)

 self.add_row_below_act = QAction("Add Row Below", self)

 self.add_row_below_act.triggered.connect(self.addRowBelow)

 self.add_col_before_act = QAction("Add Column Before", self)

 self.add_col_before_act.triggered.connect(self.addColumnBefore)

 self.add_col_after_act = QAction("Add Column After", self)

 self.add_col_after_act.triggered.connect(self.addColumnAfter)

 self.delete_row_act = QAction("Delete Row", self)

 self.delete_row_act.triggered.connect(self.deleteRow)

Chapter 10 IntroduCtIon to handlIng databases

279

 self.delete_col_act = QAction("Delete Column", self)

 self.delete_col_act.triggered.connect(self.deleteColumn)

 self.clear_table_act = QAction("Clear All", self)

 self.clear_table_act.triggered.connect(self.clearTable)

 # Create the menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(quit_act)

 # Create table menu and add actions

 table_menu = menu_bar.addMenu('Table')

 table_menu.addAction(self.add_row_above_act)

 table_menu.addAction(self.add_row_below_act)

 table_menu.addSeparator()

 table_menu.addAction(self.add_col_before_act)

 table_menu.addAction(self.add_col_after_act)

 table_menu.addSeparator()

 table_menu.addAction(self.delete_row_act)

 table_menu.addAction(self.delete_col_act)

 table_menu.addSeparator()

 table_menu.addAction(self.clear_table_act)

 def contextMenuEvent(self, event):

 """

 Create context menu and actions.

 """

 context_menu = QMenu(self)

 context_menu.addAction(self.add_row_above_act)

 context_menu.addAction(self.add_row_below_act)

 context_menu.addSeparator()

 context_menu.addAction(self.add_col_before_act)

 context_menu.addAction(self.add_col_after_act)

Chapter 10 IntroduCtIon to handlIng databases

280

 context_menu.addSeparator()

 context_menu.addAction(self.delete_row_act)

 context_menu.addAction(self.delete_col_act)

 context_menu.addSeparator()

 copy_act = context_menu.addAction("Copy")

 paste_act = context_menu.addAction("Paste")

 context_menu.addSeparator()

 context_menu.addAction(self.clear_table_act)

 # Execute the context_menu and return the action selected.

mapToGlobal() translates the position of the window coordinates to

the global screen coordinates. This way we can detect if a right-

click occurred inside of the GUI and display the context menu.

 action = context_menu.exec_(self.mapToGlobal(event.pos()))

 # To check for actions selected in the context menu that were not

created in the menu bar.

 if action == copy_act:

 self.copyItem()

 if action == paste_act:

 self.pasteItem()

 def changeHeader(self):

 """

 Change horizontal headers by returning the text from input dialog.

 """

 col = self.table_widget.currentColumn()

 text, ok = QInputDialog.getText(self, "Enter Header", "Header text:")

 if ok and text != "":

 self.table_widget.setHorizontalHeaderItem(col,

QTableWidgetItem(text))

 else:

 pass

Chapter 10 IntroduCtIon to handlIng databases

281

 def copyItem(self):

 """

 If the current cell selected is not empty, store the text.

 """

 if self.table_widget.currentItem() != None:

 self.item_text = self.table_widget.currentItem().text()

 def pasteItem(self):

 """

 Set item for selected cell.

 """

 if self.item_text != None:

 row = self.table_widget.currentRow()

 column = self.table_widget.currentColumn()

 self.table_widget.setItem(row, column, QTableWidgetItem(self.

item_text))

 def addRowAbove(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.insertRow(current_row)

 def addRowBelow(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.insertRow(current_row + 1)

 def addColumnBefore(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.insertColumn(current_col)

 def addColumnAfter(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.insertColumn(current_col + 1)

 def deleteRow(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.removeRow(current_row)

 def deleteColumn(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.removeColumn(current_col)

Chapter 10 IntroduCtIon to handlIng databases

282

 def clearTable(self):

 self.table_widget.clear()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = SpreadsheetFramework()

 sys.exit(app.exec_())

Figure 10-1 displays the GUI for this application, including the QTableWidget with

examples of data already entered into some of the rows and columns, and horizontal

headers.

Figure 10-1. Example of a table from the QTableWidget class

 Explanation
When we import classes in the beginning of the program, we need to make sure to

include QTableWidget and QTableWidgetItem, which is used to create items for the

table widget. A table is composed of a group of cells, and the items are the bits of textual

information in each one. QTableWidget has a number of signals for checking to see if

cells or items have been clicked, double-clicked, or even altered.

Chapter 10 IntroduCtIon to handlIng databases

283

Next, create the menubar with File and Table menus. QTableWidget includes a few

methods for manipulating table objects. The Table menu creates actions that put those

methods to use. These actions include

• Adding rows above or below the currently selected row using

insertRow()

• Adding columns before or after the currently selected column using

insertColumn()

• Deleting the current row or column using removeRow() or

removeColumn()

• Clearing the entire table, including items and headers with clear()

Since we are working with a table, if we are going to manipulate the rows or columns,

we first need to know which row or column is currently selected. For example, when

add_row_above_act is clicked, it triggers a signal that calls addRowAbove(). We first find

out the row that is selected using currentRow().

current_row = self.table_widget.currentRow()

self.table_widget.insertRow(current_row)

A new row is then inserted in the current row’s location, causing all other rows to

move down. For methods that manipulate columns, use the currentColumn() method.

Changing header labels in QTableWidget can either be done directly in code or by

using a slightly indirect approach. Headers for tables are created using QHeaderView

in the QTableView class (which we will cover later in this chapter’s project). Since

QTableWidget inherits from the QTableView class, we also have access to its functions.

In the following line of code, we are able to obtain the QHeaderView object using table_

widget.horizontalHeader(). From there, we can connect to the QHeaderView signal

sectionDoubleClicked(), checking to see if the user double-clicked a header section. If

they did, a signal triggers the changeHeader() method.

self.table_widget.horizontalHeader().sectionDoubleClicked.connect(self.

changeHeader)

From there, we get the column for the current header and show a QInputDialog to

get the header label from the user. Finally, the item for the horizontal header is set using

setHorizontalHeaderItem().

Chapter 10 IntroduCtIon to handlIng databases

284

 Creating Context Menus

This application also introduces how to create a context menu, sometimes called a
pop-up menu, that appears in the window due to a user’s interaction, such as when the
right mouse button is clicked. A context menu displays a list of commands, such as Back
Page or Reload Page, that make interacting with the GUI even more convenient. Context
menus can also be set for managing specific widgets.

Since context menus are caused by events, we can reimplement the
contextMenuEvent().

def contextMenuEvent(self, event):
 context_menu = QMenu(self)
 context_menu.addAction(self.add_row_above_act)

A context menu is typically created using QMenu(). You can either use existing
actions that are created in the menubar or the toolbar, or you can create new ones.
In the preceding example, two actions are created specifically for the context menu,
copy_act and paste_act. If a cell in the table is not empty, we “copy” the text to
item_text. In the pasteItem() slot, the current row and column of the selected cell is
checked. We then “paste” the item using setItem(). The copy and paste actions could
also be implemented using the QClipboard.

The context menu is displayed using exec_(). We pass self.mapToGlobal() as an
argument to get the coordinates of the mouse relative to the screen. An example of the

context menu can be seen in Figure 10-2.

Figure 10-2. Example of a context menu that displays actions for editing the table
widget

Chapter 10 IntroduCtIon to handlIng databases

285

The QTableWidget is actually a convenience class, providing simplified access

to other classes, namely, QTableView and QAbstractModel. Before learning about

accessing databases with PyQt, you should take a moment to get familiar with the

model/view architecture used by Qt.

 Introduction to Model/View Programming
Qt, and therefore PyQt, needs a system to access, display, and manage data that can be

presented to the user. An older technique used for managing the relationship between

data and its visual representation for user interfaces is the model-view-controller

(MVC) software design pattern. MVC divides a program’s logic into three interlinked

components – a model, a view, and a controller.

PyQt utilizes a similar design pattern that is based on MVC – the model/view

architecture.

 The Components of the Model/View Architecture
Model/view programming also separates the logic between three components,

but combines the view and the controller objects, and introduces a new element – a

delegate. A diagram of the architecture can be seen in Figure 10-3.

• Model – The class that communicates with the data source, accessing

the data, and provides a point of connection between the data and

the view and delegate.

• View – The class that is responsible for displaying the data to the

user, either in list, table, or tree formats, and for retrieving items of

data from the model using model indexes. The view also has similar

functionality to the controller in the MVC pattern, which handles the

input from a user’s interaction with items displayed in the view.

• Delegate – The class that is in charge of painting items and providing

editors in the view. The delegate also communicates back to the

model if an item has been edited.

Using the model/view structure has quite a few benefits, specifically being ideal

for developing large-scale applications, giving more flexibility and control over the

appearance and editing of data items, simplifying the framework for displaying data, and

offering the ability to display multiple views of a model at the same time.

Chapter 10 IntroduCtIon to handlIng databases

286

 PyQt’s Model/View Classes
QTableWidget is one of a few convenience classes that PyQt provides for working with

data. QTableWidget creates a table of items, QListWidget displays a list of items, and

QTreeWidget provides a hierarchal treelike structure. An example of QListWidget can be

seen in Chapter 8. These widgets provide all the tools necessary to work with data, and

the view, model, and delegate classes all grouped into one class. However, these classes

are more focused on item-based interfaces and are less flexible than working with the

model/view structure. Each of these widgets inherits behavior from an abstract class,

QAbstractItemView, creating the behavior for selecting items and managing headers.

Figure 10-3. The model accesses data from the data source and provides data
to the view. The view presents items stored in a model and reflects changes to the
data in the model. The delegate is responsible for drawing items in the view and for
handling the editing of the data in the model. (Adapted from https://doc.qt.io/
web site)

Chapter 10 IntroduCtIon to handlIng databases

https://doc.qt.io/

287

An abstract class provides the points of connection, referred to as an interface,

between other components, providing functionality and default implementation of

features. Abstract classes can also be used to create custom models, views, or delegates.

• Models – All models are based on the QAbstractItemModel class,

defining the interface used by both views and delegates to access

data, and can be used to handle lists, tables, or trees. Data can

take on a number of forms, including Python data structures,

separate classes, files, or databases. Some other model classes are

QStandardItemModel, QFileSystemModel, and SQL-related models.

• Views – All views are based on QAbstractItemView and are used

to display data items from a data source, including QListView,

QTableView, and QTreeView.

• Delegates – The base class is QAbstractItemDelegate, responsible

for drawing items from the model and providing an editor widget

for modifying items. For example, while editing a cell in a table, the

editor widget, such as QLineEdit, is placed directly on top of the item.

The following example in Listing 10-2 demonstrates how to use the model/view

classes for displaying data using tables. Chapter 12 contains an extra example that shows

how to use QFileSystemModel and QTreeView to display the contents of directories on

your computer.

Communication between the models, views, and delegates is handled by signals

and slots. The model uses signals to notify the view about changes to the data. The view

generates signals that provide information about how a user interacts with items. Signals

from the delegate are emitted while editing an item to inform the model and view about

the state of the editor.

The following program illustrates how to use model/view programming to display

the contents of a small CSV file in a table view.

Listing 10-2. Code demonstrating how to design a GUI using model/view

architecture

model_view_ex.py

Import necessary modules

import sys, csv

from PyQt5.QtWidgets import (QApplication, QWidget, QTableView, QVBoxLayout)

Chapter 10 IntroduCtIon to handlIng databases

288

from PyQt5.QtGui import QStandardItemModel, QStandardItem

class DisplayParts(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 450, 300)

 self.setWindowTitle('Model and View Example')

 self.setupModelView()

 self.show()

 def setupModelView(self):

 """

 Set up standard item model and table view.

 """

 self.model = QStandardItemModel()

 table_view = QTableView()

 # From QAbstractItemView.ExtendedSelection = 3

 table_view.SelectionMode(3)

 table_view.setModel(self.model)

 # Set initial row and column values

 self.model.setRowCount(3)

 self.model.setColumnCount(4)

 self.loadCSVFile()

 v_box = QVBoxLayout()

 v_box.addWidget(table_view)

 self.setLayout(v_box)

Chapter 10 IntroduCtIon to handlIng databases

289

 def loadCSVFile(self):

 """

 Load header and rows from CSV file.

 Items are constructed before adding them to the table.

 """

 file_name = "files/parts.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

 self.model.setHorizontalHeaderLabels(header_labels)

 for i, row in enumerate(csv.reader(csv_f)):

 items = [QStandardItem(item) for item in row]

 self.model.insertRow(i, items)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayParts()

 sys.exit(app.exec_())

The simple GUI created using model/view programming can be seen in Figure 10-4.

Figure 10-4. Table created using the model/view architecture

Chapter 10 IntroduCtIon to handlIng databases

290

 Explanation
The preceding example displays the contents of a CSV file in a table view and

demonstrates how simple it is to use the model/view paradigm. Tables can be used to

organize and display various types of data, such as employee or inventory information.

We begin by importing classes, including QTableView from the QtWidgets

module, and the QStandardItemModel and QStandardItem classes from QtGui.

QStandardItemModel will supply the item-based model we need to work with the data;

QStandardItem provides the items that are used in the model.

Instances of both the model using QStandardItemModel as well as the QTableView

class are created. There are different ways that users can select items in the table

view. SelectionMode() handles how the view responds to users’ selections.

ExtendedSelection allows a user to select multiple items by pressing the Ctrl key

(Cmd on MacOS) while clicking an item in the view or to select several items using the

Shift key. To set up the view to display items in the model, you simply need to call the

setModel() method.

table_view.setModel(self.model)

In the previous example where we looked at QTableWidget, the setRowCount() and

setColumnCount() methods were called on the table widget. When using QTableView,

these methods are not built-in and instead are called on the model.

self.model.setRowCount(3)

Next, we call loadCSVFile() to read the contents of the data file and add the

items to the model to be displayed in the view. The table_view widget is added to the

QVBoxLayout.

In the loadCSVLayout() method, we can see how to read headers and data from

a CSV file. Comma-separated values (CSV) is a very common format used for storing

the data of spreadsheets and datasets. We open the file, set up the reader to read the

sequences in the file, get the headers, and skip to the next line. For this example, we

assume that the CSV file will have header labels. The horizontal labels of the model are

set using the list of items from the first row.

self.model.setHorizontalHeaderLabels(header_labels)

Chapter 10 IntroduCtIon to handlIng databases

291

For the remaining rows, we use a list comprehension to read the items for each row

into a list and use insertRow() to insert the list of items into the ith row. Figure 10-5

shows the contents of the parts.csv file.

Figure 10-5. Example of the data stored in a CSV file

 Working with SQL Databases in PyQt
Now that we have looked at PyQt’s model/view architecture and the QTableView class,

let’s move on and begin taking a look at how to use SQL for handling structured data.

 What Is SQL?
The Structured Query Language (SQL) is a programming language designed for

communication with databases. The data stored in databases is organized into a set of

tables. The rows of the tables are referred to as records, and the columns are referred

to as fields. Each column can only store a specific kind of information, such as names,

dates, or numbers.

With SQL, we can query the data stored in relational databases – a collection of

data items that have predefined relationships across multiple tables, marked by a unique

identifier known as a foreign key. In a relational database, multiple tables comprise a

schema, more than one schema makes up a database, and those databases are stored

on a server. Relational databases allow for multiple users to handle the data at the

same time. For this reason, accessing a database often requires a user to log in with a

username and password in order to connect to the database.

This section will focus solely on using SQL along with classes from PyQt’s QtSql

module for creating a very basic database management system interface.

Chapter 10 IntroduCtIon to handlIng databases

292

 Working with Database Management Systems

The QtSql module provides drivers for a number of relational database management
systems (RDBMS), including MySQL, Oracle, Microsoft SQL Server, PostgreSQL, and

SQLite versions 2 and 3. An RDBMS is the software that allows users to interact with

relational databases using SQL.

For the following examples, we will be using SQLite 3 since the library already comes

shipped with Python and is included with Qt. SQLite is not a client-server database

engine, so we do not need a database server. SQLite operates on a single file and is

mainly used for small desktop applications.

 Getting Familiar with SQL Commands

SQL already has its own commands for generating queries from databases. Using

these commands, a user can perform a number of different actions for interacting with

database tables. For example, the SQL SELECT statement can be used to retrieve records

from a table. If you had a database for a dog identification registry that contained a table

called dog_registry, you could select all of the records in the table with the following

statement:

SELECT * FROM dog_registry

When you are creating a query, you should consider where you are getting your data

from, including which database or table. You should keep in mind what fields you will

use. And be mindful of any conditions in the selection. For example, do you need to

display all the pets in the database, or only a specific breed of dog?

SELECT name FROM dog_registry WHERE breed = 'shiba inu'

Using different drivers will more than likely entail using different SQL syntax, but

PyQt can handle the differences. The following table lists a few common SQLite 3

commands that will be used in this chapter’s examples.

Chapter 10 IntroduCtIon to handlIng databases

293

Table 10-1. A list of common SQLite keywords and functions that can be

found in this chapter1

SQLite Keywords Description

AUTOINCREMENT generates a unique number automatically when a new record is

inserted into the table.

CREATE TABLE Creates a new table in the database.

DELETE deletes a row from the table.

DROP TABLE deletes a table that already exists in the database.

FOREIGN KEY Constraint that links two tables together.

FROM specifies the table to interact with when selecting or deleting data.

INTEGER signed integer data type.

INSERT INTO Inserts new rows into the table.

MAX() Function that finds the maximum value of a specified column.

NOT NULL Constraint that ensures a column will not accept null values.

PRIMARY KEY Constraint that uniquely identifies a record in the table.

REFERENCES used with ForeIgn KeY to specify another table which has relation

with the first table.

SELECT selects data from a database.

SET Identifies which columns and values should be updated.

UNIQUE Constraint that ensures all values in a column are unique.

UPDATE updates existing values in a row.

VALUES defines the values of an Insert Into statement.

VARCHAR Variable character data type for strings.

WHERE Filters the results of a query to include only records that satisfy

specific conditions.

1 A full list of SQLite keywords can be found at www.sqlite.org/lang_keywords.html.

In the following sections, we will see how to create a user interface that can be used

to view a database’s information in a table view.

Chapter 10 IntroduCtIon to handlIng databases

http://www.sqlite.org/lang_keywords.html

294

 Project 10.1 – Account Management GUI
For this project, we are going to take a different approach to designing the account

management GUI. This section builds up to the final project by working through a

number of smaller example programs. There is a good deal of information to unpack,

and if this is your first time working with SQL, especially to build an interface in PyQt,

then the process for working with databases can become a little unclear.

Imagine you have a business and you want to create a database to keep track of

your employees’ information. You want to include information such as their first and

last names, employee IDs, e-mail addresses, departments, and the countries where

they work. (This could be extended to include more information such as salaries,

phone numbers, and dates of hire.) In the beginning, a small database is okay.

However, as your workforce builds, so will the information. Some employees may have

the same first or last name, or work in the same country. You need a way to manage

all of those employees so that fields in the database are populated with the correct

information and data types.

Using a relational database, we can avoid issues with the data’s integrity. We could

set up multiple tables, one for the different employees’ accounts and one for the

countries. For this example, we only use repeating country names to demonstrate how

to use PyQt’s classes for working with relational databases. Figure 10-6 displays the

account management GUI.

The project is broken down into the following parts:

 1. Introduce how to use QSqlDatabase to connect to databases and

QSqlQuery for creating queries

 2. A few examples of how to use QSqlQuery for working with

databases

 3. Introduce QSqlTableModel for working with databases with no

foreign keys

 4. Show how use to QSqlRelationalTableModel to create tables with

foreign key support

 5. Create the account management GUI

Chapter 10 IntroduCtIon to handlIng databases

295

 Working with QtSql
In this first example, we are going to see how to use QSqlQuery to create a small

database that we will be able to view in the account management GUI. The database

has two tables, accounts and countries. The two tables are linked together through the

country_id field in accounts and the id field in countries.

Listing 10-3. Code showing examples of how to create queries with QSqlQuery

create_database.py

Import necessary modules

import sys, random

from PyQt5.QtSql import QSqlDatabase, QSqlQuery

class CreateEmployeeData:

 """

 Create sample database for project.

Figure 10-6. The account management GUI. The last row of the table displays a
new record being added to the database

Chapter 10 IntroduCtIon to handlIng databases

296

 Class demonstrates how to connect to a database, create queries, and

create tables and records in those tables.

 """

 # Create connection to database. If db file does not exist,

 # a new db file will be created.

 database = QSqlDatabase.addDatabase("QSQLITE") # SQLite version 3

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 query = QSqlQuery()

 # Erase database contents so that we don't have duplicates

 query.exec_("DROP TABLE accounts")

 query.exec_("DROP TABLE countries")

 # Create accounts table

 query.exec_("""CREATE TABLE accounts (

 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 employee_id INTEGER NOT NULL,

 first_name VARCHAR(30) NOT NULL,

 last_name VARCHAR(30) NOT NULL,

 email VARCHAR(40) NOT NULL,

 department VARCHAR(20) NOT NULL,

 country_id VARCHAR(20) REFERENCES countries(id))""")

 # Positional binding to insert records into the database

 query.prepare("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

 VALUES (?, ?, ?, ?, ?, ?)""")

 first_names = ["Emma", "Olivia", "Ava", "Isabella", "Sophia", "Mia",

"Charlotte", "Amelia", "Evelyn", "Abigail", "Valorie", "Teesha",

"Jazzmin", "Liam", "Noah", "William", "James", "Logan", "Benjamin",

"Mason", "Elijah", "Oliver", "Jason", "Lucas", "Michael"]

Chapter 10 IntroduCtIon to handlIng databases

297

 last_names = ["Smith", "Johnson", "Williams", "Brown", "Jones",

"Garcia", "Miller", "Davis", "Rodriguez", "Martinez", "Hernandez",

"Lopez", "Gonzalez", "Wilson", "Anderson", "Thomas", "Taylor", "Moore",

"Jackson", "Martin", "Lee", "Perez", "Thompson", "White", "Harris"]

 employee_ids = random.sample(range(1000, 2500), len(first_names))

 countries = {"USA": 1, "India": 2, "China": 3, "France": 4, "Germany": 5}

 country_names = list(countries.keys())

 country_codes = list(countries.values())

 departments = ["Production", "R&D", "Marketing", "HR",

 "Finance", "Engineering", "Managerial"]

 # Add the values to the query to be inserted in accounts

 for f_name in first_names:

 l_name = last_names.pop()

 email = (l_name + f_name[0]).lower() + "@job.com"

 country_id = random.choice(country_codes)

 dept = random.choice(departments)

 employee_id = employee_ids.pop()

 query.addBindValue(employee_id)

 query.addBindValue(f_name)

 query.addBindValue(l_name)

 query.addBindValue(email)

 query.addBindValue(dept)

 query.addBindValue(country_id)

 query.exec_()

 # Create the second table, countries

 country_query = QSqlQuery()

 country_query.exec_("""CREATE TABLE countries (

 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 country VARCHAR(20) NOT NULL)""")

 country_query.prepare("INSERT INTO countries (country) VALUES (?)")

Chapter 10 IntroduCtIon to handlIng databases

298

 # Add the values to the query to be inserted in countries

 for name in country_names:

 country_query.addBindValue(name)

 country_query.exec_()

 print("[INFO] Database successfully created.")

 sys.exit(0)

if __name__ == "__main__":

 CreateEmployeeData()

To see an example of what the data this program created looks like in a table view,

refer back to Figure 10-6.

 Explanation

This program does not create a GUI, so we only need to import the QSqlDatabase and

QSqlQuery classes from QtSql. We will use QSqlDatabase to create the connection that

allows access to a database; QSqlQuery can be used to perform SQL statements in PyQt.

We begin by creating a connection to the database in the CreateEmployeeData class.

The addDatabase() function allows you to specify the SQL driver that you want to use.

The examples in this chapter use SQLite 3 so we pass QSQLITE as the argument. Once

the database object is created, we can set the other connection parameters, including

which database we are going to use, the username, password, host name, and the

connection port. For SQLite 3 we only need to specify the name of the database with

setDatabaseName(). You can also create multiple connections to a database.

database = QSqlDatabase.addDatabase("QSQLITE")

database.setDatabaseName("files/accounts.db")

Note a connection is referenced by its name, not by the name of the database.
If you want to give your database a name, pass it as an argument after the driver
in the addDatabase() method. If no name is specified, then that connection
becomes the default connection.

Chapter 10 IntroduCtIon to handlIng databases

299

If the accounts.db file does not already exist, then it will be created. Once the

parameters are set, you must call open() to activate the connection to the database. A

connection cannot be used until it is opened.

Now that the connections are established, we can begin querying our database. You

typically might start with databases that already have data in them, but in this example,

we are going to see how we can create a database using SQL commands. To query a

database using PyQt, we first need to create an instance of QSqlQuery. Then, we call the

exec_() method to execute the SQL statement in query. In the following lines, we want

to delete the table accounts:

query = QSqlQuery()

query.exec_("DROP TABLE accounts")

Next, let’s create a new accounts table using exec_() and CREATE TABLE accounts.

Each table entry will have its own unique id by using AUTOINCREMENT. The accounts table

will include information for an employee’s ID, first name, last name, e-mail, department,

and the country where they are located. We also create a countries table which holds

the names of the employee’s countries and is linked to the accounts table using the

following line:

country_id VARCHAR(20) REFERENCES countries(id))

The country_id references the countries table’s id. Figure 10-7 illustrates the

connection between the two tables.

Figure 10-7. Illustration of the relations between the accounts and countries tables

Chapter 10 IntroduCtIon to handlIng databases

300

The next thing to do is to insert records into our tables. We could continue to use

exec_() to execute queries, but this would become tedious if we have a large database.

To insert multiple records at the same time, we separate the query from the actual values

being inserted using placeholders and the prepare() method. The placeholder will

act as a temporary variable, allowing users to supply different data using the same SQL

query. In the following code, the positional placeholders are the ?. PyQt supports two

placeholder syntaxes – ODBC style which uses ? and the Oracle style which uses :field_name.

query.prepare("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

 VALUES (?, ?, ?, ?, ?, ?)""")

Each field, such as employee_id or first_name, is associated with one of the

placeholders. Since we used AUTOINCREMENT for id, we do not have to include the field or

a placeholder in the query.

The prepare() method gets the query ready for execution. If the query is prepared

successfully, then values can be binded to the fields using the addBindValue() method.

Next, we create the values for the first_name, last_name, and other fields using

Python lists and dictionaries. A for loop is then used where we bind the values to the

placeholders. exec_() is called at the end of each iteration to insert the values into the

accounts table. The countries table is prepared in a similar manner.

Once the tables are populated, we call sys.exit(0) to exit the program.

 Example Queries Using QSqlQuery
The following code in Listing 10-4 is not necessary for the accounting manager GUI, but

it does give a few more examples for understanding how to input, update, and delete

records with SQL in a PyQt application.

Listing 10-4. Demonstrating how to insert, update, and delete records using SQL

and PyQt

query_examples.py

Import necessary modules

import sys

from PyQt5.QtSql import QSqlDatabase, QSqlQuery

Chapter 10 IntroduCtIon to handlIng databases

301

class QueryExamples:

 def __init__(self):

 super().__init__()

 self.createConnection()

 self.exampleQueries()

 def createConnection(self):

 """

 Create connection to the database.

 """

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 def exampleQueries(self):

 """

 Examples of working with the database.

 """

 # Executing a simple query

 query = QSqlQuery()

 query.exec_("SELECT first_name, last_name FROM accounts WHERE

employee_id > 2000")

 # Navigating the result set

 while (query.next()):

 f_name = str(query.value(0))

 l_name = str(query.value(1))

 print(f_name, l_name)

 # Inserting a single new record into the database

 query.exec_("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

Chapter 10 IntroduCtIon to handlIng databases

302

 VALUES (2134, 'Robert', 'Downey', 'downeyr@job.com',

'Managerial', 1)""")

 # Update a record in the database

 query.exec_("UPDATE accounts SET department = 'R&D' WHERE employee_

id = 2134")

 # Delete a record from the database

 query.exec_("DELETE FROM accounts WHERE employee_id <= 1500")

 sys.exit(0)

if __name__ == "__main__":

 QueryExamples()

This code will modify the database created in Listing 10-3. To view the changes, run

this code and then run the code in one of the following examples to see how the tables

have been manipulated.

 Explanation

This example also has no GUI window. If you run this program after running the

program in Listing 10-3, you will notice how the queries here modify the database.

We start by creating a connection to the SQLite 3 driver and add the database created

in the previous program, accounts.db. Next, we complete the connection using open().

In exampleQueries(), let’s take a look at how to use the QSqlQuery class and SQL

commands to query the database. We create a new QSqlQuery instance to search for the

first and last names of the employees whose employee IDs are greater than 2000.

query.exec_("SELECT first_name, last_name FROM accounts WHERE

employee_id > 2000”)

With that query, we could use the values from first_name and last_name to update or

delete records. To cycle through the results of the query, we use next(). Other methods that

could be used to navigate the results include next(), previous(), first(), and last().

To insert a single record, we can use the INSERT SQL command. You could also add

multiple records into the database. Refer back to Listing 10-3 to see how. In this query, we

insert specific values for each field. To update records, use UPDATE. We update the department

value for the employee that was just inserted. Finally, to delete a record, use DELETE.

Chapter 10 IntroduCtIon to handlIng databases

303

 Working with QSqlTableModel
We are finally going to create a GUI for visualizing the database’s contents. In this table,

we are only going to visualize the accounts table to demonstrate the QSqlTableModel
class, an interface that is useful for reading and writing database records when you

only need to use a single table with no links to other tables. The following program

will demonstrate how to use model/view programming to view the contents of a SQL

database.

We could use QSqlQuery to do all of the database work, but combining the class

with PyQt’s model/view paradigm allows for us to design GUIs that make the data

management process simpler.

Listing 10-5. Code to view SQL database using QSqlTableModel

table_model.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QWidget, QTableView,

QVBoxLayout, QMessageBox, QHeaderView)

from PyQt5.QtSql import QSqlDatabase, QSqlTableModel

class TableDisplay(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(1000, 500)

 self.setWindowTitle('SQL Table Model')

 self.createConnection()

 self.createTable()

 self.show()

Chapter 10 IntroduCtIon to handlIng databases

304

 def createConnection(self):

 """

 Set up the connection to the database.

 Check for the tables needed.

 """

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {'accounts'}

 tables_not_found = tables_needed - set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, 'Error',

 f'The following tables are missing from the database:

{tables_not_found}')

 sys.exit(1) # Error code 1 – signifies error

 def createTable(self):

 """

 Create the table using model/view architecture.

 """

 # Create the model

 model = QSqlTableModel()

 model.setTable('accounts')

 table_view = QTableView()

 table_view.setModel(model)

 table_view.horizontalHeader().setSectionResizeMode(QHeaderView.

Stretch)

Chapter 10 IntroduCtIon to handlIng databases

305

 # Populate the model with data

 model.select()

 # Main layout

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(table_view)

 self.setLayout(main_v_box)

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = TableDisplay()

 sys.exit(app.exec_())

Figure 10-8 displays the contents of the database in a table view. Notice how the

header labels display the field names used when the database was created. We will see

how to set header labels later. Also, the country_id column currently only displays

numbers associated with the different names in the countries table. If you only want

to display specific columns, the following code lets you select which ones you want to

display:

model.setQuery(QSqlQuery("SELECT id, employee_id, first_name, last_name

FROM accounts"))

Figure 10-8. The table created using QSqlTableModel

Chapter 10 IntroduCtIon to handlIng databases

306

 Explanation

Get started by importing the PyQt classes, including QSqlTableModel. Next, create the

TableDisplay class for displaying the contents of the database.

In the createConnection() method, we connect to the database and activate the

connection with open(). This time, let’s check to make sure that the tables we want to

use are in the database. If they cannot be found, then a dialog box will be displayed to

inform the user and the program will close.

The instances of the QSqlTableModel and the QTableView are created in the

createTable() method. For the model, we need to set the database table we want to use

with setTable().

 model.setTable('accounts')

Next, set the model for table_view using setModel(). To make the table stretch to fit

into the view horizontally, we use the following line:

table_view.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)

This line also handles stretching the table when the window resizes.

Finally, populate the model with data using select(). If you have made changes

to the table but have not submitted them, then select() will cause the edited items to

return back to their previous states.

 Working with QSqlRelationalTableModel
Next we are going to see how to use PyQt’s QSqlRelationalTableModel for working with

relational databases. The QSqlRelationalTableModel class provides a model for viewing

and editing data in a SQL table, with support for using foreign keys. A foreign key is a

SQL constraint used to link tables together. The application in Listing 10-6 builds upon

the previous example in Listing 10-5.

Listing 10-6. Code to view SQL database using QSqlRelationalTableModel

relational_model.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QWidget, QTableView,

QVBoxLayout, QMessageBox, QHeaderView)

Chapter 10 IntroduCtIon to handlIng databases

307

from PyQt5.QtSql import (QSqlDatabase, QSqlRelationalTableModel,

QSqlRelation)

class TableDisplay(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(1000, 500)

 self.setWindowTitle('Relational Table Model')

 self.createConnection()

 self.createTable()

 self.show()

 def createConnection(self):

 """

 Set up the connection to the database.

 Check for the tables needed.

 """

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {'accounts', 'countries'}

 tables_not_found = tables_needed - set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, 'Error',

Chapter 10 IntroduCtIon to handlIng databases

308

 f'The following tables are missing from the database:

{tables_not_found}')

 sys.exit(1) # Error code 1 – signifies error

 def createTable(self):

 """

 Create the table using model/view architecture.

 """

 # Create the model

 model = QSqlRelationalTableModel()

 model.setTable('accounts')

 # Set up relationship for foreign keys

 model.setRelation(model.fieldIndex('country_id'),

QSqlRelation('countries', 'id', 'country'))

 table_view = QTableView()

 table_view.setModel(model)

 table_view.horizontalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 # Populate the model with data

 model.select()

 # Main layout

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(table_view)

 self.setLayout(main_v_box)

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = TableDisplay()

 sys.exit(app.exec_())

If you compare Figure 10-9 to Figure 10-8, you will notice that data in the last column

has been updated to display the names of the countries and that the header has been

changed to country.

Chapter 10 IntroduCtIon to handlIng databases

309

 Explanation

This time we need to import QSqlRelationalModel since we are working with relational

databases and foreign keys. Also, QSqlRelation stores the information about SQL

foreign keys.

We connect to the database like before, except this time we are checking for both

tables, accounts and countries. Next we create instances of the QSqlRelationalModel

and QTableView classes. The setTable() method is used to cause the model to fetch the

accounts table’s information.

The country_id field in accounts is mapped to countries’ field ID. Using

setRelation(), we can cause table_view to present the countries’ country field to the

user. The following code shows how to do this, and the results can be seen in Figure 10-9:

model.setRelation(model.fieldIndex('country_id'), QSqlRelation('countries',

'id', 'country'))

The rest of the program is the same as Listing 10-5.

Figure 10-9. The table created using QSqlRelationalTableModel

Chapter 10 IntroduCtIon to handlIng databases

310

 Account Management GUI Solution
The account management GUI uses the QSqlRelationalModel for managing the

accounts and countries tables. We use the concepts we learned in the previous

sections and design a GUI with features for managing the database directly rather than

programmatically.

The account management GUI lets a user add, delete, and sort the contents of the

table. Rows added or deleted will also update the database. This example also briefly

shows how to create a delegate for editing data. The code for the account management

GUI can be found in Listing 10-7.

Listing 10-7. Code for the account management GUI

account_manager.py

Import necessary modules

import sys, os

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QComboBox, QTableView, QHeaderView,

 QHBoxLayout, QVBoxLayout, QSizePolicy, QMessageBox)

from PyQt5.QtSql import (QSqlDatabase, QSqlQuery,

 QSqlRelationalTableModel, QSqlRelation,

 QSqlRelationalDelegate)

from PyQt5.QtCore import Qt

from PyQt5.QtGui import QIcon

class AccountManager(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(1000, 600)

 self.setWindowTitle('10.1 – Account Management GUI')

Chapter 10 IntroduCtIon to handlIng databases

311

 self.createConnection()

 self.createTable()

 self.setupWidgets()

 self.show()

 def createConnection(self):

 database = QSqlDatabase.addDatabase("QSQLITE") # SQLite version 3

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {'accounts', 'countries'}

 tables_not_found = tables_needed - set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, 'Error',

 f'The following tables are missing from the database:

{tables_not_found}')

 sys.exit(1) # Error code 1 - signifies error

 def createTable(self):

 """

 Set up the model, headers and populate the model.

 """

 self.model = QSqlRelationalTableModel()

 self.model.setTable('accounts')

 self.model.setRelation(self.model.fieldIndex('country_id'),

QSqlRelation('countries', 'id', 'country'))

 self.model.setHeaderData(self.model.fieldIndex('id'),

Qt.Horizontal, "ID")

 self.model.setHeaderData(self.model.fieldIndex('employee_id'),

Qt.Horizontal, "Employee ID")

 self.model.setHeaderData(self.model.fieldIndex('first_name'),

Qt.Horizontal, "First")

Chapter 10 IntroduCtIon to handlIng databases

312

 self.model.setHeaderData(self.model.fieldIndex('last_name'),

Qt.Horizontal, "Last")

 self.model.setHeaderData(self.model.fieldIndex('email'),

Qt.Horizontal, "E-mail")

 self.model.setHeaderData(self.model.fieldIndex('department'),

Qt.Horizontal, "Dept.")

 self.model.setHeaderData(self.model.fieldIndex('country_id'),

Qt.Horizontal, "Country")

 # Populate the model with data

 self.model.select()

 def setupWidgets(self):

 """

 Create instances of widgets, the table view and set layouts.

 """

 icons_path = "icons"

 title = QLabel("Account Management System")

 title.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)

 title.setStyleSheet("font: bold 24px")

 add_record_button = QPushButton("Add Employee")

 add_record_button.setIcon(QIcon(os.path.join(icons_path, "add_user.

png")))

 add_record_button.setStyleSheet("padding: 10px")

 add_record_button.clicked.connect(self.addRecord)

 del_record_button = QPushButton("Delete")

 del_record_button.setIcon(QIcon(os.path.join(icons_path, "trash_

can.png")))

 del_record_button.setStyleSheet("padding: 10px")

 del_record_button.clicked.connect(self.deleteRecord)

 # Set up sorting combo box

 sorting_options = ["Sort by ID", "Sort by Employee ID", "Sort by

First Name", "Sort by Last Name", "Sort by Department", "Sort by

Country"]

Chapter 10 IntroduCtIon to handlIng databases

313

 sort_name_cb = QComboBox()

 sort_name_cb.addItems(sorting_options)

 sort_name_cb.currentTextChanged.connect(self.setSortingOrder)

 buttons_h_box = QHBoxLayout()

 buttons_h_box.addWidget(add_record_button)

 buttons_h_box.addWidget(del_record_button)

 buttons_h_box.addStretch()

 buttons_h_box.addWidget(sort_name_cb)

 # Widget to contain editing buttons

 edit_buttons = QWidget()

 edit_buttons.setLayout(buttons_h_box)

 # Create table view and set model

 self.table_view = QTableView()

 self.table_view.setModel(self.model)

 self.table_view.horizontalHeader().setSectionResizeMode(QHeaderVie

w.Stretch)

 self.table_view.verticalHeader().setSectionResizeMode(QHeaderView.

Stretch)

 self.table_view.setSelectionMode(QTableView.SingleSelection)

 self.table_view.setSelectionBehavior(QTableView.SelectRows)

 # Instantiate the delegate

 delegate = QSqlRelationalDelegate(self.table_view)

 self.table_view.setItemDelegate(delegate)

 # Main layout

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(title, Qt.AlignLeft)

 main_v_box.addWidget(edit_buttons)

 main_v_box.addWidget(self.table_view)

 self.setLayout(main_v_box)

 def addRecord(self):

 """

 Add a new record to the last row of the table.

 """

Chapter 10 IntroduCtIon to handlIng databases

314

 last_row = self.model.rowCount()

 self.model.insertRow(last_row)

 id = 0

 query = QSqlQuery()

 query.exec_("SELECT MAX (id) FROM accounts")

 if query.next():

 id = int(query.value(0))

 def deleteRecord(self):

 """

 Delete an entire row from the table.

 """

 current_item = self.table_view.selectedIndexes()

 for index in current_item:

 self.model.removeRow(index.row())

 self.model.select()

 def setSortingOrder(self, text):

 """

 Sort the rows in table.

 """

 if text == "Sort by ID":

 self.model.setSort(self.model.fieldIndex('id'),

Qt.AscendingOrder)

 elif text == "Sort by Employee ID":

 self.model.setSort(self.model.fieldIndex('employee_id'),

Qt.AscendingOrder)

 elif text == "Sort by First Name":

 self.model.setSort(self.model.fieldIndex('first_name'),

Qt.AscendingOrder)

 elif text == "Sort by Last Name":

 self.model.setSort(self.model.fieldIndex('last_name'),

Qt.AscendingOrder)

 elif text == "Sort by Department":

 self.model.setSort(self.model.fieldIndex('department'),

Qt.AscendingOrder)

Chapter 10 IntroduCtIon to handlIng databases

315

 elif text == "Sort by Country":

 self.model.setSort(self.model.fieldIndex('country'),

Qt.AscendingOrder)

 self.model.select()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = AccountManager()

 sys.exit(app.exec_())

Your GUI should look similar to the one displayed in Figure 10-6.

 Explanation
After importing all of the PyQt classes we need and setting up the AccountManager class,

next we need to connect to the accounts database just like we have previously done.

The createTable() method instantiates and sets up the model, creating the foreign

key between the two tables. The setHeaderData() method applies labels to each of the

columns by using fieldIndex() to locate the index of the given field name. An example

is given as follows:

self.model.setHeaderData(self.model.fieldIndex('id'), Qt.Horizontal, "ID")

The QTableView object, table_view, is created in the setupWidgets() method, along

with the GUI’s labels, push buttons, and combo box. For table_view, we set the model

and a few parameters. The table’s vertical and horizontal headers will stretch to fit the

window. QAbstractItemView.SingleSelection only allows the user to select one item

at a time. QAbstractItemView.SelectRows only allows rows to be selected in the table.

The two push buttons, add_record_button and del_record_button, emit signals

that add and delete rows in the table. For addRecord(), we check how many rows are

in the table with rowCount() and use insertRow() to insert an empty row at the end of

table view. We query the database to find out the largest id value. If a user does not enter

a value for id into the row, then the new record’s id is equal to the highest id value plus

one. For deleteRecord(), we get the currently selected row’s index and delete the row

with removeRow(). Then we update the model using select().

Chapter 10 IntroduCtIon to handlIng databases

316

For the QComboBox, when the selection has changed, the widget emits a

currentTextChanged() signal. We use the text to determine how to set the view’s order

for displaying records.

In the model/view architecture, the delegate provides the default tools for painting

item data in the view and for providing editor widgets for item models. The appearance

and editor widgets of the item delegate can be customized. For the account management

GUI, the delegate used is the QSqlRelationalDelegate. This class provides a combo box

for editing data in fields that are foreign keys for other tables.

delegate = QSqlRelationalDelegate(self.table_view)

self.table_view.setItemDelegate(delegate)

An example of the combo box used by the delegate can be seen in the bottom-right

corner of Figure 10-6. The widget appears whenever the user needs to select a country

from the countries table that will be displayed in the view.

 Summary
PyQt provides convenience classes for lists, tables, and trees. QListWidget,

QTableWidget, and QTreeWidget are useful when you need to view data for general

situations. While they are practical for creating quick interfaces for editing data, if you

need to have more than one widget for displaying a dataset in an application, you must

also create a process for keeping the datasets and the widgets in agreement. A better

option is to use PyQt’s model/view architecture.

With the model/view paradigm, you are able to have multiple views in a single

application that work in unison to view and update the database. You also have more

control over the look of the editing widgets and the items in the view with the delegate.

There are different formats available for storing and managing data. One example is

the CSV format which is convenient for reading, parsing, and storing smaller datasets.

However, for large databases that contain multiple tables with relational characteristics,

a relational database management system that uses SQL is a more preferable option for

managing the data. SQL allows users to select desired information that might be shared

between tables, as well as insert, update, and delete existing records easily.

The model/view architecture is very useful for working with SQL databases,

providing the tools necessary for connecting to a database and viewing its content. PyQt

provides three models for working with SQL databases. For an editable data model

Chapter 10 IntroduCtIon to handlIng databases

317

without foreign key support, use QSqlTableModel. If you have tables with relational

properties, use QSqlRelationalTableModel. Finally, the QSqlQueryModel is beneficial

when you only need to read the results of a query without editing them.

Over the course of this book, we took a look at a few applications that could have

benefited greatly by being able to connect to databases using SQL. The login GUI in

Chapter 3 could connect to a database to retrieve usernames and passwords. The to-do

list GUI in Chapter 4 could be completely redesigned to include a QCalendarWidget

(covered in Chapter 12) that keeps track of events by using a database. There is also

the pizza ordering GUI from Chapter 6. You could implement a database for storing

customers’ information, using a relational database for adding new customers, updating

existing ones, and preventing data from being duplicated.

In Chapter 11, we will take a brief look at multithreading in PyQt.

Chapter 10 IntroduCtIon to handlIng databases

319
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_11

CHAPTER 11

Managing Threads
We have all experienced that moment when running some process such as copying files

between directories or launching a new instance of an application causes a program to

lag for just a moment and, in some cases, to freeze completely. We are then forced to

either wait for the current task to complete or Ctrl+Alt+Delete our way to freedom. When

you are creating GUIs, you should be aware of how to handle, or more preferably have

foresight about avoiding, these situations.

The motivation behind this chapter is twofold – to help you design more robust GUI

applications and to inform you of how you might be able to handle situations where your

applications need to run long processes. Any action that causes event processing in an

application to come to a standstill is bad for a user’s experience.

This chapter takes a look at

• How to implement threading with QThread

• A few other techniques for handling time-consuming processes

• The QProgressBar widget for giving visual feedback about a task’s

progression

 Introduction to Threading
A computer’s performance can be measured by the accuracy, efficiency, and speed at

which it can execute program instructions. Modern computers can take advantage of

their multicore processors to run those instructions in parallel, thereby increasing the

performance of computer applications that have been written to take advantage of the

multicore architecture.

The idea of performing tasks in a synchronous manner, that is, where only one

task is processed at a time until completion before moving on to the next task, can be

inefficient, especially for larger operations. What we need is a way to perform operations

concurrently. That is where threads and processes come into play.

320

Threads and processes are not the same thing. Without going too much into the

technical jargon, let’s try and understand the differences between the two. A process

is an instance of an application that requires memory and computer resources to run.

Opening up the word processor on your computer to write an essay is one process. While

writing your essay, you also need to search on the Internet for information. You now

have two separate processes running on your computer independently and in parallel.

What happens in one process is not influencing the other. Of course, you have multiple

tabs open in the web browser, and each tab is loading and updating information; those

tabs are working side by side with the web browser. This is where a thread becomes

important.

A thread is essential to the concurrency within an individual process. When a

process begins, it only has one thread, and multiple threads can be started within

a single process. These threads, just like the processes, are managed by the CPU.

Multithreading occurs when the CPU can handle multiple threads of execution

concurrently within one process. These threads are independent but also share the

process’s resources. Using multithreading allows for applications to be more responsive

to user’s inputs while other operations are occurring in the background, and to better

utilize a system’s resources.

On a system with only a single CPU, true parallelism is actually unachievable. In

these instances, the CPU is shared among the processes or threads. To switch between

threads, context switches are used to interrupt the current thread, save its state, and then

restore the next thread’s state. This gives the user a false appearance of parallelism.

To achieve true parallelism and create a truly concurrent system, a multicore

processor would allow threads in a multithreaded application to be assigned to different

processors.

 Threading in PyQt
Applications based on Qt are event based. When the event loop is started using exec_(),

a thread is created. This thread is referred to as the main thread of the GUI. Any events

that take place in the main thread, including the GUI itself, run synchronously within the

main event loop. To take advantage of threading, we need to create a secondary thread to

offload processing operations from the main thread.

Chapter 11 Managing threads

321

PyQt makes communicating between the main thread and secondary threads,

also referred to as worker threads, simple with signals and slots. This can be useful for

relaying feedback, allowing the user to interrupt a process, and for informing the main

thread that a process has finished. Since threads utilize the same address space, they can

share data very easily.

However, if multiple threads try to access shared data or resources concurrently, this can

cause crashes or memory corruption. Deadlock is another issue that can occur if two threads

are blocked because they are waiting for resources. PyQt provides a few classes, for example,

QMutex, QReadWriteLock, and QSemaphore, for avoiding these kinds of problems.

Note python also has a number of modules for handling threading
and processing tasks, including _thread, threading, asyncio, and
multiprocessing. While you can also use this modules, pyQt’s QThread and
other classes allow you to emit signals between the main and worker threads.

 Methods for Processing Long Events in PyQt
While this chapter focuses on using QThread, it is also a good idea to keep in mind that

there are also other ways that you might want to try before attempting to use threading

in your GUI. Implementing threading can lead to problems with concurrency and

identifying errors. Combined with signals and slots, PyQt provides a few different ways to

handle time-consuming operations.

Choosing which method is best for your application comes down to considering your

situation. The main methods, including threading, for handling these kinds of events are

listed as follows:

 1. If there is a process in your application that is causing it to freeze,

check to see if that process can be broken down into smaller

steps and perform them sequentially. Manually handle the

processing of long operations, and explicitly call QApplication.

processEvents() to process pending events. This works best if

your operations can be processed using a single thread.

 2. With QTimer and signals and slots, you can schedule operations to

be performed at certain intervals in the future.

Chapter 11 Managing threads

322

 3. Use QThread to create a worker thread that will perform long

operations in a separate thread. Derive a class from QThread,

reimplement run(), and use PyQt’s signal and slot mechanism

to communicate with the main thread. This method can help to

avoid blocking the main event loop.

 4. The QThreadPool and QRunnable classes can be used to divide

the work across the CPUs on your computer. Create a subclass of

QRunnable and reimplement the run() function; an instance of

QRunnable can then be passed to threads that are managed by

QThreadPool. QThreadPool handles the queuing and execution of

QRunnable instances for you.

There are even other options that may depend upon your application’s

requirements. Keep in mind that, while using threads could benefit your application,

they could also slow it down or cause errors if used incorrectly.

 Project 11.1 – File Renaming GUI
This chapter’s project, shown in Figure 11-1, actually stems from my own experiences.

Creating datasets for training neural networks often entails writing Python scripts

for labeling thousands of images and data files. Those scripts are generally written to

include some kind of visual feedback to the user about how the process is going in the

command line.

For this project, we are going to create a GUI that will allow us to select a local directory

and edit the names of files with the specified extension. The interface includes QTextEdit and

QProgressBar widgets as two different means of feedback about the file labeling process. This

application also takes advantage of the QThread class so that users are still able to interact

with the interface while the operations are being performed in the background.

Chapter 11 Managing threads

323

 The QProgressBar Widget
The QProgressBar widget visually relays the progress of an extended operation back

to the user. This feedback can also be used as reassurance that a process, such as a

download, installation, or file transfer, is still running. Some of the settings that can be

controlled include the widget’s orientation and range.

Refer to the project in this chapter for setting up the progress bar.

 File Renaming GUI Solution
The GUI window contains various buttons and editor widgets that allow the user to

manage file renaming. The user can select a directory using a QFileDialog. They can also

enter the new file name in the QLineEdit widget. Using the combo box, they can select

the file extension for the files they want to change.

The application uses threading to update the progress bar and display information

about the files being changed in the text edit and performs the actual renaming

operation. This is all done using signals and slots. The code for the file renaming

application can be found in Listing 11-1.

Figure 11-1. The interface for renaming files in a selected directory

Chapter 11 Managing threads

324

Listing 11-1. Code for the GUI that renames files in a directory using threading

file_rename_threading.py

import os, sys, time

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QProgressBar,

QLineEdit, QPushButton, QTextEdit, QComboBox, QFileDialog, QGridLayout)

from PyQt5.QtCore import pyqtSignal, QThread

style_sheet = """

 QProgressBar{

 background-color: #C0C6CA;

 color: #FFFFFF;

 border: 1px solid grey;

 padding: 3px;

 height: 15px;

 text-align: center;

 }

 QProgressBar::chunk{

 background: #538DB8;

 width: 5px;

 margin: 0.5px

 }

"""

Create worker thread for running tasks like updating the progress bar,

renaming photos,

displaying information in the text edit widget

class Worker(QThread):

 updateValueSignal = pyqtSignal(int)

 updateTextEditSignal = pyqtSignal(str, str)

 def __init__(self, dir, ext, prefix):

 super().__init__()

 self.dir = dir

 self.ext = ext

 self.prefix = prefix

Chapter 11 Managing threads

325

 def run(self):

 """

 The thread begins running from here. run() is only called after

start().

 """

 for (i, file) in enumerate(os.listdir(self.dir)):

 _, file_ext = os.path.splitext(file)

 if file_ext == self.ext:

 new_file_name = self.prefix + str(i) + self.ext

 src_path = os.path.join(self.dir, file)

 dst_path = os.path.join(self.dir, new_file_name)

 # os.rename(src, dst): src is original address of file to

be renamed

 # and dst is destination location with new name.

 os.rename(src_path, dst_path)

 #time.sleep(0.2) # Uncomment if process is too fast and

want to see the updates.

 self.updateValueSignal.emit(i + 1)

 self.updateTextEditSignal.emit(file, new_file_name)

 else:

 pass

 self.updateValueSignal.emit(0) # Reset the value of the progress bar

class RenameFilesGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(600, 250)

 self.setWindowTitle('11.1 - Change File Names GUI')

Chapter 11 Managing threads

326

 self.directory = ""

 self.cb_value = ""

 self.setupWidgets()

 self.show()

 def setupWidgets(self):

 """

 Set up the widgets and layouts for interface.

 """

 dir_label = QLabel("Choose Directory:")

 self.dir_line_edit = QLineEdit()

 dir_button = QPushButton('...')

 dir_button.setToolTip("Select file directory.")

 dir_button.clicked.connect(self.setDirectory)

 self.change_name_edit = QLineEdit()

 self.change_name_edit.setToolTip("Files will be appended with

numerical values. For example: filename01.jpg")

 self.change_name_edit.setPlaceholderText("Change file names to...")

 rename_button= QPushButton("Rename Files")

 rename_button.setToolTip("Begin renaming files in directory.")

 rename_button.clicked.connect(self.renameFiles)

 file_exts = [".jpg", ".jpeg", ".png", ".gif", ".txt"]

 # Create combo box for selecting file extensions.

 ext_cb = QComboBox()

 self.cb_value = file_exts[0]

 ext_cb.setToolTip("Only files with this extension will be changed.")

 ext_cb.addItems(file_exts)

 ext_cb.currentTextChanged.connect(self.updateCbValue)

 # Text edit is for displaying the file names as they are updated.

 self.display_files_edit = QTextEdit()

 self.display_files_edit.setReadOnly(True)

 self.progress_bar = QProgressBar()

 self.progress_bar.setValue(0)

Chapter 11 Managing threads

327

 # Set layout and widgets.

 grid = QGridLayout()

 grid.addWidget(dir_label, 0, 0)

 grid.addWidget(self.dir_line_edit, 1, 0, 1, 2)

 grid.addWidget(dir_button, 1, 2)

 grid.addWidget(self.change_name_edit, 2, 0)

 grid.addWidget(ext_cb, 2, 1)

 grid.addWidget(rename_button, 2, 2)

 grid.addWidget(self.display_files_edit, 3, 0, 1, 3)

 grid.addWidget(self.progress_bar, 4, 0, 1, 3)

 self.setLayout(grid)

 def setDirectory(self):

 """

 Choose the directory.

 """

 file_dialog = QFileDialog(self)

 file_dialog.setFileMode(QFileDialog.Directory)

 self.directory = file_dialog.getExistingDirectory(self, "Open

Directory", "", QFileDialog.ShowDirsOnly)

 if self.directory:

 self.dir_line_edit.setText(self.directory)

 # Set the max value of progress bar equal to max number of

files in the directory.

 num_of_files = len([name for name in os.listdir(self.

directory)])

 self.progress_bar.setRange(0, num_of_files)

 def updateCbValue(self, text):

 """

 Change the combo box value. Values represent the different file

extensions.

 """

 self.cb_value = text

Chapter 11 Managing threads

328

 def renameFiles(self):

 """

 Create instance of worker thread to handle the file renaming

process.

 """

 prefix_text = self.change_name_edit.text()

 if self.directory != "" and prefix_text != "":

 self.worker = Worker(self.directory, self.cb_value, prefix_

text)

 self.worker.updateValueSignal.connect(self.updateProgressBar)

 self.worker.updateTextEditSignal.connect(self.updateTextEdit)

 self.worker.start()

 else:

 pass

 def updateProgressBar(self, value):

 self.progress_bar.setValue(value)

 def updateTextEdit(self, old_text, new_text):

 self.display_files_edit.append("[INFO] {} changed to

{}.".format(old_text, new_text))

if __name__ == "__main__":

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = RenameFilesGUI()

 sys.exit(app.exec_())

The application’s GUI can be seen in Figure 11-1.

 Explanation
We start with importing Python and PyQt classes. The style sheet is used to modify the

appearance of the QProgressBar.

Let’s start by looking at the RenameFileGUI class. Here we set up the window and

other widgets, including push buttons for selecting the directory and starting the process

Chapter 11 Managing threads

329

for renaming files, line edit widgets, and the text edit and the progress bar widgets for

relaying feedback.

The user can select a directory using QFileDialog. Once a directory is chosen, the

user can enter the new file names into change_name_edit and select the file extension

for the types of files to change in the combo box.

Renaming the files could take place in the main thread. This wouldn’t be a problem

for a few files. However, if the user wants to work with a large number of files, this would

cause the GUI to be locked until the operations are finished. Therefore, the process for

renaming the files, along with updating the progress bar and the text edit widgets, is

performed in the worker thread.

For this project, we subclass QThread. An instance of the QThread class manages

only one thread. Two custom signals are created for updating the progress bar and text

edit widgets.

 updateValueSignal = pyqtSignal(int)

 updateTextEditSignal = pyqtSignal(str, str)

The reimplemented QThread method run() begins executing the thread. The time-

consuming operations – traversing the directory, renaming files, and emitting the signals

for updating the QProgressBar and QTextEdit – are performed in run(). However, this

method is not called directly. The QThread method start() is used to communicate

with the worker thread and begin executing the thread by calling run(). The start()

method is called in renameFiles().

 Summary
Preventing GUIs from becoming frozen while processing long operations is important

for a user’s experience. There are a few options for effectively handling blocking in your

application, including using timers and threads. PyQt makes using threading seem

relatively simple with QThread and the signal and slot mechanism. However, you must

be careful when using QThread to ensure that threads protect access to their own data.

While not displayed in this chapter’s short project, QThread also has methods, such as

started(), finished(), wait(), and quit(), for managing threads.

In Chapter 12, we will take a look at an array of projects that utilize different PyQt

classes.

Chapter 11 Managing threads

331
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_12

CHAPTER 12

Extra Projects
This book has tried to take a practical approach to creating GUIs. As you use PyQt5 and

Python more and more, you will find yourself learning about other modules and classes

that you will need in your applications. Each chapter set up an idea and worked hard

to break those projects down into their fundamental parts so that you could learn new

ideas along the way.

PyQt5 has quite a few modules for a variety of purposes, and the chapters in this

book only scratched the surface of the many possibilities for designing GUIs.

In Chapter 12, we will take a look at a few extra examples to give you ideas for

other projects or to help you in creating new types of user interfaces. These projects

will not go into great lengths of detail, but rather focus on explaining the key points

of each new program and leave it up to you to research the details that you are

unsure about, either by finding the answers in a different chapter or by searching

online for help.

The projects in this chapter will take a look at the following concepts:

• Displaying directories and files using the QFileSystemModel class

• Working with multiple-document interface (MDI) applications and

the QCamera class

• Creating a simple clock GUI with QDate and QTime

• Exploring the QCalendarWidget class

• Building Hangman with QPainter and other PyQt classes

• Building the framework for a web browser using the

QtWebEngineWidgets module

332

 Project 12.1 – Directory Viewer GUI
For every operating system, there needs to be some method for a user to access the

data and files located in it. These files are stored in a hierarchical file system, displaying

drives, directories, and files in groups so that you only view the files that you are

interested in seeing.

Whether you use a command-line interface or a graphical user interface, there needs

to be some way to create, remove, and rename files and directories. However, if you

are already interacting with one interface, it may be more convenient to locate files or

directories that you need in your current application rather than opening new windows

or other programs.

This project shows you how to set up an interface for viewing the files on your

local system. There are two key classes that will be introduced in this project –

QFileSystemModel, which grants you access to the file system on your computer, and

QTreeView, which provides a visual representation of data using a treelike structure

(Listing 12-1).

Listing 12-1. Code for directory viewer GUI

display_directory.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QFileSystemModel,

QTreeView, QFrame, QAction, QFileDialog, QVBoxLayout)

class DisplayDirectory(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(500, 400)

 self.setWindowTitle('12.1 – View Directory GUI')

Chapter 12 extra projeCts

333

 self.createMenu()

 self.setupTree()

 self.show()

 def createMenu(self):

 """

 Set up the menu bar.

 """

 open_dir_act = QAction('Open Directory...', self)

 open_dir_act.triggered.connect(self.chooseDirectory)

 root_act = QAction("Return to Root", self)

 root_act.triggered.connect(self.returnToRootDirectory)

 # Create menubar

 menu_bar = self.menuBar()

 #menu_bar.setNativeMenuBar(False) # Uncomment for MacOS

 # Create file menu and add actions

 dir_menu = menu_bar.addMenu('Directories')

 dir_menu.addAction(open_dir_act)

 dir_menu.addAction(root_act)

 def setupTree(self):

 """

 Set up the QTreeView so that it displays the contents

 of the local filesystem.

 """

 self.model = QFileSystemModel()

 self.model.setRootPath('')

 self.tree = QTreeView()

 self.tree.setIndentation(10) # Indentation of items

 self.tree.setModel(self.model)

Chapter 12 extra projeCts

334

 # Set up container and layout

 frame = QFrame()

 frame_v_box = QVBoxLayout()

 frame_v_box.addWidget(self.tree)

 frame.setLayout(frame_v_box)

 self.setCentralWidget(frame)

 def chooseDirectory(self):

 """

 Select a directory to display.

 """

 file_dialog = QFileDialog(self)

 file_dialog.setFileMode(QFileDialog.Directory)

 directory = file_dialog.getExistingDirectory(self, "Open

Directory", "", QFileDialog.ShowDirsOnly)

 self.tree.setRootIndex(self.model.index(directory))

 def returnToRootDirectory(self):

 """

 Re-display the contents of the root directory.

 """

 self.tree.setRootIndex(self.model.index(''))

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayDirectory()

 sys.exit(app.exec_())

The directory viewer application can be seen in Figure 12-1.

Chapter 12 extra projeCts

335

 Explanation
Begin by importing the necessary modules for this GUI. For this project, we will need to

use the model/view paradigm to view the data on your computer. For more information

about model/view programming, refer to Chapter 10.

The QFileSystemModel class provides the model we need to access data on the local

file system. While not included in this project, you could also use QFileSystemModel

to rename or remove files and directories, create new directories, or use it with other

display widgets as part of a browser.

The QTreeView class will be used to display the contents of the model in a

hierarchical tree view.

For this GUI, we will create a Directories menu with actions that will either let the

user view a specific directory or return back to the root directory. The menu system can

be seen in Figure 12-2.

Figure 12-1. Directory viewer displaying the local system’s directories

Chapter 12 extra projeCts

336

Create an instance of the QFileSystemModel class, model, and set the directory to the

root path on your system.

 self.model.setRootPath('') # Sets path to system's root path

Set the model for the tree object to show the contents of the file system using

setModel(). To choose a different directory, the user can select Open Directory... from

the menu and a file dialog will appear. A new directory can then be selected and set as

the new root path to be displayed in the tree object.

 self.tree.setRootIndex(self.model.index(directory))

 Project 12.2 – Camera GUI
When creating GUIs, there are a number of ways to tackle the issue of interfaces with

multiple windows. You could use stacked or tabbed widgets, but these methods only

allow for one window to be displayed at a time. Another option is to use dock widgets

and allow windows to be floatable or used as secondary windows.

For this project, you will see how to set up a multiple-windowed GUI using the

QMdiArea class. QMdiArea provides the area for displaying MDI windows. Multiple-

document interface (MDI) is a type of interface that allows users to work with multiple

windows at the same time. MDI applications require less memory resources and make

the process of laying out subwindows much simpler.

Let’s take a look at how to use the QCamera class to create an MDI application

(Listing 12-2).

Figure 12-2. The menu for the directory viewer GUI

Chapter 12 extra projeCts

337

Listing 12-2. Example code to show how to create MDI applications

camera.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QListWidget,

QListWidgetItem, QLabel, QGroupBox, QPushButton, QVBoxLayout, QMdiArea,

QMdiSubWindow,)

from PyQt5.QtMultimedia import QCamera, QCameraInfo, QCameraImageCapture

from PyQt5.QtMultimediaWidgets import QCameraViewfinder

from PyQt5.QtCore import Qt

class Camera(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen

 """

 self.setGeometry(100, 100, 600, 400)

 self.setWindowTitle('12.2 – Camera GUI')

 self.setupWindows()

 self.show()

 def setupWindows(self):

 """

 Set up QMdiArea parent and subwindows.

 Add available cameras on local system as items to

 list widget.

 """

 # Create images directory if it does not already exist

 path = 'images'

 if not os.path.exists(path):

 os.makedirs(path)

Chapter 12 extra projeCts

338

 # Set up list widget that will display identified

 # cameras on your computer.

 picture_label = QLabel("Press 'Spacebar' to take pictures.")

 camera_label = QLabel("Available Cameras")

 self.camera_list_widget = QListWidget()

 self.camera_list_widget.setAlternatingRowColors(True)

 # Add availableCameras to a list to be displayed in

 # list widget. Use QCameraInfo() to list available cameras.

 self.cameras = list(QCameraInfo().availableCameras())

 for camera in self.cameras:

 self.list_item = QListWidgetItem()

 self.list_item.setText(camera.deviceName())

 self.camera_list_widget.addItem(self.list_item)

 # Create button that will allow user to select camera

 choose_cam_button = QPushButton("Select Camera")

 choose_cam_button.clicked.connect(self.selectCamera)

 # Create child widgets and layout for camera controls subwindow

 controls_gbox = QGroupBox()

 controls_gbox.setTitle("Camera Controls")

 v_box = QVBoxLayout()

 v_box.addWidget(picture_label, alignment=Qt.AlignCenter)

 v_box.addWidget(camera_label)

 v_box.addWidget(self.camera_list_widget)

 v_box.addWidget(choose_cam_button)

 controls_gbox.setLayout(v_box)

 controls_sub_window = QMdiSubWindow()

 controls_sub_window.setWidget(controls_gbox)

 controls_sub_window.setAttribute(Qt.WA_DeleteOnClose)

 # Create viewfinder subwindow

 self.view_finder_window = QMdiSubWindow()

 self.view_finder_window.setWindowTitle("Camera View”)

 self.view_finder_window.setAttribute(Qt.WA_DeleteOnClose)

Chapter 12 extra projeCts

339

 # Create QMdiArea widget to manage subwindows

 mdi_area = QMdiArea()

 mdi_area.tileSubWindows()

 mdi_area.addSubWindow(self.view_finder_window)

 mdi_area.addSubWindow(controls_sub_window)

 # Set mdi_area widget as the central widget of main window

 self.setCentralWidget(mdi_area)

 def setupCamera(self, cam_name):

 """

 Create and setup camera functions.

 """

 for camera in self.cameras:

 # Select camera by matching cam_name to one of the

 # devices in the cameras list.

 if camera.deviceName() == cam_name:

 self.cam = QCamera(camera) # Construct QCamera device

 # Create camera viewfinder widget and add it to the

view_finder_window.

 self.view_finder = QCameraViewfinder()

 self.view_finder_window.setWidget(self.view_finder)

 self.view_finder.show()

 # Sets the viewfinder to display video

 self.cam.setViewfinder(self.view_finder)

 # QCameraImageCapture() is used for taking

 # images or recordings.

 self.image_capture = QCameraImageCapture(self.cam)

 # Configure the camera to capture still images.

 self.cam.setCaptureMode(QCamera.CaptureStillImage)

 self.cam.start() # Slot to start the camera

 else:

 pass

Chapter 12 extra projeCts

340

 def selectCamera(self):

 """

 Slot for selecting one of the available cameras displayed in list

widget.

 """

 try:

 if self.list_item.isSelected():

 camera_name = self.list_item.text()

 self.setupCamera(camera_name)

 else:

 print("No camera selected.")

 pass

 except:

 print("No cameras detected.")

 def keyPressEvent(self, event):

 """

 Handle the key press event so that the camera takes images.

 """

 if event.key() == Qt.Key_Space:

 try:

 self.cam.searchAndLock()

 self.image_capture.capture("images/")

 self.cam.unlock()

 except:

 print("No camera in viewfinder.")

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = Camera()

 sys.exit(app.exec_())

Your GUI should look similar to the one in Figure 12-3.

Chapter 12 extra projeCts

341

 Explanation
For this project, we are going to import some new classes. From the QtWidgets module,

the QMdiArea and QMdiSubWindow classes are used to create the MDI windows.

The QtMultimedia module provides access to a number of multimedia tools

including audio, video, and camera capabilities. The QCamera class provides the interface

to work with camera devices. QCameraInfo supplies information about available

cameras. QCameraImageCapture is used for recording media.

From the QtMultimediaWidgets module, the QCameraViewfinder class sets up

the camera viewfinder widget. In photography, the viewfinder is used for focusing and

viewing the subject being photographed.

This application contains two subwindows, one for displaying the viewfinder and

the other for listing the available cameras that you can choose from in a QListWidget

object. In the setupWindows() method, the labels, list widget, and push button are

Figure 12-3. Camera GUI is composed of multiple windows that allow the user to
select available cameras and view the camera’s viewfinder

Chapter 12 extra projeCts

342

arranged inside of a QGroupBox widget. The user can select a camera from the list. The

Select Camera button emits a signal that is connected to the selectCamera() slot. Next,

the QMdiArea object, mdi_area, that is used as a container for the subwindows is created.

This will be the central widget for the main window.

Child windows are instances of QMdiSubWindow. The subwindows inside of mdi_area

are created in relation to each other. In this project, they are arranged as tiles using

tileSubWindows(). Another option is to lay them out using a cascaded style.

 mdi_area.cascadeSubWindows()

Tip a menubar could also be added to the main window that controls the
subwindows. For example, subwindows could be set as checkable in order to close
or reopen them. or a menu item could allow the user to switch between tiled or
cascaded windows.

If the user clicks the push button and an available camera is selected, then the

setupCamera() method is called. Refer to the comments in the code to learn how to set

up the viewfinder. This method is adapted from the Qt document web site.1

Using QCameraImageCapture(), the user is also able to take pictures of the viewfinder.

Image capturing is handled by the keyPressEvent(). When the spacebar is pressed, a picture is

taken and saved to the "images/" folder. The folder will be created if it does not already exist.

 Project 12.3 – Simple Clock GUI
PyQt5 also provides classes for dealing with dates, QDate, or time, QTime. The

QDateTime class supplies functions for working with both dates and time. All three of

these classes include methods for handling time-related features.

Let’s take a brief look at the QDateTime class. The following snippet of code

creates an instance of QDateTime that returns the current date and time using the

currentDateTime() method:

date_time = QDateTime.currentDateTime()

print(date_time.toString(Qt.DefaultLocaleLongDate)))

1 https://doc.qt.io/qt-5/qcameraviewfinder.html

Chapter 12 extra projeCts

https://doc.qt.io/qt-5/qcameraviewfinder.html

343

The current date and time is printed to the screen with the following format (set

using Qt.DefaultLocaleLongDate):

February 15, 2020 2:32:31 PM CST

There are also other formats, including shorter formats, ISO 8601 format, or UTC

format. The toString() method returns the date and time as a string. QDateTime also

handles daylight saving time, different time zones, and the manipulation of times and

dates such as adding or subtracting months, days, or hours.

If you only need to work with the individual dates and times, QDate and QTime also

provide similar functions as you shall see in Listing 12-3.

Listing 12-3. Code for the clock GUI

clock.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

 QVBoxLayout)

from PyQt5.QtCore import Qt, QDate, QTime, QTimer

class DisplayTime(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 250, 100)

 self.setWindowTitle('12.3 – QDateTime Example')

 self.setStyleSheet("background-color: black")

 self.setupWidgets()

Chapter 12 extra projeCts

344

 # Create timer object

 timer = QTimer(self)

 timer.timeout.connect(self.updateDateTime)

 timer.start(1000)

 self.show()

 def setupWidgets(self):

 """

 Set up labels that will display current date and time.

 """

 current_date, current_time = self.getDateTime()

 self.date_label = QLabel(current_date)

 self.date_label.setStyleSheet("color: white; font: 16px Courier")

 self.time_label = QLabel(current_time)

 self.time_label.setStyleSheet("""color: white;

 border-color: white;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 padding: 10px;

 font: bold 24px Courier""")

 # Create layout and add widgets

 v_box = QVBoxLayout()

 v_box.addWidget(self.date_label, alignment=Qt.AlignCenter)

 v_box.addWidget(self.time_label, alignment=Qt.AlignCenter)

 self.setLayout(v_box)

 def getDateTime(self):

 """

 Returns current date and time.

 """

 date = QDate.currentDate().toString(Qt.DefaultLocaleLongDate)

 time = QTime.currentTime().toString("hh:mm:ss AP")

 return date, time

Chapter 12 extra projeCts

345

 def updateDateTime(self):

 """

 Slot that updates date and time values.

 """

 date = QDate.currentDate().toString(Qt.DefaultLocaleLongDate)

 time = QTime.currentTime().toString("hh:mm:ss AP")

 self.date_label.setText(date)

 self.time_label.setText(time)

 return date, time

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayTime()

 sys.exit(app.exec_())

The clock application can be seen in Figure 12-4.

 Explanation
Start by importing the necessary modules, including QDate, QTime, and QTimer, from the

QtCore module. The QTimer class will be used to create a timer object to keep track of

the time that has passed and update the labels that hold the date and time accordingly.

The timer is set up in initializeUI(), and its timeout() signal is connected to the

updateDateTime() slot. The timeout() signal is emitted every second.

Figure 12-4. The clock GUI displaying the current calendar date and clock time

Chapter 12 extra projeCts

346

In order to get the current date and time, the values are retrieved using the

currentDate() and currentTime() methods in the getDateTime() method. These are

then returned and set as the current_date and current_time.

 current_date, current_time = self.getDateTime()

While the date is set to use the Qt.DefaultLocaleLongDate format, the time uses a

sequence of characters to create a format string that displays hours (hh), minutes (mm),

seconds (ss), and AM or PM (AP).

 time = QTime.currentTime().toString("hh:mm:ss AP")

The labels that will display the date and time are then instantiated, styled, and added

to the layout. The values of the labels are updated using the updateDateTime() method.

 Project 12.4 – Calendar GUI
This project takes a look at how to set up the QCalendarWidget class and use a few of its

functions. PyQt makes adding a monthly calendar to your applications rather effortless.

The code is provided in Listing 12-4 and the calendar can be seen in Figure 12-5.

The QCalendarWidget class provides a calendar that already has a number of other

useful widgets and functions built-in. For example, the calendar already includes a

horizontal header that includes widgets for changing the month and the year and a

vertical header that displays the week number. The class also includes signals that are

emitted whenever the dates, months, and years on the calendar are changed.

The QDateEdit widget is used in this application to restrict the values a user can

select to within a certain range, specified by minimum and maximum values.

Listing 12-4. The calendar GUI code

calendar.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,

QCalendarWidget, QDateEdit, QGroupBox, QHBoxLayout, QGridLayout)

from PyQt5.QtCore import Qt, QDate

from PyQt5.QtGui import QFont

Chapter 12 extra projeCts

347

style_sheet = """

 QLabel{

 padding: 5px;

 font: 18px

 }

 QLabel#DateSelected{

 font: 24px

 }

 QGroupBox{

 border: 2px solid gray;

 border-radius: 5px;

 margin-top: 1ex;

 font: 14px

 }

"""

class CalendarGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setMinimumSize(500, 400)

 self.setWindowTitle('12.4 – Calendar GUI')

 self.createCalendar()

 self.show()

 def createCalendar(self):

 """

 Set up calendar, others widgets and layouts for main window.

 """

Chapter 12 extra projeCts

348

 self.calendar = QCalendarWidget()

 self.calendar.setGridVisible(True)

 self.calendar.setMinimumDate(QDate(1900, 1, 1))

 self.calendar.setMaximumDate(QDate(2200, 1, 1))

 # Connect to newDateSelection slot when currently selected date is

changed

 self.calendar.selectionChanged.connect(self.newDateSelection)

 current = QDate.currentDate().toString(Qt.DefaultLocaleLongDate)

 self.current_label = QLabel(current)

 self.current_label.setObjectName("DateSelected")

 # Create current, minimum, and maximum QDateEdit widgets

 min_date_label = QLabel("Minimum Date:")

 self.min_date_edit = QDateEdit()

 self.min_date_edit.setDisplayFormat("MMM d yyyy")

 self.min_date_edit.setDateRange(self.calendar.minimumDate(), self.

calendar.maximumDate())

 self.min_date_edit.setDate(self.calendar.minimumDate())

 self.min_date_edit.dateChanged.connect(self.minDatedChanged)

 current_date_label = QLabel("Current Date:")

 self.current_date_edit = QDateEdit()

 self.current_date_edit.setDisplayFormat("MMM d yyyy")

 self.current_date_edit.setDate(self.calendar.selectedDate())

 self.current_date_edit.setDateRange(self.calendar.minimumDate(),

self.calendar.maximumDate())

 self.current_date_edit.dateChanged.connect(self.

selectionDateChanged)

 max_date_label = QLabel("Maximum Date:")

 self.max_date_edit = QDateEdit()

 self.max_date_edit.setDisplayFormat("MMM d yyyy")

 self.max_date_edit.setDateRange(self.calendar.minimumDate(), self.

calendar.maximumDate())

 self.max_date_edit.setDate(self.calendar.maximumDate())

 self.max_date_edit.dateChanged.connect(self.maxDatedChanged)

Chapter 12 extra projeCts

349

 # Add widgets to group box and add to grid layout

 dates_gb = QGroupBox("Set Dates")

 dates_grid = QGridLayout()

 dates_grid.addWidget(self.current_label, 0, 0, 1, 2,

Qt.AlignAbsolute)

 dates_grid.addWidget(min_date_label, 1, 0)

 dates_grid.addWidget(self.min_date_edit, 1, 1)

 dates_grid.addWidget(current_date_label, 2, 0)

 dates_grid.addWidget(self.current_date_edit, 2, 1)

 dates_grid.addWidget(max_date_label, 3, 0)

 dates_grid.addWidget(self.max_date_edit, 3, 1)

 dates_gb.setLayout(dates_grid)

 # Create and set main window's layout

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.calendar)

 main_h_box.addWidget(dates_gb)

 self.setLayout(main_h_box)

 def selectionDateChanged(self, date):

 """

 Update the current_date_edit when the calendar's selected date

changes.

 """

 self.calendar.setSelectedDate(date)

 def minDatedChanged(self, date):

 """

 Update the calendar's minimum date.

 Update max_date_edit to avoid conflicts with maximum and minimum

dates.

 """

 self.calendar.setMinimumDate(date)

 self.max_date_edit.setDate(self.calendar.maximumDate())

Chapter 12 extra projeCts

350

 def maxDatedChanged(self, date):

 """

 Update the calendar's maximum date.

 Update min_date_edit to avoid conflicts with minimum and maximum

dates.

 """

 self.calendar.setMaximumDate(date)

 self.min_date_edit.setDate(self.calendar.minimumDate())

 def newDateSelection(self):

 """

 Update date in current_label and current_date_edit widgets when

user selects a new date.

 """

 date = self.calendar.selectedDate().toString

(Qt.DefaultLocaleLongDate)

 self.current_date_edit.setDate(self.calendar.selectedDate())

 self.current_label.setText(date)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = CalendarGUI()

 sys.exit(app.exec_())

The look of your calendar will greatly depend upon the platform that you are using to

run the application. An example of the calendar on MacOS can be seen in Figure 12-5.

Chapter 12 extra projeCts

351

 Explanation
After importing the modules needed for the calendar GUI, the styles for the QLabel and

QGroupBox widgets are prepared using style_sheet.

Creating an instance of QCalendarWidget is very simple.

 self.calendar = QCalendarWidget()

Next, we set a few of the calendar object’s parameters. Setting setGridVisible()

to True will make the grid lines visible. In order to specify the date range that a user can

select in the calendar, we set the minimum and maximum date values.

 self.calendar.setMinimumDate(QDate(1900, 1, 1))

 self.calendar.setMaximumDate(QDate(2200, 1, 1))

Figure 12-5. The calendar GUI that displays the calendar, the current date, and
the widgets that allow the user to search for dates within a specified time range

Chapter 12 extra projeCts

352

Whenever a date is selected in the calendar widget, it emits a selectionChanged()

signal. This signal is connected to the newDateSelection() slot that updates the date

on the current_label and in the current_date_edit widget. Selecting a value in the

current_date_edit widget will also change the other values.

The QCalendarWidget class also has a number of functions that allow you to

configure its behaviors and appearance. For this project, we create three QDateEdit

widgets that will allow the user to change the minimum and maximum values for the

date range, as well as the current date selected in the calendar.

A displayed format for the date in the QDateEdit widget can be set using

setDisplayFormat(). The date edit objects are also given a date range using

setDateRange(). The following code is an example of how to set the min_date_edit

widget’s date range by using ranges set earlier for the calendar object:

self.min_date_edit.setDateRange(self.calendar.minimumDate(), self.calendar.

maximumDate())

When a date is changed in a date edit widget, it generates a dateChanged() signal.

Each one of the QDateEdit widgets is connected to a corresponding slot that will update

the calendar’s minimum, maximum, or current date values depending upon which

date edit widget is changed. The method for changing the dates is adapted from the Qt

document web site.2

Finally, the label and date edit widgets are arranged in a QGroupBox.

 Project 12.5 – Hangman GUI
PyQt can be used to create a variety of different kinds of applications. Throughout this

book, we have looked at quite a few ideas for building GUIs. For this next project, we will be

taking a look at how to use QPainter and a few other classes to build a game – Hangman.

While Hangman is a simple game to play, it can be used to teach a few of the fundamental

concepts for using PyQt to create games. The code is presented in Listing 12-5 and the

interface can be seen in Figure 12-6.

2 https://doc.qt.io/qt-5/qtwidgets-widgets-calendarwidget-example.html

Chapter 12 extra projeCts

https://doc.qt.io/qt-5/qtwidgets-widgets-calendarwidget-example.html

353

For this application, the player can select from one of the twenty-six English letters

to guess a letter in an unknown word. As each letter is chosen, they will become disabled

in the window. If the letter is correct, it will be revealed to the player. Otherwise, a part

of the hangman figure’s body is drawn on the screen. If all of the letters are correctly

guessed, then the player wins. There are a total of six turns.

Whether or not the player wins or loses, a dialog will be displayed to inform the

player and allow them to quit or to continue playing.

Listing 12-5. This is the code for the Hangman GUI

hangman.py

Import necessary modules

import sys, random

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget,

QPushButton, QLabel, QFrame, QButtonGroup, QHBoxLayout, QVBoxLayout,

QMessageBox, QSizePolicy)

from PyQt5.QtCore import Qt, QRect, QLine

from PyQt5.QtGui import QPainter, QPen, QBrush, QColor

style_sheet = """

 QWidget{

 background-color: #FFFFFF

 }

 QLabel#Word{

 font: bold 20px;

 qproperty-alignment: AlignCenter

 }

 QPushButton#Letters{

 background-color: #1FAEDE;

 color: #D2DDE1;

 border-style: solid;

 border-radius: 3px;

 border-color: #38454A;

 font: 28px

 }

Chapter 12 extra projeCts

354

 QPushButton#Letters:pressed{

 background-color: #C86354;

 border-radius: 4px;

 padding: 6px;

 color: #DFD8D7

 }

 QPushButton#Letters:disabled{

 background-color: #BBC7CB

 }

"""

The hangman is drawn on a QLabel object, rather than

on the main window. This class handles the drawing.

class DrawingLabel(QLabel):

 def __init__(self, parent):

 super().__init__(parent)

 # Variables for positioning drawings

 self.height = 200

 self.width = 300

 # Variables used to keep track of incorrect guesses

 self.incorrect_letter = False

 self.incorrect_turns = 0

 # List to store body parts

 self.part_list = []

 def drawHangmanBackground(self, painter):

 """

 Draw the gallows.

 """

 painter.setBrush(QBrush(QColor("#000000")))

 # drawRect(x, y, width, height)

 painter.drawRect((self.width / 2) - 40, self.height, 150, 4)

 painter.drawRect(self.width / 2, 0, 4, 200)

Chapter 12 extra projeCts

355

 painter.drawRect(self.width / 2, 0, 60, 4)

 painter.drawRect((self.width / 2) + 60, 0, 4, 40)

 def drawHangmanBody(self, painter):

 """

 Create and draw body parts for hangman.

 """

 if "head" in self.part_list:

 head = QRect((self.width / 2) + 42, 40, 40, 40)

 painter.setPen(QPen(QColor("#000000"), 3))

 painter.setBrush(QBrush(QColor("#FFFFFF")))

 painter.drawEllipse(head)

 if "body" in self.part_list:

 body = QRect((self.width / 2) + 60, 80, 2, 55)

 painter.setBrush(QBrush(QColor("#000000")))

 painter.drawRect(body)

 if "right_arm" in self.part_list:

 right_arm = QLine((self.width / 2) + 60, 85,

 (self.width / 2) + 50, (self.height / 2) + 30)

 pen = QPen(Qt.black, 3, Qt.SolidLine)

 painter.setPen(pen)

 painter.drawLine(right_arm)

 if "left_arm" in self.part_list:

 left_arm = QLine((self.width / 2) + 62, 85,

 (self.width / 2) + 72, (self.height / 2) + 30)

 painter.drawLine(left_arm)

 if "right_leg" in self.part_list:

 right_leg = QLine((self.width / 2) + 60, 135,

 (self.width / 2) + 50, (self.height / 2) + 75)

 painter.drawLine(right_leg)

 if "left_leg" in self.part_list:

 left_leg = QLine((self.width / 2) + 62, 135,

 (self.width / 2) + 72, (self.height / 2) + 75)

 painter.drawLine(left_leg)

Chapter 12 extra projeCts

356

 # Reset variable

 self.incorrect_letter = False

 def paintEvent(self, event):

 """

 Construct the QPainter and handle painting events.

 """

 painter = QPainter(self)

 self.drawHangmanBackground(painter)

 if self.incorrect_letter == True:

 self.drawHangmanBody(painter)

 painter.end()

class Hangman(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setFixedSize(400, 500)

 self.setWindowTitle('12.5 - Hangman GUI')

 self.newGame()

 self.show()

 def newGame(self):

 """

 Create new Hangman game.

 """

 self.setupHangmanBoard()

 self.setupWord()

 self.setupBoard()

Chapter 12 extra projeCts

357

 def setupHangmanBoard(self):

 """

 Set up label object to display hangman.

 """

 self.hangman_label = DrawingLabel(self)

 self.hangman_label.setSizePolicy(QSizePolicy.Expanding,

QSizePolicy.Expanding)

 def setupWord(self):

 """

 Open words file and choose random word.

 Create labels that will display '_' depending

 upon length of word.

 """

 words = self.openFile()

 self.chosen_word = random.choice(words).upper()

 #print(self.chosen_word)

 # Keep track of correct guesses

 self.correct_counter = 0

 # Keep track of label objects.

 # Is used for updating the text on the labels

 self.labels = []

 word_h_box = QHBoxLayout()

 for letter in self.chosen_word:

 self.letter_label = QLabel("___")

 self.labels.append(self.letter_label)

 self.letter_label.setObjectName("Word")

 word_h_box.addWidget(self.letter_label)

 self.word_frame = QFrame()

 self.word_frame.setLayout(word_h_box)

 def setupBoard(self):

 """

 Set up objects and layouts for keyboard and main window.

 """

Chapter 12 extra projeCts

358

 top_row_list = ["A", "B", "C", "D", "E", "F", "G", "H"]

 mid_row_list = ["I", "J", "K", "L", "M", "N", "O", "P", "Q"]

 bot_row_list = ["R", "S", "T", "U", "V", "W", "X", "Y", "Z"]

 # Create button group to keep track of letters

 self.keyboard_bg = QButtonGroup()

 # Set up keys in the top row

 top_row_h_box = QHBoxLayout()

 for letter in top_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 top_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

 top_frame = QFrame()

 top_frame.setLayout(top_row_h_box)

 # Set up keys in the middle row

 mid_row_h_box = QHBoxLayout()

 for letter in mid_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 mid_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

 mid_frame = QFrame()

 mid_frame.setLayout(mid_row_h_box)

 # Set up keys in the bottom row

 bot_row_h_box = QHBoxLayout()

 for letter in bot_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 bot_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

Chapter 12 extra projeCts

359

 bot_frame = QFrame()

 bot_frame.setLayout(bot_row_h_box)

 # Connect buttons in button group to slot

 self.keyboard_bg.buttonClicked.connect(self.buttonPushed)

 keyboard_v_box = QVBoxLayout()

 keyboard_v_box.addWidget(top_frame)

 keyboard_v_box.addWidget(mid_frame)

 keyboard_v_box.addWidget(bot_frame)

 keyboard_frame = QFrame()

 keyboard_frame.setLayout(keyboard_v_box)

 # Create main layout and add widgets

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.hangman_label)

 main_v_box.addWidget(self.word_frame)

 main_v_box.addWidget(keyboard_frame)

 # Create central widget for main window

 central_widget = QWidget()

 central_widget.setLayout(main_v_box)

 self.setCentralWidget(central_widget)

 def buttonPushed(self, button):

 """

 Handle buttons from the button group and game logic.

 """

 button.setEnabled(False)

 body_parts_list = ["head", "body", "right_arm",

 "left_arm", "right_leg", "left_leg"]

 # When the user guesses incorrectly and the number of incorrect

 # turns is not equal to 6 (the number of body parts).

 if button.text() not in self.chosen_word and self.hangman_label.

incorrect_turns <= 5:

 self.hangman_label.incorrect_turns += 1

Chapter 12 extra projeCts

360

 index = self.hangman_label.incorrect_turns - 1

 self.hangman_label.part_list.append(body_parts_list[index])

 self.hangman_label.incorrect_letter = True

 # When a correct letter is chosen, update labels and

 # correct counter.

 elif button.text() in self.chosen_word and self.hangman_label.

incorrect_turns <= 5:

 self.hangman_label.incorrect_letter = True

 for i in range(len(self.chosen_word)):

 if self.chosen_word[i] == button.text():

 self.labels[i].setText(button.text())

 self.correct_counter += 1

 # Call update before checking winning conditions

 self.update()

 # User wins when the number of correct letters equals

 # the length of the word.

 if self.correct_counter == len(self.chosen_word):

 self.displayDialogs("win")

 # Game over if number of incorrect turns equals

 # the number of body parts. Reveal word to user.

 if self.hangman_label.incorrect_turns == 6:

 for i in range(len(self.chosen_word)):

 self.labels[i].setText(self.chosen_word[i])

 self.displayDialogs("game_over")

 def openFile(self):

 """

 Open words.txt file.

 """

 try:

 with open(“files/words.txt", 'r') as f:

 word_list = f.read().splitlines()

 return word_list

Chapter 12 extra projeCts

361

 except FileNotFoundError:

 print("File Not Found.")

 ex_list = ["nofile"]

 return ex_list

 def displayDialogs(self, text):

 """

 Display win and game over dialog boxes.

 """

 if text == "win":

 message = QMessageBox().question(self, "Win!",

 "You Win!\nNEW GAME?", QMessageBox.Yes | QMessageBox.No,

QMessageBox.No)

 elif text == "game_over":

 message = QMessageBox().question(self, "Game Over",

 "Game Over\nNEW GAME?", QMessageBox.Yes | QMessageBox.No,

QMessageBox.No)

 if message == QMessageBox.No:

 self.close()

 else:

 self.newGame()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = Hangman()

 sys.exit(app.exec_())

The finished hangman GUI can be seen in Figure 12-6.

Chapter 12 extra projeCts

362

 Explanation
A variety of classes are used in the Hangman GUI, including different widgets from

QtWidgets, as well as classes used for drawing from QtCore and QtGui. We then create

a style sheet to set the style properties of the widgets and to handle the situation of how

the buttons look when they are pressed.

This program contains two classes, DrawingLabel and Hangman.

 Creating the Drawing Class

The DrawingLabel class inherits from QLabel and handles the different paint events that

will be drawn on the label object in the main window. The paintEvent() function is

called in a class that inherits from QLabel so that way the paint events occur on the label

and are not covered up by the main window.

Figure 12-6. The Hangman application. Can you save him?

Chapter 12 extra projeCts

363

In order to use this class, an instance is created in the Hangman class:

 self.hangman_label = DrawingLabel(self)

The paintEvent() function sets up QPainter and handles the two painting methods,

drawHangmanBackground(), which draws the gallows of the Hangman game onto the

label, and drawHangmanBody(), which only draws the body parts if they are contained in

the part_list.

 Creating the Main Window Class

The Hangman class starts by initializing the GUI window and calling the newGame()

method. First, the Hangman board is created as an instance of the DrawingLabel

class. Then, setupBoard() selects a random word from the words.txt file. The

labels that will represent the letters of the chosen word are replaced with underscore

characters, appended to the labels list, and added to the horizontal layout of the

word_frame object.

Finally, we need to set up the keyboard push buttons, layouts, and the game logic

in setupBoard(). Three rows of push buttons that represent the letters of the alphabet

are controlled by one QButtonGroup object, keyboard_bg. When one button is pushed, it

generates a signal that calls the buttonPushed slot.

When a push button is pressed, it is disabled.

 button.setEnabled(False)

The list of body parts contains the six body part names. If the player guesses

an incorrect letter, the name is appended to the part_list and checked for in the

drawHangmanBody() function. Using this method ensures that all necessary parts are

drawn with their different styles when paintEvent() is called. Otherwise, the labels are

updated to display the correct letters in the appropriate positions if the player guesses

correctly.

If the player wins or loses, a QMessageBox will appear and allow the user to close the

application or continue. If Yes is selected, newGame() is called.

Chapter 12 extra projeCts

364

 Project 12.6 – Web Browser GUI
A web browser is a graphical user interface that allows access to information on the

World Wide Web (Listing 12-6). A user can enter a Uniform Resource Locator (URL) into

an address bar and request content for a web site from a web server to be displayed on

their local device, including text, image, and video data. URLs are generally prefixed with

http, a protocol used for fetching and transmitting requested web pages, or https, for

encrypted communication between browsers and web sites.

Qt provides quite a few classes for network communication, WebSockets, support for

accessing the World Wide Web, and more. This project introduces PyQt’s classes for web

integration into GUIs.

For the following project, we will take a look at QtWebEngine, specifically

the QtWebEngineWidgets module for creating widget-based web applications.

QtWebEngine provides a web browser engine that can be used to embed web content

into your applications. The QtWebEngine module uses Chromium as its back end.

Chromium is open source software from Google that can be used to create web browsers.

The web browser GUI serves as a framework for creating your own web browser and

includes the following features:

• Ability to open multiple windows and tabs, either by using the

application’s menu or shortcut hot keys

• A navigation bar that is made up of back, forward, refresh, stop, and

home buttons and the address bar for entering URLs

• The web engine view widget created using QWebEngineView

• A status bar

• A progress bar that relays feedback to the user about loading web

pages

Note When you are running this program, if you get an error message stating
“No module named: pyQt5.QtWebengineWidgets”, then you need to install the
QtWebEngineWidgets module. to solve this problem, enter the following
command into the command line: pip3 install PyQtWebEngine.

Chapter 12 extra projeCts

365

Listing 12-6. Web browser GUI code

web_browser.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

QLineEdit, QDesktopWidget, QTabWidget, QHBoxLayout, QVBoxLayout, QAction,

QToolBar, QProgressBar, QStatusBar)

from PyQt5.QtCore import QSize, QUrl

from PyQt5.QtGui import QIcon

from PyQt5.QtWebEngineWidgets import QWebEngineView

style_sheet = """

 QTabWidget:pane{

 border: none

 }

"""

class WebBrowser(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create lists that will keep track of the new windows,

 # tabs, and URLs

 self.window_list = []

 self.list_of_web_pages = []

 self.list_of_urls = []

 self.initializeUI()

 def initializeUI(self):

 self.setMinimumSize(300, 200)

 self.setWindowTitle("12.6 – Web Browser")

 self.setWindowIcon(QIcon(os.path.join('images', 'pyqt_logo.png')))

 self.positionMainWindow()

Chapter 12 extra projeCts

366

 self.createMenu()

 self.createToolbar()

 self.createTabs()

 self.show()

 def createMenu(self):

 """

 Set up the menu bar.

 """

 new_window_act = QAction('New Window', self)

 new_window_act.setShortcut('Ctrl+N')

 new_window_act.triggered.connect(self.openNewWindow)

 new_tab_act = QAction('New Tab', self)

 new_tab_act.setShortcut('Ctrl+T')

 new_tab_act.triggered.connect(self.openNewTab)

 quit_act = QAction("Quit Browser", self)

 quit_act.setShortcut('Ctrl+Q')

 quit_act.triggered.connect(self.close)

 # Create the menu bar

 menu_bar = self.menuBar()

 menu_bar.setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = menu_bar.addMenu('File')

 file_menu.addAction(new_window_act)

 file_menu.addAction(new_tab_act)

 file_menu.addSeparator()

 file_menu.addAction(quit_act)

 self.status_bar = QStatusBar()

 self.setStatusBar(self.status_bar)

 def createToolbar(self):

 """

 Set up the navigation toolbar.

 """

Chapter 12 extra projeCts

367

 tool_bar = QToolBar("Address Bar")

 tool_bar.setIconSize(QSize(30, 30))

 self.addToolBar(tool_bar)

 # Create toolbar actions

 back_page_button = QAction(QIcon(os.path.join('icons',

'back.png')), "Back", self)

 back_page_button.triggered.connect(self.backPageButton)

 forward_page_button = QAction(QIcon(os.path.join('icons',

'forward.png')), "Forward", self)

 forward_page_button.triggered.connect(self.forwardPageButton)

 refresh_button = QAction(QIcon(os.path.join('icons',

'refresh.png')), "Refresh", self)

 refresh_button.triggered.connect(self.refreshButton)

 home_button = QAction(QIcon(os.path.join('icons', 'home.png')),

"Home", self)

 home_button.triggered.connect(self.homeButton)

 stop_button = QAction(QIcon(os.path.join('icons', 'stop.png')),

"Stop", self)

 stop_button.triggered.connect(self.stopButton)

 # Set up the address bar

 self.address_line = QLineEdit()

 # addAction() is used here to merely display the icon in the line edit

 self.address_line.addAction(QIcon('icons/search.png'), QLineEdit.

LeadingPosition)

 self.address_line.setPlaceholderText("Enter website address")

 self.address_line.returnPressed.connect(self.searchForUrl)

 tool_bar.addAction(home_button)

 tool_bar.addAction(back_page_button)

 tool_bar.addAction(forward_page_button)

 tool_bar.addAction(refresh_button)

 tool_bar.addWidget(self.address_line)

 tool_bar.addAction(stop_button)

Chapter 12 extra projeCts

368

 def createTabs(self):

 """

 Create the QTabWidget object and the different pages.

 Handle when a tab is closed.

 """

 self.tab_bar = QTabWidget()

 self.tab_bar.setTabsClosable(True) # Add close buttons to tabs

 self.tab_bar.setTabBarAutoHide(True) # Hides tab bar when less than

2 tabs

 self.tab_bar.tabCloseRequested.connect(self.closeTab)

 # Create tab

 self.main_tab = QWidget()

 self.tab_bar.addTab(self.main_tab, "New Tab")

 # Call method that sets up each page

 self.setupTab(self.main_tab)

 self.setCentralWidget(self.tab_bar)

 def setupWebView(self):

 """

 Create the QWebEngineView object that is used to view

 web docs. Set up the main page, and handle web_view signals.

 """

 web_view = QWebEngineView()

 web_view.setUrl(QUrl("https://google.com"))

 # Create page loading progress bar that is displayed in

 # the status bar.

 self.page_load_pb = QProgressBar()

 self.page_load_label = QLabel()

 web_view.loadProgress.connect(self.updateProgressBar)

 # Display URL in address bar

 web_view.urlChanged.connect(self.updateUrl)

Chapter 12 extra projeCts

369

 ok = web_view.loadFinished.connect(self.updateTabTitle)

 if ok:

 # Web page loaded

 return web_view

 else:

 print("The request timed out.")

 def setupTab(self, tab):

 """

 Create individual tabs and widgets. Add the tab's url and web view

to the appropriate list.

 Update the address bar if the user switches tabs.

 """

 # Create the web view that will be displayed on the page.

 self.web_page = self.setupWebView()

 tab_v_box = QVBoxLayout()

 # Sets the left, top, right, and bottom margins to use around the

layout.

 tab_v_box.setContentsMargins(0,0,0,0)

 tab_v_box.addWidget(self.web_page)

 # Append new web_page and URL to the appropriate lists

 self.list_of_web_pages.append(self.web_page)

 self.list_of_urls.append(self.address_line)

 self.tab_bar.setCurrentWidget(self.web_page)

 # If user switches pages, update the URL in the address to

 # reflect the current page.

 self.tab_bar.currentChanged.connect(self.updateUrl)

 tab.setLayout(tab_v_box)

 def openNewWindow(self):

 """

 Create new instance of the WebBrowser class.

 """

 new_window = WebBrowser()

Chapter 12 extra projeCts

370

 new_window.show()

 self.window_list.append(new_window)

 def openNewTab(self):

 """

 Create new tabs.

 """

 new_tab = QWidget()

 self.tab_bar.addTab(new_tab, "New Tab")

 self.setupTab(new_tab)

 # Update the tab_bar index to keep track of the new tab.

 # Load the URL for the new page.

 tab_index = self.tab_bar.currentIndex()

 self.tab_bar.setCurrentIndex(tab_index + 1)

 self.list_of_web_pages[self.tab_bar.currentIndex()].

load(QUrl("https://google.com"))

 def updateProgressBar(self, progress):

 """

 Update progress bar in status bar.

 This provides feedback to the user that the page is still loading.

 """

 if progress < 100:

 self.page_load_pb.setVisible(progress)

 self.page_load_pb.setValue(progress)

 self.page_load_label.setVisible(progress)

 self.page_load_label.setText("Loading Page... ({}/100)".

format(str(progress)))

 self.status_bar.addWidget(self.page_load_pb)

 self.status_bar.addWidget(self.page_load_label)

 else:

 self.status_bar.removeWidget(self.page_load_pb)

 self.status_bar.removeWidget(self.page_load_label)

 def updateTabTitle(self):

 """

Chapter 12 extra projeCts

371

 Update the title of the tab to reflect the website.

 """

 tab_index = self.tab_bar.currentIndex()

 title = self.list_of_web_pages[self.tab_bar.currentIndex()].page().

title()

 self.tab_bar.setTabText(tab_index, title)

 def updateUrl(self):

 """

 Update the url in the address to reflect the current page being

displayed.

 """

 url = self.list_of_web_pages[self.tab_bar.currentIndex()].page().url()

 formatted_url = QUrl(url).toString()

 self.list_of_urls[self.tab_bar.currentIndex()].setText(formatted_url)

 def searchForUrl(self):

 """

 Make a request to load a url.

 """

 url_text = self.list_of_urls[self.tab_bar.currentIndex()].text()

 # Append http to URL

 url = QUrl(url_text)

 if url.scheme() == "":

 url.setScheme("http")

 # Request URL

 if url.isValid():

 self.list_of_web_pages[self.tab_bar.currentIndex()].page().

load(url)

 else:

 url.clear()

 def backPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].back()

Chapter 12 extra projeCts

372

 def forwardPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].forward()

 def refreshButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].reload()

 def homeButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].setUrl(QUrl("https://google.

com"))

 def stopButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].stop()

 def closeTab(self, tab_index):

 """

 This signal is emitted when the close button on a tab is clicked.

 The index is the index of the tab that should be removed.

 """

 self.list_of_web_pages.pop(tab_index)

 self.list_of_urls.pop(tab_index)

 self.tab_bar.removeTab(tab_index)

 def positionMainWindow(self):

 """

 Use QDesktopWidget class to access information about your screen

 and use it to position the application window when starting a new

application.

 """

 desktop = QDesktopWidget().screenGeometry()

 screen_width = desktop.width()

 screen_height = desktop.height()

 self.setGeometry(0, 0, screen_width, screen_height)

Chapter 12 extra projeCts

373

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = WebBrowser()

 app.exec_()

Your application should look similar to Figure 12-7.

 Explanation
Two new classes are introduced in this application – QUrl is used for managing and

constructing URLs, and QWebEngineView is used for creating the main component for

rendering content from the Web, the web engine view (denoted as web_view in the code).

Before calling initializeUI(), we need to instantiate a few lists that will contain

the new windows, web pages viewed, and URLs for each tab. This project also calls

setWindowIcon() to include an application icon, but it will not be displayed on MacOS

due to system guidelines.

Figure 12-7. The web browser GUI displaying the menubar, toolbar, different tabs,
the logo for my blog, RedHuli, and the progress bar at the bottom

Chapter 12 extra projeCts

374

There are three main methods that are called in initializeUI(). The first

one is createMenu() for setting up the main menu and the status bar. The menu

includes actions and shortcuts for creating new windows, new tabs, and closing the

application.

Next is the createToolbar() method that creates the navigation bar of the web

browser. The tool_bar includes buttons for navigating between web pages and a

QLineEdit widget for entering and displaying URLs. Each button emits a signal when

triggered that is connected to an appropriate slot. For example, if the back_page_

button is pressed, the backPageButton() slot will be called.

 def backPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].back()

The current index of the tab we are viewing is stored in tab_index. The back()

method is then called on the web_view object for that current tab. If the tab_index is not

0, then the user can navigate back through previously viewed web pages. The back()

method is but one of several functions included in the QWebEngineView class. Other

methods for navigation include forward(), reload(), and stop(), and these are also

utilized for the other tool_bar buttons.

When the user enters a web address in the QLineEdit widget and presses the return

key, we check to see if the URL begins with the correct scheme (such as http, https, or

file). If a valid scheme is not present, http is appended to the beginning of the URL. If

the URL conforms to standard encoding rules, a request is then sent to load() the web

site.

 Creating Tabs for the Web Browser

The third method, createTabs(), is used to handle creating the tab widget and the web

view objects. First, we need to create the QTabWidget that will display each individual

tab’s web view. Refer back to Chapter 6 for more details on setting up tab widgets.

A few of the tab_bar widget’s parameters are changed so that each tab includes a

close button, and if only one tab remains, then the tab bar will not be displayed. This

helps to make sure that there is always at least one tab in the main window. If a tab is

closed, the closeTab() slot is called. The corresponding URLs and web view items for

that tab are also removed from the list_of_urls and list_of_web_pages lists.

Chapter 12 extra projeCts

375

The first tab, main_tab, is created, added to the tab_bar, and then passed to the

setupTab() method. The tab_bar widget is set as the central widget for the main

window. When setting up a tab’s page, we first need to create a web view object.

Creating the Web View

The setupWebView() function creates an instance of the QWebEngineView class, web_

view, and sets the web view’s URL to display the Google web page.

 web_view.setUrl(QUrl("https://google.com"))

To create a basic instance of a web view in an application, you only need to create

a QWebEngineView object, use the load() method to load the web page onto the web

view widget, and then call show(). The following code shows the process for setting up a

simple web view widget:

web_view = QWebEngineView()

web_view.load(QUrl("https://google.com"))

web_view.show()

Once the web page has loaded, the urlChanged() signal connected to updateUrl()

changes the URL displayed in address_line. We can use the loadFinished() signal to

tell the current tab to update its title using the updateTabTitle() slot and return the

web_view widget.

Next, create the layout to hold the web view widget, append the current tab’s URL

and web_page object to the list_of_urls and list_of_web_pages lists, and set the

layout for the current tab’s page. The web_page object is the web_view widget that is

returned from setupWebView() and displayed in the page of the tab.

Finally, to handle when a user switches between tabs, QTabWidget has the

currentChanged() signal. If a different tab is selected, the connected slot, updateUrl(),

will change the displayed URL in address_line.

Adding a QProgressBar to the Status Bar

In setupWebView(), a progress bar and label are also created that will be used to display

the loading progress of a web page in the browser’s status bar. When the loadProgress()

signal is generated, the updateProgressBar() slot is called.

 web_view.loadProgress.connect(self.updateProgressBar)

Chapter 12 extra projeCts

376

The loadProgress() function returns an int value that we can use to track how

much of the page has loaded. While progress is less than 100, the progress bar and the

label are both displayed and their values are set. The code for displaying the progress bar

is shown as follows:

 self.page_load_pb.setVisible(progress)

 self.page_load_pb.setValue(progress)

The widgets are then added to the status bar.

 self.status_bar.addWidget(self.page_load_pb)

When a page is finished loading, we call removeWidget() to remove the progress bar

and the label. An example of the progress bar can be seen at the bottom of Figure 12-7.

Note Creating a web browser is a very extensive task. there are many topics
that are not included in this project, such as accessing http cookies with
QtWebengineCore, working with the browser history with QWebenginehistory,
managing connections and client certificates, proxy support with QNetworkproxy,
working with javascript, downloading content from web sites, and others. You are
definitely encouraged to research these topics if you need to use QtWebengine for
more advanced projects.

 Summary
In this chapter, you saw different GUI applications that build the structure for larger

projects, such as the camera GUI or the web browser GUI. Other projects introduced

components that you may be able to include in other programs, such as the directory

viewer GUI, the clock GUI, or the calendar GUI. In the case of the Hangman GUI, a

complete program was created so that it can hopefully give you ideas for other programs

you may want to design.

We have explored a variety of topics for designing graphical user interfaces using

PyQt5 and Python throughout this book – different types of widgets, classes, and layouts.

We saw how to stylize your interfaces, how to add menus, and how to make creating an

application simpler with Qt Designer.

Chapter 12 extra projeCts

377

We covered a few advanced topics such as working with the clipboard, SQL, and

multithreaded applications, as well.

Appendix A will fill in more details about the PyQt5 classes used in this book, as well

as a few other classes that there was no room to include in the previous chapters.

Appendix B is used to refresh your knowledge on the key Python concepts used in

this book.

Your feedback and questions are always welcome. Thank you so much for traveling

along with me on this journey to create this guide for you.

Chapter 12 extra projeCts

379
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

 APPENDIX A

Reference Guide for PyQt5
PyQt is a Python binding for the Qt application framework maintained by Riverbank

Computing Limited. A binding is an application programming interface (API) that

provides the code to allow a programming language to use other libraries not native

to that language. Qt is a set of C++ libraries and development tools, providing access

to networking, threads, SQL databases, OpenGL and other graphics tools, XML, GUI

development, and other features. This chapter focuses only on PyQt5, because as of this

writing, PyQt4 is no longer supported.

Appendix A contains a reference for some of the tools, modules, and classes learned

throughout this book, including

• Installing PyQt5 and Qt Designer

• A review for PyQt modules and classes

• An overview of Qt Style Sheets

More information about Riverbank Computing Limited and PyQt5 can be found at

the following link:

https://riverbankcomputing.com/software/pyqt/intro

 Installing PyQt5 and Qt Designer
Before beginning, make sure Python 3 is already installed on your system. If you have not

already installed Python, or are not sure if you already have it installed, please check out

Appendix B.

Also, the SIP binding generator is a tool used for creating bindings that allow Python

to access the C++ classes. If you choose to download PyQt5 from the Python Package

Index (PyPI) repository, then the sip module will automatically be downloaded, as well.

The following subsections focus on downloading PyQt5 from PyPI using pip3, which

only operates on Python 3 environments.

https://doi.org/10.1007/978-1-4842-5857-6
https://riverbankcomputing.com/software/pyqt/intro

380

 Getting PyQt for Windows
To install PyQt5, enter the following command into the Command terminal:

pip3 install pyqt5

You can check to make sure PyQt downloaded properly by opening up the Python 3

interpreter and entering the following command:

>>> import PyQt5.QtWidgets

If no errors are returned, then the next step is to install Qt Designer. To get Qt

Designer, enter the following line into the command line:

pip3 install pyqt5-tools

Next, we need to locate the Qt Designer executable. You will need to look for the

site-packages folder inside the main Python directory. The path should look something

similar to the following path:

C:\Users\your_info\Local\Programs\Python3_directory\Lib\site-packages\

pyqt5_tools

Once you have located the executable file labeled designer, create a shortcut so you

will be able to easily access it for next time.

 Getting PyQt for MacOS
Make sure that you already have Xcode downloaded. If not, you can get it from the App

Store. Similar to Windows, to download PyQt5, enter the following command into the

Terminal:

pip3 install pyqt5

If you are using Homebrew, then you can use the following line instead:

brew install pyqt5

Next, check to make sure PyQt downloaded properly by opening up the Python 3

interpreter and entering the following command:

>>> import PyQt5.QtWidgets

Appendix A RefeRence Guide foR pyQt5

381

If no errors appear, then the next step is to install Qt Designer. For MacOS, the

process to download Qt Designer is not as simple. There is no pyqt5-tools wheel

compatible with MacOS. Therefore, your options are either to download Qt from

www.qt.io/download or download a stand-alone version that is thankfully provided by

Michael Herrmann at

https://build-system.fman.io/qt-designer-download

If you downloaded the stand-alone version, once the file finishes downloading, add

the Qt Designer file to your Applications folder and open it up to get started.

 Getting PyQt for Linux (Ubuntu)
For Ubuntu, enter the following command into the shell:

sudo apt-get install python-pyqt5

Open the Python 3 interpreter and enter the following statement to make sure that

PyQt5 is installed properly:

>>> import PyQt5.QtWidgets

If no errors are returned, then we can install Qt Designer:

sudo apt-get install qttools5-dev-tools

Next, you need to locate Qt Designer, designer, in the following path:

/usr/lib/x86_64-linux-gnu/qt5/bin/

Finally, make a shortcut for Qt Designer so that you will be able to easily locate the

application next time.

 Other Methods for Getting PyQt
There are several other ways to install PyQt. One option is to build and install from

source. If for some reason you must build from source, check out the following link for

the PyQt reference guide:

www.riverbankcomputing.com/static/Docs/PyQt5/

Appendix A RefeRence Guide foR pyQt5

http://www.qt.io/download
https://build-system.fman.io/qt-designer-download
http://www.riverbankcomputing.com/static/Docs/PyQt5/

382

Another method is to download PyQt through the Anaconda distribution. To install

the package on any system, run:

conda install -c anaconda pyqt

Another option is to install PyQt5 in a virtual environment, but that won’t be covered here.

 Selected PyQt5 Modules
PyQt provides a range of modules that give you access to a wide array of tools, including

basic GUI design, 2D and 3D rendering, multimedia content, networking, global

positioning, and more. For basic GUI development, you will primarily use the QtWidgets,

QtGui, and QtCore modules. Table A-1 lists the modules covered throughout the book, as

well as a few extra you should check out.

For a full list of PyQt5’s top-level modules, check out the following link:

www.riverbankcomputing.com/static/Docs/PyQt5/module_index.html

Table A-1. Table of select PyQt modules

Module Name Description

QtWidgets provides the widgets and other classes for creating desktop-style uis.

QtCore contains a variety of extra classes, including the essential non-Gui

classes, such as ones for Qt’s signal and slot system.

QtGui contains classes for 2d graphics and imaging, event handling, and

window system integration.

QtPrintSupport provides cross-platform support for configuring and connecting to

printers.

QtNetwork provides classes for writing communications protocols using udp or

tcp.

QtMultimedia contains the classes for multimedia content, cameras, and radios.

QtMultimediaWidgets provides additional classes that increase the functionality of

multimedia- related widgets.

QtWebEngineCore contains the core classes used by other Webengine modules.

(continued)

Appendix A RefeRence Guide foR pyQt5

http://www.riverbankcomputing.com/static/Docs/PyQt5/module_index.html

383

 Selected PyQt Classes
There are hundreds of PyQt classes. The following section lists the key classes and widgets

that can be found throughout this book. Each subsection either lists tables with commonly

used methods and signals, or a link to where you can find more information about the class.

For a list of all the PyQt classes, check out the following link:

www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html

Although it is written for C++, the Qt classes’ documentation is generally more

detailed. If you want more information about Qt classes, you can also check out

https://doc.qt.io/qt-5/classes.html

 Classes for Building a GUI Window
With PyQt, you can create a new class that inherits from any of the widget classes.

However, for a general GUI application, you will need to create only one instance of

QApplication, and create a class that inherits from either QWidget, QMainWindow, or

QDialog to create the application’s window.

 QApplication

QApplication is responsible for handling the initialization and finalization of widgets in

graphical user interfaces. If you are making QWidget-based applications, then you will need

to create an instance of QApplication before creating any other objects related to the GUI.

Some of QApplication’s responsibilities include initializing an application to

conform to a user’s desktop settings, event handling, defining the GUI’s style, working

with the clipboard, and keeping track of all the application’s windows.

Module Name Description

QtWebEngineWidgets classes that can be used to create a chromium-based web browser.

QtSql provides classes for working with SQL databases.

sip tools used for creating python bindings for c ++ libraries (which is

the language Qt is written in).

uic contains classes used for handling the .ui files created by Qt designer.

Table A-1. (continued)

Appendix A RefeRence Guide foR pyQt5

http://www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html
https://doc.qt.io/qt-5/classes.html

384

If you are creating an application that does not need a GUI and can be run through

the command line, then you should consider using QCoreApplication, instead.

 QWidget

The QWidget class is the base class for all of PyQt’s graphical user interface’s objects.

A widget created from the QWidget class is able to receive input from the mouse,

keyboard, and other events and able to paint itself on the screen. Widgets that are not

embedded in a parent widget are considered to be a window complete with a title bar

and a frame. The QWidget class is a subclass of QObject and QPaintDevice. Some of

QWidget’s more commonly used methods can be found in Table A-2.

Table A-2. Selected methods from QWidget

Method Description

addAction(action) Add an action to the widget.

close() close the widget.

height() Holds the widget’s height.

width() Holds the widget’s width.

move(x, y) Sets the location of the widget to (x, y).

rect() Holds the geometry of the widget minus the frame.

setDisabled(bool) if True, the widget is disabled.

setEnabled(bool) if True, the widget is enabled.

setFont(font) Sets the font of the widget’s text.

setLayout(layout) Sets the layout manager for the widget.

setGeometry(x, y, width,

height)

Sets the widget’s location, (x, y), and its size, width and

height.

setStyleSheet(styleSheet) Sets the styleSheet for the widget.

setToolTip(text) Sets the widget’s tool tip.

repaint() Repaints the widget immediately by calling paintEvent().

showFullScreen() displays the widget in full screen mode.

update() updates the widget.

Appendix A RefeRence Guide foR pyQt5

385

 Event Handling

Events are typically caused by users. These can include moving a mouse, pressing

a key, or resizing the window. The widgets in an application need to respond to the

event caused by the user’s actions. The events are typically already handled, but

you sometimes may find yourself needing to reimplement event handlers to supply

further behavior or content for the widgets. Table A-3 lists a few commonly used event

handlers.

Table A-3. Some event handlers used for supplying behavior to QWidget objects

Event Handler Description

paintEvent() called whenever a widget needs to be repainted.

resizeEvent() called when a widget has been resized.

mousePressEvent() called when a mouse button is pressed while the mouse cursor

is inside of the widget. Which mouse button is clicked can be

specified in the event.

mouseReleaseEvent() called when a mouse button is released. A widget that receives

this event is dependent on receiving the mouse press event.

mouseDoubleClickEvent() called when a widget is double-clicked.

mouseMoveEvent() called when the mouse moves while the button is held down. if

setMouseTracking() is True, events are sent even when no

buttons are pressed.

enterEvent() called when the mouse enters a widget’s space.

leaveEvent() called when the mouse leaves a widget’s space.

keyPressEvent() called when a key is pressed.

keyReleaseEvent() called when a key is released.

focusInEvent() called when a widget gets the keyboard focus.

focusOutEvent() called when a widget loses the keyboard focus.

closeEvent() called when either a widget or the window is closed.

Appendix A RefeRence Guide foR pyQt5

386

 QMainWindow

The QMainWindow class provides the framework for building an application, complete

with functions for adding a menubar, toolbars, a status bar, and dock widgets. Menu

and toolbar items are created using QAction. QMainWindow already has its own layout,

to which you must add a central widget as the center area of the application’s window.

Some of QMainWindow’s methods can be seen in Table A-4.

 QDialog

Dialog boxes provide a top-level window generally to obtain feedback quickly from a

user. QDialogs can be modal or modeless. Modal dialogs are often used when selecting

an option in the dialog that will return a value. That value could then be used to save a

file, close a document, or cancel an action. Table A-5 lists the QDialog methods useful

for creating modal or modeless dialog boxes.

QDialog is the base class for dialog boxes, including QColorDialog, QFileDialog,

QFontDialog, QInputDialog, QMessageBox, QProgressDialog, and QErrorMessage.

Table A-4. Select methods from QMainWindow

Method Description

addDockWidget(area,

dockwidget)

creates a dockwidget in the main window in the specified

area.

addToolBar(toolbar) creates a toolbar for the main window. An area can also be

specified.

menuBar() Returns the main window’s menubar.

setStatusBar(statusbar) creates the statusbar for the main window.

setCentralWidget(widget) Sets the window’s central widget.

setWindowIcon(icon) Sets the window’s icon.

setWindowTitle(text) Sets the window’s title.

Appendix A RefeRence Guide foR pyQt5

387

 QPainter
The QPainter class is responsible for handling drawing in PyQt, being able to draw

simple lines and complex shapes onto widgets and other paint devices. QPainter is most

commonly used in a QWidget’s paintEvent() and for handling pixmaps and images.

Table A-6 displays some of QPainter’s methods for drawing.

Table A-5. Select methods for QDialog

Method Description

accept() Hides the modal dialog and returns True.

reject() Hides the modal dialog and returns False.

exec_() the dialog is shown as a modal dialog and blocks the user from any further action

until the dialog is closed.

show() the dialog is a modeless dialog, returning control to the user immediately.

Table A-6. Methods selected from QPainter

Method Description

begin(device) Begins painting on the paint device.

end() ends painting. Resources used while painting are released.

save() Saves the current painter state. save() must be followed

be restore(), which returns the current painter state.

drawArc(QRectF, startAngle,

spanAngle)

draws an arc defined by the QRectF rectangle,

startAngle, and spanAngle.

drawChord(QRectF,

startAngle, spanAngle)

draws a chord defined by the QRectF rectangle,

startAngle, and spanAngle.

drawEllipse(QPointF, x_rad,

y_rad)

draws an ellipse at QPointF center, with radius x_rad and

y_rad.

drawLine(x1, y1, x2, y2) draws a line from point (x1, y1) to (x2, y2).

drawPath(path) draws a path specified by Qpainterpath path.

(continued)

Appendix A RefeRence Guide foR pyQt5

388

 Layout Managers
Using PyQt’s layout managers makes the process of arranging widgets much easier,

compared to manually specifying each widget’s size, position, or resizeEvent()

event handler. Using layout managers is generally a good start for positioning widgets,

although you may still need to adjust a widget’s size policy, or add stretching or spacing

to a layout.

The following classes inherit from the QLayout class, which is the base class for

layout managers:

• QBoxLayout – Arranges child widgets into a row (horizontally), or into

a column (vertically)

 a. QHBoxLayout – Arranges widgets horizontally

 b. QVBoxLayout – Arranges widgets vertically

Method Description

drawPie(QRectF, startAngle,

spanAngle)

draws a pie defined by the QRectF rectangle,

startAngle, and spanAngle.

drawPixmap(x, y, pixmap) draws a pixmap at (x, y).

drawPoint(x, y) draws a point at (x, y).

drawRect(x, y, width,

height)

draws a rectangle at (x, y) with width and height.

drawRoundedRect(QRectF,

x_rad, y_rad)

draws a rectangle with rounded corners specified by

QRectF, with radius x_rad and y_rad.

drawText(QPointF, text) draws text at QPointF point.

fillRect(QRectF, brush) fills in a QRectF rectangle with the brush color.

rotate(angle) Rotates the coordinate system clockwise by angle

(in degrees).

setBrush(brush) Sets the painter’s brush.

setPen(pen) Sets the painter’s pen.

setFont() Sets the painter’s font.

Table A-6. (continued)

Appendix A RefeRence Guide foR pyQt5

389

• QGridLayout – Orders widgets in a grid of rows and columns

• QFormLayout – Lays out widgets into a form-like structure with labels

and their associated input widgets

There is also QStackedLayout which was not covered in this book. The convenience

QStackedWidget class is built on top of the QStackedLayout. Table A-7 lists commonly

used methods from the layout classes.

Table A-7. Selected methods for the different layout managers

Method Class Description

addWidget(widget,

stretch, alignment)

QBoxLayout Add widget to the end of the layout with

stretch factor and alignment.

addWidget(widget,

row, column, rowSpan,

columnSpan alignment)

QGridLayout Add widget at row, column with

(optional) rowSpan and columnSpan and

alignment.

addRow(label, field) QFormLayout Add a new row with given label and

field (input widget).

addLayout(layout,

stretch)

QBoxLayout Adds a layout to the end of the box.

creates a nested layout.

addLayout(layout, row,

column, alignment)

QGridLayout Adds a layout at position (row, column).

creates a nested layout.

addSpacing(int) QGridLayout,

QBoxLayout

Adds a nonstretchable area (a

QSpacerItem) of int value to the layout.

addStretch(int) QBoxLayout Adds a stretchable area (a QSpacerItem)

of int value to the layout.

setSpacing(int) QLayout Sets the space between widgets in the

layout. inherited from QLayout.

setContentMargins(left,

top, right, bottom)

QLayout Sets the left, top, right, and bottom

margins around the layout.

Appendix A RefeRence Guide foR pyQt5

390

 Button Widgets
Buttons are one of the main tools used in a GUI for interaction, giving an application

feedback about a user’s decisions. Buttons in PyQt can display text or icons and

are checkable. The following classes inherit from the base class for button widgets,

QAbstractButton:

• QPushButton – A command button used to tell the computer to

perform some action

• QCheckBox – Provides an option button that is checkable, and

generally used for enabling/disabling features in an application

• QRadioButton – Similar to checkboxes, but are mutually exclusive

• QToolButton – Typically used in a toolbar, tool buttons provide quick-

access buttons for selecting commands or options

For managing and organizing multiple buttons, the QButtonGroup class can act as a

container for creating exclusive buttons (the default setting). Table A-8 lists some of the

more commonly used methods for button widgets.

The signals of the button widgets are listed in Table A-9.

Table A-8. Selected methods for the different button widgets

Method Description

setIcon(icon) Sets the widget’s icon.

setText(text) Set’s the widget’s text.

setAutoExclusive(bool) enables auto-exclusivity for buttons in a group.

setCheckable(bool) Sets whether the button is a toggle button or not.

setChecked(bool) Sets whether the button is checked or not.

isChecked() indicates whether the button is checked or not (is

setCheckable() is True).

text() Holds the buttons text.

Appendix A RefeRence Guide foR pyQt5

391

 Input Widgets
There are quite a few widgets that are provided by PyQt for getting input from the user.

These widgets provide different means for gathering information, such as text entry, or

selecting values with sliders, combo boxes, and spin boxes.

 Combo Boxes

The QComboBox class presents a user with a list of selectable options in a compact,

drop-down menu. When the combo box is not being interacted with, all items except

for the current item selected are hidden from view. Some common methods for

QComboBox can be found in Table A-10. The QFontComboBox widget is another type

of combo box that inherits QComboBox and is used for selecting a font family.

Table A-9. Signals for the different button widgets

Signal Class Description

clicked(bool) QAbstractButton Signal emitted when the button is pressed

and released.

pressed() QAbstractButton emitted when the left mouse button clicks

the button.

released() QAbstractButton Signal emitted when the left mouse button is

released.

toggled(bool) QAbstractButton emitted when a checkable button changes

its state.

stateChanged(bool) QCheckBox emitted when the checkbox’s state changes.

triggered(action) QToolButton Signal emitted when the action is triggered.

Appendix A RefeRence Guide foR pyQt5

392

Table A-11 displays select signals for the combo box classes.

 QLineEdit

The QLineEdit widget provides a single line for entering and editing plain text. Although

not listed in the following tables, QLineEdit comes with clear(), selectAll(), cut(),

copy(), paste(), undo(), and redo() slots already built-in. Table A-12 displays a few the

QLineEdit class’s methods.

Table A-10. Select methods from the QComboBox class

Method Description

addItem(text) Appends an item to the list with text.

addItems(list(text)) Appends a list of items to the combo box.

currentIndex() Holds the index of the currently selected item.

currentText() Holds the text of the currently selected item.

insertItem(index, text) inserts the text into the combo box at the given index.

setItemText(index, text) Sets the text for the item at the given index.

removeItem(index) Removes the item at the given index.

clear() clears all items from the combo box.

setEditable(bool) if True, the contents of the combo box are editable.

Table A-11. Commonly used signals from the QComboBox and

QFontComboBox classes

Signal Description

currentIndexChanged(index) emitted if the current item in the combo box has changed.

currentTextChanged(text) Signal emitted if the current item in the combo box has

changed. Returns text.

activated(index) emitted only if the user interacts with an item.

highlighted(index) emitted when an item in the combo box is highlighted.

textActivated(text) Signal emitted when the user chooses an item.

currentFontChanged(font) emitted when the current font changes.

Appendix A RefeRence Guide foR pyQt5

393

A few common signals for QLineEdit can be seen in Table A-13.

 Text Editing Widgets

The two text editing classes, QTextEdit and QPlainTextEdit, provide tools and

functionality for displaying and editing larger bodies of text. QTextEdit also has the

added benefit of being able to work with rich text, graphics, and tables. Select methods

for the two classes are displayed in Table A-14. Both classes are similar to QLineEdit,

because they already have editing features built-in.

Also worth noting is the QTextBrowser class, which inherits QTextEdit.

QTextBrowser only allows read-only mode, but includes hypertext navigation

functionality so that users can click links and follow them.

Table A-12. Methods from the QLineEdit class

Method Description

text() Retrieves the current text in the line edit.

setAlignment(alignment) Sets the alignment of the text displayed in the widget.

setPlaceholderText(text) displays placeholder text while line edit is empty.

setEchoMode(mode) mode describes how the contents of a line should be displayed.

Set mode to QLineEdit.Password to mask characters.

setMaxLength(int) Sets the maximum length of characters.

setTextMargins(left, top,

right, bottom)

Sets the text margins for the text displayed in the line edit.

setDragEnabled(bool) if True, dragging selected text in the line edit is permitted.

Table A-13. Commonly used signals from the QLineEdit class

Signal Description

returnPressed() emitted when the enter key is pressed. if a validator is

set, then a signal is only emitted if the text is accepted.

textChanged(text) Signal is emitted when the text changes.

Appendix A RefeRence Guide foR pyQt5

394

Commonly used signals for the text editing widgets can be found in Table A-15.

 Spin Box Widgets

Spin boxes allow users to choose values within a given range by clicking up/down

buttons to cycle through the widget’s values. Users can also manually type in values into

the provided line edit. The QAbstractSpinBox class is the base class for the following

classes:

 1. QSpinBox – Handles integers.

 2. QDoubleSpinBox – Similar to QSpinBox but is used for floating-

point values.

 3. QDateTimeEdit – A spin box widget for selecting dates and times.

Use setDisplayFormat() to set the format used for displaying the

dates and time.

Table A-14. Select methods from QTextEdit and QPlainTextEdit

Method Description

find(text, flags) finds the next occurrence of text in the text edit.

print(printer) print the text edit’s document to the printer.

setPlaceHolderText(text) Sets placeholder text for text edit.

setReadOnly(bool) if True, the text edit is set to read-only.

toPlainText() Returns the text of the text edit as plain text.

zoomIn(range) Zooms in on the text.

zoomOut(range) Zooms out on the text.

Table A-15. Select signals from QTextEdit and QPlainTextEdit

Signal Description

selectionChanged() Signal emitted when the text selected in the text edit changes.

textChanged() emitted whenever the contents of the text edit change.

Appendix A RefeRence Guide foR pyQt5

395

 4. QDateEdit – A spin box that displays only dates. Inherits from

QDateTimeEdit.

 5. QTimeEdit – A spin box that displays only times. Inherits from

QDateTimeEdit.

Some of the methods for the QSpinBox and QDoubleSpinBox classes are listed in

Table A-16. The QDateTimeEdit and other spin box widgets have similar methods.

The QSpinBox and QDoubleSpinBox signals are found in Table A-17.

Table A-16. Select signals from QSpinBox and QDoubleSpinBox. The value val

refers to integers for QSpinBox and floating-point numbers for QDoubleSpinBox

Method Description

setValue(val) Sets the value val of the spin box.

setMinimum(val) Sets the minimum value val of the spin box.

setMaximum(val) Sets the maximum value val of the spin box.

setPrefix(str) Adds a prefix to the start of the displayed value.

setSuffix(str) Adds a suffix to the end of the displayed value.

setRange(min, max) Sets the minimum and maximum range values.

setSingleStep(val) the spin box’s value is incremented/decremented by val when the

arrow keys are pressed.

Table A-17. Signals from QSpinBox and QDoubleSpinBox

Signal Description

valueChanged(val) Signal emitted when the value changes. provides the new value’s val.

textChanged(text) Signal emitted when the value changes. provides the new value’s text.

Appendix A RefeRence Guide foR pyQt5

396

 Slider Widgets

The following widgets are different in appearance, but are actually quite similar in

function. Widgets that inherit from the QAbstractSlider class are used for selecting

integer values within a bounded range. Classes that inherit QAbstractSlider include the

following:

 1. QDial – Provides a rounded range controller for selecting or

adjusting values. An example of QDial can be seen in Figure A-1.

 2. QScrollBar – Provides horizontal or vertical scrollbars that the

user can use to access other parts of a document that are wider

than the widget used to display it.

 3. QSlider – Creates the classic horizontal and vertical slider widgets

for controlling values within a specified range.

Table A-18 shows some of the methods of the QAbstractSlider base class.

Signals of the QAbstractSlider class can be found in Table A-19.

Table A-18. Select methods from QAbstractSlider

Method Description

value() Holds the sliders current value.

setMinimum(int) Sets the minimum value of the slider.

setMaximum(int) Sets the maximum value of the slider.

setOrientation(orientation) Sets the orientation, Qt.Horizontal or Qt.

Vertical.

setSingleStep(int) the slider’s value is incremented/decremented by int

when the arrow keys are pressed.

setTracking(bool) if True, the slider’s position can be tracked.

setSliderPosition(int) Sets the current position of the slider.

setValue(int) Sets the current position of the slider to int. if tracking is

enabled, then this has the same value().

Appendix A RefeRence Guide foR pyQt5

397

 Display Widgets
The following widgets are all used for different purposes, but each has one major

characteristic in common – they are all used for displaying information to the user.

 QLabel

The QLabel is a versatile widget. Although a label provides no user interaction

functionality, QLabel is able to display plain or rich text, pixmaps, and even movies.

Labels provide a number of methods for configuring their appearance. Table A-20 lists a

few of those methods.

Table A-19. Signals from QAbstractSlider

Signal Description

valueChanged(val) Signal emitted when the value changes. provides the new value’s val.

rangeChanged

(min, max)

Signal emitted when the range has changed with new minimum and

maximum values.

sliderMoved(val) emitted when the slider is pressed down and the slider moves.

sliderPressed() emitted when the slider is pressed down.

sliderReleased() emitted when the slider is released.

Table A-20. Select methods from QLabel

Method Description

setPicture(picture) Sets the label content to picture.

setPixmap(pixmap) Sets the label content to pixmap.

setMovie(movie) Sets the label content to movie.

setText(text) Sets the label content to text.

setAlignment(alignment) Sets the alignment of the label’s content.

setIndent(int) Sets the number of pixels that the label’s

text is indented.

setMargin(int) Sets the label’s margins.

Appendix A RefeRence Guide foR pyQt5

398

 QProgressBar

Progress bars are used to give visual feedback to the user about the progress of a

computer operation. Progress bars can be displayed vertically or horizontally. Table A-21

shows some of the QProgressBar class’s methods.

QProgressBar has one signal, valueChanged(int), that is emitted when the value

shown in the progress bar changes.

 QGraphicsView

The QGraphicsView class provides a widget for displaying the contents of

a QGraphicsScene. As the one part of Qt’s Graphics View Framework, the

QGraphicsView’s responsibility is to display the items of a graphics scene in a scrollable

window. The QGraphicsScene’s duty is to manage the items in a scene. QGraphicsItem

(or one of its subclasses) provides the items for a scene.

If you are interested in learning more about the Graphics View Framework, check

out the following link:

https://doc.qt.io/qt-5/graphicsview.html

Table A-21. Select methods for the QProgressBar class

Method Description

value() Holds the progress bar’s current value.

setMinimum(int) Sets the progress bar’s minimum value.

setMaximum(int) Sets the progress bar’s maximum value.

setRange(min, max) Sets the minimum and maximum values.

setOrientation(orientation) Sets the orientation, Qt.Horizontal or Qt.Vertical.

setTextVisible(bool) if True, the current completed percentage is displayed.

Appendix A RefeRence Guide foR pyQt5

https://doc.qt.io/qt-5/graphicsview.html

399

 QLCDNumber

The QLCDNumber widget displays numbers in a seven-segment LCD display.

An example of this can be seen in Figure A-1. The display can visualize decimal,

hexadecimal, octal, and binary numbers. The LCD display can only display certain

characters, so if an illegal character is passed, a space will be displayed in place of the

character.

Table A-22 lists a few of QLCDNumber’s methods.

Figure A-1. Example of the QLCDNumber and QDial widgets

Appendix A RefeRence Guide foR pyQt5

400

QLCDNumber has the overflow() signal, which is emitted when the widget is asked

to display a number or string that is too long.

 Item Views
The following model view classes provide the means to display items in lists, tables, or

tree structures. They must be used alongside a model class as part of Qt’s model/view

framework.

 1. QListView – Provides a list and icon view for displaying items from

a model

 2. QTableView – Provides a table for displaying items from a model

 3. QTreeView – Provides a hierarchical tree architecture for

displaying items from a model

These classes all inherit from the QAbstractItemView class. Using signals and slots,

item views created from QAbstractItemView are able to interact with models that use

QAbstractItemModel. Each of the item views has their own methods for working with

rows, columns, headers, and items. Views use the indices to manage items. You can find

some of QAbstractItemView’s methods listed in Table A-23.

Table A-22. Select methods from the QLCDNumber class

Method Description

value() Retrieves the Lcd’s displayed value.

intValue() Retrieves the displayed value rounded to the nearest integer value.

display(val) displays the value val in the display. val can be floating-point, integer,

or string type.

setMode(mode) Sets the mode of the Lcd to display Bin, Oct, Dec, or Hex values.

setSmallDecimal

Point(bool)

if True, the decimal is drawn between two digits.

Appendix A RefeRence Guide foR pyQt5

401

PyQt also offers convenience item-based classes for each of the different types of

views – QListWidget, QTableWidget, and QTreeWidget. Items are added to the widgets

by using QListWidgetItem, QTableWidgetItem, or QTreeWidgetItem.

Table A-23. Select methods for the QAbstractItemView base class

Method Description

clearSelection() All items selected are deselected.

selectAll() Selects all the items in the view.

setCurrentIndex(index) Sets the item at index as the current item.

update(index) updates the area at the given index.

setAlternatingRowColors

(bool)

if True, the background is drawn with alternating colors.

setAcceptDrops(bool) if True, items can be dropped into the view.

setDragEnabled(bool) if True, items can dragged around in the view.

setIconSize(size) Sets the size of icons.

setItemDelegate(delegate) Sets an item delegate for the view’s model/view framework.

setModel(model) Sets the model for the view.

Table A-24. Select methods for the QAbstractItemView base class

Signal Description

activated(index) Signal emitted when the item at index is activated by the user.

clicked(index) emitted when the left mouse button is clicked on an item in the view

(specified by index).

doubleClicked(index) emitted when a mouse button is double-clicked on an item in the

view (specified by index).

entered(index) Signal emitted when the mouse cursor enters the item at index. turn

on mouse tracking to use.

pressed(index) Signal emitted when a mouse button is pressed on an item at index.

Select signals for QAbstractItemView can be found in Table A-24.

Appendix A RefeRence Guide foR pyQt5

402

 Container Widgets
PyQt provides a few container widgets for maintaining control over groups of widgets.

Containers can be used to manage input widgets and make the process of organizing

a group of widgets simpler, or simply as a decorative widget for separating groups of

widgets. Once a container is created, a layout manager still needs to be applied to the

container widget itself.

 Containers with Frames

QFrame widgets can enclose and group widgets, as well as function as placeholders

in windows. Using frames, you can set the appearance of other widgets to have raised,

sunken, or flat appearances. The QFrame class is used as the base class for a few other

container classes, including QToolBox and QStackedWidget. Table A-25 lists a few of

QFrame’s methods.

QToolBox widgets provide a series of pages or compartments in a column. To

navigate through each of the pages, a tab is included at the top of each page. By clicking

the next tab, the user can view a new tab’s contents.

Table A-25. Select methods for QFrame

Method Description

setFrameRect(QRect) Sets the rectangle that the frame is drawn in.

setFrameShadow(shadow) Sets the frame’s shadow, such as Plain, Raised, or Sunken.

setFrameShape(shape) Sets the frame’s shape, such as Box, Panel, HLine, or VLine.

setLineWidth(int) Sets the width of line drawn around the frame.

Appendix A RefeRence Guide foR pyQt5

403

When the item in a QToolBox is changed, the currentChanged(index) signal is

emitted.

The QStackedWidget has a similar function to QToolBox, displaying multiple widgets

stacked on top of one another to conserve space in a window. However, there is a key

difference: QStackedWidget does not provide a means for the user to switch between

tabs. Therefore, other widgets, such as a QComboBox or a QListWidget, are used to

navigate through the different pages.

The QTabWidget is another container class that is similar to QStackedLayout, but

provides the tabs necessary to switch pages.

Finally, QGroupBox widgets typically group together collections of radio buttons and

checkboxes. The main visual difference from the QFrame class is the addition of a title.

 QScrollArea

A scroll area can be added onto a child widget to display the contents within a frame. If

the size of the frame changes, the scrollbars will appear, allowing the user to still view

the entire child widget. The manner in how the scrollbars appear can be controlled with

QAbstractScrollArea’s size policies. You can find a few of QScrollArea’s methods in

Table A-27.

Table A-26. A few of the QToolBox class’s methods

Method Description

addItem(widget, text) Adds the widget in a new tab at the bottom of the toolbox.

insertItem(index, widget,

text)

inserts the widget in a new tab at the given index.

indexOf(widget) Returns the index of the specified widget.

setCurrentIndex(index) Sets the index to a new item’s index.

setCurrentWidget(widget) Makes the widget the current widget displayed in the toolbox.

Appendix A RefeRence Guide foR pyQt5

404

 QMdiArea

For multiple-windowed GUIs (MDIs), the QMdiArea provides the container for displaying

multiple windows inside a single application window. Subwindows are instances of

the QMdiSubWindow class and can be arranged in tiled or cascading patterns. The

subwindows can work together, relaying information back and forth. A context menu

could also be added to the MDI area widget as a means to conveniently switch between

windows. Methods to help you get started using QMdiArea can be found in Table A-28.

Table A-27. Select methods for QScrollArea

Method Description

ensureVisible(x, y,

xmargin, ymargin)

ensures the specified (x, y) coordinate with margins xmargin

and ymargin remains visible in the viewport.

setAlignment(alignment) Sets the alignment of the scroll area’s widget.

setWidget(widget) Sets the scroll area’s widget.

setWidgetResizable(bool) if False, the scroll area abides by the child widget’s size.

Table A-28. List of select QMdiArea methods

Method Description

addSubWindow(widget) Adds widget as a new subwindow to the Mdi area.

activeSubWindow() Returns the active subwindow.

cascadeSubWindow() Arranges subwindows in a cascade pattern.

tileSubWindows() Arranges subwindows in a tiled pattern.

removeSubWindow(widget) Removes widget from the Mdi area, where widget is a

subwindow.

setBackground(background) Sets the QBrush background for the Mdi area.

subWindowList(subwindows) Returns a list of subwindows.

setTabsClosable(bool) if True, close buttons are placed on each tab in the tabbed

view.

setTabsMovable() if True, tabs within the tabbed view are movable.

Appendix A RefeRence Guide foR pyQt5

405

 Qt Style Sheets
For a great reference to all of the widgets and properties that can be manipulated with Qt

Style Sheets, have a look at the following link:

https://doc.qt.io/qt-5/stylesheet-reference.html

Style sheets allow for customizing many aspects and behaviors of widgets.

Table A-29 lists many of the properties that can be modified. Widgets support only

certain properties, so be sure to check out Qt’s documentation if you are not sure about

which properties you can change.

Table A-29. List of properties that can be influenced using Qt Style Sheets

Property Description

alternate-background-color the alternate background color for QAbstractItemView

widgets.

QListView{

alternate-background-color: blue;

background: grey

}

background Shorthand for setting the background.

background-color Background color used for the widget.

QPushButton{

background-color: #49DE1F

}

background-image the background image used for the widget.

QFrame{

background-image: url(images/black_cat.png)

}

border Shorthand for setting the widget’s border.

QComboBox{

border: 2px solid magenta

}

(continued)

Appendix A RefeRence Guide foR pyQt5

https://doc.qt.io/qt-5/stylesheet-reference.html

406

Property Description

border-top, border-right,

border-bottom, border-left

Shorthand for specifying sides of the widget’s border.

border-color the color for all sides of the widget’s border.

border-image Specifies an image to fill the border.

border-radius the radius of the border’s corners.

QTextEdit{

border-width: 1px;

border-style: groove;

border-radius: 3px

}

border-style Specifies the style for all of the border’s edges.

border-width Specifies the width for all of the border’s edges.

color the color used for rendering text.

font Shorthand for defining a widget’s font.

QRadioButton{

font: bold italic large "Helvetica"

}

font-family, font-size,

font-style, font-weight

other properties used to individually set a font’s features.

height, width the height and width of a widget.

icon-size the width and height of a widget’s icon.

image the image drawn on a widget. can use URL or SVG.

left, right, top, bottom Moves a widget by a certain offset relative to the parent’s

edge.

margin Specifies the widget’s margins. Just like border, specific

sides can also be set.

max-height, max-width the widget’s maximum height or width.

Table A-29. (continued)

(continued)

Appendix A RefeRence Guide foR pyQt5

407

Property Description

min-height, min-width the widget’s minimum height or width.

outline the outline is used to draw a widget’s border. can also

specify color, style, and radius.

padding Specifies the widget’s padding. Just like border, specific

sides can also be set.

selection-color the foreground color of selected items to text.

spacing Sets the internal spacing in a widget.

text-align Specifies the alignment of text and icons inside of a widget.

QPushButton{

text-align: right

}

Table A-29. (continued)

 Summary
Throughout this book, you have seen many of PyQt’s foundational classes for building

graphical user interfaces. Appendix A serves as a reference to help you analyze the

programs found in this book and to learn more about the widgets, layouts, and style

sheets used to design and build each application. The classes and methods contained

here act as a guide to get you thinking about ways to improve on the programs in this

guide and to help you to make your very own applications.

There is simply not enough room to include every class, method, or signal in this

guide. As you follow along with the examples, use this appendix as a resource to help you

learn and find out more about the possibilities of PyQt. If the answer isn’t provided for

you here, follow the links, search on the Internet, or send me an e-mail.

Appendix A RefeRence Guide foR pyQt5

409
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

 APPENDIX B

Python Refresher
Python is a powerful and versatile open source programming language with a standard

library packed with built-in modules, from providing access to system functionality such

as file I/O to Internet data handling, to development tools, and much more. On top of

the standard library, Python is also host to an extensive number of third-party modules

which can be found in the Python Package Index (PyPI) repository. No matter what your

project may be, you can almost be guaranteed to find a module to fit your needs. Of

course, you could also create your own module and share it with the Python community.

Some of the uses for Python include

• Web and Internet development

• Database access

• GUI development

• Scientific and numeric applications

• Network programming

• Software and game development

The Python language also has many other noteworthy features, such as follows:

 1. Python is an interpreted programming language. An interpreted
language is one in which the code does not need to be compiled

before it is run. The compiling step turns the code into machine

language where the instructions can be directly executed by a

computer’s central processing unit (CPU). Since Python does not

have a compilation step, the process to edit, test, and debug code

is much faster.

https://doi.org/10.1007/978-1-4842-5857-6

410

 2. Python is a language well-suited for creating dynamic applications.

This is because Python is both a dynamically typed language – type

checking occurs only as the code is being run and variables can

change types over time – and allows for dynamic binding – where

methods that are called on objects are only checked during runtime.

 3. While it is an object-oriented programming language, it does

also support other programming paradigms such as procedural

programming.

Note This section is not designed to act as a complete tutorial for Python.
It focuses mainly on reviewing some of the basic data types, data structures,
methods, and ideas that could be useful when creating your own GUI applications
and reviewing other concepts that are used throughout this book.

First, let’s get started by seeing if you have an updated version of Python on your

computer. If not, take a moment to install it.

 Installing Python
As of this writing, the current version of Python 3 is version 3.8, but the code in this book

is also capable of being run on Python 3.6 or later.

Python is a cross-platform programming language and is therefore able to run on

a number of different hardware platforms and operating systems. Whether you are

using Windows, MacOS, or some form of Linux, the simplest way to download the latest

version of Python is to go to https://python.org/downloads/ and find the installer for

your platform.

 Getting Python for Windows
To first check if Python is installed on your system, open up a Command window and

enter the command python3 (all lowercase). If Python is already installed, you will

get a notice telling you the current version that is on your system and a chevron, >>>,

prompting you to enter a Python command. Otherwise, you will get an error message

saying python3 is not a recognized command.

APPendIx B PyThon RefResheR

https://python.org/downloads/

411

If Python is not already on your computer, then downloading Python for Windows is

fairly easy. Select the installer right for your system from python.org, download it, and

follow along with the instructions in the dialog that appears. Be sure to include Python in

your PATH by checking the box like in Figure B-1.

Once installation is complete, try entering the python command into the Command

window again to make sure Python 3 is installed properly.

 Getting Python for MacOS
Python already comes installed on MacOS, but will probably need to be updated. To

check out which version of Python 3 you already have installed on your computer, open

up the Terminal application and enter python3. Similar to Windows, if you get an error

message, Python 3 is not installed on your system.

Doing some research online to find out what method works best for you is a good

idea. Otherwise, you could end up with multiple versions of the Python interpreter on

your computer.

Figure B-1. On Windows, make sure to check the box “Add Python 3.x to PATH”.
This ensures that the interpreter will be placed in the correct directory

APPendIx B PyThon RefResheR

http://python.org

412

Downloading Python directly and installing the interpreter from https://python.

org/ is one option. After the file downloads, simply run the installer. Once the installer

is complete, check to make sure Python is installed by opening up the Terminal window

and entering python3 on the command line.

Another option is to download the Homebrew package manager. A package manager

can be useful for maintaining, updating, and organizing the different software on your

computer. If you are interested in using a package management system, first open a

Terminal window on your Mac. To get Homebrew, go to https://brew.sh and copy and

paste the code into Terminal to install it. Once the installation is complete, enter the

following code (without the $ symbol) into the terminal window to download Python

using Homebrew:

$ brew install python3

Once the downloading process is complete, enter python3 into the Terminal window

to launch the Python interpreter.

If you have multiple versions of Python on your computer, you can also use

Homebrew and a tool called pyenv to manage them.

 Getting Python for Linux
If you are using Linux, then you probably already have a version of Python installed

on your system. The Linux platform has a number of different distributions – Ubuntu,

Fedora, Debian, and a few others.

To check if Python is already installed and, if so, find out what the current version is,

open the Terminal application on your system and enter python3. If Python 3 is installed,

then your current version should be displayed along with the chevron prompt, >>>.

If you need to download or update your version of Python, you can download

the most recent release from python.org. In Linux, it is also possible to download

Python from the Terminal. However, the process for each distribution of Linux can

be slightly different. There are a number of great tutorials online that you can follow

along with if you choose to go this route to get Python installed on your computer.

APPendIx B PyThon RefResheR

https://python.org/
https://python.org/
https://brew.sh
http://python.org

413

 Data Types in Python
There are several data types already built into Python, including numeric, string, and

Boolean types. The following section reviews what these data types look like, as well as

takes a look at a few of Python’s built-in functions to work with them.

 Numeric Data Types
When working with numbers, Python has integer, floating-point, and complex number

data types (Table B-1).

 Arithmetic Operators

Of course, Python also provides arithmetic operators and some built-in functions for

performing mathematical operations (Table B-2).

Table B-1. Numeric data types in Python

Numeric Data Type Representation

Integers 10, 254, 9876540

floating-Point numbers 5.7, 0.333, 0.5e6,

3.23e-5

Complex numbers 4+8j

Table B-2. Arithmetic operators and expressions

Operator Example

Addition/subtraction x + 5, 20 - j

Multiplication/division n ∗ 10, 5 / m (m ≠ 0)

exponents n ∗∗ 3

Modulo operation 100 % d

APPendIx B PyThon RefResheR

414

 Working with Numeric Data Types

Table B-3 lists a few of the built-in mathematical functions in Python.

 String Data Type
Sequences of textual data can be represented using strings. Strings can be delimited

with single or double quotes (Table B-4).

The escape character backslash, ‘\’, can be used to include quotes or whitespace

characters, such as ‘\n’ for a newline or ‘\t’ for a tab, in a string.

Including ‘r’ before the beginning of a string completely ignores all escape

characters. Raw strings are very useful for regular expressions. Triple quotations can also

be used to create multiline strings.

Table B-3. Python methods for working with numeric values

Functions Description

abs(value) Returns the absolute value of a number.

max(iterable) Returns the largest value in a list or other iterable object.

min(iterable) Returns the smallest value in a list or other iterable object.

round(value) Rounds a floating-point number and returns an int value.

sum(iterable) Returns the sum of the items in a list or other iterable object.

Table B-4. String data type examples in Python

Numeric Data Type Representation

string examples 'This is a string literal.'

"String with numbers - 1234."

empty string '', ""

escape sequences in strings "Include quote \" character."

Raw strings r"Escape \nchars \tignored."

APPendIx B PyThon RefResheR

415

 Workings with Strings

Strings in Python are immutable – these are objects that cannot be modified after they

are created. Whenever you apply an operation to a string, a copy is created. Parts of a

string, or substring, can also be accessed using indices and slices. The following bit of

code looks at creating and accessing parts of strings:

a_string = "I like dogs." # Variable assignment

print(a_string[4]) # Select and print item at index 4

print(a_string[7:10]) # Print items from index 7 to index 9

Individual characters in a list can be accessed by selecting the index value associated

with that character. The first item in a string has an index value of 0. Using a_string[4],

the letter ‘k’ is selected. You can also start from the end of the string and work backward

by using negative index values, starting from -1.

Use slicing to select a longer substring. In the preceding example, a_string[7:10]

will include everything from a_string[7] to a_string[9], leaving out the final character

in the string at index 10.

To test if a substring is or is not contained within a larger string, use the special

membership operators, in and not in.

a_string = "Connor, Sarah"

print('Sarah' in a_string) # Returns and prints True

print('John' not in a_string) # Returns and prints True

It is also possible to manipulate the content of strings. Concatenation is the process

of combining strings and can be achieved using the addition symbol, +.

first_name = "Peter"

last_name = "Parker"

full_name = first_name + " " + last_name # 'Peter Parker'

Finally, Table B-5 lists some of the other built-in methods for working with strings.

Methods are similar to functions, except they are “called on” an object using specific

keywords and a period, ‘.’. Methods such as isupper() and islower() are useful for

testing and comparing strings and validating user input.

APPendIx B PyThon RefResheR

416

 Boolean Data Type
Objects in Python 3 can be assigned one of two Boolean values, True or False. Non-

Boolean objects, ones that are assigned integer or string values, can also be evaluated

using Boolean operators and expressions. This comes in handy in situations where you

need to check if two strings match or to compare two integer values.

Table B-5. More methods of the String class

String Methods Description

upper() Converts all letters in the string to uppercase.

lower() Converts all letters in the string to lowercase.

isupper() Returns True if the string has at least one letter and all letters are

uppercase.

islower() Returns True if the string has at least one letter and all letters are

lowercase.

isalpha() Returns True if the string contains only letters and is not blank.

isalnum() Returns True if the string contains only letters and numbers and is not

blank.

isdecimal() Returns True if the string contains only numeric characters and is not

blank.

startswith(str,

begin, end)

Returns True if the string or substring value begins with specified prefix.

endswith(str,

begin, end)

Returns True if the string or substring value ends with specified prefix.

count(str, begin,

end)

Returns the number of times a specified string occurs in a string or

substring.

delimiter.

join(iterable)

Concatenates a list of strings together into a single string value. Use the

delimiter to specify how the individual strings are separated.

split(delimiter,

maxsplit)

Takes a single string object and returns a list of strings. Use the

delimiter to specify where in the string a split should occur.

strip(chars) Removes specified chars and whitespaces from the beginning and the

ending in a string.

APPendIx B PyThon RefResheR

417

num_1, num_2 = 35, 10 # Ex of multiple assignment statement

print(num_1 == num_2) # Prints False

print(num_1 > num_2) # Prints True

 Data Structures in Python
As you begin working with more data, you will need a way to organize, store, and access

that information. Python includes a few data structures with their own special sets of

rules – lists, tuples, sets, and dictionaries.

 Lists
A list is a mutable data structure that is created using brackets:

List with mixed data types

a_list = ["John Doe", 23, 1976, "blue"]

Example of nested list

nested_list = [["zebra", "tiger", "turtle"], [3, 2, 7]]

Mutable objects are ones whose content can be modified without creating a new

object. You can append, remove, or even rearrange items within the list. Similar to

strings, items in lists are in an ordered sequence and can also be accessed using indices

and slicing.

print(a_list[2]) # Access and print item at index 2

print(a_list[0:3]) # Only print items from indices 0 to 2

print(a_list[:]) # Print the entire list

To access the values inside nested lists

print(nested_list[0]) # Prints ['zebra', 'tiger', ‘turtle']

print(nested_list[1][1]) # Prints 2

To get the length of a list or other iterative objects such as strings or tuples, use the

built-in function len():

print(len(a_list)) # Prints 4

APPendIx B PyThon RefResheR

418

Similar to strings, lists and other iterables can also use the in and not in operators

to check if values are present in the list.

print("John Doe" in a_list) # Prints True

Table B-6 contains some useful methods for working with lists.

It is also possible to remove items or an entire list using the del statement.

del a_list[3] # Delete item at index 3

Delete multiple items using slicing

del a_list[0:2]

del a_list # Delete the entire list

 Tuples
A tuple is an immutable data structure that is created using parentheses:

Tuple with mixed data types

a_tuple = ("Jane Doe", 25, 1982, "brown")

Table B-6. Some List class methods

List Methods Description

append(value) Appends a single item to the end of a list.

count(value) Returns the number of times a value occurs in a list.

index(value) Returns the index of the first occurrence of a value in a list.

insert(index, value) Inserts one value at a specific index location.

extend(iterable) Adds more than one item to the end of a list.

pop(index) Removes the item at the specified index.

remove(value) Removes the first occurrence of a value in a list.

clear() Clears the items in a list.

sort() sorts the items in a list.

APPendIx B PyThon RefResheR

419

It is possible to find values in a tuple using indices and slicing just like lists. However,

since tuples are immutable, actions such as appending, sorting, or replacing items

cannot be performed on them. This can be very useful when you have data that you may

want others to view, but not have the ability to alter.

Many of Python’s built-in functions such as max() and len() can also be used with

tuple objects (Table B-7).

 Sets
A set is a mutable data structure that is created using curly brackets:

Set with mixed data types

a_set = {"John Smith", 45, 2001, "brown"}

Generally, sets are thought of as a collection of data of the same type, but they can

also contain different data types. Sets in Python are unordered and unindexed and do

not allow for duplicate values. Therefore, methods such as index() cannot be used

with them. Sets can be very useful for removing repeated values and for performing

mathematical operations from set theory on data. A few of those methods can be found

in Table B-8.

Table B-7. Tuple class methods

Tuple Methods Description

index(value) Returns the index of the first occurrence of a value in a tuple.

count(value) Returns the number of times a value occurs in a tuple.

APPendIx B PyThon RefResheR

420

 Dictionaries
A dictionary is a mutable data structure composed of key/value pairs that is created

using curly brackets:

Example of dictionary

a_dict = {"name": "Jane Smith", "age": 29, "year": 1970, "eye color":

"green"}

In the preceding example, “name” is a key and “Jane Smith” is value associated

with it. The key is similar to the index in lists. You can use the key to access and organize

specific items in the dictionary.

Even though dictionaries are unordered, it is very easy to access their contents using

the keys. To find out a key’s value, look at the following bit of code:

print(a_dict["age"]) # Prints value associated with "age"

There are also a few methods that can help you to work with the items in

dictionaries:

• keys() – Returns a list of all of the dictionary’s keys

• values() – Returns a list of all of the dictionary’s values

• items() – Returns a list containing a tuple for each key/pair value

Table B-8. A few important Set class methods

Set Methods Description

add(value) Adds a single item to a set.

update(iterable) Adds multiple items to a set.

remove(value) Removes the specified value from a set.

clear() empties all items in the set.

difference(set) Returns the difference of two or more sets as a new set.

intersection(set) Returns the intersection of two or more sets as a new set.

union(set) Returns a set that contains the union of two or more sets.

APPendIx B PyThon RefResheR

421

For example, the following bit of code will return a list of all of the values in a_dict:

dict_values = list(a_dict.values()) # Create a list using typecasting

print(dict_values) # ['Jane Smith', 29, 1970, 'green']

It is also possible to check if keys or values exist in a dictionary using the

membership operators in and not in. By default, if you do not specify keys or values,

Python will search through the keys. The following example is equivalent to searching

for "year" in a_dict.keys():

print("year" in a_dict) # Prints True

To add a new key/value pair to the dictionary, you could use an if statement to

first check if the key already exists or not. If it does not, then add the new item to the

dictionary.

if "height" not in a_dict:

 a_dict["height"] = 1.82

Another way to check if an item can be found in a dictionary is to use the

setdefault() method. If the key does not already exist or does not have a value, then

the key/value pair is added. However, if the key already exists and has a value, then the

setdefault() method does not make any changes to the dictionary. The following code

will add the "hair" key and its value to a_dict:

a_dict.setdefault("hair", "brown")

Table B-9 lists additional Dictionary class methods.

Table B-9. Some other Dictionary class methods

Dictionary Methods Description

get(key, default value) Returns the value of the specified key. If the key does not exist,

then get() uses the default value. Useful for avoiding errors.

copy() Creates a copy of a dictionary.

update({key: value}) Adds a new key/value pair to a dictionary.

pop(key) Removes an item from the dictionary by specifying the key.

clear() Clears all of the items from a dictionary.

APPendIx B PyThon RefResheR

422

 Data Type Conversion
Typecasting is the action of directly converting one data type to another. In Python, it is

possible to convert integers to floating-point numbers, integers to strings, lists to tuples,

as well as other types of conversions (Table B-10). The following example shows how to

convert a list into a dictionary:

info = [["name", "Sam"], ["age", 12]]

print(dict(info)) # {'name': 'Sam', 'age': 12}

 Conditionals and Loops in Python
The following section takes a look at programming tools that are used for controlling the

flow and execution of commands and repetitive tasks while a program is running. Any of

the following statements can be placed inside of another to create nested loops.

Table B-10. Typecasting functions

Types Typecasting Functions Description

Arithmetic int(value, base) Converts different data types to int values. specify

the base if converting a string.

float(value) Converts integer to floating-point value.

ord(character) Converts a single character to an integer.

strings str(value) Converts other data types into a string.

data structures list(iterable) Converts an iterable object into a list.

tuple(iterable) Converts an iterable object into a tuple.

set(iterable) Converts an iterable object into a set. May result in

some data loss if there are duplicate values.

dict(iterable) Converts an iterable with structure (key, value) into a

dictionary.

APPendIx B PyThon RefResheR

423

 “if-elif-else” Conditional Statements
Conditional statements are used in programming to decide whether or not to perform

certain actions based on whether the specified Boolean constraints evaluate to True or

False. These types of statements are handled in Python using if-elif-else statements.

The following code shows a simple example of how to use if statements to check if

items exist in a list:

car_types = ["economy", "sedan", "convertible", "SUV", "economy"]

if "SUV" not in car_types:

 car_types.append("SUV")

elif car_types.count("economy") > 1:

 car_types.remove("economy")

else:

 car_types.append("luxury")

print(car_types) # ['sedan', 'convertible', 'SUV', 'economy']

The first if statement evaluates to False since "SUV" already exists in the car_types

list. The elif statement provides other conditions to check if previous clauses were not

true. Finally, else statements are executed if all previous conditions were false.

There are other operators besides in and not in that can be used for evaluating

Boolean expressions. Table B-11 lists some of them.

APPendIx B PyThon RefResheR

424

 “for” Loops
Python is very useful for automating repetitive tasks using loops. The for loop is very

useful when you have a task that needs to be executed a certain number of times, such as

traversing through a sequence until you reach the end.

colors = ["blue", "red", "purple", "green", "white"]

for color in colors:

 print("Current color: {}".format(color))

The preceding code will cycle through the list five times, once for each item in the

list. There are also ways to repeat a block of code or iterate over a sequence of numbers

using the range() function. The following code will print out the index values and their

corresponding colors from the colors list:

for i in range(len(colors)):

 print("{}. {}".format(i + 1, colors[i]))

Table B-11. Python operators

Types Operators Description

Comparison x == y equal to

x != y not equal to

x > y Greater than

x < y Less than

x >= y Greater than or equal to

x <= y Less than or equal to

Logical x > 5 and y < -5 Returns True if both statements are true.

x > 5 or y < -5 Returns True if both statements or only one of them is

true.

not(x > 5) Returns the opposite. Changes True to False and vice

versa.

APPendIx B PyThon RefResheR

425

The enumerate() function is also a way to include a counter while iterating through a

sequence.

for count, color in enumerate(colors, start=1):

 print("{}. {}".format(count, color))

 List Comprehensions

Now that we have gone over for loops and if statements, let’s take a look at a very

important concept in Python, list comprehensions. List comprehensions are a way to

create new lists from more compact code.

Given a list of strings and integers, the following example uses list comprehension to

create a new list of only the string values:

a_list = ["Sam", 1978, "Elsa", 1984, "Marcus", 1980, "Trevor", 1983]

new_list = [word for word in a_list if type(word) == str]

print(new_list) # ['Sam', 'Elsa', 'Marcus', 'Trevor']

Using nested loops, the following code is equivalent to the preceding example:

new_list = [] # Creates an empty list

for word in a_list:

 if type(word) == str:

 new_list.append(word)

print(new_list) # ['Sam', 'Elsa', 'Marcus', 'Trevor']

 “while” Loops
Unlike the for loop, the while loop can be used to execute a block of code an unknown

number of times, as long as the Boolean condition being tested continues to evaluate

to True. When the computer reaches the end of a while clause, it returns back to the

beginning of the loop and checks again if the condition is still true. If so, the clause is

executed once more, and the condition will be checked again at the end.

while True:

 print("Please enter your age: ")

 age = int(input())

 if age < 21:

APPendIx B PyThon RefResheR

426

 print("You are underage.")

 continue

 else:

 break

print("Access granted.")

For this example, the while condition will always evaluate to True. However, you

could also use other logical or comparison operators to test different conditions. Once in

the loop, the user is asked to input their age. This information is then handled using an

if-else conditional statement.

In addition, there are types of statements that can be used to control the flow of the

program and handle exceptions in a while loop – break and continue. These statements

can also be used in for loops.

• break – Used to immediately exit a while loop. After exiting, the

program will continue with the statement following the loop.

• continue – Used to immediately skip the rest of the loop and return

back to start of the while loop. The condition statement is then

reevaluated with the next iterative value.

 Functions
A function is a collection of statements that perform some particular task and can be

reused multiple times throughout a program. Functions also make code easier to read by

avoiding duplicate code.

You can also define your own functions in Python using the def() statement. When

you call a function by invoking its name, you can also pass values, known as arguments,

between the parentheses. Since functions in Python are treated as objects, you can also

pass them as arguments to other functions. They also always return values whether it is

None or some calculated value. Functions can even return other functions.

def check_for_nums(items_list):

 """

 Checks to see if string (item) contains only

 letters. If the string contains a numeric value,

 it is removed from the list.

 """

APPendIx B PyThon RefResheR

427

 for item in items_list[:]:

 if item.isalpha() != True:

 items_list.remove(item)

 return items_list # Return statement and value

test_list = ["horse", "1234", "d0g", "mouse", "m3"]

new_list = check_for_nums(test_list) # Function call

print(new_list) # Prints ['horse', 'mouse']

The function check_for_nums() is used to iterate through a list and remove any

strings that contain numeric values. The function takes as an argument a list of string

values. When items_list is called in the for loop, we need to iterate over a copy of

the list (created using [:]) rather than the actual list itself in order to modify it using

remove(). The for loop could also be written more concisely using list comprehension.

Be sure to consider local and global scope when creating functions and passing

arguments between them. Variables and values created in a called function only exist

within that function’s local scope. Other variables and parameters created outside of all

functions exist in the global scope and can be accessed by all functions.

 Lambda Functions
Lambda functions are often referred to as anonymous functions, or functions that have

not been assigned a name. They are single expressions that can take multiple arguments.

The general form for a lambda function is

lambda arguments : expression

The following example demonstrates how to create and call a multiargument lambda

function in Python:

full_name = lambda f, l: "Full name: {} {}".format(f, l)

print(full_name("Ben", "Franklin"))

This is equivalent to creating a function using def().

def full_name(first, last):

 print("Full name: {} {}".format(first, last))

APPendIx B PyThon RefResheR

428

Lambda functions are very useful when creating GUIs for mapping actions in

response to events. When a button is clicked and a signal is triggered, a method, also

known as a slot, handles that event. A method could be the call to a function, but in some

instances, a lambda function can be used for the same reason.

 Object-Oriented Programming (OOP)
In this section we will take a brief look at what object-oriented programming is and how

to create objects using classes.

There are a number of different programming paradigms, or methods and styles of

programming. One common method is procedural programming where a computer

follows a sequential set of commands to perform some task. This kind of programming

can make it difficult for adding new functions and working with more dynamic

situations.

Another approach is object-oriented programming (OOP) which focuses

on creating objects with their own properties and behaviors, and modeling their

relationships between other objects. Objects are created using classes – which act as

templates for the data, attributes, and methods that can be applied to an instance of

a class. An instance, or an object created from a class, has access to all the data and

methods inside the class.

OOP also introduces the idea of inheritance, which is the concept of creating new

classes that derive properties and behaviors from existing classes. An object created

using inheritance is known as a child. A child object has its own set of attributes and also

acquires all of the properties and behaviors from its parent class.

The following example demonstrates how to create a new class, Window, for GUI

development which inherits from the PyQt5 class, QMainWindow:

Import necessary modules

import sys

from PyQt5.QtWidgets import QApplication, QMainWindow

class Window(QMainWindow):

 """

APPendIx B PyThon RefResheR

429

 Create a new class, Window, which inherits from other PyQt modules,

in this case from the QMainWindow class in the QtWidgets module.

Inheriting from QMainWindow means we have access to all the attributes

to create GUIs using PyQt, but we also can add our own variables and

methods in our new class.

 """

 def __init__(self):

 super().__init__() # super is used to access methods from parent

class

 self.initializeUI()

 def initializeUI(self):

 """

 Initialize the window and display its contents to the screen.

 """

 self.setGeometry(100, 100, 300, 200)

 self.setWindowTitle("Create the Window Class")

 self.show()

app = QApplication(sys.argv) # Create instance of QApplication class

window = Window() # Create instance of Window class

sys.exit(app.exec_()) # Start the event loop

The window object is an instance of the Window class. To make code easier to

understand, classes start with an uppercase letter. The child object, window, inherits from

both Window and from the QMainWindow class and is able to use the methods found in

QMainWindow, such as setGeometry() and show(), to create our GUI window.

In order to reference the current class, the keyword self allows us to use any of

the data or methods within QMainWindow as well as any new methods we create in the

Window class.

 Exception Handling in Python
It is quite common for programs to run into errors when they are running. Syntax errors

are the ones you will most often run into when writing your code. They are caused by

incorrect syntax such as forgetting to include a colon, ‘:’, after a for clause.

APPendIx B PyThon RefResheR

430

Exceptions are the errors that occur when executing code. It is important to consider

how your program will handle these exceptions rather than allowing your application

to crash. Python includes a number of built-in exceptions, including how to handle not

being able to locate or open a file, incorrect data types being passed into a function,

dividing by zero, and various other situations.

The best way to handle an exception is to use the try and except statements. The

following code shows how to check if a user correctly enters an integer value for their

age:

while True:

 try:

 weight = int(input("Enter your weight (in lbs): "))

 break

 except ValueError:

 print("Invalid input.")

Code that could possibly cause an error is placed in the try clause. If an

exception does occur while the program is running, then the except clause will catch

it and handle the error accordingly. Depending upon the situation, you could display

an error message, use the break or continue statements, or force a specific kind of

error to occur.

 Reading and Writing to Files in Python
Python also provides built-in modules and functions to open, append, and write to

files. Working with and locating files in directories can be a very long topic that includes

filename pattern matching, traversing directories, deleting files and directories, and

more. This section will simply focus on the basics of opening and writing to files.

The simplest way to open a file is to use

with('path to file', mode) as f

There are other ways to open files, but using this pattern allows for cleaner code and

ensures that files are attended to by closing the file once the function using the resource

is finished executing.

APPendIx B PyThon RefResheR

431

with open ('quotes.txt', 'w') as f:

 text = "Life is what happens when you're busy making other plans. -John

Lennon"

 f.write(text)

The open() method takes as arguments the path to the file and a mode to tell the

computer how to handle the file. The second argument, 'w', means we want to write to

a file and ensures that a new file is created if it does not exist already. The text is then

written to a new file using f.write(). Other options to interact with files include reading

the contents of an entire file with f.read() or only reading one line at a time using

f.readline().

Table B-12 lists the common modes for reading and writing to files.

 Summary
Hopefully this appendix helps you to recall some method you may have forgotten

about, or sparks an idea in your mind about how to solve a problem when creating

your own GUIs, or maybe even helps you to learn something new about programming

in Python.

Table B-12. Some modes for working with files

Character Definition

'r' opens a file for reading. This is the default mode.

'w' opens a file for writing. overwrites a file if one already exists. otherwise, creates a

new file.

'a' opens a new file for appending. file pointer starts at the end of the file if it exists.

otherwise, creates a new file.

'r+' opens a file for reading and writing.

'w+' opens a file for writing and reading. overwrites a file if one already exists. otherwise,

creates a new file.

'a+' opens a new file for appending and reading. file pointer starts at the end of the file if

it exists. otherwise, creates a new file.

APPendIx B PyThon RefResheR

432

This appendix covers information from data types and data structures to conditional

statements and iteration using loops, to creating your own functions and classes, and

more. But it only skims the surface of the possibilities of what you could apply in your

own applications.

There are so many possibilities for working with PyQt and Python, and covering all

of that information could definitely be written in more than one book. If you ever get

stuck, the Internet is definitely an amazing resource full of information and guidance to

working through your problems.

Best of luck in all of your projects and in your endeavors!

APPendIx B PyThon RefResheR

433
© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

Index

A
about() method, 101
Account management GUI, 294

editing data, 310–313, 315
input/update/delete, 300–302
project parts, 294, 295
QSqlQuery, 295–298
QSqlRelationalDelegate, 316
QSqlRelationalTableModel class,

306–309
QSqlTableModel

class, 303–306
table accounts, 299

Action Editor dock widget, 202
addAction() method, 110, 119
addBindValue() method, 300
addButton() method, 64
addDatabase() function, 298
addItem() method, 220, 223
addLayout() method, 55, 82
addMenu() method, 90, 110, 119
addStretch() method, 62, 67
addWidget()/addLayout() methods, 82
addWidget() method, 55

B
backgroundTab() method, 146
Binding, 379
Boolean data type, 416–417

buttonClicked() function, 28
Button widgets, 390, 391
ButtonWindow class, 26

C
calculateTotal() method, 73
Calendar GUI, 346

code, 346–350
importing modules, 351, 352

Camera GUI
MDI applications, 337–340
camera’s viewfinder, 341

Cascading Style Sheets (CSS), 136
cb_text widget, 210
Central processing unit (CPU), 409
central_widget, 209
changeHeader() method, 283
Classes

dialog boxes, 386, 387
event handling, 385, 386
layout managers, 388, 389
QApplication, 383
QWidget, 384

clearEntries() function, 31
clicked() signal, 159
clickLogin() method, 44
Clipboard, 205
clipboard_dock widget, 210
closeEvent() method, 46

https://doi.org/10.1007/978-1-4842-5857-6

434

close() function, 160
Conditional statements

if-elif-else, 423, 424
for loops, 424
while loops, 425, 426

confirmSignUp() function, 51
Context menus/pull-down menus, 85
copyFromClipboard() method, 210
createClipboard() method, 216
createConnection() method, 306
createMenu() method, 132
createNewUser() method, 46
createNotepadWidget() method, 109
createTable() method, 306, 315
cubicTo() method, 239
currentChanged() signal, 375
currentColumn() method, 283
currentDate() method, 346
currentDateTime() method, 342
current_date_edit widget, 352
currentTime() method, 346
Custom signals, 161–163

D
dataChanged() method, 210, 216
dateChanged() signal, 352
Data structures

dictionaries, 420, 421
list, 417, 418
sets, 419
tuples, 418

def() statement, 426
Dialog boxes, 386, 387
Directory viewer GUI

code, 332–334
hierarchical file system, 332

menu, 336
model/view paradigm, 335

displayButton function, 27
displayCheckBoxes() method, 34
displayLabels() function, 16
displayMessageBox() function, 39
Display widgets

QGraphicsView, 398
QLabel, 397
QLCDNumber, 399, 400
QProgressBar, 398

drawBackground() method, 257
drawCurves() method, 239
drawLine() method, 236
drawOnCanvas() method, 250
drawPoint() method, 235
drawRect() method, 237
drawText() method, 236
Dynamic binding, 410

E
EntryWindow class, 30
Event handling, 159, 385

F
Food ordering GUI

applying style sheets, 157–159
code, 147–156
design, 140
profile details tab, 146
QGroupBox widget, 141, 142
QRadioButton, 141
QTabWidget class, 142, 143, 145
types, 138

formWidgets() method, 76

Index

435

G
getDouble() method, 98
getInt() method, 98
getItem() method, 98
getMultiLineText() method, 98
getOpenFileName() method, 57
getPixelValues() method, 273
getText() method, 98
Gradients, 239
Graphical user interfaces (GUIs), 2
Graphics View

framework, 252, 253
GUI, drag/drop, 216, 217, 219
GUI, sticky notes, 211, 212, 215

H
Hangman GUI

code, 353–361
DrawingLabel class, 362, 363
newGame() method, 363

hasText() method, 210

I, J
ImageDemo class, 272
initializeUI() function, 12
__init__() method, 191
Input widgets

QComboBox class, 391, 392
QLineEdit, 392, 393

Interface design, 3, 4
Interpreted language, 409
isChecked() method, 34
isValid() method, 100
Item views, 400, 401

K
Keypad GUI, 176

apply layouts, Qt Designer, 194, 195
create/edit Python code, 199
Edit Signals/Slots mode, 197, 198
frame objects, 179–181
grid layout, 181, 183
keypad.ui, 187–190
New Form dialog box, 191
properties, 195, 197
Property Editor, 195
QFrame class, 193
QLineEdit widgets, 176
QPushButton widgets, 186
retranslateUi() method, 186
setupUi() method, 177
style sheet creation, 178
vertical layout, 179

keyPressEvent() function, 159, 160

L
Lambda functions, 427, 428
Layout management

absolute positioning, move()
notepad GUI, 56
QFileDialog class, 57
QTextEdit widget, 57

definition, 53
methods, 53
Nesting, 55
Notepad GUI, solution

code, 58, 59
QTextEdit widget, 60, 61

QHBoxLayout/QFormLayout
classes, 54

Index

436

QTextEdit widget, 55
Widgets/classes, 54

Layout manager, 53
List comprehensions, 425
loadCSVLayout() method, 290
loadProgress() function, 376
Login GUI, 22, 23

code, 40, 42–44
key components, 23
layout, 23, 24
QLineEdit widget, 45

LoginUI class, 44

M
menuBar() function, 90
Menus

definition, 85
pull-down, 88
QAction class, 90, 91
QIcon class

application icon, 93, 94
icon_button, 95
pixmaps, 91
QPushButtons, code, 91, 93
settings, 94

QMainWindow class vs.QWidget, 89
QMenuBar class, 89
structure, 86, 87
submenus, checkable items, 119
using PyQt, 85

Model-view-controller (MVC), 285
Model/view programming

components, 285, 286
CSV file, 287, 289, 291
PyQt, 286, 287
table creation, 289

mouseMoveEvent() method, 250
mousePressEvent() method, 260
move() method, 44
moveMouseEvent() method, 250
Multiple-document interface (MDI),

 216, 336
Multipurpose Internet Mail Extensions

(MIME), 210
Multithreading, 320

N
name_entry widget, 30, 31
Nesting layouts, 55
New user GUI

code, 47, 48, 50
creation, 46, 47

notepadMenu() method, 109
numberClicked() slot, 191
Numeric data types, 413–414

O
Object Inspector dock widget, 168
Object-oriented programming (OOP),

428, 429
openImage() method, 132

P
Painter GUI, 241

Canvas class, 249, 250
creation, 241
mouse movement, 250, 251
tool tips, 251
variables/objects, 249

PainterWindow class, 250
paintEvent() function, 226, 234, 249

Layout management (cont.)

Index

437

paste_button widget, 210
paste() method, 210
pasteText() method, 210
Photo editor GUI, 110–112
pixmap property, 202
pizzaTab() method, 157
prepare() method, 300
printImage() method, 131
printToTerminal() function, 34
Pseudostates, 136
PyQt

About dialog, 101
classes, 321
events, 321, 322
exec_(), 320
framework

definition, 4
Qt designer, 5
requirements, 5
signal/slot mechanism, 5
source code, 5
Tkinter, 5
uses, 4

QColorDialog, 100
QFontDialog, 98, 99
QInputDialog, 97, 98

PyQt5
Anaconda distribution, 382
Classes (see Classes)
Linux(Ubuntu), 381
MacOS, 380
modules, 382, 383
windows, 380

Python
exception handling, 429
features, 409
Linux, 412
MacOS, 411, 412

opening/writing, files, 430, 431
uses, 409
windows, 410, 411

Python Package Index (PyPI), 379, 409
pyuic5 utility, 199

Q
QAnimationProperty class, 252
QApplication, 383–384
QApplication style sheet, 137, 138
QBrush class, 235
QCalendarWidget class, 346
QCamera class, 336
QCheckBox widget, 21, 31, 33, 34
QClipboard class, 203, 205
QColor class, 234
QDateEdit widgets, 346, 352
QDockWidget class, 112, 114, 115, 118
QFileSystemModel class, 332, 335
QFormLayout Class

application form GUI
solution, 73, 75, 76

GUI application, 68, 69
objects, 77
QSpinBox/QComboBox

widgets, 69, 71, 72
setInputMask(), 77
setPrefix(), 73

QFrame container, 192
QFrame widgets, 402, 403
QGraphicsItem.setPos() method, 256
QGridLayout layout manager

definition, 77
to do list GUI, 78
to do list GUI solution, 79, 81

ToDoList class, 81
todo_title QLabel widget, 82

Index

438

QGroupBox widget, 141, 142
QHBoxLayout/QVBoxLayout Classes

DisplaySurvey class, 67
GUI, 62, 63
QButtonGroup class, 63, 64
QHBoxLayout object, 67
styles, 62
survey GUI, 64–66

QLabel widget, 13, 21, 34, 192
QLCDNumber widget, 399, 400
QLinearGradient class, 239
QLineEdit widget, 21, 24, 28, 30, 31, 45, 60,

192, 392, 393
QListWidget methods, 223
QMainWindow class, 386
QMdiArea class, 336
QMessageBox widget, 21, 24

code, 36–38
dialog box, 39, 40, 45
GUI, 39
types, 35
windows vs. dialogs, 35, 36

QMimeData class, 206
QPainter class, 226, 233, 387
QPen class, 235
QPolygon class, 237
QProgressBar widget, 323, 398
QPropertyAnimation class, 253, 256
QPushButton widget, 21, 24, 192

code, 25, 26
events, 27
QRadioButtons, 25
QToolButtons, 25
signals, 27
slots, 27
window, 26

QRadioButton widgets, 141, 157
QSlider class, 259, 260
QSqlRelationalTableModel class, 306–309
QSqlTableModel class, 303–306
QTableWidget class, 142, 276

context menu, 284
fuctions, 277–279
table menu, 282, 283

Qt Designer
actions, 202
adding menus/submenus, 200, 201
creating application, 174, 175
definition, 165
editing tools, 173, 174
functionality, 165
keypad GUI (see Keypad GUI)
Main Window template, 200
multilevel layout, 167
QLabel widget, 202
toolbars, 201
user interface, 166, 167

action editor, 172
form dialog box, 168
object inspector, 171
property editor dock widget, 170
resource browser, 173
widget box dock, 169

QTextEdit widget, 57, 89, 209
QtMultimediaWidgets module, 341
QToolBar class, 117, 118
QTreeView class, 332, 335
Qt style sheets, 405–407

individual widget properties, 136, 137
technique, 136

QtWebEngine module, 364
QtWidgets module, 11, 30

Index

439

R
redValue() function, 269
Registration module, 44, 46
Relational database management systems

(RDBMS), 292
repaint() method, 191, 210
resizeEvent() event handler, 388
Resource Browser dock widget, 172
RGB slider, 257, 258, 260

adding methods, 269
colour update, 269
custom widget, 260–265, 267
demo, 270, 272, 273
handling image data, 258, 259
QSlider class, 259, 260
QSlider/QSpinBox, 268, 269

Rich Text Notepad GUI
application, 95
design, 96
menubar/QTextEdit widget, 96
solution

code, 102, 104–108, 120, 122–125,
127, 129, 130

open_act object, 109
PyQt, images, 132
QDesktopWidget class, 131, 133
QPrinter class, 133
QPrintSupport module, 132
QTextEdit widget, 101, 109, 110
QtGui module, 131

S
selectionChanged() signal, 352
self.close() method, 27
sender() method, 31, 34

setAcceptDrops() method, 216, 219
setAlternatingRowColors() methods, 223
setAutoExclusive() attribute, 141
setColumnCount() method, 276
setContentMargins() method, 82
setdefault() method, 421
setDragEnabled() method, 216, 219
SetEchoMode() method, 46
setEnabled() method, 132
setFixedSize() method, 132
setHeaderData() method, 315
setIconSize() method, 95, 117
setInputMask() method, 77
setItem() method, 276
setKeyValueAt() method, 257
setModel() method, 290
setMouseTracking() method, 250
setObjectName() method, 156, 268
setPlaceholderText() method, 39
setRowCount() method, 276
setShortcut() method, 90
setSizePolicy() method, 132
setStopPoint() method, 239
setText() method, 27, 40, 210
setToolTip() method, 251
setupCamera() method, 342
setupTab() method, 375
setupWidgets() method, 315
setupWindows() method, 341
setWindowIcon() method, 94, 101
setWindowTitle() method, 40, 118
showPassword() function, 45
Signal/Slot Editor, 171
Simple clock GUI, 342

calendar date/clock time, 345
code, 343, 344

Single-document interface (SDI), 216

Index

440

SIP binding generator, 379
Slider widgets, 396, 397
Spin box widgets, 394, 395
String data type, 414

immutable, 415
methods, 416

Structured Query Language (SQL), 291
commands, 292
keywords/functions, 293
RDMBS, 292

T
tab_bar widget, 375
Text editing classes, 393, 394
text() method, 44
Thread

definition, 320
GUI, file renaming

directory, code, 324–328
QFileDialog, 329
QLineEdit widget, 323
QTextEdit/QProgressBar widgets,

322, 323
QThread, 329
RenameFileGUI class, 328

parallelism, 320
timeout() signal, 345
toggled() signal, 141
toggle() method, 34
toString() method, 343
trigger() method, 119

triggered.connect(), 91
Typecasting, 422

U, V
Uniform Resource Locator (URL), 364
User interface (UI), 2
User profile GUI

empty window, create
code, 10, 11
modifying, 12, 13
operating system, 11
QApplication, 12
QtWidgets module, 11, 12

layout design, 9, 10
QLabel widgets, 13–16
solution, code, 17–20
user’s personal data, 8

W, X, Y, Z
Web browser GUI

backPageButton() slot, 374
code, 365–373
creating tabs, 374, 375
features, 364
initializeUI(), 373
QLineEdit widget, 374
setupWebView() function, 375
updateProgressBar() slot, 375, 376
URL, 364

Widget Box dock widget, 168

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Charting the Course
	Who Should Read This Book
	Introduction to User Interfaces
	What Is a Graphical User Interface?
	Concepts for Creating Good Interface Design

	The PyQt Framework
	Why Choose PyQt?

	Requirements
	Links to Source Code
	How This Book Is Organized
	Reader Feedback

	Chapter 2: Getting Started with PyQt
	Project 2.1 – User Profile GUI
	Design the GUI Layout
	Create an Empty Window
	Explanation
	Modifying the Window

	The QLabel Widget
	Explanation

	User Profile GUI Solution
	Explanation

	Summary

	Chapter 3: Adding More Functionality to Interfaces
	Project 3.1 – Login GUI
	Design the Login GUI
	The QPushButton Widget
	Explanation

	Events, Signals, and Slots
	The QLineEdit Widget
	Explanation

	The QCheckBox Widget
	Explanation

	The QMessageBox Dialog Box
	Windows vs. Dialogs
	How to Display a QMessageBox
	Explanation

	Login GUI Solution
	Explanation
	Hiding Input for QLineEdit
	How to Open a New Window
	Changing How the Close Event Works

	Project 3.2 – Create New User GUI
	Creating a New User GUI Solution
	Explanation

	Summary

	Chapter 4: Learning About Layout Management
	Choosing a Layout Manager
	Customizing the Layout

	Absolute Positioning – Move()
	Project 4.1 – Basic Notepad GUI
	The QTextEdit Widget
	The QFileDialog Class
	Basic Notepad GUI Solution
	Explanation

	The QHBoxLayout and QVBoxLayout Classes
	Project 4.2 – Survey GUI
	The QButtonGroup Class
	Survey GUI Solution
	Explanation
	Combining Box Layouts and Arranging Widgets

	The QFormLayout Class
	Project 4.3 – Application Form GUI
	The QSpinBox and QComboBox Widgets
	Explanation

	Application Form GUI Solution
	Explanation

	The QGridLayout Class
	Project 4.4 – To-Do List GUI
	To-Do List GUI Solution
	Explanation
	Adding Widgets and Spanning Rows and Columns with QGridLayout

	Summary

	Chapter 5: Menus, Toolbars, and More
	Create a Basic Menu
	Explanation
	QMainWindow vs. QWidget
	Creating the Menubar and Adding Actions

	Setting Icons with the QIcon Class
	Explanation

	Project 5.1 – Rich Text Notepad GUI
	Design the Rich Text Notepad GUI

	More Types of Dialog Boxes in PyQt
	The QInputDialog Class
	The QFontDialog Class
	The QColorDialog Class
	The About Dialog Box

	Rich Text Notepad GUI Solution
	Explanation

	Project 5.2 – Simple Photo Editor GUI
	Design the Photo Editor GUI

	QDockWidget, QStatusBar, and More
	Explanation
	The QStatusBar Class
	The QToolBar Class
	The QDockWidget Class
	Creating Submenus with Checkable Menu Items

	Photo Editor GUI Solution
	Explanation
	Handling Images in PyQt
	The QPrinter Class
	Center GUI Application on Your Desktop

	Summary

	Chapter 6: Styling Your GUIs
	Changing GUI Appearances with Qt Style Sheets
	Customizing Individual Widget Properties
	Customizing the QApplication Style Sheet

	Project 6.1 – Food Ordering GUI
	Design the Food Ordering GUI
	The QRadioButton Widget
	The QGroupBox Class
	The QTabWidget Class
	Explanation

	Food Ordering GUI Solution
	Explanation
	Applying the Style Sheet

	Event Handling in PyQt
	Explanation

	Creating Custom Signals
	Explanation

	Summary

	Chapter 7: Creating GUIs with Qt Designer
	Getting Started with Qt Designer
	Exploring Qt Designer’s User Interface
	Qt Designer’s Editing Modes

	Creating an Application in Qt Designer
	Project 7.1 – Keypad GUI
	Keypad GUI Solution
	Explanation
	Select a Form
	Arrange Objects on the Form
	The QFrame Class
	Apply Layouts in Qt Designer

	Edit the Properties of Objects
	Connect Signals and Slots in Qt Designer
	Preview Your GUI
	Create and Edit Python Code

	Extra Tips for Using Qt Designer
	Setting Up Main Windows and Menus
	Adding Menus and Submenus in Qt Designer
	Adding Toolbars in Qt Designer
	Adding Actions in Qt Designer

	Display Images in Qt Designer
	Summary

	Chapter 8: Working with the Clipboard
	The QClipboard Class
	Explanation

	Project 8.1 – Sticky Notes GUI
	Sticky Notes GUI Solution
	Explanation

	Drag and Drop in PyQt
	Explanation
	The QListWidget Class

	Explanation

	Summary

	Chapter 9: Graphics and Animation in PyQt
	Introduction to the QPainter Class
	Explanation
	The paintEvent() Method
	The QColor, QPen, and QBrush Classes
	Drawing Points and Lines
	Drawing Text
	Drawing Two-Dimensional Shapes
	Drawing Gradients

	Project 9.1 – Painter GUI
	Painter GUI Solution
	Explanation
	Creating the Canvas Class
	Creating the PainterWindow Class
	Handling Mouse Movement Events
	Creating Tool Tips for Widgets

	Project 9.2 – Animation with QPropertyAnimation
	Animation Solution
	Explanation

	Project 9.3 – RGB Slider Custom Widget
	PyQt’s Image Handling Classes
	The QSlider Widget

	RGB Slider Solution
	Explanation
	Updating the Sliders and Spin Boxes
	Updating the Colors
	Adding Methods to a Custom Widget

	RGB Slider Demo
	Explanation

	Summary

	Chapter 10: Introduction to Handling Databases
	The QTableWidget Class
	Explanation
	Creating Context Menus

	Introduction to Model/View Programming
	The Components of the Model/View Architecture
	PyQt’s Model/View Classes
	Explanation

	Working with SQL Databases in PyQt
	What Is SQL?
	Working with Database Management Systems
	Getting Familiar with SQL Commands

	Project 10.1 – Account Management GUI
	Working with QtSql
	Explanation

	Example Queries Using QSqlQuery
	Explanation

	Working with QSqlTableModel
	Explanation

	Working with QSqlRelationalTableModel
	Explanation

	Account Management GUI Solution
	Explanation

	Summary

	Chapter 11: Managing Threads
	Introduction to Threading
	Threading in PyQt
	Methods for Processing Long Events in PyQt

	Project 11.1 – File Renaming GUI
	The QProgressBar Widget

	File Renaming GUI Solution
	Explanation

	Summary

	Chapter 12: Extra Projects
	Project 12.1 – Directory Viewer GUI
	Explanation

	Project 12.2 – Camera GUI
	Explanation

	Project 12.3 – Simple Clock GUI
	Explanation

	Project 12.4 – Calendar GUI
	Explanation

	Project 12.5 – Hangman GUI
	Explanation
	Creating the Drawing Class
	Creating the Main Window Class

	Project 12.6 – Web Browser GUI
	Explanation
	Creating Tabs for the Web Browser
	Creating the Web View
	Adding a QProgressBar to the Status Bar

	Summary

	Appendix A:Reference Guide for PyQt5
	Installing PyQt5 and Qt Designer
	Getting PyQt for Windows
	Getting PyQt for MacOS
	Getting PyQt for Linux (Ubuntu)
	Other Methods for Getting PyQt

	Selected PyQt5 Modules
	Selected PyQt Classes
	Classes for Building a GUI Window
	QApplication
	QWidget
	Event Handling
	QMainWindow
	QDialog

	QPainter
	Layout Managers
	Button Widgets
	Input Widgets
	Combo Boxes
	QLineEdit
	Text Editing Widgets
	Spin Box Widgets
	Slider Widgets

	Display Widgets
	QLabel
	QProgressBar
	QGraphicsView
	QLCDNumber

	Item Views
	Container Widgets
	Containers with Frames
	QScrollArea
	QMdiArea

	Qt Style Sheets
	Summary

	Appendix B:Python Refresher
	Installing Python
	Getting Python for Windows
	Getting Python for MacOS
	Getting Python for Linux

	Data Types in Python
	Numeric Data Types
	Arithmetic Operators
	Working with Numeric Data Types

	String Data Type
	Workings with Strings

	Boolean Data Type

	Data Structures in Python
	Lists
	Tuples
	Sets
	Dictionaries

	Data Type Conversion
	Conditionals and Loops in Python
	“if-elif-else” Conditional Statements
	“for” Loops
	List Comprehensions

	“while” Loops

	Functions
	Lambda Functions

	Object-Oriented Programming (OOP)
	Exception Handling in Python
	Reading and Writing to Files in Python
	Summary

	Index

