A Hands-on Approach to GUI Programming
Joshua M. Willman

ApPress’

Beginning PyQt

A Hands-on Approach to GUI
Programming

Joshua M. Willman

Apress’

Beginning PyQt: A Hands-on Approach to GUI Programming

Joshua M. Willman
Hampton, VA, USA

ISBN-13 (pbk): 978-1-4842-5856-9 ISBN-13 (electronic): 978-1-4842-5857-6
https://doi.org/10.1007/978-1-4842-5857-6

Copyright © 2020 by Joshua M. Willman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5856-9. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5857-6

To my daughter, Kalani.
Pursue what inspires you.

Table of Contents

About the AUROKccoveemmssmnmnsmsssss s nn s nnnnnn s xiii
About the Technical REVIEWETccvcessssnsssssansssssssssssnsssssnsssssssssssnsssssnsssssnsssssnssnssns XV
Acknowledgments........ccccciiisssssmmssnmmmmmmsssssssssssnsseessssssssssssnnnssesssssssnsnnnnnnsessssssnnnnnns XVii
INtroductioncccciiimmnismnnnns s ——————— Xix
Chapter 1: Charting the COUrSecccimmmmmmnmmmsssnnnnmsssssnsnsssssnsssssssssnssssssssnsnsssssnnnnsssss 1
Who Should Read ThiS BOOKcccorurimnineririnrisisessssssse s sesssssssssssens 2
Introduction t0 USEr INTEITACEScccerrererirerce e 2
What Is a Graphical USEr INTErfACE?ccveverrrererrserrereresssseressessesssessessessssessessessssessessees 2
Concepts for Creating Good INterface DESIgN........ccivvvreriereverrerseriessssessesesessssessessessessssessesaes 3

The PYQt FramMEWOIK........ccveererisinsire s s s se s s se s sn s sre e s st sn s nnens 4
Why Ch00SE PYQL?......coceeeeeece ettt st e bt 4
REQUITBIMENTS.......cicic et e e e e p e e 5
LinNKS 10 SOUICE COUEcoveeereeerreserieeresese s se s s sse e s e nsnnens 5
How This BOOK IS Organized............ccvurerrmserrsesmssnsessnsssssssssssssessssessssesssssssssssessssessssssssssssssssssssssnnes 6
Reader FERADACK ... 6
Chapter 2: Getting Started with PyQt.........cccccciremmmnnnnemmmmnnsssnmmnssssnmnssssssssmssssnnns 7
Project 2.1 — USEr Profile GUI........ccccvvevererreriererensesersessssensessesssssssessessesssssssessesassssssssessesssssssesseses 8
DeSign the GUI LAYOULecveeerierereererserereesesessessessssesessesssssssessessesssssssessesssssssessesaessssensesanns 9
Create an EMPtYy WiNAOWccccvevrrerierernsenseresesessessessessessssessessessssessessessssssssssessessssensesaens 10

The QLADEI WIdQEL.......ccicrirerirc e e 13

User Profile GUI SOIULION ..o nas 16

3101 1117 RS RSR 20

TABLE OF CONTENTS

Chapter 3: Adding More Functionality to Interfaces.......c...ccernnsemmnrnssssnnnnsssssnnnnnns 21
Project 3.1 — LOGIN GUL........courirecernecere ettt st et 22
Design the Login GUI ... s sss s ses s s s sssns 23
The QPUShBUTEON WILgEL ..ot 24
Events, Signals, and SIOSccvieverrrreriernserrerere s s s e saessssessesaessssessesnees 27
The QLINEEit WIAGEL.......ccceeerirerircccrr s et 28
The QCheCKBOX WIGeL.........ccviirirricrire e et sr s st se e 31
The QMessageBoX Dialog BOXc.cccvverneneninenneninesess s ssssese s ssssesessssessssesessessssenens 35

LI T G100 o] 40
Project 3.2 — Create New USEr GUIcccceeecerrerirescrn s ses e sasse e ssssesens 46
Creating a New User GUI SOIULIONccoveeerercricrcrirc s ses e sens 47
SUIMIMAIY ...t re e e e e e s ae e s e e e s e e e e nRe e sae e se e e e nRe e e se e nee e e nsnnees 52
Chapter 4: Learning About Layout Managementc.ccuemmmmnsssnnnmmssssssnmsssssssnnnns 53
Choosing @ Layout Man@QET........cccvueernnerrsenesenessssessssessssesessssessssessssssssssssssssesssssssssssssssssssssenees 54
Customizing the LaYOULccueeeerenernserrnsessse e s s sn s ses s 55
Absolute PoSItioniNg — MOVE() ..vecvreererererrerserersssersessessesessesessesessessessessssessessessessssessessesssssssessens 55
Project 4.1 — Basic Notepad GUI..........cccveevrrenneniernnensinesesss s ssessssessessessessssessessesessessessenes 56
The QTEXTEdit WIdGeL......ccooeveiriere st 57
The QFIleDIalog Class......cccuverrvererenenseresessssessese s sessessessessssessessessssessessesssssssessessessssessesaes 57
Basic Notepad GUI SOIULION..........ccvverenenmree s ssanes 58
The QHBoxLayout and QVBOXLAYOUL CIASSES......ccererrrrersersersesessersessesssssssessessessssessessessessssessessens 62
Project 4.2 — SUIVEY GUL.......ccccviererirrerere st sesse e e ssessessesss e sessessssss e ssesaessssessesaesssssssessees 62
The QBULLONGIOUP ClASS.....ccvierrereririeriereresesseresessesessessesaesessessessessssessessessessssessesssssssessesaes 63
SUIVEY GUI SOIULION ..ottt p e s 64
The QFOrMLAYOUL ClASS ...ccucceireerireririesere s s st st st e e 68
Project 4.3 — Application FOrm GUI.........ccccvvrerrriernnenserenessssessessessesessessessessssessessessssessessenes 68
The QSpinBox and QCoMbOBOX WIidgetSccuvcerierneninisernse s sessenens 69
Application FOrm GUI SOIULIONcovvvrreriererirrerere e sessese e sessesse e ssssessessessssessessesasssssessesaes 73

TABLE OF CONTENTS

The QGHALAYOUL ClASSccecerrierinerirenir s e e s e e 77
Project 4.4 — T0-D0 LiSt GUI......cccceivverrerrererirrerseresesessesessessssessessessssssessessessssessessesssssssessees 78
T0-D0 List GUI SOIULION ... 79

£ 11114 7 83

Chapter 5: Menus, Toolbars, and MOIeccuuseesemssssnsnsessssnsssssssssssssssssnsssssssssnnssss 85

Create @ BaSIC IMEBNU..........ccov e e e e e nnnne s 86
EXPIANALION.......cociieiecircce e e s 88

Setting Icons with the QICON ClaSSccovererenernserenesese s ses e sessenens 91
EXPIANALION.......cociiic e e s 94

Project 5.1 — Rich Text Notepad GUI..........ccccvvrermrenrmenmnssesssesessse s ssssessssssessssessssesens 95
Design the Rich Text Notepad GUI ..o s ssanes 96

More Types of Dialog BoXes in PYQL.........cccvirirniniennnsnene s ssessessessssesessessesessessesaes 97
The QINPULDIAIOY ClASS....ccuevrereriereriererierese s re e e r s sp e e s s sae e s aenaes 97
The QFONTDIAIOG ClaSS.......ccveerrrerrrriserresesrsesessese s e ss e sr s sr s se e ssnsssssssnens 98
The QCOIOrDIAlog ClASSccerrrerereneriesirrssesesrese s s e se e sssssssssnens 99
The ADOUL Di@log BOX......ccceeeerieerinmsnssenessssessssessssesss e ssssessssessssssesssssssssesssssssssssesssssnsssenens 101

Rich Text Notepad GUI SOIUTION.........cccvvviviereririrrere s s s s s e s e s s s e e ssesnens 101
(0] P2 T Y (0] O 109

Project 5.2 — Simple Photo Editor GUI.........ccccovrerverernnenseneresessesesessssessessesssssssessessessssessessens 110
Design the Photo EitOr GULL........ccccvrierrererennerseressssessesessssessessessessssessessesssssssessesasssssessesses 111

QDockWidget, QStatusBar, and MOcvcririnneinssse s sssessns 112
40 2 P2 0] o SR 116

Photo Editor GUI SOIUIONc.ceeeeeeeeeceeceree e e 120
EXPIANALION.......cociieiccirere e e s 131

£ S 134

Chapter 6: Styling Your GUIS.......ccucccumrusssnnnnmnsssssnnsssssssnnsssssssnsssssssnnsssssssnnsessssnnnnss 135

Changing GUI Appearances with Qt Style Sheets.........cccvrvrrnininn e 135
Customizing Individual Widget Propertiesccvvvrvririennsensenienssessese s sessesessessssessessenns 136
Customizing the QApplication Style Sheet ... 137

vii

TABLE OF CONTENTS

Project 6.1 — FOOU Ordering GUL.........ceevrerverrerensenserersessssesessessssessessessssessessesssssssessessesssssssensens 138
Design the FOOd Ordering GUIccccvererernenseresssenseseseesessessessessssessessesssssssessesssssssessesses 140
The QRAdIOBULION WIQEL.........cceierererierirrerere s s se e ses e ssessesss e s e ssessesessessesaesssssssessesees 141
The QGroUPBOX ClaSScovuiceriiierinisinenissse s se s s se e s 141
The QTADWIAGET ClaSSccvceruieririerinenirs st s s s 142

Food Ordering GUI SOIUTION........ccccvierererrirereresserese e sessessesresessessessessssessessesaessssessessessssensesaens 147
40 2 4= 0] o SR 156

Event Handling in PYQL.........c..oo oottt 159
EXPIANALION.......coeiieicccrece e e e 160

Creating CUSTOM SIgNalS..........ccovererenernserereserese s 161
EXPIANALION.......coeieiccirer e e 163

£ TS 164

Chapter 7: Creating GUIs with Qt DeSigner.........cocusermsssnsmsssnsssssnsssssnsssssanssssnnssssns 165

Getting Started With Qt DESIGNETccvvcviererr e e enes 166
Exploring Qt Designer’s USEr INEITACE.cccvvrernrerrerernsirsere e sere s s saesessessesnes 167
Qt Designer’s Eiting MOTEScccvcvrerernnersereresesserese s sesessessssessessesaessssessessesssssssessees 173

Creating an Application in Qt DESIGNENcccurvevrinrnsrne e 174

Project 7.1 — KeYPad GUI ... st ss s st 175

Keypad GUI SOIULION.........ccciiriircriere s s ss s s se s s se s s s st se s nnen 176
EXPIANALION.......cceiei e e e s 190

Extra Tips for USiNg Qt DESIGNETcccrreerererereneres s s 200
Setting Up Main Windows and MENUS..........cccorerernnerensenesesesssesesesessssesessesessesessssesessesenns 200

Display Images in Qt DESIGNENceveerrrerrrenerene s se s sessssenns 202

3111111 1T o OSSOSO 203

Chapter 8: Working with the Cliphoardcccermnsmmmnnmnssnnnmmmsssnnmmssssnmsssssn 205

The QCHPDOArd ClASSccucerirererrenirierise e s se s s s p st s se s nne e 205
40 2 P2 0] o SR 209

Project 8.1 — Sticky NOteS GUI ...t 210

Sticky NOteS GUI SOIULION........ccceeerieererere e e 212
EXPIANALION.......coeieicircr e e s 216

viii

TABLE OF CONTENTS

Drag and Drop in PYQL.........ccoiiinc sttt s 216
40 2 P2 0] o ST 219
40 2 P2 0] o SO 223

£ 11134 7 223

Chapter 9: Graphics and Animation in PyQtcccccuvemmmmnssssnnnmmsssssnssssssssssssssssnnnes 225

Introduction to the QPAINTEr CIASScceerrerererere e 226
EXPIANALION.......coeiieiicir s e e 233

Project 9.1 — PAINter GUI..........ccoveiererernesneses e s sesse s 240

Painter GUI SOIUTIONcccvveecrrcsirese e 241
EXPIANALION.......cceieiccir e e e 249

Project 9.2 — Animation with QPropertyAnimation...........ccccvvevnininiennnninse s sesesaens 252

ANIMALION SOIUTION.....cciiieiicccrr s 253
(0] F= T T (0] 256

Project 9.3 — RGB Slider CuStom WIdget..........ccccvverrerererrerseriesessesseressssessessesssssssessessessssessessens 257
PyQt’s Image Handling CIASSESccvrvererierirnnernse s ses e sesse s s sessesessssessnses 258
The QSHAer WIdget.......ccoveiriiriricnire s st se s s 259

RGB SHAET SOIULION........ccoeeererieecereris e n s 260
EXPIANALION.......cociieie e e s 267

RGB SIdEI DBIMO.......ccceeeereecrerereree e sese e ses e se e e e s e e e e s e nae e se e sennesenns 270
EXPIANALION.......cceiieciicirerr e e e 272

£ 7 o TS 273

Chapter 10: Introduction to Handling Databases........cuuesssssesssssssssssnsssssanssssanssssns 275

The QTablEWIdget ClasS.......cccvvrerererrerieriessesesseressessssessessessessssessessesssssssessesssssssessessesssssssesseses 276
(0] P2 T (0] O 282

Introduction to Model/View Programmingcccevrerererserseressssessersessssessessessessssessessesssssssessens 285
The Components of the Model/View ArchiteCUrecoovvvvvrevievssnsenre e seseeees 285
PYQt’s MOAEI/VIEW CIASSEScccvuererrierinerisesisesesis s sss e se s ses s st sssse s ssnes 286
(0] F= T (0] 290

Working with SQL Databases in PYQL..........cccocciivrninnnnse s sesesessenens 291
WRAL IS SAL? ...ttt e se e bbb se e s s snas 291

ix

TABLE OF CONTENTS

Project 10.1 — Account Management GUIccucvererenrnienesessensesessssessessessessssessessesssssssensens 294
Working With QESQL........cccviicrr s ———— 295
Example Queries USiNg QSQIQUETYcovevieririsernse s sss e ssenes 300
Working with QSQITabIEMOMEL..........cccueeerierrerrerr e 303
Working with QSqlRelationalTableMOodel..........ccccuevriiernirnesreser e 306

Account Management GUI SOIULION.......c.cvevrrriererensersereresessessessesssssssessessessssessessesssssssensessens 310
40 2 4= 0] o SR 315

SUMIMANY ..t e e e R e e e e R e R e e e e e R e R e e e e e Re e Re R e e e e e Re e R e e e e e aenns 316

Chapter 11: Managing Threadsccceeeemmsrerssssssssssssnnssssssssssssssssnsssssssssssnsssnnnsnness 319

INtroduction t0 TRFrEAdING........ccceererererernserrre s 319
Threading in PYQt ..o st e 320
Methods for Processing Long Events in PYQL...........ccovvevrrenmrnnnnsesessesesesesessesesesessssesenns 321

Project 11.1 — File Renaming GUIccoucevvenmninmrnsessesese s s sssssse s sessesenns 322
The QProgressBar WItlget..........ccvrvevrererererinesere s seresesesesessssessssesessesessesessssesessensssenens 323

File Renaming GUI SOIULION........cocvierineniiriene s s s s se s sss e s s sasses e saesnesessesaesaens 323
(0] P2 T 0] O 328

£ 11134 7R 329

Chapter 12: EXtra ProJects.......ccsummsmmmrssssnnsssssssnssssssssnssssssssnsssssssssnssssssnnnssssssnnnnss 331

Project 12.1 — Directory VIEWEr GUL..........ccoveirinrnierire st ses e se s sessesens 332
EXPIANALION.......cociieecirere s e e 335

Project 12.2 — Camera GUI ... s e s st se s nnens 336
EXPIANALION.......coeieiccirr e e e s 341

Project 12.3 — Simple CIOCK GUIcccoreerireereeris e 342
{0 = 3= 10 345

Project 12.4 — Calendar GUI............ccoeeernnmnenenenene s ses s s ss s e sesessssenns 346
EXPIANATION.......coeiieciccirer e e 351

Project 12.5 — HANgMan GUI.........c.ccovvrinieneninienene s sesse s e sesse e ssssesse s ssssessessessessssessesaens 352
EXPIANALION ..ot 362

Project 12.6 — Web BrOWSEE GUL.........cccvcrverenrnnensenersssssesessesessessessesssssssessesssssssessessesssssssessens 364
(0] P2 T (0 373

£ 1134 7R 376

TABLE OF CONTENTS

Appendix A: Reference Guide for PyQi5........ccccvseemnmnssssnsnmnssssssnsssssssssssssssssssssssnns 379
Installing PyQt5 and Qt DESIGNETccuceiiieiiieiiireeirs s ss s s s sss s s s sassssnns 379
Getting PyQt for WINAOWS.......ccuviiiiincinisse s sssss s ssssssassssssssssssssssssasssssenes 380
Getting PyQt for MACOSccocveieriiini e ss s e sr s sa s ss s sa s s sas s snanes 380
Getting PyQt for Linux (UDUNTU) ...t 381
Other Methods for Getting PyQt..........cocvirieicnrnnnrscsc e ses s senes 381
Selected PYQtd MOUUIES ..o e 382
Selected PYQL CIASSESccocvererererrrereresesreseses e e se s s se s ss e sessssessssesesssenns 383
Classes for Building @ GUI WINAOW..........cccveerrnereneneneseressesese s sesse e sessesessssessnses 383

0] T 1 TPV 387

LI N0 LU T T =] T 388
BULEON WILGELS ... e 390
INPUEWIHQETS....ccveieerer e e s 391
DiSplay WILQELSccccrierireririre st s e 397

1 C=] YT 400
Container WIgets ... s s e e p s e s 402

Qt SEYIE SNEES......cecccerirrre e R s 405
BT 111 T o SRS 407
Appendix B: Python RefreSher........ccccummmmmmmmmmmmmmmmmmssssssssmsmssmsssssssssssnssssssssssnns 409
INSTAIlING PYTNON ... 410
Getting Python fOr WiNAOWScccverrerenrsinseresesessesesse s sessessesssssssessesaesssssssessesssssssesseses 410
Getting Python for MACOSococvvrierenrsersere e ses e se e sas e s s e ses e ssesnessssesnesnees 411
Getting PYthon fOr LINUXccccvevireriereresessesseseseesessessessessssessessesssssssessesaesssssssessesssssssssnees 412
Data TYPeS iN PYLNON........coo et r e s s a e e s 413
NUMETIC DAL TYPES....ereereerirersee e rserer e r s r s se e s s s s e s a e sae s e e e e snesnenanens 413
[0 IR0 L= T 1 0 O 414
B00I8aN DAtA TYPE ...ccuereereeririr e rere s s s s s s e e a e s s e s n e s ae e e s nesae e ens 416

xi

TABLE OF CONTENTS

Data Structures in PYTRONcccvcvirirrscrere s s s e s e ss s e s s ssessssesaessessssesnesaens 417
S £ N 417
70 - S 418
SIS it —————————————————————— 419
DICHIONANIES ... e 420

Data TYPE CONVEISION......cceeerrerrererrererseserseressessesersessessesssessessesssssssessesssssssessessssssessessessessnsesaens 422

Conditionals and LoOOPS in PYINON ... 422
“if-elif-else” Conditional Statements ..o 423
B {0 S 1T oL OSSOSO 424
“WHITE” LOOPS .eueteiiirerre sttt s e bbb ne e s a e e e nns 425

T4 0 L 426
Lambda FUNCLIONScoveceeeceerecr s 427

Object-Oriented Programming (OOP)ccuueermsenrsesmsssmsessesessessssssesessesssssssssssssessssssssssssssssenns 428

Exception Handling in PYthON ... s sessesenns 429

Reading and Writing 10 Files in PYINON ... se s ssssessesnens 430

L1134 R 431

11T - 433

xii

About the Author

Joshua M. Willman began using Python in 2015, when

his first task was to build neural networks using machine
learning libraries, including Keras and TensorFlow, for
image classification. While creating large image datasets for
his research, he needed to build a GUI that would simplify
the workload and labeling process, which introduced him
to PyQt. He currently works as a Python developer and
instructor, designing courses to help others learn about
coding in Python for game development, Al and machine
learning, and programming using microcontrollers. More
recently, he set up the site RedHuli to explore his and others’
interests in using Python and programming for creative
purposes.

xiii

About the Technical Reviewer

Lentin Joseph is an author and robotics entrepreneur from
India. He runs a robotics software company called Qbotics
Labs in India. He has 9 years of experience in the robotics
domain primarily in ROS, OpenCV, and PCL.

He has authored eight books in ROS, namely, Learning
Robotics Using Python 1st and 2nd edition, Mastering ROS
for Robotics Programming 1st and 2nd edition, ROS Robotics

Projects, Robot Operating System for Absolute Beginners, and
ROS Programming.
He pursed a master’s degree in robotics from India and also did research at Robotics
Institute, CMU, USA. He is also a TEDx speaker.

Acknowledgments

Writing this book has truly been an eye-opening experience, and I owe thanks to those
who have helped me reach this point in my life.

I'want to begin by thanking those individuals who helped me to take a good, hard
look at my life.

To Joyce Corriere, your lessons and kindness all those years ago have inspired me to
this day.

Thank you to Professor Rong Xiong (fE%¢) for giving me the chance to pursue my
dreams and to get my life back on track.

I owe a debt of gratitude to Lingyan Xu (1 #/fff) and Melody for their laughs and
support during some of the toughest times.

When I first started learning Python and PyQt a few years back, I had no idea where
to begin. A big thanks to the Python community and to Jan Bodnar at ZetCode for giving
me the tools to get started in creating my own applications.

Thank you so much to Apress editorial for the serendipitous e-mail that began this
whole journey just as I was researching ways to write a book.

A very immense thank you must be given to my Coordinating Editor, Divya Modi, for
being patient and positively stoic with me all of the times the deadlines flew past.

Thanks to my mother, Valorie, and my sisters, Teesha and Jazzmin, for all of the
support you have given me.

Words cannot express how deeply grateful I am to my wife, Evelyn, who has been the
most patient of all during this time, listening to my incessant rambling about ideas, and
who helped me realize that I cannot put everything into one book.

To Kalani, your laughs have been an enormous uplift.

Lastly, thank you to the readers. I hope the ideas found within this book can help you
in some way.

xvii

Introduction

Just getting started is more important than anything else. Coding a graphical user
interface (GUI) can be thought of as a combination between programming and graphic
design skills. An awareness of a user’s needs is crucial for both usability and graphical
appearance. Programming a GUI is often a matter of finding the right component,
referred to as widgets, to complete a task, and then applying the necessary programming
skills to make them operational.

In this book, we will see how to use the Python programming language, along with
the PyQt5 toolkit, to create GUIs. With PyQt5, many of the components are already
created for you. However, if you ever find yourself needing a component that does not
exist, with PyQt5 you can always make your own custom widgets and classes, as well.

If this is your first time creating GUIs at all, then my recommendation is to follow
along with Chapters 2 through 6 to get your bearings with PyQt. Many of the key
concepts and classes that you will use for basic interfaces can be found there, including
creating a window for arranging widgets, making components that are interactive and
can communicate with one another and with the information stored on your computer,
layout management, setting up the menu system, and manipulating a GUI's appearance.

In the remaining chapters, we will begin looking at more specific examples: looking
at Qt Designer for simplifying the GUI design process in Chapter 7; using the clipboard
in Chapter 8; art and animation and creating your own widgets in Chapter 9; working
with databases in Chapter 10; threading in Chapter 11; and a number of miscellaneous
topics in Chapter 12.

There are also two appendices, Appendix A which gives extra information about
PyQt classes and Appendix B for refreshing your knowledge about Python.

No one chapter has all the tools you will need in it. Widgets and classes are spread
throughout the book, helping you to learn and apply what you have learned as you go.
Nor is every one of PyQt’s classes covered within these pages. Learning is an ongoing
process, and sometimes having to do a bit of extra searching will help ideas better stick
in your mind.

Xix

CHAPTER 1

Charting the Course

Hello! Welcome to Beginning PyQt: A Hands-on Approach to GUI Programming. The goal
of this book is to take a more practical approach to learning how to code user interfaces
(Uls), following along and coding numerous examples, both simple and complex, to help
understand and visualize how we can use the concepts taught in each chapter. What that
means is that when you learn how to code QPushButton widgets, for example, you will
first walk through a simple program that helps you build the fundamentals. Then, you
will apply that concept to a slightly larger project.

“When am I ever going to use this?” I can still recall sitting in my math classes
and hearing someone ask that question. The formulas and theories, culminations of
numerous mathematicians’ life’s work, were all amazing to learn, but without some way
to apply them to actual examples beyond the textbook, those concepts faded away into
some dark recess in my mind.

To avoid spiraling down this same path when learning to code, this book aims to help
you jump right into actual examples to get you coding and practicing the concepts with
a hands-on approach. New concepts and PyQt classes are introduced in each chapter,
and later chapters sometimes build upon the previous ones. Of course, not everyone has
the same goal in mind. Therefore, there are a couple of ways to approach the content
of this book. The first way is for readers who want to follow along and practice learning
many of the basics of PyQt. These types of readers are encouraged to code many of the
projects and then play around with the concepts to design their own applications. The
other approach is for those readers who already have a project in mind and need some
help getting started. You are definitely encouraged to use the code in this book as a
foundation to build your own projects and get them off the ground.

© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_1

CHAPTER 1 CHARTING THE COURSE

Who Should Read This Book

Everyone must begin somewhere. With that idea in mind, this book is targeted for
individuals who already have a fundamental understanding of the Python programming
language and are looking to either expand their skills in Python or have a project where
they need to create a U, but may have no prior experience creating UI or no idea where
to begin. Having prior knowledge of other Python UI toolkits is not necessary to get
started in this book.

Introduction to User Interfaces

The user interface (UI) has become a key component of our everyday lives, becoming the
intermediary between us and our ever-growing number of machines. A Ul is designed

to facilitate in human-computer interaction. The human needs to operate and control
the machine to serve some purpose; meanwhile the machine needs to simultaneously
provide feedback to aid the human’s decision-making process. Uls are everywhere, from
the mobile applications on our phones to web browsers, to heavy machinery controls,
and even on the appliances in our kitchens. Of course, the ways in which we interact
with technology are not merely limited to our hands, as many Uls also allow interaction
with our other sensory organs.

A good Ul is tasked with helping a person produce a desired result while also
allowing for easier, more efficient, and more friendly operation of a machine. Think
about the photo editing apps on your phone. Editing the size, color, or exposure is
practically effortless as you slide your fingers across the screen and watch the images
change almost instantly. The user provides minimal input to achieve the desired output.

What Is a Graphical User Interface?

For this book, we will be focusing on creating graphical user interfaces (GUIs) which
take advantage of a computer’s graphics capabilities to create visual controls on a
machine’s screen. This makes interaction with machines much easier. Decades ago,
users would have to use the command line and text commands to interact with the
computer. Tasks such as opening, deleting, and moving files or searching through
directories were all done by typing in certain commands. However, these were not
very user friendly or simple to use. So GUIs were created to allow users to interact with
electronic devices using graphical controls, rather than command-line interfaces.

2

CHAPTER 1 CHARTING THE COURSE

These graphical control elements, or widgets, such as buttons, menus, and windows,
make such tasks effortless. Interaction now becomes as simple as moving your mouse or
touching the screen depending upon your device and clicking the widget.

Concepts for Creating Good Interface Design

This, first and foremost, is a technical book written to help those of you who want to
learn how to create and code your own GUI with PyQt and Python. That being said,
if you plan to design any kind of UI that other people will use, then you are no longer
creating a Ul just to solve some problem. You must also begin to consider other users
of the application, as well. Think about what you want them to accomplish, or how the
application can help them. Sometimes when we are trying to solve a problem, we get so
caught up in trying to create a product that we forget about the people who actually have
to interact with them.

The following are a list of guidelines to consider when designing your own UL They
are not set rules and by no means a complete list, but rather ideas that can help to save
you some time and headaches later.

1. Clarity - Using clear language, hierarchy, and flow with visual
elements to avoid ambiguity. One of the ways this can be achieved
is by considering visual importance to the human eye, laying
out widgets with bigger sizes, darker colors, and so on in such a
manner that we can visually understand the UL

2. Conciseness - Simplifying the layout to include only what the user
needs to see or interact with at a given time in order to be brief,
but also comprehensive. Adding more labels or buttons in your
window just to give the user more options is not always better.

3. Consistency - Design the Ul so that there is consistency across the
application. This helps users to recognize patterns in the visual
elements and layout and can be seen in typography that improves
the navigation and readability of the application, image styles, or
even color schemes.

4. Efficiency - Utilizing good design and shortcuts to help the user
improve productivity. If a task can be accomplished in two steps,
why design it so that it has to be completed in five?

CHAPTER 1 CHARTING THE COURSE

5. Familiarity - Consider elements that users normally see in
other Uls and how they would expect them to perform in your
applications. For example, think about how weird it would be
to have to enter your login information and the password entry
field is above the username. It is not wrong, but now you are
unnecessarily making users think about their actions and slowing
them down.

6. Responsive - Give the user feedback, for example, a toggle that
changes color to “on” or “off,” a small message to notify the user if
their input is correct or incorrect, or even a sound effect to verify a
completed action. The user should never be left wondering if their
action was successful or not.

The PyQt Framework

The PyQt application is a set of Python 2 and Python 3 bindings for the Qt cross-platform
widget toolkit and application framework. What does that mean?

First, Qt is used for the development of graphical user interfaces and other
applications and is currently being developed by The Qt Company. The framework is
significant because it can run on numerous software and hardware systems such as
Windows, MacOS§, Linux, Android, or embedded systems with little to no change to the
underlying code and is still able to maintain capabilities and speed of the system on
which it is being run.

Second, this all means that PyQt combines all the advantages of the Qt C++ cross-platform
widget toolkit with Python, the powerful and simple, cross-platform interpreted language.

For more information about PyQt, check out

www. riverbankcomputing.com/news.

Why Choose PyQt?

PyQt is capable of more than just creating GUIs, as it also has access to Qt classes that
cover mechanics such as XML handling, SQL databases, network communication,
graphics and animations, and many other technologies. Take the capabilities of Qt and
combine it with the number of extension modules that Python provides, and you have
the ability to create new applications that can build upon these preexisting libraries.

4

http://www.riverbankcomputing.com/news

CHAPTER 1 CHARTING THE COURSE

PyQt also includes Qt Designer, which allows for anyone to create a GUI much faster
using a simple drag and drop graphical interface designer.

Using PyQt’s signal and slot mechanism, you can essentially create your own widgets
that can call other Python functions. This will be covered in more detail in Chapter 9.

There are, of course, other toolkits available for creating applications with GUIs using
Python, such as Tkinter or wxPython. The many other toolkits have some advantages
over PyQt. For example, Tkinter comes bundled with Python, meaning that you can find
an abundance of helpful resources by doing a quick search on the Internet.

It is worth noting that if you choose to use PyQt to create commercial applications,
you may need to get a license.

Ultimately, it all comes down to choosing the toolkit that works the best for your project.

Requirements

In order to use PyQt, you will first need to have Python 3 installed. To check if Python is
already installed on your system or to find out how to download Python, please refer to
Appendix B. You will also find a guide to help you refresh your Python skills to aid you
while learning PyQt in Appendix B.

Note As of this writing, Python 2 is set to no longer be maintained. Therefore,

all Python code in this book will be written using Python 3. Many of the projects
that utilize Python 2 have already started making their way over to Python 3. If you
have any questions about the differences between 2 and 3, | suggest checking out
http://python-future.org/compatible idioms.html.

PyQt does not come included with your Python installation. For this book we will be
using the PyQt5 toolkit, which is the latest version. Please refer to Appendix A to learn
how to download PyQt for your operating system.

Links to Source Code

The source code for Beginning PyQt: A Hands-on Approach to GUI Programming can be
found on GitHub via the book’s product page, located at www.apress.com/ISBN.

http://python-future.org/compatible_idioms.html
http://www.apress.com/ISBN

CHAPTER 1 CHARTING THE COURSE

How This Book Is Organized

In the beginning chapters, we will walk through the code step-by-step, helping to
guide you through PyQt classes and concepts for designing GUIs. Chapters 2 and 3 will
help you get started using PyQt, adding more and more functionality to your projects.
Each chapter teaches how to use different widgets, such as QLabel, QCheckBox, and
QLineEdit, and gives examples and ideas of how to use them. Chapter 3 will also
introduce you to PyQt’s signals and slots mechanism for handling events.

Chapter 4 focuses on layout managers for arranging widgets. After learning about
different widgets, Chapter 5 guides you through examples that help you to create menus
and toolbars. Chapter 6 presents style sheets for altering the look of your applications
and how to reimplement event handlers.

Since Qt also includes its own graphical user interface to help you create GUIs, we
will take a look at how to use Qt Designer in Chapter 7.

Chapters 8 through 11 begin looking at larger concepts and projects, including
using the clipboard to move between applications, graphics, and animation, creating
custom widgets, utilizing SQL databases and PyQt’s model/view architecture, and
multithreading programming.

Chapter 12 contains extra example projects to help you continue to gain extra
practice and insight into creating applications with PyQt.

Appendix A guides you through the process of downloading PyQt5 and includes
information about different PyQt classes. Appendix B is there to help you set up Python 3
and to refer back to in case you are not sure about some of the Python code used
in this book.

Reader Feedback

Finally, your feedback, questions, and ideas are very important. If you would like to take
a moment to let me know your thoughts about the book, you can send comments to the
following address:

redhuli.comments@gmail.com

CHAPTER 2

Getting Started with PyQt

Hello again! If this is your first time to ever make any kind of UI, then you might be
wondering where to begin. Luckily in this chapter we are going to start you off with
learning some of the fundamentals before jumping into the heavy lifting.

Creating any kind of UI can seem like a formidable task with all the different layouts,
windows, and widgets there are to consider. Widgets are the buttons, menus, sliders,
and other components that will make up our user interfaces. Therefore in every chapter,
we are going to discuss how to build one or more projects and break them down into
incremental steps and tasks in order to better help you understand the larger programs.

For example, in this chapter we are going to be looking at how to create a user profile
GUI in PyQt. First, we will discuss what a user profile is generally comprised of and what
kinds of widgets we will need for this project. Then, we will go step-by-step in learning
how to build a basic window and add images and text to the GUI. Once it’s all done,
you’ll have an application that looks like Figure 2-1.

© Joshua M. Willman 2020
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_2

CHAPTER 2 GETTING STARTED WITH PYQT

@® ® 21 - User Profile GUI

John Doe

Biography
I'm a Software Engineer with 8 years
experience creating awesome code.

Skills
Python | PHP | SQL | JavaScript

Experience
Python Developer
Mar 2011 - Present

Pizza Delivery Driver
Aug 2015 - Dec 2017

Figure 2-1. User profile that displays your information for others to view

Note For those who already have a project in mind or just need to learn how
to include certain widgets in their applications, many of the chapters will include
smaller programs focused specifically on how to code them.

Project 2.1 — User Profile GUI

A user profile refers to some kind of visual display used to present a specific user’s
personal data. The data on the profile helps to associate certain characteristics with that
user and allows others to collect information about that individual. User profiles can be
found on a number of different platforms including computer programs, online social
networking sites, such as LinkedIn or Facebook, or operating systems. Depending upon
what environment you are looking at, the appearance of the profile will change to fit the
goals, rules, and needs of that application.

CHAPTER 2 GETTING STARTED WITH PYQT

User profiles often have a number of parameters which are either mandatory or
optional and allow for some level of customization to fit the preferences of the user, for
example, a profile image or background colors. Many of them contain features which can
typically be found in all types of profiles, such as the user’s name and the “About” section
to share some information about the user.

For this project, you will

1. Create an empty window in PyQt and find out
a. About the basic classes and modules needed to set up your GUI
b. How to modify the window size and title

2. Learn about creating widgets
a. Specifically QLabel to add text and images to your GUI

b. How to organize the widgets in your window using move ()

Design the GUI Layout

Let’s break down the user profile GUI and plan out what widgets you need and how they
will be arranged in the window as seen in Figure 2-2.

(@ 0 Window Title

Background Image

Profile
Image
User Name
Header 1
Information about the user.
Header 2
Information about the user.
Header 3

More information about the user.

- J

Figure 2-2. Layout for the user profile GUI

CHAPTER 2 GETTING STARTED WITH PYQT

In real user profile applications, there are often a combination of different widgets.
Some are interactive, allowing the viewer to click the links in the profile or “Like”
buttons, while others are only meant to be read and cannot be altered by the viewer. In
this chapter, we are looking at designing a basic interface in PyQt that shows a way to
display information in the window using the QLabel widget.

The user interface can be divided into two parts:

1. The background image and profile image on the top.

2. And the user’s name and information on the bottom. The text on
the bottom can further be broken down into smaller sections that
are delineated by the use of different font sizes.

Create an Empty Window

A GUI application generally consists of a main window and possibly one or more dialog
boxes. The main window in your program can consist of a menubar, a status bar, and
other widgets, whereas a dialog is made up of buttons and is created to communicate
information to the user and prompt them for input. An alert window that pops up asking
you if you want to save changes to your document is an example of a dialog. Dialog boxes
will be covered further in Chapter 3.

Listing 2-1 walks you through the steps to create an empty GUI window.

Listing 2-1. Create an empty window in PyQt

basic_window.py
Import necessary modules
import sys
from PyQt5.0tWidgets import QApplication, QWidget
class EmptyWindow(QWidget):
def _init (self):
super(). init_ () # create default constructor for QWidget
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

10

CHAPTER 2 GETTING STARTED WITH PYQT

self.setGeometry(100, 100, 400, 300)
self.setWindowTitle('Empty Window in PyQt')
self.show()

Run program

if _name__ == "' main_ "':
app = QApplication(sys.argv)
window = EmptyWindow()
sys.exit(app.exec ())

Your initial window should look similar to the one in Figure 2-3 depending upon
your operating system.

e Empty Window in PyQt

Figure 2-3. Empty window created with PyQt5

Explanation

Walking through the code, we first start by importing the sys and PyQt5 modules that
we need to create a window. We commonly use sys in order to pass command-line
arguments to our applications and to close them.

The QtWidgets module provides a set of UI elements that can be used to create
desktop-style GUIs. From the QtWidgets module, we import two classes, QApplication
and QWidget. You only need to create a single instance of the QApplication class, which
manages the application’s main event loop, flow, initialization, and finalization, as well
as session management. Take a quick look at

app = QApplication(sys.argv)

11

CHAPTER 2 GETTING STARTED WITH PYQT

QApplication takes as an argument sys.argv. You can also pass in an empty list if
you know that your program will not be taking any command-line arguments using

app = QApplication([])

Next we create a window object that inherits from the class we created, EmptyWindow.
Our class actually inherits from QWidget, which is the base class for which all other user
interface objects are derived.

We need to call the show() method on the window object to display it to the screen.
This is located inside the initializeUI() function in our EmptyWindow class. You will
notice app.exec_() in the final line of the program. This function starts the event loop
and will remain here until you quit the application. sys.exit() ensures a clean exit.

If all of this is a little confusing as to why we have to create an application before
we create the window, think of QApplication as the frame that contains our window.
The window, our GUI, is created using QWidget. Before we can create our GUI, we must
create an instance of QApplication that we can place window in. Take a look at the
following code to better see the order of creating a window in PyQt5 using procedural
programming:

1. Import necessary modules
import sys # use sys to accept command-line arguments
from PyQt5.0tWidgets import QApplication, QWidget

app = QApplication(sys.argv) # 2. Create application object

window = QWidget() # 3. Create window

window.show() # 4. Call show to view GUI

sys.exit(app.exec_()) # Start the event loop and use sys.exit # to close
the application

Modifying the Window

The preceding EmptyWindow class contains a function, initializeUI(), that creates
the window based upon the parameters we specify. The initializeUI() function is
reproduced as follows:

def initializeUI(self):

Initialize the window and display its contents to the screen.

12

CHAPTER 2 GETTING STARTED WITH PYQT

self.setGeometry(100, 100, 400, 300)
self.setWindowTitle('Empty Window in PyQt")
self.show()

setGeometry() defines the location of the window on your computer screen and
its dimensions, width and height. So the window we just started is located at x=100,
y=100 in the window and has width=400 and height=300. setWindowTitle() is used to
change the title of our window.

We will look at further customization of the window’s layout in Chapter 4 and
appearance in Chapter 6.

Note Throughout the book we will be looking at Python code written using
object-oriented programming (0OP). If you need a refresher on OOP, there is a
quick guide that can be found in Appendix B.

The QLabel Widget

Now that we have a fundamental understanding of what it takes to create the window,
we can move on and add more functionality with widgets using QLabel. A QLabel object
acts as a noneditable placeholder to display text, images, or movies. It is also useful for
creating labels around other widgets to specify their roles or give them titles. QLabel
widgets can also display plain text, hyperlinks, or rich text.

In Listing 2-2 we are going to take a look at extending the ability of our window by
showing how to create both text and image labels.

Listing 2-2. Create an empty window in PyQt

labels.py

Import necessary modules

import sys

from PyQt5.0tWidgets import QApplication, QWidget, QLabel
from PyQt5.0tCGui import QPixmap

class HelloWorldWindow(QWidget):

13

CHAPTER 2 GETTING STARTED WITH PYQT

def _init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.
self.setGeometry(100, 100, 250, 250)
self.setWindowTitle('QLabel Example')

self.displayLabels()

self.show()
def displaylLabels(self):

Display text and images using OQLabels.

Check to see if image files exist, if not throw an
exception.

text = QLabel(self)

text.setText("Hello")

text.move(105, 15)

image = "images/world.png"
try:
with open(image):
world image = QLabel(self)
pixmap = QPixmap(image)
world image.setPixmap(pixmap)
world image.move(25, 40)
except FileNotFoundError:
print("Image not found.")

14

CHAPTER 2 GETTING STARTED WITH PYQT

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
window = HelloWorldWindow()
sys.exit(app.exec ())

Once you run the program, you should see a window similar to Figure 2-4.

® ° ® QLabel Example

Hello

Figure 2-4. Example of using QLabel widgets to create images and text

Explanation

We begin again by first importing the necessary PyQt modules. To create the window,
we need to import the QtWidgets class, and since this time we are going to be using the
QLabel widget, we need to include it as well in our import statement.

This time we also need to import the QtGui module, as well. 0tGui handles
numerous graphical elements. QPixmap is a Qt class that is optimized for showing images
on the screen.

We then go through a similar process of creating our application, creating a
HelloWorldWindow class that inherits from the QWidget base class, initializing the size
of the window with setGeometry() and the title of our GUL Then we use the show()
method to display the window and use exec_ () to begin the event loop. Finally, sys.
exit() is used to close our program.

15

CHAPTER 2 GETTING STARTED WITH PYQT

The HelloWorldWindow class contains a displaylLabels() function that we will use
to display text and images. First, you must create a QLabel object and specify what the
label will say using setText (). Here the text is set to “Hello” In the following line, we use
the move () function to arrange the label in the window:

text = QLabel(self)
text.setText("Hello")
text.move(105, 15)

PyQt5 has a number of layout methods including horizontal layouts, grid layouts, as
well as absolute positioning. For the programs created in this chapter, we will be using
absolute positioning with the move () method. With move(), you only need to specify the
x and y pixel values of the widget'’s top-left corner to arrange it in the window. For our
text label, we specify the values to be x=105 and y=15.

Our image is loaded in a similar fashion, creating a QLabel to be placed in the
main window. Then we construct a QPixmap of the image and use setPixmap() to
show the image displayed on the world image label. The label’s absolute location is
set using move ().

Each of PyQt’s different classes has their own methods that can be used to customize
and change their look and functionality. In Appendix B, you can find a list of the widgets
used in this book along with some of the more common methods you are likely to use to
modify them.

User Profile GUI Solution

You have now learned many of the basic tools used to create the user profile GUI. This
project is comprised of all QLabel widgets and its goal is to help you learn the
fundamentals of creating GUIs in PyQt5. The QLabel widgets are used to display
personal information specified by the user.

After you have followed along with Listing 2-3, it is encouraged to practice
modifying the size of the window, add your own text or images, and practice using
other QLabel methods to see how all of the different parts work together to make the
GUI window.

16

CHAPTER 2 GETTING STARTED WITH PYQT

Listing 2-3. Code for the user profile GUI

user profile.py

Import necessary modules

import sys, os.path

from PyQt5.0tWidgets import QApplication, QLabel, QWidget
from PyQt5.0tGui import QFont, QPixmap

class UserProfile(Qwidget):
def _init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.
self.setGeometry(50, 50, 250, 400)

self.setWindowTitle("2.1 - User Profile GUI")
self.displayImages()

self.displayUserInfo()

self.show()

def displayImages(self):

Display background and profile images.

Check to see if image files exist, if not throw an exception.
background_image = "images/skyblue.png"
profile image = "images/profile image.png"

try:
with open(background image):
background = QLabel(self)
pixmap = QPixmap(background image)
background.setPixmap(pixmap)
except FileNotFoundError:
print("Image not found.")

17

CHAPTER 2 GETTING STARTED WITH PYQT

try:
with open(profile_image):
user_image = QLabel(self)
pixmap = QPixmap(profile_image)
user_image.setPixmap(pixmap)
user_image.move(80, 20)
except FileNotFoundError:
print("Image not found.")

def displayUserInfo(self):

Create the labels to be displayed for the User Profile.
user _name = QLabel(self)

user_name.setText("John Doe")

user name.move(85, 140)

user name.setFont(QFont('Arial', 20))

bio title = QLabel(self)
bio_title.setText("Biography")

bio title.move(15, 170)

bio title.setFont(QFont('Arial', 17))

about = QLabel(self)

about.setText("I'm a Software Engineer with 8 years\
experience creating awesome code.")

about.setWordwrap(True)

about.move(15, 190)

skills title = QLabel(self)

skills title.setText("Skills")

skills title.move(15, 240)

skills title.setFont(QFont('Arial', 17))

skills = QLabel(self)
skills.setText("Python | PHP | SQL | JavaScript")
skills.move(15, 260)

18

CHAPTER 2 GETTING STARTED WITH PYQT

experience title = QLabel(self)

experience title.setText("Experience")
experience title.move(15, 290)

experience title.setFont(QFont('Arial’, 17))

experience = QLabel(self)
experience.setText("Python Developer")
experience.move(15, 310)

dates = QLabel(self)
dates.setText("Mar 2011 - Present")
dates.move(15, 330)
dates.setFont(QFont('Arial', 10))

experience = QLabel(self)
experience.setText("Pizza Delivery Driver")
experience.move(15, 350)

dates = QLabel(self)
dates.setText("Aug 2015 - Dec 2017")
dates.move(15, 370)
dates.setFont(QFont('Arial', 10))

Run program

_main__':
app = QApplication(sys.argv)
window = UserProfile()
sys.exit(app.exec ())

if _name ==

Explanation

If you followed along in this chapter, then this project is just a much longer version
containing a background image and more text labels. Images for the labels are loaded
using Python try-except clauses.

19

CHAPTER 2 GETTING STARTED WITH PYQT

A few new things here are as follows:

e We import the QFont class from the QtGui module, allowing us to
modify the size and types of fonts in our application using QLabel’s
setFont() method.

o Usingmove(), we are able to easily overlap images. Take a look at
the displayImages() function to see how to do so using absolute
positioning.

Summary

At this point, you should have a fundamental understanding for getting started in
creating your own GUIs with PyQt5. We looked at setting up a basic window with
QApplication and QWidget classes, made some simple modifications to the look of

the window, learned how to create text and image labels with QLabel, and saw how to
arrange them in the window using the move () method. In subsequent chapters, we will
continue to learn about more widgets and classes and learn how to use them to fit the
requirements of the applications we wish to create.

It is worth noting that this user profile is by no means complete. A user’s profile is
generally more interactive, including links, buttons, and menus. As you go through other
chapters, you should come back and improve the user profile GUI as a means to apply
what you have learned.

20

CHAPTER 3

Adding More Functionality
to Interfaces

In Chapter 2, we took a look at how to get started in PyQt, set up the main window,
and learned how to create and arrange multiple QLabel widgets to create a simple
application. However, none of what we did was very interactive. What good is a user
interface if all you can do is stare at it?

You're in luck because this chapter is all about setting you on the path to making
interfaces that are more interactive and responsive. We will take a look at some new
fundamental widgets that will help us to build our next project, a functional login
GUI. To make things clearer and easier for you to follow along, the login GUI will be
divided into two parts, the actual login interface and a new user registration window.

Before we get started, let’s take a look at the new widgets and useful concepts that
will be covered in this chapter.

1. Learn about new kinds of widgets and classes, including

a. QPushButton - One of the most common widgets for giving our
computer simple commands

b. QLineEdit - Which gives the user fields to input information
c. 0CheckBox - Which can act as a binary switch

d. QMessageBox - Useful for displaying alert or information dialog
boxes

2. Find out about event handling with Signals and Slots in PyQt.

3. Understand the differences between windows and dialog boxes
when creating Uls.

21
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_3

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Project 3.1 — Login GUI

While it might not seem like much, the login GUI, or the login screen, is probably one
of the most common interfaces you interact with on a regular basis. Signing into your
computer, your online bank account, e-mail, or social media accounts, logging into your
phone, or signing up for some new app, the login GUI is everywhere.

The login GUI can appear to be quite a simple user interface. However, it is actually
very complex for a number of reasons. First of all, it acts as the interface that allows us
to access our own personal data. You want to create a GUI that clearly labels its widgets,
differentiates between where to sign in and where to register a new account, and helps
users to better navigate through potential errors, such as if caps lock is on or if the
username is incorrect. Secondly, the appearance of the login GUI and methods in which
we log in to our devices have changed dramatically over the years, allowing users to
log in using Touch ID or their social media accounts. This means that there is no single
design that will work for every platform.

For this project, we are going to focus on creating a simple login UI that

o Allows the user to enter their username and password and calls a
function to check if their information matches one that is stored in a
text file

o Displays appropriate messages depending upon whether login is
successful, if an error has occurred, or if we simply want to close the
window

o Displays or hides the password by clicking a checkbox

o Allows the user to create a new account by clicking a “sign up” button
that will open a new window

Note There are two projects in this chapter, the login GUI and the create
new user GUI.They are actually one entire project that has been separated into
two parts to make it easier for you to follow along, or for those who only need one
part of the project and not the other.

After following along with this chapter, you will be able to make a login GUI like the

one seen in Figure 3-1.

22

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

®00 3.1 - Login GUI
login
username: admin

password: ssssanne

show password

login

not a member? sign up

Figure 3-1. Simple login GUI

Design the Login GUI

While the look and layout of the login GUI may change between platforms, they
generally have a few key components that are common throughout, such as

e Username and password entry fields

e Checkboxes that may remember the user’s login information or
reveal the password

» Buttons that users can click to log in or even register for a new
account

For this project, we will focus on trying to implement most of those features. (The
“remember me” checkbox that is common in a lot of login GUIs is beyond the scope of
this chapter as it involves using cookies or working with PyQt’s QSettings class.)

The layout for our login GUI can be seen in Figure 3-2. For this project, we will need
to create a few QLabels to help users understand the purpose of this application and to
give titles to our username and password entry fields.

23

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

s ™)

® 0 Login Window Title

login label

Username: | username entry field |
Password: | password entry field |

show password checkbox

[Log in Button J

Create new user label [Sign up }
L

Figure 3-2. Layout for login GUI

For the areas where users will enter their information, we create two separate
QLineEdit widgets. Under the password line edit widget, there is a checkbox that the user
can check if they want to view or hide the password they entered.

There are two QPushButtons, one that the user can click to log in and the other to
register a new account. When the user clicks the login button, we will create a function
that is called to check if the user exists. If the user information is correct, we will
display a QMessageBox which tells the user that login is successful. Otherwise, another
QMessageBox is displayed to alert the user to an error.

If the user’s information does not exist, they can click the sign up button and a new
window will appear where they can enter their information. This part is covered in the
section “Project 3.2 - Create New User GUL”

Finally, we will learn how to change the event handler for when the user closes the
window. Rather than just closing the application, we will first display a dialog box that
will confirm whether or not the user really wants to quit.

The QPushButton Widget

Let’s first take a look at a fundamental widget that you will probably use in almost

every GUI you create, QPushButton. The QPushButton can be used to command the
computer to perform some kind of operation or answer a question. When you click the
QPushButton widget, it sends out a signal that can be connected to a function. Common
buttons you might encounter are OK, Next, Cancel, Close, Yes, and No.

24

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Buttons are typically displayed with either a text label or an icon that describes its
action or purpose. There are a number of different kinds of buttons with different usages
that can be created including QToolButtons and QRadioButtons.

For our first example, we are going to take a look at how to set up a QPushButton
that, when clicked, will call a function that closes our application (Listing 3-1).

Listing 3-1. Code for learning how to add QPushButton widgets to your
application

button.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import QApplication, QWidget, QLabel, QPushButton

class ButtonWindow(QWidget):
def init (self):
super(). init () # create default constructor for QWidget
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setGeometry(100, 100, 200, 150)
self.setWindowTitle('QPushButton Widget')
self.displayButton() # call our displayButton function

self.show()

def displayButton(self):

Setup the button widget.

name_label = QLabel(self)
name_label.setText("Don't push the button.")
name_label.move(60, 30) # arrange label

button = QPushButton('Push Me', self)
button.clicked.connect(self.buttonClicked)

25

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

button.move(80, 70) # arrange button

def buttonClicked(self):

Print message to the terminal,
and close the window when button is clicked.

print("The window has been closed.")
self.close()

Run program

if name_ =="_ main_"':
app = QApplication(sys.argv)
window = ButtonWindow()
sys.exit(app.exec ())

When you finish, your window should look similar to Figure 3-3.

® | ® QPushButton Widget

Don't push the button.

Push Me

Figure 3-3. Example of the QPushButton widget

Explanation

We begin by importing sys and the necessary PyQt classes including QApplication and
QWidget for creating our application object and window, respectively. For this program
we will also import the QLabel and QPushButton widgets which are also part of the
QtWidgets module.

Next let’s create our own ButtonWindow class which inherits from QWidget. Here we
will initialize the window and widgets we need for our GUI. The ButtonWindow class has

26

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

two functions, displayButton and buttonClicked. In the displayButton function, we
create a label and set its text using setText (). If you look at the portion of code where

the button is created, we set the text on the button as a parameter of QPushButton. We
could also set the text as follows:

button.setText("Don't push the button.")

When you click the QPushButton with your mouse, it will send out the signal
clicked(). After we create the button, use

button.clicked.connect(self.buttonClicked)

to connect the signal to the action we want the button to perform, in this case self.
buttonClicked. A QPushButton widget can also be set to be activated by the spacebar or
using a keyboard shortcut. The buttonClicked function calls self.close() to close the
application.

Note In the preceding example, the signal clicked() is connected to our
function. There are also other kinds of signals that the QPushButton can send out
including pressed() when the button is down, released() when the button is
released, or toggled() that can be used like a binary switch.

Events, Signals, and Slots

Before we go on, you should be introduced to an important concept when building
GUI applications in PyQt. GUIs are event-driven, meaning that they respond to events
that are created by the user, from the keyboard or the mouse, or by events caused by
the system, such as a timer or when connecting to Bluetooth. No matter how they are
generated, the application needs to listen for these events and respond to them in
some way, also known as event handling. For example, when exec_() is called, the
application begins listening for events until it is closed.

In PyQt, event handling is performed with signals and slots. Signals are the events
that occur when a widget’s state changes, such as when a button is clicked or a checkbox is
toggled on or off. Those signals then need to be handled in some way. Slots are the methods
that are executed in response to the signal. Slots are simply Python functions or built-in
PyQt functions that are connected to an event and executed when the signal occurs.

27

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES
Take a look at the following code from the earlier QPushButton program:
button.clicked.connect(self.buttonClicked)

When we push on the button, a clicked() signal is emitted. In order to make use of
that signal, we must connect () to some callable function, in this case buttonClicked(),
which is the slot.

Put simply, widgets send out signals and we collect and use them with slots to make
our application perform some action.

Many widgets have predefined signals and slots, meaning you only need to call them
in order to get the behavior you want for your application.

The topic of signals and slots and how to make some custom signals will be covered
in more detail and with examples in Chapter 6.

The QLineEdit Widget

The next widget we are going to take a look at is the QLineEdit widget. For our login
GUI, we need to create areas where the user can input the text for their username and
password on a single line. QLineEdit also supports normal text editing functions such as
cut, copy and paste, and redo or undo if you need to add those features to your program.

The QLineEdit widget also has a number of methods to add more functionality to
your GUI, such as hiding text when it is entered, using placeholder text, or even setting a
limit on the length of the text that can be input.

In Listing 3-2 we will take a look at how to set up the QLineEdit widget, retrieve the
text using the text () function, and see how to clear the text that the user inputs.

Note If you need multiple lines to enter text in, use QTextEdit.

Listing 3-2. Code for learning how to add QLineEdit widgets to your application

lineedit.py

Import necessary modules

import sys

from PyQt5.0tWidgets import (QApplication, QWidget,
QLabel, QLineEdit, QPushButton)

from PyQt5.QtCore import Qt

28

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

class EntryWindow(QWidget): # Inherits OQwidget

def

def

def

def

__init_ (self): # Constructor
super(). init () # Initializer which calls constructor for QWidget
self.initializeUI() # Call function used to set up window

initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 400, 200)
self.setWindowTitle('QLineEdit Widget")
self.displayWidgets()

self.show()

displayWidgets(self):

Setup the QLineEdit and other widgets.

Create name label and line edit widgets

QLabel("Please enter your name below.", self).move(100, 10)
name_label = QLabel("Name:", self)

name_label.move(70, 50)

self.name_entry = QLineEdit(self)
self.name_entry.setAlignment(Qt.AlignLeft) # The default alignment
is AlignLeft

self.name_entry.move(130, 50)

self.name_entry.resize(200, 20) # Change size of entry field

self.clear button = QPushButton('Clear', self)
self.clear button.clicked.connect(self.clearEntries)
self.clear button.move(160, 110)

clearEntries(self):

If button is pressed, clear the line edit input field.

29

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

sender = self.sender()
if sender.text() == 'Clear':
self.name_entry.clear()

Run program

if name_ =="_ main_"':
app = QApplication(sys.argv)
window = EntryWindow()

sys.exit(app.exec_())

Take a look at Figure 3-4 to get an idea of how your GUI should look.

® @ QLineEdit Widget

Please enter your name below.

Name: Susan Franklin|

Clear

Figure 3-4. Example of how to use QLineEdit and QPushButton widgets

Explanation

The user can enter their name into the QLineEdit widget and click the “Clear”
QPushButton to clear their text. Other features could include clearing multiple widgets’
states when the button is clicked or checking to make sure the text entered fits the
guidelines you need in your application.

We begin by importing the necessary widgets, this time making sure to include the
QLineEdit widget which is a member of the QtWidgets module. We also import Qt from
the QtCore module. Ot contains various miscellaneous methods for creating GUIs. After
initializing our window in the EntryWindow class, the displayWidgets() function is
called that sets up the label, line edit and button widgets. When text is entered into the
name_entry widget, by default, the text starts on the left and is centered vertically.

self.name_entry.setAlignment(Qt.AlignLeft)

30

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

If you wish to change this, you could change the flag in SetAlignment from Qt.
AlignlLeft to Qt.AlignRight or Ot.AlignHCenter.

When the clear_button is clicked, it emits a signal that is connected to the
clearEntries() function. In order to determine where the source of a signal is coming
from in your applications, you could also use the sender () method. Here, the signal is
sent from our button when it is clicked, and if the text on the sender is 'Clear', then the
name_entry widget reacts to the signal and clears its current text.

The QCheckBox Widget

The QCheckBox widget is a selectable button that generally has two states, on or off.
Since checkboxes normally have only two states, they are perfect for representing
features in your GUI that can either be enabled or disabled or for selecting from a list of
options like in a survey.

The QCheckBox can also be used for more dynamic applications, as well. For
example, you could use the checkbox to change the title of the window or even the text of
labels when enabled.

Listing 3-3 shows how to set up a window like in a questionnaire. The user is allowed
to select all checkboxes that apply to them, and each time the user clicks a box, we call a
function to show how to determine the widget’s current state.

Note The checkboxes in QCheckBox are not mutually exclusive, meaning you
can select more than one checkbox at a time. To make them mutually exclusive,
add the checkboxes to a QButtonGroup object.

Listing 3-3. Code for learning how to add QCheckBox widgets to your
application

checkboxes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QCheckBox, QLabel)
from PyQt5.0tCore import Ot

class CheckBoxWindow(QWidget):

31

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

32

def

def

def

__init_ (self):
super(). init ()
self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen.
self.setGeometry(100, 100, 250, 250)
self.setWindowTitle('QCheckBox Widget")
self.displayCheckBoxes()

self.show()

displayCheckBoxes(self):

Setup the checkboxes and other widgets

header label = QLabel(self)

header label.setText("Which shifts can you work? (Please check all
that apply)")

header label.setWordWrap(True)

header label.move(10, 10)

header label.resize(230, 60)

Set up checkboxes

morning cb = QCheckBox("Morning [8 AM-2 PM]", self) # text, parent

morning_cb.move(20, 80)

#morning cb.toggle() # uncomment if you want box to start off checked,
shown as an example here.

morning_cb.stateChanged.connect(self.printToTerminal)

after cb = QCheckBox("Afternoon [1 PM-8 PM]", self) # text, parent
after cb.move(20, 100)
after cb.stateChanged.connect(self.printToTerminal)

night _cb = QCheckBox("Night [7 PM-3 AM]", self) # text, parent
night_cb.move(20, 120)
night_cb.stateChanged.connect(self.printToTerminal)

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

def printToTerminal(self, state): # pass state of checkbox
Simple function to show how to determine the state of a checkbox.
Prints the text label of the checkbox by determining which widget
is sending the signal.
sender = self.sender()
if state == Qt.Checked:
print("{} Selected.".format(sender.text()))
else:
print("{} Deselected.".format(sender.text()))

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
window = CheckBoxWindow()
sys.exit(app.exec_())

Figure 3-5 shows our application that allows users to select multiple checkboxes.
® | ® QCheckBox Widget

Which shifts can you work? (Please
check all that apply)

Morning [8 AM-2 PM]
'/ Afternoon [1 PM-8 PM]
2 Night [7 PM-3 AM]

Figure 3-5. Example of QCheckBox widgets

33

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Explanation

Much of this application starts off similar to before, so let’s jump right into the
displayCheckBoxes () method within the CheckBoxWindow class.

A QLabel widget is created so that the person looking at the window can understand
the purpose of the GUI Then three checkboxes are created, each with a variable name
that is representative of the widget’s purpose. Since the widgets are created in a similar
manner, we will just take a look at the first one, morning_cb.

morning cb = QCheckBox("Morning [8 AM-2 PM]", self)

morning cb.move(20, 80) # arrange widget in window

#morning cb.toggle() # uncomment if you want box to start off
checked, shown as an example here.

morning cb.stateChanged.connect(self.printToTerminal)

The checkbox is created by calling the QCheckBox class and then, as parameters,
assigning it text that will appear beside the actual checkbox and its parent window. The
toggle() method can be used to toggle the checkbox, and uncommenting the code will
cause the widget to begin as enabled when starting the program. When a checkbox’s
state changes, rather than using clicked() like with the QPushButton, we can use
stateChanged() to send a signal and then connect to our function, printToTerminal().

The printToTerminal() function takes as a parameter state, the state of the
checkbox. If a checkbox is checked, we can find out by using the isChecked() method.
If the state of the button isChecked(), then use the sender () method to find out which
button is sending a signal and print its text value to the terminal window. An example of
the output to the terminal can be seen in Figure 3-6.

Morning [8 AM-2 PM] Selected.
Night [7 PM-3 AM] Selected.
Afternoon [1 PM-8 PM] Selected.
Night [7 PM-3 AM] Deselected.
Morning [8 AM-2 PM] Deselected.
Afternoon [1 PM-8 PM] Deselected.
Morning [8 AM-2 PM] Selected.

Figure 3-6. Output to terminal from QCheckBox example program

34

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

The QMessageBox Dialog Box

Often when a user is going to close an application, save their work, or an error occurs,
a dialog box will pop up and display some sort of key information. The user can then
interact with that dialog box, often by clicking a button to respond to the prompt.

The QMessageBox dialog box can not only be used to alert the user to a situation
but also to allow them to decide how to handle the issue. For example, if you close a
document you just modified, you might get a dialog box asking you to Save, Don’t Save,
or Cancel.

There are four types of predefined QMessageBox widgets in PyQt. For more details,
refer to Table 3-1.

Table 3-1. Four types of QMessageBox widgets in PyQt. Images
Sfrom www. riverbankcomputing.com

QMessageBox Icons Types Details
l\q.) Question Ask the user a question.
'\i) Information Display information during normal operations.

i ‘: Warning Report noncritical errors.
e‘ Critical Report critical errors.

Windows vs. Dialogs

When creating a GUI application, you will more than likely come across the terms
windows and dialogs. However, windows and dialogs are not the same. Using dialog
boxes in an application can make it both easier for you to develop your GUI and for the
user to better understand and navigate through your application.

The window generally consists of menus, a toolbar, and other kinds of widgets within
it that can often act as the main interface in a GUI application.

35

http://www.riverbankcomputing.com

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

A dialog box will appear when the user needs to be prompted for additional
information in order to continue, often to gather input such as an image or a file. After
that information is given, the dialog box is normally destroyed. Dialog boxes can also
be used to display options or information while a user is working in the main window.
Most kinds of dialog boxes will have a parent window that will be used to determine the
position of the dialog with respect to its owner. This also means that communication
occurs between the window and the dialog box and allows for updates in the main
window.

There are two kinds of dialog boxes, the modal dialog box and the modeless dialog
box. Modal dialogs block user interaction from the rest of the program until the dialog
box is closed. Modeless dialogs allow the user to interact with both the dialog and the
rest of the application.

How dialog boxes appear and are used can often be influenced by the operating
system you use and the guidelines set by that OS.

How to Display a QMessageBox

The QMessageBox class produces a modal dialog box, and in Listing 3-4, we will take
alook at how to use two of the predefined QMessageBox message types, Question and
Information.

Listing 3-4. Code for learning how to display QMessageBox dialogs

dialogs.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
QMessageBox, QLineEdit, QPushButton)

from PyQt5.QtGui import QFont

class DisplayMessageBox(QWidget):

def init (self):
super(). init ()

self.initializeUI() # Call our function used to set up window

def initializeUI(self):

36

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 400, 200)
self.setWindowTitle('QMessageBox Example')
self.displayWidgets()

self.show()

def displayWidgets(self):

Set up the widgets.

catalogue label = QLabel("Author Catalogue", self)
catalogue label.move(20, 20)

catalogue label.setFont(QFont('Arial’, 20))

auth_label = QLabel("Enter the name of the author you are searching
for:", self)
auth_label.move(40, 60)

Create author label and line edit widgets
author name = QLabel("Name:", self)
author name.move(50, 90)

self.auth _entry = QLineEdit(self)
self.auth_entry.move(95, 90)

self.auth_entry.resize(240, 20)
self.auth_entry.setPlaceholderText("firstname lastname")

Create search button

search _button = QPushButton("Search", self)
search_button.move(125, 130)

search button.resize(150, 40)
search_button.clicked.connect(self.displayMessageBox)

def displayMessageBox(self):

When button is clicked, search through catalogue of names.
If name is found, display Author Found dialog.

37

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Otherwise, display Author Not Found dialog.
Check if authors.txt exists
try:
with open("files/authors.txt", "r") as f:
read each line into a list
authors = [line.rstrip('\n"') for line in f]
except FileNotFoundError:
print("The file cannot be found.")

Check for name in list
not_found msg = QMessageBox() # create not found msg object to
avoid causing a 'referenced before assignment' error

if self.auth entry.text() in authors:
QMessageBox().information(self, "Author Found", "Author found
in catalogue!", QMessageBox.0Ok, QMessageBox.Ok)
else:
not_found msg = QMessageBox.question(self, "Author Not Found",
"Author not found in catalogue.\nDo you wish to continue?", QMessageBox.Yes
| QMessageBox.No, QMessageBox.No)

if not_found msg == QMessageBox.No:
print("Closing application.")
self.close()

else:
pass

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
window = DisplayMessageBox()

sys.exit(app.exec_())

38

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Figure 3-7 shows the GUI for the QMessageBox example.

[] [] QMessageBox Example

Author Catalogue
Enter the name of the author you are searching for:

Name: firstname lastname

Search

Figure 3-7. GUI to search for author’s name in a text file

Explanation

The GUI in this example consists of a few QLabel widgets, a QLineEdit widget, and a
single QPushButton. For this example, you will also see how to set placeholder text in
the QLineEdit widget using setPlaceholderText(). This can be helpful for a number
of reasons, maybe to make the look of the window less cluttered or to give the user extra
information to help them understand the format to use to input text.

The search_button sends a signal that calls the function displayMessageBox().
If the user enters a name that is contained in the authors.txt file, then an information
dialog box appears like the first image in Figure 3-8. Otherwise, a question dialog box
(second image in Figure 3-8) appears asking the user if they want to search again or quit
the program. Let’s take a look at how to create a dialog box using the QMessageBox class.

not_found msg = QMessageBox.question(self, "Author Not Found", "Author
not found in catalogue.\nDo you wish to continue?", QMessageBox.Yes |
QMessageBox.No, QMessageBox.No)

To create a QMessageBox dialog, we first call OMessageBox and choose one of the
predefined types, in this case question. Then we set the dialog title, "Author Not
Found", and the text that we want to appear inside the dialog. This should inform the
user about the current situation and, if necessary, notify them of actions they could take.
This is followed by the types of buttons that will appear in the dialog, and each button is
separated by a pipe key, |. Other types of buttons include Open, Save, Cancel, and Reset.
Finally, you can specify which button you want to highlight and set as the default button.

39

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Note On Mac OS X, when a message box appears, the title is generally ignored
due to Mac 0S X Guidelines. If you are using a Mac and don’t see a title in the
dialog boxes, don’t fear! You haven’t done anything wrong.

You can also specify each of these fields in separate lines by calling setText (),
setWindowTitle(), and other methods.

@ @
P Author not found in catalogue.
2/ /’ Do you wish to continue?
h‘ N .‘ ' Yes
® @

Author found in catalogue!

» —a

[OK ™)

Figure 3-8. Information dialog box (top) that lets the user know that their search
was successful. However, if the author doesn'’t exist, a question dialog box appears
asking the user to take some sort of action by clicking a button (bottom)

Login GUI Solution

Now that we have covered the key widgets in this chapter and how to implement dialog
boxes, we should have all the necessary concepts down to tackle the login GUI (Listing 3-5).
Refer to Figures 3-1 and 3-2 for the look and layout of the login GUI.

Listing 3-5. Code for login GUI

loginUI.py
Import necessary modules
import sys

40

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

from PyQt5.0QtWidgets import (QApplication, QWidget, QLabel, QMessageBox,
QLineEdit, QPushButton, QCheckBox)

from PyQt5.QtCGui import QFont

from PyQt5.QtCore import Qt

from Registration import CreateNewUser # Import the registration module

class LoginUI(QWidget):

def

def

def

__init_ (self): # Constructor
super(). init ()

self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 400, 230)
self.setWindowTitle('3.1 - Login GUI")
self.loginUserInterface()

self.show()

loginUserInterface(self):

Create the login GUI.

login label = QLabel(self)

login label.setText("login")

login label.move(180, 10)

login label.setFont(QFont('Arial', 20))

Username and password labels and line edit widgets
name_label = QLabel("username:", self)
name_label.move(30, 60)

self.name_entry = QLineEdit(self)
self.name_entry.move(110, 60)
self.name_entry.resize(220, 20)

41

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

password label = QLabel("password:", self)
password label.move(30, 90)

self.password entry = QLineEdit(self)
self.password entry.move(110, 90)
self.password entry.resize(220, 20)

Sign in push button

sign in_button = QPushButton('login', self)
sign in button.move(100, 140)

sign in button.resize(200, 40)

sign in_button.clicked.connect(self.clickLogin)

Display show password checkbox

show _pswd _cb = QCheckBox("show password”, self)
show_pswd _cb.move(110, 115)
show_pswd_cb.stateChanged.connect(self.showPassword)
show_pswd cb.toggle()

show_pswd_cb.setChecked(False)

Display sign up label and push button
not_a member = QLabel("not a member?", self)
not_a member.move(70, 200)

sign up = QPushButton("sign up", self)
sign up.move(160, 195)
sign_up.clicked.connect(self.createNewUser)

def clickLogin(self):
When user clicks sign in button, check if username and password
match any existing profiles in users.txt.
If they exist, display messagebox and close program.
If they don't, display error messagebox.
users = {} # Create empty dictionary to store user information
Check if users.txt exists, otherwise create new file
try:

42

def

def

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

with open("files/users.txt", 'r') as f:
for line in f:
user fields = line.split(" ")
username = user fields[0]
password = user_ fields[1].strip('\n")
users[username] = password
except FileNotFoundError:
print("The file does not exist. Creating a new file.")
f = open ("files/users.txt", "w")

username

self.name_entry.text()
password = self.password entry.text()
if (username, password) in users.items():
QMessageBox.information(self, "Login Successful!", "Login
Successful!", QMessageBox.0k, QMessageBox.0k)
self.close() # close program
else:
QMessageBox.warning(self, "Error Message", "The username or
password is incorrect.", QMessageBox.Close, QMessageBox.Close)

showPassword(self, state):
If checkbox is enabled, view password.
Else, mask password so others cannot see it.
if state == Qt.Checked:
self.password entry.setEchoMode(QLineEdit.Normal)
else:
self.password entry.setEchoMode(QLineEdit.Password)

createNewUser(self):

When the sign up button is clicked, open
a new window and allow the user to create a new account.

self.create new user dialog = CreateNewUser()
self.create new_user dialog.show()

43

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

def closeEvent(self, event):
Display a QMessageBox when asking the user if they want to quit the
program.
Set up message box
quit_msg = QMessageBox.question(self, "Quit Application?",
"Are you sure you want to Quit?", QMessageBox.No | QMessageBox.Yes,
QMessageBox.Yes)
if quit_msg == QMessageBox.Yes:
event.accept() # accept the event and close the application
else:
event.ignore() # ignore the close event

Run program

if _name_ == "' main_ ':
app = QApplication(sys.argv)
window = LoginUI()

sys.exit(app.exec_())

Your GUI should look similar to the window shown in Figure 3-1.

Explanation

After importing the necessary PyQt5 modules including QtWidgets, 0tGui, and QtCore,
we also need to import our Registration module which will allow new users to create a
new account and then return back to the login GUI to sign in. The Registration module
is covered in Project 3.2 in this chapter.

In our LoginUI class that inherits from QWidget, we initialize our GUI and then create
the widgets. Refer to Figure 3-2 for the layout. We create a few QLabel widgets to hold
information about our GUI and labels for the QLineEdit widgets for the username and
password. Widgets are arranged in the window using the move () method.

When the sign_in_button is clicked, it sends a signal that is connected to the
clickLogin() method. This function opens the users.txt file (and creates one if it
doesn’t exist) and stores each line into a Python dictionary, with the keys being the
usernames and the values of the dictionary being the passwords. The text() method is
then used to retrieve the input from the two QLineEdit widgets and checks them to see

44

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

if they match any of the key/value pairs in the users dictionary. While it isn’t the most
practical method, this example is a very small one and demonstrates how to use simple
text files with your applications. Later we will take a look at how to use SQL to search
through databases in Chapter 10.

If the username and password match a key/value pair from the file, then an
information QMessageBox dialog is displayed telling the user that they are successful. They
can then exit the program if they wish (in an actual application at this point you would start
the main window of your program). Otherwise, a warning QMessageBox is displayed if the
username or password is incorrect. These two dialog boxes can be seen in Figure 3-9.

Login Successful!

I’ OK 3

The username or password is incorrect.

“Close

Figure 3-9. QMessageBox dialogs that can be displayed. The information dialog
box (top) lets the user know that their information was correct. The other dialog
(bottom) shows a warning QMessageBox

Hiding Input for QLineEdit

The stateChanged signal in the login UI code is connected to the showPassword()
function. If the show_pswd_cb QCheckBox is checked, then the password is displayed
using SetEchoMode ().

self.password entry.setEchoMode(QLineEdit.Normal)
Otherwise, if unchecked, it is hidden using
self.password entry.setEchoMode(QLineEdit.Password)

45

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

If you ever need to make the text in a QLineEdit widget hidden from other’s view,
using SetEchoMode () can change the appearance of the text. By default, setEchoMode ()
issetto QLineEdit.Normal.

How to Open a New Window

If the user wants to create a new account, then they can click the sign_up button at the
bottom of the GUL This button sends a signal that is connected to the createNewUsexr ()
method which calls our CreateNewUser class from the Registration module. A new window
is then opened up using show() where the user can enter their personal information.

Changing How the Close Event Works

Finally, currently when we want to quit our programs, we just exit by clicking the button
in the top corner of the window. However, a good practice is to present a dialog box
confirming whether the user really wants to quit or not. In most programs this will
prevent the user from forgetting to save their latest work.

When a QWidget is closed in PyQt, it generates a QCloseEvent. So we need to change
how the closeEvent () method is handled. To do so we create a new method called
closeEvent() that accepts as a parameter an event.

In this function we create a QMessageBox that asks the user if they are sure about
quitting. They then can click either a Yes or No button in the dialog box. We then check
the value of the variable stored in quit_msg. If quit_msg is Yes, then the close event is
accepted and the program is closed. Otherwise, the event is ignored.

Project 3.2 — Create New User GUI

The first time someone uses your applications you may want them to sign up and create
their own username and passwords. This, of course, can allow them to personalize
their accounts and then save that information for the next time they log in. The kind of
information that you need from the user can range from very simple, name and gender,
all the way to extremely private, Social Security numbers or bank account information.
Making sure that the information that they enter is correct is very important.

46

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Creating a New User GUI Solution

For the following project, we will have the user enter their desired username, their real
name, a password, and then reenter that password to double check that it is correct.
When the user clicks the sign up button, the text in the password fields will be checked
for a match, and if so, the information will be saved to a text file. The user can then return
to the login screen and log in.

The create new user GUI project contains many of the same widgets, including
QLabel widgets, QLineEdit widgets, a QPushButton, and concepts that were part of
the login UI project. Therefore, we will jump right into talking about the code shown in
Listing 3-6. The completed GUI can be seen in Figure 3-10.

@ &) 3.2 - Create New User

create new account

o

username: MarkRuffalo20
full name: Mark Ruffalo
password: ssessss

confirm: aoo-ala|

sign up

Figure 3-10. The create new user GUI

Listing 3-6. Code for creating a new user account GUI

Registration.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QMessageBox,
QPushButton, QLabel, QLineEdit)

47

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES
from PyQt5.0tGui import QFont, QPixmap
class CreateNewUser(QWidget):

def _init (self):
super(). init ()

self.initializeUI() # Call our function used to set up window

def initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 400, 400)
self.setWindowTitle('3.2 - Create New User')

self.displayWidgetsToCollectInfo()
self.show()

def displayWidgetsToCollectInfo(self):
Create widgets that will be used to collect information
from the user to create a new account.
Create label for image
new_user_image = "images/new_user icon.png"
try:
with open(new_user image):
new_user = QLabel(self)
pixmap = QPixmap(new_user image)
new_user.setPixmap(pixmap)
new_user.move (150, 60)
except FileNotFoundError:
print("Image not found.")

login label = QLabel(self)
login label.setText("create new account™)
login label.move(110, 20)

48

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES
login label.setFont(QFont('Arial', 20))

Username and fullname labels and line edit widgets
name_label = QLabel("username:", self)
name_label.move(50, 180)

self.name_entry = QLineEdit(self)
self.name_entry.move(130, 180)
self.name_entry.resize(200, 20)

name_label = QLabel("full name:", self)
name_label.move(50, 210)

name_entry = QLineEdit(self)
name_entry.move(130, 210)
name_entry.resize(200, 20)

Create password and confirm password labels and line edit widgets
pswd label = QLabel("password:", self)
pswd_label.move(50, 240)

self.pswd _entry = QLineEdit(self)
self.pswd_entry.setEchoMode(QLineEdit.Password)
self.pswd_entry.move(130, 240)
self.pswd_entry.resize(200, 20)

confirm label = QLabel("confirm:", self)
confirm label.move(50, 270)

self.confirm entry = QLineEdit(self)

self.confirm entry.setEchoMode(QLineEdit.Password)
self.confirm entry.move(130, 270)

self.confirm entry.resize(200, 20)

Create sign up button

sign up button = QPushButton("sign up", self)

sign up_button.move(100, 310)

sign up button.resize(200, 40)

sign up button.clicked.connect(self.confirmSignUp)

49

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

def confirmSignUp(self):
When user presses sign up, check if the passwords match.
If they match, then save username and password text to users.txt.
pswd_text = self.pswd entry.text()
confirm text = self.confirm entry.text()

if pswd_text != confirm_text:
Display messagebox if passwords don't match
QMessageBox.warning(self, "Error Message",
"The passwords you entered do not match. Please try
again.", OMessageBox.Close,
QMessageBox.Close)
else:
If passwords match, save passwords to file and return to login
and test if you can log in with new user information.
with open("files/users.txt", 'a+') as f:
f.write(self.name_entry.text() + " ")
f.write(pswd_text + "\n")
self.close()

Run program

if _name__ == "' main_ ':
app = QApplication(sys.argv)
window = CreateNewUser()
sys.exit(app.exec ())

The completed create new user GUI can be seen in Figure 3-10.

Explanation

The create new user GUI is mainly comprised of a few QLabel widgets, four QLineEdit
widgets, and a QPushButton widget that the user can click when the form is complete as

can be seen in Figure 3-10.

50

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

After the user enters their information and clicks the sign_up_button, the
confirmSignUp() function is called and first checks to see if the text in the pswd_entry
and confirm_entry QLineEdit objects match. If they don’t match, then a QMessageBox
like the one in Figure 3-11 is displayed. Otherwise, the text in the name_entry and pswd_
entry fields is saved to a newline in the users.txt file separated by a space which can be
seen in Figure 3-12.

The passwords you entered do not match.
Please try again.

Figure 3-11. The warning dialog displayed if the passwords you entered don’t
match

If the user finishes the form and clicks the sign_up_button or closes the window
before completing the form, the window will close but the login UI will still remain open.
If the form was completed, the user can try to enter their new username and password
into the login GUI to log in.

200 B users.txt
admin password

Userl234 CoolGuy

Michael@sel Qw3rty

N N B users.txt
admin password
Userl234 CoolGuy
Michael@881 Qw3rty
MarkRuffalo2® TheHulk|

Figure 3-12. The original users.txt file (top) and the updated one with a new
username and a new password (bottom)

51

CHAPTER 3 ADDING MORE FUNCTIONALITY TO INTERFACES

Summary

In this chapter we took a look at some new widgets, QPushButton, QLineEdit,
QCheckBox, and QMessageBox class. It is important to use dialog boxes in your program
when you want the user to collect information outside of the application or to relay
important details to the user. But you also should not have a dialog box pop up for every
little nuance or with very little helpful information.

The applications in this chapter are by no means complete. They are the framework
to get you started making your own GUIs. For example, you could make sure that the
user’s password includes capital and lowercase letters and other characters to make it
more safe. Another possibility is to let the user know if the username they want to create
already exists. Once you learn how to implement menus, you could even have the user
search through their files for a profile image. I encourage you to try and implement some
of these ideas or even your own ideas.

In the following chapter, we will learn about layout management in PyQt.

52

CHAPTER 4

Learning About Layout
Management

The previous chapters laid the foundation for getting started in PyQt5 as you learned

to create GUIs with more functionality by adding widgets such as QPushButton and
QCheckBox. Rather than continue to barrage you with PyQt’s numerous widgets, taking
a moment to learn about the various layout managers will save us some trouble moving
forward.

Layout management is the way in which we arrange widgets in our windows. This
can involve a number of different factors, including size and position, resize handling,
and adding or removing widgets. Layout management is also very important to consider
for the user looking at your application. Do a quick image search on the Internet for
“worst GUI layouts” and you will see numerous applications crammed with widgets with
no clear reasoning.

A layout manager is a class that contains methods which we can use to arrange
widgets inside windows. They are useful for communicating between child and parent
widgets to make them utilize the space in a window more efficiently.

In this chapter we are going to take a look at four methods that can be used for layout
management in PyQt:

1. Absolute positioning with move ().

2. 0BoxLayout which is useful for creating simple GUIs with
horizontal or vertical layouts.

3. QFormLayout is a convenience layout useful for making
application forms.

4. QGCridLayout allows for more control over arranging widgets by
specifying x and y coordinate values.

53
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_4

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

This chapter will also cover the idea of nesting layouts for creating more elaborate
applications.
We will also take a look at a few new widgets and classes:

e QTextEdit - Similar to QLineEdit but creates a text entry field with
more space

o (QFileDialog - Native file dialog of PyQt that allows the user to open

or save files
e QButtonGroup - To organize push button and checkbox widgets

e QSpinBox - A text box that displays integer values that the user can
cycle through

e QComboBox - Presents a list of options in a dropdown-style widget

To make things simpler to understand in this chapter, let’s first take a look at a few
key concepts for using layout managers.

Choosing a Layout Manager

Setting the layout manager or changing the one we want to use in our applications isn’t
very difficult to do.

When you import modules in the beginning of your program, be sure to also include
the layout manager(s) you want to use like so:

from PyQts5.QtWidgets import (QApplication, QWidget, QHBoxLayout,
QFormLayout)

Here we import both the QHBoxLayout and QFormLayout classes from QtWidgets.
Then to set a specific layout manager inside a parent window or widget, we first must
create an instance of that layout manager. In the following code, we call QVBoxLayout
and then set the layout within the parent window using setLayout().

v_box = QVBoxLayout()
parent_window.setLayout(v_box)

Using a layout manager isn’t necessary, but it is definitely preferred in order to make
your applications easier to organize and to rearrange if necessary.

54

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Customizing the Layout

So you've got your layout manager chosen. You've created your widgets. How do you go
about adding them to the window?

name = QTextEdit()
v_box.addWidget(name)

In this code, we create a QTextEdit widget and then call the addWidget () method to
add it in the layout. Be sure to consider what type of layout manager the parent window
or widget is using before adding a child widget. For each layout manager, some of the
parameters may change or you may need to call a different method to add widgets, but
the concept is the same - create a widget, then add that widget into your layout. We will
go over more details when we get to each specific manager.

If you need to create a more complex application with widgets arranged horizontally,
vertically, or maybe even arranged in a grid, it is also possible to nest layouts in PyQt.
Nesting layouts involves placing one layout manager inside of another. This can be
accomplished by calling the addLayout () method and passing the name of a layout as a
parameter.

One of the great things about using a layout manager is that when you resize the
windows, the widgets in the window will all adjust accordingly. However, each layout
manager has its own way of determining the spacing, alignment, size, or border around
the widgets. These can all be manipulated and we will look at a few of these methods in
the upcoming projects.

Absolute Positioning — Move()

While many people will recommend using layout managers, you can of course create
layouts without them. This idea is called absolute positioning and it involves specifying
the size and position values for each widget. This is the method we used in the previous
chapters when we used move() to arrange widgets.

If you do decide to use absolute positioning, there are a few drawbacks to keep in
mind. First of all, resizing the main window will not cause the widgets in it to adjust their
size or position. Something else to keep in mind is the differences between operating
systems, such as fonts and font sizes which could drastically change the look and layout
of our GUL

55

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Absolute positioning can be most useful for setting the position and size values of
widgets that are contained within other widgets.

Project 4.1 — Basic Notepad GUI

For our first project, let’s take a look at creating a simple interface, a notepad GUI, to
demonstrate how to use absolute positioning. A notepad is a way to capture our ideas or
to take notes. It generally starts off blank and we fill in the information line by line. The
benefit of having a digital notepad is that we can input and edit text much more easily
than with real paper. Electronic notepads don’t just include a blank area to write, but also
tools which can be found at the top of the GUI window to help open, save, or edit notes.

This project, as can be seen in Figure 4-1, lays the foundation for our notepad GUIL
In Chapter 5, we will take a look at how to improve upon this example by creating a
menu interface and adding editing tools.

| NON | 4.1 - Notepad GUI

New Save

A Patch of Old Snow

Robert Frost - 1874-1963

There's a patch of old snow in a corner
That | should have guessed

Was a blow-away paper the rain
Had brought to rest.

It is speckled with grime as if
Small print overspread it,

The news of a day I've forgotten—
If | ever read it.

Figure 4-1. Basic notepad GUI

56

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

The QTextEdit Widget

If we are going to create a notepad GUI, then we need a text entry field that will allow us
to enter and edit more than one line of text at a time.

The QTextEdit widget allows a user to enter text, either plain or rich text, and permits
editing such as copy, paste, or cut. The widget can handle characters or paragraphs of
text. Paragraphs are simply long strings that are word-wrapped into the widget and end
with a newline character. QTextEdit is also useful for displaying lists, images, and tables
or providing an interface for displaying text using HTML.

Take a look at the Solution code to the notepad GUI to see how to create a QTextEdit
widget.

The QFileDialog Class

The QFileDialog class can be used to select files or directories found on your computer.
This can be useful for locating and opening a file or looking for a directory to save a file
and giving your file a name.

To open a file, we call the getOpenFileName () method, set the parent, create a title
for the dialog box, display contents of a specific directory, and display files matching
the patterns given in the string "A1l Files (*);;Text Files (*.txt)".You can also
display image or other file types.

file name = QFileDialog.getOpenFileName(self, 'Open File', "/Users/user_
name/Desktop/","All Files (*);;Text Files (*.txt)")

Saving a file is done in a similar fashion.

file_name = QFileDialog.getSaveFileName(self, 'Save File', "/Users/user_
name/Desktop/","All Files (*);;Text Files (*.txt)")

The look of the dialog box that appears will also reflect the type of system you are
using. To change these properties, you could access QFileDialog.Options() and alter
the dialog properties and appearance.

options = QFileDialog.Options()
options = QFileDialog.DontUseNativeDialog # By default native dialog is used

57

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Basic Notepad GUI Solution

For this project, the GUI will consist of three widgets, two QPushButtons and a QTextEdit
field (Listing 4-1). Users will be able to select the new button to clear the text in the line
edit field or save the text to a file by clicking the save button and opening a dialog box.

Listing 4-1. Code for creating notepad GUI

notepad.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QTextEdit,
QMessageBox, QFileDialog)

class Notepad(QWidget):

def init (self): # constructor
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setGeometry(100, 100, 300, 400)
self.setWindowTitle('4.1 - Notepad GUI")
self.notepadwWidgets()

self.show()

def notepadWidgets(self):

Create widgets for notepad GUI and arrange them in window

Create push buttons for editing menu
new_button = QPushButton("New", self)
new_button.move(10, 20)

58

def

def

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT
new_button.clicked.connect(self.clearText)

save_button = QPushButton("Save", self)
save_button.move(80, 20)
save_button.clicked.connect(self.saveText)

Create text edit field
self.text field = QTextEdit(self)
self.text field.resize(280, 330)
self.text field.move(10, 60)

clearText(self):
If the new button is clicked, display dialog asking user if they
want to clear the text edit field or not.
answer = QMessageBox.question(self, "Clear Text",
"Do you want to clear the text?", QMessageBox.No | QMessageBox.Yes,
QMessageBox. Yes)
if answer == QMessageBox.Yes:
self.text field.clear()
else:
pass

saveText(self):

If the save button is clicked, display dialog to save the text in
the text edit field to a text file.

options = QFileDialog.Options()

notepad text = self.text field.toPlainText()

file name, _ = QFileDialog.getSaveFileName(self, 'Save File',
"","All Files (*);;Text Files (*.txt)", options=options)

if file_name:
with open(file name, 'w') as f:
f.write(notepad text)

59

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

if _name_ == " main_":
app = QApplication(sys.argv)
window = Notepad()
sys.exit(app.exec ())

Our notepad can be seen in Figure 4-1. The text displayed in the widgets shows that
the QLineEdit widget can support different fonts, colors, and text sizes.

Explanation

When you use absolute positioning, you can think of the window as a grid where the top-
left corner has the x and y coordinates (0, 0). If you create a window with height equal
to 100 and width also 100, then the bottom-right corner has values (99, 99). To arrange
widgets using move (), you need to specify values within the height and width range.

For example, the new_button push button is created and positioned as follows:

new_button = QPushButton("New", self)
new_button.move(10, 20) # x = 10, y = 20

Three widgets are created in Listing 4-1, two buttons and a QTextEdit widget for
inputting text. We can use the buttons to either clear text or save the text we have typed.

When the user clicks the save_button, the saveText () method is called which
displays a QFileDialog like the one shown in Figure 4-2.

60

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Save As: a_patch_of_old_snow.txt

Tags:

<>
?
Jo]

oo~ i ch04_Layouts

Q Remote Dis iCloud storage is full. Upgrade... Learn More...
) hemole DIsC

Network
Tags
@ Blue
@ Purple
Yellow
@ Gray
@ Green

Home
All Files (*) [~

Mew Folder Cancel S

Figure 4-2. QFileDialog box that opens to save the text from the notepad GUI

The contents of the text file are shown in Figure 4-3. Because we save the file as a text
file, it loses some information but still retains the spacing and paragraphs separated by
newlines. To keep the rich text information, you could save the file using HTML. This will

be covered in Chapter 5.

[N | B a_patch_of_old_snow.txt
A Patch of 0ld Snow
Robert Frost - 1874-1963

There's a patch of old snow in a corner

That I should have guessed
Was a blow-away paper the rain
Had brought to rest.

It is speckled with grime as if
Small print overspread it,

The news of a day I've forgotten—
If I ever read it.

Figure 4-3. Text file showing the text saved from notepad GUI
61

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

The QHBoxLayout and QVBoxLayout Classes

Arranging widgets can be accomplished easily with the QBoxLayout classes. PyQt has
two different QBoxLayout styles, QHBoxLayout and QVBoxLayout:

* QHBoxLayout - Used to arrange widgets horizontally from left to
right in the window

e QVBoxLayout - Used to arrange widgets vertically from top to
bottom in the window

Creating a basic GUI with only one of these layout managers is possible, but the real
potential comes from being able to combine the two of them to create more elaborate
layouts. Together we can combine them, along with the addStretch() method, to place
widgets anywhere in the window. Think of addStretch() as an adjustable blank space
that can be used to help arrange widgets relative to each other or to help place widgets in
the window.

In the following project, we will take a look at how to use QHBoxLayout and
QVBoxLayout in the same program to create a simple survey GUI application.

Project 4.2 — Survey GUI

Creating a survey to collect data from users can be very useful for businesses or for
research. In the following project, we will take a look at how to use the QBoxLayout class
to create a simple window that displays a question to the user and allows them to select
an answer.

From personal experience, the Python language is very good at automating repetitive
tasks. In university, I needed to collect data from almost a thousand participants in order
to research marketing trends related to how they spent money at sporting events. For my
research I decided to create an application that would ask the user a question and then
store their answers in a Python list. When a participant reached the end of the survey,
their answers were written to a file. This greatly helped later when I needed to use that
same data to create graphs and charts.

Figure 4-4 shows the program we are going to make in Project 4.2.

62

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

[O] @ 4.2 - Survey GUI

Restaurant Name

How would you rate your service today?

Not Satisfied Average Satisfied
1 2 @3
Close

Figure 4-4. Survey GUI

The QButtonGroup Class

You may often have a few checkboxes or buttons that need to be grouped together to
make it easier to manage them. Luckily, PyQt has the QButtonGroup class to help
not only group and arrange buttons together, but also has the ability to make buttons
mutually exclusive. This is also helpful if you only want one checkbox to be checked
at a time.

QButtonGroup is not actually a widget, but a container where you can add widgets.
Therefore, you can’t actually add QButtonGroup to a layout. The following code shows
the method of how to import and set up QButtonGroup in your application:

from PyQt5.QtWidgets import QButtonGroup, QCheckBox

b_group = QButtonGroup() # Create instance of QButtonGroup
Create two checkboxes
cb_1 = QCheckBox("CB 1")
cb 2 = QCheckBox("CB 2")

Add checkboxes into QButtonGroup
b_group.addButton(cb 1)
b_group.addButton(cb 2)

Connect all buttons in a group to one signal
b_group.buttonClicked.connect(cbClicked)

def cbClicked(cb):
print(cb)

63

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

In the above code we create two QCheckBox widgets and add them to the
QButtonGroup using the addButton() method. To make the buttons mutually exclusive,
we check to see if a signal is sent not from each individual button but from the button
group instead. This is done with

b_group.buttonClicked.connect(cbClicked)

Survey GUI Solution

The survey GUI consists of QLabel widgets to display the title, question, and ratings
labels for each checkbox. For the checkboxes in the window, the text beside each label
could have been left blank, but the numbers are left as a visual cue to the user. Once the
user selects a choice, they can close the window using a QPushButton (Listing 4-2).

Listing 4-2. Code for creating survey GUI

survey.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import (QApplication, QWidget, QLabel, QPushButton,
QCheckBox, QButtonGroup, QHBoxLayout, QVBoxLayout)

from PyQt5.0tGui import QFont

class DisplaySurvey(QWidget):
def init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setGeometry(100, 100, 400, 230)
self.setWindowTitle('4.2 - Survey GUI'")
self.displayWidgets()

self.show()

64

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

def displayWidgets(self):

Set up widgets using QHBoxLayout and QVBoxLayout.

Create label and button widgets

title = QLabel("Restaurant Name")
title.setFont(QFont('Arial’, 17))

question = QLabel("How would you rate your service today?")

Create horizontal layouts
title h box = QHBoxLayout()
title _h box.addStretch()
title _h box.addwWidget(title)
title h box.addStretch()

ratings = ["Not Satisfied", "Average", "Satisfied"]

Create checkboxes and add them to horizontal layout, and add
stretchable

space on both sides of the widgets

ratings_h_box = QHBoxLayout()

ratings h box.setSpacing(60) # Set spacing between in widgets in

horizontal layout

ratings h box.addStretch()
for rating in ratings:
rate_label = QLabel(rating, self)
ratings h box.addWidget(rate label)
ratings h box.addStretch()

cb_h box = QHBoxLayout()

cb_h box.setSpacing(100) # Set spacing between in widgets in
horizontal layout

Create button group to contain checkboxes

scale bg = QButtonGroup(self)

cb_h_box.addStretch()
for cb in range(len(ratings)):

65

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

scale cb = QCheckBox(str(cb), self)

cb_h_box.addwidget(scale cb)

scale bg.addButton(scale cb)
cb_h_box.addStretch()

Check for signal when checkbox is clicked
scale bg.buttonClicked.connect(self.checkboxClicked)

close button = QPushButton("Close", self)
close button.clicked.connect(self.close)

Create vertical layout and add widgets and h_box layouts
v_box = QVBoxLayout()

v_box.addLayout(title h box)

v_box.addWidget(question)

v_box.addStretch(1)

v_box.addLayout(ratings h box)

v_box.addLayout(cb_h box)

v_box.addStretch(2)

v_box.addWidget(close button)

Set main layout of the window
self.setlLayout(v_box)

def checkboxClicked(self, cb):

Print the text of checkbox selected.

print("{} Selected.".format(cb.text()))

if name_ ==" main_ "':
app = QApplication(sys.argv)
window = DisplaySurvey()
sys.exit(app.exec_())

The survey GUI can be seen in Figure 4-4.

66

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Explanation

After importing all of the PyQt classes and setting up the DisplaySurvey class,
we begin by creating some labels, setting up the text for the ratings labels, and
creating the close_button.

The application consists of three separate QHBoxLayout objects - title h box,
ratings_h_box, and cb_h_box - and a single QVBoxLayout layout, v_box. For this GUI,
v_box will act as the container for all of the other widgets and layouts, arranged vertically
from top to bottom.

Combining Box Layouts and Arranging Widgets

When we say combining layouts, what that really means is nesting one type of box layout
inside of another type to get the benefit of vertical or horizontal layouts.

The following bit of code shows how to create a QHBoxLayout object and add a
widget to it:

Create horizontal layouts
title h box = QHBoxLayout()
title h_box.addStretch()
title h box.addwWidget(title)
title h box.addStretch()

The addStretch() method acts like an invisible widget that can be used to help
arrange widgets in a layout manager. Widgets in QHBoxLayout are organized left to right,
soin title_h_box, addStretch is added to the left, title in the middle, and another
addStretch to the right. This centers the titlein title h box.

To add the rating labels and checkboxes to the window, a separate QHBoxLayout is
created for each one. Each widget added is spaced out using the setSpacing() method,
which is useful for creating a fixed amount of space between widgets inside of a layout.

Adding layouts or widgets to a parent layout is as simple as changing the method
called.

v_box = QVBoxLayout() # Create vertical layout
v_box.addLayout(title h box) # Add horizontal layout
v_box.addWidget(question) # Add widget

67

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

The QFormLayout Class

In Chapter 3 we looked at how to make a create new user GUI (Project 3.2) that would
collect a user’s information. In that project, each line consisted of a QLabel widget on the
left and a QLineEdit widget on the right. They were then arranged in the window using
absolute positioning.

For situations like this where you need to create a form to collect information from a
user, PyQt provides the QFormLayout class. It is a layout class that arranges its children
widgets into a two-column layout, the left column consisting of labels and the right one
consisting of entry field widgets such as QLineEdit or QSpinBox. The QFormLayout class
makes designing these kinds of GUIs very convenient.

Project 4.3 — Application Form GUI

We all have to fill out application forms at some point, applying for a job, when you want
to go to university, trying to get insurance for your car, or signing up for a new bank
account.

For this project let’s take a look at creating an application form that someone could
use to set up an appointment at the hospital like in Figure 4-5. When filling out an
electronic application, you can combine many different widgets to not only reduce the
size of the window but also minimize the amount of clutter from text that you might
usually see on a paper application.

Before getting started on the application form, we should learn about two new
widgets - QSpinBox and QComboBox - that we will use in the application GUI.

68

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

® | ® 4.3-Application Form GUI

Appointment Submission Form
Full Name |
Address
Mobile Number - -

Age 0 T Height cm Weight kg

Gender Male <)

Past Surgeries separate by

Blood Type A &

Desired Time 0 T :00% AM &

Submit Appointment

Figure 4-5. Application form GUI

The QSpinBox and QComboBox Widgets

Rather than using a QLineEdit widget for the user to input information, sometimes you
may want them to only be allowed to select from a list of predetermined values. Both
QSpinBox and QComboBox widgets are very useful for handling this kind of task.

QSpinBox creates an object that is similar to a text box, but allows the user to select
integer values either by typing a value into the widget or by clicking the up and down
arrows. You can also edit the range of the values, set the step size when the arrow is
clicked, set a starting value, or even add prefixes or suffixes in the box. There are also
other kinds of spin boxes in PyQt, such as QDateEdit, to select date and time values.

QComboBox is a way to display a list of options for the user to select from. When a
user clicks the arrow button, a pop-up list appears and displays a collection of possible
selections.

In Listing 4-3 we will take a look at how to create both kinds of objects, add them to
our layout, and find out how to use the values in QSpinBox to update other widgets in
the GUI window.

69

CHAPTER 4

LEARNING ABOUT LAYOUT MANAGEMENT

Listing 4-3. Code for creating QSpinBox and QComboBox widgets

spin_combo_boxes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel, QComboBox,
QSpinBox, QHBoxLayout, QVBoxLayout)

from PyQt5.QtGui import QFont

from PyQt5.0QtCore import Qt

class SelectItems(QWidget):

70

def

def

def

__init_ (self):
super(). init ()

self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 300, 200)
self.setWindowTitle('ComboBox and SpinBox')
self.itemsAndPrices()

self.show()

itemsAndPrices(self):

Create the widgets so users can select an item from the combo boxes
and a price from the spin boxes

info label = QLabel("Select 2 items you had for lunch and their prices.")
info_label.setFont(QFont('Arial’, 16))
info_label.setAlignment(Qt.AlignCenter)

self.display total label = QLabel("Total Spent: $")
self.display total label.setFont(QFont('Arial’, 16))

self.display total label.setAlignment(Qt.AlignRight)

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Create list of food items and add those items to two separate
combo boxes

lunch list = ["egg", "turkey sandwich", "ham sandwich", "cheese",

"hummus", "yogurt", "apple", "banana", "orange", "waffle", "baby

carrots", "bread", "pasta", "crackers", "pretzels", "pita chips",

"coffee", "soda", "water"]

lunch_cb1 = QComboBox()
lunch_cb1.addItems(lunch list)
lunch_cb2 = QComboBox()
lunch_cb2.addItems(lunch list)

Create two separate price spin boxes

self.price sbi = QSpinBox()

self.price sbi.setRange(0,100)

self.price sbi.setPrefix("$")
self.price_sbi.valueChanged.connect(self.calculateTotal)

self.price sb2 = QSpinBox()

self.price sb2.setRange(0,100)

self.price sb2.setPrefix("$")
self.price_sb2.valueChanged.connect(self.calculateTotal)

Create horizontal boxes to hold combo boxes and spin boxes
h_box1 = QHBoxLayout()
h box2 = QHBoxLayout()

h_box1.addWidget(lunch cb1)
h_box1.addWidget(self.price sb1)
h_box2.addWidget(lunch cb2)
h_box2.addWidget(self.price sb2)

Add widgets and layouts to QVBoxLayout
v_box = QVBoxLayout()
v_box.addWidget(info label)
v_box.addLayout(h_box1)
v_box.addLayout(h_box2)
v_box.addWidget(self.display total label)

71

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT
self.setlLayout(v_box)

def calculateTotal(self):
Calculate and display total price from spin boxes and change value
shown in Qlabel
total = self.price sbi.value() + self.price sb2.value()
self.display total label.setText("Total Spent: ${}".
format(str(total)))

__main_ ":
app = QApplication(sys.argv)
window = SelectItems()
sys.exit(app.exec ())

if name ==

Your window should look similar to the one seen in Figure 4-6.

[NON ComboBox and SpinBox

Select 2 items you had for lunch and their prices.

pasta | O EXE] z

coffee i 13 z

Total Spent: $38

Figure 4-6. GUI to show how to create QSpinBox and QComboBox widgets

Explanation

The code for this application is also another demonstration of how to create nested
layouts in PyQt. Here we create two instances of QHBoxLayout and add them to a vertical
layout.

72

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

We create two separate combo boxes, lunch_cb1 and lunch_cb2, and add the list of
items that we want to be displayed to each of them using the addItems () method. Then
two separate spin boxes are created, price sbland price sb2.

self.price sbi.setRange(0,100)
self.price sbi.setPrefix("$")

The setRange() method is used to set the upper and lower boundaries for a spin
box and setPrefix() can be used to display other text inside of the text box, in this case
a dollar sign. This can be helpful to give the user more information about the widget’s
purpose. All of these widgets are then added to two separate horizontal layouts, h_box1
and h_box2.

Note Since the two QComboBox objects and the two QSpinBox objects each
contain the same values, you may have the urge to just try and use them over
again when adding them to QVBoxLayout. This won’t work. When you add an item
to a widget or to a layout, that widget takes ownership of the item. This means you
cannot add an item to more than one widget or layout. You will need to create a
new instance.

Finally, as we change the values in the spin boxes, they both send a signal that is
connected to the calculateTotal () method. This will dynamically update the value for
display total label in the window.

Application Form GUI Solution

The application form GUI consists of a number of different widgets, including QLabel,
QLineEdit, QSpinBox, QComboBox, QTextEdit, and QPushButton (Listing 4-4). Nesting
layouts is also possible with the QFormLayout manager.

Listing 4-4. Code for creating application form GUI

application.py
Import necessary modules
import sys

73

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

from PyQt5.0QtWidgets import (QApplication, QWidget, QLabel, QPushButton,
QFormLayout, QLineEdit, QTextEdit, QSpinBox, QComboBox, QHBoxLayout)
from PyQt5.0tGui import QFont

from PyQt5.0QtCore import Qt

class GetApptForm(QWidget):
def init (self):
super(). init_ ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 300, 400)
self.setWindowTitle('4.3 - Application Form GUI'")
self.formWidgets()

self.show()

def formWidgets(self):

Create widgets that will be used in the application form.
Create widgets

title = QLabel("Appointment Submission Form")
title.setFont(QFont('Arial’, 18))
title.setAlignment(Qt.AlignCenter)

name = QLineEdit()

name.resize(100, 100)

address = QLineEdit()

mobile num = QLineEdit()

mobile num.setInputMask("000-000-0000;")

age_label = QLabel("Age")
age = QSpinBox()
age.setRange(1, 110)

74

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

height label = QLabel("Height")
height = QLineEdit()
height.setPlaceholderText("cm"
weight label = QLabel("Weight")
weight = QLineEdit()
weight.setPlaceholderText("kg")

gender = QComboBox ()
gender.addItems(["Male", "Female"])

surgery = QTextEdit()
surgery.setPlaceholderText("separate by ','")
blood type = QComboBox()

blood type.addItems(["A", "B", "AB", "0"])

hours = QSpinBox()

hours.setRange(1, 12)

minutes = QComboBox()

minutes.addItems([":00", ":15", ":30", ":45"])
am_pm = QComboBox ()

am_pm.addItems(["AM", "PM"])

submit button = QPushButton("Submit Appointment")
submit_button.clicked.connect(self.close)

Create horizontal layout and add age, height, and weight to h_box
h_box = QHBoxLayout()

h_box.addSpacing(10)

h_box.addWidget(age label)

h_box.addWidget(age)

h_box.addWidget(height label)

h_box.addWidget(height)

h_box.addWidget(weight label)

h_box.addWidget(weight)

Create horizontal layout and add time information
desired time h box = QHBoxLayout()
desired time h box.addSpacing(10)

75

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

desired time h box.addWidget(hours)
desired time_h box.addWidget(minutes)
desired time h box.addWidget(am_pm)

Create form layout
app_form layout = QFormLayout()

Add all widgets to form layout
app_form_layout.addRow(title)
app_form_layout.addRow("Full Name", name)

app_form layout.addRow("Address", address)

app_form layout.addRow("Mobile Number", mobile num)
app_form_layout.addRow(h box)
app_form_layout.addRow("Gender", gender)

app_form layout.addRow("Past Surgeries ", surgery)
app_form_layout.addRow("Blood Type", blood type)
app_form layout.addRow("Desired Time", desired time h box)
app_form layout.addRow(submit button)

self.setlLayout(app_form layout)
if _name__ == ' main__':
app = QApplication(sys.argv)
window = GetApptForm()
sys.exit(app.exec_())

When completed, your GUI should look similar to Figure 4-5.

Note Depending upon what system you are working on, the look and layout of
the widgets in your window will change.

Explanation

Using the QFormLayout class is pretty straightforward. In the formWidgets() method,
the widgets that will be used in this GUI are instantiated in the beginning. An important
one to point out is the mobile numline edit object.

76

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Any type of character can naturally be typed into the QLineEdit entry field. However,
if you want to limit the type, size, or manner in which characters can be input, then you
can create an input mask by calling the setInputMask() method. setInputMask() also
can be used to set the maximum number of characters.

Two parts of this application have widgets arranged horizontally. For these widgets
we will add them in QHBoxLayout objects.

The QFormLayout object is created by

app_form_layout = QFormLayout()

Next, all widgets and layouts are added to the form layout using the addRow()
method. Finally, the layout for our window is set using self.setLayout (app_form_
layout).

Widgets and layouts can be added to a QFormLayout object in the following ways:

form layout.addRow(QWidget)
form layout.addRow("text", QWidget)
form layout.addRow(layout)

The first one will add a widget and may cause it to stretch to fit the window. The
second fits the text and its widget into a two-column layout. The last one can be used to
nest layouts.

The QGridLayout Class

The QGridLayout layout manager is used to arrange widgets in rows and columns
similar to a spreadsheet or matrix. The layout manager takes the space within its parent
window or widget and divides it up according to the sizes of the widgets within that row
(or column). Adding space between widgets, creating a border, or stretching widgets
across multiple rows or columns is also possible.

Understanding how to add and manipulate widgets using QGridLayout is also easier.
The grid for the layout manager starts at value (0, 0) which is the top leftmost cell. To
add a widget underneath it (the next row), simply add 1 to the left value, (1, 0). To keep
moving down the rows, keep increasing the left value. To move across columns, increase
the right value.

Let’s take a look at how to make a to-do list using QGridLayout.

77

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Project 4.4 — To-Do List GUI

We all have things that we must do every day, and many of us need a way to help
organize our busy lives. For this project we will take a look at creating a basic layout for a
to-do list.

Some to-do lists are broken down by hours of the day, by importance of goals, or by
various other tasks we may need to do for that day, week, or even month. Once a goal is
complete, we need some way to check off a task or remove it.

The project will consist of a to-do list made up of two parts, a list of things you
must do on the left and daily appointments on the right. The “Must Dos” will consist of
QCheckBox and QLineEdit widgets. The “Appointments” will be separated into three
sections, morning, noon, and evening, and will use QTextEdit widgets to give the user an
area to write down their tasks. You can see the GUI we will be building in Figure 4-7.

[} (] 4.4 - ToDo List GUI
To Do List
Must Dos Appointments
2 Run 2 miles Morning
Walk the dog 8:30 Dentist

Write 50 pages before noon
2 Feed the turtle

Look for guacamole recipe
Noon

12:30 Meet boss for lunch

Evening

Close

Figure 4-7. To-do list GUI

78

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

To-Do List GUI Solution

For this project (Listing 4-5), we will be focusing mainly on how to create the GUI and
arrange widgets using the QGridLayout class as the main layout. This project also
includes a nested QVBoxLayout for the “Appointments” layout.

Listing 4-5. Code for the to-do list GUI

todolist.py

Import necessary modules

import sys

from PyQts5.QtWidgets import (QApplication, QWidget, QLabel, QTextEdit,
QLineEdit, QPushButton, QCheckBox, QGridLayout, QVBoxLayout)

from PyQt5.0QtGui import QFont

from PyQt5.QtCore import Qt

class ToDolList(QWidget):
def init (self): # Constructor
super(). init_ ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setGeometry(100, 100, 500, 350)
self.setWindowTitle('4.4 - ToDo List GUI")
self.setupWidgets()

self.show()

def setupWidgets(self):

Create widgets for to-do list GUI and arrange them in the window

Create grid layout

79

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT
main_grid = QGridLayout()

todo title = QLabel("To Do List")
todo title.setFont(QFont('Arial’, 24))
todo title.setAlignment(Qt.AlignCenter)

close button = QPushButton("Close")
close button.clicked.connect(self.close)

Create section labels for to-do list
mustdo label = QLabel("Must Dos")

mustdo label.setFont(QFont('Arial', 20))
mustdo label.setAlignment(Qt.AlignCenter)
appts_label = QLabel("Appointments")
appts_label.setFont(QFont('Arial', 20))
appts_label.setAlignment(Qt.AlignCenter)

Create must-do section
mustdo_grid = QGridLayout()
mustdo grid.setContentsMargins(5, 5, 5, 5)

mustdo grid.addWidget(mustdo label, 0, 0, 1, 2)

Create checkboxes and line edit widgets

for position in range(1, 15):
checkbox = QCheckBox()
checkbox.setChecked(False)
linedit = QLineEdit()
linedit.setMinimumWidth(200)
mustdo_grid.addWidget(checkbox, position, 0)
mustdo_grid.addWidget(linedit, position, 1)

Create labels for appointments section
morning label = QLabel("Morning")

morning label.setFont(QFont('Arial', 16))
morning entry = QTextEdit()

noon_label = QLabel("Noon")
noon_label.setFont(QFont('Arial’', 16))

80

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

noon_entry = QTextEdit()

evening label = QLabel("Evening")

evening label.setFont(QFont('Arial', 16))
evening_entry = QTextEdit()

Create vertical layout and add widgets
appt_v_box = QVBoxLayout()
appt_v_box.setContentsMargins(5, 5, 5, 5)

appt_v_box.addWidget(appts label)
appt_v_box.addwidget(morning label)
appt_v_box.addwidget(morning entry)
appt_v_box.addWidget(noon label)
appt_v_box.addWidget(noon entry)
appt_v_box.addwidget(evening label)
appt_v_box.addWidget(evening entry)

Add other layouts to main grid layout

main grid.addWidget(todo title, 0, 0, 1, 2)
main_grid.addLayout(mustdo_grid, 1, 0)

main _grid.addLayout(appt v box, 1, 1)

main grid.addWidget(close button, 2, 0, 1, 2)

self.setlLayout(main grid)

_;pp =_6Application(sys.argv)
window = ToDolList()
sys.exit(app.exec ())

When you are finished, your GUI should look similar to Figure 4-7.

Explanation

Here we start by creating our ToDoList class which inherits from QWidget. In the
setupWidgets() method, a few QLabel widgets which will serve as header labels for the
GUI and the different sections are created. A QPushButton, which will close the program,
is also instantiated.

81

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

The must-do section uses the QGridLayout class. A margin can be set to frame a
layout using the setContentMargins() method.

mustdo_grid.setContentsMargins(5, 5, 5, 5)

Each integer specifies the size of the border in pixels, (left, top, right, bottom).
Then the layout managers, mustdo_grid and appt_v_box, and their widgets are
created and added. Finally, the title, the two layouts, and the close button are added to

themain_gridlayout, and main_grid is set as the main layout using setLayout().

Adding Widgets and Spanning Rows and Columns with QGridLayout

Since widgets will be placed in a grid-like structure, when you add a new object to the
layout, you must specify the row and column values as parameters of the addWidget () or
addLayout () methods. Take a look at the following lines:

main_grid.addWidget(todo title, 0, 0)
main_grid.addLayout(mustdo grid, 1, 0)
main_grid.addLayout(appt v box, 1, 1)

The todo_title QLabel widget is added to the main_grid layout at the position
where the row equals 0 and column equals 0, which is also the top-left corner. Then, the
mustdo_grid is added directly below it by increasing the row value to 1 and leaving the
column value equal to 0. Finally, we move over one column for the appt_v_box layout
by setting the column value to 1. If you want to build a GUI with more widgets using
QGridLayout, then you would just continue in this manner moving away from 0, 0.

But what happens if you have a widget in a column or a row that is next to another
widget that needs to take up more space in the vertical or horizontal direction?
QGridLayout allows us to specify the number of rows or columns that we want a single
widget or layout to span. Spanning can be thought of as stretching a widget horizontally
or vertically to help us better arrange our GUI.

main_grid.addWidget(clear button, 2, 0, 1, 3)

The extra two parameters at the end, 1 and 3, tell the layout manager that we want to
span one row and three columns. This causes the widget to stretch horizontally.

82

CHAPTER 4 LEARNING ABOUT LAYOUT MANAGEMENT

Summary

Taking the time to learn about layout management will save you time and effort when
coding your own GUI applications. In this chapter we reviewed absolute positioning
using the move () method and learned about three of PyQt’s layout managers -
QBoxLayout, QFormLayout, and QGridLayout. Each of these classes has their own
special purpose, but one of the real powers of PyQt is how convenient it is to nest them
into other layouts to make more complex GUISs.

It is important to note that any of the subclasses within QWidget can also use a layout
manager to manage their children. The advantages of using a layout manager include

» Positioning of child widgets
o Setting default sizes for windows
o Handling resizing of windows

o Updating content in the window or parent widget when something
changes, such as type of font, font size, and hiding, showing, or
removing of a child widget

You can actually design and lay out your interface graphically using the Qt Designer
Application. We will take a brief look at how to do this in Chapter 7.
In Chapter 5 we are going to take a look at how to add menus to our applications.

83

CHAPTER 5

Menus, Toolbars,
and More

As you add more and more features to your applications, you will need some way to
present all of the individual options to the user. A menu is a list of commands that a
computer program can perform presented in a more manageable and organized fashion.
No matter what type of device or application you are using or what kind of menu system
it has, if it has a menu in place, its role is to help you navigate through the various
operations in order to help you select the tasks you wish to perform.

Graphical user interfaces have numerous kinds of menus, such as context menus
or pull-down menus, and can contain a variety of text and symbols. These symbols can
be selected to give the computer an instruction. Think about a text editing program and
all the various icons at the top, for example, open a file, save a file, select font, or select
color. All of these symbols and text represent some task that the application can perform
presented to the user in a manner that should promote better ease of use.

In this chapter we are going to take a look at how to create menus and toolbars for
GUI applications in PyQt5. Everything up until now has been used to build a foundation
for creating user interfaces, from PyQt classes and widgets to layout design.

Different from previous chapters, here we will be looking at how to make completely
functioning programs, a notepad GUI and a simple photo editor GUI. These applications
can either be used right away or as a starting point for building your own GUI program.
There is a fair amount of information, from new concepts to additional widgets and
classes, covered in this chapter.

For menus using PyQt, you will take a look at

1. The QMainWindow class for setting up the main window
2. Creating QMenubar and QMenu objects

3. Adding actions to menus using the QAction class

85
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_5

CHAPTER5 MENUS, TOOLBARS, AND MORE

4. Setting up the status bar using QStatusBar to display information
about actions

5. Using QDockWidget to build detachable widgets to hold an
application’s tools

6. How to create submenus and checkable menu items
Other concepts and widgets covered include

e Setting and changing icons in the main window and on widgets with
QIcon

o New types of dialogs including QInputDialog, QColorDialog,
QFontDialog, and QMessageBox’s About dialog box

o How to handle and manipulate images using QPixmap and
QTransform classes

e How to print images using QPrinter and QPainter

Let’s jump right into coding a basic menu framework that will help you learn about
creating menus with PyQt5 and some new classes, QMainWindow and QMenu.

Create a Basic Menu

For this first part, we will be taking a look at how to create a simple menubar. A menubar
is a set of pull-down menus with list commands that we can use to interact with the
program. In this program, the menubar will contain one menu with only one command,
Exit (Listing 5-1).

Listing 5-1. Basic structure for creating the menu in an application

menu_framework.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction)

class BasicMenu(QMainWindow):

86

CHAPTER5 MENUS, TOOLBARS, AND MORE

def _init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 350, 350) # x, y, width, height
self.setWindowTitle('Basic Menu Example')

self.createMenu()
self.show()

def createMenu(self):

Create skeleton application with a menubar
Create actions for file menu

exit act = QAction('Exit', self)

exit act.setShortcut('Ctrl+Q")
exit_act.triggered.connect(self.close)

Create menubar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(exit act)

Run program

if name_ ==" main_ "':
app = QApplication(sys.argv)
window = BasicMenu()

sys.exit(app.exec_())

87

CHAPTER5 MENUS, TOOLBARS, AND MORE

Figure 5-1 shows what adding a simple menu will look like on MacOS. Notice how
in the left image File is displayed in the menubar, and when we scroll over it using our
mouse, the Exit option is shown in the image on the right.

@ ® Basic Menu Example ® [] Basic Menu Example
File

Exit #Q

Figure 5-1. A menubar is created (left) displaying our File menu. A pull-down
menu is displayed (right) with one command, Exit

Explanation

The framework for this program contains no widgets, but does show how to set up a
simple File menu located in the top-left corner of the GUI. Take a look at the beginning
of the program and notice the classes being imported from QtWidgets. We still import
QApplication, but there are also two new classes, QMainWindow and QAction. You may
also notice that this time there is no QWidget.

The QMainWindow class provides the necessary tools for building an application’s
graphical user interface. Notice that the BasicMenu class in the preceding code is written as

class BasicMenu(QMainWindow)

The class to build our window inherits from QMainWindow instead of QWidget.

QMainWindow vs. QWidget

The QMainWindow class focuses on creating and managing the layout for the main
window of an application. It allows you to set up a window with a status bar, a toolbar,
dock widgets, or other menu options in predefined places all designed around functions
that the main window should have.

88

CHAPTERS5 MENUS, TOOLBARS, AND MORE

The QWidget class is the base class for all user interface objects in Qt. The widget
is the basic building block of GUIs. It is interactive, allowing the user to communicate
with the computer to perform some task. Many of the widgets you have already looked
at, such as QPushButton and QTextEdit, are just subclasses of QWidget that give
functionality to your programs.

A window in an application is really just a widget that is not embedded in a parent
widget. What is important to understand is that QMainWindow actually inherits from
the QWidget class. It is a special purpose class focusing mainly on creating menus and
housing widgets in your program. In Figure 5-2, you can see how the different widgets
that QMainWindow can use have areas specifically assigned for them. Take a look at the
image to see how the menubar, dock widgets, and the central widget can be arranged
inside of the main window.

The central widget in the center of the window must be set if you are going to use
QMainWindow as your base class. For example, you could use a single QTextEdit widget
or create a QWidget object to act as a parent to a number of other widgets, then use
setCentralWidget(), and set your central widget for the main window.

® 0 Main Window

Toolbars
Dock Widgets

Central Widget

Figure 5-2. Example layout for QMainWindow class (Adapted from
https://doc.qt.io/ web site)

Creating the Menubar and Adding Actions

At the top of the window in Figure 5-1, you will see the menubar which contains one
menu, File. In order to create a menubar, you must create an instance of the QMenuBar
class, which we created by

menu_bar = self.menuBar()

89

https://doc.qt.io/

CHAPTER5 MENUS, TOOLBARS, AND MORE

You could create a menubar by actually calling the QMenuBar class, but it is just as
easy to create a menubar using the menuBar () function provided by QMainWindow.

Note Due to guidelines set by the MacOS system, you must set the property to
use the platform’s native settings to False. Otherwise, the menu will not appear
in the window. You can do this with menu_bar.setNativeMenuBar(False).
For those using Windows or Linux, you can comment this line out or delete it
completely from your code.

Adding menus to the menubar is also really simple in PyQt:
file menu = menu_bar.addMenu('File")

Here we are using the addMenu () method to add a menu named File to the menu_
bar. Using addMenu() adds a QMenu object to our menubar. Once again, it is just as
simple to use the functions provided by the QMainWindow class.

A menu contains a list of action items such as Open, Close, and Find. In PyQt, these
actions are created from the QAction class, defining actions for menus and toolbars.
Many actions in an application are also given shortcut keys making it easier to perform
that task, for example, Ctrl+V for the paste action (Cmd+V on MacOS) or Ctrl+X for the
cut action (Cmd+X on MacOS). Take a look at how the Exit action is created and then
added to file_menu.

exit act = QAction('Exit', self)
exit act.setShortcut('Ctrl+Q")
exit act.triggered.connect(self.close)

The Exit action, exit_act, is an instance of the QAction class. In the next line the
shortcut for the exit_act is set explicitly using the setShortcut () method with the key
combination Ctrl+Q. Another way to set the shortcut is to use the ampersand key, &, in
front of the letter you want to use as the shortcut. For example,

open_act = QAction('80pen', self)

Note By default, on MacOS shortcuts are disabled. The best way to use them is
with setShortcut().

90

CHAPTER5 MENUS, TOOLBARS, AND MORE

Similar to QPushButtons, actions in the menu emit a signal and need to be
connected to a slot in order to perform an action. This is done using triggered.
connect(). Using the QAction class is very useful since many common commands can
be invoked through the menu, toolbars, or shortcuts and need to be able to perform
correctly no matter which widget invokes the action.

Setting Icons with the Qlcon Class

In GUI applications, icons are small graphical images or symbols that can represent an
action the user can perform. They are often used to help the user more quickly locate
common actions and better navigate an application. For example, in a word editing
program such as Microsoft Word, the toolbar at the top of the GUI contains a large
amount of icons, each with icon and textual descriptions.

Chapter 2 briefly introduced the QPixmap class which is used for handling images.
The QIcon class provides methods that can use pixmaps and modify their style or size
to be used in an application. One really great use of QIcon is to set the appearance of an
icon representing an action to active or disabled.

Setting icons is very useful not only for the actions in a toolbar but also for setting the
application icon that is displayed in the title bar of the GUI window. Actions can be in
four states, represented by icons: Normal, Disabled, Active, or Selected. QIcon can also
be used when setting the icons on other widgets, as well.

Listing 5-2 shows how to reset the application icon displayed in the main window
and how to set the icon on a QPushButton.

Note For MacOS users, the application window cannot be changed due to
system guidelines. You should still take a look at this program though, as it also
shows how to set icons for other widgets in PyQt.

Listing 5-2. Code to show how to set icons for the main window and on
QPushButtons

change_icons.py
Import necessary modules
import sys

91

CHAPTER5 MENUS, TOOLBARS, AND MORE

from PyQt5.0QtWidgets import (QApplication, QLabel, QWidget, QPushButton,
QVBoxLayout)

from PyQt5.0tCGui import QIcon

from PyQt5.QtCore import QSize

import random

class ChangeIcon(QWidget):

def init (self):
super(). init ()

self.initializezUI()

def initializezUI(self):
self.setGeometry(100, 100, 200, 200)
self.setWindowTitle('Set Icons Example')
self.setWindowIcon(QIcon("images/pyqt logo.png'))

self.createlWidgets()
self.show()

def createWidgets(self):

Set up widgets.

info_label = QLabel("Click on the button and select a fruit.")

self.images = [
"images/1_apple.png",
"images/2_pineapple.png",
"images/3_watermelon.png",
"images/4 banana.png"

92

CHAPTER5 MENUS, TOOLBARS, AND MORE

self.icon button = QPushButton(self)
self.icon_button.setIcon(QIcon(random.choice(self.images)))
self.icon button.setIconSize(QSize(60, 60))
self.icon_button.clicked.connect(self.changeButtonIcon)

Create vertical layout and add widgets
v_box = QVBoxLayout()
v_box.addWidget(info label)
v_box.addWidget(self.icon button)

Set main layout of window
self.setlLayout(v_box)

def changeButtonIcon(self):
When the button is clicked, change the icon to one of the images in
the list.
self.icon button.setIcon(QIcon(random.choice(self.images)))
self.icon button.setIconSize(QSize(60, 60))

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
window = ChangeIcon()
sys.exit(app.exec ())

You can see what the application should look like on Windows in Figure 5-3. The
application icon normally displayed in the top-left corner is changed to the PyQt logo
in the right image. Notice how the application icon is missing in the MacOS version in
Figure 5-4.

93

CHAPTER5 MENUS, TOOLBARS, AND MORE

B Setlcons Example — O X & Setlcons Example — O X

Click on the button and select a fruit. Click on the button and select a fruit.

Figure 5-3. The original application icon in the top-left corner of the window

(left) can be set to new a new icon (right) using the setWindowlIcon() method.
On Windows and Linux systems, changing the icon isn’t an issue

@ @® SetIcons Example

Click on the button and select a fruit.
Figure 5-4. The application icon is not displayed in the title area on MacOS systems

Explanation

The preceding example contains a simple button that, when clicked, will select an image
randomly from the images list.

Setting the main window’s application icon can be done by calling the
setWindowIcon() method and setting as the argument for QIcon the location of the
image file. This can be seen in the following line:

self.setWindowIcon(QIcon("images/pyqt logo.png'))

94

CHAPTER5 MENUS, TOOLBARS, AND MORE

If a widget is created that can display an icon, then calling the setIcon() method on
that widget will allow you to display an image on it.

icon_button.setIcon(QIcon(random.choice(self.images)))
icon button.setIconSize(QSize(60, 60))

Here, the icon for icon_button is chosen randomly and passed as an argument to be
handled by QIcon. Calling the setIconSize() method on a widget can be used to change
the size of the icon. PyQt will handle the sizing and style of the widget based on your
parameters in the main window. The button is then connected to a slot that is used to
change the icon.

Finally, the label and button widgets are arranged using QVBoxLayout and set as the
main window’s layout.

Project 5.1 — Rich Text Notepad GUI

For the first project, let’s take a look at how to improve the notepad GUI we saw back in
Chapter 4. It's important to actually build a complete program to help you to learn how
to make your own GUIs from start to finish.

This time we will add a proper menubar with menus and actions. The user will also
have the ability to open and save their text, either as HTML or plain text, and edit the
text’s font, color, or size to give more functionality and creativity to their notes.

Figure 5-5 shows an example of the completed application with text of different sizes,
colors, fonts, and highlights.

95

CHAPTER5 MENUS, TOOLBARS, AND MORE

[] [] 5.1 - Rich Text Notepad GUI
File Edit Tools Help

Do not go gentle into that good
night

Dylan Thomas - 1914-1953

Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

Though wise men at their end know dark is right,
Because their words had forked no lightning they
|Dc| not go gentle into that good night.

Good men, the last wave by, crying how bright
Their frail deeds might have danced in a green bay,
Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,
And learn, too late, they grieved it on its way,

Do not go gentle into that good night.

Grave men, near death, who see with blinding sight
Blind eyes could blaze like meteors and be gay,
Rage, rage against the dying of the light.

And you, my father, there on the sad height,
Curse, bless, me now with your fierce tears, I pray.

Do not go gentle into that good night.
Rage, rage against the dying of the light.

Figure 5-5. Notepad GUI with menubar and QTextEdit widget

Design the Rich Text Notepad GUI

Usually before creating interfaces, you should think about and map out what kind of
functionality you want your application to have and what kind of widgets you might need
in order to achieve those tasks.

For a text editing application, the layout is generally very basic - a menubar at the
top of the window with different menus for the various functions and tools, and an area
for displaying and editing text. For the text field, we will be using a QTextEdit widget
which will also serve as the central widget for the QMainWindow object.

This application will consist of four menus in the menubar - File, Edit, Tools,
and Help. Having different menus in the menubar can help to organize actions under
different categories as well as help the user to more easily locate actions they want to
use. Take a look at Figure 5-6 to see the various menu items that will be included in this

project.

96

CHAPTER5 MENUS, TOOLBARS, AND MORE

Edit Menu
Undo
Redo
Cut Tools Menu
Copy Font
Paste Color
Find Highlight
i -
@0 Notepad Title
y v Menu Bar ¥ /
File Menu Help Menu
ge“' Central Widget - About
pen .
S, QTextEdit
Exit
. J

Figure 5-6. Design showing the layout for the notepad GUI and the different
menus and actions

More Types of Dialog Boxes in PyQt

In this project there are a number of different dialog boxes native to PyQt that are used
including QInputDialog, QFileDialog, QFontDialog, QColorDialog, and QMessageBox.
Let’s take a moment to get familiar with some new types of dialog boxes and find out
how to include them in our code.

The QInputDialog Class

QInputDialog is a native dialog box in PyQt that can be used to receive input from the
user. The input is a single value that can be a string, a number, or an item from a list.
To create an input dialog and get text from the user:

find text, ok = QInputDialog.getText(self, "Search Text", "Find:")

97

CHAPTER5 MENUS, TOOLBARS, AND MORE

In this example, shown in Figure 5-7, an input dialog object is created by calling
QInputDialog. The getText() method takes a single string input from the user. The
second argument, "Search Text", is the title for the dialog and Find: is the message
displayed in the dialog box. An input dialog returns two values - the input from the user
and a Boolean value. If the OK button is clicked, then the ok variable is set to True.

© @ Search Text

Find:

|
cancel | (IEINN

Figure 5-7. Example of QInputDialog dialog box

For other types of input, you can use one of the following methods:
o getMultilLineText() - Method to get a multiline string from the user
o getInt() - Method to get an integer from the user
o getDouble() - Method to get a floating-point number from the user

o getItem() - Method to let the user select an item from a list of strings

The QFontDialog Class

QFontDialog provides a dialog box that allows the user to select and manipulate
different types of fonts. To create a font dialog box and choose a font, use the getFont()
method. The font dialog that is native to PyQt is shown in Figure 5-8.

font, ok = QFontDialog.getFont()

The font keyword is the particular font returned from getFont() and ok is a Boolean
variable to check whether the user selected a font and clicked the OK button.

98

CHAPTER 5

MENUS, TOOLBARS, AND MORE

O ® Select Font
Font Font style Size
Al Bayan Plain 13
Al Bayan | Plain 10
Al Nile Bold "
Al Tarikh 12
American Typewriter 13
Effects Sample
Strikeout
Underline

Writing System

Any w

Figure 5-8. QFontDialog dialog box

AaBbYyZz

cancel | (IHEN

When the user clicks OK, a font is selected. However, if Cancel is clicked, then the
initial font is returned. If you have a default font that you would like to use in case the
user does not select OK, you could do the following:

font, ok = QFontDialog.getFont(QFont("Helvetica", 10), self)
self.text edit widget.setCurrentFont(font)

In order to change the font if a new one has been chosen, use the setCurrentFont()

method and change it to the new font.

The QColorDialog Class

The QColorDialog class creates a dialog box for selecting colors like the one in
Figure 5-9. Selecting colors can be useful for changing the color of the text, a window’s

background color, and many other actions.

99

CHAPTER 5 MENUS, TOOLBARS, AND MORE
To create a color dialog box and select a color, use the following line of code:
color = QColorDialog.getColor()

Then check if the user selected a color and clicked the OK button by using the
isValid() method. If so, you could use setTextColor () to change the color of the text
or setBackgroundColor () to change the color of the background.

if color.isValid():
self.text field.setTextColor(color)

Figure 5-9. QColorDialog dialog box

100

CHAPTER5 MENUS, TOOLBARS, AND MORE

The About Dialog Box

In many applications you can often find an About item in the menu. Clicking this item
will open a dialog box that displays information about the application such as the
software’s logo, title, latest version number, and other legal information.

The QMessageBox class that we looked at in Chapter 3 also provides an about ()
method for creating a dialog for displaying a title and text. To create an about dialog box
like the one in Figure 5-10, try

OMessageBox.about(self, "About Notepad", "Beginner's Practical Guide to
PyQt\n\nProject 5.1 - Notepad GUI")

You can also display an application icon in the window. If an icon is not provided,
the about () method will try and find one from parent widget. To provide an icon, call the
setWindowIcon() method on the QApplication object in the program’s main() method.

app.setWindowIcon(QIcon("images/app_logo.png"))

Beginner's Practical Guide to PyQt

Project 5.1 - Notepad GUI

oK

Figure 5-10. Example About dialog box from the notepad GUI

Rich Text Notepad GUI Solution

The QTextEdit widget already provides functionality for writing in either plain text or
rich text formats. In this program, you will explore how to use the different methods of
QTextEdit, such undo() and redo(), as well as the different dialog classes to create a
notepad application. This program also allows you to save your text in either plain text
format or HTML format if you want to preserve the rich text (Listing 5-3).

101

CHAPTER5 MENUS, TOOLBARS, AND MORE

Listing 5-3. Rich text notepad GUI code

richtext _notepad.py

#Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction,
QMessageBox, QTextEdit, QFileDialog, QInputDialog, QFontDialog,
QColorDialog)

from PyQt5.0tCGui import QIcon, QTextCursor, QColor

from PyQt5.QtCore import Qt

class Notepad(QMainWindow):

def _init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setGeometry(100, 100, 400, 500)
self.setWindowTitle('5.1 - Rich Text Notepad GUI')
self.createNotepadWidget()

self.notepadMenu()

self.show()

def createNotepadWidget(self):

Set the central widget for QMainWindow, which is the QTextEdit
widget for the notepad.

self.text field = QTextEdit()
self.setCentralWidget(self.text field)

102

CHAPTER5 MENUS, TOOLBARS, AND MORE

def notepadMenu(self):

Create menu for notepad GUI

Create actions for file menu

new_act = QAction(QIcon('images/new _file.png'), 'New', self)
new_act.setShortcut('Ctrl+N")
new_act.triggered.connect(self.clearText)

open_act = QAction(QIcon('images/open file.png'), 'Open’, self)
open_act.setShortcut('Ctrl+0")
open_act.triggered.connect(self.openFile)

save_act = QAction(QIcon('images/save file.png'), 'Save', self)
save act.setShortcut('Ctrl+S")
save act.triggered.connect(self.saveToFile)

exit _act = QAction(QIcon('images/exit.png'), 'Exit', self)
exit _act.setShortcut('Ctrl+Q")
exit_act.triggered.connect(self.close)

Create actions for edit menu

undo_act = QAction(QIcon('images/undo.png'), 'Undo’, self)
undo_act.setShortcut('Ctrl+Z")
undo_act.triggered.connect(self.text field.undo)

redo_act = QAction(QIcon('images/redo.png'), 'Redo’, self)
redo act.setShortcut('Ctrl+Shift+z")
redo act.triggered.connect(self.text field.redo)

cut_act = QAction(QIcon('images/cut.png'), 'Cut’, self)
cut_act.setShortcut('Ctrl+X")
cut_act.triggered.connect(self.text field.cut)

copy_act = QAction(QIcon('images/copy.png'), 'Copy', self)
copy act.setShortcut('Ctrl+C")
copy act.triggered.connect(self.text field.copy)

103

CHAPTER5 MENUS, TOOLBARS, AND MORE

paste act = QAction(QIcon('images/paste.png'),'Paste', self)
paste act.setShortcut('Ctrl+V')
paste act.triggered.connect(self.text field.paste)

find_act = QAction(QIcon('images/find.png'), 'Find', self)
find act.setShortcut('Ctrl+F")
find act.triggered.connect(self.findTextDialog)

Create actions for tools menu

font_act = QAction(QIcon('images/font.png'), 'Font', self)
font_act.setShortcut('Ctrl+T")
font_act.triggered.connect(self.chooseFont)

color_act = QAction(QIcon('images/color.png'), 'Color', self)
color act.setShortcut('Ctrl+Shift+C")
color act.triggered.connect(self.chooseFontColor)

highlight act = QAction(QIcon('images/highlight.png'), 'Highlight', self)
highlight act.setShortcut('Ctrl+Shift+H")
highlight act.triggered.connect(self.chooseFontBackgroundColor)

about_act = QAction('About', self)
about_act.triggered.connect(self.aboutDialog)

Create menubar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(new_act)

file menu.addSeparator()

file menu.addAction(open act)

file menu.addAction(save act)

file menu.addSeparator()

file menu.addAction(exit act)

Create edit menu and add actions
edit menu = menu_bar.addMenu('Edit")
edit menu.addAction(undo act)

104

CHAPTER5 MENUS, TOOLBARS, AND MORE

edit menu.addAction(redo act)
edit_menu.addSeparator()

edit _menu.addAction(cut_act)
edit menu.addAction(copy act)
edit _menu.addAction(paste act)
edit_menu.addSeparator()

edit menu.addAction(find act)

Create tools menu and add actions
tool menu = menu_bar.addMenu('Tools")
tool menu.addAction(font act)

tool menu.addAction(color act)

tool menu.addAction(highlight act)

Create help menu and add actions
help menu = menu_bar.addMenu('Help")
help_menu.addAction(about_act)

def openFile(self):
Open a text or html file and display its contents in
the text edit field.
file name, _ = QFileDialog.getOpenFileName(self, "Open File",
"", "HTML Files (*.html);;Text Files (*.txt)")

if file name:
with open(file_name, 'r') as f:
notepad text = f.read()
self.text field.setText(notepad text)
else:
OMessageBox.information(self, "Error",
"Unable to open file.", QMessageBox.Ok)

def saveToFile(self):

If the save button is clicked, display dialog asking user if
they want to save the text in the text edit field to a text file.

105

CHAPTER5 MENUS, TOOLBARS, AND MORE

file name, _ = QFileDialog.getSaveFileName(self, 'Save File',
"" "HTML Files (*.html);;Text Files (*.txt)")

if file name.endswith('.txt'):
notepad text = self.text field.toPlainText()
with open(file name, 'w') as f:
f.write(notepad text)
elif file name.endswith('.html'):
notepad richtext = self.text field.toHtml()
with open(file name, 'w') as f:
f.write(notepad richtext)
else:
QMessageBox.information(self, "Error",
"Unable to save file.", QMessageBox.Ok)

def clearText(self):

If the new button is clicked, display dialog asking user if

they want to clear the text edit field or not.

answer = QMessageBox.question(self, "Clear Text",
"Do you want to clear the text?", QMessageBox.No | QMessageBox.Yes,
QMessageBox. Yes)

if answer == QMessageBox.Yes:
self.text field.clear()

else:
pass

def findTextDialog(self):

Search for text in QTextEdit widget

Display input dialog to ask user for text to search for
find text, ok = QInputDialog.getText(self, "Search Text", "Find:")

extra_selections = []

106

CHAPTER5 MENUS, TOOLBARS, AND MORE

Check to make sure the text can be modified

if ok and not self.text field.isReadOnly():
set the cursor in the textedit field to the beginning
self.text field.moveCursor(QTextCursor.Start)
color = QColor(Qt.yellow)

Look for next occurrence of text

while(self.text field.find(find text)):
Use ExtraSelections to mark the text you are
searching for as yellow
selection = QTextEdit.ExtraSelection()
selection.format.setBackground(color)

Set the cursor of the selection
selection.cursor = self.text field.textCursor()

Add selection to list
extra_selections.append(selection)

Highlight selections in text edit widget
for i in extra_selections:
self.text field.setExtraSelections(extra selections)

def chooseFont(self):

def

Select font for text
current = self.text field.currentFont()
font, ok = QFontDialog.getFont(current, self, options=QFontDialog.
DontUseNativeDialog)
if ok:
self.text field.setCurrentFont(font) # Use setFont() to set all
text to one type of font

chooseFontColor(self):

Select color for text

107

CHAPTER5 MENUS, TOOLBARS, AND MORE

color = QColorDialog.getColor()
if color.isValid():
self.text field.setTextColor(color)

def chooseFontBackgroundColor(self):

Select color for text's background
color = QColorDialog.getColor()
if color.isValid():
self.text field.setTextBackgroundColor(color)

def aboutDialog(self):

Display information about program dialog box
QMessageBox.about(self, "About Notepad", "Beginner's Practical
Guide to PyQt\n\nProject 5.1 - Notepad GUI")

Run program

__main_ ":
app = QApplication(sys.argv)
window = Notepad()
sys.exit(app.exec ())

if _name ==

Your program with its menubar and different menus should look similar to the
images in Figure 5-11.

ece 151 Rich Tass Motepsd GUI ene 5.1 Rich T Nooaped GUL ece 51~ fich Tt Netopact GUA
Edit Tools Help File Toois_ Help Fle Ede Help
BNew %N Sumss I A Forn 7
B Open MO & Redo 02 Oieln- ' 2::
CE T Fot Mx £
Bt % Dcesy e
e RO Brmte ®v

DFind XF

Figure 5-11. The notepad GUI with its different menus displayed, File menu (left),
Edit menu (middle), and Tools menu (right)

108

CHAPTER5 MENUS, TOOLBARS, AND MORE

Explanation

There are quite a few classes to import for the notepad application. From the QtWidgets
module, we need to import QMainWindow and QAction for creating the menubar
and menu items. We also need to include the different PyQt dialog classes such as
QFileDialog and QInputDialog. From QtGui, which provides many of the basic classes
for creating GUI applications, QIcon is used for handling icons, QTextCursor can be used
to get information about the cursor in text documents, and QColor provides methods to
create colors in PyQt.

The main window is initialized in the Notepad class which inherits from
OMainWindow. The createNotepadWidget () method creates a QTextEdit widget and sets
it as the central widget for the QMainWindow using

self.setCentralWidget(self.text field)

Next, the notepadMenu() method sets up the menubar object along with the different
menu items. The menu for the notepad application, which can be seen in Figure 5-10,
contains four menus, File, Edit, Tools, and Help. Each menu is given its own
menu items for the most part based on guidelines that we have come to expect from
applications. For example, a general File menu creates actions that allow the user to
open, save, import, export, or print files.

The following bit of code shows how to create the action to open a file:

open_act = QAction(QIcon('images/open file.png'), 'Open’, self)
open_act.setShortcut('Ctrl+0")
open_act.triggered.connect(self.openFile)

The open_act object is generated by the QAction class. QIcon is used to set an icon
next to the action’s text in the menu. Then the action is given text to display, Open. Many
of the actions in the notepad program are given a textual shortcut using setShortcut().
Finally, we connect the open_act signal that is produced when it is triggered to a slot, in
this case the openFile() method. Other actions are created in a similar manner.

QTextEdit already has predefined slots, such as cut(), copy(), and paste(), to
interact with text. For most of the actions in the Edit menu, their signals are connected
to these special slots rather than creating new ones.

109

CHAPTER5 MENUS, TOOLBARS, AND MORE

Once all the actions are defined, the menu_bar is created and the different menus are
created by using the addMenu() method.

file menu = menu_bar.addMenu('File")

Each of the actions is added to a menu by calling the addAction() method on the
appropriate menu. To add a divider between categories in a menu, use addSeparator ().

file menu.addAction(new act)
file menu.addSeparator()

There are a number of functions that are called on when a menu item is clicked.
Each one of them opens a dialog box and returns some kind of input from the user,
such as a new file, text or background color, or a keyword from a text search using the
QInputDialog class.

Project 5.2 — Simple Photo Editor GUI

With the introduction of smartphones that have the latest technology to take amazing
photos, more pictures are taken and modified every day. However, not every picture is
perfect as soon as it is taken and technology also gives us tools to edit those images to
our liking. Some photo editors are very simple, allowing the user to rotate, crop, or add
text to images. Others let the user change the contrast and exposure, reduce noise, or
even add special effects.

In the following project, we will be taking a look at how to create a basic image editor,
Figure 5-12, that can give you a foundation to build your own application.

110

CHAPTER 5 MENUS, TOOLBARS, AND MORE

®"® 5.2 - Photo Editor GUI
File Edit View
w8 @ X ®

0 @ Edit Image Tools

Rotate 90°

Rotate 180°

Flip Horizontal

Flip Vertical

Resize Half

Figure 5-12. Photo editor GUI displaying the menubar at the top, the toolbar with
icons underneath the menubar, the central widget which displays the image, the
status bar at the bottom, and the dock widget on the right containing simple tools
for editing the photo. Earth photo from nasa.org

Design the Photo Editor GUI

Similar to Project 5.1, this GUI will also have a menubar that will contain various

menus - File, Edit, and View. The layout for this project can be seen in Figure 5-13.
Under the menubar is the toolbar created using the QToolBar class which contains

icons that represent actions the user can take such as open a file, save a file, and print.
This project will also introduce the QDockWidget class for creating widgets that can

be docked inside the main window or left floating, the QStatusBar class for displaying
information to the user, and checkable menu items which we will use to hide or show the
dock widget.

111

http://nasa.org

CHAPTER5 MENUS, TOOLBARS, AND MORE

Edit Menu
Flip i [
Resize view Menu
Clear Image +/Edit Image Tools ===r==—
|
® o Notepad Title) =
! ' Menu Bar | NOTE: Checkable
Tool Bar | menuitemto
| show/hide Dock
File Menu | widget
Open I
Save
Print ‘____I
Exit
Central Widget - Dock
Ql_abe| W|dget
L Status Bar)

Figure 5-13. Layout for the photo editor GUI. The main window is much busier
than before containing a toolbar, a dock widget, and a status bar

QDockWidget, QStatusBar, and More

Let’s take a look at some of the important features that will be introduced in the photo
editor program:

o TheQDockWidget class

o TheQStatusBar class

o Creating submenus

o Creating checkable menu items

Listing 5-4 creates a more detailed GUI framework that demonstrates these concepts.

Listing 5-4. Code to demonstrate how to create dock widgets, status bars, and
toolbars

menu_framework2.py
Import necessary modules
import sys

112

CHAPTER5 MENUS, TOOLBARS, AND MORE

from PyQt5.QtWidgets import (QApplication, QMainWindow, QStatusBar,
OAction, QTextEdit, QToolBar, QDockWidget)
from PyQt5.0tCore import Qt, QSize

from PyQt5.0tGui import QIcon

class BasicMenu(QMainWindow):

def

def

def

__init_ (self):
super(). init ()

self.initializeUI()

initializeUI(self):

Initialize the window and display it

self.setGeometry(100, 100, 350, 350)

s contents to the screen

x, y, width, height

self.setWindowTitle('Basic Menu Example 2')

Set central widget for main window
self.setCentralWidget(QTextEdit())

self.createMenu()
self.createToolBar()
self.createDockWidget()

self.show()

createMenu(self):

Create menubar and menu actions

Create actions for file menu

self.exit _act = QAction(QIcon('images/exit.png'), 'Exit', self)

self.exit act.setShortcut('Ctrl+Q")

self.exit_act.setStatusTip('Quit program')

self.exit act.triggered.connect(self

.close)

113

CHAPTER5 MENUS, TOOLBARS, AND MORE

Create actions for view menu

full screen act = QAction('Full Screen', self, checkable=True)
full screen act.setStatusTip('Switch to full screen mode')
full_screen_act.triggered.connect(self.switchToFullScreen)

Create menubar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

Create file menu and add actions
file_menu = menu_bar.addMenu('File")
file menu.addAction(self.exit act)

Create view menu, Appearance submenu, and add actions
view menu = menu_bar.addMenu('View")

appearance_submenu = view menu.addMenu('Appearance")
appearance_submenu.addAction(full screen act)

Display info about tools, menu, and view in the status bar
self.setStatusBar(QStatusBar(self))

def createToolBar(self):

Create toolbar for GUI

Set up toolbar

tool bar = QToolBar("Main Toolbar")
tool bar.setIconSize(QSize(16, 16))
self.addToolBar(tool bar)

Add actions to toolbar
tool bar.addAction(self.exit act)

def createDockWidget(self):

Create dock widget

114

CHAPTER5 MENUS, TOOLBARS, AND MORE

Set up dock widget

dock widget = QDockWidget()

dock widget.setWindowTitle("Example Dock")

dock widget.setAllowedAreas(Qt.AllDockWidgetAreas)

Set main widget for the dock widget
dock widget.setWidget(QTextEdit())

Set initial location of dock widget in main window
self.addDockWidget(Qt.LeftDockWidgetArea, dock widget)

def switchToFullScreen(self, state):
If state is True, then display the main window in full screen.
Otherwise, return the window to normal.
if state:
self.showFullScreen()
else:
self.showNormal()

Run program

if _name__ == ' main_ ':
app = QApplication(sys.argv)
window = BasicMenu()

sys.exit(app.exec_())

Your GUI created from this program should look similar to the one in Figure 5-14.

115

CHAPTER5 MENUS, TOOLBARS, AND MORE

® @ Basic Menu Example 2
File View
B 1
06 Example Dock

Quit program

Figure 5-14. Framework program for creating GUIs with toolbars, status bars,
and dock widgets. The status bar on the bottom displays the text “Quit program”
when the mouse hovers over the Exit icon in the toolbar

Explanation

A few new classes from the QtWidgets module are imported including QStatusBar,
QToolBar, and QDockWidget. Getting to learn a little bit about these classes will be useful
for creating more complex GUIs.

The QStatusBar Class

At the bottom of the GUI in Figure 5-14, there is a horizontal bar with the text “Quit
program” displayed inside of it. This bar is known as the status bar as is created from
the QStatusBar class. Sometimes an icon’s or menu item’s function is not explicitly
understood. This widget is very useful for displaying extra information to the user about
the capabilities of an action.

To create a status bar object, you can use the setStatusBar() method which is
part of the QMainWindow class. To create an empty status bar, pass QStatusBar as an
argument.

self.setStatusBar(QStatusBar(self))

116

CHAPTER5 MENUS, TOOLBARS, AND MORE

The first time this method is called, it creates the status bar, and following calls will
return the status bar object.

In order to display a message in the status bar when the mouse hovers over an icon,
you need to call the setStatusTip() method on an action object. For example:

exit act.setStatusTip('Quit program')

will display the text “Quit program” when the mouse is over the exit_act icon or menu
command.

To display text in the status bar when the program begins or when a function is
called, use the showMessage () method.

self.statusBar().showMessage('Welcome back!")

The QToolBar Class

When the user is performing a number of routine tasks, having to open up the menu

to select an action multiple times can become tedious. Luckily, the QToolBar class
provides ways to create a toolbar with icons, text, or standard Qt widgets for quick access
to frequently used commands.

Toolbars are generally located under the menubar like in Figure 5-14, but can also be
placed vertically or at the bottom of the main window above the status bar. Refer to the
image in Figure 5-2 for an idea of arranging the different widgets in the main window.

A GUI can only have one menubar but it can have multiple toolbars. To create a
toolbar object, create an instance of the QToolBar class and give it a title and then add it
to the main window using QMainWindow’s addToolBar () method.

tool bar = QToolBar("Main Toolbar")
tool bar.setIconSize(QSize(16, 16))
self.addToolBar(tool bar)

You should set the size of the icons in the toolbar using the setIconSize() method
with QSize() to avoid extra padding when PyQt tries to figure out the arrangement by
itself.

To add an action to the toolbar, use addAction():

tool bar.addAction(self.exit act)

117

CHAPTER5 MENUS, TOOLBARS, AND MORE

If you need to add widgets in your toolbar, you should also use QAction to take
advantage of the classes’ ability to handle multiple interface elements.

The QDockWidget Class

The QDockWidget class is used to create detachable or floating tool palettes or widget
panels. Dock widgets are secondary windows that provide additional functionality to
GUI windows.

To create the dock widget object, create an instance of QDockWidget and set the
widget’s title using the setWindowTitle() method.

dock widget = QDockWidget()
dock widget.setWindowTitle("Example Dock")

When the dock widget is docked inside of the main window, PyQt handles the
resizing of the dock window and the central widget. You can also specify the areas you
want the dock to be placed in the main window using setAllowedAreas().

dock widget.setAllowedAreas(Qt.AllDockWidgetAreas)

In the preceding line of code, the dock widget can be placed on any of the four sides
of the window. To limit the allowable dock areas, use the following Qt methods:

o LeftDockWidgetArea

o RightDockWidgetArea
o TopDockWidgetArea

o BottomDockWidgetArea

The dock widget can act as a parent for a single widget using setWidget().
dock widget.setWidget(QTextEdit())

In order to place multiple widgets inside the dock, you could use a single QWidget as
the parent for multiple child widgets and arrange them using one of the layout mangers
from Chapter 4. Then, pass that QWidget as the argument to setWidget ().

Finally, to set the initial location of the dock widget in the main window, use

self.addDockwidget(Qt.LeftDockWidgetArea, dock widget)

118

CHAPTER5 MENUS, TOOLBARS, AND MORE

In this application if the dock widget is closed, we cannot get it back. In the “Photo
Editor GUI Solution,” we will take a look at how to use checkable menu items to hide or
show the dock widget.

Creating Submenus with Checkable Menu ltems

When an application becomes very complex and filled with actions, its menus can also

begin to turn into a cluttered mess. Using submenus, we can organize similar categories

together and simplify the menu system. Figure 5-15 displays an example of a submenu.
Similar to creating a regular menu, use the addMenu() method to create submenus.

view menu = menu_bar.addMenu('View")
appearance_submenu = view menu.addMenu('Appearance')
appearance_submenu.addAction(full screen act)

Here we first create the View menu and add it to the menubar. The appearance
submenu is then created and added to the View menu. Don’t forget to also add an action
to the submenu using the addAction() method.

The appearance_submenu in the example has a full _screen_act action added to
it that allows the user to switch between full screen and normal screen modes. Menu
items can also be created so that they act just like switches, being able to be turned on
and off. To set an action as checkable, include the option checkable=True in the QAction

parameters.
full screen act = QAction('Full Screen', self, checkable=True)

Then, when the action is clicked, it will send a signal and you can use a slot to check
the state of the menu item, whether it is on or off. This could be useful for showing or
hiding dock widgets or the status bar.

To make the action checked and active from the start, you can call the trigger()
method on the action.

119

CHAPTER5 MENUS, TOOLBARS, AND MORE

@ @ Basic Menu Example 2
File
B 12 | Full Screen
(x] o) Example Dock This is too.

This is a text edit widget.

Figure 5-15. Example submenu that also contains a checkable action to switch
between full screen and normal modes

Photo Editor GUI Solution

Now that we have gone over how to set up the different types of menus, we can finally get
started on coding the photo editor application (Listing 5-5).

Listing 5-5. Photo editor code

photo_editor.py

Import necessary modules

import sys

from PyQt5.0tWidgets import (QApplication, QMainWindow, QWidget, QLabel,
QAction, QFileDialog, QDesktopWidget, QMessageBox, QSizePolicy, QToolBar,
QStatusBar, QDockWidget, QVBoxLayout, QPushButton)

from PyQt5.QtGui import QIcon, QPixmap, QTransform, QPainter

from PyQt5.0QtCore import Qt, QSize, QRect

from PyQt5.0tPrintSupport import QPrinter, QPrintDialog

120

CHAPTER5 MENUS, TOOLBARS, AND MORE

class PhotoEditor(QMainWindow):

def _init (self):
super(). init ()

def

def

self.

initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen

self.
self.
self.
self.
self.
self.
self.

self.

setFixedSize(650, 650)
setWindowTitle('5.2 - Photo Editor GUI')
centerMainWindow()
createToolsDockWidget()

createMenu()

createToolBar()

photoEditorWidgets()

show()

createMenu(self):

Create menu for photo editor GUI

Create actions for file menu

self.
self.
self.
self.

self.
self.
self.
self.

self.
self.
self.

open_act = QAction(QIcon('images/open file.png'),"Open", self)
open_act.setShortcut('Ctrl+0")

open_act.setStatusTip('Open a new image')
open_act.triggered.connect(self.openImage)

save_act = QAction(QIcon('images/save file.png'),"Save", self)
save_act.setShortcut('Ctrl+S")

save_act.setStatusTip('Save image')
save_act.triggered.connect(self.saveImage)

print_act = QAction(QIcon('images/print.png'), "Print", self)
print act.setShortcut('Ctrl+P")
print act.setStatusTip('Print image')

121

CHAPTER5 MENUS, TOOLBARS, AND MORE

self.print_act.triggered.connect(self.printImage)
self.print act.setEnabled(False)

self.exit_act = QAction(QIcon('images/exit.png'), 'Exit', self)
self.exit act.setShortcut('Ctrl+Q")
self.exit_act.setStatusTip('Quit program')

self.exit act.triggered.connect(self.close)

Create actions for edit menu

self.rotate9o act = QAction("Rotate 90°", self)
self.rotate90 act.setStatusTip('Rotate image 90° clockwise')
self.rotate9o act.triggered.connect(self.rotateImage9o)

self.rotate180 act = QAction("Rotate 180°", self)
self.rotate180 act.setStatusTip('Rotate image 180° clockwise')
self.rotate180 act.triggered.connect(self.rotateImage180)

self.flip_hor act = QAction("Flip Horizontal", self)
self.flip hor act.setStatusTip('Flip image across horizontal axis')
self.flip hor act.triggered.connect(self.flipImageHorizontal)

self.flip ver act = QAction("Flip Vertical", self)
self.flip ver act.setStatusTip('Flip image across vertical axis')
self.flip ver act.triggered.connect(self.flipImageVertical)

self.resize act = QAction("Resize Half", self)
self.resize act.setStatusTip('Resize image to half the original size')
self.resize act.triggered.connect(self.resizeImageHalf)

self.clear act = QAction(QIcon('images/clear.png'), "Clear Image", self)
self.clear act.setShortcut("Ctrl+D")

self.clear act.setStatusTip('Clear the current image')

self.clear act.triggered.connect(self.clearImage)

Create menubar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

122

CHAPTER5 MENUS, TOOLBARS, AND MORE

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(self.open_act)
file menu.addAction(self.save act)
file menu.addSeparator()

file menu.addAction(self.print act)
file menu.addSeparator()

file menu.addAction(self.exit act)

Create edit menu and add actions
edit menu = menu_bar.addMenu('Edit")
edit menu.addAction(self.rotate90o act)
edit menu.addAction(self.rotate180 act)
edit_menu.addSeparator()

edit _menu.addAction(self.flip hor act)
edit menu.addAction(self.flip ver act)
edit_menu.addSeparator()

edit _menu.addAction(self.resize act)
edit_menu.addSeparator()

edit _menu.addAction(self.clear act)

Create view menu and add actions
view menu = menu_bar.addMenu('View")
view menu.addAction(self.toggle dock tools act)

Display info about tools, menu, and view in the status bar
self.setStatusBar(QStatusBar(self))

def createToolBar(self):

Create toolbar for photo editor GUI

tool bar = QToolBar("Photo Editor Toolbar")
tool bar.setIconSize(QSize(24,24))
self.addToolBar(tool bar)

123

CHAPTER5 MENUS, TOOLBARS, AND MORE

Add actions to toolbar

tool bar.addAction(self.open act)
tool bar.addAction(self.save act)
tool bar.addAction(self.print act)
tool bar.addAction(self.clear act)
tool bar.addSeparator()

tool bar.addAction(self.exit act)

def createToolsDockWidget(self):
Use View -> Edit Image Tools menu and click the dock widget on or off.
Tools dock can be placed on the left or right of the main window.
Set up QDockWidget
self.dock tools view = QDockWidget()
self.dock tools view.setWindowTitle("Edit Image Tools")
self.dock tools view.setAllowedAreas(Qt.LeftDockWidgetArea |

Qt.RightDockWidgetArea)

Create container QWidget to hold all widgets inside dock widget
self.tools contents = Qwidget()

Create tool push buttons

self.rotate9o = QPushButton("Rotate 90°")
self.rotate90.setMinimumSize(QSize(130, 40))
self.rotate90.setStatusTip('Rotate image 90° clockwise')
self.rotate90.clicked.connect(self.rotateImage9o)

self.rotate180 = QPushButton("Rotate 180°")
self.rotate180.setMinimumSize(QSize(130, 40))
self.rotate180.setStatusTip('Rotate image 180° clockwise')
self.rotate180.clicked.connect(self.rotateImage180)

self.flip horizontal = QPushButton("Flip Horizontal")

self.flip horizontal.setMinimumSize(QSize(130, 40))

self.flip horizontal.setStatusTip('Flip image across horizontal axis')
self.flip horizontal.clicked.connect(self.flipImageHorizontal)

124

def

CHAPTER5 MENUS, TOOLBARS, AND MORE

self.flip vertical = QPushButton("Flip Vertical")

self.flip vertical.setMinimumSize(QSize(130, 40))

self.flip vertical.setStatusTip('Flip image across vertical axis')
self.flip vertical.clicked.connect(self.flipImageVertical)

self.resize half = QPushButton("Resize Half")

self.resize half.setMinimumSize(QSize(130, 40))

self.resize half.setStatusTip('Resize image to half the original size')
self.resize half.clicked.connect(self.resizeImageHalf)

Set up vertical layout to contain all the push buttons
dock v _box = QVBoxLayout()

dock v_box.addWidget(self.rotate90)

dock v _box.addWidget(self.rotate180)

dock v_box.addStretch(1)

dock v_box.addWidget(self.flip horizontal)

dock v_box.addWidget(self.flip vertical)

dock v_box.addStretch(1)

dock v_box.addWidget(self.resize half)

dock v_box.addStretch(6)

Set the main layout for the QWidget, tools contents,
then set the main widget of the dock widget
self.tools contents.setlLayout(dock v _box)

self.dock tools view.setWidget(self.tools contents)

Set initial location of dock widget
self.addDockWidget(Qt.RightDockWidgetArea, self.dock tools view)

Handles the visibility of the dock widget
self.toggle dock tools act = self.dock tools view.
toggleViewAction()

photoEditorWidgets(self):

Set up instances of widgets for photo editor GUI

self.image = QPixmap()

125

CHAPTER5 MENUS, TOOLBARS, AND MORE

self.image label = QLabel()

self.image label.setAlignment(Qt.AlignCenter)

Use setSizePolicy to specify how the widget can be resized,
horizontally and vertically. Here, the image will stretch
horizontally, but not vertically.

self.image label.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.

Ignored)

self.setCentralhWidget(self.image label)

def openImage(self):
Open an image file and display its contents in label widget.
Display error message if image can't be opened.

image file, = QFileDialog.getOpenFileName(self, "Open Image", "",
"JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;Bitmap Files
(*.bmp) ;5\
GIF Files (*.gif)")

if image file:
self.image = QPixmap(image file)

self.image label.setPixmap(self.image.scaled(self.image label.
size(),
Qt.KeepAspectRatio, Qt.SmoothTransformation))
else:
QMessageBox. information(self, "Error",
"Unable to open image.", QMessageBox.Ok)

self.print act.setEnabled(True)

def saveImage(self):

Save the image.
Display error message if image can't be saved.

126

def

CHAPTER5 MENUS, TOOLBARS, AND MORE

image file, = QFileDialog.getSaveFileName(self, "Save Image", "",
"JPG Files (x.jpeg *.jpg);;PNG Files (x.png);;Bitmap Files
(*.bmp) ;5\

GIF Files (*.gif)")

if image file and self.image.isNull() == False:
self.image.save(image file)
else:
QMessageBox.information(self, "Error",
"Unable to save image.", QMessageBox.Ok)

printImage(self):

Print image.

Create printer object and print output defined by the platform
the program is being run on.

QPrinter.NativeFormat is the default

printer = QPrinter()
printer.setOutputFormat(QPrinter.NativeFormat)

Create printer dialog to configure printer
print_dialog = QPrintDialog(printer)

If the dialog is accepted by the user, begin printing
if (print_dialog.exec_() == QPrintDialog.Accepted):
Use QPainter to output a PDF file
painter = QPainter()
Begin painting device
painter.begin(printer)
Set QRect to hold painter's current viewport, which
is the image_label
rect = QRect(painter.viewport())
Get the size of image label and use it to set the size
of the viewport
size = QSize(self.image label.pixmap().size())
size.scale(rect.size(), Qt.KeepAspectRatio)

127

CHAPTER 5

128

def

def

MENUS, TOOLBARS, AND MORE

painter.setViewport(rect.x(), rect.y(), size.width(), size.
height())

painter.setWindow(self.image label.pixmap().rect())

Scale the image label to fit the rect source (0, 0)
painter.drawPixmap(0, 0, self.image label.pixmap())

End painting

painter.end()

clearImage(self):

Clears current image in QLabel widget
self.image label.clear()
self.image = QPixmap() # reset pixmap so that isNull() = True

rotateImage90(self):

Rotate image 90° clockwise

if self.image.isNull() == False:
transform9o = QTransform().rotate(90)
pixmap = QPixmap(self.image)

rotated = pixmap.transformed(transform9o, mode=Qt.
SmoothTransformation)

self.image label.setPixmap(rotated.scaled(self.image label.
size(),
Qt.KeepAspectRatio, Qt.SmoothTransformation))
self.image = QPixmap(rotated)
self.image label.repaint() # repaint the child widget
else:
No image to rotate
pass

CHAPTER5 MENUS, TOOLBARS, AND MORE

def rotateImage180(self):

def

Rotate image 180° clockwise

if self.image.isNull() == False:
transform180 = QTransform().rotate(180)
pixmap = QPixmap(self.image)

rotated = pixmap.transformed(transform180, mode=Qt.
SmoothTransformation)

self.image label.setPixmap(rotated.scaled(self.image label.
size(),
Qt.KeepAspectRatio, Qt.SmoothTransformation))
In order to keep being allowed to rotate the image, set the
rotated image as self.image
self.image = QPixmap(rotated)
self.image label.repaint() # repaint the child widget
else:
No image to rotate
pass

flipImageHorizontal(self):

Mirror the image across the horizontal axis
if self.image.isNull() == False:
flip h = QTransform().scale(-1, 1)
pixmap = QPixmap(self.image)

flipped = pixmap.transformed(flip_h)

self.image label.setPixmap(flipped.scaled(self.image label.
size(),

Qt.KeepAspectRatio, Qt.SmoothTransformation))
self.image = QPixmap(flipped)
self.image label.repaint()

129

CHAPTER5 MENUS, TOOLBARS, AND MORE

else:
No image to flip
pass

def flipImageVertical(self):

Mirror the image across the vertical axis
if self.image.isNull() == False:
flip v = QTransform().scale(1, -1)
pixmap = QPixmap(self.image)

flipped = pixmap.transformed(flip v)

self.image label.setPixmap(flipped.scaled(self.image label.
size(),
Qt.KeepAspectRatio, Qt.SmoothTransformation))
self.image = QPixmap(flipped)
self.image label.repaint()
else:
No image to flip
pass

def resizeImageHalf(self):

Resize the image to half its current size.
if self.image.isNull() == False:
resize = QTransform().scale(0.5, 0.5)
pixmap = QPixmap(self.image)

resized = pixmap.transformed(resize)

self.image label.setPixmap(resized.scaled(self.image label.size(),
Qt.KeepAspectRatio, Qt.SmoothTransformation))

self.image = QPixmap(resized)

self.image label.repaint()

130

CHAPTER5 MENUS, TOOLBARS, AND MORE

else:
No image to resize
pass

def centerMainWindow(self):
Use QDesktopWidget class to access information about your screen
and use it to center the application window.
desktop = QDesktopWidget().screenGeometry()
screen width = desktop.width()
screen_height = desktop.height()

self.move((screen width - self.width()) / 2, (screen height - self.
height()) / 2)

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
app.setAttribute(Qt.AA DontShowIconsInMenus, True)
window = PhotoEditor()

sys.exit(app.exec_())

Once complete, your application should look similar to the one in Figure 5-12.

Explanation

The photo editor application imports an assortment of new classes from different
modules. From QtWidgets there are two new classes, QDesktopWidget and QSizePolicy.
The QDesktopWidget class is used to access information about the screen on your
computer. We will use it later to learn how to center a GUI on your desktop. The
QSizePolicy class is used for resizing widgets.

From the QtGui module, we use QPixmap for handling images, QTransform for
performing transformations on images, and QPainter which is useful for drawing,
painting, and printing.

QRect, from QtCore, is used for creating rectangles. This will be used in the
printImage() method.

131

CHAPTER5 MENUS, TOOLBARS, AND MORE

The QPrintSupport module and its classes provide cross-platform support for
accessing printers and printing documents.

The window is initialized like before except this time the setFixedSize() method is
used to set the window’s geometry so that it cannot be resized.

All of the menus, actions, icons, and status tips are also created in the createMenu()
method. One important concept to note is that in this application only the toolbar
displays icons, not in the menu. This is set with

app.setAttribute(Qt.AA DontShowIconsInMenus, True)

The File menu contains the Open, Save, Print, and Exit actions. Setting the
setEnabled() method on the print_act to False shows a disabled menu item and icon
in the toolbar. The print_act only becomes enabled after an image is opened in the
openImage() method.

Handling Images in PyQt
The Edit menu contains tools for rotating, flipping, resizing, and clearing images.

self.image = QPixmap(image file)
self.image label.setPixmap(self.image.scaled(self.image label.
size(), Qt.KeepAspectRatio, Qt.SmoothTransformation))

When an image file is opened using QFileDialog, we create a QPixmap object using
that image, and then setPixmap() is called on the image label to scale and set the
image in the QLabel widget. Finally, the label is set as the central widget in the main
window and resized according to the parameters in the setSizePolicy() method.
QPixmap and other classes to handle images are covered further in Chapter 9.

The QTransform class provides a number of methods to use transformations on
images. The photo editor application provides five actions for manipulating images:

Flip 90°, Flip 180°, Flip Horizontal, Flip Vertical, and Resize Half. Figure 5-16 displays an
example of an image being rotated 90°.

The tools located in the Edit menu could also be located in the toolbar. Instead, they
are placed in a dock widget which contains push buttons with the different actions as an
example of how to create a dock widget. The dock widget can also be toggled on and off
in the View menu. To handle when the dock widget is checked or unchecked in the menu
or if the user has closed the dock widget with the close button, use the QDockWidget
method toggleViewAction().

132

CHAPTER 5 MENUS, TOOLBARS, AND MORE

e e 5.2 - Photo Editor GUI
File Edit View
w8 X €

QO Edit image Tools

Rotate 90°

Rotate 180°

Flip Horizontal

Flip Vertical

Resize Half

Rotate image 90° clockwise

Figure 5-16. Example of 90° rotation in the photo editor GUI The image is
stretched horizontally to fit in the main window

The QPrinter Class

If you need to create a printing method for your applications, the photo editor includes a
function adopted from the Qt document web site.!

Take a look at the code and the comments to see how to use the QPrinter class to set
up the printer and QPainter to set up the PDF file to be printed.

Center GUI Application on Your Desktop

The following bit of code shows how to use the QDesktopWidget class to find out
information about the screen you are using in order to center the widget on the screen
when the application starts:

'https://doc.qt.io/qt-5/gprinter. html#OutputFormat-enum

133

https://doc.qt.io/qt-5/qprinter.html%23OutputFormat-enum

CHAPTER5 MENUS, TOOLBARS, AND MORE

desktop = QDesktopWidget().screenGeometry() # Create QDesktopWidget
screen width = desktop.width() # Get screen width

screen_height = desktop.height() # Get screen height

Use absolute positioning to place the GUI in the center of the screen
self.move((screen width - self.width()) / 2, (screen_height - self.
height()) / 2)

Summary

By taking you through some actual examples of programs with working menus, my
hope is that you can see how many classes are working together just to make a single
application. The examples in this chapter are by no means all that can be done with
menus. There are still plenty of other ways to organize the actions and widgets in your
own projects including context menus (often referred to as pop-up menus), tabbed
widgets with the QToolBox class, stacked widgets using the QStackedWidget class, and
more.

Chapter 5 focused on the QMainWindow class for integrating menus easily into
GUIs. A menubar consists of several menus, each of which is broken down into several
commands. Each of these commands could themselves also be checkable or even
submenus. Toolbars are often composed of icons that allow the user to more easily
locate commands. The QDockWidget class creates movable and floating widgets that can
be used to hold a number of different tools, widgets, or commands. Finally, the status bar
created from the QStatusBar class establishes a space to give further textual information
about each of the menu items.

The class that acts like the glue to keep track of all the different functions and
whether they have been triggered or not is the QAction class. The QAction class
manages these actions to ensure that no matter where the action is triggered, whether
from a menu, the toolbar, or from shortcut keys, the application can perform the next
appropriate action.

In Chapter 6 we will see how to modify the appearance of widgets with style sheets
and learn about how to create custom signals in PyQt.

134

CHAPTER 6

Styling Your GUIs

The GUIs you have created up until now have all focused mainly on function and less

on appearance and customization. Creating a layout to organize widgets in a coherent
manner is just as important as modifying the look and feel of each and every widget. By
choosing the right styles, colors, and fonts, a user can also more easily navigate their way
around a user interface.

In this chapter, we will be taking a look at why customizing the look of widgets,
windows, and actions is also necessary for designing great GUTs.

In the final section of the chapter, we will take another look at event handling in PyQt
and see how we can modify signals and slots to create custom signals to further improve
the potential of applications.

Chapter 6 illustrates how to

o Modify the appearance of widgets with 0t Style Sheets

o Utilize new Qt widgets and classes, including QRadioButton,
QGroupBox, and QTabWidget

e Reimplement event handlers

o Create custom signals using pyqtSignal and Q0bject

Changing GUI Appearances with Qt Style Sheets

When you use PyQt, the appearance of your applications is handled by Qt’s QStyle class.
QStyle contains a number of subclasses that imitate the look of the system on which

the application is being run. This makes your GUI look like a native MacOS, Linux, or
Windows application. Custom styles can be made either by modifying existing QStyle
classes, creating new classes, or using Qt Style Sheets.

135
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_6

CHAPTER6 STYLING YOUR GUIS

This chapter will take a look at how to create custom styles by using style sheets. Qt
Style Sheets provide a technique for customizing the look of widgets. The syntax used in
Qt Style Sheets is inspired by HTML Cascading Style Sheets (CSS).

With style sheets, you can customize the look of a number of different widget
properties, pseudostates, and subcontrols. Some of the properties that you can modify
include background color, font size and font color, border type, width or style, as well
as add padding to widgets. Pseudostates are used to define special states of a widget,
such as when a mouse hovers over a widget or when a widget changes states from active
to disabled. Subcontrols allow you to access a widget’s subelements and change their
appearance, location, or other properties. For example, you could change the indicator
of a QCheckButton to a different color when it is checked or unchecked.

Customizations can either be applied to individual widgets or to the QApplication
object by using setStyleSheet().

Customizing Individual Widget Properties

Let’s start by seeing how to apply changes to widgets. The following code changes the
background color to blue:

line edit.setStyleSheet("background-color: blue")

Colors in a style sheet can be specified using either hexadecimal, RGB, or color
keyword formats. To change the foreground color (the text color) of a widget

line edit.setStyleSheet("color: rgb(244, 160, 25") # orange
For some widgets as well the main window, you can even set a background image.
self.setStyleSheet("background-image: url(images/logo.png)")

Now let’s take a look at more a detailed example. For the following QLabel widget,
we will see how to change the color, the border, some font properties, and the text
alignment. The results are shown in Figure 6-1.

label = QLabel("Test", self)
label.setStyleSheet("""background-color: skyblue;
color: white;
border-style: outset;
border-width: 3px;

136

CHAPTER6 STYLING YOUR GUIS

border-radius: 5px;
font: bold 24px 'Times New Roman';
gproperty-alignment: AlignCenter""")

Of course, this is but one example. Each of the different kinds of widgets in Qt has its
own parameters that can be customized. For a list of properties that are supported by Qt
Style Sheets, refer to Appendix A.

@) @® Style Sheet Example

Figure 6-1. A customized QLabel widget with sky blue background and
rounded corners

Customizing the QApplication Style Sheet

If you have multiple widgets of the same type in an application, you could set each
individual widget’s style one by one. However, if those widgets all have the same
properties, then a much simpler method is to specify all of the modifications at one time.

app = QApplication(sys.argv)
app.setStyleSheet("QPushButton{background-color: #C92108}")

This will apply a red color to all QPushButton widgets in the GUI. However, if
you only want the properties to apply to a specific QPushButton, you can give it an
ID selector using setObjectName(). The following excerpt of code shows how to use
the ID selector to refer to a particular button. When the button is pressed, a different
background color is used.

137

CHAPTER6 STYLING YOUR GUIS

style sheet =

QPushButton#harning Button{
background-color: #C92108;
border-radius: 10px;
padding: 6px;
color: #FFFFFF

}

QPushButton#harning Button:pressed{
background-color: #F4B519;

button = QPushButton("Warning!", self)
button.setObjectName("Warning Button") # Set ID selector

app = QApplication(sys.argv)
app.setStyleSheet(style sheet) # Set style of QApplication

The preceding code also demonstrates how to create a style sheet variable that
contains the different properties for each widget. To add a different type of class, simply
include the widget type such as QCheckBox followed by the attributes to be changed.

Project 6.1 — Food Ordering GUI

Food delivery service apps are everywhere - on your phone, on the Internet, and even on
kiosks when you go to actual restaurants themselves. They simplify the ordering process
while also giving the user a feeling of control over their choices, asking us to select our
own foods and items as we scroll through a list of organized categories.

These types of GUIs may possibly need to contain hundreds of different items that fit
into multiple groups. Rather than just throwing all of the products into the interface and
letting the user waste their own time sorting through the items, goods are usually placed
into categories often differentiated by tabs. These tabs contain titles for the products that
can be found on those corresponding pages, such as Frozen Foods or Fruits/Vegetables.

The GUI in this project allows the user to place an order for a pizza. It lays a foundation
for a food ordering application, using tab widgets to organize items onto separate pages.
The project also shows how you can use style sheets to give a GUI made using PyQt5 a
more visually pleasing appearance. The application can be seen in Figure 6-2.

138

CHAPTER6 STYLING YOUR GUIS

] L] 6.1 = Food Order GUI

BUILD YOUR OWN PIZZA

YOUR ORDER

any toppings, plus the perfect
amount of cheass and sauce.

- Build a custom pizza for you. Start
i with your faverite crust and add
e

CHOOSE YOUR CRUST

© Hand-Tossad
Flat
Stutfed

CHOOSE YOUR TOPPINGS

O Pepperani

© sausage
Bacon
Canadian Bacon
Beaf

Pineapple
Mushroom
Onign

O oiive
Green Pepper
Tomato
Spinach
Cheess

Add To Order

LR) 6.1 - Food Order GUI

YOLR ORDER
TRY OUR AMAZING WINGS

-
rNe
6 pleces of rich-tasting, white
meat chicken that will have you
coming back for more.

CHODSE YOUR FLAVOR

O Butale
Sweet-Sour
Teriyaki
Barbecue

Figure 6-2. The food ordering GUI. The GUI contains two tabs, Pizza (top) and
Wings (bottom), to separate the types of food a customer can see at one time. The
choices that can be selected, which are QRadioButton widgets, are separated using
QGroupBox widgets. The main window has a red background, and each tab has a
tan background. These colors and other styles are created by using a style sheet

139

CHAPTER6 STYLING YOUR GUIS

Design the Food Ordering GUI

This application consists of two main tabs (displayed in Figure 6-3), but more could be easily

added. Each tab consists of a QWidget that acts as a container for all of the other widgets. The

first tab, Pizza, contains an image and text to convey the purpose of the tab to the user. This is

followed by two QGroupBox widgets that each consist of a number of QRadioButton widgets.

While the radio buttons in the “Crust” group box are mutually exclusive, the ones in the

“Toppings” group box are not, so that the user can select multiple options at one time.

The second tab, Wings, is set up in a similar fashion with the “Flavor” radio buttons

being mutually exclusive.

At the bottom of each page is an “Add to Order” QPushButton that will update the
user’s order in the widget on the right-hand side of the window.

Tab 1 Tab 2
Pizza Wings
| |
(@ © Food Ordering Title ® O Food|Ordering Title
v
Your Order - Your Order -
GEE T2 Tab1l (EEED :
y QWidget r N QWidget
Build Your Own Pizza "3&?::;“;;:;@ Try Our Amazing Wings "fbrfdtt:‘x:::;ro

Display info about tab.

Crust - QGroupBox

QRadioButtons

Toppings - QGroupBox

QRadioButtons

‘Addto Order +=

S

"
\

Updates when button
is clicked.

o ———

Display info about tab.

Flavor - Q

QRadioButtons

SO

J >

Updates when button
is clicked.

el

Figure 6-3. The design for the food ordering GUI

Before we look at the code for the food ordering GUI, let’s take a moment to learn

about the new Qt classes in this project - QGroupBox, QRadioButton, and QTabWidget.

140

CHAPTER6 STYLING YOUR GUIS

The QRadioButton Widget

The QRadioButton class allows you to create option buttons that can be switched on
when checked or off when unchecked. Each radio button consists of a round button and
a corresponding label or icon. Radio buttons are generally used for situations where you
need to provide a user with multiple choices, but only one choice can be checked at a
time. As the user selects a new radio button, the other radio buttons are unchecked.

When you place multiple radio buttons in a parent widget, those buttons become
auto-exclusive, meaning they automatically become exclusive members of that group.
If one radio button is checked inside of the parent, all of the other buttons will become
unchecked. To change this functionality, you can set the setAutoExclusive() attribute
to False.

Also, if you want to place multiple exclusive groups of radio buttons into the same
parent widget, then use the QButtonGroup class to keep the different groups separate.
Refer back to Chapter 4 for information about QButtonGroup.

Radio buttons are similar to the QCheckBox class when emitting signals. A radio
button emits the toggled() signal when checked on or off and can be connected to this
signal to trigger an action.

An example of creating QRadioButton widgets can be seen in Listing 6-1.

The QGroupBox Class

The QGroupBox widget provides a container for grouping other widgets with similar
purposes together. A group box has a border with a title on the top. The title can also
be checkable so that the child widgets inside the group box can be enabled or disabled
when the checkbox is checked or unchecked.

A group box object can contain any kind of widget. Since QGroupBox does
not automatically lay out its child widgets, you will need to apply a layout such as
QHBoxLayout or QGridLayout. The following snippet of code demonstrates how to
create a QGroupBox widget, add two radio buttons, and apply a layout:

effects gb = QGroupBox("Effects") # The title can either be set in the
constructor or with the setTitle() method

Create instances of radio buttons
effectl rb = QRadioButton("Strikethrough")

141

CHAPTER 6 STYLING YOUR GUIS
effect2 rb = QRadioButton("Outline")

Set up layout and add child widgets to the layout
h_box = QHBoxLayout()

h_box.addWidget(effect1 rb)
h_box.addWidget(effect2_rb)

Set the layout of the group box
effects_gb.setLayout(h_box)

For an example of another type of container in PyQt, check out the QFrame class in
Chapter 7.

The QTabWidget Class

Sometimes you may need to organize related information onto separate pages rather
than create a cluttered GUI. The QTabWidget class provides a tab bar (created from the
QTabBar class) with an area under each tab (referred to as a page) to present information
and widgets related to each tab. Only one page is displayed at a time, and the user can
view a different page by clicking the tab or by using a shortcut (if one is set for the tab).

There are a few different ways to interact with and keep track of the different tabs. For
example, if the user switches to a different tab, the currentChanged() signal is emitted.
You can also keep track of a current page’s index with currentIndex(), or the widget of
the current page with currentWidget (). A tab can also be enabled or disabled with the
setTabEnabled() method.

Tip If you want to create an interface with multiple pages, but without the tab
bar, then you should consider using a QStackedwidget. However, if you do use
QStackedwWidget, then you will need to provide some other means to switch
between the windows, such as a QComboBox or a QListWidget, since there are
no tabs.

The following example creates a simple application that includes QRadioButton,
QGroupBox, and QTabWidget and a few other classes. The program shows how to set up
a tab widget and organize the other widgets on the different pages.

142

CHAPTER6 STYLING YOUR GUIS

Listing 6-1. Example that shows how to use QTabWidget, QRadioButton, and
QGroupBox classes

contact_form.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import (QApplication, QWidget, QTabWidget, QLabel,
QRadioButton, QGroupBox, QLineEdit, QHBoxLayout, QVBoxLayout)

class ContactForm(QWidget):

def

def

def

__init_ (self):

super(). init ()
self.initializeUI()
initializeUI(self):

Initialize the window and display its contents to the screen.

self.setGeometry(100, 100, 400, 300)
self.setWindowTitle('Contact Form Example')

self.setupTabs()
self.show()

setupTabs(self):

Set up tab bar and different tab widgets. Each tab is a QWidget
that serves as a container for each page.

Create tab bar and different tabs
self.tab bar = QTabWidget(self)

self.prof details tab = QWidget()
self.background tab = Qwidget()

self.tab _bar.addTab(self.prof details tab, "Profile Details")
self.tab _bar.addTab(self.background tab, "Background")

143

CHAPTER6 STYLING YOUR GUIS

Call methods that contain the widgets for each tab
self.profileDetailsTab()
self.backgroundTab()

Create layout for main window
main_h box = QHBoxLayout()
main_h box.addwWidget(self.tab_bar)

Set main window's layout
self.setLayout(main_h_box)

def profileDetailsTab(self):
Create the profile tab. Allows the user enter their name,
address and select their gender.
Set up labels and line edit widgets
name_label = QLabel("Name")
name_entry = QLineEdit()

address label = QLabel("Address")
address_entry = QLineEdit()

Create group box to contain radio buttons
sex_gb = QGroupBox("Sex")

male rb = QRadioButton("Male")
female rb = QRadioButton("Female")

Create and set layout for sex gb widget
sex_h_box = QHBoxLayout()

sex_h box.addWidget(male rb)
sex_h_box.addWidget(female rb)

sex_gb.setLayout(sex_h box)

Add all widgets to the profile details page layout
tab v _box = QVBoxLayout()
tab_v_box.addWidget(name_label)
tab_v_box.addWidget(name_entry)
tab_v_box.addStretch()

144

CHAPTER6 STYLING YOUR GUIS

tab_v_box.addWidget(address label)
tab_v _box.addWidget(address entry)
tab v _box.addStretch()
tab_v_box.addWidget(sex gb)

Set layout for profile details tab
self.prof details tab.setlLayout(tab_v_box)

def backgroundTab(self):

Create the background tab. The user can select a
Set up group box to hold radio buttons
self.education gb = QGroupBox("Highest Level of Education")

Layout for education_gb
ed v _box = QVBoxLayout()

Create and add radio buttons to ed v_box
education_list = ["High School Diploma", "Associate's Degree",
"Bachelor's Degree", "Master's Degree", "Doctorate or Higher"]
for ed in education_list:

self.education rb = QRadioButton(ed)

ed v_box.addWidget(self.education rb)
Set layout for group box
self.education gb.setlLayout(ed v_box)

Create and set for background tab
tab_v _box = QVBoxLayout()
tab_v_box.addWidget(self.education gb)

self.background tab.setlLayout(tab v_box)

if _name_ == "' main_ ':
app = QApplication(sys.argv)
window = ContactForm()
sys.exit(app.exec ())

Figure 6-4 shows you how the GUI should look for each tab.

145

CHAPTER6 STYLING YOUR GUIS

® @ Contact Form Example o ® Contact Form Example

SUlEsETER Background Profile Details

Highest Level of Education
Name

Rocky Balboa) High School Diploma

Associate's Degree

Address
1818 East Tusculum Street, Philadelphia, PA 19134| Bachelor's Degree
Master's Degree
Sex
Doctorate or Higher
© Male Female

Figure 6-4. The contact form GUI. The Profile Details tab (left) contains two
labels and two line edit widgets as well as a group box with two radio buttons.

The Background tab (right) consists of a single group box container with five radio
buttons

Explanation

Let’s take a look at how to set up the tab widget and its child widgets in this example.

We begin by importing the necessary classes, including QRadioButton, QTabWidget,
and QGroupBox from the QtWidgets module. Next, we set up the ContactForm class and
initialize the window’s size and title.

The next step is to set up the tab widget and each page in the setupTabs() method.
The process to use QTabWidget is to first create an instance of the tab widget. Here we
create tab_bar. Then, create a QWidget object for each page in the tab bar. There are two
pages for this project, profile_details_tab and background_ tab.

Insert the two pages into the tab widget using addTab(). Give each tab an
appropriate label.

Finally, create the child widgets for each page and use layouts to arrange them. Two
separate methods are created, profileDetailsTab() and backgroundTab(), to organize
the two different pages. The labels and line edit widgets are set up like normal. For the
QRadioButton objects, they are added to group boxes on their respective pages. In the
backgroundTab() method, a for loop is used to instantiate each radio button and add it
to the page’s layout.

146

CHAPTER6 STYLING YOUR GUIS

Food Ordering GUI Solution

Now that we have taken a look at the new widgets in this chapter, we can finally move
onto the code for the food ordering interface in Listing 6-2.

Listing 6-2. Code for food ordering GUI

food_order.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QTabWidget, QLabel,
QRadioButton, QButtonGroup, QGroupBox, QPushButton, QVBoxLayout,
QHBoxLayout, QGridLayout)

from PyQt5.0tGui import QPixmap

from PyQt5.QtCore import Qt

Set up style sheet for the entire GUI
style sheet = """
OWidget{
background-color: #C92108;

}

QWidget#Tabs{
background-color: #FCEBCD;
border-radius: 4px

}

QWidget#ImageBorder{
background-color: #FCF9F3;
border-width: 2px;
border-style: solid;
border-radius: 4px;
border-color: #FABB4C

}

QWidget#Side{
background-color: #EFD096;
border-radius: 4px

}

147

CHAPTER6 STYLING YOUR GUIS

QLabel{
background-color: #EFD096;
border-width: 2px;
border-style: solid;
border-radius: 4px;
border-color: #EFD096

}

QLabel#Header{
background-color: #EFD096;
border-width: 2px;
border-style: solid;
border-radius: 4px;
border-color: #EFD096;
padding-left: 10px;
color: #961A07

}

QLabel#ImageInfo{
background-color: #FCF9F3;
border-radius: 4px

}

QGroupBox{
background-color: #FCEBCD;
color: #961A07

}

QRadioButton{
background-color: #FCF9F3

}

QPushButton{
background-color: #(92108;
border-radius: 4px;
padding: 6px;
color: #FFFFFF

}

148

CHAPTER6 STYLING YOUR GUIS

QPushButton:pressed{

}

background-color: #C86354;
border-radius: 4px;
padding: 6px;

color: #DFD8D7

class FoodOrderGUI(QWidget):

def

def

def

__init_ (self):

super(). init ()
self.initializeUI()
initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (600, 700)
self.setWindowTitle('6.1 - Food Order GUI'")

self.setupTabsAndLayout()
self.show()

setupTabsAndLayout(self):

Set up tab bar and different tab widgets.

Also, create the side widget to display items selected.
Create tab bar, different tabs, and set object names
self.tab_bar = QTabWidget(self)

self.pizza tab = QWidget()
self.pizza tab.setObjectName("Tabs")
self.wings tab = QWidget()
self.wings tab.setObjectName("Tabs")

149

CHAPTER6 STYLING YOUR GUIS

150

self.tab bar.addTab(self.pizza tab, "Pizza")
self.tab_bar.addTab(self.wings tab, "Wings")

Call methods that contain the widgets for each tab
self.pizzaTab()
self.wingsTab()

Set up side widget which is not part of the tab widget
self.side widget = QWidget()

self.side widget.setObjectName("Tabs")

order label = QLabel("YOUR ORDER")

order label.setObjectName("Header")

items box = QWidget()

items box.setObjectName("Side")
pizza_label = QLabel("Pizza Type: ")
self.display pizza label = QLabel("")
toppings label = QLabel("Toppings: ")
self.display toppings label = QLabel("")
extra label = QLabel("Extra: ")
self.display wings label = QLabel("")

Set grid layout for objects in side widget

items _grid = QGridLayout()
items_grid.addWidget(pizza_label, 0, 0, Ot.AlignRight)
items grid.addWidget(self.display pizza label, 0, 1)
items grid.addwidget(toppings label, 1, 0, Qt.AlignRight)
items_grid.addWidget(self.display toppings label, 1, 1)
items grid.addWidget(extra_ label, 2, 0, Qt.AlignRight)
items grid.addwidget(self.display wings label, 2, 1)
items box.setlLayout(items grid)

Set main layout for side widget
side v _box = QVBoxLayout()

side v _box.addWidget(order label)

side v _box.addWidget(items box)

side v _box.addStretch()

self.side widget.setlLayout(side v_box)

CHAPTER6 STYLING YOUR GUIS

Add widgets to main window and set layout
main_h box = QHBoxLayout()

main_h box.addWidget(self.tab bar)

main_h box.addWidget(self.side widget)

self.setlLayout(main_h_box)

def pizzaTab(self):
Create the pizza tab. Allows the user to select the type of pizza
and topping using radio buttons.
Set up widgets and layouts to display information
to the user about the page
tab pizza label = QLabel("BUILD YOUR OWN PIZZA")
tab _pizza label.setObjectName("Header")
description box = QWidget()
description_box.setObjectName("ImageBorder")
pizza_image path = "images/pizza.png"
pizza image = self.loadImage(pizza_image path)
pizza desc = QLabel()
pizza_desc.setObjectName("ImageInfo")
pizza desc.setText("Build a custom pizza for you. Start with your
favorite crust and add any toppings, plus the perfect amount of
cheese and sauce.")
pizza desc.setWordWrap(True)

h_box = QHBoxLayout()
h_box.addWidget(pizza image)
h_box.addWidget(pizza_ desc)

description box.setLayout(h box)

Create group box that will contain crust choices
crust_gbox = QGroupBox()
crust_gbox.setTitle("CHOOSE YOUR CRUST")

151

CHAPTER6 STYLING YOUR GUIS

The group box is used to group the widgets together,
while the button group is used to get information
about which radio button is checked
self.crust_group = QButtonGroup()
gb _v_box = QVBoxLayout()
crust list = ["Hand-Tossed", "Flat", "Stuffed"]
Create radio buttons for the different crusts and
add to layout
for cr in crust list:

crust_rb = QRadioButton(cr)

gb v box.addWidget(crust rb)

self.crust _group.addButton(crust rb)

crust_gbox.setLayout(gb v _box)

Create group box that will contain toppings choices
toppings gbox = QGroupBox()
toppings gbox.setTitle("CHOOSE YOUR TOPPINGS")

Set up button group for toppings radio buttons
self.toppings group = QButtonGroup()
gb v _box = QVBoxLayout()

toppings list = ["Pepperoni”, "Sausage", "Bacon", "Canadian Bacon",
"Beef", "Pineapple", "Mushroom", "Onion", "Olive", "Green Pepper",
"Tomato", "Spinach", "Cheese"]
Create radio buttons for the different toppings and
add to layout
for top in toppings list:
toppings rb = QRadioButton(top)
gb v box.addWidget(toppings rb)
self.toppings group.addButton(toppings rb)
self.toppings group.setExclusive(False)

toppings gbox.setLayout(gb v _box)

152

def

CHAPTER6 STYLING YOUR GUIS

Create button to add information to side widget

when clicked

add_to order buttoni = QPushButton("Add To Order")
add_to_order buttoni.clicked.connect(self.displayPizzaInOrder)

Create layout for pizza tab (page 1)

pagel v_box = QVBoxLayout()

pagel v_box.addWidget(tab_pizza label)

pagel v_box.addWidget(description box)

pagel v _box.addWidget(crust_gbox)

pagel v_box.addWidget(toppings gbox)

pagel v_box.addStretch()

pagel v_box.addWidget(add to order buttoni, alignment=0Qt.
AlignRight)

self.pizza tab.setlayout(pagel v_box)

wingsTab(self):

Set up widgets and layouts to display information
to the user about the page

tab_wings label = QLabel("TRY OUR AMAZING WINGS")
tab _wings label.setObjectName("Header")
description box = QWidget()
description_box.setObjectName("ImageBorder")
wings_image path = "images/wings.png"

wings image = self.loadImage(wings image path)
wings desc = QLabel()

wings desc.setObjectName("ImageInfo")

wings desc.setText("6 pieces of rich-tasting, white meat chicken
that will have you coming back for more.")

wings desc.setWordWrap(True)

h_box = QHBoxLayout()
h_box.addWidget(wings image)
h_box.addWidget(wings desc)

description_box.setLayout(h_box)

153

CHAPTER6 STYLING YOUR GUIS

154

def

wings_gbox = QGroupBox()
wings gbox.setTitle("CHOOSE YOUR FLAVOR")

self.wings group = QButtonGroup()
gb v _box = QVBoxLayout()
wings list = ["Buffalo", "Sweet-Sour", "Teriyaki", "Barbecue"]

Create radio buttons for the different flavors and
add to layout
for fl in wings list:

flavor rb = QRadioButton(fl)

gb v box.addWidget(flavor rb)

self.wings group.addButton(flavor rb)

wings gbox.setlayout(gb v _box)

Create button to add information to side widget

when clicked

add_to order button2 = QPushButton("Add To Order")

add_to order button2.clicked.connect(self.displayWingsInOrder)

Create layout for wings tab (page 2)

page2 v _box = QVBoxLayout()

page2 v _box.addWidget(tab_wings label)
page2_v_box.addWidget(description_box)

page2 v_box.addWidget(wings gbox)

page2 v _box.addWidget(add to order button2, alignment=0Qt.
AlignRight)

page2 v_box.addStretch()

self.wings tab.setlLayout(page2 v_box)

loadImage(self, img path):

Load and scale images.

def

def

CHAPTER6 STYLING YOUR GUIS

try:
with open(img_path):
image = QLabel(self)
image.setObjectName("ImageInfo")
pixmap = QPixmap(img_path)
image.setPixmap(pixmap.scaled(image.size(),
Qt.KeepAspectRatioByExpanding, Qt.SmoothTransformation))
return image
except FileNotFoundError:
print("Image not found.")

collectToppingsInList(self):

Create list of all checked toppings radio buttons.

toppings list = [button.text() for i, button in enumerate(self.
toppings group.buttons()) if button.isChecked()]

return toppings list

displayPizzaInOrder(self):
Collect the text from the radio buttons that are checked on pizza
page. Display text in side widget.
checkedButton() returns the buttons that are checked in the
OButtonGroup.
try:
pizza_text = self.crust group.checkedButton().text()
self.display pizza label.setText(pizza text)

toppings = self.collectToppingsInList()
toppings str = '\n'.join(toppings)
self.display toppings label.setText(toppings str)
self.repaint()
except AttributeError:
print("No value selected.")
pass

155

CHAPTER6 STYLING YOUR GUIS

def displayWingsInOrder(self):
Collect the text from the radio buttons that are checked on wings
page. Display text in side widget.
try:
text = self.wings group.checkedButton().text() + " Wings"
self.display wings label.setText(text)
self.repaint()
except AttributeError:
print("No value selected.")
pass

if name_ ==" main_"':
app = QApplication(sys.argv)
app.setStyleSheet(style sheet)
window = FoodOrderGUI()
sys.exit(app.exec ())

When finished, your GUI should look similar to the one in Figure 6-2.

Explanation

Let’s first import the modules we need for this project. Next, the properties for the
widgets in this application are prepared in the style sheet variable. We will get to how
this works shortly.

Create the structure for the tabs and layout for the main window in
setupTabsAndLayout (). Set up instances of the QTabWidget and QWidget objects that will
be used for the pages of the tabs. The two tabs are the pizza_tab, to display choices for
building your own pizza, and the wings_tab, to show choices for wings flavors.

Some of the widgets in this GUI are given an ID selector using the setObjectName()
method. For example, pizza_tab is given the Tabs ID selector. This name will be used in
the style_sheet to differentiate this widget from other QWidget objects with a different

style.

156

CHAPTER6 STYLING YOUR GUIS

self.pizza tab = QWidget()
self.pizza tab.setObjectName("Tabs")

The side_widget is used to give feedback to users of their choices and can be seen
even if the user switches tabs. All of the child widgets for side_widget are then arranged
in a nested layout and added to the main QHBoxLayout.

The pizzaTab() method creates and arranges the child widgets for the first tab,
pizza tab. The top of the first page gives users information about the purpose of the tab
using images and text. The wingsTab() method is set up in a similar manner.

QRadioButton widgets are grouped together using group boxes. This allows each
group to have a title. The QGroupBox class does provide exclusivity to radio buttons, but
to get the type of functionality to find out which buttons are checked and return their
text values, the QRadioButton objects are also grouped using QGroupButton. Refer to
Chapter 4 for more information about QButtonGroup. While only one radio button can
be selected in the Crust group, users need to be able to select more than one topping.
This is achieved by setting the exclusivity of the toppings group to False.

self.toppings group.setExclusive(False)

If users press the add_to_order button on either page, the text from the selected
radio buttons is displayed in the side_widget. A Python try-except clause is used to
ensure that the user has selected radio buttons.

Applying the Style Sheet

If a style sheet is not applied to the food ordering GUI, then it will use your system’s
native settings to style the application. Figure 6-5 shows what this looks like on MacOS.

157

CHAPTER6 STYLING YOUR GUIS

® @9 8.1 - Food Order GUI
EEZ wings
YOUR ORDER
BUILD YOUR OWN PIZZA
Pizza Type: Flat
Tobbiroe: Sausage
Build a custom pizza for you. Start with OPPINGS: oroon Pepper

| your favorite crust and add any
toppings, plus the perfect amount of
cheese and sauce.

Extra:

CHOOSE YOUR CRUST

Hand-Tossed

© Flat

Stuffed
CHOOSE YOUR TOPPINGS

Pepperoni

) Sausage
Bacon
Canadian Bacon
Beef
Pineapple
Mushroom
Onion
Olive

) Green Pepper
Tomato
Spinach
Cheese

Add To Order

Figure 6-5. The food ordering GUI before the style sheet is applied

In the beginning of the program, you will notice the style sheet variable that holds

all of the different style specifications for the different widgets.

To apply a general style to all widgets of one type, you only need to specify the class.

For example, the following code gives all QWidget objects a red background:

QWidget{
background-color: #C92108;

}

But if a QWidget object has a specified ID selector such as Tabs, then it will get a tan

background and rounded corners.

158

CHAPTER6 STYLING YOUR GUIS

QWidget#Tabs{
background-color: #FCEBCD;
border-radius: 4px

}

Other widget’s properties are set up in a similar manner. The style sheet is applied to
the entire application by calling setStyleSheet() on the QApplication object.

app.setStyleSheet(style sheet)

The final GUI with customized colors, borders, and fonts can be seen in Figure 6-2.

Event Handling in PyQt

The concept of signals and slots in PyQt was briefly introduced in Chapter 3. Event
handling in PyQt uses signals and slots to communicate between objects. Signals

are typically generated by a user’s actions, and slots are methods that are executed

in response to the signal. For example, when a QPushButton is pushed, it emits a
clicked() signal. This signal could be connected to the PyQt slot close() so that a user
can quit the application when the button is pressed.

The clicked() signal is but one of many predefined Qt signals. The type of signals
that can be emitted differs according to the widget class. PyQt delivers events to widgets
by calling specific, predefined handler functions. These can range from functions
related to window operations, such as show() or close(), to GUI appearances with
setStyleSheet(), to mouse press and release events, and more.

The way in which event handlers deal with events can also be reimplemented. You
saw an example of this back in Chapter 3 when the closeEvent() function was modified
to display dialog boxes before closing the application.

The following example, Listing 6-3, shows a very simple example of how to
reimplement the keyPressEvent () function.

Listing 6-3. Code to demonstrate how to modify event handlers

close_event.py

Import necessary modules

import sys

from PyQts5.0tWidgets import QApplication, QMainWindow
from PyQt5.QtCore import Qt

159

CHAPTER6 STYLING YOUR GUIS

class Example(QMainWindow):

def _init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.
self.setGeometry(100, 100, 300, 200)
self.setWindowTitle('Event Handling Example')

self.show()

def keyPresskEvent(self, event):
if event.key() == Qt.Key Escape:
print("Application closed.")
self.close()

if name_ ==" main_"':
app = QApplication(sys.argv)
window = Example()

sys.exit(app.exec_())

Explanation

Whenever a user presses a key on the keyboard, it sends a signal to the computer. If you
want to give certain keys abilities, then you will need to use the keyPressEvent().

The keyPressEvent () function checks for events, which in this case are the signals
being sent from keys. If the key pressed is the Escape key, then the application calls the
close() function to quit the application.

Of course, you can check for any type of key with the keyPressEvent() and cause it

to perform any number of actions.

160

CHAPTER6 STYLING YOUR GUIS

Creating Custom Signals

We have taken a look at some of PyQt’s predefined signals and slots. For many of the
projects in previous chapters, we have also created custom slots to handle the signals
emitted from widgets.

Now let’s see how we can create a custom signal using pyqtSignal to change a
widget'’s style sheet in Listing 6-4.

Listing 6-4. Creating a custom signal to change the background color of a
QLabel widget

color event.py

Import necessary modules

import sys

from PyQt5.0tWidgets import QApplication, QMainWindow, QLabel
from PyQt5.QtCore import Qt, pyqtSignal, QObject

class SendSignal(QObject):

Define a signal change style that takes no arguments.

change_style = pyqtSignal()
class Example(QMainWindow):

def init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setGeometry(100, 100, 300, 200)
self.setWindowTitle('Create Custom Signals')

self.setuplabel()
self.show()

161

CHAPTER6 STYLING YOUR GUIS

162

def

def

def

setuplLabel(self):

Create label and connect custom signal to slot.

self.index = 0 # index of items in list

self.direction =

self.colors 1list = ["red", "orange", "yellow", "green", "blue",
"purple"]

self.label = QLabel()

self.label.setStyleSheet("background-color: {}".format(self.colors
list[self.index]))

self.setCentralWidget(self.label)

Create instance of SendSignal class, and

connect change style signal to a slot.

self.sig = SendSignal()

self.sig.change style.connect(self.changeBackground)

keyPressEvent(self, event):

Reimplement how the key press event is handled.
if (event.key() == Qt.Key Up):

self.direction = "up"

self.sig.change style.emit()
elif event.key() == Qt.Key Down:

self.direction = "down"

self.sig.change style.emit()

changeBackground(self):

Change the background of the label widget when a keyPressEvent
signal is emitted.

CHAPTER6 STYLING YOUR GUIS

if self.direction == "up" and self.index < len(self.colors list) - 1:
self.index = self.index + 1
self.label.setStyleSheet("background-color: {}".format(self.
colors list[self.index]))

elif self.direction == "down" and self.index > 0:
self.index = self.index - 1
self.label.setStyleSheet("background-color: {}".format(self.
colors list[self.index]))

if name_ =="_ main_"':
app = QApplication(sys.argv)
window = Example()
sys.exit(app.exec ())

This example creates a simple GUI with a QLabel widget as the central widget of the
main window.

Explanation

The pyqtSignal factory and QObject classes are imported from the QtCore module. The
QtCore module and QObject classes provide the mechanics for signals and slots.

The SendSignal class creates a new signal called change style from the pyqtSignal
factory. This signal will be generated whenever the user presses either the up arrow key
or the down arrow key. By pressing up or down, the user can change the background
color of the QLabel object.

self.sig.change style.connect(self.changeBackground)

When the user presses Key Up, direction is set equal to "up”, and a change_style
signal is emitted.

self.sig.change style.emit()

This signal is connected to the changeBackground() slot which updates the color of
the label by calling the setStyleSheet () method.
It works in a similar fashion when the down key is pressed.

163

CHAPTER6 STYLING YOUR GUIS

Summary

In this chapter, we saw how to use Qt Style Sheets to modify the appearance of widgets to
better fit the purpose and look of an application. Applying customizations in a consistent
and attentive manner can greatly influence the usability of a user interface.

Allowing the user to also have some control over the look of the window can improve
the user’s experience. This can be done in a number of ways - through the menu or
toolbar, using a context menu, or even through simple presses of keys on the keyboard.

Chapter 7 will introduce Qt Designer, a tool that will make the process for designing
GUIs much simpler.

164

CHAPTER 7

Creating GUIs with
Qt Designer

The previous chapters have focused on learning how to manually code GUIs using
PyQt. This was done intentionally so that you could have a better fundamental
understanding of the code and processes used to create simple applications.
Chapters 2 and 3 showed you how to create your own GUI from scratch. In Chapter 4,
you learned about layouts and how to arrange widgets by coding them yourself. You
saw how to create applications with menus and toolbars in Chapter 5 and how to style
their look in Chapter 6.

While setting up and arranging GUISs yourself gives you more control over the
design process, not everyone will need or want to take the time to do so. Fortunately,
Qt provides a great application for setting up the layouts and designing main windows,
widgets, or dialogs. Qt Designer is a graphical interface filled with Qt widgets and
other tools used for building GUIs. Using the Qt Designer application’s drag and
drop interface, you are able to create and customize your own dialogs, windows, and
widgets.

The widgets and other applications you create using Qt Designer integrate with
programmed code, using Qt’s signals and slots mechanism, so that you can easily assign
behavior to widgets and graphical elements. This means that rather than focusing
most of your time on layout and design, you can get into coding the functionality of an
application much faster.

In Chapter 7, you will

o Find out about the Qt Designer user interface

o Create an application in Qt Designer, including how to set layouts,
edit object properties, connect signals and slots, and generate
Python code

165
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_7

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

e Learn about the QFrame class for containing other widgets

e Beintroduced to a couple new Qt classes including QPalette and
QIntValidator

Tip For references or more help beyond the scope of this chapter, check out the
Qt Documentation for Qt Designer at https://doc.qt.io/qt-5/qtdesigner-
manual.html.

Getting Started with Qt Designer

Once you have installed PyQt, the first thing you need to do is to launch the Qt Designer
application. After opening Qt Designer, you will see a graphical user interface for
creating your own GUIs like the one in Figure 7-1.

Note For more information about downloading and launching Qt Designer for
Windows, MacOS, and Linux, refer to Appendix A.

% Designer Fle Edit Form View Seitings Window Help

] L] Ot Dasigrae

bl [iz Il
L) weget e ene MainWindam - untied oo | Ctisctmupecr
Fiter Tyen Haew Cass

MainWindow GMainWindaw
Larats .
B2 vertical Liyout % centratwidget | GWidget
= membar QMenuBar
I vorizental Layout statushar @Statusilar
HE ond Layeut
Fom Layout
i Spacers (<] et
B Horizontal Spacer - H —
Vertical Spacer - -

,l Button: MainWindow : GMainWindow
=] Push tmon 2 Frepey Vaken
B ool Buton sbjectName MainWirdow
@ Radio Bution v
B check o enabled]
D) Commend Link Button v geometry 40, £, 620 x 600]
[st Bution Bex : :

Hem Views (Model-Based) Widsh BLO
1 uistview Height 800
R TreeView v sirePolicy [Preterred, Preferred, 0, 0
] vate view Morizontal Poli. Prefored

0 ok view Varticsl Poicy Preforred
Horizontal Str. 0

I e lo_
W0 Tree widget (<] Sgrare bae
A vabie wiagee E

Fomtainecs Sancier v sigral Facaivar ot

B stacked widget EEIEETII Rescurce Browser Action Editor

Figure 7-1. The Qt Designer user interface
166

https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Tip If you are using a stand-alone version of Qt Designer, then you can
change the configuration of Qt Designer under Settings. Locate the
Preferences menu, and in the dialog box that appears, you can change
the appearance of Qt Designer from a Multi Top-Level Windows user
interface to one using Docked Windows. Otherwise, the multilevel layout is
only available if you use Qt Creator, the integrated development environment
(IDE) for working with Qt.

Before you create your first application, let’s get to know the different menus, tools,
and modes that are displayed in the main window in Figure 7-1.

Exploring Qt Designer’s User Interface

When you first open up Qt Designer, you will notice a dialog in the center of the window
with the title New Form. This dialog can be seen in Figure 7-2. From here you can select
a template for creating a main window, a widget, or different kinds of dialog boxes. You
can also choose what kinds of widgets to add to your project’s layout. Once you have
selected a template and the application’s size, an empty window, also known as a form,
will appear for you to modify.

167

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

® O New Form

hd templates/forms
Dialog with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Widget

> Widgets

Embedded Design

Device: None <
Screen Size: Default size
Show this Dialog on Startup
Open.. Recent | Close

Figure 7-2. The New Form dialog box for selecting what type of application to build

At the top of the main window in Figure 7-1, you will notice Qt Designer’s menubar
and toolbar for managing and editing your GUI. On the left side of the main window is
the Widget Box dock widget, shown in Figure 7-3, which provides an organized list of
layouts and widgets that can be dragged and dropped onto the required locations of your
GUIL. Other features for tinkering with the form can be accessed by right-clicking and
opening up various context menus.

Another very useful dock widget is the Property Editor displayed in Figure 7-4. The
properties of windows, widgets, and layouts such as an object’s name, size constraints,
status tips, and more can all be altered using the Property Editor. Each widgetyou add
to a form will have its own set of properties as well as ones that the widget inherits from
other classes. To select a specific widget, you can either click the object in the form or the
widget’s name in the Object Inspector dock widget.

The Object Inspector allows you to view all of the objects that are currently being
used as well as their hierarchical layout. In Figure 7-5, you can see how the MainWindow
is listed first, followed by the centralwidget and all of its widgets. If your form also has
a menu or toolbar, then they will also be listed in the Object Inspector along with their
corresponding actions.

168

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Note The main layout for your GUI is not displayed in the Object Inspector.
A broken layout icon (a red circle with a slash) is displayed on the central widget or
on containers if no layout has been assigned to them.

=
m

'h

: L
Filter

[0 (T

I
M = & SEJ@@

Vertical Layout
Horizontal Layout

Grid Layout

F=] 1

o
o

Form Layout

Spacers

Horizontal Spacer
Vertical Spacer

Buttons
Push Button

Tool Button

Radio Button

B checkBox

e Command Link Button

Dlalog Button Box

. List View

Sy '8 Tree View

B Table view

Column View

Y. Item Widgets (Iltem-Based)
List Widget

‘E.‘B Tree Widget

5] Table widget

hd Containers
- =

OQEJWHE‘E%%

Item Views (Model-Based)

Figure 7-3. The Widget Box dock widget for selecting layouts and widgets

169

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

@ Property Editor

Filter

#V o f‘ g

'MainWindow : QMainWindow

Property Value
QObject _
objectName MainWindow
v
windowModality NonModal
enabled

v geometry [(0, 0), 570 x 410]
X 0
Y 0
Width 570
Height 410
v sizePolicy [Preferred, Prefer...
Horizontal Poli... | Preferred
Vertical Policy | Preferred
Horizontal Str... | 0
Vertical Stretch | 0
» minimumSize 0x0 _
> maximumsSize 16777215 x 1677...
> sizelncrement 0x0
> baseSize 0x0
palette Inherited
v font A [.SF NS Text,...
Family .SF NS Text
Point Size 13

Figure 7-4. The Property Editor dock widget is used for setting the attributes

of widgets

170

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

O ® Object Inspector
Object Class
v MainWindow QMainWindow
v = centralwidget || QWidget
v | horizontalLayout || QHBoxLayout
no_button =] QPushButton
yes_button =] QPushButton
v menubar QMenuBar
v menuFile QMenu
actionOpen QAction
actionNew QAction
statusbar QStatusBar

Figure 7-5. The Object Inspector displays the widget, layout, and menu objects

In Qt Designer, it is also possible to create, edit, and delete signals and slots
between objects using the Signal/Slot Editor. You should be aware that although
you can connect signals and slots, you will not always be able to completely configure
your widgets and will sometimes need to complete that yourself later in the code. The
Signal/Slot Editor canbe seen in Figure 7-6. Qt Designer also provides an editing

mode for connecting widgets.

O @ Signal/Siot Editor
4 =

Sender A Signal Receiver Slot
no_button clicked() question_label clear()

Figure 7-6. The Signal/Slot Editor for connecting the signals and slots of objects

171

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Items in a menu, submenu, or a toolbar are assigned commands by using actions.
These actions can then be given a shortcut key, made checkable, and more. The Action
Editor seen in Figure 7-7 gives you access to working with actions. For more information
about assigning actions, refer to Chapter 5.

® Action Editor
3 E’ X Filter
Name Used Text Shortcut Checkable ToolTip
[actionOpen_2 Open... %0 Open
[] actionNew v New... ®N o New
actionClear_Menu Clear Menu Clear Menu

Figure 7-7. The Action Editor is used to manage the actions of menu items

Finally, there is the Resource Browser which allows you specify and manage
resources you need to use in your application. These resources can include images and
icons. The Resource Browser dock widget can be seen in Figure 7-8.

If you need to add resources, you first need to create a new resource file. To do
so, click the pencil in the top-left corner of the Resource Browser dock widget. This
will open an Edit Resources dialog similar to the one in Figure 7-9. Next, click the
Create New Resource button, navigate to the correct directory, and enter a name for
the resource file. The file will be saved with a . qrc file extension, which stands for Qt
Resource Collection and contains a list of all the resources used in your program. From
here, create a prefix for managing the types of resources and begin adding files such as
images and icons. When you are finished, click the OK button and the files will be added
to the Resource Browser.

To access files in code found in the resource file, append “:/” to the beginning of the
file’s location. For example, to use the new_file icon

self.label.setPixmap(QtGui.QPixmap(":/icons/images/new_file.png"))

172

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Resource Browser

[JON
- Filter

v <resource root> —ﬁ_
v icons % o
+

~new_fil... open_fil...

Figure 7-8. The Resource Browser for working with resources such as images
and icons

® o Edit Resources
practicel.qrc Prefix / Path Language / Alias
v icons

B images/new_file.png
(@ ...agesfopen_file.png

Cancel

Figure 7-9. The Edit Resources dialog

Qt Designer’s Editing Modes

In Qt Designer there are four different editing modes that can be accessed either in the
Edit menu or from Qt Designer’s toolbar. Take a look at Figure 7-10 to help you locate the
widgets in the toolbar.

1. Edit Widgets - Widgets can be dragged and dropped to a form,
layouts can be applied, and objects can be edited both on the
form and in the Property Editor. This is the default mode.

173

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

2.

Edit Signals/Slots - Connect signals and slots for widgets and
layouts. To create connections, click an object and drag the cursor
toward an object that will receive the signal. Items that can be
connected will be highlighted as the mouse cursor moves over
them. To create the connection, release the mouse button once

a line with an arrow connects the two objects. Then configure

the signals and slots. Use in conjunction with the Signal/Slots
Editor dock widget to edit connections.

Edit Buddies - Connect QLabel widgets with shortcuts to
input widgets such as QLineEdit or QTextEdit. The input widget
becomes the QLabel’s “buddy.” When the user enters the label’s
shortcut key, the focus moves to the input widget.

Edit Tab Order - Set the order in which widgets receive focus
when the tab key is pressed. This allows the user to navigate
through the different widgets to make your application easier to use.

Qt Designer

HB OODINERBRIUEY =8 E @ K

Figure 7-10. Qt Designer’s Editing Modes (outlined in red). (From left to right)
Edit Widgets, Edit Signals/Slots, Edit Buddies, Edit Tab Order

Creating an Application in Qt Designer

When you are creating your GUI's windows and widgets, you will probably continue to

make slight adjustments to your application before it is finished. Fortunately, there are a

few steps you can follow to simplify the building process.

1.

174

Select a form - In the New Form dialog (shown in Figure 7-2),
choose from one of the available templates, Main Window,
Widget, or a type of dialog. You can also add and preview widgets
to include in your GUL

Arrange objects on the form - Use Qt Designer’s drag and drop
mechanics to place widgets on the form. Then assign layouts to
containers and the main window.

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

3. Edit the properties of objects - Click the objects in the form and
edit their features in the Property Editor dock widget.

4. Connect signals and slots - Use the Signal/Slots Editing mode to
link signals to slots.

5. Preview your GUI - Examine the form before saving it as a Ul file
with the .uil extension.

6. Create and edit Python code - Utilize the pyuic compiler to
convert the Ul file to readable and editable Python code.

The following project will cover these steps in addition to many of the basic concepts
for creating GUIs using Qt Designer.

Project 7.1 — Keypad GUI

To get you started using Qt Designer, the project in this chapter is a simple one - a
keypad GUI. A keypad is a set of buttons with digits, symbols, or letters used as an input
device for passcodes, telephone numbers, and more. They can be found on a number
of devices such as calculators, cell phones, and locks. Figure 7-11 shows the keypad GUI
you will create in this project.

175

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

®@ e 7.1 - Keypad GUI

Enter a passcode

Figure 7-11. Keypad GUI

Keypad GUI Solution

The keypad application is comprised of two Python files, keypad gui.py and keypad
main.py. The keypad_gui.py contains all of the Python code generated from the Ul file
created using Qt Designer. In order to use that code, we then create a customized class in
a separate file, keypad_main.py, to import and set up the GUL

The keypad GUI consists of four QLineEdit widgets to input only numeric values,
twelve QPushButton widgets, and a single QLabel to display information about how to
use the interface. The asterisk button allows users to clear the current input and the hash
button is for confirming the user’s four-digit input.

This project introduces the QFrame container for organizing Qt widgets. The
program also utilizes nested layouts to arrange the various widgets and containers.

176

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Note The following Python code in Listing 7-1 is produced from the Ul file using
pyuic. It has not been altered. To help you understand the code, Listing 7-1 is
broken into parts with annotations.

Listing 7-1. Code for keypad created from keypad.ui

keypad_gui.py
Import necessary modules
from PyQt5 import QtCore, QtGui, QtWidgets

class Ui _Keypad(object):
def setupUi(self, Keypad):
Keypad.setObjectName("Keypad")
Keypad.resize(302, 406)

Import modules from PyQt5 and create a class that inherits from QWidget, Keypad.
The member function setupUi() of the class Ui_Keypad is used to build a widget tree
on the parent widget, Keypad. A widget tree is used to represent the organization of
widgets in a UL So the setupUi() method composes the Ul based upon the widgets and
connections we used to create it along with the parameters it inherits from its parent
widget.

palette = QtGui.QPalette()

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush)
brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush)
brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush)
brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

177

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush)
brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush)
Keypad.setPalette(palette)

Every widget in Qt has a palette which contains information about how they will
be drawn in the window. The QPalette class contains the color groups for each widget
during one of three possible states - Active, Inactive, or Disabled. The preceding code
changes the color of the main window to dark gray. How to change the settings in the
palette will be introduced in the “Explanation” section of Project 7.1. You can also create
style sheets in Qt Designer.

self.verticallayout = QtWidgets.QVBoxLayout(Keypad)
self.verticallayout.setObjectName("verticallLayout")

Create the vertical layout that will be used for the main window.

self.label = QtWidgets.QLabel(Keypad)

palette = QtGui.QPalette()

brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)
brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))
brush.setStyle(QtCore.Qt.SolidPattern)
palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)
self.label.setPalette(palette)

font = QtGui.QFont()

font.setPointSize(20)

self.label.setFont(font)

self.label.setAlignment(QtCore.Qt.AlignCenter)
self.label.setObjectName("label")

self.verticallayout.addWidget(self.label)

178

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Create the QLabel object, modify its palette settings so that the color of the font is
light gray, and add the label to the vertical layout.

self.frame = QtWidgets.QFrame(Keypad)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,

QtWidgets.QSizePolicy.Preferred)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(1)
sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth())
self.frame.setSizePolicy(sizePolicy)
self.frame.setFrameShape(QtWidgets.QFrame.NoFrame)
self.frame.setFrameShadow(QtWidgets.QFrame.Plain)
self.frame.setLineWidth(0)

self.frame.setObjectName("frame")

self.horizontallLayout = QtWidgets.QHBoxLayout(self.frame)
self.horizontallayout.setObjectName("horizontallLayout")

The first QFrame container, frame, will hold four QLineEdit widgets and use a
horizontal layout. You can adjust the style of a frame object using its setFrameShape(),
setFrameShadow(), and other methods.

self.line edit1 = QtWidgets.QLineEdit(self.frame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,
OtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.line edit1.sizePolicy().
hasHeightForWidth())

self.line editi.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line editi.setFont(font)

self.line editi.setAlignment(QtCore.Qt.AlignCenter)
self.line editi.setObjectName("line edit1")
self.horizontallayout.addWidget(self.1line edit1)

self.line edit2 = QtWidgets.QLineEdit(self.frame)

179

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(o0)
sizePolicy.setHeightForWidth(self.line edit2.sizePolicy().
hasHeightForWidth())

self.line edit2.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line edit2.setFont(font)

self.line edit2.setAlignment(QtCore.Qt.AlignCenter)
self.line edit2.setObjectName("line edit2")
self.horizontallayout.addwidget(self.line edit2)

self.line edit3 = QtWidgets.QLineEdit(self.frame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.line edit3.sizePolicy().
hasHeightForWidth())

self.line edit3.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(30)

self.line edit3.setFont(font)

self.line edit3.setAlignment(QtCore.Qt.AlignCenter)
self.line edit3.setObjectName("line edit3")
self.horizontallayout.addwWidget(self.line edit3)

self.line edit4 = QtWidgets.QLineEdit(self.frame)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,
OtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.line edit4.sizePolicy().
hasHeightForWidth())

self.line edit4.setSizePolicy(sizePolicy)

font = QtGui.QFont()

180

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

font.setPointSize(30)

self.line edit4.setFont(font)

self.line edit4.setAlignment(QtCore.Qt.AlignCenter)
self.line_edit4.setObjectName("line edit4")
self.horizontallayout.addwWidget(self.line edit4)
self.verticallayout.addWidget(self.frame)

Each of the four line edit widgets has size policies that allow them to stretch if the
window resizes in both the vertical and horizontal directions by using 0SizePolicy.
Expanding. They are then arranged in the horizontallayout of the frame container. The
frame object is then added to the verticallayout of the main window.

self.frame 2 = QtWidgets.QFrame(Keypad)

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,
QtWidgets.QSizePolicy.Preferred)

sizePolicy.setHorizontalStretch(0)

sizePolicy.setVerticalStretch(2)
sizePolicy.setHeightForWidth(self.frame 2.sizePolicy().hasHeightForWidth())
self.frame 2.setSizePolicy(sizePolicy)
self.frame_2.setFrameShape(QtWidgets.QFrame.Box)

self.frame 2.setFrameShadow(QtWidgets.QFrame.Sunken)

self.frame 2.setlLineWidth(2)

self.frame_2.setObjectName("frame 2")

self.gridlayout = QtWidgets.QGridlLayout(self.frame 2)
self.gridlLayout.setObjectName("gridLayout")

Instantiate the second frame container, and set the size policy and style attributes.
The layout inside frame_2 houses the twelve buttons and uses a grid layout.

self.button_7 = QtWidgets.QPushButton(self.frame_ 2)

sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button_ 7.sizePolicy().
hasHeightForWidth())

self.button 7.setSizePolicy(sizePolicy)

181

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

font = QtGui.QFont()

font.setPointSize(36)

self.button 7.setFont(font)

self.button 7.setObjectName("button 7")
self.gridlLayout.addWidget(self.button 7, 0, 0, 1, 1)
self.button 8 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(o)
sizePolicy.setHeightForWidth(self.button 8.sizePolicy().
hasHeightForWidth())

self.button 8.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 8.setFont(font)

self.button 8.setObjectName("button 8")
self.gridlLayout.addWidget(self.button 8, 0, 1, 1, 1)
self.button 9 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 9.sizePolicy().
hasHeightForWidth())

self.button 9.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 9.setFont(font)

self.button 9.setObjectName("button 9")
self.gridlLayout.addWidget(self.button 9, 0, 2, 1, 1)
self.button 4 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)

182

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 4.sizePolicy().
hasHeightForWidth())

self.button 4.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 4.setFont(font)

self.button 4.setObjectName("button 4")
self.gridlLayout.addWidget(self.button 4, 1, 0, 1, 1)
self.button 5 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 5.sizePolicy().
hasHeightForWidth())

self.button 5.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 5.setFont(font)
self.button_5.setObjectName("button 5")
self.gridlLayout.addWidget(self.button 5, 1, 1, 1, 1)
self.button 6 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 6.sizePolicy().
hasHeightForWidth())
self.button_6.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 6.setFont(font)

self.button 6.setObjectName("button 6")
self.gridlayout.addWidget(self.button 6, 1, 2, 1, 1)

183

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

self.button 3 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 3.sizePolicy().
hasHeightForWidth())

self.button 3.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 3.setFont(font)

self.button 3.setObjectName("button 3")
self.gridlLayout.addWidget(self.button 3, 2, 0, 1, 1)
self.button 2 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 2.sizePolicy().
hasHeightForWidth())

self.button 2.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 2.setFont(font)

self.button 2.setObjectName("button 2")
self.gridlLayout.addWidget(self.button 2, 2, 1, 1, 1)
self.button 1 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
OtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 1.sizePolicy().
hasHeightForWidth())

self.button 1.setSizePolicy(sizePolicy)

font = QtGui.QFont()

184

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

font.setPointSize(36)

self.button 1.setFont(font)

self.button 1.setObjectName("button 1")
self.gridlLayout.addWidget(self.button 1, 2, 2, 1, 1)
self.button_star = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
OtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button star.sizePolicy().
hasHeightForWidth())

self.button star.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button star.setFont(font)

self.button star.setObjectName("button star")
self.gridlLayout.addWidget(self.button_star, 3, 0, 1, 1)
self.button 0 = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
OtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(self.button 0.sizePolicy().
hasHeightForWidth())

self.button 0.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button 0.setFont(font)

self.button 0.setObjectName("button 0")
self.gridlLayout.addWidget(self.button o, 3, 1, 1, 1)
self.button _hash = QtWidgets.QPushButton(self.frame 2)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
OtWidgets.QSizePolicy.MinimumExpanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)

185

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

sizePolicy.setHeightForWidth(self.button_hash.sizePolicy().
hasHeightForWidth())

self.button _hash.setSizePolicy(sizePolicy)

font = QtGui.QFont()

font.setPointSize(36)

self.button_hash.setFont(font)
self.button_hash.setObjectName("button hash")
self.gridlLayout.addWidget(self.button_hash, 3, 2, 1, 1)
self.verticallayout.addWidget(self.frame 2)

The twelve QPushButton widgets are created, and their properties, such as their
object names and font sizes, are adjusted. Every button is then added to the grid layout
of frame_2 which is then added to the vertical layout of the main window.

self.retranslateUi(Keypad)

self.button star.clicked.connect(self.line edit1.clear)
self.button_star.clicked.connect(self.line_edit2.clear)
self.button star.clicked.connect(self.line edit3.clear)
self.button star.clicked.connect(self.line edit4.clear)
QtCore.QMetaObject.connectSlotsByName(Keypad)

The retranslateUi() method handles how to display text in the GUI in the situation
where a different language is used. In the keypad, the user is given a way to delete their
input and try again. When the button_star is clicked, it sends a signal to clear the text in
all four QLineEdit widgets. This could be handled a different way, but for this example,
this is used as an example to show how to connect signals to slots in Qt Designer.

def retranslateUi(self, Keypad):

_translate = QtCore.QCoreApplication.translate
Keypad.setWindowTitle(translate("Keypad", "7.1 - Keypad GUI"))
self.label.setText(translate("Keypad", "Enter a passcode"))
self.button 7.setText(translate("Keypad", "7"))
self.button 8.setText(translate("Keypad", "8"))
self.button 9.setText(translate("Keypad", "9"))

self.button 4.setText(_translate("Keypad", "4"))
self.button 5.setText(translate("Keypad", "5"))
self.button 6.setText(translate("Keypad", "6"))

self.button 3.setText(translate("Keypad", "3"))

186

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

self.button 2.setText(translate("Keypad", "2"))
self.button 1.setText(translate("Keypad", "1"))
self.button star.setText(translate("Keypad", "*"))
self.button 0.setText(translate("Keypad", "0"))
self.button_hash.setText(translate("Keypad", "#"))

The following code in Listing 7-2 creates the class that inherits from Ui_Keypad and
sets up the GUI application.

Listing 7-2. Code for the keypad GUI created from keypad.ui

keypad_main.py

Import necessary modules

import sys

from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.0tWidgets import QMessageBox
from PyQt5.0tGui import QIntValidator
from keypad gui import Ui_Keypad

class KeypadGUI(QtWidgets.QWidget):
def _init (self):
super (KeypadGUI, self). init ()
self.ui = Ui Keypad()
self.ui.setupUi(self)

self.initializeUI()
self.show()

def initializeUI(self):
Update other line edit features
self.ui.line_editi.setMaxLength(1) # Set the max number of
characters allowed
self.ui.line editi.setValidator(QIntValidator(o, 9)) # User can
only enter ints from 0-9
self.ui.line edit1.setFocusPolicy(QtCore.Qt.NoFocus) # Widget does
not except focus

187

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

188

self.ui.line_edit2.setMaxLength(1)
self.ui.line edit2.setValidator(QIntValidator(o, 9))
self.ui.line_edit2.setFocusPolicy(QtCore.Qt.NoFocus)

self.ui.line_edit3.setMaxLength(1)
self.ui.line edit3.setValidator(QIntvalidator(o, 9))
self.ui.line edit3.setFocusPolicy(QtCore.Qt.NoFocus)

self.ui.line_edit4.setMaxLength(1)
self.ui.line_edit4.setValidator(QIntValidator(o, 9))
self.ui.line edit4.setFocusPolicy(QtCore.Qt.NoFocus)

4-digit passcode
self.passcode = 8618

Add signal/slot connections for buttons #i###
self.ui.button 0.clicked.connect(lambda: self

ui.button o.text()))
self.ui.button 1.clicked.
ui.button 1.text()))
self.ui.button_2.clicked.
ui.button 2.text()))
self.ui.button 3.clicked.
ui.button 3.text()))
self.ui.button_4.clicked.
ui.button 4.text()))
self.ui.button_5.clicked.
ui.button 5.text()))
self.ui.button 6.clicked.
ui.button 6.text()))
self.ui.button_7.clicked.
ui.button 7.text()))
self.ui.button 8.clicked.
ui.button 8.text()))
self.ui.button 9.clicked.
ui.button 9.text()))

self.ui.button hash.clicked.connect(self.

connect(lambda:
connect(lambda:
connect(lambda:
connect(lambda:
connect(lambda:
connect(lambda:
connect(lambda:
connect(lambda:

connect(lambda:

self.

self.

self.

self.

self.

self.

self.

self.

self

.numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.
numberClicked(self.

.numberClicked(self.

checkPasscode)

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

def numberClicked(self, text value):

def

When a button with a digit is pressed, check if the text for
QLineEdit widgets
are empty. If empty, set the focus to the correct widget and enter
text value.
if self.ui.line editi.text() == "":
self.ui.line editi1.setFocus()
self.ui.line editi.setText(text value)
self.ui.line editi.repaint()
elif (self.ui.line editi.text() != "") and (self.ui.line edit2.
text() == ""):
self.ui.line edit2.setFocus()
self.ui.line edit2.setText(text value)
self.ui.line_edit2.repaint()

elif (self.ui.line editi.text() !'= "") and (self.ui.line edit2.
text() = "") \
and (self.ui.line edit3.text() == ""):

self.ui.line edit3.setFocus()
self.ui.line edit3.setText(text value)
self.ui.line edit3.repaint()

elif (self.ui.line editi.text() != "") and (self.ui.line edit2.
text() = "") \
and (self.ui.line edit3.text() != "") and (self.ui.line edit4.
text() == ""):

self.ui.line edit4.setFocus()
self.ui.line edit4.setText(text value)
self.ui.line_edit4.repaint()

checkPasscode(self):

Concatenate the text values from the 4 QLineEdit widgets, and
check to see if the passcode entered by user matches the existing
passcode.

189

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

entered passcode = self.ui.line editi.text() + self.ui.line edit2.

text() + \

self.ui.line edit3.text() + self.ui.line edit4.text()
if len(entered passcode) == 4 and int(entered passcode) == self.
passcode:

QMessageBox.information(self, "Valid Passcode!", "Valid
Passcode!", QMessageBox.0k, QMessageBox.Ok)
self.close()
else:
QMessageBox.warning(self, "Error Message", "Invalid Passcode.",
OMessageBox.Close, QMessageBox.Close)
self.ui.line editi.clear()
self.ui.line edit2.clear()
self.ui.line edit3.clear()
self.ui.line edit4.clear()
self.ui.line editi.setFocus()

if _name__ == "_ main_":
app = QtWidgets.QApplication(sys.argv)
Keypad = KeypadGUI()
sys.exit(app.exec_())

When you run the code, your GUI should look similar to Figure 7-11.

Explanation

In order to utilize the Ui_Keypad class that was created using Qt Designer, we create a
new Python file, keypad _main.py. The KeypadGUI class created in keypad main.py will
inherit from the U1_Keypad class.

We begin by importing the modules needed for this project, including the Ui_Keypad
class and a new Qt class, QIntValidator. Qt provides a few classes that can be used to
verify the types of input text. QIntValidator will be used to check if the values input into
the QLineEdit widgets are integers.

190

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

The KeypadGUI class is created using a single inheritance approach where it inherits
its properties from a single parent class, QWidget. The user interface is set up in the
__init_ () method in the following lines:

self.ui = Ui Keypad()
self.ui.setupUi(self)

In the initializeUI() method, local modifications are made to the QLineEdit
widgets. Here the line edit widget’s focus policy is set to NoFocus so that users can only
enter input in the correct order.

Then we connect the signals and slots for the button widgets. When each button
is clicked, it sends a signal that is connected to the numberClicked() slot. Rather than
creating a separate method for each button, the 1ambda function is used to reuse a
method for signals. 1ambda calls the numberClicked() function and passes it a new
parameter every time, in this case the specific text from each button.

When a user clicks a button, that button’s number needs to appear in the correct
line edit widget from left to right. A widget receives focus if its text () value is empty. On
MacOS, the repaint () method was used to update the text in the QLineEdit widgets.
repaint() is used to force a widget to update itself.

Finally, if the user presses the # button, the method checkPasscode() checks if the
user entered the passcode that matches self.passcode. If the input does not match, the
line edit widgets are reset. This project could be designed so that the password is read
from a file or from a database.

We have taken a look at the user interface class created from Qt Designer and at the
file that inherits from it. The following section shows in detail how to create the GUI in Qt
Designer.

Select a Form

Begin by opening up Qt Designer. Choose the Widget template from New Formdialog
box. We will use the default screen size. Select Create. This opens up a blank GUI
window with a grid of dots inside of the Qt Designer interface like in Figure 7-12.

191

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

ece Ot Designer
= e BN [4]
=B =] o} |E=EEB M
o Wi Ben ene Form - untithed {=1-] et ragecton
e Object Class
Layouts > !
= venical Layout
11l Horizoneal Layout
55 orid Layout
B rormiayout
',, b {x]-] Property Edtor
B8l Horizontal Spacer Filter ':E- e
' Vertical Spacer Form : OWidget
v Buttons Proparty Value
=] Pusn Button
[ool Bution objectMame Form
@ FRadio Button ¥
' Check Box windowModality KonMadal
enabled a
€ command Link Button » geometry 110, 0, 400 x 300)
"w Dialog Button Box » sizePolicy [Preferred, Preferred, 0, 0]
Item Views (Model-Based) » minimumSize 0x0
] List View » maximumSize 18777215 x 167772116
W Troe view » sizelncrement ox0
B Tatie view » basaSize 0x0
o P palette inherited
v font A [SF NS Text, 13)
" Item Widgets (em-Based) Family .SF NS Text
& vist wicget
] Tree widget L st
izl Tasie widget +
v Containers Seedder v Signe Rezerver £
=) Groun Box
[sercanrea
B9 roolgax
B Tab Widget
B srached Widont Resource Browser Action Editar

Figure 7-12. The Qt Designer interface displaying the toolbar and its different
dock widgets for managing GUIs. In the center is the empty Widget form that will
be used to create the keypad

Arrange Objects on the Form

From here you could immediately begin to adjust certain features of the form such as the
window size or the background color. Instead, let’s begin by adding whatever widgets
you may need for your project by dragging and dropping them into the main window
from the Widget Box on the left of the window.

Start by selecting a QLabel widget and two QFrame containers and place them on
the form like in Figure 7-13. You can resize the frames by clicking them and moving
the edges of the frame. Then drag four QLineEdit widgets and arrange them in the
top QFrame container. They will overlap, but that will be fixed when you apply layouts
to the frames and the main window. When an object is dragged on top of a container
that it can be placed into, the container will be highlighted to indicate that you can
drop the widget inside. In addition, place twelve QPushButton widgets in the bottom
frame.

192

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

® 0] Form - untitied* ® O Form - untitled®
TextLabel TextLabel
- - L]
PushButton PushButton PushButton

PushButton
PushButton PushButton e .

PushButton PushButton PushButton

PushButt PushButt

shButton shButton PushButton
L] - L]

Figure 7-13. The form with a label and two frames (left) and with the line edit
widgets and push buttons added (right)

The QFrame Class

The QFrame class is used as a container to group and surround widgets, or to act as
placeholders in GUI applications. You can also apply a frame style to a QFrame container
to visually separate it from nearby widgets. The following bit of code shows an example
of how to create a frame object, modify its properties, and add a widget:

def frameUI(self):
self.frame = QFrame(self) # Create QFrame object
size policy = QSizePolicy(QSizePolicy.Expanding, QSizePolicy.
Preferred)

self.frame.setSizePolicy(size policy)
self.frame.setFrameShape(QFrame.Box)
self.frame.setFrameShadow(QFrame.Raised)
self.frame.setLineWidth(3)
self.frame.setMidLineWidth(5)

Set layout for QFrame object
self.grid = QGridLayout(self.frame)

Place other widgets inside the frame by

calling the addWidget() method on the layout.
self.button = QPushButton("Enter", self)
self.grid.addwidget(self.button, 0, 0, 1, 0)

193

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

A frame object can have a number of different styles of frames, including boxes,
panels, or lines. The style of the frame can be adjusted using the setFrameShadow(),
setLineWidth(), and setMidLineWidth() methods.

Apply Layouts in Qt Designer

The next step is to add layouts to all of the containers and to the main window, as well.
This is important to make sure that items are placed and resized correctly. Layouts
can be added either from the toolbar or from context menus. It is possible to add more
widgets to existing layouts once they have been set.

Since Qt Designer uses a drag and drop interface, you only need to place the objects
on the form close to where you want them to be and then select one of the four layouts -
QGridLayout, QHBoxLayout, QVBoxLayout, or QFormLayout - and Qt Designer will take
care of placing them by using a widget’s size hint. For more information about the types
of layouts in PyQt, refer to Chapter 4.

Right-click the topmost frame to open a context menu. Scroll down to the last option,
Lay out, and select Layout Out Horizontally. Do the same thing for the bottom frame,
but this time select Layout Out in a Grid. This is demonstrated in Figure 7-14.

LN Qt Desig
[~ B sl = = B T
DERDEAECR OIS SE 50

[=]-] Widget Box oo Obiect inspector
Filter Objeat Can
" Herizortal Spacer TR OFrame
£ vetcal spacer w8 OlineEdit
= Buttons « = OlLineEdit
j:l Puth Bumon - = m_mm
.ﬂ - & OlineEdit

Toal Button ® Form - untitied® 00 =
@ Madio Butica Progerty Edner

TextLabel
B Check Box . - . o .;‘G;' . 2
Q Command Link Butten i cnmol:‘ocmame... frame : OFrame
[} Disiog Button Bax AR i 3 Pragerty ek
¥ meenCremnen v

-] Item Views [Model-Based) i Change toolTip... - u:osm) 0*:
(8] ustview Change whatsThis...
FH Tree view Change styleSheet pelarte Fhangs Futene
= PushBution - fomt A LSFNS Text, 13)
& osie view Size Constraints » Pushiution Family SF NS Text
[column view o e Point Size u

Item Widgets (Rem-Based) e Bold
:] List Widget Send to Back xK Ralic
] Tree wicget Bring to Front L PushButton Underline
G Table widget 3 cut e $1I'Ie..oui C
; Contsiners . Copy ®C Karnm = a
—J Grous Bax E Paste xv Antiafasing PrefesDas
[serounrmn Select Al : Arrow
BY rociax Dulota.
B Taowiaon BT 5 1. 5ize : s
B stacked widger

| Frame Aucerver Shot

widget
_H moiarea
3 Dociwisge:

Ingut Widgets

B comboBox Simpiity Grid Layout ¥ & &+ Resource Browser Action Editor

Figure 7-14. Open a context menu to select layouts for containers and windows

194

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

The top-level layout of a form can be set by right-clicking the form itself in the
main window, and locating the layout you want to use. For the keypad GUI, select
Layout Out Vertically. If the widgets are not aligned properly, you can also open the
context menu, select Break Layout, and rearrange the widgets. Figure 7-15 shows the
form with layouts applied.

[BoN | Form - untitled®

TextLabel
PushButton PushButton PushButton
PushButton PushButton PushButton
PushButton PushButton PushButton
PushButton PushButton PushButton

Figure 7-15. The keypad GUI with layouts

Edit the Properties of Objects

Once you have the layouts prepared, you should begin editing the features of the objects.
This step could also be accomplished earlier when you place objects on the form.

The Property Editor is shown in Figure 7-4. It is organized into two columns,
Property and Value. The properties are organized by Qt Classes.

To access and make changes to specific containers, widgets, layouts, or even the
main window, you can click them in the form or in the Object Inspector.If a property
is edited in the Property Editor, you can locate it by the following pattern:

Qt Class (Property column) » Property name » (submenu, if any) » Value

The following are the steps that you can follow along to create the keypad GUT in Qt
Designer:

1. Change window title: QWidget » windowTitle » 7.1 >
Keypad GUI

2. Double-click the QLabel. Change text to Enter a passcode.

195

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

3. Change QLabel properties:
a. QWidget » font » font » Point Size » 20

b. To edit palette colors, you will need to locate the palette property that
opens a dialog box. Here you can change the colors for different parts of
an object. To change the color of the text in the label object: QWidget »
palette » Change Palette » Window Text » white

c. QLabel » alignment » Horizontal » AlignHCenter
4. Change top frame properties:
a. QWidget » sizePolicy » Vertical Stretch» 1
b. QFrame » frameShape » NoFrame
c. QFrame » frameShadow » Plain
5. For each of the four QLineEdit widgets, modify their properties:
a. QWidget » sizePolicy » Vertical Policy » Expanding
b. QWidget » font » font » Point Size » 30
c. QLineEdit » alignment » Horizontal » AlignHCenter
6. Change bottom frame properties:
a. QWidget » sizePolicy » Vertical Stretch» 2
b. QFrame » frameShape » Box
c. QFrame » frameShadow » Sunken
d. QFrame » lineWidth >» 2

7. Double-click each of the buttons and change their text to 0-9, =,
and #.

8. Edit each of the buttons’ properties:
a. QWidget » sizePolicy » Vertical Policy » Expanding
b. QWidget » font » font » Point Size » 36

9. Resize the main window:
a. QWidget » geometry » Width » 302

b. QWidget » geometry » Height » 406
196

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

10. Click the form and change its background color: QWidget »
palette » Change Palette » Window » dark gray

11. IntheObject Inspector, double-click each of the default object
names and edit them. The object name is used to reference the
objects in the code.

After you have followed along with each of the steps, the form should look similar to
Figure 7-11.

Connect Signals and Slots in Qt Designer

Switch to the Edit Signals/Slots mode by selecting it from the toolbar. Qt Designer
has a simple interface for connecting signals and slots. Click the object that will emit a
signal and drag it to the object that will receive the signal, which is the slot.

For the keypad GUI, we are only making one set of connections. The remaining
signals and slots will be handled by manually coding them. When the ‘" button is
clicked, we want to clear all four line edit widgets. Click the button and drag the red
arrow to the first line edit object. A dialog box will appear (displayed in Figure 7-16) that
allows you to select the methods for both the signal and the slot. Select clicked() for the
button and clear () for the line edit. Finish connecting the other three line edit widgets.
Refer to Figure 7-17 as a guide for connecting the widgets.

Tip When connecting signals and slots, make sure to check the “Show signals
and slots inherited from QWidget” checkbox to access more methods.

197

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

® O Configure Connection
pushButton_10 (QPushButton) lineEdit (QLineEdit)

clicked) cear) |
clicked(bool) close()
customContextMenuRequested(QPoint) copy()
destroyed() cut()
destroyed(QObject*) deletelLater()
objectNameChanged(QString) hide()
pressed() lower()
released() paste()
toggled(bool) raise()
windowlconChanged(QIlcon) redo()
windowlconTextChanged(QString) repaint()
Edit... Edit...

Show signals and slots inherited from QWidget

cancel (D

Figure 7-16. The dialog box for connecting signals and slots

@] @® 7.1-Keypad GUI - keypad_.ui

Enter a passcode

Figure 7-17. The keypad GUI with signal and slot connections
198

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Preview Your GUI

It is often useful to view and interact with the form before exporting it to code. Not only
can this be useful for checking the visual appearance of your GUI, but previewing also
helps to make sure the signals and slots, resizing the window, and other functions are
working properly.

To preview a form, open the Form menu and select Preview or use the hot keys Ctrl+R
for Windows or Cmd+R for MacOS. If you are satisfied with your form, save it as a Ul file
with the .ui extension. Qt Designer Ul files are written in XML format and contain the
widget tree representation for creating a GUI.

Create and Edit Python Code

Qt Designer uses the Qt utility User Interface Compiler (uic) to generate code and create
the user interface. However, since you are using PyQt5, you must use the uic Python
module, pyuic5, toload .ui files and convert the XML file to Python code.

The pyuic5 utility is a command-line interface for interacting with uic. Open up the
command prompt in Windows or Terminal in MacOS and navigate to the directory that
contains the Ul file. The format for converting to Python code is

pyuic5 filename.ui -o filename.py

To output a Python file, you need to include the -0 option and the Python file to be
written to, filename.py. This command will generate a single Python class. Generally,
you will need to create a separate file to inherit from your newly created user interface
class. Another option is to create an executable file that can display the GUL This can be
done by including the -x option.

pyuic5 -x filename.ui -o filename.py

Note If you make changes to the GUI in Qt Designer after creating the Python file,
you will need to call pyuic5 again on the Ul file.

Tip While it is possible to write new code in the newly generated Python file, the
best thing to do would be to create a new file that imports the new user interface
class. If you need to make changes to the GUI in Qt Designer and resave the file, it
will erase any new code that you have written.

199

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Extra Tips for Using Qt Designer

The following section briefly covers two additional topics:
o Creating GUIs with menus

o Displaying images in Qt Designer

Setting Up Main Windows and Menus

Open Qt Designer and select the Main Window template from the Form Menu in Figure 7-2.
This creates a main window with a menubar and status bar by default. You can see a main
window form displayed in Figure 7-1.

Adding Menus and Submenus in Qt Designer

Adding menus in Qt Designer is simple. Double-click the Type Here placeholder textin
the menubar and enter the title of the menu. This process is shown in Figure 7-18. If
you want to create a shortcut, you can also add the ampersand, ‘&, to the beginning of
the menu'’s text. This updates the menubar object in the Object Inspector dialog. You
can also edit the menu’s properties in the Property Editor.

@ © [NON
Type Here File
® 00 ® @
Type Here Type Here
|__Type Here | Open... &
Add Separator [New...| |
Add Separator

Figure 7-18. Creating menus and menu entries. Type Here placeholder (top-left).
Double-click the placeholder and enter menu’s title (top-right). Add new menu
entry (bottom-left). New menu entry (bottom-right)

200

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

From here you can either add more menus, submenus, or actions. To add a
submenu, first create a menu item. Then click the plus symbol next to the new entry
in the menu. This will add a new menu that branches off of the existing menu entry.
Double-click the Type Here placeholder and enter the text for the new item. Refer to
Figure 7-19.

®@0e [NON)

| Fi£| Type Here Type Here
Open...) Open... 5|
New...] New... |
Recent Forms €[Type Here] RecentForms) Clear Menu
Type Here Add Separator Type Here [__Type Here]
Add Separator Add Separator Add Separator

Figure 7-19. Adding submenus. Click the plus symbol next to menu entry (left).
Add new entry (right)

Adding Toolbars in Qt Designer

Toolbars can be added to the main window by right-clicking the form to open a context
menu. Click the Add Tool Bar option.

The actions in toolbars are created as toolbar buttons and can be dragged between
the menus and the toolbar. You can also add icons to the toolbar. This topic is covered in
the “Display Images in Qt Designer” section. An example of the toolbar with an icon is
shown in Figure 7-20.

@® @
File Type Here

[w

Figure 7-20. Toolbar with Open toolbar button

201

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Adding Actions in Qt Designer

When items are first created in the menu and the toolbar, they are actually actions.
Actions can be created, removed, given an icon, designated a shortcut hot key, and made
checkable all in the Action Editor dock widget (shown in Figure 7-7). Actions can also
be shared between the menu and the toolbar.

To share an action between the menu and the toolbar so that both objects contain
the same item, drag the action from the Action Editor that already exists in the menu
onto the toolbar.

Display Images in Qt Designer

This last section will take a quick look at how you can include images and icons in your
application. Whether you are looking to add an image to a QLabel widget or trying to add
icons to your toolbar, the process for adding an image is similar.

For example, if you have a QLabel widget on your form, you can access its properties
in the Property Editor, shown below in Figure 7-21. Scroll down until you find the
pixmap property. Click its Value and from here you will be able to search for an image
file. If you want to add an icon, then you will look for the icon property, not pixmap.

You are given two options: Choose Resource... and Choose File....Ifyou have
added resources to your project, then select Choose Resource. ... Otherwise, you can
search for images on your computer.

label : QLabel
' Property Value
v
> text TextLabel
textFormat AutoText
| pixmap B -
scaledContents ~ Choose Resource...
v alignment AlignLeft, AlignVCeni Choose File...
Horizontal AlignLeft
Vertical AlignVCenter
wordWrap
_____marnin n

Figure 7-21. Add images to your application using the pixmap property

202

CHAPTER 7 CREATING GUIS WITH QT DESIGNER

Summary

Qt Designer is definitely a useful tool for creating GUI applications. It provides a drag
and drop interface that makes it easier to lay out widgets; modify the parameters of
objects; create menus, toolbars, and dock widgets; add actions to menus; generate code
that can be used in Python; and more. Qt Designer can make the design process much
quicker and easier.

While this chapter covered a few of the basics for using Qt Designer, there are
still other uses such as creating your own custom widgets that can be included in Qt
Designer or generating dialog boxes.

The following chapters will begin to look at more specific classes that can be used
to further augment a user interface. Chapter 8 takes a look at the QClipboard class and
creating widgets with drag and drop functionality.

203

CHAPTER 8

Working with
the Clipboard

One of the major benefits of GUISs is the ability to create programs that can visually
interact with your system and other applications. Previous chapters have shown how

to use dialog boxes to open and save files to your computer, change fonts or colors, and
send images to a printer. In Chapter 8 you will see how to use the clipboard and drag and
drop functions to extend the capabilities of your programs even further.

The clipboard is a location in your computer’s memory that is used to temporarily
store data that you have copied or cut from an application. The clipboard can store a
number of different types of data, including text, images, gifs, and more. Information that
is stored on your system’s clipboard can be pasted into other applications, as long as it
knows how to work with the type of data stored in the clipboard.

QClipboard is a PyQt class that is used to interact with your system’s clipboard,
allowing you to copy and paste between GUIs.

Chapter 8 introduces you to

e TheQClipboard and QMimeData classes
e The Drag and Drop system in PyQt

o TheQListWidget class for displaying item-based lists

The QClipboard Class

The QClipboard class makes your system’s clipboard available so that you can copy

and paste data such as text, images, and HTML text between applications. Qt widgets

that can be used to manipulate textual information, such as QLineEdit, QTextEdit, and
QListWidget, support using the clipboard. If you want to paste an image from the clipboard
into an application, be sure to use widgets that support graphics, such as QLabel.

205
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_8

CHAPTER 8 WORKING WITH THE CLIPBOARD

Including the clipboard in your project is pretty straightforward in PyQt. In order to
access the QClipboard object in an application, create an instance of the clipboard by

clipboard = QApplication.clipboard()

To see one way to retrieve an image that has been copied to the clipboard, take a look
at the following code:

self.label = QLabel() # Create label to hold image
self.clipboard = QApplication.clipboard() # Create cb object
self.label.setPixmap(self.clipboard.pixmap())

The process for text or HTML text is similar. Another way to get data is to use the
QMimeData class which will be covered in the “Explanation” section of this example.

The events that occur between your system and an application built using PyQt are
handled by QApplication. The clipboard gives you the ability to send or receive data in
your application. This means that you can not only get data from other programs but can
also send it out, as well. However, the clipboard can only hold one object at a time. So if
you copy an image to the clipboard and then copy text, only the text will be available and
the image will have been deleted.

In Listing 8-1 you will see how to set up the clipboard and actually be able to
visualize its contents after copying text from another window.

Listing 8-1. Example code that demonstrates how to use the clipboard

clipboard ex.py

Import necessary modules

import sys

from PyQt5.0tWidgets import (QApplication, QMainWindow, QPushButton,
QTextEdit, QDockWidget, QVBoxLayout, QFrame)

from PyQt5.QtCore import Qt, QSize

class ClipboardEx(QMainWindow):
def init (self):
super(). init ()

self.initializeUI()

206

def

def

CHAPTER 8 WORKING WITH THE CLIPBOARD

initializeUI(self):

Initialize the window and display its contents to the screen
self.setMinimumSize (QSize (500, 300))
self.setWindowTitle("Clipboard Example")

self.central widget = QTextEdit()
self.setCentralWidget(self.central widget)

self.createClipboard()

self.show()

createClipboard(self):

Set up clipboard and dock widget to display text from

the clipboard.

Create dock widget

clipboard dock = QDockWidget()

clipboard dock.setWindowTitle("Display Clipboard Contents")
clipboard dock.setAllowedAreas(Qt.TopDockiWidgetArea)

dock_frame = QFrame()

self.cb _text = QTextEdit()

paste button = QPushButton("Paste")

paste button.clicked.connect(self.pasteText)

dock v box = QVBoxLayout()
dock v _box.addwidget(self.cb text)
dock v_box.addWidget(paste button)

Set the main layout for the dock widget,

then set the main widget of the dock widget
dock frame.setLayout(dock v box)

clipboard dock.setWidget(dock frame)

207

CHAPTER 8 WORKING WITH THE CLIPBOARD

if

the

__name__ == " main_":

Set initial location of dock widget
self.addDockWidget(Qt.TopDockWidgetArea, clipboard dock)

Create instance of the clipboard
self.clipboard = QApplication.clipboard()
self.clipboard.dataChanged.connect(self.copyFromClipboard)

def copyFromClipboard(self):

Get the contents of the system clipboard.

mime_data = self.clipboard.mimeData()

if mime_data.hasText():
self.cb text.setText(mime data.text())
#self.cb_text.repaint() # Uncomment if text not updating

def pasteText(self):

Paste text from the clipboard if button is clicked.
self.central widget.paste()
#self.central widget.repaint() # Uncomment if text not updating

app = QApplication(sys.argv)
window = ClipboardEx()
sys.exit(app.exec_())

The finished application can be seen in Figure 8-1. The top text edit widget displays
current contents of the clipboard. The user can then paste it into the main window

which is the lower text edit widget.

208

CHAPTER 8 WORKING WITH THE CLIPBOARD

@] @ Clipboard Example
Q @ Display Clipboard Contents

One of the most widely recognised animal symbols in human culture, the lion
has been extensively depicted in sculptures and paintings, on national flags,
and in contemporary films and literature.

Paste

The lion (Panthera leo) is a species in the family Felidae; it is a
muscular, deep-chested cat with a short, rounded head, a reduced neck
and round ears, and a hairy tuft at the end of its tail.

Typically, the lion inhabits grasslands and savannas but is absent in
dense forests.

One of the most widely recognised animal symbols in human culture,
the lion has been extensively depicted in sculptures and paintings, on
national flags, and in contemporary films and literature.

Figure 8-1. Example GUI that allows the user to see the contents of the clipboard
in the top dock widget

Explanation

In some applications you may actually want to see the contents of the clipboard in a
separate window before pasting it into the main window. A dock widget, especially one
that can float separate from the main window, is perfect to use as a clipboard manager.

After importing classes and setting up the window, we set the central widget of the
main window to be a QTextEdit widget. The central widget is where we will edit the text
that is pasted from the clipboard.

209

CHAPTER 8 WORKING WITH THE CLIPBOARD

The clipboard_dock widget is set up so that it can either float or be attached to the top
of the main window. We need to use a QFrame container to hold the cb_text and paste
button widgets. If new text is copied from another application, then cb_text will display
the text. If the user wants to retain the text, then they can paste it into the central widget.

Using a single line, PyQt makes it simple to include the clipboard in an application.

self.clipboard = QApplication.clipboard() # Create the clipboard object
self.clipboard.dataChanged.connect(self.copyFromClipboard)

The dataChanged() method emits a signal if the contents of the clipboard have
changed. If a change has occurred, then the cb_text widget is updated to display the
new clipboard text using the copyFromClipboard() method. To check what kind of data
is stored in the clipboard, we use the QMimeData class.

The QMimeData class is used for both the clipboard and the drag and drop system
in PyQt, the latter of which will be introduced later in this chapter. The Multipurpose
Internet Mail Extensions (MIME) format supports not only text but HTML, URLs,
images, and color data, as well. Objects created from the QMimeData class ensure that
information can be safely moved between applications and also between objects in the
same application.

mime data = self.clipboard.mimeData()

The method mimeData() returns information about the data currently in the
clipboard. To check if the object can return plain text, we use the hasText () method.
If the data is text, then we get the text using mime_data.text() and set the text of the
QTextEdit widget using setText (). A similar process is also used to access other kinds
of data using QMimeData.

Finally, the QTextEdit method paste() is called in pasteText () to fetch the text in
the clipboard if the button is pressed. The repaint() method is used to force the text of
the widget to update.

Project 8.1 — Sticky Notes GUI

Sometimes you have an idea, a note, or a bit of information that you need to quickly
jot down. Maybe you need to remind yourself of an appointment and need to make a
note to yourself. You only need a small, temporary, maybe even colorful, area to help
brainstorm and organize those ideas. Sticky notes are perfect for those uses and more.

210

CHAPTER 8 WORKING WITH THE CLIPBOARD

The sticky notes GUI, shown in Figure 8-2, allows you to open as many windows

as you want. You can edit the text of each note individually, change the color of a note,

and also paste text from the clipboard. This project demonstrates a practical use for the

clipboard class and acts as a foundation if you choose to build your own sticky notes

application.

File Color Paste

Research project:
https://en.wikipedia.org/wiki/Elephant

Elephants are mammals of the family
Elephantidae and the largest existing
land animals. Three species are
currently recognised: the African bush
elephant, the African forest elephant,
and the Asian elephant.

Males (bulls) leave their family groups
when they reach puberty, and may live
.alone or with other males.

File Color Paste
Classics to see:

1. The Wizard of Oz

2. Gone With the Wind
3. North by Northwest

Figure 8-2. The sticky notes GUI

Motivational Quotes:

File Color Paste
Garlic - Butter Steak 2

Mix 1 tablespoon butter,
parsley, garlic and soy

sauce.

Sprinkle steak with salt and
pepper. In a large skillet, sl
heat remaining butter over
medium heat. Add steak;

cook until meat reaches

decired donenecs (far v

@ @ 8.1- Sticky Notes GUI

File Color Paste

“Attitude is a choice. Happiness is a
choice. Optimism is a choice. Kindness
is a choice. Giving is a choice. Respect is
a choice. Whatever choice you make
makes you. Choose wisely.”

— Roy T. Bennett, The Light in the Heart

“The best time to plant a tree was 20
years ago. The second best time is now.”
-Proverb

211

CHAPTER 8 WORKING WITH THE CLIPBOARD

Sticky Notes GUI Solution

The sticky notes GUI is relatively simple, created of a single QTextEdit widget that serves
as the central widget of the main window (Listing 8-2). The menu system allows you to
create a new note, clear the text in the text edit widget, quit the application, change the
background color, and paste text from the clipboard.

Listing 8-2. Code for sticky notes GUI

stickynotes.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction, QTextEdit)
from PyQt5.QtCore import QSize

class StickyNotes(QMainWindow):
Static variables
note id = 1
notes = []

def init (self, note ref=str()):
super(). init ()
self.note ref = note ref
StickyNotes.notes.append(self)

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setMinimumSize (QSize (250, 250))
self.setWindowTitle("8.1 - Sticky Notes GUI")

self.central widget = QTextEdit()
self.setCentralWidget(self.central widget)

212

def

CHAPTER 8 WORKING WITH THE CLIPBOARD

self.createMenu()
self.createClipboard()

self.show()

createMenu(self):

Create simple menu bar and menu actions

Create actions for the file menu
self.new note act = QAction('New Note', self)
self.new note act.setShortcut('Ctrl+N")

self.new _note act.triggered.connect(self.newNote)

self.close act = QAction('Clear', self)
self.close act.setShortcut('Ctrl+W")
self.close act.triggered.connect(self.clearNote)

self.quit _act = QAction('Quit', self)
self.quit act.setShortcut('Ctrl+Q")
self.quit_act.triggered.connect(self.close)

Create actions for the color menu
self.yellow act = QAction('Yellow', self)
self.yellow act.triggered.connect(lambda: self.
changeBackground(self.yellow act.text()))

self.blue _act = QAction('Blue', self)
self.blue_act.triggered.connect(lambda: self.changeBackground(self.
blue act.text()))

self.green act = QAction('Green', self)
self.green act.triggered.connect(lambda: self.
changeBackground(self.green act.text()))

Create actions for the paste menu

self.paste act = QAction('Paste', self)
self.paste_act.setShortcut('Ctrl+V")

self.paste act.triggered.connect(self.pasteToClipboard)

213

CHAPTER 8 WORKING WITH THE CLIPBOARD

Create menubar

menu_bar = self.menuBar()

menu_bar.setNativeMenuBar(False) # Uncomment to display menu in
window on MacOS

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(self.new note act)
file menu.addAction(self.close act)
file menu.addAction(self.quit act)

Create color menu and add actions
file menu = menu_bar.addMenu('Color")
file menu.addAction(self.yellow act)
file menu.addAction(self.blue act)
file menu.addAction(self.green act)

Create paste menu and add actions
file menu = menu_bar.addMenu('Paste")
file menu.addAction(self.paste act)

def createClipboard(self):

Set up clipboard.

self.clipboard = QApplication.clipboard()
self.clipboard.dataChanged.connect(self.copyToClipboard)
def newNote(self):

Create new instance of StickyNotes class.

self.note ref = str("note %d" % StickyNotes.note id)
StickyNotes().show()
StickyNotes.note id += 1

def clearNote(self):

214

CHAPTER 8 WORKING WITH THE CLIPBOARD

Delete the current note's text.

self.central widget.clear()

def copyToClipboard(self):

Get the contents of the system clipboard.

return self.clipboard.text()

def pasteToClipboard(self):
Get the contents of the system clipboard and paste
into the note.
text = self.copyToClipboard()
self.central widget.insertPlainText(text + '\n")

def changeBackground(self, color text):

Change a note's background color.

if color_text == "Yellow":
self.central widget.setStyleSheet("background-color: rgb(248,
253, 145)")

elif color text == "Blue":
self.central widget.setStyleSheet("background-color: rgb(145,
253, 251)")

elif color text == "Green":
self.central widget.setStyleSheet("background-color: rgh(148,
253, 145)")

if name_ ==" main_":

app = QApplication(sys.argv)
window = StickyNotes()
sys.exit(app.exec_())

The completed project can be seen in Figure 8-2.

215

CHAPTER 8 WORKING WITH THE CLIPBOARD

Explanation

The sticky notes GUI is a good project to introduce the concept of single-document
interface (SDI). SDI is a method that organizes GUIs into individual windows that

are handled separately. Even though the sticky notes application allows you to

create multiple instances of the GUI at the same time, each window is separate and
independent from the others. The contrast is multiple-document interface (MDI),
where a single parent window contains and controls multiple nested child windows. An
example of MDI can be found in Chapter 12.

We create the StickyNotes class for the GUI and first include two static variables,
note id, used to give a unique name to each new window, and notes, to keep track of
the many different windows by appending them to a list. The static variables are shared
by all instances of the class.

The menu system is set up just like in previous chapters. The Color menu allows
the user to select a background color for each note. If the user wants to paste text from
the clipboard into a widget, they can either use the Paste menu entry or the hot key
Ctrl+Vv.

Let’s take a look at the different class methods. The clipboard object is created and
updated using the dataChanged() signal in createClipboard(). Each new note is given
anew name, note_ref, when they are created based on the current note_id value. The
other functions allow you to interact with the text and clipboard or edit the background
color of the central widget.

Drag and Drop in PyQt

The drag and drop mechanism allows a user to perform tasks in a GUI by selecting
items, such as icons or images, and move them into another window or onto another
object. PyQt also makes including this behavior in an application very simple, as
well. To allow widgets to have drag and drop functionality, you only need to set their
setAcceptDrops() and setDragEnabled() properties to True.

With drag and drop functionality enabled, you can move items from one text edit,
list, or table object to another in PyQt. QMimeData can also be used to handle custom
data types.

Listing 8-3 illustrates how to drag and drop icons between two QListWidget objects
in the same GUI window.

216

CHAPTER 8 WORKING WITH THE CLIPBOARD

Listing 8-3. Code that demonstrates an example of drag and drop

drag drop.py

Import necessary modules

import sys, os

from PyQt5.QtWidgets import (QApplication, QWidget, QListWidget, QLabel,
QGridlLayout, QListWidgetItem)

from PyQt5.QtCore import QSize

from PyQt5.0tCGui import QIcon

class DragAndDropGUI(QWidget):

def

def

def

__init_ (self):
super(). init ()

self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 500, 300)
self.setWindowTitle("Drag and Drop Example")
self.setuphidgets()

self.show()

setupWidgets(self):

Create and arrange widgets in window

icon label = QLabel("ICONS", self)

icon widget = QListWidget()

icon widget.setAcceptDrops(True)
icon_widget.setDragEnabled(True)

icon widget.setViewMode(QListWidget.IconMode)

217

CHAPTER 8 WORKING WITH THE CLIPBOARD

image path = "images"
for img in os.listdir(image path):
list item = QListWidgetItem()
list item.setText(img.split(".")[0])
list item.setIcon(QIcon(os.path.join(image path,
"{0}").format(img)))
icon widget.setIconSize(QSize(50, 50))
icon widget.addItem(list item)

list label = QLabel("LIST", self)

list widget = QListWidget()

list widget.setAlternatingRowColors(True)
list widget.setAcceptDrops(True)

list widget.setDragEnabled(True)

Create grid layout

grid = QGridLayout()
grid.addwidget(icon_label, 0, 0)
grid.addWidget(list label, 0, 1)
grid.addWidget(icon widget, 1, 0)
grid.addwidget(list widget, 1, 1)

self.setlayout(grid)

if _name_ == " main_":
app = QApplication(sys.argv)
window = DragAndDropGUI()
sys.exit(app.exec ())

The drag and drop GUI can be seen in Figure 8-3.

218

CHAPTER 8 WORKING WITH THE CLIPBOARD

® @e Drag and Drop Example
ICONS LIST

0 & watermelon
| > banana
plneapple

pineapple

watermelon ® apple
t J ® watermelon
banana ® apple

| apple |

Figure 8-3. Two QListWidget objects used to demonstrate drag and drop

Explanation

There are two instances of the QListWidget class created, icon_widget and list_
widget. The icon_widget object displays objects in IconMode, set by

icon_widget.setViewMode(QListWidget.IconMode)

The QListWidget default setting shows items in a list. To set up the drag and drop
capability for icon_widget, call the setAcceptDrops() and setDragEnabled() methods.
Then repeat the process for 1ist_widget.

icon widget = QListWidget()
icon widget.setAcceptDrops(True)
icon_widget.setDragEnabled(True)

When one of the icons that are loaded into the icon_widget is dragged onto the
list widget, the list updates its contents to include the new item. Dropping an item
from one QListWidget to the other adds a new item to that list.

The next section introduces the QListWidget class and a few of its methods.

219

CHAPTER 8 WORKING WITH THE CLIPBOARD

The QListWidget Class

The QListWidget class creates a widget with an item-based interface that makes it
simpler for adding and removing items. Items can be added either when the widget is
created in code or added on later. The QListWidgetItem class is used in conjunction
with QListWidget to serve as an item that can be used with the list. In the previous
example, 1ist_item creates an item that includes text and an icon to be added to the list
using the addItem() method.

Listing 8-4 briefly demonstrates how to add, insert, remove, and clear all items from
a QListWidget.

Listing 8-4. An example of using the QListWidget class to manage items in a list

listwidget_ex.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QListWidget,
QPushButton, QHBoxLayout, QVBoxLayout, QListWidgetItem, QInputDialog)

class GrocerylListGUI(QWidget):
def init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen

self.setGeometry(100, 100, 400, 200)
self.setWindowTitle("QListWidget Example")
self.setupWidgets()

self.show()

def setupWidgets(self):

Create and arrange widgets in window

220

CHAPTER 8 WORKING WITH THE CLIPBOARD

self.list widget = QListWidget()
self.list widget.setAlternatingRowColors(True)

Initialize the QlistWidget with items
grocery list = ["grapes", "broccoli", "garlic", “cheese", "bacon",
"eggs", "waffles", "rice", "soda"]
for item in grocery list:
list item = QListWidgetItem()
list item.setText(item)
self.list widget.addItem(list item)

Create buttons
add_button = QPushButton("Add")
add button.clicked.connect(self.addListItem)

insert button = QPushButton("Insert")
insert button.clicked.connect(self.insertItemInlList)

remove button = QPushButton("Remove")
remove button.clicked.connect(self.removeOneItem)

clear button = QPushButton("Clear")
clear button.clicked.connect(self.list widget.clear)

Create layout

right_v_box = QVBoxLayout()

right v _box.addWidget(add button)
right v _box.addWidget(insert button)
right v_box.addWidget(remove button)
right v _box.addWidget(clear button)

left h box = QHBoxLayout()
left h box.addWidget(self.list widget)
left_h box.addLayout(right v_box)

self.setlLayout(left_h_box)

221

CHAPTER 8 WORKING WITH THE CLIPBOARD

def addListItem(self):

Add a single item to the list widget.
text, ok = QInputDialog.getText(self, "New Item", "Add item:")
if ok and text != "":

list item = QListWidgetItem()

list item.setText(text)

self.list widget.addItem(1list item)

def insertItemInList(self):
Insert a single item into the list widget under the
current highlighted row.
text, ok = QInputDialog.getText(self, "Insert Item", "Insert item:")
if ok and text != "":

row = self.list widget.currentRow()

row = row + 1 # select row below current row
new_item = QListWidgetItem()
new_item.setText(text)

self.list widget.insertItem(row, new_item)

def removeOneItem(self):

Remove a single item from the list widget.
row = self.list widget.currentRow()
self.list widget.takeItem(row)

if name_ ==" main_":
app = QApplication(sys.argv)
window = GrocerylListGUI()
sys.exit(app.exec_())

Your GUI should look similar to the one in Figure 8-4.

222

CHAPTER 8 WORKING WITH THE CLIPBOARD

® @ QListWidget Example

grapes
broccoli
garlic
cheese Insert
bacon

Add

eggs Remove
waffles

rice

Clear
soda

Figure 8-4. QListWidget could be used to display objects in an inventory or
items in a directory

Explanation

QListWidget allows you to manage the items displayed in the GUI window. For
alternating row colors, set the setAlternatingRowColors() methods to True.

The 1list widget object is populated with items from the list when the program
begins. Using the buttons on the right, the user can edit the list items. Each method in the
GrocerylListGUI class is used to demonstrate one of the following QListWidget methods:

e addItem() - Add an item to the end of a list
o insertItem() - Insert an item at the specified row
o takeItem() - Remove an item from the specified row

o clear() - Remove all items from the list

Summary

The QClipboard class allows GUI applications to receive and send data from the system’s
clipboard. Drag and drop is another type of functionality that GUIs can utilize to pass
data between widgets and other programs. Drag and drop is very simple to include in
your own projects with only a few lines of code. The QMimeData class handles various
kinds of data types for both clipboard and drag and drop systems, ensuring proper data
handling.

223

CHAPTER 8 WORKING WITH THE CLIPBOARD

Many of PyQt’s widgets for editing text already include the ability to interact with
the clipboard, so you won't often need to include the code for the clipboard in your
program.

In the next chapter, we will see how to implement animation and graphics into PyQt
applications and learn how to create custom widgets.

224

CHAPTER 9

Graphics and Animation
in PyQt

After going through many examples in previous chapters that introduce you to the
fundamentals for building GUIs, Chapter 9 finally allows for you to explore your creative
and artistic side through drawing and animation in PyQt5.

Graphics in PyQt is done primarily with the QPainter API. PyQt’s painting system
handles drawing for text, images, and vector graphics and can be done on a variety of
surfaces, including QImage, QWidget, and QPrinter. With QPainter you can enhance the
look of existing widgets or create your own.

The main components of the painting system in PyQt are the QPainter,
QPaintDevice, and QPaintEngine classes. QPainter performs the drawing operations;
a QPaintDevice is an abstraction of two-dimensional space which acts as the surface that
QPainter can paint on; and QPaintEngine is the internal interface used by the QPainter
and QPaintDevice classes for drawing.

In this chapter, we are going to be taking a look at 2D graphics, covering topics such
as drawing simple lines and shapes, designing your own painting application, and
animation. If you are interested in creating GUIs that work with 3D visuals, Qt also has
support for OpenGL, which is software that renders both 2D and 3D graphics.

New concepts introduced in this chapter include

e Anintroduction to QPainter and other classes used for drawing PyQt
o Creating tool tips using QToolTip
o Animating objects using QPropertyAnimation and pyqtProperty

e How to set up a Graphics View and a Graphics Scene for interacting

with items in a GUI window

e A new widget for selecting values in a bounded range, QS1lider

225
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_9

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

o Handling mouse events with event handlers
e PyQt’s four image handling classes

e Creating your own custom widgets using PyQt

Introduction to the QPainter Class

Whenever you need to draw something in PyQt, you will more than likely need to work
with the QPainter class. QPainter provides functions for drawing simple points and lines,
complex shapes, text, and pixmaps. We have looked at pixmaps in previous chapters in
applications where we needed to display images. QPainter also allows you to customize
a variety of its settings, such as rendering quality or changing the painter’s coordinate
system. Drawing can be done on a paint device, which are two-dimensional objects
created from the different PyQt classes that can be painted on with QPainter.

Drawing relies on a coordinate system for specifying the position of points and
shapes and is typically handled in the paint event of a widget. The default coordinate
system for a paint device has the origin at the top-left corner, beginning at (0, 0). The
x values increase to the right and y values increase going down. Each (x, y) coordinate
defines the location of a single pixel.

The following example illustrates a few of the drawing functions and shows how
to use the QPen and QBrush classes and how to set up the paintEvent () function for

drawing on a widget.

Listing 9-1. This code gives examples for drawing with the QPainter class

paint_basics.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import QApplication, QWidget

from PyQt5.QtGui import (QPainter, QPainterPath, QColor, QBrush, QPen,
QFont, QPolygon, QLinearGradient)

from PyQt5.QtCore import Qt, QPoint, QRect

226

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT
class Drawing(QWidget):

def _init (self):
super(). init ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.
self.setFixedSize (600, 600)
self.setWindowTitle('QPainter Basics')

Create a few pen colors
self.black = '#000000'
self.blue = "#2041F1'
self.green = '#12A708'
self.purple = '#6512F0'
self.red = '#E0OCOC'
self.orange = '#FF930A'

self.show()

def paintEvent(self, event):

Create QPainter object and handle paint events.
painter = QPainter()

painter.begin(self)

Use antialiasing to smooth curved edges
painter.setRenderHint(QPainter.Antialiasing)

self.drawPoints(painter)
self.drawDiffLines(painter)
self.drawText(painter)
self.drawRectangles(painter)
self.drawPolygons(painter)

227

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

228

def

def

self.drawRoundedRects(painter)
self.drawCurves(painter)
self.drawCircles(painter)
self.drawGradients(painter)

painter.end()

drawPoints(self, painter):

Example of how to draw points with QPainter.

pen = QPen(QColor(self.black))

for i in range(1, 9):
pen.setWidth(i * 2)
painter.setPen(pen)
painter.drawPoint(i * 20, i * 20)

drawDifflLines(self, painter):

Examples of how to draw lines with QPainter.

pen = QPen(QColor(self.black), 2)

painter.setPen(pen)
painter.drawLine(230, 20, 230, 180)

pen.setStyle(Qt.DashLine)
painter.setPen(pen)
painter.drawlLine(260, 20, 260, 180)

pen.setStyle(Qt.DotLine)
painter.setPen(pen)
painter.drawLine(290, 20, 290, 180)

pen.setStyle(Qt.DashDotLine)
painter.setPen(pen)
painter.drawlLine(320, 20, 320, 180)

def

def

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Change the color and thickness of the pen
blue pen = QPen(QColor(self.blue), 4)

painter.setPen(blue pen)
painter.drawlLine(350, 20, 350, 180)

blue pen.setStyle(Qt.DashDotDotLine)
painter.setPen(blue_pen)
painter.drawLine(380, 20, 380, 180)

drawText(self, painter):

Example of how to draw text with QPainter.

text = "Don't look behind you."

pen = QPen(QColor(self.red))
painter.setFont(QFont("Helvetica", 15))
painter.setPen(pen)
painter.drawText(420, 110, text)

drawRectangles(self, painter):

Examples of how to draw rectangles with QPainter.

pen = QPen(QColor(self.black))

brush = QBrush(QColor(self.black))

painter.setPen(pen)
painter.drawRect(20, 220, 80, 80)

painter.setPen(pen)
painter.setBrush(brush)
painter.drawRect(120, 220, 80, 80)

red pen = QPen(QColor(self.red), 5)
green brush = QBrush(QColor(self.green))

229

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

230

def

def

painter.setPen(red pen)
painter.setBrush(green brush)
painter.drawRect(20, 320, 80, 80)

Demonstrate how to change the alpha channel
to include transparency

blue pen = QPen(QColor(32, 85, 230, 100), 5)
blue pen.setStyle(Qt.DashLine)
painter.setPen(blue_pen)
painter.setBrush(green brush)
painter.drawRect(120, 320, 80, 80)

drawPolygons(self, painter):

Example of how to draw polygons with QPainter.
pen = QPen(QColor(self.blue), 2)

brush = QBrush(QColor(self.orange))

points = QPolygon([QPoint(240, 240), QPoint(380, 250),
QPoint(230, 380), QPoint(370, 360)])

painter.setPen(pen)
painter.setBrush(brush)
painter.drawPolygon(points)

drawRoundedRects(self, painter):
Examples of how to draw rectangles with
rounded corners with QPainter.

pen

= QPen(QColor(self.black))
brush =

OBrush(QColor(self.black))

QRect (420, 340, 40, 60)
QRect (480, 300, 50, 40)
QRect (540, 240, 40, 60)

rect 1
rect 2
rect 3

def

def

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

painter.setPen(pen)
brush.setStyle(Qt.Dense1lPattern)
painter.setBrush(brush)
painter.drawRoundedRect(rect 1, 8, 8)

brush.setStyle(Qt.Dense5Pattern)
painter.setBrush(brush)
painter.drawRoundedRect(rect 2, 5, 20)

brush.setStyle(Qt.BDiagPattern)
painter.setBrush(brush)
painter.drawRoundedRect(rect 3, 15, 15)

drawCurves(self, painter):

Examples of how to draw curves with QPainterPath.
pen

= QPen(Qt.black, 3)
brush =

OBrush(Qt.white)

path = QPainterPath()

path.moveTo(30, 420)

path.cubicTo(30, 420, 65, 500, 30, 560)
path.lineTo(163, 540)

path.cubicTo(125, 360, 110, 440, 30, 420)
path.closeSubpath()

painter.setPen(pen)
painter.setBrush(brush)
painter.drawPath(path)

drawCircles(self, painter):

Example of how to draw ellipses with QPainter.

height, width = self.height(), self.width()

center x, center y = (width / 2), height - 100
radius _x, radius y = 60, 60

231

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

pen = QPen(Qt.black, 2, Qt.SolidLine)
brush = QBrush(Qt.darkMagenta, Qt.Dense5Pattern)

painter.setPen(pen)
painter.setBrush(brush)
painter.drawkEllipse(QPoint(center x, center y), radius x, radius_y)

def drawGradients(self, painter):

Example of how to draw fill shapes using gradients.
pen = QPen(QColor(self.black), 2)
gradient = QLinearGradient(450, 480, 520, 550)

gradient.setColorAt(0.0, Qt.blue)
gradient.setColorAt(0.5, Qt.yellow)
gradient.setColorAt(1.0, Qt.cyan)

painter.setPen(pen)
painter.setBrush(QBrush(gradient))
painter.drawRect (420, 420, 160, 160)

if _name__ == "'_main_ ':
app = QApplication(sys.argv)
window = Drawing()
sys.exit(app.exec ())

The results of different QPainter drawing functions can be seen in Figure 9-1.

232

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

®0e® QPainter Basics

Don't look behind you.

7

n
1
) \

Figure 9-1. The window illustrates a few of the QPainter class’s different functions.
Starting from the top-left corner, the first row presents points, lines, and text; the
second row illustrates shapes and patterns, including rectangles, polygons, and
rectangles with rounded corners; the last row displays drawing curves, circles, and
painting with gradients

Explanation

This program introduces quite a few new classes, a majority of them imported from the
0tGui module. QtGui provides us with the tools we need for 2D graphics, imaging, and
fonts. The QPoint and QRect classes imported from QtCore are used to define points and
rectangles specified by coordinate values in the window’s plane.

The Drawing class inherits from QWidget, and all drawing will occur on the widget’s
surface.

233

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

The paintEvent() Method

For general purposes, painting is handled inside the paintEvent () function. Let’s take a
look at how to set up QPainter in the following code to draw a simple line:

def paintEvent(self, event):
painter = QPainter() # Construct the painter
painter.begin(self)
painter.drawLine(260, 20, 260, 180)
painter.end()

Drawing occurs between the begin() and end() methods on the paint device,
referenced by self. The drawing is handled in between these two methods. Using
begin() and end() is not required. You could construct a painter that takes as a
parameter the paint device. However, begin() and end() can be used to catch any errors
should the painter fail.

Other methods can also be called during the paint event. Since only one painter is
allowed at a time, in the preceding example, we call different methods that all take the
painter object as an argument.

self.drawPoints(painter)
self.drawLines(painter)

One of the settings that we can change in QPainter is the rendering quality using
render hints. QPainter.Antialiasing creates smoother-looking curved edges.

painter.setRenderHint(QPainter.Antialiasing)

The QColor, QPen, and QBrush Classes

Some of the settings that can be modified include the color, width, and styles used to
draw lines and shapes. The QColor class provides access to different color schemes,
for example, RGB, HSV, and CMYK values. Colors can be specified by using either RGB
hexadecimal strings, '#112233"; predefined color names, Qt.blue or Qt.darkBlue; or
RGB values, (233, 12, 43).QColor also includes an alpha channel used for giving
colors transparency, where 0 is completely transparent and 255 is completely opaque.
Listing 9-1 demonstrates all three of these types.

234

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

QPen is used for drawing lines and the outlines of shapes. The following code
creates a black pen with a width of 2 pixels that draws dashed lines. The default style is
0t.SolidLine.

pen = QPen(QColor('#000000'), 2, Qt.DashLine)
painter.setPen(pen)

QBrush defines how to paint, that is, fill in, shapes. Brushes can have a color, a
pattern, a gradient, or a texture. A magenta brush with the Dense5Pattern style is created
with the following code. The default style is Qt.SolidPattern.

brush = QBrush(Qt.darkMagenta, Qt.Dense5Pattern)
painter.setBrush(brush)

If you wish to create multiple lines or shapes with different pens and brushes, make
sure to call setPen() and/or setBrush() each time they need to be changed. Otherwise,
QPainter will continue to use the pen and brush settings from the previous call.

Note Calling QPainter.begin() will reset all the painter settings to default
values.

Drawing Points and Lines

The drawPoint () method can be used to draw single pixels. By changing the width of
the pen, you can draw wider points. The x and y values can either be explicitly defined or
specified by using QPoint. An example of points is shown in Figure 9-2.

pen.sethWidth(3)
painter.setPen(pen)
painter.drawPoint(10, 15)

Note The drawPoint() and other methods are specified using integer values.
Some of the drawing methods allow you to also use floating-point values. Rather
than import the QPoint and QRect classes, you should use QPointF and
OQRectF.

235

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

For drawing lines, there are the drawLine() or drawLines() methods. Each of the
lines shown in Figure 9-2 displays different styles, widths, or colors. Lines are created by
specifying a set of points, the starting x1 and y1 values and the ending x2 and y2 values.

pen.setStyle(Qt.DashLine) # Specify a style
painter.setPen(pen) # Set the pen
painter.drawLine(260, 20, 260, 180) # x1, y1, x2, y2

Figure 9-2. Example of points and lines drawn using QPainter

Drawing Text

The drawText () method is used to draw text on the paint device. An example of drawing
text can be seen in Figure 9-3. We can make use of setFont() to apply different font
settings.

painter.setFont(QFont("Helvetica", 15))
painter.setPen(pen)
painter.drawText(420, 110, text)

The text is drawn by first specifying the top-left coordinates on the paint device
(think of text as being placed inside of a rectangle). This is the simplest way to draw text.
For multiple lines or for wrapping text, use a QRect rectangle to contain the text.

236

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Don't look behind you.

Figure 9-3. A simple example of drawing text with QPainter

Drawing Two-Dimensional Shapes

There are a few different ways to draw quadrilaterals using the drawRect () method. For
this example, we will specify the top-left corner’s coordinates followed by the width and
height of the shape.

painter.drawRect(120, 220, 80, 80)

For each of the squares shown in the top-left corner of Figure 9-4, we begin by setting
the pen and brush values before calling drawRect () to draw the shape. The first shape
has a black pen with no brush; the second calls setBrush() to fill in the square. The next
shape uses a red pen with a green brush. Finally, the last square shows an example of
how to set the transparency of the pen object’s color to 100.

blue _pen = QPen(QColor(32, 85, 230, 100), 5)

To draw irregular polygons, the QPolygon class can be used by specifying the
point coordinates of each corner. The order that the points are created in the
QPolygon object is the order in which they are drawn. The polygon object is then
drawn using drawPolygon(). The polygon can be seen in the middle of the top row in
Figure 9-4.

painter.drawPolygon(points)

237

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

QPainter can also draw rectangles with rounded corners. The process for drawing
them is similar to drawing normal rectangles, except we need to specify the x and y
radius values for the corners. Examples can be seen in Figure 9-4 in the top-right corner.
The following snippet of code shows how to create a rounded rectangle by first creating
the QRect rectangle and then specifying the style:

rect 1 = QRect(420, 340, 40, 60) # x, y, width, height
brush.setStyle(Qt.Dense1Pattern)

painter.setBrush(brush)

painter.drawRoundedRect(rect 1, 8, 8) # rect, x rad, y rad

For drawing abstract shapes, we need to use QPainterPath. Objects composed of
different components, such as lines, rectangles, or curves, are called painter paths. An
example of a painter path can be seen in the bottom-left corner of Figure 9-4.

y//

7

Figure 9-4. Different shapes drawn with QPainter

238

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

In the drawCurves () method of the earlier program, we first create a black pen and a
white brush and an instance of QPainterPath. The moveTo() method moves to a position
in the window without drawing any other components. We will start drawing at this
position, (30, 420).

path.cubicTo(30, 420, 65, 500, 30, 560)
path.lineTo(163, 540)
path.cubicTo(125, 360, 110, 440, 30, 420)

The cubicTo() method can be used to draw a parametric curve, also called a Bézier
curve, from the starting position we moved to and the ending position, (30, 560). The
first two points, (30, 420) and (65, 500), in cubicTo() are used to influence how
the line curves between the starting and ending points. The next components of path
are a line drawn with 1ineTo() and another curve. The abstract shape is closed with
closeSubpath(), and the path is drawn using drawPath().

The last shape we are going to look at is the ellipse which is drawn using
drawEllipse(). For an ellipse, we need four values, the location of the center, and two
radii values for the x and y directions. If the radii values are equal, we can draw a circle,
like in the bottom-right corner of Figure 9-4. The following code shows how to draw
an ellipse with a QPoint as the center coordinate, but the shape can also be drawn by
defining a QRect.

painter.drawkEllipse(QPoint(center x, center y), radius x, radius_y)

Drawing Gradients

Gradients can be used along with QBrush to fill the inside of shapes. There are three
different types of gradient styles in PyQt - linear, radial, and conical. For this example,
we will use the QLinearGradient class to interpolate colors between two start and end
points. The result can be seen in Figure 9-5.

The QLinearGradient constructor takes as arguments the area of the paint device
where the gradient will occur, specified by the x1, y1, x2, y2 coordinates.

gradient = QLinearGradient(450, 480, 520, 550)

We can create points to start and stop painting colors using setStopPoint (). This
method defines where one color ends and another color begins.

239

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Figure 9-5. Applying a gradient to a square

Project 9.1 — Painter GUI

There are many digital art applications out there, filled to the brim with tools

for drawing, painting, editing, and creating your own art on the computer. With
QPainter, you could manually code each individual line and shape one by one.
However, rather than going through that painstaking process to create digital
works of art, the painter GUI project lays the foundation for creating your drawing
application that could pave the way for a smoother drawing process. The interface
can be seen in Figure 9-6.

For this first project, we will be looking to combine many of the concepts that you
learned in previous chapters, including menubars, toolbars, status bars, dialog boxes,
creating icons, and reimplementing event handlers, and combine them with the
QPainter class. On top of it all, we will be sprinkling on a few new ideas, focusing on how
to create tool tips and track the mouse’s position.

240

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

ene 9.1 Painter GUI
File Tools

P
V4
&

Mou;c Coordinates: (35, 45)

Figure 9-6. The painter GUI with toolbar on the left side of the window and the
mouse’s current coordinates displayed in the status bar

Painter GUI Solution

For the painter GUI in Listing 9-2, users will be able to draw using either a pencil or a
marker tool, erase, and select colors using the QColorDialog. The items in the menu allow
users to clear the current canvas, save their drawing, quit, and turn on or off antialiasing.

Listing 9-2. The code for creating the painter GUI

painter.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QAction, QLabel,
QToolBar, QStatusBar, QToolTip, QColorDialog, QFileDialog)

from PyQt5.0tGui import (QPainter, QPixmap, QPen, QColor, QIcon, QFont)
from PyQt5.0QtCore import Qt, QSize, QPoint, QRect

Create widget to be drawn on
class Canvas(QLabel):

241

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

def _init (self, parent):
super(). init (parent)
width, height = 900, 600

self.parent = parent
self.parent.setFixedSize(width, height)

Create pixmap object that will act as the canvas
pixmap = QPixmap(width, height) # width, height
pixmap.fill(Qt.white)

self.setPixmap(pixmap)

Keep track of the mouse for getting mouse coordinates
self.mouse track label = QLabel()
self.setMouseTracking(True)

Initialize variables
self.antialiasing status = False
self.eraser selected = False

self.last mouse pos = QPoint()
self.drawing = False
self.pen_color = Qt.black

2

self.pen width

def selectDrawingTool(self, tool):

Determine which tool in the toolbar has been selected.

if tool == "pencil":
self.eraser selected
self.pen width = 2

elif tool == "marker":

False

self.eraser selected = False
self.pen _width = 8

elif tool == "eraser":

self.eraser selected = True

242

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

elif tool == "color":
self.eraser selected = False
color = QColorDialog.getColor()
if color.isValid():
self.pen_color = color

def mouseMoveEvent(self, event):

Handle mouse movements.
Track coordinates of mouse in window and display in the status bar.

mouse_pos = event.pos()

if (event.buttons() and Qt.LeftButton) and self.drawing:
self.mouse pos = event.pos()
self.drawOnCanvas(mouse_pos)

self.mouse track label.setVisible(True)
sb_text = "Mouse Coordinates: ({}, {})".format(mouse pos.x(),

mouse_pos.y())
self.mouse track label.setText(sb text)

self.parent.status bar.addwidget(self.mouse track label)

def drawOnCanvas(self, points):

Performs drawing on canvas.

painter = QPainter(self.pixmap())

if self.antialiasing status:
painter.setRenderHint(QPainter.Antialiasing)

if self.eraser selected == False:
pen = QPen(QColor(self.pen color), self.pen width)
painter.setPen(pen)

painter.drawLine(self.last mouse pos, points)

Update the mouse's position for next movement
self.last mouse pos = points

243

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

244

def

def

def

def

elif self.eraser selected == True:
Use the eraser
eraser = QRect(points.x(), points.y(), 12, 12)
painter.eraseRect(eraser)

painter.end()
self.update()

newCanvas(self):

Clears the current canvas.
self.pixmap().fill(Qt.white)
self.update()

saveFile(self):

Save a .png image file of current pixmap area.

file format = "png"

default name = os.path.curdir + "/untitled." + file format

file name, = QFileDialog.getSaveFileName(self, "Save As",
default name, "PNG Format (*.png)")

if file name:
self.pixmap().save(file name, file format)

mousePressEvent(self, event):

Handle when mouse is pressed.

if event.button() == Qt.LeftButton:
self.last mouse pos = event.pos()
self.drawing = True

mouseReleaseEvent(self, event):

Handle when mouse is released.

def

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Check when eraser is no longer being used.

if event.button() == Qt.LeftButton:
self.drawing = False

elif self.eraser selected == True:
self.eraser selected = False

paintEvent(self, event):

Create QPainter object.
This is to prevent the chance of the painting being lost
if the user changes windows.

painter = QPainter(self)

target rect = QRect()
target rect = event.rect()

painter.drawPixmap(target rect, self.pixmap(), target rect)

class PainterWindow(QMainWindow):

def

def

__init_ (self):
super(). init ()

self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen.

#self.setMinimumSize (700, 600)
self.setWindowTitle('9.1 - Painter GUI")

QToolTip.setFont(QFont('Helvetica', 12))

self.createCanvas()
self.createMenu()
self.createToolbar()

self.show()

245

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

246

def

def

createCanvas(self):

Create the canvas object that inherits from QLabel.

self.canvas = Canvas(self)

Set the main window's central widget
self.setCentralWidget(self.canvas)

createMenu(self):

Set up the menu bar and status bar.

Create file menu actions

new act = QAction('New Canvas', self)
new_act.setShortcut('Ctrl+N")
new_act.triggered.connect(self.canvas.newCanvas)

save file act = QAction('Save File', self)
save file act.setShortcut('Ctrl+S")
save file act.triggered.connect(self.canvas.saveFile)

quit act = QAction("Quit", self)
quit act.setShortcut('Ctrl+Q")
quit_act.triggered.connect(self.close)

Create tool menu actions
anti al act = QAction('AntiAliasing’, self, checkable=True)
anti al act.triggered.connect(self.turnAntialiasingOn)

Create the menu bar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(new_act)

file menu.addAction(save file act)

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

file menu.addSeparator()
file menu.addAction(quit act)

Create tools menu and add actions
file menu = menu_bar.addMenu('Tools")
file menu.addAction(anti al act)

self.status _bar = QStatusBar()
self.setStatusBar(self.status bar)

def createToolbar(self):

Create toolbar to contain painting tools.
tool bar = QToolBar("Painting Toolbar")

tool bar.setIconSize(QSize(24, 24))

Set orientation of toolbar to the left side
self.addToolBar(Qt.LeftToolBarArea, tool bar)
tool bar.setMovable(False)

Create actions and tool tips and add them to the toolbar

pencil act = QAction(QIcon("icons/pencil.png"), 'Pencil’, tool bar)
pencil act.setToolTip('This is the Pencil.")

pencil act.triggered.connect(lambda: self.canvas.
selectDrawingTool("pencil™))

marker_act = QAction(QIcon("icons/marker.png"), 'Marker', tool bar)
marker_act.setToolTip('This is the Marker.")

marker act.triggered.connect(lambda: self.canvas.
selectDrawingTool("marker"))

eraser_act = QAction(QIcon("icons/eraser.png"), "Eraser", tool bar)
eraser_act.setToolTip('Use the Eraser to make it all
disappear.")

eraser_act.triggered.connect(lambda: self.canvas.
selectDrawingTool("eraser"))

247

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

color_act = QAction(QIcon("icons/colors.png"), "Colors", tool bar)
color_act.setToolTip('Choose a Color from the Color dialog.")
color act.triggered.connect(lambda: self.canvas.
selectDrawingTool("color"))

tool bar.addAction(pencil act)
tool bar.addAction(marker act)
tool bar.addAction(eraser act)
tool bar.addAction(color act)

def turnAntialiasingOn(self, state):

Turn antialiasing on or off.

if state:
self.canvas.antialiasing status
else:

True

self.canvas.antialiasing status = False

def leaveEvent(self, event):
QEvent class that is called when mouse leaves screen's space. Hide
mouse coordinates in status bar if mouse leaves
the window.

self.canvas.mouse track label.setVisible(False)

if _name__ == "'_main_ ':
app = QApplication(sys.argv)
app.setAttribute(Qt.AA DontShowIconsInMenus, True)
window = PainterWindow()

sys.exit(app.exec_())

The final GUI can be seen in Figure 9-6.

248

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Explanation

The painter GUI allows users to draw images on the canvas area. Unlike in the previous
example where painting occurred on the main widget, for this example we will see
how to subclass QLabel and reimplement its painting and mouse event handlers. The
handling for some of the event handlers in this application was adapted from the Qt
document web site.!

The program contains two classes - the Canvas class for drawing and the
PainterWindow class for creating the menu and toolbar.

Creating the Canvas Class

Subclassing QLabel and reimplementing its paintEvent () method is a much easier
way to manage drawing on a label object. We then create a pixmap and pass it to
setPixmap(). Since QPixmap can be used as a QPaintDevice, using a pixmap makes
handling the drawing and displaying of pixels much simpler. Also, using QPixmap means
that we can set an initial background color using fill().

Next, we need to initialize a few variables and objects.

o mouse_track label - A label for displaying the mouse’s current
position

o eraser_selected - True if the eraser is selected

o antialiasing status - True if the user has checked the menu item
for using antialiasing

o last mouse_pos - Keep track of the mouse’s last position when the
left mouse button is pressed or when the mouse moves

o drawing - True if the left mouse button is pressed, indicating the user
might be drawing

e pen_color, pen_width - Variables that hold the initial values of the
pen and brush

'https://doc.qt.io/qt-5/qtwidgets-widgets-scribble-example.html
249

https://doc.qt.io/qt-5/qtwidgets-widgets-scribble-example.html

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Since the user will use the mouse to draw in the GUI window, we need to handle the
events when the mouse button is pressed or released and when the mouse is moved.

We can use setMouseTracking() to keep track of the mouse cursor and return its
coordinates in mouseMoveEvent (). Those coordinates are displayed in the status bar.

If the user presses the left mouse button while the cursor is in the window, we set
drawing equal to True and store the current value of the mouse in last_mouse_pos. Then
drawOnCanvas () is called in the moveMouseEvent ().

The user has four choices in the toolbar, including a pencil, marker, eraser,
and a color selector. If a user selects a tool from the toolbar, a signal triggers the
selectDrawingTool() slot, updating the current tool and painter settings.

The actual drawing is handled in drawOnCanvas(). An instance of QPainter is
created that draws on the pixmap. We also check whether the eraser selected is True or
False to test whether we can draw or erase. The reimplementation of the paintEvent ()
creates a painter for the canvas area and draws the pixmap using drawPixmap(). By first
drawing on a QPixmap in the drawOnCanvas () method and then copying the QPixmap
onto the screen in the paintEvent (), we can ensure that our drawing won’t be lost if the
window is minimized.

The Canvas class also includes methods for clearing and saving the pixmap.

Creating the PainterWindow Class

The PainterWindow class creates the main menu, toolbar, tool tips for each of the buttons
in the toolbar, and an instance of the Canvas class.

The File menu contains actions for clearing the canvas, saving the image, and
quitting the application. The Tools menu contains a checkable menu item that turns
antialiasing on or off.

The toolbar creates the actions and icons for the drawing tools. If a button is clicked,
it triggers the Canvas class’s selectDrawingTool() slot.

The reimplemented leaveEvent () handles if the mouse cursor moves outside the
main window and sets the mouse_track label’s visibility to False.

Handling Mouse Movement Events

This project displays the mouse’s current x and y coordinates in the status bar. You may
not want this kind of functionality, so the following code shows the basics for turning
mouse tracking on and setting up mouseMoveEvent () to return the x and y values:

250

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Turn mouse tracking on
self.setMouseTracking(True)

def mouseMoveEvent(self, event):
mouse_pos = event.pos()
pos_text = "Mouse Coordinates: ({}, {})".format(mouse pos.x(),

mouse_pos.y())
print(pos_text)

Mouse move events occur whenever the mouse is moved, or when a mouse button is
pressed or released.

Creating Tool Tips for Widgets

A user may often find themselves wondering about what some widget or action in a
menu or toolbar actually does in an application. Tool tips are useful little bits of text
that can be displayed to inform someone of a widget’s function. Tool tips can be applied
to any widget by using the setToolTip() method. Tips can display rich text formatted
strings as shown in the following sample of code and in Figure 9-7. The font style and
appearance of a tool tip can be adapted to fit your preferences.

eraser_act.setToolTip('Use the Eraser to make it all disappear.')

O ®
File Tools

/
V4

,2;}

Use the Eraser to
|make it all

disappear.

=

Figure 9-7. The tool tip that is displayed when the user hovers over the eraser
button

251

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Project 9.2 — Animation with QPropertyAnimation

The following project serves as an introduction to Qt’s Graphics View Framework and
the QAnimationProperty class. With the framework, applications can be created that
allow users to interact with the items in the window.

A Graphics View is comprised of three components:

1. Ascene created from the QGraphicsScene class. The scene creates
the surface for managing 2D graphical items and must be created
along with a view to visualize a scene.

2. QGraphicsView provides the view widget for visualizing the
elements of a scene, creating a scroll area that allows user to
navigate in the scene.

3. Items in the scene are based on the QGraphicsItem class. Users
can interact with graphical items through mouse and key events,
and drag and drop. Items also support collision detection.

QAnimationProperty is used to animate the properties of widgets and items.
Animations in GUIs can be used for animating widgets. For example, you could animate
a button that grows, shrinks, or rotates, or text that smoothly moves around in the
window, or create widgets that fade in and out or change colors. QAnimationProperty
only works with objects that inherit the QObject class. QObject is the base class for all
objects created in PyQt.

Qt provides a number of simple items that inherit QGraphicsltem, including basic
shapes, text, and pixmaps. These items already provide support for mouse and keyboard
interaction. However, QGraphicsItem does not inherit QObject. Therefore, if you want to
animate a graphics item with QPropertyAnimation, you must first create a new class that
inherits from QObject and define new properties for the item.

Figure 9-8 shows an example of the scene we are going to create in this project.

252

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

®0e@ 9.2 - Animation Example

Figure 9-8. The car and tree objects that move across the scene in the window

Animation Solution

In the following application, you will find out how to create new properties for items
using pyqtProperty, learn how to animate objects using the QPropertyAnimation class,
and create a Qt Graphics View for displaying the items and animations. The code for
creating simple animations can be found in Listing 9-3.

Listing 9-3. Code for animating objects in Qt’s Graphics View Framework

animation.py
Import necessary modules
import sys
from PyQt5.QtWidgets import (QApplication, QGraphicsView, QGraphicsScene,
QGraphicsPixmapItem)
from PyQt5.0QtCore import (QObject, QPointF, QRectF,

QPropertyAnimation, pyqtProperty)
from PyQt5.0tGui import QPixmap

253

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Create Objects class that defines the position property of
instances of the class using pyqtProperty.
class Objects(QObject):

def init (self, image path):
super(). init ()

item_pixmap = QPixmap(image path)

resize item = item pixmap.scaledToWidth(150)
self.item = QGraphicsPixmapItem(resize item)

def set position(self, position):
self.item.setPos(position)

position = pyqtProperty(QPointF, fset=_set position)
class AnimationScene(QGraphicsView):
def init (self):
super(). init ()
self.initializeView()

def initializeView(self):

Initialize the graphics view and display its contents
to the screen.

self.setGeometry(100, 100, 700, 450)
self.setWindowTitle('9.2 - Animation Example')

self.createObjects()
self.createScene()

self.show()

def createObjects(self):

Create instances of the Objects class, and set up the objects
animations.

254

def

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

List that holds all of the animations.
animations = []

Create the car object and car animation.
self.car = Objects('images/car.png")

self.car_anim = QPropertyAnimation(self.car, b"position")
self.car anim.setDuration(6000)

self.car _anim.setStartValue(QPointF(-50, 350))
self.car _anim.setKeyValueAt(0.3, QPointF(150, 350))
self.car_anim.setKeyValueAt(0.6, QPointF(170, 350))
self.car _anim.setEndValue(QPointF (750, 350))

Create the tree object and tree animation.
self.tree = Objects('images/trees.png")

self.tree anim = QPropertyAnimation(self.tree, b"position")
self.tree_anim.setDuration(6000)

self.tree _anim.setStartValue(QPointF (750, 150))
self.tree anim.setKeyValueAt(0.3, QPointF(170, 150))
self.tree anim.setKeyValueAt(0.6, QPointF(150, 150))
self.tree anim.setEndValue(QPointF(-150, 150))

Add animations to the animations list, and start the
animations once the program begins running.
animations.append(self.car anim)
animations.append(self.tree anim)

for anim in animations:
anim.start()

createScene(self):

Create the graphics scene and add Objects instances
to the scene.

self.scene = QGraphicsScene(self)
self.scene.setSceneRect(0, 0, 700, 450)

255

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

self.scene.addItem(self.car.item)
self.scene.addItem(self.tree.item)
self.setScene(self.scene)

def drawBackground(self, painter, rect):

Reimplement QGraphicsView's drawBackground() method.

scene_rect = self.scene.sceneRect()

background = QPixmap("images/highway.jpg")
bg rectf = QRectF(background.rect())
painter.drawPixmap(scene rect, background, bg rectf)

if name_ ==" main_"':
app = QApplication(sys.argv)
window = AnimationScene()
sys.exit(app.exec_())

A still image from the animation project is shown in Figure 9-8.

Explanation

Since we are going to create a Graphics Scene, we need to import QGraphicsScene,
QGraphicsView, and one of the QGraphicsItem classes. For this program, we import
QGraphicsPixmapItem since we will be working with pixmaps. New Qt properties can be
made using pyqtProperty.

Since QObject does not have a position property, we need to define one with
pyqtProperty in the Objects class. QGraphicsPixmapItem() creates a pixmap that can be
added into the QGraphicsScene. We create a position property that allows us to set and
update the position of the object using fset. set position() passes the position to
the QGraphicsItem.setPos() method, setting the position of the item to the coordinates
specified by QPointF. Underscores in front of variable, method, or class names are used
to denote private functions.

def set position(self, position):
self.item.setPos(position)
position = pyqtProperty(QPointF, fset=_set position)

256

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

The goal of this project is to animate two items, a car and a tree, in a
QGraphicsScene. Let’s first create the objects and the animations that will be placed into
the scene. For this scene, the two items will move at the same time. Qt provides other
classes for handling groups of animations, but for this example, the QPropertyAnimation
and the animations list are used to keep track of the multiple animations.

Create the car item as an instance of the Objects class, and pass car and the
position setter to QPropertyAnimation(). QPropertyAnimation will update the
position’s value so that the car moves across the scene. To animate items, use
setDuration() to set the amount of time the object moves in milliseconds, and specify
start and end values of the property with setStartValue() and setEndValue(). The
animation for the car is 6 seconds and starts off-screen on the left side and travels to the
right. The tree is set up in a similar manner, but traveling in the opposite direction.

The setKeyValueAt () method allows us to create key frames at the given steps with
the specified QPointF values. Using the key frames, the car and tree will appear to slow
down as they pass in the scene. The start () method begins the animation.

Setting up a scene is simple. Create an instance of the scene, set the scene’s size, add
objects and their animations using addItem(), and then call setScene().

Finally, a scene can be given a background using QBrush. If you want to
use a background image, you will need to reimplement the QGraphicView’s
drawBackground() method like we do in this example.

Project 9.3 — RGB Slider Custom Widget

For this chapter’s final project, we are going to take a look at making a custom, functional
widget in PyQt. While PyQt offers a variety of widgets for building GUTs, every once in a
while you might find yourself needing to create your own. One of the benefits of creating
a customized widget is that you can either design a general widget that can be used by
many different applications or create an application-specific widget that allows you to
solve a specific problem.

There are quite a few techniques that you can use to create your own widgets, most
which we have already seen in previous examples.

e Modifying the properties of PyQt’s widgets by using built-in methods,
such as setAlignment(), setTextColor(), and setRange()

o Creating style sheets to change a widget’s existing behavior and
appearances
257

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

e Subclassing widgets and reimplementing event handlers, or adding
properties dynamically to QObject classes

o Creating composite widgets which are made up of two more types of
widgets and arranged together using a layout

o Designing a completely new widget that subclasses QWidget and has
its own unique properties and appearance

The RGB slider, shown in Figure 9-9, actually is created by combining a few of
the preceding techniques listed. The widget uses Qt’s QSlider and QSpinBox widgets
for selecting RGB values and displays the color on a QLabel. The look of the sliders is
modified by using style sheets. All of the widgets are then assembled into a parent widget
which we can then import into other PyQt applications.

PyQt’s Image Handling Classes

In previous examples, we have only worked with QPixmap for handling image data. Qt
actually provides four different classes for working with images, each with their own
special purposes.

QPixmap is the go-to choice for displaying images on the screen. Pixmaps can be
used on QLabel widgets, or even on push buttons and other widgets that can display
icons. QImage is optimized for reading, writing, and manipulating images, allowing
direct access to an image’s pixel data. QImage can also act as paint device.

Conversion between QImage and QPixmap is also possible. One possibility for
using the two classes together is to load an image file with QImage, manipulate
the image data, and then convert the image to a pixmap before displaying it on the
screen. The RGB slider widget shows an example of how to convert between the
two classes.

QBitmap is a subclass of QPixmap and provides monochrome (1-bit depth)
pixmaps. QPicture is a paint device that replays QPainter commands, that is, you
can create a picture from whatever device you are painting on. Pictures created with
QPicture are resolution independent, appearing the same on any device.

258

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

® © ® 93-RGB Slider

Red
GE—] O 196 °
Green
G) 14
Blue

GEE | O 193 °

Hex Color #c472c1

Figure 9-9. A custom widget used to select colors using sliders and spin boxes

Our custom widget uses two types of widgets for selecting RGB values - QSpinBox,
which was introduced in Chapter 4, and a new widget, QSlider.

The QSlider Widget

The QSlider class provides a developer with a tool for selecting integer values within

a bounded range. Sliders provide users with a convenient means for quickly selecting
values or changing settings with only the movement of a simple handle. By default,
sliders are arranged vertically, but that can be changed by passing Qt.Horizontal to the
constructor.

259

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

In the following bit of code, you can see how to create an instance of QSlider, set the
slider’s maximum range value, and connect to valueChanged() to emit a signal when the
slider’s value has changed:

slider = QSlider(Qt.Horizontal, self)

Default values are from 0 to 99
slider.setMaximum(200)
slider.valueChanged[int].connect(self.printSliderValue)

def printSliderValue(self, value):
print(value)

An example of stylized slider widgets can be seen in Figure 9-9.

RGB Slider Solution

The RGB slider, which can be found in Listing 9-4, is a custom widget created by
combining a few of Qt’s built-in widgets - QLabel, QSlider, and QSpinBox. The
appearance of the sliders is adjusted using style sheets so that they give visual feedback
to the user about which RGB value they are adjusting. The sliders and spin boxes are
connected together so that their values are in sync and so that the user can see the
integer value on the RGB scale. The RGB values are also converted to hexadecimal
format and displayed on the widget.

The sliders and spin boxes can be used to either find out the RGB or hexadecimal
values for a color or use the reimplemented mousePressEvent () method so that a user
can click a pixel in an image to find out its value. An example of this is shown in
Listing 9-5, where you will also see how to import the RGB slider in a demo application.

Listing 9-4. Code for the RGB slider custom widget

rgb_slider.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import (QApplication, QWidget, QLabel,
QSlider, QSpinBox, QHBoxLayout, QVBoxLayout, QGridLayout)

from PyQt5.0tGui import QImage, QPixmap, QColor, qRgb, QFont

from PyQt5.QtCore import Qt

260

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

style sheet =
0Slider:groove:horizontal{
border: 1px solid #000000;
background: white;
height: 10 px;
border-radius: 4px

}

QSlider#Red:sub-page:horizontal{

background: glineargradient(x1: 1, yi: 0, x2: 0, y2: 1,
stop: 0 #FF4242, stop: 1 #1C1C1C);

background: qlineargradient(x1: 0, y1: 1, x2: 1, y2: 1,
stop: 0 #1C1C1C, stop: 1 #FF0000);

border: 1px solid #4C4B4B;

height: 10px;

border-radius: 4px;

}

QSlider::add-page:horizontal {
background: #FFFFFF;
border: 1px solid #4C4B4B;
height: 10px;
border-radius: 4px;

}

QSlider::handle:horizontal {
background: gqlineargradient(x1:0, y1:0, x2:1, y2:1,
stop:0 #EEEEEE, stop:1 #CCCCCC);
border: 1px solid #4C4B4B;
width: 13px;
margin-top: -3px;
margin-bottom: -3px;
border-radius: 4px;

}

QSlider::handle:horizontal:hover {
background: qlineargradient(x1:0, y1:0, x2:1, y2:1,
stop:0 #FFFFFF, stop:1 #DDDDDD);
261

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

border: 1px solid #393838;
border-radius: 4px;

}

QSlider#Green:sub-page:horizontal{

background: qlineargradient(x1: 1, yi: 0, x2: 0, y2: 1,
stop: 0 #FF4242, stop: 1 #1C1C1C);

background: glineargradient(x1: o, y1: 1, x2: 1, y2: 1,
stop: 0 #1C1C1C, stop: 1 #OOFF00);

border: 1px solid #4C4B4B;

height: 10px;

border-radius: 4px;

}

QSlider#Blue:sub-page:horizontal{

background: glineargradient(x1: 1, y1: 0, x2: 0, y2: 1,
stop: 0 #FF4242, stop: 1 #1C1C1C);

background: qlineargradient(x1: 0, y1: 1, x2: 1, y2: 1,
stop: 0 #1C1C1C, stop: 1 #000OFF);

border: 1px solid #4C4B4B;

height: 10px;

border-radius: 4px;

}

class RGBSlider(QWidget):

def _init (self, _image=None, xargs, **kwargs):
super(). init_ (xargs, **kwargs)
self. image = image

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

262

def

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

self.setMinimumSize (225, 300)
self.setWindowTitle('9.3 - RGB Slider")

Store the current pixel value
self.current val = QColor()

self.setupWidgets()
self.show()

setupWidgets(self):

Create instances of widgets and arrange them in layouts.

Image that will display the current color set by

slider/spin_box values

self.color display = QImage(100, 100, QImage.Format RGBX64)
self.color display.fill(Qt.black)

self.cd label = QLabel()
self.cd label.setPixmap(QPixmap.fromImage(self.color display))
self.cd label.setScaledContents(True)

Create RGB sliders and spin boxes

red label = QLabel("Red")

red label.setFont(QFont('Helvetica', 14))
self.red slider = QSlider(Qt.Horizontal)
self.red slider.setObjectName("Red")
self.red slider.setMaximum(255)

self.red spinbox = QSpinBox()
self.red spinbox.setMaximum(255)

green label = QLabel("Green")

green label.setFont(QFont('Helvetica', 14))
self.green slider = QSlider(Qt.Horizontal)
self.green slider.setObjectName("Green")
self.green slider.setMaximum(255)

263

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

self.green spinbox = QSpinBox()
self.green_spinbox.setMaximum(255)

blue label = QLabel("Blue")

blue label.setFont(QFont('Helvetica', 14))
self.blue slider = QSlider(Qt.Horizontal)
self.blue slider.setObjectName("Blue")
self.blue_slider.setMaximum(255)

self.blue_spinbox = QSpinBox()
self.blue_spinbox.setMaximum(255)

Use the hex labels to display color values in hex format
hex label = QLabel("Hex Color ")
self.hex values label = QLabel()

hex_h box = QHBoxLayout()
hex_h_box.addWidget(hex_label, Qt.AlignRight)
hex_h_box.addwWidget(self.hex values label, Qt.AlignRight)

hex_container = QWidget()
hex_container.setLayout(hex h box)

Create grid layout for sliders and spin boxes
grid = QGridLayout()

grid.addwidget(red label, 0, 0, Qt.AlignLeft)
grid.addWidget(self.red slider, 1, 0)
grid.addWidget(self.red spinbox, 1, 1)
grid.addWidget(green label, 2, 0, Qt.AlignLeft)
grid.addWidget(self.green slider, 3, 0)
grid.addWidget(self.green spinbox, 3, 1)
grid.addWidget(blue label, 4, 0, Qt.AlignLeft)
grid.addWidget(self.blue slider, 5, 0)
grid.addWidget(self.blue spinbox, 5, 1)
grid.addWidget(hex_container, 6, 0, 1, 0)

Use [] to pass arguments to the valueChanged signal
The sliders and spin boxes for each color should display the same
values and be updated at the same time.

264

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

self.red slider.valueChanged['int'].connect(self.updateRedSpinBox)
self.red_spinbox.valueChanged['int'].connect(self.updateRedSlider)

self.green slider.valueChanged['int'].connect(self.
updateGreenSpinBox)
self.green spinbox.valueChanged['int'].connect(self.
updateGreenSlider)

self.blue_slider.valueChanged['int'].connect(self.
updateBlueSpinBox)
self.blue_spinbox.valueChanged['int'].connect(self.
updateBlueSlider)

Create container for rgb widgets
rgb widgets = QWidget()
rgb widgets.setlayout(grid)

v_box = QVBoxLayout()
v_box.addWidget(self.cd label)
v_box.addWidget(rgb widgets)

self.setLayout(v_box)

The following methods update the red, green, and blue

sliders and spin boxes.

def

def

def

updateRedSpinBox(self, value):
self.red spinbox.setValue(value)
self.redValue(value)

updateRedSlider(self, value):
self.red slider.setValue(value)
self.redValue(value)

updateGreenSpinBox(self, value):
self.green spinbox.setValue(value)
self.greenValue(value)

265

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

266

def

def

def

updateGreenSlider(self, value):
self.green slider.setValue(value)
self.greenValue(value)

updateBlueSpinBox(self, value):
self.blue_spinbox.setValue(value)
self.blueValue(value)

updateBlueSlider(self, value):
self.blue_slider.setValue(value)
self.blueValue(value)

Create new colors based upon the changes to the RGB values

def

def

def

def

redValue(self, value):

new_color = gRgb(value, self.current val.green(), self.current val.
blue())

self.updateColorInfo(new color)

greenValue(self, value):
new color = gRgb(self.current val.red(), value, self.current val.

blue())
self.updateColorInfo(new_color)

blueValue(self, value):

new_color = gqRgb(self.current val.red(), self.current val.green(),
value)

self.updateColorInfo(new_color)

updateColorInfo(self, color):

Update color displayed in image and set the hex values accordingly.

self.current val = QColor(color)

self.color display.fill(color)

self.cd label.setPixmap(QPixmap.fromImage(self.color display))
self.hex values label.setText("{}".format(self.current val.name()))

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

def getPixelValues(self, event):
The method reimplements the mousePressEvent method.
To use, set a widget's mousePressEvent equal to getPixelValues, like so:
image label.mousePresskEvent = rgb _slider.getPixelValues
If an _image != None, then the user can select pixels in the
images, and update the sliders to get view the color, and get the
rgb and hex values.

X
y

event.x()
event.y()

valid() returns true if the point selected is a valid
coordinate pair within the image
if self. image.valid(x, y):

self.current val = QColor(self. image.pixel(x, y))

red val = self.current val.red()
green val = self.current val.green()
blue val = self.current val.blue()

self.updateRedSpinBox(red val)
self.updateRedSlider(red val)
self.updateGreenSpinBox(green val)
self.updateGreenSlider(green val)
self.updateBlueSpinBox(blue val)
self.updateBlueSlider(blue val)

An example of the stand-alone widget can be seen in Figure 9-9.

Explanation

We need to import quite a few classes. One worth noting, qRgb, is actually a typedef that
creates an unsigned int representing the RGB value triplet (1, g, b).

The style sheet that follows the imports is used for changing the appearance of the
sliders. We want to modify their appearance so that they give the user more feedback
about which RGB values are being changed. Each slider is given an ID selector using the

267

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

setObjectName() method. If no ID selector is used in the style sheet, then that style is
applied to all of the QS1ider objects. The sliders use linear gradients so that users can get
avisual representation of how much of the red, green, and blue colors are being used.
Refer back to Chapter 6 for a refresher about style sheets.

The RGBSlider class inherits from QWidget. For this class, the user can pass an image
and other arguments as parameters in the constructor.

class RGBSlider(QWidget):
def init (self, image=None, *args, **xkwargs):
super(). init (*args, *xkwargs)
self. image = _image

In setupWidgets(), a QImage object is created that will display the color created
from the RGB values. To display the image in the widget, convert the QImage to a QPixmap

using
self.cd label.setPixmap(QPixmap.fromImage(self.color display))

The contents of the label are then scaled to fit the window’s size.

Next, we create each of the red, green, and blue QSlider and QSpinBox widgets and
the labels for displaying the hexadecimal value. The sliders’ maximum values are set to
255, since RGB values are in the range of 0-255. These widgets are then arranged using
QGridLayout.

Updating the Sliders and Spin Boxes

QSlider and QSpinBox can both emit the valueChanged() signal. We can connect the
sliders and spin boxes so that their values change relative to each other. For example,
when the red_slider emits a signal, it triggers the updateRedSpinBox() slot, which then
updates the red_spinbox value using setValue(). A similar process happens for the
red spinbox and for the green and blue sliders and spin boxes.

red_slider.valueChanged['int'].connect(self.updateRedSpinBox)
red_spinbox.valueChanged['int'].connect(self.updateRedSlider)

def updateRedSpinBox(self, value):
self.red spinbox.setValue(value)
self.redValue(value)

268

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

These widgets are contained in the rghb_widgets QWidget. The last thing to do is to
arrange the widgets in the main layout.

Updating the Colors

When a signal triggers a slot, it uses value to update the corresponding slider or spin box
and then calls a function that will create a new color from the red, green, or blue values.
The redValue() function shown in the following code creates a new qRgb color, using
the new red value and the current_val’s green() and blue() colors. current valisan
instance of QColor. The QColor class has functions that we can use to access an image’s
RGB (or other color formats) value.

def redvValue(self, value):
new_color = gRgb(value, self.current val.green(), self.current val.
blue())
self.updateColorInfo(new color)

The new_color is then passed to updateColorInfo(). Green and blue colors are
handled in a similar fashion. Next we have to create a QColor from the qRgb value and
store itin current_val. The QImage color_display is updated with fill(), which is
then converted to a QPixmap and displayed on the cd_label.

The last thing to do is to update the hexadecimal labels using QColor.name(). This
function returns the name of the color in the format “4RRGGBB’”.

Adding Methods to a Custom Widget

The options for methods that you could create for a custom widget are numerous. One
option is to create methods that allow the user to modify the behavior or appearance of
your custom widget. Another option is to use the event handlers to check for keyboard or
mouse events that could be used to interact with your GUIL

getPixelValue() is a reimplementation of the mousePressEvent () event handler. If
an image is passed into the RGBSlider constructor, then _image is not None, and the user
can click points in the image to get their corresponding pixel values. QColor.pixel()
gets a pixel’s RGB values. Then, we update current_val to use the selected pixel’s red,
blue, and green values. These values are then passed back into the functions that will
update the sliders, spin boxes, labels, and QImage.

The following example demonstrates how to implement the color selecting feature.

269

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

RGB Slider Demo

One reason for creating a custom widget is so that it can be used in other applications.
The following program is a short example of how to import and set up the RGB

slider shown in Project 9.3. For this example, an image is displayed in the window
alongside the RGB slider. Users can click points within the image and see the RGB and
hexadecimal values change in real time.

This short program’s GUI can be seen in Figure 9-10.

Listing 9-5. Code that shows an example for using the RGB slider widget

rgb demo.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
QHBoxLayout)

from PyQt5.0QtGui import QPixmap, QImage

from PyQt5.QtCore import Qt

from rgb_slider import RGBSlider, style_ sheet

class ImageDemo(QWidget):

def init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (225, 300)
self.setWindowTitle('9.3 - Custom Widget')

Load image
image = QImage("images/chameleon.png")

270

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

Create instance of RGB slider widget and pass the image as an
argument to RGBSlider
rgb slider = RGBSlider(image)

image label = QLabel()

image label.setAlignment(Qt.AlignTop)

image label.setPixmap(QPixmap().fromImage(image))

Reimplement the label's mousePressEvent

image label.mousePresskEvent = rgb slider.getPixelValues

h_box = QHBoxLayout()
h_box.addWidget(rgb slider)
h_box.addWidget(image label)

self.setLayout(h box)
self.show()

if _name_ == "' main_':
app = QApplication(sys.argv)
Use the style sheet from rgb slider
app.setStyleSheet(style sheet)
window = ImageDemo()
sys.exit(app.exec_())

The RGB slider is a general widget and can be imported into different types of
programs. An example can be seen in Figure 9-10.

271

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

® 0 9.3 - Custom Widget

>
Red
&) Bo ¢
Green
GEE D 244 °
Blue

[()

<>

Hex Color #50f44c

Figure 9-10. An example of including the custom RGB slider in an application

Explanation

Let’s get started by importing the classes we need, including the RGB slider and style
sheet from rgb_slider.py.

from rgb slider import RGBSlider, style sheet

In the ImageDemo class, set up the window, create an instance of the RGB slider,
and load an image. For this application, we are still creating the image as an instance of
QImage and then converting it to a QPixmap. QImage is used so that we can get access to
the image’s pixel information.

If you only want to use the slider to get different RGB or hexadecimal values, then the
application is finished. Or you could add other functionality to the RGB slider to use in
your own projects.

272

CHAPTER9 GRAPHICS AND ANIMATION IN PYQT

However, we could also reimplement the QLabel object’s mouse event handler.
When the mouse is clicked over a point in the label, we can use the x and y coordinates
from the event to update the values in the RGB slider widget using the RGBS1ider class’s
getPixelValues() method.

image label.mousePressEvent = rgb slider.getPixelValues

Summary

PyQt5’s graphics and painting system is an extensive topic that could be an entire book
by itself. The QPainter class is important for performing the painting on widgets and on
other paint devices. QPainter works together with the QPaintEngine and QPaintDevice
classes to provide the tools you need for creating two-dimensional drawing applications.

In Chapter 9, we have taken a look at some of QPainter’s functions for drawing lines,
primitive and abstract shapes. Together with QPen, QBrush, and QColor, QPainter is able
to create some rather beautiful digital images. To materialize this concept, we created
a simple painting application. Hopefully, you use that application and add even more
drawing features.

We also saw how to create properties for objects made from the QObject class and
then animate those objects in Qt Graphics View Framework. It is not covered in this
book, but you could use the Graphics View to create a GUI with items that are interactive.

Finally, one of PyQt’s strengths comes from being able to customize the built-in
widgets or to create your own widget that can then be imported seamlessly into other
applications.

In Chapter 10, we will learn about data handling using databases and PyQt.

273

CHAPTER 10

Introduction to Handling
Databases

Data is fundamental to the ways that modern business, communications, science,
and even our personal lives are changing. The information we create from our online
shopping, social media posts, search-engine queries, and location data is collected,
managed, and analyzed and can be used for a number of reasons, including to track
consumer patterns, to train artificial intelligence algorithms, or even to study the
geographic distribution of particular events such as diseases.

Data analysis is an important process, and this chapter will have a look at working
with structured data for GUI development. Data can be stored in many different formats,
including textual, visual, and multimedia.

In order to analyze data, we need to organize it into structures that we can store
and then access electronically through a computer system. Sometimes you may only be
working with a small dataset consisting of one or two files. Other times, you may need to
access certain portions of an entire database filled with private information. A database
is an organized collection of multiple datasets.

We generally view the data from files and databases in tables. The rows and columns
of a table typically work best for handling the style of data in data files. If we had a dataset
of employees in a company, each row might represent an individual employee in the
company, while each column depicts the different types of attributes for each employee,
such as their age, salary, and employee ID number.

This chapter will focus only on using PyQt’s table classes for displaying and
manipulating data. We will see how to use tables for creating the foundation for a
spreadsheet editor, for working with CSV files, and for working with the SQL database
management language. Of course, there are also other formats for viewing data, namely,
lists and trees, should they better fit your application’s requirements.

275
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_10

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

In Chapter 10, we are going to take a look at creating GUIs that will

o Take alook at PyQt’s convenience class for making tables,
QTableWidget

e Find out how to add context menus to GUI applications

e Learn about Qt’s model/view architecture for working with data
using the QTableView class

o See an example of how to work with CSV files in PyQt

e Introduce the QtSql module for working with SQL and databases

The QTableWidget Class

The QTableWidget class provides a means to display and organize data in tabular form,
presenting the information in rows and columns. Using tables breaks down data into a
more quickly readable layout. An example of PyQt’s tables can be seen in Figure 10-1.

QTableWidget provides you with the standard tools that you will need to create
tables, including the ability to edit cells, set the number of rows and columns, and add
vertical or horizontal header labels.

To create a QTableWidget object, you could pass the number of rows and columns as
parameters to the QTableWidget, like in the following code:

table widget = QTableWidget(10, 10, self)

Or you could construct a table using the setRowCount () and setColumnCount()
methods.

table widget = QTableWidget()

Set initial row and column values
table widget.setRowCount(10)

table widget.setColumnCount(10)

You can also add items to the table programmatically using the setItem() method.
This allows you to set the row and column values, and an item for the cell using
QTableWidgetItem. In the following code, the item Kalani is inserted in row 0 and
column 0:

self.table widget.setItem(0,0, QTableWidgetItem("Name"))
self.table widget.setItem(1,0, QTableWidgetItem("Kalani"))

276

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Setting either horizontal or vertical header labels is done with
setHorizontalHeaderItem() or setHorizontalHeaderLabels(). Change Horizontal to
Vertical for the vertical header.

For the first example in this chapter, Listing 10-1, we will be taking a look at how to
use QTableWidget to create the foundation for an application to edit spreadsheets and
how to use a context menu to manipulate the contents of the table widget.

Listing 10-1. Example code that uses the QTableWidget class and some of its
functions

spreadsheet.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QMainWindow,
QTableWidget, QTableWidgetItem, QMenu, QAction,
QInputDialog)

class SpreadsheetFramework(QMainWindow):

def init (self):
super(). init ()

self.initUI()

def initUI(self):
self.setMinimumSize (1000, 500)
self.setWindowTitle("Spreadsheet - Table Example")

Used for copy and paste actions
self.item text = None

self.createMenu()
self.createTable()

self.show()

def createTable(self):

Set up table widget.

277

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

278

def

self.table widget = QTableWidget()

Set initial row and column values
self.table widget.setRowCount(10)
self.table widget.setColumnCount(10)

Set focus on cell in the table
self.table widget.setCurrentCell(0, 0)

When the horizontal headers are double-clicked, emit a signal
self.table widget.horizontalHeader().sectionDoubleClicked.
connect(self.changeHeader)

self.setCentralWidget(self.table widget)

createMenu(self):

Set up the menu bar.

Create file menu actions

quit act = QAction("Quit", self)
quit_act.setShortcut('Ctrl+Q")
quit_act.triggered.connect(self.close)

Create table menu actions
self.add row above act = QAction("Add Row Above", self)
self.add row above act.triggered.connect(self.addRowAbove)

self.add row below act = QAction("Add Row Below", self)
self.add row below act.triggered.connect(self.addRowBelow)

self.add col before act = QAction("Add Column Before", self)
self.add_col before act.triggered.connect(self.addColumnBefore)

self.add col after act = QAction("Add Column After", self)
self.add col after act.triggered.connect(self.addColumnAfter)

self.delete row act = QAction("Delete Row", self)
self.delete row act.triggered.connect(self.deleteRow)

def

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

self.delete col act = QAction("Delete Column", self)
self.delete col act.triggered.connect(self.deleteColumn)

self.clear table act = QAction("Clear All", self)
self.clear table act.triggered.connect(self.clearTable)

Create the menu bar

menu_bar =

self.menuBar()

menu_bar.setNativeMenuBar(False)

Create file menu and add actions

file menu

menu_bar.addMenu('File")

file menu.addAction(quit_act)

Create table menu and add actions

table menu

table _menu.
table _menu.
table menu.
table _menu.
.addAction(self.add col after act)
table_menu.
table menu.
table _menu.

table_menu

table menu.
table menu.

= menu_bar.addMenu('Table")
addAction(self.add row above act)
addAction(self.add row below act)
addSeparator()
addAction(self.add col before act)

addSeparator()
addAction(self.delete row act)
addAction(self.delete col act)
addSeparator()
addAction(self.clear table act)

contextMenuEvent(self, event):

Create context menu and actions.

context_menu =

context_menu.
context_menu.
context_menu.
context_menu.
context_menu

QMenu(self)

addAction(self.add row above act)
addAction(self.add row below act)
addSeparator()

addAction(self.add col before act)
.addAction(self.add col after act)

279

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

280

def

context_menu.addSeparator()
context_menu.addAction(self.delete row act)
context_menu.addAction(self.delete col act)
context_menu.addSeparator()

copy act = context _menu.addAction("Copy")
paste act = context menu.addAction("Paste")
context_menu.addSeparator()
context_menu.addAction(self.clear table act)

Execute the context menu and return the action selected.
mapToGlobal() translates the position of the window coordinates to
the global screen coordinates. This way we can detect if a right-
click occurred inside of the GUI and display the context menu.

action = context menu.exec_(self.mapToGlobal(event.pos()))

To check for actions selected in the context menu that were not
created in the menu bar.
if action == copy act:
self.copyItem()
if action == paste act:
self.pasteItem()

changeHeader (self):

Change horizontal headers by returning the text from input dialog.

col = self.table widget.currentColumn()
text, ok = QInputDialog.getText(self, "Enter Header", "Header text:")

if ok and text != "":
self.table widget.setHorizontalHeaderItem(col,
QTableWidgetItem(text))

else:
pass

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

def copyItem(self):

If the current cell selected is not empty, store the text.
if self.table widget.currentItem() != None:
self.item text = self.table widget.currentItem().text()

def pasteItem(self):

Set item for selected cell.
if self.item_text != None:
row = self.table widget.currentRow()
column = self.table widget.currentColumn()
self.table widget.setItem(row, column, QTableWidgetItem(self.
item text))

def addRowAbove(self):
current_row = self.table widget.currentRow()
self.table widget.insertRow(current row)

def addRowBelow(self):
current _row = self.table widget.currentRow()
self.table widget.insertRow(current row + 1)

def addColumnBefore(self):
current_col = self.table widget.currentColumn()
self.table widget.insertColumn(current col)

def addColumnAfter(self):
current _col = self.table widget.currentColumn()
self.table widget.insertColumn(current col + 1)

def deleteRow(self):
current_row = self.table widget.currentRow()
self.table widget.removeRow(current row)

def deleteColumn(self):
current _col = self.table widget.currentColumn()
self.table widget.removeColumn(current col)

281

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

def clearTable(self):
self.table widget.clear()

if name_ ==" main_":
app = QApplication(sys.argv)
window = SpreadsheetFramework()
sys.exit(app.exec ())

Figure 10-1 displays the GUI for this application, including the QTableWidget with
examples of data already entered into some of the rows and columns, and horizontal

headers.
@ L] Spreadsheet - Table Example
File Table
1] First Name Last Name Dept. Start Date B 7 8 a 10
1 1002 Ken Sanchez Executive 2010-05-12 -
2 1003 Evelyn Ye Executive 2010-04-20
a 1234 Mark Thompson Engineering 2011-12-03
4 1245 Steve Patterson Engineering 2010-08-21
5 1657 Pamela Grant Engineering 2013-01-02
& 1890 Garfield Adams Finance 2012-10-12
7 2010 Larry Byrd Finance 2016-05-20
8 350 Mary Stevenson IT 20M-08-05
9

Figure 10-1. Example of a table from the QTableWidget class

Explanation

When we import classes in the beginning of the program, we need to make sure to
include QTableWidget and QTableWidgetItem, which is used to create items for the
table widget. A table is composed of a group of cells, and the items are the bits of textual
information in each one. QTableWidget has a number of signals for checking to see if
cells or items have been clicked, double-clicked, or even altered.

282

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Next, create the menubar with File and Table menus. QTableWidget includes a few
methods for manipulating table objects. The Table menu creates actions that put those
methods to use. These actions include

e Adding rows above or below the currently selected row using
insertRow()

¢ Adding columns before or after the currently selected column using
insertColumn()

o Deleting the current row or column using removeRow() or
removeColumn()

o Clearing the entire table, including items and headers with clear()

Since we are working with a table, if we are going to manipulate the rows or columns,
we first need to know which row or column is currently selected. For example, when
add_row_above_act is clicked, it triggers a signal that calls addRowAbove (). We first find
out the row that is selected using currentRow().

current_row = self.table widget.currentRow()
self.table widget.insertRow(current row)

A new row is then inserted in the current row’s location, causing all other rows to
move down. For methods that manipulate columns, use the currentColumn() method.

Changing header labels in QTableWidget can either be done directly in code or by
using a slightly indirect approach. Headers for tables are created using QHeaderView
in the QTableView class (which we will cover later in this chapter’s project). Since
QTableWidget inherits from the QTableView class, we also have access to its functions.
In the following line of code, we are able to obtain the QHeaderView object using table
widget.horizontalHeader (). From there, we can connect to the QHeaderView signal
sectionDoubleClicked(), checking to see if the user double-clicked a header section. If
they did, a signal triggers the changeHeader () method.

self.table widget.horizontalHeader().sectionDoubleClicked.connect(self.
changeHeader)

From there, we get the column for the current header and show a QInputDialog to
get the header label from the user. Finally, the item for the horizontal header is set using
setHorizontalHeaderItem().

283

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Creating Context Menus

This application also introduces how to create a context menu, sometimes called a
pop-up menu, that appears in the window due to a user’s interaction, such as when the
right mouse button is clicked. A context menu displays a list of commands, such as Back
Page or Reload Page, that make interacting with the GUI even more convenient. Context
menus can also be set for managing specific widgets.

Since context menus are caused by events, we can reimplement the
contextMenuEvent ().

def contextMenuEvent(self, event):
context_menu = QMenu(self)
context_menu.addAction(self.add row above act)

A context menu is typically created using QMenu (). You can either use existing
actions that are created in the menubar or the toolbar, or you can create new ones.
In the preceding example, two actions are created specifically for the context menu,
copy_act and paste_act. If a cell in the table is not empty, we “copy” the text to
item text. In the pasteItem() slot, the current row and column of the selected cell is
checked. We then “paste” the item using setItem(). The copy and paste actions could
also be implemented using the QClipboard.

The context menu is displayed using exec_(). We pass self.mapToGlobal() as an
argument to get the coordinates of the mouse relative to the screen. An example of the

context menu can be seen in Figure 10-2.

LN] Spreadsheet - Table Example
File Table
L First Name Last Name Deat. St Dae L] 7 8 2 w0

11002 Ken Sanchez Executive 20M0-05-12
2 1003 Evalyn Yo Executive 2010-04-20
3 1234 Mark Thoempsan Engineering 20M-12-03
4 1245 Steve Pattersan Engineering 2010-06-21
&5 1657 P i t R R

G5 amela Gran Add e
& 1890 Garfield Adams Finance Add Row Below
7 2000 Larry Byrd Finance Add Column Before

f

s 3501 Mary Stevenson T S0d.CONNTN AT

Delete Row
Delete Column

Copy
Paste

Clear All

Figure 10-2. Example of a context menu that displays actions for editing the table
widget

284

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

The QTableWidget is actually a convenience class, providing simplified access
to other classes, namely, QTableView and QAbstractModel. Before learning about
accessing databases with PyQt, you should take a moment to get familiar with the
model/view architecture used by Qt.

Introduction to Model/View Programming

Qt, and therefore PyQt, needs a system to access, display, and manage data that can be
presented to the user. An older technique used for managing the relationship between
data and its visual representation for user interfaces is the model-view-controller
(MVC) software design pattern. MVC divides a program’s logic into three interlinked
components - a model, a view, and a controller.

PyQt utilizes a similar design pattern that is based on MVC - the model/view
architecture.

The Components of the Model/View Architecture

Model/view programming also separates the logic between three components,
but combines the view and the controller objects, and introduces a new element - a
delegate. A diagram of the architecture can be seen in Figure 10-3.

e Model - The class that communicates with the data source, accessing
the data, and provides a point of connection between the data and
the view and delegate.

e View - The class that is responsible for displaying the data to the
user, either in list, table, or tree formats, and for retrieving items of
data from the model using model indexes. The view also has similar
functionality to the controller in the MVC pattern, which handles the

input from a user’s interaction with items displayed in the view.

o Delegate - The class that is in charge of painting items and providing
editors in the view. The delegate also communicates back to the
model if an item has been edited.

Using the model/view structure has quite a few benefits, specifically being ideal
for developing large-scale applications, giving more flexibility and control over the
appearance and editing of data items, simplifying the framework for displaying data, and
offering the ability to display multiple views of a model at the same time.

285

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Access data
source

MOdE' Editing
Retrieve data items
from model Deleg ate
View
Render
| items
A
User

Figure 10-3. The model accesses data from the data source and provides data

to the view. The view presents items stored in a model and reflects changes to the
data in the model. The delegate is responsible for drawing items in the view and for
handling the editing of the data in the model. (Adapted from https://doc.qt.io/
web site)

PyQt’s Model/View Classes

QTableWidget is one of a few convenience classes that PyQt provides for working with
data. QTableWidget creates a table of items, QListWidget displays a list of items, and
QTreeWidget provides a hierarchal treelike structure. An example of QListWidget can be
seen in Chapter 8. These widgets provide all the tools necessary to work with data, and
the view, model, and delegate classes all grouped into one class. However, these classes
are more focused on item-based interfaces and are less flexible than working with the
model/view structure. Each of these widgets inherits behavior from an abstract class,
QAbstractltemView, creating the behavior for selecting items and managing headers.

286

https://doc.qt.io/

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

An abstract class provides the points of connection, referred to as an interface,
between other components, providing functionality and default implementation of
features. Abstract classes can also be used to create custom models, views, or delegates.

e Models - All models are based on the QAbstractItemModel class,
defining the interface used by both views and delegates to access
data, and can be used to handle lists, tables, or trees. Data can
take on a number of forms, including Python data structures,
separate classes, files, or databases. Some other model classes are
QStandardItemModel, QFileSystemModel, and SQL-related models.

e Views - All views are based on QAbstractItemView and are used
to display data items from a data source, including QListView,
QOTableView, and QTreeView.

o Delegates - The base class is QAbstractItemDelegate, responsible
for drawing items from the model and providing an editor widget
for modifying items. For example, while editing a cell in a table, the
editor widget, such as QLineEdit, is placed directly on top of the item.

The following example in Listing 10-2 demonstrates how to use the model/view
classes for displaying data using tables. Chapter 12 contains an extra example that shows
how to use QFileSystemModel and QTreeView to display the contents of directories on
your computer.

Communication between the models, views, and delegates is handled by signals
and slots. The model uses signals to notify the view about changes to the data. The view
generates signals that provide information about how a user interacts with items. Signals
from the delegate are emitted while editing an item to inform the model and view about
the state of the editor.

The following program illustrates how to use model/view programming to display
the contents of a small CSV file in a table view.

Listing 10-2. Code demonstrating how to design a GUI using model/view
architecture

model view ex.py

Import necessary modules

import sys, csv

from PyQt5.QtWidgets import (QApplication, QWidget, QTableView, QVBoxLayout)

287

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES
from PyQt5.0tGui import QStandardItemModel, QStandardItem
class DisplayParts(QWidget):

def _init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setGeometry(100, 100, 450, 300)
self.setWindowTitle('Model and View Example')

self.setupModelView()
self.show()

def setupModelView(self):

Set up standard item model and table view.

self.model = QStandardItemModel()

table view = QTableView()

From QAbstractItemView.ExtendedSelection = 3
table view.SelectionMode(3)

table view.setModel(self.model)

Set initial row and column values
self.model.setRowCount(3)
self.model.setColumnCount(4)

self.loadCSVFile()

v_box = QVBoxLayout()
v_box.addWidget(table view)

self.setlLayout(v_box)

288

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

def loadCSVFile(self):
Load header and rows from CSV file.
Items are constructed before adding them to the table.

file_name = "files/parts.csv"

with open(file name, "r") as csv_f:
reader = csv.reader(csv_f)
header labels = next(reader)
self.model.setHorizontalHeaderLabels(header labels)
for i, row in enumerate(csv.reader(csv_f)):
items = [QStandardItem(item) for item in row]
self.model.insertRow(i, items)

if name_ =="_ main_"':
app = QApplication(sys.argv)
window = DisplayParts()
sys.exit(app.exec_())

The simple GUI created using model/view programming can be seen in Figure 10-4.

@ Model and View Example
Description Qty Length Width
1 Base 1 272" 19-1/2"
2 Side 4 18-3/4" 15-1/4"
3 Frame Cover 2 1-3/4" 15-1/4"
4 Shelf 4 17-1/4" 4-1/4"
5 Back 1 23-7/8" 15-1/4"

Figure 10-4. Table created using the model/view architecture

289

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Explanation

The preceding example displays the contents of a CSV file in a table view and
demonstrates how simple it is to use the model/view paradigm. Tables can be used to
organize and display various types of data, such as employee or inventory information.
We begin by importing classes, including QTableView from the QtWidgets
module, and the QStandardItemModel and QStandardItem classes from QtGui.
QStandardItemModel will supply the item-based model we need to work with the data;
QStandardItem provides the items that are used in the model.
Instances of both the model using QStandardItemModel as well as the QTableView
class are created. There are different ways that users can select items in the table
view. SelectionMode () handles how the view responds to users’ selections.
ExtendedSelection allows a user to select multiple items by pressing the Ctrl key
(Cmd on MacOS) while clicking an item in the view or to select several items using the
Shift key. To set up the view to display items in the model, you simply need to call the
setModel () method.

table view.setModel(self.model)

In the previous example where we looked at QTableWidget, the setRowCount () and
setColumnCount () methods were called on the table widget. When using QTableView,
these methods are not built-in and instead are called on the model.

self.model.setRowCount(3)

Next, we call 1loadCSVFile() to read the contents of the data file and add the
items to the model to be displayed in the view. The table view widget is added to the
QVBoxLayout.

In the loadCSVLayout () method, we can see how to read headers and data from
a CSV file. Comma-separated values (CSV) is a very common format used for storing
the data of spreadsheets and datasets. We open the file, set up the reader to read the
sequences in the file, get the headers, and skip to the next line. For this example, we
assume that the CSV file will have header labels. The horizontal labels of the model are
set using the list of items from the first row.

self.model.setHorizontalHeaderLabels(header labels)

290

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

For the remaining rows, we use a list comprehension to read the items for each row
into a list and use insertRow() to insert the list of items into the ith row. Figure 10-5
shows the contents of the parts.csv file.

Description,Qty,Length,Width
Base,1,27-1/2",19-1/2"
Side,4,18-3/4",15-1/4"
Frame Cover,2,11-3/4",15-1/4"
Shelf,4,17-1/4",4-1/4"
Back,1,23-7/8",15-1/4"

Figure 10-5. Example of the data stored in a CSV file

Working with SQL Databases in PyQt

Now that we have looked at PyQt’s model/view architecture and the QTableView class,
let’s move on and begin taking a look at how to use SQL for handling structured data.

What Is SQL?

The Structured Query Language (SQL) is a programming language designed for
communication with databases. The data stored in databases is organized into a set of
tables. The rows of the tables are referred to as records, and the columns are referred
to as fields. Each column can only store a specific kind of information, such as names,
dates, or numbers.

With SQL, we can query the data stored in relational databases - a collection of
data items that have predefined relationships across multiple tables, marked by a unique
identifier known as a foreign key. In a relational database, multiple tables comprise a
schema, more than one schema makes up a database, and those databases are stored
on a server. Relational databases allow for multiple users to handle the data at the
same time. For this reason, accessing a database often requires a user to log in with a
username and password in order to connect to the database.

This section will focus solely on using SQL along with classes from PyQt’s QtSql
module for creating a very basic database management system interface.

291

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Working with Database Management Systems

The QtSql module provides drivers for a number of relational database management
systems (RDBMS), including MySQL, Oracle, Microsoft SQL Server, PostgreSQL, and
SQLite versions 2 and 3. An RDBMS is the software that allows users to interact with
relational databases using SQL.

For the following examples, we will be using SQLite 3 since the library already comes
shipped with Python and is included with Qt. SQLite is not a client-server database
engine, so we do not need a database server. SQLite operates on a single file and is
mainly used for small desktop applications.

Getting Familiar with SQL Commands

SQL already has its own commands for generating queries from databases. Using

these commands, a user can perform a number of different actions for interacting with
database tables. For example, the SQL SELECT statement can be used to retrieve records
from a table. If you had a database for a dog identification registry that contained a table
called dog_registry, you could select all of the records in the table with the following
statement:

SELECT * FROM dog_registry

When you are creating a query, you should consider where you are getting your data
from, including which database or table. You should keep in mind what fields you will
use. And be mindful of any conditions in the selection. For example, do you need to
display all the pets in the database, or only a specific breed of dog?

SELECT name FROM dog_registry WHERE breed = 'shiba inu'

Using different drivers will more than likely entail using different SQL syntax, but
PyQt can handle the differences. The following table lists a few common SQLite 3
commands that will be used in this chapter’s examples.

292

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Table 10-1. A list of common SQLite keywords and functions that can be
found in this chapter!

SQLite Keywords

Description

AUTOINCREMENT

CREATE TABLE

Generates a unique number automatically when a new record is
inserted into the table.

Creates a new table in the database.

DELETE Deletes a row from the table.

DROP TABLE Deletes a table that already exists in the database.

FOREIGN KEY Constraint that links two tables together.

FROM Specifies the table to interact with when selecting or deleting data.

INTEGER Signed integer data type.

INSERT INTO Inserts new rows into the table.

MAX() Function that finds the maximum value of a specified column.

NOT NULL Constraint that ensures a column will not accept NULL values.

PRIMARY KEY Constraint that uniquely identifies a record in the table.

REFERENCES Used with FOREIGN KEY to specify another table which has relation
with the first table.

SELECT Selects data from a database.

SET Identifies which columns and values should be updated.

UNIQUE Constraint that ensures all values in a column are unique.

UPDATE Updates existing values in a row.

VALUES Defines the values of an INSERT INTO statement.

VARCHAR Variable character data type for strings.

WHERE Filters the results of a query to include only records that satisfy

specific conditions.

In the following sections, we will see how to create a user interface that can be used

to view a database’s information in a table view.

'A full list of SQLite keywords can be found at www.sqlite.org/lang keywords.html.
293

http://www.sqlite.org/lang_keywords.html

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Project 10.1 — Account Management GUI

For this project, we are going to take a different approach to designing the account
management GUL This section builds up to the final project by working through a
number of smaller example programs. There is a good deal of information to unpack,
and if this is your first time working with SQL, especially to build an interface in PyQt,
then the process for working with databases can become a little unclear.

Imagine you have a business and you want to create a database to keep track of
your employees’ information. You want to include information such as their first and
last names, employee IDs, e-mail addresses, departments, and the countries where
they work. (This could be extended to include more information such as salaries,
phone numbers, and dates of hire.) In the beginning, a small database is okay.
However, as your workforce builds, so will the information. Some employees may have
the same first or last name, or work in the same country. You need a way to manage
all of those employees so that fields in the database are populated with the correct
information and data types.

Using a relational database, we can avoid issues with the data’s integrity. We could
set up multiple tables, one for the different employees’ accounts and one for the
countries. For this example, we only use repeating country names to demonstrate how
to use PyQt’s classes for working with relational databases. Figure 10-6 displays the
account management GUL

The project is broken down into the following parts:

1. Introduce how to use QSqlDatabase to connect to databases and
0SqlQuery for creating queries

2. Afew examples of how to use Q5qlQuery for working with
databases

3. Introduce QSqlTableModel for working with databases with no
foreign keys

4. Show how use to QSqlRelationalTableModel to create tables with
foreign key support

5. Create the account management GUI

294

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

eCe 10.1 - Account Management GUI

Account Management System

& Add Employee [& Delete Sert by ID <]
[+] Employee ID First Last E-mail Dept. Country
7 7 1436 Charlotte Jackson jacksonc@job.com Finance Germany
8 8 2008 Amelia Moore mocrea@job.com HR India
a9 9 2355 Evelyn Taylor taylore@job.com Marketing Usa
0 10 1507 Abigail Thomas thomasa@job.com Marketing Germany
nn 1505 Valorie Anderson andersonv@job.c... Finance Germany
12 12 1418 Teesha Wilson wilsont@job.com R&D China
13 13 1911 Jazzmin Gonzalez lezj@job.com M fal usa
14 14 2180 Liam Lopez lopezl@job.com Finance China
15 16 1818 Meoah Hernandez hernandezn@job.... Finance usa
16 16 2498 William Martinez martinezw@job.c... Marketing France
17 17 1931 James Rodriguez redriguezj@job.co... R&D Germany
18 18 2213 Logan Davis davisl@job.com Finance Germany
1 19 2345 Benjamin Miller millerb@job.com Production UsA
20 20 1068 Mason Garcia garciam@job.com HR China
n 2 1180 Elijah Jones jonese@job.com HR Usa
22 22 2052 Oliver Brown browno@job.com Marketing France
23 23 2124 Jason Williams wiliamsj@job.com Production France
24 24 1984 Lucas Johnson johnsoni@job.com Finance France
26 25 1781 Michael Smith smithm@job.com HR Germany
* 26 1234 Francis Michael michaelf@job.com HR UsA | < |

Figure 10-6. The account management GUI. The last row of the table displays a
new record being added to the database

Working with QtSql

In this first example, we are going to see how to use QSqlQuery to create a small
database that we will be able to view in the account management GUI. The database
has two tables, accounts and countries. The two tables are linked together through the
country idfield in accounts and the id field in countries.

Listing 10-3. Code showing examples of how to create queries with QSqlQuery

create_database.py

Import necessary modules

import sys, random

from PyQt5.0tSql import QSqlDatabase, QSqlQuery

class CreateEmployeeData:

Create sample database for project.

295

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

296

Class demonstrates how to connect to a database, create queries, and
create tables and records in those tables.

Create connection to database. If db file does not exist,

a new db file will be created.

database = QSqlDatabase.addDatabase("QSQLITE") # SQLite version 3
database.setDatabaseName("files/accounts.db")

if not database.open():
print("Unable to open data source file.")
sys.exit(1) # Error code 1 - signifies error

query = 0SqlQuery()

Erase database contents so that we don't have duplicates
query.exec_("DROP TABLE accounts")

query.exec_("DROP TABLE countries")

Create accounts table
query.exec_("""CREATE TABLE accounts (
id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
employee id INTEGER NOT NULL,
first name VARCHAR(30) NOT NULL,
last_name VARCHAR(30) NOT NULL,
email VARCHAR(40) NOT NULL,
department VARCHAR(20) NOT NULL,
country id VARCHAR(20) REFERENCES countries(id))""")

Positional binding to insert records into the database
query.prepare("""INSERT INTO accounts (

employee id, first name, last name,

email, department, country id)

VALUES (2, 2, 2, 2, 2,)""")

first names = ["Emma", "Olivia", "Ava", "Isabella", "Sophia", "Mia",
"Charlotte", "Amelia", "Evelyn", "Abigail", "Valorie", "Teesha",
"Jazzmin", "Liam", "Noah", "William", "James", "Logan", "Benjamin",
"Mason", "Elijah", "Oliver", "Jason", "Lucas", "Michael"]

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

last names = ["Smith", "Johnson", "Williams", "Brown", "Jones",
"Garcia", "Miller", "Davis", "Rodriguez", "Martinez", "Hernandez",
"Lopez", "Gonzalez", "Wilson", "Anderson", "Thomas", "Taylor", "Moore",
"Jackson", "Martin", "Lee", "Perez", "Thompson", "White", "Harris"]

employee ids = random.sample(range(1000, 2500), len(first names))

countries = {"USA": 1, "India": 2, "China": 3, "France": 4, "Germany": 5}
country names = list(countries.keys())
country codes = list(countries.values())

departments = ["Production", "R&D", "Marketing", "HR",
"Finance", "Engineering", "Managerial"]

Add the values to the query to be inserted in accounts
for f name in first names:
1 name = last names.pop()
email = (1 _name + f _name[0]).lower() + "@job.com"
country id = random.choice(country codes)
dept = random.choice(departments)
employee id = employee ids.pop()
query.addBindValue(employee id)
query.addBindValue(f name)
query.addBindValue(1l name)
query.addBindValue(email)
query.addBindValue(dept)
query.addBindValue(country id)
query.exec_ ()

Create the second table, countries

country query = QSqlQuery()

country query.exec_ ("""CREATE TABLE countries (
id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,
country VARCHAR(20) NOT NULL)""")

country query.prepare("INSERT INTO countries (country) VALUES (?)")

297

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Add the values to the query to be inserted in countries
for name in country names:

country query.addBindValue(name)

country query.exec ()

print("[INFO] Database successfully created.")

sys.exit(0)
if name_ ==" main_":
CreateEmployeeData()

To see an example of what the data this program created looks like in a table view,
refer back to Figure 10-6.

Explanation

This program does not create a GUI, so we only need to import the QSqlDatabase and
0SqlQuery classes from QtSql. We will use QSqlDatabase to create the connection that
allows access to a database; QSqlQuery can be used to perform SQL statements in PyQt.
We begin by creating a connection to the database in the CreateEmployeeData class.
The addDatabase() function allows you to specify the SQL driver that you want to use.
The examples in this chapter use SQLite 3 so we pass QSOLITE as the argument. Once
the database object is created, we can set the other connection parameters, including
which database we are going to use, the username, password, host name, and the
connection port. For SQLite 3 we only need to specify the name of the database with
setDatabaseName (). You can also create multiple connections to a database.

database = QSqlDatabase.addDatabase("QSQLITE")
database.setDatabaseName("files/accounts.db")

Note A connection is referenced by its name, not by the name of the database.
If you want to give your database a name, pass it as an argument after the driver
in the addDatabase() method. If no name is specified, then that connection
becomes the default connection.

298

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

If the accounts.db file does not already exist, then it will be created. Once the
parameters are set, you must call open() to activate the connection to the database. A
connection cannot be used until it is opened.

Now that the connections are established, we can begin querying our database. You
typically might start with databases that already have data in them, but in this example,
we are going to see how we can create a database using SQL commands. To query a
database using PyQt, we first need to create an instance of 0SqlQuery. Then, we call the
exec_() method to execute the SQL statement in query. In the following lines, we want
to delete the table accounts:

query = 0SqlQuery()
query.exec_("DROP TABLE accounts™)

Next, let’s create a new accounts table using exec_() and CREATE TABLE accounts.
Each table entry will have its own unique id by using AUTOINCREMENT. The accounts table
will include information for an employee’s ID, first name, last name, e-mail, department,
and the country where they are located. We also create a countries table which holds
the names of the employee’s countries and is linked to the accounts table using the
following line:

country id VARCHAR(20) REFERENCES countries(id))

The country_id references the countries table’s id. Figure 10-7 illustrates the
connection between the two tables.

accounts
id
employee_id
first_name
last_ name
email
department accounts
country_id e id
- country

Figure 10-7. Illustration of the relations between the accounts and countries tables

299

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

The next thing to do is to insert records into our tables. We could continue to use
exec_() to execute queries, but this would become tedious if we have a large database.
To insert multiple records at the same time, we separate the query from the actual values
being inserted using placeholders and the prepare() method. The placeholder will
act as a temporary variable, allowing users to supply different data using the same SQL
query. In the following code, the positional placeholders are the ?. PyQt supports two
placeholder syntaxes - ODBC style which uses ? and the Oracle style which uses : field name.

query.prepare("""INSERT INTO accounts (
employee id, first name, last name,
email, department, country id)
VALUES (?, ?, 2, 2, ?, 2)""")

Each field, such as employee id or first name, is associated with one of the
placeholders. Since we used AUTOINCREMENT for id, we do not have to include the field or
a placeholder in the query.

The prepare() method gets the query ready for execution. If the query is prepared
successfully, then values can be binded to the fields using the addBindValue () method.

Next, we create the values for the first_name, last_name, and other fields using
Python lists and dictionaries. A for loop is then used where we bind the values to the
placeholders. exec_() is called at the end of each iteration to insert the values into the
accounts table. The countries table is prepared in a similar manner.

Once the tables are populated, we call sys.exit(0) to exit the program.

Example Queries Using QSqlQuery

The following code in Listing 10-4 is not necessary for the accounting manager GUI, but
it does give a few more examples for understanding how to input, update, and delete
records with SQL in a PyQt application.

Listing 10-4. Demonstrating how to insert, update, and delete records using SQL
and PyQt

query examples.py

Import necessary modules

import sys

from PyQt5.0tSql import QSqlDatabase, QSqlQuery

300

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

class QueryExamples:

def _init (self):
super(). init ()

self.createConnection()
self.exampleQueries()

def createConnection(self):

Create connection to the database.
database = QSqlDatabase.addDatabase("QSQLITE")
database.setDatabaseName("files/accounts.db")

if not database.open():
print("Unable to open data source file.")
sys.exit(1) # Error code 1 - signifies error

def exampleQueries(self):

Examples of working with the database.

Executing a simple query

query = 0SqlQuery()

query.exec_("SELECT first name, last name FROM accounts WHERE
employee id > 2000")

Navigating the result set
while (query.next()):
f name = str(query.value(0))
1 name = str(query.value(1))
print(f _name, 1 name)

Inserting a single new record into the database

query.exec_("""INSERT INTO accounts (
employee id, first name, last name,
email, department, country id)

301

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

VALUES (2134, 'Robert', 'Downey', 'downeyr@job.com',
'Managerial', 1)""")

Update a record in the database
query.exec_("UPDATE accounts SET department = 'R8D' WHERE employee
id = 2134")

Delete a record from the database
query.exec_("DELETE FROM accounts WHERE employee id <= 1500")

sys.exit(0)

if _name__ == " main_":

QueryExamples()

This code will modify the database created in Listing 10-3. To view the changes, run
this code and then run the code in one of the following examples to see how the tables
have been manipulated.

Explanation

This example also has no GUI window. If you run this program after running the
program in Listing 10-3, you will notice how the queries here modify the database.
We start by creating a connection to the SQLite 3 driver and add the database created
in the previous program, accounts.db. Next, we complete the connection using open().
In exampleQueries(), let’s take a look at how to use the QSqlQuery class and SQL
commands to query the database. We create a new QSqlQuery instance to search for the
first and last names of the employees whose employee IDs are greater than 2000.

query.exec_("SELECT first name, last name FROM accounts WHERE
employee id > 2000”)

With that query, we could use the values from first_name and last_name to update or
delete records. To cycle through the results of the query, we use next (). Other methods that
could be used to navigate the results include next (), previous(), first(), and last().

To insert a single record, we can use the INSERT SQL command. You could also add
multiple records into the database. Refer back to Listing 10-3 to see how. In this query, we
insert specific values for each field. To update records, use UPDATE. We update the department
value for the employee that was just inserted. Finally, to delete a record, use DELETE.

302

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Working with QSqiTableModel

We are finally going to create a GUI for visualizing the database’s contents. In this table,
we are only going to visualize the accounts table to demonstrate the QSqlTableModel
class, an interface that is useful for reading and writing database records when you
only need to use a single table with no links to other tables. The following program
will demonstrate how to use model/view programming to view the contents of a SQL
database.

We could use QSqlQuery to do all of the database work, but combining the class
with PyQt’s model/view paradigm allows for us to design GUIs that make the data
management process simpler.

Listing 10-5. Code to view SQL database using QSqlTableModel

table model.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QWidget, QTableView,
QVBoxLayout, QMessageBox, QHeaderView)

from PyQt5.0tSql import QSqlDatabase, QSqlTableModel

class TableDisplay(QWidget):

def _init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (1000, 500)
self.setWindowTitle('SQL Table Model')

self.createConnection()
self.createTable()

self.show()

303

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

304

def

def

createConnection(self):

Set up the connection to the database.

Check for the tables needed.

database = QSqlDatabase.addDatabase("QSQLITE")
database.setDatabaseName("files/accounts.db")

if not database.open():
print("Unable to open data source file.")
sys.exit(1) # Error code 1 - signifies error

Check if the tables we need exist in the database
tables needed = {'accounts'}
tables not found = tables needed - set(database.tables())
if tables not found:
QMessageBox.critical(None, 'Error',
f'The following tables are missing from the database:
{tables not found}")
sys.exit(1) # Error code 1 - signifies error

createTable(self):

Create the table using model/view architecture.
Create the model

model = QSqlTableModel()
model.setTable("accounts")

table view = QTableView()

table view.setModel(model)

table view.horizontalHeader().setSectionResizeMode(QHeaderView.
Stretch)

if name_ ==" main_":
app = QApplication(sys.argv)
window = TableDisplay()

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Populate the model with data

model.select()
Main layout

main_v_box =

QVBoxLayout ()

main_v_box.addWidget(table view)
self.setLayout(main_v_box)

sys.exit(app.exec_())

Figure 10-8 displays the contents of the database in a table view. Notice how the

header labels display the field names used when the database was created. We will see

how to set header labels later. Also, the country_id column currently only displays

numbers associated with the different names in the countries table. If you only want

to display specific columns, the following code lets you select which ones you want to

display:

model.setQuery(QSqlQuery("SELECT id, employee id, first name, last name
FROM accounts"))

n n
12 12
1313
14 14

15 15

employee_id

2374
1466
2125
2134
1258
1286
1436
2006
2355
1607
1505
1418

191

2180

1R1A

first_name

Emma
Olivia
Ava
Isabella
Sophia
Mia
Charlotte
Amelia
Evelyn
Abigail
Valorie
Teesha
Jazzmin
Liam

Naah

SQL Table Model

last_name email department country_id
Harris harrise@job.com Managerial 5
White whiteo@job.com Finance 1
Thompson thompsona@job.c... Engineering 2
Perez perezi@job.com Production 5
Lee lees@job.com Engineering 3
Martin martinm@job.com Finance 4
Jackson jacksonc@job.com Finance 5
Moore moecrea@job.com HR 2
Taylor taylore@job.com Marketing 1
Thomas thomasa@job.com Marketing 5
Anderson andersonv@job.c... Finance 5
Wilson wilsont@job.com R&D 3
Gonzalez j@job.com N ial 1
Lopez lopezi@job.com Finance 3
Harnande? hernandezn@inh Finanae 1

Figure 10-8. The table created using QSqlTableModel

305

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Explanation

Get started by importing the PyQt classes, including 0SqlTableModel. Next, create the
TableDisplay class for displaying the contents of the database.

In the createConnection() method, we connect to the database and activate the
connection with open(). This time, let’s check to make sure that the tables we want to
use are in the database. If they cannot be found, then a dialog box will be displayed to
inform the user and the program will close.

The instances of the QSqlTableModel and the QTableView are created in the
createTable() method. For the model, we need to set the database table we want to use
with setTable().

model.setTable('accounts")

Next, set the model for table view using setModel(). To make the table stretch to fit
into the view horizontally, we use the following line:

table view.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch)

This line also handles stretching the table when the window resizes.

Finally, populate the model with data using select (). If you have made changes
to the table but have not submitted them, then select () will cause the edited items to
return back to their previous states.

Working with QSqlRelationalTableModel

Next we are going to see how to use PyQt’s QSqlRelationalTableModel for working with
relational databases. The QSqlRelationalTableModel class provides a model for viewing
and editing data in a SQL table, with support for using foreign keys. A foreign key is a
SQL constraint used to link tables together. The application in Listing 10-6 builds upon
the previous example in Listing 10-5.

Listing 10-6. Code to view SQL database using QSqlRelationalTableModel

relational model.py

Import necessary modules

import os, sys

from PyQt5.0tWidgets import (QApplication, QWidget, QTableView,
QVBoxLayout, QMessageBox, QHeaderView)

306

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

from PyQt5.0tSql import (QSqlDatabase, QSqlRelationalTableModel,
0SqlRelation)

class TableDisplay(QWidget):

def

def

def

__init_ (self):

super(). init ()
self.initializeUI()

initializeUI(self):

Initialize the window and display its contents to the screen.
self.setMinimumSize (1000, 500)
self.setWindowTitle('Relational Table Model')

self.createConnection()
self.createTable()

self.show()

createConnection(self):

Set up the connection to the database.

Check for the tables needed.

database = QSqlDatabase.addDatabase("QSQLITE")
database.setDatabaseName("files/accounts.db")

if not database.open():
print("Unable to open data source file.")
sys.exit(1) # Error code 1 - signifies error

Check if the tables we need exist in the database
tables needed = {'accounts', 'countries'}
tables not found = tables needed - set(database.tables())
if tables not found:

QMessageBox.critical(None, 'Error’,

307

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

f'The following tables are missing from the database:
{tables not found}")
sys.exit(1) # Error code 1 - signifies error

def createTable(self):

Create the table using model/view architecture.

Create the model

model = QSqlRelationalTableModel()
model.setTable("accounts")

Set up relationship for foreign keys
model.setRelation(model.fieldIndex('country id'),
0SqlRelation('countries', 'id', 'country'))

table view = QTableView()

table view.setModel(model)

table view.horizontalHeader().setSectionResizeMode(QHeaderView.
Stretch)

Populate the model with data
model.select()

Main layout

main _v_box = QVBoxLayout()
main_v_box.addWidget(table view)
self.setlLayout(main_v_box)

if name__ ==" main_":
app = QApplication(sys.argv)
window = TableDisplay()
sys.exit(app.exec_())

If you compare Figure 10-9 to Figure 10-8, you will notice that data in the last column
has been updated to display the names of the countries and that the header has been
changed to country.

308

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

o0 e Relational Table Madel
id employee_id first_name last_name email department country

11 2374 Emma Harris harrise@job.com Managerial Germany
2 2 1466 Olivia White whiteo@job.com Finance usa
3 3 225 Ava Thompson thompsona@job.c... Engineering India
4 4 2134 Isabella Perez perezi@job.com Production Germany
5 5 1258 Sophia Lee lees@job.com Engineering China
6 B 1286 Mia Martin martinm®@job.com Finance France
77 1436 Charlotte Jackson jacksonc@job.com Finance Germany
a8 B8 2008 Amelia Moore moorea@job.com HR India
8 8 23556 Evelyn Taylor tayl job.com I ing UsA
10 10 1507 Abigail Thomas job.com ing Germany
nn 1508 Valorie Anderson andersonv@job.c... Finance Germany
12 12 1418 Teesha Wilson wilsont@job.com R&D China
13 13 191 Jazzmin Gonzalez gonzalezj@job.com Managerial USA
14 14 2180 Liam Lopez lopezl@job.com Finance China
16 15 1R1AR Nnah Harnandaz harnandarni@inh Financa LISA

Figure 10-9. The table created using QSqlRelationalTableModel

Explanation

This time we need to import QSqlRelationalModel since we are working with relational
databases and foreign keys. Also, QSqlRelation stores the information about SQL
foreign keys.

We connect to the database like before, except this time we are checking for both
tables, accounts and countries. Next we create instances of the 0SqlRelationalModel
and QTableView classes. The setTable() method is used to cause the model to fetch the
accounts table’s information.

The country_id field in accounts is mapped to countries’ field ID. Using
setRelation(), we can cause table_ view to present the countries’ country field to the
user. The following code shows how to do this, and the results can be seen in Figure 10-9:

model.setRelation(model.fieldIndex('country id'), QSqlRelation('countries’,
'id", 'country'))

The rest of the program is the same as Listing 10-5.

309

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

Account Management GUI Solution

The account management GUI uses the QSqlRelationalModel for managing the
accounts and countries tables. We use the concepts we learned in the previous
sections and design a GUI with features for managing the database directly rather than
programmatically.

The account management GUI lets a user add, delete, and sort the contents of the
table. Rows added or deleted will also update the database. This example also briefly
shows how to create a delegate for editing data. The code for the account management
GUI can be found in Listing 10-7.

Listing 10-7. Code for the account management GUI

account_manager.py

Import necessary modules

import sys, os

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
QPushButton, QComboBox, QTableView, QHeaderView,
QHBoxLayout, QVBoxLayout, QSizePolicy, QMessageBox)

from PyQt5.0tSql import (QSqlDatabase, QSqlQuery,
0SqlRelationalTableModel, QSqlRelation,
0SqlRelationalDelegate)

from PyQt5.0tCore import Ot

from PyQt5.QtGui import QIcon

class AccountManager(QWidget):

def init (self):
super(). init_ ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (1000, 600)
self.setWindowTitle('10.1 - Account Management GUI')

310

def

def

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

self.createConnection()
self.createTable()
self.setupWidgets()

self.show()

createConnection(self):
database = QSqlDatabase.addDatabase("QSQLITE") # SQLite version 3
database.setDatabaseName("files/accounts.db")

if not database.open():
print("Unable to open data source file.")
sys.exit(1) # Error code 1 - signifies error

Check if the tables we need exist in the database
tables needed = {'accounts', 'countries'}
tables not found = tables needed - set(database.tables())
if tables not found:
OMessageBox.critical(None, 'Error',
f'The following tables are missing from the database:
{tables not found}")
sys.exit(1) # Error code 1 - signifies error

createTable(self):

Set up the model, headers and populate the model.
self.model = QSqlRelationalTableModel()
self.model.setTable('accounts")
self.model.setRelation(self.model.fieldIndex("'country id"),
QSqlRelation('countries', 'id', 'country'))

self.model.setHeaderData(self.model.fieldIndex('id"),
Qt.Horizontal, "ID")
self.model.setHeaderData(self.model.fieldIndex('employee id'),
Qt.Horizontal, "Employee ID")
self.model.setHeaderData(self.model.fieldIndex('first name'),
Qt.Horizontal, "First")

311

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

self.model.setHeaderData(self.model.fieldIndex('last name'),
Qt.Horizontal, "Last")
self.model.setHeaderData(self.model.fieldIndex('email"),
Qt.Horizontal, "E-mail")
self.model.setHeaderData(self.model.fieldIndex('department'),
Qt.Horizontal, "Dept.")
self.model.setHeaderData(self.model.fieldIndex('country id"),
Qt.Horizontal, "Country")

Populate the model with data
self.model.select()

def setupWidgets(self):

Create instances of widgets, the table view and set layouts.

icons_path = "icons"

title = QLabel("Account Management System")
title.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed)
title.setStyleSheet("font: bold 24px")

add_record button = QPushButton("Add Employee")

add_record button.setIcon(QIcon(os.path.join(icons path, "add user.
png")))

add_record button.setStyleSheet("padding: 10px")

add_record button.clicked.connect(self.addRecord)

del record button = QPushButton("Delete")

del record button.setIcon(QIcon(os.path.join(icons path, "trash_
can.png")))

del record button.setStyleSheet("padding: 10px")

del record button.clicked.connect(self.deleteRecord)

Set up sorting combo box

sorting options = ["Sort by ID", "Sort by Employee ID", "Sort by
First Name", "Sort by Last Name", "Sort by Department”, "Sort by
Country"]

312

def

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

sort _name _cb = QComboBox()
sort_name_cb.addItems(sorting options)
sort_name_cb.currentTextChanged.connect(self.setSortingOrder)

buttons_h box = QHBoxLayout()

buttons_h box.addWidget(add record button)
buttons_h_box.addWidget(del record button)
buttons_h box.addStretch()

buttons_h box.addWidget(sort name cb)

Widget to contain editing buttons
edit buttons = QWidget()
edit buttons.setlLayout(buttons _h box)

Create table view and set model

self.table view = QTableView()

self.table view.setModel(self.model)

self.table view.horizontalHeader().setSectionResizeMode(QHeaderVie
w.Stretch)

self.table view.verticalHeader().setSectionResizeMode(QHeaderView.
Stretch)

self.table view.setSelectionMode(QTableView.SingleSelection)
self.table view.setSelectionBehavior(QTableView.SelectRows)

Instantiate the delegate

delegate = QSqlRelationalDelegate(self.table view)

self.table view.setItemDelegate(delegate)

Main layout

main_v_box = QVBoxLayout()
main_v_box.addWidget(title, Qt.AlignLeft)
main_v_box.addwidget(edit_buttons)
main_v_box.addWidget(self.table view)
self.setLayout(main_v_box)

addRecord(self):

Add a new record to the last row of the table.

313

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

def

def

314

last row = self.model.rowCount()
self.model.insertRow(last row)

id=0
query = 0SqlQuery()
query.exec_("SELECT MAX (id) FROM accounts")
if query.next():
id = int(query.value(0))

deleteRecord(self):

Delete an entire row from the table.
current_item = self.table view.selectedIndexes()
for index in current item:

self.model.removeRow(index.row())
self.model.select()

setSortingOrder(self, text):

Sort the rows in table.

if text == "Sort by ID":
self.model.setSort(self.model.fieldIndex('id"),
Qt.AscendingOrder)

elif text == "Sort by Employee ID":
self.model.setSort(self.model.fieldIndex('employee id"),
Qt.AscendingOrder)

elif text == "Sort by First Name":
self.model.setSort(self.model.fieldIndex('first name'),
Qt.AscendingOrder)

elif text == "Sort by Last Name":
self.model.setSort(self.model.fieldIndex('last name'),
Qt.AscendingOrder)

elif text == "Sort by Department":
self.model.setSort(self.model.fieldIndex('department'),
Qt.AscendingOrder)

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

elif text == "Sort by Country":
self.model.setSort(self.model.fieldIndex('country'),
Qt.AscendingOrder)

self.model.select()

if _name_ ==" main_"':
app = QApplication(sys.argv)
window = AccountManager()
sys.exit(app.exec ())

Your GUI should look similar to the one displayed in Figure 10-6.

Explanation

After importing all of the PyQt classes we need and setting up the AccountManager class,
next we need to connect to the accounts database just like we have previously done.
The createTable() method instantiates and sets up the model, creating the foreign

key between the two tables. The setHeaderData() method applies labels to each of the
columns by using fieldIndex() to locate the index of the given field name. An example
is given as follows:

self.model.setHeaderData(self.model.fieldIndex('id"), Qt.Horizontal, "ID")

The QTableView object, table view, is created in the setupWidgets() method, along
with the GUI's labels, push buttons, and combo box. For table_view, we set the model
and a few parameters. The table’s vertical and horizontal headers will stretch to fit the
window. QAbstractItemView.SingleSelection only allows the user to select one item
atatime. QAbstractItemView.SelectRows only allows rows to be selected in the table.

The two push buttons, add_record button and del_record button, emit signals
that add and delete rows in the table. For addRecord(), we check how many rows are
in the table with rowCount () and use insertRow() to insert an empty row at the end of
table view. We query the database to find out the largest id value. If a user does not enter
a value for id into the row, then the new record’s id is equal to the highest id value plus
one. For deleteRecord(), we get the currently selected row’s index and delete the row
with removeRow(). Then we update the model using select().

315

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

For the QComboBox, when the selection has changed, the widget emits a
currentTextChanged() signal. We use the text to determine how to set the view’s order
for displaying records.

In the model/view architecture, the delegate provides the default tools for painting
item data in the view and for providing editor widgets for item models. The appearance
and editor widgets of the item delegate can be customized. For the account management
GUI, the delegate used is the QSqlRelationalDelegate. This class provides a combo box
for editing data in fields that are foreign keys for other tables.

delegate = QSqlRelationalDelegate(self.table view)
self.table view.setItemDelegate(delegate)

An example of the combo box used by the delegate can be seen in the bottom-right
corner of Figure 10-6. The widget appears whenever the user needs to select a country
from the countries table that will be displayed in the view.

Summary

PyQt provides convenience classes for lists, tables, and trees. QListWidget,
QTableWidget, and QTreeWidget are useful when you need to view data for general
situations. While they are practical for creating quick interfaces for editing data, if you
need to have more than one widget for displaying a dataset in an application, you must
also create a process for keeping the datasets and the widgets in agreement. A better
option is to use PyQt’s model/view architecture.

With the model/view paradigm, you are able to have multiple views in a single
application that work in unison to view and update the database. You also have more
control over the look of the editing widgets and the items in the view with the delegate.

There are different formats available for storing and managing data. One example is
the CSV format which is convenient for reading, parsing, and storing smaller datasets.
However, for large databases that contain multiple tables with relational characteristics,
arelational database management system that uses SQL is a more preferable option for
managing the data. SQL allows users to select desired information that might be shared
between tables, as well as insert, update, and delete existing records easily.

The model/view architecture is very useful for working with SQL databases,
providing the tools necessary for connecting to a database and viewing its content. PyQt
provides three models for working with SQL databases. For an editable data model

316

CHAPTER 10 INTRODUCTION TO HANDLING DATABASES

without foreign key support, use QSqlTableModel. If you have tables with relational
properties, use QSqlRelationalTableModel. Finally, the QSqlQueryModel is beneficial
when you only need to read the results of a query without editing them.

Over the course of this book, we took a look at a few applications that could have
benefited greatly by being able to connect to databases using SQL. The login GUI in
Chapter 3 could connect to a database to retrieve usernames and passwords. The to-do
list GUI in Chapter 4 could be completely redesigned to include a QCalendarWidget
(covered in Chapter 12) that keeps track of events by using a database. There is also
the pizza ordering GUI from Chapter 6. You could implement a database for storing
customers’ information, using a relational database for adding new customers, updating
existing ones, and preventing data from being duplicated.

In Chapter 11, we will take a brief look at multithreading in PyQt.

317

CHAPTER 11

Managing Threads

We have all experienced that moment when running some process such as copying files
between directories or launching a new instance of an application causes a program to
lag for just a moment and, in some cases, to freeze completely. We are then forced to
either wait for the current task to complete or Ctrl+Alt+Delete our way to freedom. When
you are creating GUIs, you should be aware of how to handle, or more preferably have
foresight about avoiding, these situations.

The motivation behind this chapter is twofold - to help you design more robust GUI
applications and to inform you of how you might be able to handle situations where your
applications need to run long processes. Any action that causes event processing in an
application to come to a standstill is bad for a user’s experience.

This chapter takes a look at

o How to implement threading with QThread
o Afew other techniques for handling time-consuming processes

o The QProgressBar widget for giving visual feedback about a task’s
progression

Introduction to Threading

A computer’s performance can be measured by the accuracy, efficiency, and speed at
which it can execute program instructions. Modern computers can take advantage of
their multicore processors to run those instructions in parallel, thereby increasing the
performance of computer applications that have been written to take advantage of the
multicore architecture.

The idea of performing tasks in a synchronous manner, that is, where only one
task is processed at a time until completion before moving on to the next task, can be
inefficient, especially for larger operations. What we need is a way to perform operations
concurrently. That is where threads and processes come into play.

319
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_11

CHAPTER 11 MANAGING THREADS

Threads and processes are not the same thing. Without going too much into the
technical jargon, let’s try and understand the differences between the two. A process
is an instance of an application that requires memory and computer resources to run.
Opening up the word processor on your computer to write an essay is one process. While
writing your essay, you also need to search on the Internet for information. You now
have two separate processes running on your computer independently and in parallel.
What happens in one process is not influencing the other. Of course, you have multiple
tabs open in the web browser, and each tab is loading and updating information; those
tabs are working side by side with the web browser. This is where a thread becomes
important.

A thread is essential to the concurrency within an individual process. When a
process begins, it only has one thread, and multiple threads can be started within
a single process. These threads, just like the processes, are managed by the CPU.
Multithreading occurs when the CPU can handle multiple threads of execution
concurrently within one process. These threads are independent but also share the
process’s resources. Using multithreading allows for applications to be more responsive
to user’s inputs while other operations are occurring in the background, and to better
utilize a system’s resources.

On a system with only a single CPU, true parallelism is actually unachievable. In
these instances, the CPU is shared among the processes or threads. To switch between
threads, context switches are used to interrupt the current thread, save its state, and then
restore the next thread’s state. This gives the user a false appearance of parallelism.

To achieve true parallelism and create a truly concurrent system, a multicore
processor would allow threads in a multithreaded application to be assigned to different
processors.

Threading in PyQt

Applications based on Qt are event based. When the event loop is started using exec_(),
a thread is created. This thread is referred to as the main thread of the GUI. Any events
that take place in the main thread, including the GUTI itself, run synchronously within the
main event loop. To take advantage of threading, we need to create a secondary thread to
offload processing operations from the main thread.

320

CHAPTER 11 MANAGING THREADS

PyQt makes communicating between the main thread and secondary threads,
also referred to as worker threads, simple with signals and slots. This can be useful for
relaying feedback, allowing the user to interrupt a process, and for informing the main
thread that a process has finished. Since threads utilize the same address space, they can
share data very easily.

However, if multiple threads try to access shared data or resources concurrently, this can
cause crashes or memory corruption. Deadlock is another issue that can occur if two threads
are blocked because they are waiting for resources. PyQt provides a few classes, for example,
QMutex, QReadWriteLock, and QSemaphore, for avoiding these kinds of problems.

Note Python also has a number of modules for handling threading

and processing tasks, including _thread, threading, asyncio, and
multiprocessing. While you can also use this modules, PyQt’s QThread and
other classes allow you to emit signals between the main and worker threads.

Methods for Processing Long Events in PyQt

While this chapter focuses on using QThread, it is also a good idea to keep in mind that
there are also other ways that you might want to try before attempting to use threading
in your GUI Implementing threading can lead to problems with concurrency and
identifying errors. Combined with signals and slots, PyQt provides a few different ways to
handle time-consuming operations.

Choosing which method is best for your application comes down to considering your
situation. The main methods, including threading, for handling these kinds of events are
listed as follows:

1. Ifthere is a process in your application that is causing it to freeze,
check to see if that process can be broken down into smaller
steps and perform them sequentially. Manually handle the
processing of long operations, and explicitly call QApplication.
processEvents() to process pending events. This works best if
your operations can be processed using a single thread.

2. With QTimer and signals and slots, you can schedule operations to
be performed at certain intervals in the future.

321

CHAPTER 11 MANAGING THREADS

3. UseQThread to create a worker thread that will perform long
operations in a separate thread. Derive a class from QThread,
reimplement run(), and use PyQt’s signal and slot mechanism
to communicate with the main thread. This method can help to
avoid blocking the main event loop.

4. The QThreadPool and QRunnable classes can be used to divide
the work across the CPUs on your computer. Create a subclass of
QRunnable and reimplement the run() function; an instance of
QRunnable can then be passed to threads that are managed by
QThreadPool. QThreadPool handles the queuing and execution of
QRunnable instances for you.

There are even other options that may depend upon your application’s
requirements. Keep in mind that, while using threads could benefit your application,
they could also slow it down or cause errors if used incorrectly.

Project 11.1 - File Renaming GUI

This chapter’s project, shown in Figure 11-1, actually stems from my own experiences.
Creating datasets for training neural networks often entails writing Python scripts

for labeling thousands of images and data files. Those scripts are generally written to
include some kind of visual feedback to the user about how the process is going in the
command line.

For this project, we are going to create a GUI that will allow us to select a local directory
and edit the names of files with the specified extension. The interface includes QTextEdit and
QProgressBar widgets as two different means of feedback about the file labeling process. This
application also takes advantage of the QThread class so that users are still able to interact
with the interface while the operations are being performed in the background.

322

CHAPTER 11 MANAGING THREADS

L BON 11.1 - Change File Names GUI

Choose Directory:

/PyQt/PracticeCode/ch11_multi/tests/big_test

ping_pong Jrg | Rename Files

[INFU] TOrenanarusn.u£uubs i.)pg cnangea 10 ping_pongis/£1.)pg.
[INFQ] backhandDrive.01573.jpg changed to ping_pong18722.jpg.
[INFO] forehandPush.01001752.jpg changed to ping_pong18723.jpg.
[INFO] forehandDrive.0212738.jpg changed to ping_pong18724.jpg.
[INFQ] backhandDrive.001220.jpg changed to ping_pong18725.jpg.
[INFQ] forehandDrive.002728.jpg changed to ping_pong18726.jpg.
[INFO] backhandPush.201977.jpg changed to ping_pong18727.jpg.
[INFQ] backhandPush.0900082.jpg changed to ping_pong18728.jpg.
[INFQ] backhandPush.0202047.jpg changed to ping_pong18729.jpg.
[INFO] forehandPush.0200645.jpg changed to ping_pong18730.jpg.
[INFO] backhandDrive.201298.jpg changed to ping_pong18731.jpg.
[INFQ] forehandPush.01001746.jpg changed to ping_pong18732.jpg.

T TS T |

Figure 11-1. The interface for renaming files in a selected directory

The QProgressBar Widget

The QProgressBar widget visually relays the progress of an extended operation back
to the user. This feedback can also be used as reassurance that a process, such as a
download, installation, or file transfer, is still running. Some of the settings that can be
controlled include the widget’s orientation and range.

Refer to the project in this chapter for setting up the progress bar.

File Renaming GUI Solution

The GUI window contains various buttons and editor widgets that allow the user to
manage file renaming. The user can select a directory using a QFileDialog. They can also
enter the new file name in the QLineEdit widget. Using the combo box, they can select
the file extension for the files they want to change.

The application uses threading to update the progress bar and display information
about the files being changed in the text edit and performs the actual renaming
operation. This is all done using signals and slots. The code for the file renaming
application can be found in Listing 11-1.

323

CHAPTER 11 MANAGING THREADS
Listing 11-1. Code for the GUI that renames files in a directory using threading

file rename_threading.py

import os, sys, time

from PyQts5.QtWidgets import (QApplication, QWidget, QLabel, QProgressBar,
QLineEdit, QPushButton, QTextEdit, QComboBox, QFileDialog, QGridLayout)
from PyQt5.0QtCore import pyqtSignal, QThread

style sheet =
QProgressBar{

background-color: #COC6CA;
color: #FFFFFF;
border: 1px solid grey;
padding: 3px;
height: 15px;
text-align: center;

}

QProgressBar: : chunk{
background: #538DBS;
width: 5px;
margin: 0.5px

}

Create worker thread for running tasks like updating the progress bar,
renaming photos,
displaying information in the text edit widget
class Worker(QThread):
updateValueSignal = pyqtSignal(int)
updateTextEditSignal = pyqtSignal(str, str)

def init (self, dir, ext, prefix):
super(). init ()
self.dir = dir
self.ext = ext
self.prefix = prefix

324

CHAPTER 11 MANAGING THREADS

def run(self):
The thread begins running from here. run() is only called after
start().
for (i, file) in enumerate(os.listdir(self.dir)):
_, file ext = os.path.splitext(file)
if file_ext == self.ext:
new file name = self.prefix + str(i) + self.ext
src_path = os.path.join(self.dir, file)
dst_path = os.path.join(self.dir, new_file name)

os.rename(src, dst): src is original address of file to
be renamed

and dst is destination location with new name.

os.rename(src_path, dst path)

#time.sleep(0.2) # Uncomment if process is too fast and

want to see the updates.

self.updateValueSignal.emit(i + 1)
self.updateTextEditSignal.emit(file, new_file name)
else:
pass
self.updateValueSignal.emit(0) # Reset the value of the progress bar

class RenameFilesGUI(QWidget):

def init (self):
super(). _init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (600, 250)
self.setWindowTitle('11.1 - Change File Names GUI")

325

CHAPTER 11 MANAGING THREADS

326

def

self.directory =
self.cb value =

self.setupWidgets()
self.show()
setupWidgets(self):

Set up the widgets and layouts for interface.
dir label = QLabel("Choose Directory:")
self.dir line edit = QLineEdit()

dir button = QPushButton('...")

dir button.setToolTip("Select file directory.")
dir button.clicked.connect(self.setDirectory)

self.change name_edit = QLineEdit()
self.change name_edit.setToolTip("Files will be appended with
numerical values. For example: filename01.jpg")

self.change name edit.setPlaceholderText("Change file names to...

rename_button= QPushButton("Rename Files")
rename_button.setToolTip("Begin renaming files in directory.")
rename_button.clicked.connect(self.renameFiles)

file exts = [".jpg", ".jpeg", ".png", ".gif", ".txt"]
Create combo box for selecting file extensions.

ext_cb = QComboBox()
self.cb value = file exts[0]

ext_cb.setToolTip("Only files with this extension will be changed.")

ext_cb.addItems(file exts)
ext_cb.currentTextChanged.connect(self.updateCbValue)

Text edit is for displaying the file names as they are updated.

self.display files edit = QTextEdit()
self.display files edit.setReadOnly(True)

self.progress bar = QProgressBar()
self.progress bar.setValue(0)

def

def

CHAPTER 11 MANAGING THREADS

Set layout and widgets.

grid = QGridLayout()

grid.addWidget(dir label, o0, 0)
grid.addWidget(self.dir line_ edit, 1, 0, 1, 2)
grid.addWidget(dir button, 1, 2)
grid.addWidget(self.change name edit, 2, 0)
grid.addWidget(ext _cb, 2, 1)
grid.addWidget(rename button, 2, 2)
grid.addWidget(self.display files edit, 3, 0, 1, 3)
grid.addWidget(self.progress bar, 4, 0, 1, 3)

self.setlLayout(grid)

setDirectory(self):

Choose the directory.

file dialog = QFileDialog(self)

file dialog.setFileMode(QFileDialog.Directory)

self.directory = file dialog.getExistingDirectory(self, "Open
Directory"”, "", QFileDialog.ShowDirsOnly)

if self.directory:
self.dir line edit.setText(self.directory)

Set the max value of progress bar equal to max number of
files in the directory.

num_of files = len([name for name in os.listdir(self.

directory)])

self.progress bar.setRange(0, num_of files)

updateCbValue(self, text):

Change the combo box value. Values represent the different file
extensions.

self.cb_value = text

327

CHAPTER 11 MANAGING THREADS

def renameFiles(self):
Create instance of worker thread to handle the file renaming
process.

prefix_text = self.change name_edit.text()

if self.directory != and prefix_text !=
self.worker = Worker(self.directory, self.cb value, prefix_
text)
self.worker.updateValueSignal.connect(self.updateProgressBar)
self.worker.updateTextEditSignal.connect(self.updateTextEdit)
self.worker.start()

else:
pass

def updateProgressBar(self, value):
self.progress bar.setValue(value)

def updateTextEdit(self, old text, new text):
self.display files edit.append("[INFO] {} changed to
{}.".format(old text, new text))

if _name__ == "_ main_":
app = QApplication(sys.argv)
app.setStyleSheet(style sheet)
window = RenameFilesGUI()

sys.exit(app.exec_())

The application’s GUI can be seen in Figure 11-1.

Explanation

We start with importing Python and PyQt classes. The style sheet is used to modify the
appearance of the QProgressBar.

Let’s start by looking at the RenameFileGUI class. Here we set up the window and
other widgets, including push buttons for selecting the directory and starting the process

328

CHAPTER 11 MANAGING THREADS

for renaming files, line edit widgets, and the text edit and the progress bar widgets for
relaying feedback.

The user can select a directory using QFileDialog. Once a directory is chosen, the
user can enter the new file names into change_name_edit and select the file extension
for the types of files to change in the combo box.

Renaming the files could take place in the main thread. This wouldn’t be a problem
for a few files. However, if the user wants to work with a large number of files, this would
cause the GUI to be locked until the operations are finished. Therefore, the process for
renaming the files, along with updating the progress bar and the text edit widgets, is
performed in the worker thread.

For this project, we subclass QThread. An instance of the QThread class manages
only one thread. Two custom signals are created for updating the progress bar and text
edit widgets.

updateValueSignal = pyqtSignal(int)
updateTextEditSignal = pyqtSignal(str, str)

The reimplemented QThread method run() begins executing the thread. The time-
consuming operations - traversing the directory, renaming files, and emitting the signals
for updating the QProgressBar and QTextEdit - are performed in run(). However, this
method is not called directly. The QThread method start() is used to communicate
with the worker thread and begin executing the thread by calling run(). The start()
method is called in renameFiles().

Summary

Preventing GUIs from becoming frozen while processing long operations is important
for a user’s experience. There are a few options for effectively handling blocking in your
application, including using timers and threads. PyQt makes using threading seem
relatively simple with QThread and the signal and slot mechanism. However, you must
be careful when using QThread to ensure that threads protect access to their own data.
While not displayed in this chapter’s short project, QThread also has methods, such as
started(), finished(),wait(), and quit(), for managing threads.

In Chapter 12, we will take a look at an array of projects that utilize different PyQt
classes.

329

CHAPTER 12

Extra Projects

This book has tried to take a practical approach to creating GUIs. As you use PyQt5 and
Python more and more, you will find yourself learning about other modules and classes
that you will need in your applications. Each chapter set up an idea and worked hard

to break those projects down into their fundamental parts so that you could learn new
ideas along the way.

PyQt5 has quite a few modules for a variety of purposes, and the chapters in this
book only scratched the surface of the many possibilities for designing GUTISs.

In Chapter 12, we will take a look at a few extra examples to give you ideas for
other projects or to help you in creating new types of user interfaces. These projects
will not go into great lengths of detail, but rather focus on explaining the key points
of each new program and leave it up to you to research the details that you are
unsure about, either by finding the answers in a different chapter or by searching
online for help.

The projects in this chapter will take a look at the following concepts:

o Displaying directories and files using the QFileSystemModel class

e Working with multiple-document interface (MDI) applications and
the QCamera class

e Creating a simple clock GUI with QDate and QTime
o Exploring the QCalendarWidget class
e Building Hangman with QPainter and other PyQt classes

o Building the framework for a web browser using the
QtWebEngineWidgets module

331
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6_12

CHAPTER 12 EXTRA PROJECTS

Project 12.1 — Directory Viewer GUI

For every operating system, there needs to be some method for a user to access the
data and files located in it. These files are stored in a hierarchical file system, displaying
drives, directories, and files in groups so that you only view the files that you are
interested in seeing.

Whether you use a command-line interface or a graphical user interface, there needs
to be some way to create, remove, and rename files and directories. However, if you
are already interacting with one interface, it may be more convenient to locate files or
directories that you need in your current application rather than opening new windows
or other programs.

This project shows you how to set up an interface for viewing the files on your
local system. There are two key classes that will be introduced in this project -
QFileSystemModel, which grants you access to the file system on your computer, and
QTreeView, which provides a visual representation of data using a treelike structure
(Listing 12-1).

Listing 12-1. Code for directory viewer GUI

display directory.py

Import necessary modules

import sys

from PyQt5.0QtWidgets import (QApplication, QMainWindow, QFileSystemModel,
QTreeView, QFrame, QAction, QFileDialog, QVBoxLayout)

class DisplayDirectory(QMainWindow):

def init (self):
super().__init_ ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (500, 400)
self.setWindowTitle('12.1 - View Directory GUI")

332

def

def

CHAPTER 12 EXTRA PROJECTS

self.createMenu()
self.setupTree()

self.show()

createMenu(self):

Set up the menu bar.
open _dir act = QAction('Open Directory...', self)
open dir act.triggered.connect(self.chooseDirectory)

root_act = QAction("Return to Root", self)
root act.triggered.connect(self.returnToRootDirectory)

Create menubar
menu_bar = self.menuBar()
#menu_bar.setNativeMenuBar(False) # Uncomment for MacOS

Create file menu and add actions

dir menu = menu_bar.addMenu('Directories")
dir menu.addAction(open dir act)

dir menu.addAction(root act)

setupTree(self):

Set up the QTreeView so that it displays the contents
of the local filesystem.

self.model = QFileSystemModel()
self.model.setRootPath('")

self.tree = QTreeView()
self.tree.setIndentation(10) # Indentation of items
self.tree.setModel(self.model)

333

CHAPTER 12 EXTRA PROJECTS

if _name__ == ' main_ ':

334

Set up container and layout
frame = QFrame()

frame_v_box = QVBoxLayout()
frame_v_box.addWidget(self.tree)
frame.setLayout(frame v _box)

self.setCentralWidget(frame)

def chooseDirectory(self):

Select a directory to display.

file dialog = QFileDialog(self)

file dialog.setFileMode(QFileDialog.Directory)

directory = file dialog.getExistingDirectory(self, "Open
Directory"”, "", QFileDialog.ShowDirsOnly)

self.tree.setRootIndex(self.model.index(directory))

def returnToRootDirectory(self):

Re-display the contents of the root directory.

self.tree.setRootIndex(self.model.index(""))

app = QApplication(sys.argv)
window = DisplayDirectory()
sys.exit(app.exec_())

The directory viewer application can be seen in Figure 12-1.

CHAPTER 12 EXTRA PROJECTS

@] @ 12.1 - View Directory GUI
Directories
Name Size Kind Date Modified
vE |/ -- Drive 10/19/19 10:39 PM
» |4 Applications -- Folder 2/8/20 1:43 AM
» [Library -- Folder 3/3119 8:12 AM
» [opt -- Folder 9/26/16 3:44 PM
v (3 System -- Folder 1/16/19 8:34 AM
» [i0OSSupport -- Folder 1/16/19 8:35 AM
» [Library -- Folder 9/2119 4:52 PM
v 4 Users -- Folder 3/1/19 8:30 PM
» 4 josh -- Folder 2/7/2012:28 AM
» [Shared -- Folder 3/5/19 5:19 PM

Figure 12-1. Directory viewer displaying the local system’s directories

Explanation

Begin by importing the necessary modules for this GUI. For this project, we will need to
use the model/view paradigm to view the data on your computer. For more information
about model/view programming, refer to Chapter 10.

The QFileSystemModel class provides the model we need to access data on the local
file system. While not included in this project, you could also use QFileSystemModel
to rename or remove files and directories, create new directories, or use it with other
display widgets as part of a browser.

The QTreeView class will be used to display the contents of the model in a
hierarchical tree view.

For this GUI, we will create a Directories menu with actions that will either let the
user view a specific directory or return back to the root directory. The menu system can
be seen in Figure 12-2.

335

CHAPTER 12 EXTRA PROJECTS

Create an instance of the QFileSystemModel class, model, and set the directory to the
root path on your system.

self.model.setRootPath('") # Sets path to system's root path

Set the model for the tree object to show the contents of the file system using
setModel(). To choose a different directory, the user can select Open Directory... from
the menu and a file dialog will appear. A new directory can then be selected and set as
the new root path to be displayed in the tree object.

self.tree.setRootIndex(self.model.index(directory))

| NN 12.1 - View Directory GUI

Open Directory...
Return to Root

Size Kind Date Modified
-- Drive 10/19/19 10:39 PM

Figure 12-2. The menu for the directory viewer GUI

Project 12.2 — Camera GUI

When creating GUISs, there are a number of ways to tackle the issue of interfaces with
multiple windows. You could use stacked or tabbed widgets, but these methods only
allow for one window to be displayed at a time. Another option is to use dock widgets
and allow windows to be floatable or used as secondary windows.

For this project, you will see how to set up a multiple-windowed GUI using the
QMdiArea class. QMdiArea provides the area for displaying MDI windows. Multiple-
document interface (MDI) is a type of interface that allows users to work with multiple
windows at the same time. MDI applications require less memory resources and make
the process of laying out subwindows much simpler.

Let’s take a look at how to use the QCamera class to create an MDI application
(Listing 12-2).

336

CHAPTER 12 EXTRA PROJECTS

Listing 12-2. Example code to show how to create MDI applications

camera.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QListWidget,
QListWidgetItem, QLabel, QGroupBox, QPushButton, QVBoxLayout, OMdiArea,
QMdiSubWindow,)

from PyQt5.0tMultimedia import QCamera, QCameraInfo, QCameralmageCapture
from PyQt5.0tMultimedialWidgets import QCameraViewfinder

from PyQt5.QtCore import Qt

class Camera(QMainWindow):

def init (self):
super(). init_ ()

self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen
self.setGeometry(100, 100, 600, 400)
self.setWindowTitle('12.2 - Camera GUI')

self.setuphWindows ()
self.show()

def setupWindows(self):
Set up QMdiArea parent and subwindows.
Add available cameras on local system as items to
list widget.
Create images directory if it does not already exist
path = 'images'
if not os.path.exists(path):
os.makedirs(path)

337

CHAPTER 12 EXTRA PROJECTS

338

Set up list widget that will display identified

cameras on your computer.

picture label = QLabel("Press 'Spacebar' to take pictures.")
camera_label = QLabel("Available Cameras")
self.camera list widget = QListWidget()

self.camera list widget.setAlternatingRowColors(True)

Add availableCameras to a list to be displayed in
list widget. Use QCameraInfo() to list available cameras.
self.cameras = list(QCameraInfo().availableCameras())
for camera in self.cameras:
self.list item = QListWidgetItem()
self.list item.setText(camera.deviceName())
self.camera list widget.addItem(self.list item)

Create button that will allow user to select camera
choose_cam_button = QPushButton("Select Camera")
choose cam_button.clicked.connect(self.selectCamera)

Create child widgets and layout for camera controls subwindow
controls gbox = QGroupBox()
controls gbox.setTitle("Camera Controls")

v_box = QVBoxLayout()

v_box.addWidget(picture label, alignment=Qt.AlignCenter)
v_box.addWidget(camera_label)
v_box.addWidget(self.camera list widget)
v_box.addWidget(choose cam button)

controls_gbox.setLayout(v_box)

controls sub window = QMdiSubWindow()
controls sub_window.setWidget(controls gbox)
controls sub window.setAttribute(Qt.WA DeleteOnClose)

Create viewfinder subwindow

self.view finder window = QMdiSubWindow()

self.view finder window.setWindowTitle("Camera View”)
self.view finder window.setAttribute(Qt.WA DeleteOnClose)

CHAPTER 12 EXTRA PROJECTS

Create QMdiArea widget to manage subwindows
mdi area = QMdiArea()
mdi_area.tileSubWindows()
mdi_area.addSubWindow(self.view_finder window)
mdi area.addSubWindow(controls sub window)

Set mdi_area widget as the central widget of main window
self.setCentralWidget(mdi_area)

def setupCamera(self, cam_name):

Create and setup camera functions.
for camera in self.cameras:
Select camera by matching cam_name to one of the
devices in the cameras list.
if camera.deviceName() == cam name:
self.cam = QCamera(camera) # Construct QCamera device

Create camera viewfinder widget and add it to the
view finder window.

self.view finder = QCameraViewfinder()

self.view finder window.setWidget(self.view finder)

self.view finder.show()

Sets the viewfinder to display video
self.cam.setViewfinder(self.view finder)

QCameraImageCapture() is used for taking
images or recordings.
self.image capture = QCameraImageCapture(self.cam)

Configure the camera to capture still images.
self.cam.setCaptureMode(QCamera.CaptureStillImage)
self.cam.start() # Slot to start the camera

else:
pass

339

CHAPTER 12 EXTRA PROJECTS

def selectCamera(self):

Slot for selecting one of the available cameras displayed in list

widget.
try:
if self.list item.isSelected():
camera _name = self.list item.text()
self.setupCamera(camera_name)
else:
print("No camera selected.")
pass
except:
print("No cameras detected.")

def keyPresskEvent(self, event):

Handle the key press event so that the camera takes images.
if event.key() == Qt.Key Space:
try:
self.cam.searchAndLock()
self.image capture.capture("images/")
self.cam.unlock()
except:
print("No camera in viewfinder.")

Run program

if name_ ==" main_"':
app = QApplication(sys.argv)
window = Camera()

sys.exit(app.exec_())

Your GUI should look similar to the one in Figure 12-3.

340

CHAPTER 12 EXTRA PROJECTS

e e 12.2 - Camera GUI

@ ® @ 20 Camera View

Camera Controls

Press 'Spacebar’ to take pictures.

Available Cameras

DJHS042V87JGJKD1A

Select Camera
4 4

Figure 12-3. Camera GUI is composed of multiple windows that allow the user to
select available cameras and view the camera’s viewfinder

Explanation

For this project, we are going to import some new classes. From the QtWidgets module,
the QMdiArea and QMdiSubWindow classes are used to create the MDI windows.

The QtMultimedia module provides access to a number of multimedia tools
including audio, video, and camera capabilities. The QCamera class provides the interface
to work with camera devices. QCameraInfo supplies information about available
cameras. QCameraImageCapture is used for recording media.

From the QtMultimediaWidgets module, the QCameraViewfinder class sets up
the camera viewfinder widget. In photography, the viewfinder is used for focusing and
viewing the subject being photographed.

This application contains two subwindows, one for displaying the viewfinder and
the other for listing the available cameras that you can choose from in a QListWidget
object. In the setupWindows () method, the labels, list widget, and push button are

341

CHAPTER 12 EXTRA PROJECTS

arranged inside of a QGroupBox widget. The user can select a camera from the list. The
Select Camera button emits a signal that is connected to the selectCamera() slot. Next,
the QMdiArea object, mdi_area, that is used as a container for the subwindows is created.
This will be the central widget for the main window.

Child windows are instances of QMdiSubWindow. The subwindows inside of mdi_area
are created in relation to each other. In this project, they are arranged as tiles using
tileSubWindows (). Another option is to lay them out using a cascaded style.

mdi_area.cascadeSubWindows()

Tip A menubar could also be added to the main window that controls the
subwindows. For example, subwindows could be set as checkable in order to close
or reopen them. Or a menu item could allow the user to switch between tiled or
cascaded windows.

If the user clicks the push button and an available camera is selected, then the
setupCamera() method is called. Refer to the comments in the code to learn how to set
up the viewfinder. This method is adapted from the Qt document web site."

Using QCameraImageCapture(), the user is also able to take pictures of the viewfinder.
Image capturing is handled by the keyPressEvent (). When the spacebar is pressed, a picture is
taken and saved to the "images/" folder. The folder will be created if it does not already exist.

Project 12.3 — Simple Clock GUI

PyQt5 also provides classes for dealing with dates, QDate, or time, QTime. The
QDateTime class supplies functions for working with both dates and time. All three of
these classes include methods for handling time-related features.

Let’s take a brieflook at the QDateTime class. The following snippet of code
creates an instance of QDateTime that returns the current date and time using the
currentDateTime() method:

date time = QDateTime.currentDateTime()
print(date time.toString(Qt.DefaultLocalelLongDate)))

'https://doc.qt.io/qt-5/qcameraviewfinder.html

342

https://doc.qt.io/qt-5/qcameraviewfinder.html

CHAPTER 12 EXTRA PROJECTS

The current date and time is printed to the screen with the following format (set
using Qt.DefaultlocalelongDate):

February 15, 2020 2:32:31 PM CST

There are also other formats, including shorter formats, ISO 8601 format, or UTC
format. The toString() method returns the date and time as a string. QDateTime also
handles daylight saving time, different time zones, and the manipulation of times and
dates such as adding or subtracting months, days, or hours.

If you only need to work with the individual dates and times, QDate and QTime also
provide similar functions as you shall see in Listing 12-3.

Listing 12-3. Code for the clock GUI

clock.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
QVBoxLayout)

from PyQt5.0QtCore import Qt, QDate, QTime, QTimer

class DisplayTime(QWidget):

def init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setGeometry(100, 100, 250, 100)
self.setWindowTitle('12.3 - QDateTime Example")
self.setStyleSheet("background-color: black")

self.setuphidgets()

343

CHAPTER 12 EXTRA PROJECTS

Create timer object

timer = QTimer(self)
timer.timeout.connect(self.updateDateTime)
timer.start(1000)

self.show()

def setupWidgets(self):

Set up labels that will display current date and time.

current_date, current time = self.getDateTime()

self.date label = QLabel(current date)
self.date label.setStyleSheet("color: white; font: 16px Courier")
self.time label = QLabel(current time)
self.time label.setStyleSheet("""color: white;
border-color: white;
border-width: 2px;
border-style: solid;
border-radius: 4px;
padding: 10px;
font: bold 24px Courier""")

Create layout and add widgets

v_box = QVBoxLayout()

v_box.addWidget(self.date label, alignment=Qt.AlignCenter)
v_box.addWidget(self.time_label, alignment=Qt.AlignCenter)

self.setlLayout(v_box)

def getDateTime(self):

Returns current date and time.

date

ODate.currentDate().toString(Qt.DefaultLocalelLongDate)

time = QTime.currentTime().toString("hh:mm:ss AP")
return date, time

344

CHAPTER 12 EXTRA PROJECTS

def updateDateTime(self):

Slot that updates date and time values.

date = QDate.currentDate().toString(Qt.DefaultLocalelLongDate)
time = QTime.currentTime().toString("hh:mm:ss AP")

self.date label.setText(date)
self.time label.setText(time)
return date, time

if name_ ==" main_"':
app = QApplication(sys.argv)
window = DisplayTime()
sys.exit(app.exec ())

The clock application can be seen in Figure 12-4.

O] @® 12.3 - QDateTime Example

February 9, 2020

12:42:06 AM

Figure 12-4. The clock GUI displaying the current calendar date and clock time

Explanation

Start by importing the necessary modules, including QDate, QTime, and QTimer, from the
QtCore module. The QTimer class will be used to create a timer object to keep track of
the time that has passed and update the labels that hold the date and time accordingly.
The timer is set up in initializeUI(), and its timeout () signal is connected to the
updateDateTime() slot. The timeout () signal is emitted every second.

345

CHAPTER 12 EXTRA PROJECTS

In order to get the current date and time, the values are retrieved using the
currentDate() and currentTime() methods in the getDateTime() method. These are
then returned and set as the current_date and current_time.

current_date, current time = self.getDateTime()

While the date is set to use the Qt.DefaultLocalelLongDate format, the time uses a
sequence of characters to create a format string that displays hours (hh), minutes (mm),
seconds (ss), and AM or PM (AP).

time = QTime.currentTime().toString("hh:mm:ss AP")

The labels that will display the date and time are then instantiated, styled, and added
to the layout. The values of the labels are updated using the updateDateTime() method.

Project 12.4 — Calendar GUI

This project takes a look at how to set up the QCalendarWidget class and use a few of its
functions. PyQt makes adding a monthly calendar to your applications rather effortless.
The code is provided in Listing 12-4 and the calendar can be seen in Figure 12-5.

The QCalendarWidget class provides a calendar that already has a number of other
useful widgets and functions built-in. For example, the calendar already includes a
horizontal header that includes widgets for changing the month and the year and a
vertical header that displays the week number. The class also includes signals that are
emitted whenever the dates, months, and years on the calendar are changed.

The QDateEdit widget is used in this application to restrict the values a user can
select to within a certain range, specified by minimum and maximum values.

Listing 12-4. The calendar GUI code

calendar.py

Import necessary modules

import sys

from PyQt5.QtWidgets import (QApplication, QWidget, QLabel,
QCalendarWidget, QDateEdit, QGroupBox, QHBoxLayout, QGridLayout)
from PyQt5.QtCore import Qt, QDate

from PyQt5.QtCGui import QFont

346

CHAPTER 12 EXTRA PROJECTS

style sheet =
QLabel{
padding: 5px;
font: 18px
}

QLabel#DateSelected{
font: 24px
}

QGroupBox{
border: 2px solid gray;
border-radius: 5px;
margin-top: 1lex;
font: 14px

}

class CalendarGUI(QWidget):

def init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setMinimumSize (500, 400)
self.setWindowTitle('12.4 - Calendar GUI")

self.createCalendar()
self.show()

def createCalendar(self):

Set up calendar, others widgets and layouts for main window.

347

CHAPTER 12 EXTRA PROJECTS

348

self.calendar = QCalendarWidget()
self.calendar.setGridVisible(True)
self.calendar.setMinimumDate(QDate (1900, 1, 1))
self.calendar.setMaximumDate(QDate (2200, 1, 1))

Connect to newDateSelection slot when currently selected date is
changed
self.calendar.selectionChanged.connect(self.newDateSelection)

current = QDate.currentDate().toString(Qt.DefaultLocalelLongDate)
self.current label = QLabel(current)
self.current label.setObjectName("DateSelected")

Create current, minimum, and maximum QDateEdit widgets

min_date label = QLabel("Minimum Date:")

self.min_date edit = QDateEdit()
self.min_date_edit.setDisplayFormat("MMM d yyyy")

self.min_date edit.setDateRange(self.calendar.minimumDate(), self.
calendar.maximumDate())

self.min _date edit.setDate(self.calendar.minimumDate())
self.min_date_edit.dateChanged.connect(self.minDatedChanged)

current_date label = QLabel("Current Date:")
self.current date edit = QDateEdit()
self.current date edit.setDisplayFormat("MMM d yyyy")
self.current date edit.setDate(self.calendar.selectedDate())
self.current_date edit.setDateRange(self.calendar.minimumDate(),
self.calendar.maximumDate())

self.current date edit.dateChanged.connect(self.
selectionDateChanged)

max_date label = QLabel("Maximum Date:")

self.max_date edit = QDateEdit()
self.max_date_edit.setDisplayFormat("MMM d yyyy")

self.max_date edit.setDateRange(self.calendar.minimumDate(), self.
calendar.maximumDate())

self.max_date edit.setDate(self.calendar.maximumDate())
self.max_date edit.dateChanged.connect(self.maxDatedChanged)

CHAPTER 12 EXTRA PROJECTS

Add widgets to group box and add to grid layout
dates_gb = QGroupBox("Set Dates")

dates grid = QGridLayout()
dates_grid.addWidget(self.current label, 0, 0, 1, 2,
Qt.AlignAbsolute)

dates grid.addWidget(min date label, 1, 0)

dates grid.addwidget(self.min_date edit, 1, 1)
dates_grid.addwidget(current_date label, 2, 0)
dates grid.addWidget(self.current date edit, 2, 1)
dates grid.addWidget(max_date label, 3, 0)
dates_grid.addwidget(self.max_date edit, 3, 1)
dates gb.setlayout(dates grid)

Create and set main window's layout
main_h_box = QHBoxLayout()

main_h box.addWidget(self.calendar)
main_h box.addWidget(dates gb)

self.setLayout(main_h box)

def selectionDateChanged(self, date):
Update the current date edit when the calendar's selected date
changes.

self.calendar.setSelectedDate(date)

def minDatedChanged(self, date):
Update the calendar's minimum date.
Update max_date edit to avoid conflicts with maximum and minimum
dates.
self.calendar.setMinimumDate(date)
self.max_date edit.setDate(self.calendar.maximumDate())

349

CHAPTER 12 EXTRA PROJECTS

def maxDatedChanged(self, date):
Update the calendar's maximum date.
Update min_date edit to avoid conflicts with minimum and maximum
dates.
self.calendar.setMaximumDate(date)
self.min _date edit.setDate(self.calendar.minimumDate())

def newDateSelection(self):
Update date in current_label and current date_edit widgets when
user selects a new date.
date = self.calendar.selectedDate().toString
(Qt.DefaultLocalelLongDate)
self.current date edit.setDate(self.calendar.selectedDate())
self.current label.setText(date)

if _name__ == ' main_ ':
app = QApplication(sys.argv)
app.setStyleSheet(style sheet)
window = CalendarGUI()
sys.exit(app.exec ())

The look of your calendar will greatly depend upon the platform that you are using to
run the application. An example of the calendar on MacOS can be seen in Figure 12-5.

350

CHAPTER 12 EXTRA PROJECTS

@® ® 12.4 - Calendar GUI

(€] April | 1990 9 Set Dates

Sun Mon Tue Wed Thu Fri Sat
13
April 20,1990

14 1 2 3 4 5 6 7

15 8 9 10 n 12 13 14

% 15 16 17 18 19 21 Minimum Date: Jan11900 |2
17 | 22 | 23 | 24 | 25 | 26 | 27 @ 28 Current Date: Apr 20 199(2
18 29 30 Maximum Date: Jan12200 ?

Figure 12-5. The calendar GUI that displays the calendar, the current date, and
the widgets that allow the user to search for dates within a specified time range

Explanation

After importing the modules needed for the calendar GUI, the styles for the QLabel and
QGroupBox widgets are prepared using style sheet.
Creating an instance of QCalendarWidget is very simple.

self.calendar = QCalendarWidget()

Next, we set a few of the calendar object’s parameters. Setting setGridVisible()
to True will make the grid lines visible. In order to specify the date range that a user can
select in the calendar, we set the minimum and maximum date values.

self.calendar.setMinimumDate(QDate(1900, 1, 1))
self.calendar.setMaximumDate(QDate(2200, 1, 1))

351

CHAPTER 12 EXTRA PROJECTS

Whenever a date is selected in the calendar widget, it emits a selectionChanged()
signal. This signal is connected to the newDateSelection() slot that updates the date
on the current_label and in the current _date edit widget. Selecting a value in the
current_date_edit widget will also change the other values.

The QCalendarWidget class also has a number of functions that allow you to
configure its behaviors and appearance. For this project, we create three QDateEdit
widgets that will allow the user to change the minimum and maximum values for the
date range, as well as the current date selected in the calendar.

A displayed format for the date in the QDateEdit widget can be set using
setDisplayFormat(). The date edit objects are also given a date range using
setDateRange(). The following code is an example of how to set the min_date edit
widget’s date range by using ranges set earlier for the calendar object:

self.min_date_edit.setDateRange(self.calendar.minimumDate(), self.calendar.
maximumDate())

When a date is changed in a date edit widget, it generates a dateChanged() signal.
Each one of the QDateEdit widgets is connected to a corresponding slot that will update
the calendar’s minimum, maximum, or current date values depending upon which
date edit widget is changed. The method for changing the dates is adapted from the Qt
document web site.?

Finally, the label and date edit widgets are arranged in a QGroupBox.

Project 12.5 — Hangman GUI

PyQt can be used to create a variety of different kinds of applications. Throughout this
book, we have looked at quite a few ideas for building GUISs. For this next project, we will be
taking a look at how to use QPainter and a few other classes to build a game - Hangman.
While Hangman is a simple game to play, it can be used to teach a few of the fundamental
concepts for using PyQt to create games. The code is presented in Listing 12-5 and the
interface can be seen in Figure 12-6.

*https://doc.qt.io/qt-5/qtwidgets-widgets-calendarwidget-example.html

352

https://doc.qt.io/qt-5/qtwidgets-widgets-calendarwidget-example.html

CHAPTER 12 EXTRA PROJECTS

For this application, the player can select from one of the twenty-six English letters
to guess a letter in an unknown word. As each letter is chosen, they will become disabled
in the window. If the letter is correct, it will be revealed to the player. Otherwise, a part
of the hangman figure’s body is drawn on the screen. If all of the letters are correctly
guessed, then the player wins. There are a total of six turns.

Whether or not the player wins or loses, a dialog will be displayed to inform the
player and allow them to quit or to continue playing.

Listing 12-5. This is the code for the Hangman GUI

hangman.py

Import necessary modules

import sys, random

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget,
QPushButton, QLabel, QFrame, QButtonGroup, QHBoxLayout, QVBoxLayout,
QMessageBox, QSizePolicy)

from PyQt5.QtCore import Qt, QRect, QlLine

from PyQt5.QtGui import QPainter, QPen, 0Brush, QColor

style sheet =
QWidget{
background-color: #FFFFFF

}

QLabel#Word{
font: bold 20px;
gproperty-alignment: AlignCenter

}

QPushButton#fLetters{
background-color: #1FAEDE;
color: #D2DDE1;
border-style: solid;
border-radius: 3px;
border-color: #38454A;
font: 28px

}

353

CHAPTER 12 EXTRA PROJECTS

QPushButton#Letters:pressed{
background-color: #C86354;
border-radius: 4px;
padding: 6px;
color: #DFD8D7

}

QPushButton#fLetters:disabled{
background-color: #BBC7CB

}

The hangman is drawn on a QLabel object, rather than
on the main window. This class handles the drawing.
class Drawinglabel(QLabel):

def init (self, parent):
super(). init (parent)

Variables for positioning drawings
self.height = 200
self.width = 300

Variables used to keep track of incorrect guesses
self.incorrect letter = False
self.incorrect turns = 0

List to store body parts
self.part list = []

def drawHangmanBackground(self, painter):

Draw the gallows.

painter.setBrush(QBrush(QColoxr ("#000000")))

drawRect(x, y, width, height)

painter.drawRect((self.width / 2) - 40, self.height, 150, 4)
painter.drawRect(self.width / 2, 0, 4, 200)

354

def

CHAPTER 12

painter.drawRect(self.width / 2, 0, 60, 4)
painter.drawRect((self.width / 2) + 60, 0, 4, 40)

drawHangmanBody (self, painter):

Create and draw body parts for hangman.

if "head" in self.part list:
head = QRect((self.width / 2) + 42, 40, 40, 40)
painter.setPen(QPen(QColor("#000000"), 3))
painter.setBrush(QBrush(QColox ("#FFFFFF")))
painter.drawkEllipse(head)

if "body" in self.part list:
body = QRect((self.width / 2) + 60, 80, 2, 55)
painter.setBrush(QBrush(QColor("#000000")))
painter.drawRect(body)

if "right arm" in self.part list:
right arm = QLine((self.width / 2) + 60, 85,

(self.width / 2) + 50, (self.height / 2) + 30)

pen = QPen(Qt.black, 3, Qt.SolidlLine)
painter.setPen(pen)
painter.drawLine(right_arm)

if "left arm" in self.part list:
left _arm = QLine((self.width / 2) + 62, 85,

(self.width / 2) + 72, (self.height / 2) + 30)

painter.drawLine(left_arm)
if "right leg" in self.part list:
right leg = QLine((self.width / 2) + 60, 135,

(self.width / 2) + 50, (self.height / 2) + 75)

painter.drawLine(right leg)
if "left_leg" in self.part_list:
left leg = QLine((self.width / 2) + 62, 135,

(self.width / 2) + 72, (self.height / 2) + 75)

painter.drawLine(left_leg)

EXTRA PROJECTS

355

CHAPTER 12 EXTRA PROJECTS

Reset variable
self.incorrect letter = False

def paintEvent(self, event):

Construct the QPainter and handle painting events.

painter = QPainter(self)
self.drawHangmanBackground(painter)

if self.incorrect letter == True:
self.drawHangmanBody (painter)

painter.end()
class Hangman(QMainWindow):
def init (self):
super(). init ()
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.

self.setFixedSize (400, 500)
self.setWindowTitle('12.5 - Hangman GUI')

self.newGame()
self.show()

def newGame(self):

Create new Hangman game.

self.setupHangmanBoard()
self.setuphord()
self.setupBoard()

356

CHAPTER 12 EXTRA PROJECTS

def setupHangmanBoard(self):

Set up label object to display hangman.
self.hangman_label = Drawinglabel(self)
self.hangman label.setSizePolicy(QSizePolicy.Expanding,
0SizePolicy.Expanding)

def setupWord(self):
Open words file and choose random word.
Create labels that will display ' ' depending
upon length of word.
words = self.openFile()
self.chosen word = random.choice(words).upper()
#print(self.chosen word)

Keep track of correct guesses
self.correct counter = 0

Keep track of label objects.
Is used for updating the text on the labels
self.labels = []

word h box = QHBoxLayout()

for letter in self.chosen word:
self.letter label = QLabel(" ")
self.labels.append(self.letter label)
self.letter label.setObjectName("Word")
word _h_box.addWidget(self.letter label)

self.word frame = QFrame()
self.word frame.setLayout(word h_box)

def setupBoard(self):

Set up objects and layouts for keyboard and main window.

357

CHAPTER 12 EXTRA PROJECTS

358

top_row_list = ["AII, IIBII’ n II’ IIDII) IIE"’ n II) IIGII
mid_row_list — ["I", n II’ IIK"’ "L") IIMII’ "N", lloll’
bO't_I'OW_liSt - [IIRII, IISII’ "T", "U") "V", "W", "X", IIYII, n

Create button group to keep track of letters
self.keyboard bg = QButtonGroup()

Set up keys in the top row
top row_h box = QHBoxLayout()

for letter in top row list:
button = QPushButton(letter)
button.setObjectName("Letters")
top _row_h_box.addwidget(button)
self.keyboard bg.addButton(button)

top frame = QFrame()
top_frame.setlLayout(top row h box)

Set up keys in the middle row
mid row_h box = QHBoxLayout()

for letter in mid_row list:
button = QPushButton(letter)
button.setObjectName("Letters")
mid row _h box.addwWidget(button)
self.keyboard bg.addButton(button)

mid frame = QFrame()
mid_frame.setLayout(mid_row h box)

Set up keys in the bottom row
bot_row_h_box = QHBoxLayout()

for letter in bot row list:
button = QPushButton(letter)
button.setObjectName("Letters")
bot_row_h box.addWidget(button)
self.keyboard bg.addButton(button)

CHAPTER 12 EXTRA PROJECTS

bot frame = QFrame()
bot frame.setLayout(bot row h box)

Connect buttons in button group to slot
self.keyboard bg.buttonClicked.connect(self.buttonPushed)

keyboard v_box = QVBoxLayout()

keyboard v_box.addWidget(top frame)
keyboard v_box.addWidget(mid_frame)
keyboard v_box.addWwidget(bot frame)

keyboard frame = QFrame()
keyboard frame.setLayout(keyboard v_box)

Create main layout and add widgets
main_v_box = QVBoxLayout()
main_v_box.addWidget(self.hangman label)
main_v_box.addWidget(self.word frame)
main_v_box.addWidget(keyboard frame)

Create central widget for main window
central widget = QWidget()
central widget.setlLayout(main_v_box)

self.setCentralWidget(central widget)

def buttonPushed(self, button):

Handle buttons from the button group and game logic.

button.setEnabled(False)

body parts list = ["head", "body", "right arm",
"left_arm", "right leg", "left leg"]

When the user guesses incorrectly and the number of incorrect
turns is not equal to 6 (the number of body parts).
if button.text() not in self.chosen word and self.hangman label.
incorrect_turns <= 5:

self.hangman_label.incorrect turns += 1

359

CHAPTER 12 EXTRA PROJECTS

def

360

index = self.hangman_label.incorrect turns - 1
self.hangman_label.part list.append(body parts list[index])
self.hangman_label.incorrect letter = True
When a correct letter is chosen, update labels and
correct counter.
elif button.text() in self.chosen word and self.hangman_label.
incorrect_turns <= 5:
self.hangman_label.incorrect letter = True
for i in range(len(self.chosen word)):
if self.chosen word[i] == button.text():
self.labels[i].setText(button.text())
self.correct counter += 1

Call update before checking winning conditions
self.update()

User wins when the number of correct letters equals

the length of the word.

if self.correct counter == len(self.chosen word):
self.displayDialogs("win")

Game over if number of incorrect turns equals
the number of body parts. Reveal word to user.
if self.hangman_label.incorrect_turns ==
for i in range(len(self.chosen word)):
self.labels[i].setText(self.chosen word[i])
self.displayDialogs("game over")
openFile(self):

Open words.txt file.
try:
with open(“files/words.txt", 'r') as f:
word list = f.read().splitlines()
return word list

CHAPTER 12 EXTRA PROJECTS

except FileNotFoundError:
print("File Not Found.")
ex list = ["nofile"]
return ex_list

def displayDialogs(self, text):

Display win and game over dialog boxes.
if text == "win":
message = QMessageBox().question(self, "Win!",
"You Win!\nNEW GAME?", QMessageBox.Yes | QMessageBox.No,
OMessageBox.No)
elif text == "game over":
message = QMessageBox().question(self, "Game Over",
"Game Over\nNEW GAME?", QMessageBox.Yes | QMessageBox.No,
QMessageBox.No)

if message == QMessageBox.No:
self.close()

else:
self.newGame()

if name_ ==" main_":
app = QApplication(sys.argv)
app.setStyleSheet(style sheet)
window = Hangman()
sys.exit(app.exec_())

The finished hangman GUI can be seen in Figure 12-6.

361

CHAPTER 12 EXTRA PROJECTS

oy 12.6 - Hangman GUI)

(C D]
OMBIQ
R

Figure 12-6. The Hangman application. Can you save him?

Explanation

Avariety of classes are used in the Hangman GUI, including different widgets from
QtWidgets, as well as classes used for drawing from QtCore and QtGui. We then create
a style sheet to set the style properties of the widgets and to handle the situation of how
the buttons look when they are pressed.

This program contains two classes, DrawinglLabel and Hangman.

Creating the Drawing Class

The Drawinglabel class inherits from QLabel and handles the different paint events that
will be drawn on the label object in the main window. The paintEvent() function is
called in a class that inherits from QLabel so that way the paint events occur on the label
and are not covered up by the main window.

362

CHAPTER 12 EXTRA PROJECTS
In order to use this class, an instance is created in the Hangman class:
self.hangman label = Drawinglabel(self)

The paintEvent() function sets up QPainter and handles the two painting methods,
drawHangmanBackground(), which draws the gallows of the Hangman game onto the
label, and drawHangmanBody (), which only draws the body parts if they are contained in
the part_list.

Creating the Main Window Class

The Hangman class starts by initializing the GUI window and calling the newGame ()
method. First, the Hangman board is created as an instance of the DrawinglLabel
class. Then, setupBoard() selects a random word from the words. txt file. The
labels that will represent the letters of the chosen word are replaced with underscore
characters, appended to the labels list, and added to the horizontal layout of the
word_frame object.

Finally, we need to set up the keyboard push buttons, layouts, and the game logic
in setupBoard(). Three rows of push buttons that represent the letters of the alphabet
are controlled by one QButtonGroup object, keyboard bg. When one button is pushed, it
generates a signal that calls the buttonPushed slot.

When a push button is pressed, it is disabled.

button.setEnabled(False)

The list of body parts contains the six body part names. If the player guesses
an incorrect letter, the name is appended to the part_1list and checked for in the
drawHangmanBody () function. Using this method ensures that all necessary parts are
drawn with their different styles when paintEvent() is called. Otherwise, the labels are
updated to display the correct letters in the appropriate positions if the player guesses
correctly.

If the player wins or loses, a QMessageBox will appear and allow the user to close the
application or continue. If Yes is selected, newGame () is called.

363

CHAPTER 12 EXTRA PROJECTS

Project 12.6 — Web Browser GUI

A web browser is a graphical user interface that allows access to information on the
World Wide Web (Listing 12-6). A user can enter a Uniform Resource Locator (URL) into
an address bar and request content for a web site from a web server to be displayed on
their local device, including text, image, and video data. URLs are generally prefixed with
http, a protocol used for fetching and transmitting requested web pages, or https, for
encrypted communication between browsers and web sites.

Qt provides quite a few classes for network communication, WebSockets, support for
accessing the World Wide Web, and more. This project introduces PyQt’s classes for web
integration into GUIs.

For the following project, we will take a look at QtWebEngine, specifically
the QtWebEngineWidgets module for creating widget-based web applications.
QtWebEngine provides a web browser engine that can be used to embed web content
into your applications. The QtWebEngine module uses Chromium as its back end.
Chromium is open source software from Google that can be used to create web browsers.

The web browser GUI serves as a framework for creating your own web browser and
includes the following features:

o Ability to open multiple windows and tabs, either by using the
application’s menu or shortcut hot keys

e A navigation bar that is made up of back, forward, refresh, stop, and
home buttons and the address bar for entering URLs

o The web engine view widget created using QWebEngineView
o Astatus bar

e A progress bar that relays feedback to the user about loading web
pages

Note When you are running this program, if you get an error message stating
“No module named: PyQt5.QtWebEngineWidgets”, then you need to install the
QtWebEngineWidgets module. To solve this problem, enter the following
command into the command line: pip3 install PyQtWebEngine.

364

CHAPTER 12

Listing 12-6. Web browser GUI code

web_browser.py

Import necessary modules

import os, sys

from PyQt5.QtWidgets import (QApplication, QMainWindow, QWidget, QLabel,

EXTRA PROJECTS

QLineEdit, QDesktopWidget, QTabWidget, QHBoxLayout, QVBoxLayout, QAction,
QToolBar, QProgressBar, QStatusBar)

from PyQt5.0QtCore import QSize, QUrl

from PyQt5.0tGui import QIcon

from PyQt5.QtWebEngineWidgets import QWebEngineView

style sheet =

QTabWidget:pane{

border: none

class WebBrowser(QMainWindow):
def init (self):

def

super(). init ()

Create lists that will keep track of the new windows,
tabs, and URLs

self.window list = []

self.list of web pages = []

self.list of urls = []

self.initializeUI()

initializeUI(self):
self.setMinimumSize (300, 200)
self.setWindowTitle("12.6 - Web Browser™)

self.setWindowIcon(QIcon(os.path.join("images", 'pyqt _logo.png')))

self.positionMainWindow()

365

CHAPTER 12 EXTRA PROJECTS

366

def

def

self.createMenu()
self.createToolbar()
self.createTabs()

self.show()

createMenu(self):

Set up the menu bar.

new_window_act = QAction('New Window', self)

new window act.setShortcut('Ctrl+N")

new window act.triggered.connect(self.openNewhindow)

new tab act = QAction('New Tab', self)
new_tab act.setShortcut('Ctrl+T")
new_tab act.triggered.connect(self.openNewTab)

quit _act = QAction("Quit Browser", self)
quit act.setShortcut('Ctrl+Q")
quit_act.triggered.connect(self.close)

Create the menu bar
menu_bar = self.menuBar()
menu_bar.setNativeMenuBar(False)

Create file menu and add actions
file menu = menu_bar.addMenu('File")
file menu.addAction(new window act)
file menu.addAction(new tab act)
file menu.addSeparator()

file menu.addAction(quit_act)

self.status _bar = QStatusBar()
self.setStatusBar(self.status bar)

createToolbar(self):

Set up the navigation toolbar.

CHAPTER 12 EXTRA PROJECTS

tool bar = QToolBar("Address Bar")
tool bar.setIconSize(QSize(30, 30))
self.addToolBar(tool bar)

Create toolbar actions

back page button = QAction(QIcon(os.path.join("icons',
"back.png')), "Back", self)

back page button.triggered.connect(self.backPageButton)

forward page button = QAction(QIcon(os.path.join(icons’,
"forward.png')), "Forward", self)
forward page button.triggered.connect(self.forwardPageButton)

refresh_button = QAction(QIcon(os.path.join("icons’,
'refresh.png')), "Refresh", self)
refresh button.triggered.connect(self.refreshButton)

home_button = QAction(QIcon(os.path.join('icons", 'home.png')),
"Home", self)

home_button.triggered.connect(self.homeButton)

stop_button = QAction(QIcon(os.path.join("'icons', 'stop.png')),
"Stop", self)
stop_button.triggered.connect(self.stopButton)

Set up the address bar

self.address line = QLineEdit()

addAction() is used here to merely display the icon in the line edit
self.address line.addAction(QIcon('icons/search.png'), QLineEdit.
LeadingPosition)

self.address line.setPlaceholderText("Enter website address")
self.address line.returnPressed.connect(self.searchForUrl)

tool bar.addAction(home_button)

tool bar.addAction(back page button)
tool bar.addAction(forward page button)
tool bar.addAction(refresh button)

tool bar.addWidget(self.address line)
tool bar.addAction(stop button)

367

CHAPTER 12 EXTRA PROJECTS

def createTabs(self):
Create the QTabWidget object and the different pages.
Handle when a tab is closed.
self.tab_bar = QTabWidget()
self.tab _bar.setTabsClosable(True) # Add close buttons to tabs
self.tab_bar.setTabBarAutoHide(True) # Hides tab bar when less than
2 tabs
self.tab _bar.tabCloseRequested.connect(self.closeTab)

Create tab
self.main_tab = QWidget()
self.tab _bar.addTab(self.main tab, "New Tab")

Call method that sets up each page
self.setupTab(self.main_tab)

self.setCentralhWidget(self.tab_bar)

def setupWebView(self):
Create the QWebEngineView object that is used to view
web docs. Set up the main page, and handle web view signals.
web_view = QWebEngineView()
web view.setUrl(QUrl("https://google.com"))

Create page loading progress bar that is displayed in
the status bar.

self.page load pb = QProgressBar()

self.page load label = QLabel()

web view.loadProgress.connect(self.updateProgressBar)

Display URL in address bar
web_view.urlChanged.connect(self.updateUrl)

368

CHAPTER 12 EXTRA PROJECTS

ok = web view.loadFinished.connect(self.updateTabTitle)
if ok:

Web page loaded

return web_view
else:

print("The request timed out.")

def setupTab(self, tab):
Create individual tabs and widgets. Add the tab's url and web view
to the appropriate list.
Update the address bar if the user switches tabs.
Create the web view that will be displayed on the page.
self.web _page = self.setupWebView()

tab_v_box = QVBoxLayout()

Sets the left, top, right, and bottom margins to use around the
layout.

tab_v_box.setContentsMargins(0,0,0,0)

tab_v_box.addWidget(self.web page)

Append new web_page and URL to the appropriate lists
self.list of web_pages.append(self.web_page)
self.list of urls.append(self.address line)
self.tab bar.setCurrentWidget(self.web page)

If user switches pages, update the URL in the address to
reflect the current page.
self.tab_bar.currentChanged.connect(self.updateUrl)

tab.setlLayout(tab v box)

def openNewhWindow(self):

Create new instance of the WebBrowser class.

new_window = WebBrowser()

369

CHAPTER 12 EXTRA PROJECTS

def

def

def

370

new_window.show()
self.window list.append(new window)

openNewTab(self):

Create new tabs.

new_tab = QWidget()

self.tab _bar.addTab(new tab, "New Tab")
self.setupTab(new tab)

Update the tab bar index to keep track of the new tab.
Load the URL for the new page.

tab_index = self.tab bar.currentIndex()

self.tab bar.setCurrentIndex(tab _index + 1)

self.list of web pages[self.tab bar.currentIndex()].
load(QUrl("https://google.com"))

updateProgressBar(self, progress):
Update progress bar in status bar.
This provides feedback to the user that the page is still loading.
if progress < 100:
self.page load pb.setVisible(progress)
self.page load pb.setValue(progress)
self.page load label.setVisible(progress)
self.page load label.setText("Loading Page... ({}/100)".
format(str(progress)))
self.status_bar.addWidget(self.page load pb)
self.status bar.addWidget(self.page load label)
else:
self.status_bar.removeWidget(self.page load pb)
self.status bar.removeWidget(self.page load label)

updateTabTitle(self):

def

def

def

CHAPTER 12 EXTRA PROJECTS

Update the title of the tab to reflect the website.

tab_index = self.tab bar.currentIndex()

title = self.list of web pages[self.tab bar.currentIndex()].page().
title()

self.tab_bar.setTabText(tab_index, title)

updateUrl(self):

Update the url in the address to reflect the current page being
displayed.

url = self.list of web pages[self.tab bar.currentIndex()].page().url()
formatted url = QUrl(url).toString()

self.list of urls[self.tab bar.currentIndex()].setText(formatted url)

searchForUrl(self):

Make a request to load a url.

url text = self.list of urls[self.tab bar.currentIndex()].text()

Append http to URL

url = QUrl(url text)

if url.scheme() == "":
url.setScheme("http")

Request URL

if url.isValid():
self.list of web pages[self.tab bar.currentIndex()].page().
load(url)

else:
url.clear()

backPageButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web_pages[tab_index].back()

371

CHAPTER 12 EXTRA PROJECTS

def forwardPageButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web_pages[tab_index].forward()

def refreshButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web pages[tab_index].reload()

def homeButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web pages[tab_index].setUrl(QUrl("https://google.
com"))

def stopButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web pages[tab index].stop()

def closeTab(self, tab_index):
This signal is emitted when the close button on a tab is clicked.
The index is the index of the tab that should be removed.
self.list of web pages.pop(tab_index)
self.list of urls.pop(tab_index)

self.tab_bar.removeTab(tab_index)

def positionMainWindow(self):
Use QDesktopWidget class to access information about your screen
and use it to position the application window when starting a new
application.
desktop = QDesktopWidget().screenGeometry()
screen width = desktop.width()
screen_height = desktop.height()
self.setGeometry(0, 0, screen width, screen height)

372

CHAPTER 12 EXTRA PROJECTS

if _name_ == "' main_ ':
app = QApplication(sys.argv)
app.setStyleSheet(style sheet)
window = WebBrowser()

app.exec_()

Your application should look similar to Figure 12-7.

ere 12,6 - Web Browser
File

@ @ D C |5 islredblinschineaning.com ®
* Googhe X cats- Google Search % CMA - Breaking News, Latest News and Videos Google x She Saw Style | RvA-Based Life Styie B... I e e e

.
red h U | I Mome LeamPython Games About

red hﬁ\f

Memanrribs 35000, [1_inebasn Wilioasn P2 Sathian. Thitkor. Recent Posts

Loading Page... (23/100)

Create GUI With Tkinter -~ Place Layout Manager

Figure 12-7. The web browser GUI displaying the menubar, toolbar, different tabs,
the logo for my blog, RedHuli, and the progress bar at the bottom

Explanation

Two new classes are introduced in this application - QUrl is used for managing and

constructing URLs, and QWebEngineView is used for creating the main component for

rendering content from the Web, the web engine view (denoted as web_view in the code).
Before calling initializeUI(), we need to instantiate a few lists that will contain

the new windows, web pages viewed, and URLs for each tab. This project also calls

setWindowIcon() to include an application icon, but it will not be displayed on MacOS

due to system guidelines.

373

CHAPTER 12 EXTRA PROJECTS

There are three main methods that are called in initializeUI(). The first
one is createMenu() for setting up the main menu and the status bar. The menu
includes actions and shortcuts for creating new windows, new tabs, and closing the
application.

Next is the createToolbar () method that creates the navigation bar of the web
browser. The tool bar includes buttons for navigating between web pages and a
QLineEdit widget for entering and displaying URLs. Each button emits a signal when
triggered thatis connected to an appropriate slot. For example, if the back_page
button is pressed, the backPageButton() slot will be called.

def backPageButton(self):
tab_index = self.tab bar.currentIndex()
self.list of web pages[tab_index].back()

The current index of the tab we are viewing is stored in tab_index. The back()
method is then called on the web_view object for that current tab. If the tab_index is not
0, then the user can navigate back through previously viewed web pages. The back()
method is but one of several functions included in the QWebEngineView class. Other
methods for navigation include forward(), reload(), and stop(), and these are also
utilized for the other tool bar buttons.

When the user enters a web address in the QLineEdit widget and presses the return
key, we check to see if the URL begins with the correct scheme (such as http, https, or
file). If a valid scheme is not present, http is appended to the beginning of the URL. If
the URL conforms to standard encoding rules, a request is then sent to load() the web
site.

Creating Tabs for the Web Browser

The third method, createTabs(), is used to handle creating the tab widget and the web
view objects. First, we need to create the QTabWidget that will display each individual
tab’s web view. Refer back to Chapter 6 for more details on setting up tab widgets.

A few of the tab_bar widget’s parameters are changed so that each tab includes a
close button, and if only one tab remains, then the tab bar will not be displayed. This
helps to make sure that there is always at least one tab in the main window. If a tab is
closed, the closeTab() slot is called. The corresponding URLs and web view items for
that tab are also removed from the 1ist_of urlsand list of web_pages lists.

374

CHAPTER 12 EXTRA PROJECTS

The first tab, main_tab, is created, added to the tab_bar, and then passed to the
setupTab() method. The tab_bar widget is set as the central widget for the main
window. When setting up a tab’s page, we first need to create a web view object.

Creating the Web View

The setuphebView() function creates an instance of the QWebEngineView class, web_
view, and sets the web view’s URL to display the Google web page.

web view.setUrl(QUrl("https://google.com"))

To create a basic instance of a web view in an application, you only need to create
a QWebEngineView object, use the load() method to load the web page onto the web
view widget, and then call show(). The following code shows the process for setting up a
simple web view widget:

web view = QWebEngineView()
web view.load(QUrl("https://google.com"))
web view.show()

Once the web page has loaded, the urlChanged() signal connected to updateUrl()
changes the URL displayed in address_line. We can use the loadFinished() signal to
tell the current tab to update its title using the updateTabTitle() slot and return the
web_view widget.

Next, create the layout to hold the web view widget, append the current tab’s URL
and web_page objectto the 1ist_of urls and list of web_pages lists, and set the
layout for the current tab’s page. The web_page object is the web_view widget that is
returned from setupWebView() and displayed in the page of the tab.

Finally, to handle when a user switches between tabs, QTabWidget has the
currentChanged() signal. If a different tab is selected, the connected slot, updateUr1(),
will change the displayed URL in address_line.

Adding a QProgressBar to the Status Bar

In setupWebView(), a progress bar and label are also created that will be used to display
the loading progress of a web page in the browser’s status bar. When the loadProgress()
signal is generated, the updateProgressBar() slot is called.

web_view.loadProgress.connect(self.updateProgressBar)

375

CHAPTER 12 EXTRA PROJECTS

The loadProgress () function returns an int value that we can use to track how
much of the page has loaded. While progress is less than 100, the progress bar and the
label are both displayed and their values are set. The code for displaying the progress bar

is shown as follows:

self.page load pb.setVisible(progress)
self.page load pb.setValue(progress)

The widgets are then added to the status bar.
self.status_bar.addWidget(self.page_load pb)

When a page is finished loading, we call removeWidget () to remove the progress bar
and the label. An example of the progress bar can be seen at the bottom of Figure 12-7.

Note Creating a web browser is a very extensive task. There are many topics
that are not included in this project, such as accessing HTTP cookies with
QtWebEngineCore, working with the browser history with QWebEngineHistory,
managing connections and client certificates, proxy support with QNetworkProxy,
working with JavaScript, downloading content from web sites, and others. You are
definitely encouraged to research these topics if you need to use QtWebEngine for
more advanced projects.

Summary

In this chapter, you saw different GUI applications that build the structure for larger
projects, such as the camera GUI or the web browser GUI. Other projects introduced
components that you may be able to include in other programs, such as the directory
viewer GUI, the clock GUI, or the calendar GUI. In the case of the Hangman GUI, a
complete program was created so that it can hopefully give you ideas for other programs
you may want to design.

We have explored a variety of topics for designing graphical user interfaces using
PyQt5 and Python throughout this book - different types of widgets, classes, and layouts.
We saw how to stylize your interfaces, how to add menus, and how to make creating an
application simpler with Qt Designer.

376

CHAPTER 12 EXTRA PROJECTS

We covered a few advanced topics such as working with the clipboard, SQL, and
multithreaded applications, as well.

Appendix A will fill in more details about the PyQt5 classes used in this book, as well
as a few other classes that there was no room to include in the previous chapters.

Appendix B is used to refresh your knowledge on the key Python concepts used in
this book.

Your feedback and questions are always welcome. Thank you so much for traveling
along with me on this journey to create this guide for you.

377

APPENDIX A

Reference Guide for PyQt5

PyQt is a Python binding for the Qt application framework maintained by Riverbank
Computing Limited. A binding is an application programming interface (API) that
provides the code to allow a programming language to use other libraries not native
to that language. Qt is a set of C++ libraries and development tools, providing access
to networking, threads, SQL databases, OpenGL and other graphics tools, XML, GUI
development, and other features. This chapter focuses only on PyQt5, because as of this
writing, PyQt4 is no longer supported.

Appendix A contains a reference for some of the tools, modules, and classes learned
throughout this book, including

o Installing PyQt5 and Qt Designer
e Areview for PyQt modules and classes
e An overview of Qt Style Sheets

More information about Riverbank Computing Limited and PyQt5 can be found at
the following link:

https://riverbankcomputing.com/software/pyqt/intro

Installing PyQt5 and Qt Designer

Before beginning, make sure Python 3 is already installed on your system. If you have not
already installed Python, or are not sure if you already have it installed, please check out
Appendix B.

Also, the SIP binding generator is a tool used for creating bindings that allow Python
to access the C++ classes. If you choose to download PyQt5 from the Python Package
Index (PyPI) repository, then the sip module will automatically be downloaded, as well.

The following subsections focus on downloading PyQt5 from PyPI using pip3, which
only operates on Python 3 environments.

379
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

https://doi.org/10.1007/978-1-4842-5857-6
https://riverbankcomputing.com/software/pyqt/intro

APPENDIXA REFERENCE GUIDE FOR PYQT5

Getting PyQt for Windows

To install PyQt5, enter the following command into the Command terminal:
pip3 install pyqt5s

You can check to make sure PyQt downloaded properly by opening up the Python 3

interpreter and entering the following command:
>>> import PyQt5.0tWidgets

If no errors are returned, then the next step is to install Qt Designer. To get Qt
Designer, enter the following line into the command line:

pip3 install pyqt5-tools

Next, we need to locate the Qt Designer executable. You will need to look for the
site-packages folder inside the main Python directory. The path should look something
similar to the following path:

C:\Users\your_info\lLocal\Programs\Python3 directory\Lib\site-packages\
pyqt5_tools

Once you have located the executable file labeled designer, create a shortcut so you
will be able to easily access it for next time.

Getting PyQt for Mac0S

Make sure that you already have Xcode downloaded. If not, you can get it from the App
Store. Similar to Windows, to download PyQt5, enter the following command into the
Terminal:

pip3 install pyqt5s
If you are using Homebrew, then you can use the following line instead:
brew install pyqt5

Next, check to make sure PyQt downloaded properly by opening up the Python 3

interpreter and entering the following command:

>>> import PyQt5.0tWidgets

380

APPENDIXA REFERENCE GUIDE FOR PYQT5

If no errors appear, then the next step is to install Qt Designer. For MacOS, the
process to download Qt Designer is not as simple. There is no pyqt5-tools wheel
compatible with MacOS. Therefore, your options are either to download Qt from
www.qt.io/download or download a stand-alone version that is thankfully provided by
Michael Herrmann at

https://build-system.fman.io/qt-designer-download

If you downloaded the stand-alone version, once the file finishes downloading, add
the Qt Designer file to your Applications folder and open it up to get started.

Getting PyQt for Linux (Ubuntu)

For Ubuntu, enter the following command into the shell:
sudo apt-get install python-pyqt5

Open the Python 3 interpreter and enter the following statement to make sure that
PyQt5 is installed properly:

>>> import PyQt5.QtWidgets

If no errors are returned, then we can install Qt Designer:
sudo apt-get install qttools5-dev-tools

Next, you need to locate Qt Designer, designer, in the following path:
/usr/1ib/x86_64-1inux-gnu/qt5/bin/

Finally, make a shortcut for Qt Designer so that you will be able to easily locate the
application next time.

Other Methods for Getting PyQt

There are several other ways to install PyQt. One option is to build and install from
source. If for some reason you must build from source, check out the following link for
the PyQt reference guide:

www . riverbankcomputing.com/static/Docs/PyQt5/

381

http://www.qt.io/download
https://build-system.fman.io/qt-designer-download
http://www.riverbankcomputing.com/static/Docs/PyQt5/

APPENDIXA REFERENCE GUIDE FOR PYQT5

Another method is to download PyQt through the Anaconda distribution. To install
the package on any system, run:

conda install -c anaconda pyqt

Another option is to install PyQt5 in a virtual environment, but that won't be covered here.

Selected PyQt5 Modules

PyQt provides a range of modules that give you access to a wide array of tools, including
basic GUI design, 2D and 3D rendering, multimedia content, networking, global
positioning, and more. For basic GUI development, you will primarily use the QtWidgets,
QtGui, and QtCore modules. Table A-1 lists the modules covered throughout the book, as
well as a few extra you should check out.

For a full list of PyQt5’s top-level modules, check out the following link:

www.riverbankcomputing.com/static/Docs/PyQt5/module_index.html

Table A-1. Table of select PyQt modules

Module Name Description

QtWidgets Provides the widgets and other classes for creating desktop-style Uls.

QtCore Contains a variety of extra classes, including the essential non-GUI
classes, such as ones for Qt’s signal and slot system.

0tGui Contains classes for 2D graphics and imaging, event handling, and
window system integration.

QtPrintSupport Provides cross-platform support for configuring and connecting to
printers.

QtNetwork Provides classes for writing communications protocols using UDP or
TCP.

QtMultimedia Contains the classes for multimedia content, cameras, and radios.

QtMultimediaWidgets Provides additional classes that increase the functionality of
multimedia-related widgets.

QtWebEngineCore Contains the core classes used by other WebEngine modules.

(continued)

382

http://www.riverbankcomputing.com/static/Docs/PyQt5/module_index.html

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-1. (continued)

Module Name Description

QtWebEngineWidgets Classes that can be used to create a Chromium-based web browser.
QtSql Provides classes for working with SQL databases.

sip Tools used for creating Python bindings for C ++ libraries (which is

the language Qt is written in).

uic Contains classes used for handling the .ui files created by Qt Designer.

Selected PyQt Classes

There are hundreds of PyQt classes. The following section lists the key classes and widgets

that can be found throughout this book. Each subsection either lists tables with commonly

used methods and signals, or a link to where you can find more information about the class.
For a list of all the PyQt classes, check out the following link:

www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html

Although it is written for C++, the Qt classes’ documentation is generally more
detailed. If you want more information about Qt classes, you can also check out

https://doc.qt.io/qt-5/classes.html

Classes for Building a GUI Window

With PyQt, you can create a new class that inherits from any of the widget classes.
However, for a general GUI application, you will need to create only one instance of
QApplication, and create a class that inherits from either QWidget, QMainWindow, or
QDialog to create the application’s window.

QApplication

QApplication is responsible for handling the initialization and finalization of widgets in
graphical user interfaces. If you are making QWidget-based applications, then you will need
to create an instance of QApplication before creating any other objects related to the GUI.
Some of QApplication’s responsibilities include initializing an application to
conform to a user’s desktop settings, event handling, defining the GUT’s style, working

with the clipboard, and keeping track of all the application’s windows.
383

http://www.riverbankcomputing.com/static/Docs/PyQt5/sip-classes.html
https://doc.qt.io/qt-5/classes.html

APPENDIXA REFERENCE GUIDE FOR PYQT5

If you are creating an application that does not need a GUI and can be run through

the command line, then you should consider using QCoreApplication, instead.

QWidget

The QWidget class is the base class for all of PyQt’s graphical user interface’s objects.

A widget created from the QWidget class is able to receive input from the mouse,

keyboard, and other events and able to paint itself on the screen. Widgets that are not

embedded in a parent widget are considered to be a window complete with a title bar

and a frame. The QWidget class is a subclass of QObject and QPaintDevice. Some of

QWidget’s more commonly used methods can be found in Table A-2.

Table A-2. Selected methods from QWidget

Method Description

addAction(action) Add an action to the widget.

close() Close the widget.

height() Holds the widget’s height.

width() Holds the widget’s width.

move (X, y) Sets the location of the widget to (x, y).

rect() Holds the geometry of the widget minus the frame.
setDisabled(bool) If True, the widget is disabled.

setEnabled(bool) If True, the widget is enabled.

setFont(font) Sets the font of the widget’s text.
setLayout(layout) Sets the layout manager for the widget.
setGeometry(x, y, width, Sets the widget’s location, (x, y), and its size, width and
height) height.

setStyleSheet(styleSheet) Sets the styleSheet for the widget.
setToolTip(text) Sets the widget’s tool tip.

repaint() Repaints the widget immediately by calling paintEvent().
showFullScreen() Displays the widget in full screen mode.

update() Updates the widget.

384

Event Handling

APPENDIXA REFERENCE GUIDE FOR PYQT5

Events are typically caused by users. These can include moving a mouse, pressing

a key, or resizing the window. The widgets in an application need to respond to the

event caused by the user’s actions. The events are typically already handled, but

you sometimes may find yourself needing to reimplement event handlers to supply

further behavior or content for the widgets. Table A-3 lists a few commonly used event

handlers.

Table A-3. Some event handlers used for supplying behavior to QWidget objects

Event Handler

Description

paintEvent()
resizeEvent()

mousePressEvent ()

mouseReleaseEvent()

mouseDoubleClickEvent()

mouseMoveEvent ()

enterkEvent()
leaveEvent()
keyPressEvent()
keyReleaseEvent()
focusInEvent()
focusOutEvent()

closeEvent()

Called whenever a widget needs to be repainted.
Called when a widget has been resized.

Called when a mouse button is pressed while the mouse cursor
is inside of the widget. Which mouse button is clicked can be
specified in the event.

Called when a mouse button is released. A widget that receives
this event is dependent on receiving the mouse press event.

Called when a widget is double-clicked.

Called when the mouse moves while the button is held down. If
setMouseTracking() is True, events are sent even when no
buttons are pressed.

Called when the mouse enters a widget’s space.
Called when the mouse leaves a widget’s space.
Called when a key is pressed.

Called when a key is released.

Called when a widget gets the keyboard focus.
Called when a widget loses the keyboard focus.

Called when either a widget or the window is closed.

385

APPENDIXA REFERENCE GUIDE FOR PYQT5

QMainWindow

The QMainWindow class provides the framework for building an application, complete
with functions for adding a menubar, toolbars, a status bar, and dock widgets. Menu
and toolbar items are created using QAction. QMainWindow already has its own layout,
to which you must add a central widget as the center area of the application’s window.
Some of QMainWindow’s methods can be seen in Table A-4.

Table A-4. Select methods from QMainWindow

Method Description

addDockWidget (area, Creates a dockwidget in the main window in the specified

dockwidget) area.

addToolBar(toolbar) Creates a toolbar for the main window. An area can also be
specified.

menuBar() Returns the main window’s menubar.

setStatusBar(statusbar) Creates the statusbar for the main window.

setCentralWidget(widget) Sets the window’s central widget.

setWindowIcon(icon) Sets the window’s icon.
setWindowTitle(text) Sets the window’s title.
QDialog

Dialog boxes provide a top-level window generally to obtain feedback quickly from a
user. QDialogs can be modal or modeless. Modal dialogs are often used when selecting
an option in the dialog that will return a value. That value could then be used to save a
file, close a document, or cancel an action. Table A-5 lists the QDialog methods useful
for creating modal or modeless dialog boxes.

QDialog is the base class for dialog boxes, including QColorDialog, QFileDialog,
QFontDialog, QInputDialog, QMessageBox, QProgressDialog, and QErrorMessage.

386

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-5. Select methods for QDialog

Method Description

accept() Hides the modal dialog and returns True.

reject() Hides the modal dialog and returns False.

exec_() The dialog is shown as a modal dialog and blocks the user from any further action
until the dialog is closed.

show() The dialog is a modeless dialog, returning control to the user immediately.

QPainter

The QPainter class is responsible for handling drawing in PyQt, being able to draw

simple lines and complex shapes onto widgets and other paint devices. QPainter is most

commonly used in a QWidget'’s paintEvent() and for handling pixmaps and images.

Table A-6 displays some of QPainter’s methods for drawing.

Table A-6. Method:s selected from QPainter

Method Description

begin(device) Begins painting on the paint device.

end() Ends painting. Resources used while painting are released.
save() Saves the current painter state. save() must be followed

drawArc(QRectF, startAngle,
spanAngle)

drawChord(QRectF,
startAngle, spanAngle)

drawtllipse(QPointF, x rad,
y_rad)

drawLine(x1, y1, x2, y2)
drawPath(path)

be restore(), which returns the current painter state.

Draws an arc defined by the QRectF rectangle,
startAngle, and spanAngle.

Draws a chord defined by the QRectF rectangle,
startAngle, and spanAngle.

Draws an ellipse at QPointF center, with radius x_rad and
y_rad.

Draws a line from point (x1, y1) to (x2, y2).
Draws a path specified by QPainterPath path.

(continued)

387

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-6. (continued)

Method

Description

drawPie(QRectF, startAngle,

spanAngle)
drawPixmap(x, y, pixmap)
drawPoint(x, y)

drawRect(x, y, width,
height)

drawRoundedRect (QRectF,
x_rad, y rad)

drawText(QPointF, text)
fillRect(QRectF, brush)
rotate(angle)

setBrush(brush)
setPen(pen)
setFont()

Draws a pie defined by the QRectF rectangle,
startAngle, and spanAngle

Draws a pixmap at (x, y).
Draws a point at (x, y).

Draws a rectangle at (x, y) with width and height.

Draws a rectangle with rounded corners specified by
QRectF, with radius x_rad and y rad

Draws text at QPointF point.
Fills in a QRectF rectangle with the brush color.

Rotates the coordinate system clockwise by angle
(in degrees).

Sets the painter’s brush.
Sets the painter’s pen.

Sets the painter’s font.

Layout Managers

Using PyQt’s layout managers makes the process of arranging widgets much easier,

compared to manually specifying each widget'’s size, position, or resizeEvent()

event handler. Using layout managers is generally a good start for positioning widgets,

although you may still need to adjust a widget's size policy, or add stretching or spacing

to a layout.

The following classes inherit from the QLayout class, which is the base class for

layout managers:

e 0QBoxLayout - Arranges child widgets into a row (horizontally), or into

a column (vertically)
a. (QHBoxLayout - Arranges widgets horizontally
b. QVBoxLayout - Arranges widgets vertically

388

APPENDIXA REFERENCE GUIDE FOR PYQT5

e 0GridLayout - Orders widgets in a grid of rows and columns

e QFormLayout - Lays out widgets into a form-like structure with labels

and their associated input widgets

There is also QStackedLayout which was not covered in this book. The convenience
QStackedWidget class is built on top of the QStackedLayout. Table A-7 lists commonly
used methods from the layout classes.

Table A-7. Selected methods for the different layout managers

Method Class Description
addwidget(widget, QBoxLayout Add widget to the end of the layout with
stretch, alignment) stretch factor and alignment.
addWidget(widget, QGridLayout Add widget at row, column with
row, column, rowSpan, (optional) rowSpan and columnSpan and
columnSpan alignment) alignment.
addRow(label, field) QFormLayout Add a new row with given 1abel and
field (input widget).
addLayout(layout, QBoxLayout Adds a layout to the end of the box.
stretch) Creates a nested layout.
addLayout(layout, row, QGridLayout Adds a layout at position (row, column).
column, alignment) Creates a nested layout.
addSpacing(int) QGridLayout, Adds a nonstretchable area (a
QBoxLayout QSpacerItem) of int value to the layout.
addStretch(int) QBoxLayout Adds a stretchable area (a QSpacerItem)
of int value to the layout.
setSpacing(int) QLayout Sets the space between widgets in the
layout. Inherited from QLayout.
setContentMargins(left, Qlayout Sets the left, top, right, and bottom

top, right, bottom)

margins around the layout.

389

APPENDIXA REFERENCE GUIDE FOR PYQT5

Button Widgets

Buttons are one of the main tools used in a GUI for interaction, giving an application
feedback about a user’s decisions. Buttons in PyQt can display text or icons and

are checkable. The following classes inherit from the base class for button widgets,
QAbstractButton:

e QPushButton - A command button used to tell the computer to
perform some action

e QCheckBox - Provides an option button that is checkable, and
generally used for enabling/disabling features in an application

e QRadioButton - Similar to checkboxes, but are mutually exclusive

e QToolButton - Typically used in a toolbar, tool buttons provide quick-
access buttons for selecting commands or options

For managing and organizing multiple buttons, the QButtonGroup class can act as a
container for creating exclusive buttons (the default setting). Table A-8 lists some of the
more commonly used methods for button widgets.

Table A-8. Selected methods for the different button widgets

Method Description

setIcon(icon) Sets the widget’s icon.

setText(text) Set’s the widget’s text.

setAutoExclusive(bool) Enables auto-exclusivity for buttons in a group.

setCheckable(bool) Sets whether the button is a toggle button or not.

setChecked(bool) Sets whether the button is checked or not.

isChecked() Indicates whether the button is checked or not (is
setCheckable() is True).

text() Holds the buttons text.

The signals of the button widgets are listed in Table A-9.

390

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-9. Signals for the different button widgets

Signal Class Description

clicked(bool) QAbstractButton Signal emitted when the button is pressed
and released.

pressed() QAbstractButton Emitted when the left mouse button clicks
the button.

released() QAbstractButton Signal emitted when the left mouse button is
released.

toggled(bool) QAbstractButton Emitted when a checkable button changes
its state.

stateChanged(bool) QCheckBox Emitted when the checkbox’s state changes.

triggered(action) QToolButton Signal emitted when the action is triggered.

Input Widgets

There are quite a few widgets that are provided by PyQt for getting input from the user.
These widgets provide different means for gathering information, such as text entry, or
selecting values with sliders, combo boxes, and spin boxes.

Combo Boxes

The QComboBox class presents a user with a list of selectable options in a compact,
drop-down menu. When the combo box is not being interacted with, all items except
for the current item selected are hidden from view. Some common methods for
QComboBox can be found in Table A-10. The QFontComboBox widget is another type
of combo box that inherits QComboBox and is used for selecting a font family.

391

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-10. Select methods from the QComboBox class

Method Description

addItem(text) Appends an item to the list with text.
addItems(list(text)) Appends a 1ist of items to the combo box.
currentIndex() Holds the index of the currently selected item.
currentText() Holds the text of the currently selected item.

insertItem(index, text)
setItemText(index, text)
removeItem(index)
clear()

setEditable(bool)

Inserts the text into the combo box at the given index.
Sets the text for the item at the given index.
Removes the item at the given index.

Clears all items from the combo box.

If True, the contents of the combo box are editable.

Table A-11 displays select signals for the combo box classes.

Table A-11. Commonly used signals from the QComboBox and

QFontComboBox classes

Signal

Description

currentIndexChanged(index)

currentTextChanged(text)

activated(index)
highlighted(index)
textActivated(text)
currentFontChanged(font)

Emitted if the current item in the combo box has changed.

Signal emitted if the current item in the combo box has
changed. Returns text.

Emitted only if the user interacts with an item.
Emitted when an item in the combo box is highlighted.
Signal emitted when the user chooses an item.

Emitted when the current font changes.

QLineEdit

The QLineEdit widget provides a single line for entering and editing plain text. Although
not listed in the following tables, QLineEdit comes with clear(), selectAll(), cut(),
copy(), paste(), undo(), and redo() slots already built-in. Table A-12 displays a few the

QLineEdit class’s methods.

392

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-12. Methods from the QLineEdit class

Method Description

text() Retrieves the current text in the line edit.
setAlignment(alignment) Sets the alignment of the text displayed in the widget.
setPlaceholderText (text) Displays placeholder text while line edit is empty.

setEchoMode (mode) mode describes how the contents of a line should be displayed.
Set mode to QLineEdit.Password to mask characters.

setMaxLength(int) Sets the maximum length of characters.

setTextMargins(left, top, Sets the text margins for the text displayed in the line edit.
right, bottom)

setDragEnabled(bool) If True, dragging selected text in the line edit is permitted.

A few common signals for QLineEdit can be seen in Table A-13.

Table A-13. Commonly used signals from the QLineEdit class

Signal Description

returnPressed() Emitted when the Enter key is pressed. If a validator is
set, then a signal is only emitted if the text is accepted.

textChanged(text) Signal is emitted when the text changes.

Text Editing Widgets

The two text editing classes, QTextEdit and QPlainTextEdit, provide tools and
functionality for displaying and editing larger bodies of text. QTextEdit also has the
added benefit of being able to work with rich text, graphics, and tables. Select methods
for the two classes are displayed in Table A-14. Both classes are similar to QLineEdit,
because they already have editing features built-in.

Also worth noting is the QTextBrowser class, which inherits QTextEdit.
QTextBrowser only allows read-only mode, but includes hypertext navigation
functionality so that users can click links and follow them.

393

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-14. Select methods from QTextEdit and QPlainTextEdit

Method Description
find(text, flags) Finds the next occurrence of text in the text edit.
print(printer) Print the text edit’s document to the printer.

setPlaceHolderText (text) Sets placeholder text for text edit.

setReadOnly(bool) If True, the text edit is set to read-only.
toPlainText() Returns the text of the text edit as plain text.
zoomIn(range) Zooms in on the text.

zoomOut (range) Zooms out on the text.

Commonly used signals for the text editing widgets can be found in Table A-15.

Table A-15. Select signals from QTextEdit and QPlainTextEdit

Signal Description

selectionChanged() Signal emitted when the text selected in the text edit changes.

textChanged() Emitted whenever the contents of the text edit change.

Spin Box Widgets

Spin boxes allow users to choose values within a given range by clicking up/down
buttons to cycle through the widget’s values. Users can also manually type in values into
the provided line edit. The QAbstractSpinBox class is the base class for the following
classes:

1. QSpinBox - Handles integers.

2. QDoubleSpinBox - Similar to QSpinBox but is used for floating-
point values.

3. QDateTimeEdit - A spin box widget for selecting dates and times.
Use setDisplayFormat() to set the format used for displaying the
dates and time.

394

APPENDIXA REFERENCE GUIDE FOR PYQT5

4. QDateEdit - A spin box that displays only dates. Inherits from
ODateTimeEdit.

5. QTimeEdit - A spin box that displays only times. Inherits from
QDateTimeEdit.

Some of the methods for the QSpinBox and QDoubleSpinBox classes are listed in
Table A-16. The QDateTimeEdit and other spin box widgets have similar methods.

Table A-16. Select signals from QSpinBox and QDoubleSpinBox. The value val
refers to integers for QSpinBox and floating-point numbers for QDoubleSpinBox

Method Description

setValue(val) Sets the value val of the spin box.
setMinimum(val) Sets the minimum value val of the spin box.
setMaximum(val) Sets the maximum value val of the spin box.
setPrefix(str) Adds a prefix to the start of the displayed value.
setSuffix(str) Adds a suffix to the end of the displayed value.
setRange(min, max) Sets the minimum and maximum range values.

setSingleStep(val) The spin box’s value is incremented/decremented by val when the
arrow keys are pressed.

The QSpinBox and QDoubleSpinBox signals are found in Table A-17.

Table A-17. Signals from QSpinBox and QDoubleSpinBox

Signal Description

valueChanged(val) Signal emitted when the value changes. Provides the new value’s val.

textChanged(text) Signal emitted when the value changes. Provides the new value’s text.

395

APPENDIXA REFERENCE GUIDE FOR PYQT5

Slider Widgets

The following widgets are different in appearance, but are actually quite similar in
function. Widgets that inherit from the QAbstractSlider class are used for selecting
integer values within a bounded range. Classes that inherit QAbstractSlider include the
following:

1. QDial - Provides a rounded range controller for selecting or
adjusting values. An example of QDial can be seen in Figure A-1.

2. 0ScrollBar - Provides horizontal or vertical scrollbars that the
user can use to access other parts of a document that are wider
than the widget used to display it.

3. QSlider - Creates the classic horizontal and vertical slider widgets
for controlling values within a specified range.

Table A-18 shows some of the methods of the QAbstractSlider base class.

Table A-18. Select methods from QAbstractSlider

Method Description

value() Holds the sliders current value.

setMinimum(int) Sets the minimum value of the slider.

setMaximum(int) Sets the maximum value of the slider.

setOrientation(orientation) Sets the orientation, Qt.Horizontal or Qt.
Vertical.

setSingleStep(int) The slider’s value is incremented/decremented by int
when the arrow keys are pressed.

setTracking(bool) If True, the slider’s position can be tracked.

setSliderPosition(int) Sets the current position of the slider.

setValue(int) Sets the current position of the slider to int. If tracking is

enabled, then this has the same value().

Signals of the QAbstractSlider class can be found in Table A-19.

396

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-19. Signals from QAbstractSlider

Signal Description

valueChanged(val) Signal emitted when the value changes. Provides the new value’s val.
rangeChanged Signal emitted when the range has changed with new minimum and
(min, max) maximum values.

sliderMoved(val) Emitted when the slider is pressed down and the slider moves.
sliderPressed() Emitted when the slider is pressed down.

sliderReleased() Emitted when the slider is released.

Display Widgets

The following widgets are all used for different purposes, but each has one major
characteristic in common - they are all used for displaying information to the user.

QLabel

The QLabel is a versatile widget. Although a label provides no user interaction
functionality, QLabel is able to display plain or rich text, pixmaps, and even movies.
Labels provide a number of methods for configuring their appearance. Table A-20 lists a
few of those methods.

Table A-20. Select methods from QLabel

Method Description

setPicture(picture) Sets the label content to picture.
setPixmap(pixmap) Sets the label content to pixmap.
setMovie(movie) Sets the label content to movie.
setText(text) Sets the label content to text.
setAlignment(alignment) Sets the alignment of the label’s content.
setIndent(int) Sets the number of pixels that the label’s

text is indented.

setMargin(int) Sets the label’s margins.

397

APPENDIXA REFERENCE GUIDE FOR PYQT5

QProgressBar

Progress bars are used to give visual feedback to the user about the progress of a
computer operation. Progress bars can be displayed vertically or horizontally. Table A-21
shows some of the QProgressBar class’s methods.

Table A-21. Select methods for the QProgressBar class

Method Description

value() Holds the progress bar’s current value.
setMinimum(int) Sets the progress bar’s minimum value.
setMaximum(int) Sets the progress bar’s maximum value.
setRange(min, max) Sets the minimum and maximum values.

setOrientation(orientation) Setsthe orientation, Qt.Horizontal or Qt.Vertical.

setTextVisible(bool) If True, the current completed percentage is displayed.

QProgressBar has one signal, valueChanged(int), that is emitted when the value
shown in the progress bar changes.

QGraphicsView

The QGraphicsView class provides a widget for displaying the contents of
a QGraphicsScene. As the one part of Qt’s Graphics View Framework, the
QGraphicsView’s responsibility is to display the items of a graphics scene in a scrollable
window. The QGraphicsScene’s duty is to manage the items in a scene. QGraphicsltem
(or one of its subclasses) provides the items for a scene.

If you are interested in learning more about the Graphics View Framework, check
out the following link:

https://doc.qt.io/qt-5/graphicsview.html

398

https://doc.qt.io/qt-5/graphicsview.html

APPENDIXA REFERENCE GUIDE FOR PYQT5

QLCDNumber

The QLCDNumber widget displays numbers in a seven-segment LCD display.

An example of this can be seen in Figure A-1. The display can visualize decimal,
hexadecimal, octal, and binary numbers. The LCD display can only display certain
characters, so if an illegal character is passed, a space will be displayed in place of the
character.

© @® QLCDNumber

Figure A-1. Example of the QLCDNumber and QDial widgets

Table A-22 lists a few of QLCDNumber’s methods.

399

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-22. Select methods from the QLCDNumber class

Method Description

value() Retrieves the LCD’s displayed value.

intValue() Retrieves the displayed value rounded to the nearest integer value.

display(val) Displays the value val in the display. val can be floating-point, integer,
or string type.

setMode (mode) Sets the mode of the LCD to display Bin, Oct, Dec, or Hex values.

setSmallDecimal If True, the decimal is drawn between two digits.

Point(bool)

QLCDNumber has the overflow() signal, which is emitted when the widget is asked
to display a number or string that is too long.

Item Views

The following model view classes provide the means to display items in lists, tables, or
tree structures. They must be used alongside a model class as part of Qt’'s model/view
framework.

1. QListView - Provides a list and icon view for displaying items from
amodel

2. QTableView - Provides a table for displaying items from a model

3. QTreeView - Provides a hierarchical tree architecture for
displaying items from a model

These classes all inherit from the QAbstractIltemView class. Using signals and slots,
item views created from QAbstractltemView are able to interact with models that use
QAbstractitemModel. Each of the item views has their own methods for working with
rows, columns, headers, and items. Views use the indices to manage items. You can find
some of QAbstractIitemView’s methods listed in Table A-23.

400

APPENDIXA REFERENCE GUIDE FOR PYQT5

PyQt also offers convenience item-based classes for each of the different types of
views - QListWidget, QTableWidget, and QTreeWidget. Items are added to the widgets
by using QListWidgetltem, QTableWidgetltem, or QTreeWidgetltem.

Table A-23. Select methods for the QAbstractitemView base class

Method Description
clearSelection() All items selected are deselected.
selectAll() Selects all the items in the view.

setCurrentIndex(index)
update(index)

setAlternatingRowColors
(bool)

setAcceptDrops(bool)
setDragEnabled(bool)
setIconSize(size)
setItemDelegate(delegate)
setModel (model)

Sets the item at index as the current item.
Updates the area at the given index.

If True, the background is drawn with alternating colors.

If True, items can be dropped into the view.

If True, items can dragged around in the view.

Sets the size of icons.

Sets an item delegate for the view’s model/view framework.

Sets the model for the view.

Select signals for QAbstractltemView can be found in Table A-24.

Table A-24. Select methods for the QAbstractitemView base class

Signal Description
activated(index) Signal emitted when the item at index is activated by the user.
clicked(index) Emitted when the left mouse button is clicked on an item in the view

(specified by index).

doubleClicked(index) Emitted when a mouse button is double-clicked on an item in the
view (specified by index).

entered(index) Signal emitted when the mouse cursor enters the item at index. Turn
on mouse tracking to use.

pressed(index) Signal emitted when a mouse button is pressed on an item at index.

401

APPENDIXA REFERENCE GUIDE FOR PYQT5

Container Widgets

PyQt provides a few container widgets for maintaining control over groups of widgets.
Containers can be used to manage input widgets and make the process of organizing
a group of widgets simpler, or simply as a decorative widget for separating groups of
widgets. Once a container is created, a layout manager still needs to be applied to the
container widget itself.

Containers with Frames

QFrame widgets can enclose and group widgets, as well as function as placeholders
in windows. Using frames, you can set the appearance of other widgets to have raised,
sunken, or flat appearances. The QFrame class is used as the base class for a few other
container classes, including QToolBox and QStackedWidget. Table A-25 lists a few of
QFrame’s methods.

Table A-25. Select methods for QFrame

Method Description

setFrameRect(QRect) Sets the rectangle that the frame is drawn in.
setFrameShadow(shadow) Sets the frame’s shadow, such as Plain, Raised, or Sunken.
setFrameShape(shape) Sets the frame’s shape, such as Box, Panel, HLine, or VLine.

setLineWidth(int) Sets the width of line drawn around the frame.

QToolBox widgets provide a series of pages or compartments in a column. To
navigate through each of the pages, a tab is included at the top of each page. By clicking

the next tab, the user can view a new tab’s contents.

402

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-26. A few of the QToolBox class’s methods

Method Description

addItem(widget, text) Adds the widget in a new tab at the bottom of the toolbox.

insertItem(index, widget, Insertsthe widget in a new tab at the given index.
text)

indexOf(widget) Returns the index of the specified widget.
setCurrentIndex(index) Sets the index to a new item’s index.

setCurrenthWidget(widget) Makes the widget the current widget displayed in the toolbox.

When the item in a QToolBox is changed, the currentChanged(index) signal is
emitted.

The QStackedWidget has a similar function to QToolBox, displaying multiple widgets
stacked on top of one another to conserve space in a window. However, there is a key
difference: QStackedWidget does not provide a means for the user to switch between
tabs. Therefore, other widgets, such as a QComboBox or a QListWidget, are used to
navigate through the different pages.

The QTabWidget is another container class that is similar to QStackedLayout, but
provides the tabs necessary to switch pages.

Finally, QGroupBox widgets typically group together collections of radio buttons and
checkboxes. The main visual difference from the QFrame class is the addition of a title.

QScrollArea

A scroll area can be added onto a child widget to display the contents within a frame. If
the size of the frame changes, the scrollbars will appear, allowing the user to still view
the entire child widget. The manner in how the scrollbars appear can be controlled with
QAbstractScrollArea’s size policies. You can find a few of QScrollArea’s methods in
Table A-27.

403

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-27. Select methods for QScrollArea

Method

Description

ensureVisible(x, vy,
xmargin, ymargin)
setAlignment(alignment)
setWidget(widget)
setWidgetResizable(bool)

Ensures the specified (x, y) coordinate with margins xmargin
and ymargin remains visible in the viewport.

Sets the alignment of the scroll area’s widget.
Sets the scroll area’s widget.

If False, the scroll area abides by the child widget’s size.

QMdiArea

For multiple-windowed GUIs (MDIs), the QMdiArea provides the container for displaying

multiple windows inside a single application window. Subwindows are instances of

the QMdiSubWindow class and can be arranged in tiled or cascading patterns. The

subwindows can work together, relaying information back and forth. A context menu

could also be added to the MDI area widget as a means to conveniently switch between

windows. Methods to help you get started using QMdiArea can be found in Table A-28.

Table A-28. List of select QMdiArea methods

Method Description

addSubWindow(widget) Adds widget as a new subwindow to the MDI area.
activeSubWindow() Returns the active subwindow.
cascadeSubWindow() Arranges subwindows in a cascade pattern.
tileSubWindows () Arranges subwindows in a tiled pattern.

removeSubWindow(widget)

setBackground(background)
subWindowList(subwindows)

setTabsClosable(bool)

setTabsMovable()

Removes widget from the MDI area, where widget is a
subwindow.

Sets the QBrush background for the MDI area.
Returns a list of subwindows.

If True, close buttons are placed on each tab in the tabbed
view.

If True, tabs within the tabbed view are movable.

404

Qt Style Sheets

APPENDIXA REFERENCE GUIDE FOR PYQT5

For a great reference to all of the widgets and properties that can be manipulated with Qt
Style Sheets, have a look at the following link:

https://doc.qt.io/qt-5/stylesheet-reference.html

Style sheets allow for customizing many aspects and behaviors of widgets.

Table A-29 lists many of the properties that can be modified. Widgets support only

certain properties, so be sure to check out Qt’s documentation if you are not sure about

which properties you can change.

Table A-29. List of properties that can be influenced using Qt Style Sheets

Property

Description

alternate-background-color

background

background-color

background-image

border

The alternate background color for QAbstractItemView
widgets.

QListView{

alternate-background-color: blue;
background: grey

}

Shorthand for setting the background.

Background color used for the widget.
QPushButton{
background-color: #49DE1F

}

The background image used for the widget.

QFrame{

background-image: url(images/black_cat.png)
}

Shorthand for setting the widget’s border.
QComboBox{
border: 2px solid magenta

}

(continued)

405

https://doc.qt.io/qt-5/stylesheet-reference.html

APPENDIXA REFERENCE GUIDE FOR PYQT5

Table A-29. (continued)

Property

Description

border-top, border-right,
border-bottom, border-left

border-color
border-image

border-radius

border-style
border-width
color

font

font-family, font-size,
font-style, font-weight

height, width
icon-size
image

left, right, top, bottom

margin

max-height, max-width

Shorthand for specifying sides of the widget’s border.

The color for all sides of the widget’s border.
Specifies an image to fill the border.

The radius of the border’s corners.
QTextEdit{

border-width: 1px;
border-style: groove;
border-radius: 3px

}

Specifies the style for all of the border’s edges.
Specifies the width for all of the border’s edges.
The color used for rendering text.

Shorthand for defining a widget’s font.
QRadioButton{
font: bold italic large "Helvetica"

}

Other properties used to individually set a font’s features.

The height and width of a widget.
The width and height of a widget’s icon.
The image drawn on a widget. Can use URL or SVG.

Moves a widget by a certain offset relative to the parent’s
edge.

Specifies the widget’s margins. Just like border, specific
sides can also be set.

The widget’s maximum height or width.

406

(continued)

Table A-29. (continued)

APPENDIXA REFERENCE GUIDE FOR PYQT5

Property

Description

min-height, min-width

outline

padding

selection-color

The widget’s minimum height or width.

The outline is used to draw a widget’s border. Can also
specify color, style, and radius.

Specifies the widget’s padding. Just like border, specific
sides can also be set.

The foreground color of selected items to text.

spacing Sets the internal spacing in a widget.

text-align Specifies the alignment of text and icons inside of a widget.
QPushButton{
text-align: right
}

Summary

Throughout this book, you have seen many of PyQt’s foundational classes for building

graphical user interfaces. Appendix A serves as a reference to help you analyze the

programs found in this book and to learn more about the widgets, layouts, and style

sheets used to design and build each application. The classes and methods contained

here act as a guide to get you thinking about ways to improve on the programs in this

guide and to help you to make your very own applications.

There is simply not enough room to include every class, method, or signal in this

guide. As you follow along with the examples, use this appendix as a resource to help you

learn and find out more about the possibilities of PyQt. If the answer isn’t provided for

you here, follow the links, search on the Internet, or send me an e-mail.

407

APPENDIX B

Python Refresher

Python is a powerful and versatile open source programming language with a standard
library packed with built-in modules, from providing access to system functionality such
as file I/O to Internet data handling, to development tools, and much more. On top of
the standard library, Python is also host to an extensive number of third-party modules
which can be found in the Python Package Index (PyPI) repository. No matter what your
project may be, you can almost be guaranteed to find a module to fit your needs. Of
course, you could also create your own module and share it with the Python community.
Some of the uses for Python include

e Web and Internet development
o Database access
e GUI development
e Scientific and numeric applications
o Network programming
o Software and game development
The Python language also has many other noteworthy features, such as follows:

1. Python s an interpreted programming language. An interpreted
language is one in which the code does not need to be compiled
before it is run. The compiling step turns the code into machine
language where the instructions can be directly executed by a
computer’s central processing unit (CPU). Since Python does not
have a compilation step, the process to edit, test, and debug code
is much faster.

409
© Joshua M. Willman 2020

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

https://doi.org/10.1007/978-1-4842-5857-6

APPENDIXB PYTHON REFRESHER

2. Python is a language well-suited for creating dynamic applications.
This is because Python is both a dynamically typed language - type
checking occurs only as the code is being run and variables can
change types over time - and allows for dynamic binding - where
methods that are called on objects are only checked during runtime.

3. While itis an object-oriented programming language, it does
also support other programming paradigms such as procedural
programming.

Note This section is not designed to act as a complete tutorial for Python.

It focuses mainly on reviewing some of the basic data types, data structures,
methods, and ideas that could be useful when creating your own GUI applications
and reviewing other concepts that are used throughout this book.

First, let’s get started by seeing if you have an updated version of Python on your

computer. If not, take a moment to install it.

Installing Python

As of this writing, the current version of Python 3 is version 3.8, but the code in this book
is also capable of being run on Python 3.6 or later.

Python is a cross-platform programming language and is therefore able to run on
a number of different hardware platforms and operating systems. Whether you are
using Windows, MacOS, or some form of Linux, the simplest way to download the latest
version of Python is to go to https://python.org/downloads/ and find the installer for
your platform.

Getting Python for Windows

To first check if Python is installed on your system, open up a Command window and
enter the command python3 (all lowercase). If Python is already installed, you will
get a notice telling you the current version that is on your system and a chevron, >>>,
prompting you to enter a Python command. Otherwise, you will get an error message
saying python3 is not a recognized command.

410

https://python.org/downloads/

APPENDIXB PYTHON REFRESHER

If Python is not already on your computer, then downloading Python for Windows is
fairly easy. Select the installer right for your system from python.org, download it, and
follow along with the instructions in the dialog that appears. Be sure to include Python in
your PATH by checking the box like in Figure B-1.

Once installation is complete, try entering the python command into the Command

window again to make sure Python 3 is installed properly.

& Python 3.8.1 (64-bit) Setup - X

Install Python 3.8.1 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users \AppData\Local\Programs\Python\Python38

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

[Install launcher for all users (recommended)

python

windows ©/Add Python 3.8 to PATH Cancel

Figure B-1. On Windows, make sure to check the box “Add Python 3.x to PATH”
This ensures that the interpreter will be placed in the correct directory

Getting Python for Mac0S

Python already comes installed on MacOS, but will probably need to be updated. To
check out which version of Python 3 you already have installed on your computer, open
up the Terminal application and enter python3. Similar to Windows, if you get an error
message, Python 3 is not installed on your system.

Doing some research online to find out what method works best for you is a good
idea. Otherwise, you could end up with multiple versions of the Python interpreter on

your computer.

411

http://python.org

APPENDIXB PYTHON REFRESHER

Downloading Python directly and installing the interpreter from https://python.
org/ is one option. After the file downloads, simply run the installer. Once the installer
is complete, check to make sure Python is installed by opening up the Terminal window
and entering python3 on the command line.

Another option is to download the Homebrew package manager. A package manager
can be useful for maintaining, updating, and organizing the different software on your
computer. If you are interested in using a package management system, first open a
Terminal window on your Mac. To get Homebrew, go to https://brew. sh and copy and
paste the code into Terminal to install it. Once the installation is complete, enter the
following code (without the $ symbol) into the terminal window to download Python
using Homebrew:

$ brew install python3

Once the downloading process is complete, enter python3 into the Terminal window
to launch the Python interpreter.

If you have multiple versions of Python on your computer, you can also use
Homebrew and a tool called pyenv to manage them.

Getting Python for Linux

If you are using Linux, then you probably already have a version of Python installed
on your system. The Linux platform has a number of different distributions - Ubuntu,
Fedora, Debian, and a few others.

To check if Python is already installed and, if so, find out what the current version is,
open the Terminal application on your system and enter python3. If Python 3 is installed,
then your current version should be displayed along with the chevron prompt, >>>.

If you need to download or update your version of Python, you can download
the most recent release from python.org. In Linux, it is also possible to download
Python from the Terminal. However, the process for each distribution of Linux can
be slightly different. There are a number of great tutorials online that you can follow
along with if you choose to go this route to get Python installed on your computer.

412

https://python.org/
https://python.org/
https://brew.sh
http://python.org

APPENDIXB PYTHON REFRESHER

Data Types in Python

There are several data types already built into Python, including numeric, string, and
Boolean types. The following section reviews what these data types look like, as well as
takes a look at a few of Python’s built-in functions to work with them.

Numeric Data Types

When working with numbers, Python has integer, floating-point, and complex number
data types (Table B-1).

Table B-1. Numeric data types in Python

Numeric Data Type Representation

Integers 10, 254, 9876540

Floating-Point Numbers 5.7, 0.333, 0.5e6,
3.23e-5

Complex Numbers 4+8]

Arithmetic Operators

Of course, Python also provides arithmetic operators and some built-in functions for

performing mathematical operations (Table B-2).

Table B-2. Arithmetic operators and expressions

Operator Example
Addition/Subtraction X+ 5,20 -7
Multiplication/Division ns*10, 5/ m (m#0)
Exponents n sx 3

Modulo Operation 100 % d

413

APPENDIXB PYTHON REFRESHER

Working with Numeric Data Types

Table B-3 lists a few of the built-in mathematical functions in Python.

Table B-3. Python methods for working with numeric values

Functions Description

abs(value) Returns the absolute value of a number.

max(iterable) Returns the largest value in a list or other iterable object.
min(iterable) Returns the smallest value in a list or other iterable object.
round(value) Rounds a floating-point number and returns an int value.
sum(iterable) Returns the sum of the items in a list or other iterable object.

String Data Type

Sequences of textual data can be represented using strings. Strings can be delimited
with single or double quotes (Table B-4).

Table B-4. String data type examples in Python

Numeric Data Type Representation

String Examples '‘This is a string literal.’
"String with numbers - 1234."

Empty String o

Escape Sequences in Strings "Include quote \" character.”

Raw Strings r"Escape \nchars \tignored."

The escape character backslash, ‘\] can be used to include quotes or whitespace
characters, such as ‘\n’ for a newline or ‘\t’ for a tab, in a string.

Including ‘r’ before the beginning of a string completely ignores all escape
characters. Raw strings are very useful for regular expressions. Triple quotations can also
be used to create multiline strings.

414

APPENDIXB PYTHON REFRESHER

Workings with Strings

Strings in Python are immutable - these are objects that cannot be modified after they
are created. Whenever you apply an operation to a string, a copy is created. Parts of a
string, or substring, can also be accessed using indices and slices. The following bit of
code looks at creating and accessing parts of strings:

a_string = "I like dogs." # Variable assignment
print(a_string[4]) # Select and print item at index 4
print(a_string[7:10]) # Print items from index 7 to index 9

Individual characters in a list can be accessed by selecting the index value associated
with that character. The first item in a string has an index value of 0. Using a_string[4],
the letter ‘k’ is selected. You can also start from the end of the string and work backward
by using negative index values, starting from -1.

Use slicing to select a longer substring. In the preceding example, a_string[7:10]
will include everything from a_string[7] toa_string[9], leaving out the final character
in the string at index 10.

To test if a substring is or is not contained within a larger string, use the special
membership operators, in and not in.

a_string = "Connor, Sarah"
print('Sarah' in a_string) # Returns and prints True
print('John' not in a_string) # Returns and prints True

It is also possible to manipulate the content of strings. Concatenation is the process
of combining strings and can be achieved using the addition symbol, +.

first name = "Peter"
last_name = "Parker"

full name = first_name + + last_name # 'Peter Parker'

Finally, Table B-5 lists some of the other built-in methods for working with strings.
Methods are similar to functions, except they are “called on” an object using specific
keywords and a period, ‘.’ Methods such as isupper() and islower () are useful for
testing and comparing strings and validating user input.

415

APPENDIXB PYTHON REFRESHER

Table B-5. More methods of the String class

String Methods Description

upper() Converts all letters in the string to uppercase.

lower() Converts all letters in the string to lowercase.

isupper() Returns True if the string has at least one letter and all letters are
uppercase.

islower() Returns True if the string has at least one letter and all letters are
lowercase.

isalpha() Returns True if the string contains only letters and is not blank.

isalnum() Returns True if the string contains only letters and numbers and is not
blank.

isdecimal() Returns True if the string contains only numeric characters and is not
blank.

startswith(str, Returns True if the string or substring value begins with specified prefix.
begin, end)

endswith(str, Returns True if the string or substring value ends with specified prefix.
begin, end)

count(str, begin, Returns the number of times a specified string occurs in a string or
end) substring.

delimiter. Concatenates a list of strings together into a single string value. Use the
join(iterable) delimiter to specify how the individual strings are separated.
split(delimiter, Takes a single string object and returns a list of strings. Use the
maxsplit) delimiter to specify where in the string a split should occur.
strip(chars) Removes specified chars and whitespaces from the beginning and the

ending in a string.

Boolean Data Type

Objects in Python 3 can be assigned one of two Boolean values, True or False. Non-
Boolean objects, ones that are assigned integer or string values, can also be evaluated
using Boolean operators and expressions. This comes in handy in situations where you
need to check if two strings match or to compare two integer values.

416

APPENDIXB PYTHON REFRESHER

num_1, num_2 = 35, 10 # Ex of multiple assignment statement
print(num_1 == num_2) # Prints False
print(num_1 > num 2) # Prints True

Data Structures in Python

As you begin working with more data, you will need a way to organize, store, and access
that information. Python includes a few data structures with their own special sets of
rules - lists, tuples, sets, and dictionaries.

Lists

A list is a mutable data structure that is created using brackets:

List with mixed data types

a_list = ["John Doe", 23, 1976, "blue"]

Example of nested list

nested list = [["zebra", "tiger", "turtle"], [3, 2, 7]]

Mutable objects are ones whose content can be modified without creating a new
object. You can append, remove, or even rearrange items within the list. Similar to
strings, items in lists are in an ordered sequence and can also be accessed using indices

and slicing.

print(a_list[2]) # Access and print item at index 2
print(a_list[0:3]) # Only print items from indices 0 to 2
print(a list[:]) # Print the entire list

To access the values inside nested lists

print(nested list[0]) # Prints ['zebra', 'tiger', ‘turtle’]
print(nested list[1][1]) # Prints 2

To get the length of a list or other iterative objects such as strings or tuples, use the
built-in function len():

print(len(a_list)) # Prints 4

417

APPENDIXB PYTHON REFRESHER

Similar to strings, lists and other iterables can also use the in and not in operators
to check if values are present in the list.

print("John Doe" in a list) # Prints True

Table B-6 contains some useful methods for working with lists.

Table B-6. Some List class methods

List Methods Description

append(value) Appends a single item to the end of a list.

count(value) Returns the number of times a value occurs in a list.
index(value) Returns the index of the first occurrence of a value in a list.
insert(index, value) Inserts one value at a specific index location.
extend(iterable) Adds more than one item to the end of a list.

pop (index) Removes the item at the specified index.
remove(value) Removes the first occurrence of a value in a list.

clear() Clears the items in a list.

sort() Sorts the items in a list.

It is also possible to remove items or an entire list using the del statement.

del a list[3] # Delete item at index 3
Delete multiple items using slicing
del a list[o0:2]

del a list # Delete the entire list

Tuples

A tuple is an immutable data structure that is created using parentheses:

Tuple with mixed data types
a_tuple = ("Jane Doe", 25, 1982, "brown")

418

APPENDIXB PYTHON REFRESHER

It is possible to find values in a tuple using indices and slicing just like lists. However,
since tuples are immutable, actions such as appending, sorting, or replacing items
cannot be performed on them. This can be very useful when you have data that you may
want others to view, but not have the ability to alter.

Many of Python’s built-in functions such as max() and len() can also be used with
tuple objects (Table B-7).

Table B-7. Tuple class methods

Tuple Methods Description
index(value) Returns the index of the first occurrence of a value in a tuple.
count(value) Returns the number of times a value occurs in a tuple.

Sets

A set is a mutable data structure that is created using curly brackets:

Set with mixed data types
a_set = {"John Smith", 45, 2001, "brown"}

Generally, sets are thought of as a collection of data of the same type, but they can
also contain different data types. Sets in Python are unordered and unindexed and do
not allow for duplicate values. Therefore, methods such as index () cannot be used
with them. Sets can be very useful for removing repeated values and for performing
mathematical operations from set theory on data. A few of those methods can be found
in Table B-8.

419

APPENDIXB PYTHON REFRESHER

Table B-8. A few important Set class methods

Set Methods Description

add(value) Adds a single item to a set.

update(iterable) Adds multiple items to a set.

remove(value) Removes the specified value from a set.

clear() Empties all items in the set.

difference(set) Returns the difference of two or more sets as a new set.

intersection(set) Returns the intersection of two or more sets as a new set.

union(set) Returns a set that contains the union of two or more sets.
Dictionaries

A dictionary is a mutable data structure composed of key/value pairs that is created
using curly brackets:

Example of dictionary

a_dict = {"name": "Jane Smith", "age":
"greenll}

29, "year": 1970, "eye color":

In the preceding example, “name” is a key and “Jane Smith” is value associated
with it. The key is similar to the index in lists. You can use the key to access and organize
specific items in the dictionary.

Even though dictionaries are unordered, it is very easy to access their contents using
the keys. To find out a key’s value, look at the following bit of code:

print(a_dict["age"]) # Prints value associated with "age'

There are also a few methods that can help you to work with the items in
dictionaries:

o keys() - Returns a list of all of the dictionary’s keys
e values() - Returns a list of all of the dictionary’s values

o items() - Returns a list containing a tuple for each key/pair value

420

APPENDIXB PYTHON REFRESHER
For example, the following bit of code will return a list of all of the valuesin a_dict:

dict values = list(a_dict.values()) # Create a list using typecasting
print(dict values) # ['Jane Smith', 29, 1970, 'green']

Itis also possible to check if keys or values exist in a dictionary using the
membership operators in and not in. By default, if you do not specify keys or values,
Python will search through the keys. The following example is equivalent to searching
for "year" in a_dict.keys():

print("year" in a_dict) # Prints True

To add a new key/value pair to the dictionary, you could use an if statement to
first check if the key already exists or not. If it does not, then add the new item to the
dictionary.

if "height" not in a_dict:
a_dict["height"] = 1.82
Another way to check if an item can be found in a dictionary is to use the
setdefault() method. If the key does not already exist or does not have a value, then
the key/value pair is added. However, if the key already exists and has a value, then the

setdefault() method does not make any changes to the dictionary. The following code
will add the "hair" key and its value to a_dict:

a_dict.setdefault("hair", "brown")

Table B-9 lists additional Dictionary class methods.

Table B-9. Some other Dictionary class methods

Dictionary Methods Description

get(key, default value) Returns the value of the specified key. If the key does not exist,
then get() uses the default value. Useful for avoiding errors.

copy() Creates a copy of a dictionary.
update({key: value}) Adds a new key/value pair to a dictionary.
pop (key) Removes an item from the dictionary by specifying the key.

clear() Clears all of the items from a dictionary.

421

APPENDIXB PYTHON REFRESHER

Data Type Conversion

Typecasting is the action of directly converting one data type to another. In Python, it is
possible to convert integers to floating-point numbers, integers to strings, lists to tuples,
as well as other types of conversions (Table B-10). The following example shows how to
convert a list into a dictionary:

info = [["name", "Sam"], ["age", 12]]
print(dict(info)) # {'name': 'Sam', 'age': 12}

Table B-10. Typecasting functions

Types Typecasting Functions Description
Arithmetic int(value, base) Converts different data types to int values. Specify
the base if converting a string.
float(value) Converts integer to floating-point value.
ord(character) Converts a single character to an integer.

Strings str(value) Converts other data types into a string.

Data Structures list(iterable) Converts an iterable object into a list.
tuple(iterable) Converts an iterable object into a tuple.
set(iterable) Converts an iterable object into a set. May result in

some data loss if there are duplicate values.
dict(iterable) Converts an iterable with structure (key, value) into a
dictionary.

Conditionals and Loops in Python

The following section takes a look at programming tools that are used for controlling the
flow and execution of commands and repetitive tasks while a program is running. Any of

the following statements can be placed inside of another to create nested loops.

422

APPENDIXB PYTHON REFRESHER

“if-elif-else” Conditional Statements

Conditional statements are used in programming to decide whether or not to perform

certain actions based on whether the specified Boolean constraints evaluate to True or

False. These types of statements are handled in Python using if-elif-else statements.
The following code shows a simple example of how to use if statements to check if

items exist in a list:

car_types = ["economy", "sedan", "convertible", "SUV", "economy"]
if "SUV" not in car_types:
car_types.append("SUV")
elif car types.count("economy") > 1:
car_types.remove("economy")
else:
car_types.append("luxury")
print(car_types) # ['sedan', 'convertible', 'SUV', 'economy']

The first if statement evaluates to False since "SUV" already exists in the car_types
list. The elif statement provides other conditions to check if previous clauses were not
true. Finally, else statements are executed if all previous conditions were false.

There are other operators besides in and not in that can be used for evaluating
Boolean expressions. Table B-11 lists some of them.

423

APPENDIXB PYTHON REFRESHER

Table B-11. Python operators

Types Operators Description
Comparison ~ x ==y Equal to
X l=y Not equal to
X >y Greater than
X<y Less than
X >=y Greater than or equal to
X <=y Less than or equal to
Logical x > 5 and y < -5 Returns True if both statements are true.
X > 5 o0r y < -5 Returns True if both statements or only one of them is
true.
not(x > 5) Returns the opposite. Changes True to False and vice
versa.

“for” Loops

Python is very useful for automating repetitive tasks using loops. The for loop is very
useful when you have a task that needs to be executed a certain number of times, such as
traversing through a sequence until you reach the end.

colors = ["blue", "red", "purple", "green", "white"]
for color in colors:

print("Current color: {}".format(color))

The preceding code will cycle through the list five times, once for each item in the
list. There are also ways to repeat a block of code or iterate over a sequence of numbers
using the range() function. The following code will print out the index values and their
corresponding colors from the colors list:

for i in range(len(colors)):
print("{}. {}".format(i + 1, colors[i]))

424

APPENDIXB PYTHON REFRESHER

The enumerate() function is also a way to include a counter while iterating through a
sequence.

for count, color in enumerate(colors, start=1):
print("{}. {}".format(count, color))

List Comprehensions

Now that we have gone over for loops and if statements, let’s take a look at a very
important concept in Python, list comprehensions. List comprehensions are a way to
create new lists from more compact code.

Given a list of strings and integers, the following example uses list comprehension to
create a new list of only the string values:

a_list = ["Sam", 1978, "Elsa", 1984, "Marcus", 1980, "Trevor", 1983]
new_list = [word for word in a_list if type(word) == str]
print(new list) # ['Sam', 'Elsa', 'Marcus', 'Trevor']

Using nested loops, the following code is equivalent to the preceding example:

new list = [] # Creates an empty list
for word in a_list:
if type(word) == str:
new list.append(word)
print(new 1list) # ['Sam', 'Elsa', 'Marcus', 'Trevor']

“while” Loops

Unlike the for loop, the while loop can be used to execute a block of code an unknown
number of times, as long as the Boolean condition being tested continues to evaluate
to True. When the computer reaches the end of a while clause, it returns back to the
beginning of the loop and checks again if the condition is still true. If so, the clause is
executed once more, and the condition will be checked again at the end.

while True:
print("Please enter your age: ")
age = int(input())
if age < 21:

425

APPENDIXB PYTHON REFRESHER

print("You are underage.")
continue
else:
break
print("Access granted.")

For this example, the while condition will always evaluate to True. However, you
could also use other logical or comparison operators to test different conditions. Once in
the loop, the user is asked to input their age. This information is then handled using an
if-else conditional statement.

In addition, there are types of statements that can be used to control the flow of the
program and handle exceptions in a while loop - break and continue. These statements
can also be used in for loops.

e break - Used to immediately exit awhile loop. After exiting, the
program will continue with the statement following the loop.

e continue - Used to immediately skip the rest of the loop and return
back to start of the while loop. The condition statement is then
reevaluated with the next iterative value.

Functions

A function is a collection of statements that perform some particular task and can be
reused multiple times throughout a program. Functions also make code easier to read by
avoiding duplicate code.

You can also define your own functions in Python using the def() statement. When
you call a function by invoking its name, you can also pass values, known as arguments,
between the parentheses. Since functions in Python are treated as objects, you can also
pass them as arguments to other functions. They also always return values whether it is
None or some calculated value. Functions can even return other functions.

def check for nums(items list):
Checks to see if string (item) contains only
letters. If the string contains a numeric value,
it is removed from the list.

426

APPENDIXB PYTHON REFRESHER

for item in items list[:]:
if item.isalpha() != True:
items list.remove(item)
return items_list # Return statement and value

test list = ["horse", "1234", "dog", "mouse", "m3"]
new list = check for nums(test list) # Function call
print(new 1list) # Prints ['horse', 'mouse’]

The function check for nums() is used to iterate through a list and remove any
strings that contain numeric values. The function takes as an argument a list of string
values. When items list is called in the for loop, we need to iterate over a copy of
the list (created using [:]) rather than the actual list itself in order to modify it using
remove (). The for loop could also be written more concisely using list comprehension.

Be sure to consider local and global scope when creating functions and passing
arguments between them. Variables and values created in a called function only exist
within that function’s local scope. Other variables and parameters created outside of all
functions exist in the global scope and can be accessed by all functions.

Lambda Functions

Lambda functions are often referred to as anonymous functions, or functions that have
not been assigned a name. They are single expressions that can take multiple arguments.
The general form for alambda function is

lambda arguments : expression

The following example demonstrates how to create and call a multiargument lambda
function in Python:

full name = lambda f, 1: "Full name: {} {}".format(f, 1)
print(full name("Ben", "Franklin"))

This is equivalent to creating a function using def().

def full name(first, last):
print("Full name: {} {}".format(first, last))

427

APPENDIXB PYTHON REFRESHER

Lambda functions are very useful when creating GUIs for mapping actions in
response to events. When a button is clicked and a signal is triggered, a method, also
known as a slot, handles that event. A method could be the call to a function, but in some
instances, a lambda function can be used for the same reason.

Object-Oriented Programming (OOP)

In this section we will take a brief look at what object-oriented programming is and how
to create objects using classes.

There are a number of different programming paradigms, or methods and styles of
programming. One common method is procedural programming where a computer
follows a sequential set of commands to perform some task. This kind of programming
can make it difficult for adding new functions and working with more dynamic
situations.

Another approach is object-oriented programming (OOP) which focuses
on creating objects with their own properties and behaviors, and modeling their
relationships between other objects. Objects are created using classes - which act as
templates for the data, attributes, and methods that can be applied to an instance of
a class. An instance, or an object created from a class, has access to all the data and
methods inside the class.

OOP also introduces the idea of inheritance, which is the concept of creating new
classes that derive properties and behaviors from existing classes. An object created
using inheritance is known as a child. A child object has its own set of attributes and also
acquires all of the properties and behaviors from its parent class.

The following example demonstrates how to create a new class, Window, for GUI
development which inherits from the PyQt5 class, QMainWindow:

Import necessary modules
import sys
from PyQts5.0tWidgets import QApplication, QMainWindow

class Window(QMainWindow):

428

APPENDIXB PYTHON REFRESHER

Create a new class, Window, which inherits from other PyQt modules,
in this case from the OMainWindow class in the QtWidgets module.
Inheriting from QMainWindow means we have access to all the attributes
to create GUIs using PyQt, but we also can add our own variables and
methods in our new class.
def _init (self):

super(). init () # super is used to access methods from parent

class
self.initializeUI()

def initializeUI(self):

Initialize the window and display its contents to the screen.
self.setGeometry(100, 100, 300, 200)
self.setWindowTitle("Create the Window Class")

self.show()

app = QApplication(sys.argv) # Create instance of QApplication class
window = Window() # Create instance of Window class
sys.exit(app.exec ()) # Start the event loop

The window object is an instance of the Window class. To make code easier to
understand, classes start with an uppercase letter. The child object, window, inherits from
both Window and from the QMainWindow class and is able to use the methods found in
QMainWindow, such as setGeometry() and show(), to create our GUI window.

In order to reference the current class, the keyword self allows us to use any of
the data or methods within QMainWindow as well as any new methods we create in the
Window class.

Exception Handling in Python

It is quite common for programs to run into errors when they are running. Syntax errors
are the ones you will most often run into when writing your code. They are caused by
incorrect syntax such as forgetting to include a colon, ‘:; after a for clause.

429

APPENDIXB PYTHON REFRESHER

Exceptions are the errors that occur when executing code. It is important to consider
how your program will handle these exceptions rather than allowing your application
to crash. Python includes a number of built-in exceptions, including how to handle not
being able to locate or open a file, incorrect data types being passed into a function,
dividing by zero, and various other situations.

The best way to handle an exception is to use the try and except statements. The
following code shows how to check if a user correctly enters an integer value for their
age:

while True:
try:
weight = int(input("Enter your weight (in 1lbs): "))
break
except ValueError:
print("Invalid input.")

Code that could possibly cause an error is placed in the try clause. If an
exception does occur while the program is running, then the except clause will catch
it and handle the error accordingly. Depending upon the situation, you could display
an error message, use the break or continue statements, or force a specific kind of

error to occur.

Reading and Writing to Files in Python

Python also provides built-in modules and functions to open, append, and write to
files. Working with and locating files in directories can be a very long topic that includes
filename pattern matching, traversing directories, deleting files and directories, and
more. This section will simply focus on the basics of opening and writing to files.

The simplest way to open a file is to use

with('path to file', mode) as f

There are other ways to open files, but using this pattern allows for cleaner code and
ensures that files are attended to by closing the file once the function using the resource
is finished executing.

430

APPENDIXB PYTHON REFRESHER

with open ('quotes.txt', 'w') as f:
text = "Life is what happens when you're busy making other plans. -John
Lennon"
f.write(text)

The open() method takes as arguments the path to the file and a mode to tell the
computer how to handle the file. The second argument, 'w', means we want to write to
a file and ensures that a new file is created if it does not exist already. The text is then
written to a new file using f.write(). Other options to interact with files include reading
the contents of an entire file with f.read() or only reading one line at a time using
f.readline().

Table B-12 lists the common modes for reading and writing to files.

Table B-12. Some modes for working with files

Character Definition

'r' Opens a file for reading. This is the default mode.

"w' Opens a file for writing. Overwrites a file if one already exists. Otherwise, creates a
new file.

‘a' Opens a new file for appending. File pointer starts at the end of the file if it exists.
Otherwise, creates a new file.

"1+ Opens a file for reading and writing.

"wt' Opens a file for writing and reading. Overwrites a file if one already exists. Otherwise,

creates a new file.

a+ Opens a new file for appending and reading. File pointer starts at the end of the file if
it exists. Otherwise, creates a new file.

Summary

Hopefully this appendix helps you to recall some method you may have forgotten
about, or sparks an idea in your mind about how to solve a problem when creating
your own GUTIs, or maybe even helps you to learn something new about programming
in Python.

431

APPENDIXB PYTHON REFRESHER

This appendix covers information from data types and data structures to conditional
statements and iteration using loops, to creating your own functions and classes, and
more. But it only skims the surface of the possibilities of what you could apply in your
own applications.

There are so many possibilities for working with PyQt and Python, and covering all
of that information could definitely be written in more than one book. If you ever get
stuck, the Internet is definitely an amazing resource full of information and guidance to
working through your problems.

Best of luck in all of your projects and in your endeavors!

432

Index

A

about() method, 101
Account management GUI, 294
editing data, 310-313, 315
input/update/delete, 300-302
project parts, 294, 295
QSqlQuery, 295-298
QSqlRelationalDelegate, 316
QSqlRelationalTableModel class,
306-309
QSqlTableModel
class, 303-306
table accounts, 299
Action Editor dock widget, 202
addAction() method, 110,119
addBindValue() method, 300
addButton() method, 64
addDatabase() function, 298
addItem() method, 220, 223
addLayout() method, 55, 82
addMenu() method, 90, 110, 119
addStretch() method, 62, 67
addwidget()/addLayout() methods, 82
addWidget() method, 55

B

backgroundTab() method, 146
Binding, 379
Boolean data type, 416-417

© Joshua M. Willman 2020

buttonClicked() function, 28
Button widgets, 390, 391
ButtonWindow class, 26

C

calculateTotal() method, 73
Calendar GUI, 346

code, 346-350

importing modules, 351, 352
Camera GUI

MDI applications, 337-340

camera’s viewfinder, 341
Cascading Style Sheets (CSS), 136
cb_text widget, 210
Central processing unit (CPU), 409
central widget, 209
changeHeader () method, 283
Classes

dialog boxes, 386, 387

event handling, 385, 386

layout managers, 388, 389

QApplication, 383

QWidget, 384
clearEntries() function, 31
clicked() signal, 159
clickLogin() method, 44
Clipboard, 205
clipboard dock widget, 210
closeEvent() method, 46

433

J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-5857-6

https://doi.org/10.1007/978-1-4842-5857-6

INDEX

close() function, 160
Conditional statements

if-elif-else, 423, 424

for loops, 424

while loops, 425, 426
confirmSignUp() function, 51
Context menus/pull-down menus, 85
copyFromClipboard() method, 210
createClipboard() method, 216
createConnection() method, 306
createMenu() method, 132
createNewUser() method, 46
createNotepadwidget() method, 109
createTable() method, 306, 315
cubicTo() method, 239
currentChanged() signal, 375
currentColumn() method, 283
currentDate() method, 346
currentDateTime() method, 342
current_date edit widget, 352
currentTime() method, 346
Custom signals, 161-163

D

dataChanged() method, 210, 216
dateChanged() signal, 352
Data structures

dictionaries, 420, 421

list, 417, 418

sets, 419

tuples, 418
def() statement, 426
Dialog boxes, 386, 387
Directory viewer GUI

code, 332-334

hierarchical file system, 332

434

menu, 336

model/view paradigm, 335
displayButton function, 27
displayCheckBoxes() method, 34
displaylLabels() function, 16
displayMessageBox() function, 39
Display widgets

QGraphicsView, 398

QLabel, 397

QLCDNumber, 399, 400

QProgressBar, 398
drawBackground() method, 257
drawCurves() method, 239
drawLine() method, 236
drawOnCanvas() method, 250
drawPoint() method, 235
drawRect() method, 237
drawText() method, 236
Dynamic binding, 410

E

EntryWindow class, 30
Event handling, 159, 385

F

Food ordering GUI
applying style sheets, 157-159
code, 147-156
design, 140
profile details tab, 146
QGroupBox widget, 141, 142
QRadioButton, 141
QTabWidget class, 142, 143, 145
types, 138

formWidgets() method, 76

G

getDouble() method, 98
getInt() method, 98
getItem() method, 98
getMultilLineText() method, 98
getOpenFileName() method, 57
getPixelValues() method, 273
getText() method, 98
Gradients, 239
Graphical user interfaces (GUIs), 2
Graphics View

framework, 252, 253
GUI, drag/drop, 216, 217, 219
GUI, sticky notes, 211, 212, 215

H

Hangman GUI
code, 353-361
Drawinglabel class, 362, 363
newGame() method, 363
hasText() method, 210

I, J
ImageDemo class, 272
initializeUI() function, 12
__init_ () method, 191
Input widgets
QComboBox class, 391, 392
QLineEdit, 392, 393
Interface design, 3, 4
Interpreted language, 409
isChecked() method, 34
isvalid() method, 100
Item views, 400, 401

INDEX

K

Keypad GUI, 176
apply layouts, Qt Designer, 194, 195
create/edit Python code, 199
Edit Signals/Slots mode, 197, 198
frame objects, 179-181
grid layout, 181, 183
keypad.ui, 187-190
New Form dialog box, 191
properties, 195, 197
Property Editor, 195
QFrame class, 193
QLineEdit widgets, 176
QPushButton widgets, 186
retranslateUi() method, 186
setupUi() method, 177
style sheet creation, 178
vertical layout, 179
keyPresskEvent() function, 159,160

L

Lambda functions, 427, 428
Layout management
absolute positioning, move()
notepad GUI, 56
QFileDialog class, 57
QTextEdit widget, 57
definition, 53
methods, 53
Nesting, 55
Notepad GUI, solution
code, 58, 59
QTextEdit widget, 60, 61
QHBoxLayout/QFormLayout
classes, 54

435

INDEX

Layout management (cont.)
QTextEdit widget, 55
Widgets/classes, 54

Layout manager, 53

List comprehensions, 425

loadCSVLayout() method, 290

loadProgress() function, 376

Login GUI, 22, 23
code, 40, 42-44
key components, 23
layout, 23, 24
QLineEdit widget, 45

LoginUI class, 44

menuBar () function, 90
Menus
definition, 85
pull-down, 88
QAction class, 90, 91
QIcon class
application icon, 93, 94
icon_button, 95
pixmaps, 91
QPushButtons, code, 91, 93
settings, 94
QMainWindow class vs.QWidget, 89
QMenuBar class, 89
structure, 86, 87
submenus, checkable items, 119
using PyQt, 85
Model-view-controller (MVC), 285
Model/view programming
components, 285, 286
CSV file, 287, 289, 291
PyQt, 286, 287
table creation, 289

436

mouseMoveEvent () method, 250

mousePressEvent() method, 260

move() method, 44

moveMouseEvent () method, 250

Multiple-document interface (MDI),
216, 336

Multipurpose Internet Mail Extensions
(MIME), 210

Multithreading, 320

N

name_entry widget, 30, 31
Nesting layouts, 55
New user GUI

code, 47, 48, 50

creation, 46, 47
notepadMenu() method, 109
numberClicked() slot, 191
Numeric data types, 413-414

O

Object Inspector dock widget, 168

Object-oriented programming (OOP),
428, 429

openImage() method, 132

P

Painter GUI, 241

Canvas class, 249, 250

creation, 241

mouse movement, 250, 251

tool tips, 251

variables/objects, 249
PainterWindow class, 250
paintEvent() function, 226, 234, 249

paste button widget, 210
paste() method, 210
pasteText() method, 210
Photo editor GUI, 110-112
pixmap property, 202
pizzaTab() method, 157
prepare() method, 300
printImage() method, 131

printToTerminal() function, 34

Pseudostates, 136
PyQt
About dialog, 101
classes, 321
events, 321, 322
exec_(), 320
framework
definition, 4
Qt designer, 5
requirements, 5

signal/slot mechanism, 5

source code, 5
Tkinter, 5
uses, 4
QColorDialog, 100
QFontDialog, 98, 99
QInputDialog, 97, 98
PyQt5

Anaconda distribution, 382

Classes (see Classes)
Linux(Ubuntu), 381
MacOS, 380
modules, 382, 383
windows, 380

Python
exception handling, 429
features, 409
Linux, 412
MacOS, 411, 412

INDEX

opening/writing, files, 430, 431
uses, 409
windows, 410, 411
Python Package Index (PyPI), 379, 409
pyuic5 utility, 199

Q

QAnimationProperty class, 252
QApplication, 383-384
QApplication style sheet, 137, 138
QBrush class, 235
QCalendarWidget class, 346
QCamera class, 336
QCheckBox widget, 21, 31, 33, 34
QClipboard class, 203, 205
QColor class, 234
QDateEdit widgets, 346, 352
QDockWidget class, 112, 114, 115, 118
QFileSystemModel class, 332, 335
QFormLayout Class

application form GUI

solution, 73, 75, 76

GUI application, 68, 69

objects, 77

QSpinBox/QComboBox

widgets, 69, 71, 72

setInputMask(), 77

setPrefix(), 73
QFrame container, 192
QFrame widgets, 402, 403
QGraphicsItem.setPos() method, 256
QGridLayout layout manager

definition, 77

to do list GUI, 78

to do list GUI solution, 79, 81

ToDolList class, 81
todo_title QLabel widget, 82

437

INDEX

QGroupBox widget, 141, 142
QHBoxLayout/QVBoxLayout Classes

DisplaySurvey class, 67

GUI, 62, 63

QButtonGroup class, 63, 64

QHBoxLayout object, 67

styles, 62

survey GUI, 64-66
QLabel widget, 13,21, 34, 192
QLCDNumber widget, 399, 400
QLinearGradient class, 239
QLineEdit widget, 21, 24, 28, 30, 31, 45, 60,

192, 392, 393

QListWidget methods, 223
QMainWindow class, 386
QMdiArea class, 336
QMessageBox widget, 21, 24

code, 36-38

dialog box, 39, 40, 45

GUI, 39

types, 35

windows vs. dialogs, 35, 36
QMimeData class, 206
QPainter class, 226, 233, 387
QPen class, 235
QPolygon class, 237
QProgressBar widget, 323, 398
QPropertyAnimation class, 253, 256
QPushButton widget, 21, 24, 192

code, 25, 26

events, 27

QRadioButtons, 25

QToolButtons, 25

signals, 27

slots, 27

window, 26

438

QRadioButton widgets, 141, 157
QSlider class, 259, 260
QSqlRelationalTableModel class, 306-309
QSglTableModel class, 303-306
QTableWidget class, 142, 276
context menu, 284
fuctions, 277-279
table menu, 282, 283
Qt Designer
actions, 202
adding menus/submenus, 200, 201
creating application, 174, 175
definition, 165
editing tools, 173, 174
functionality, 165
keypad GUI (see Keypad GUI)
Main Window template, 200
multilevel layout, 167
QLabel widget, 202
toolbars, 201
user interface, 166, 167
action editor, 172
form dialog box, 168
object inspector, 171
property editor dock widget, 170
resource browser, 173
widget box dock, 169
QTextEdit widget, 57, 89, 209
QtMultimediaWidgets module, 341
QToolBar class, 117,118
QTreeView class, 332, 335
Qt style sheets, 405-407
individual widget properties, 136, 137
technique, 136
QtWebEngine module, 364
QtWidgets module, 11, 30

R

redValue() function, 269
Registration module, 44, 46
Relational database management systems
(RDBMS), 292
repaint() method, 191, 210
resizeEvent() event handler, 388
Resource Browser dock widget, 172
RGB slider, 257, 258, 260
adding methods, 269
colour update, 269
custom widget, 260-265, 267
demo, 270, 272, 273
handling image data, 258, 259
QSlider class, 259, 260
QSlider/QSpinBox, 268, 269
Rich Text Notepad GUI
application, 95
design, 96
menubar/QTextEdit widget, 96
solution
code, 102, 104-108, 120, 122-125,
127,129,130
open_act object, 109
PyQt, images, 132
QDesktopWidget class, 131, 133
QPrinter class, 133
QPrintSupport module, 132
QTextEdit widget, 101, 109, 110
QtGui module, 131

S

selectionChanged() signal, 352
self.close() method, 27
sender() method, 31, 34

INDEX

setAcceptDrops() method, 216, 219
setAlternatingRowColors() methods,223
setAutoExclusive() attribute, 141
setColumnCount() method, 276
setContentMargins() method, 82
setdefault() method, 421
setDragEnabled() method, 216,219
SetEchoMode() method, 46
setEnabled() method, 132
setFixedSize() method, 132
setHeaderData() method, 315
setIconSize() method, 95,117
setInputMask() method, 77
setItem() method, 276
setKeyValueAt() method, 257
setModel() method, 290
setMouseTracking() method, 250
setObjectName() method, 156, 268
setPlaceholderText() method, 39
setRowCount() method, 276
setShortcut() method, 90
setSizePolicy() method, 132
setStopPoint() method, 239
setText() method, 27, 40, 210
setToolTip() method, 251
setupCamera() method, 342
setupTab() method, 375
setupWidgets() method, 315
setupWindows () method, 341
setWindowIcon() method, 94, 101
setWindowTitle() method, 40,118
showPassword() function, 45
Signal/Slot Editor, 171
Simple clock GUI, 342

calendar date/clock time, 345

code, 343, 344
Single-document interface (SDI), 216

439

INDEX

SIP binding generator, 379

Slider widgets, 396, 397

Spin box widgets, 394, 395

String data type, 414
immutable, 415
methods, 416

Structured Query Language (SQL), 291
commands, 292
keywords/functions, 293
RDMBS, 292

T

tab_bar widget, 375
Text editing classes, 393, 394
text() method, 44
Thread
definition, 320
GUI, file renaming
directory, code, 324-328
QFileDialog, 329
QLineEdit widget, 323
QTextEdit/QProgressBar widgets,
322,323
QThread, 329
RenameFileGUI class, 328
parallelism, 320
timeout() signal, 345
toggled() signal, 141
toggle() method, 34
toString() method, 343
trigger() method, 119

440

triggered.connect(), 91
Typecasting, 422

uv
Uniform Resource Locator (URL), 364
User interface (UI), 2
User profile GUI
empty window, create
code, 10, 11
modifying, 12, 13
operating system, 11
QApplication, 12
QtWidgets module, 11, 12
layout design, 9, 10
QLabel widgets, 13-16
solution, code, 17-20
user’s personal data, 8

W XY,Z

Web browser GUI
backPageButton() slot, 374
code, 365-373
creating tabs, 374, 375
features, 364
initializeUI(), 373
QLineEdit widget, 374
setupWebView() function, 375

updateProgressBar() slot, 375,376

URL, 364
Widget Box dock widget, 168

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Charting the Course
	Who Should Read This Book
	Introduction to User Interfaces
	What Is a Graphical User Interface?
	Concepts for Creating Good Interface Design

	The PyQt Framework
	Why Choose PyQt?

	Requirements
	Links to Source Code
	How This Book Is Organized
	Reader Feedback

	Chapter 2: Getting Started with PyQt
	Project 2.1 – User Profile GUI
	Design the GUI Layout
	Create an Empty Window
	Explanation
	Modifying the Window

	The QLabel Widget
	Explanation

	User Profile GUI Solution
	Explanation

	Summary

	Chapter 3: Adding More Functionality to Interfaces
	Project 3.1 – Login GUI
	Design the Login GUI
	The QPushButton Widget
	Explanation

	Events, Signals, and Slots
	The QLineEdit Widget
	Explanation

	The QCheckBox Widget
	Explanation

	The QMessageBox Dialog Box
	Windows vs. Dialogs
	How to Display a QMessageBox
	Explanation

	Login GUI Solution
	Explanation
	Hiding Input for QLineEdit
	How to Open a New Window
	Changing How the Close Event Works

	Project 3.2 – Create New User GUI
	Creating a New User GUI Solution
	Explanation

	Summary

	Chapter 4: Learning About Layout Management
	Choosing a Layout Manager
	Customizing the Layout

	Absolute Positioning – Move()
	Project 4.1 – Basic Notepad GUI
	The QTextEdit Widget
	The QFileDialog Class
	Basic Notepad GUI Solution
	Explanation

	The QHBoxLayout and QVBoxLayout Classes
	Project 4.2 – Survey GUI
	The QButtonGroup Class
	Survey GUI Solution
	Explanation
	Combining Box Layouts and Arranging Widgets

	The QFormLayout Class
	Project 4.3 – Application Form GUI
	The QSpinBox and QComboBox Widgets
	Explanation

	Application Form GUI Solution
	Explanation

	The QGridLayout Class
	Project 4.4 – To-Do List GUI
	To-Do List GUI Solution
	Explanation
	Adding Widgets and Spanning Rows and Columns with QGridLayout

	Summary

	Chapter 5: Menus, Toolbars, and More
	Create a Basic Menu
	Explanation
	QMainWindow vs. QWidget
	Creating the Menubar and Adding Actions

	Setting Icons with the QIcon Class
	Explanation

	Project 5.1 – Rich Text Notepad GUI
	Design the Rich Text Notepad GUI

	More Types of Dialog Boxes in PyQt
	The QInputDialog Class
	The QFontDialog Class
	The QColorDialog Class
	The About Dialog Box

	Rich Text Notepad GUI Solution
	Explanation

	Project 5.2 – Simple Photo Editor GUI
	Design the Photo Editor GUI

	QDockWidget, QStatusBar, and More
	Explanation
	The QStatusBar Class
	The QToolBar Class
	The QDockWidget Class
	Creating Submenus with Checkable Menu Items

	Photo Editor GUI Solution
	Explanation
	Handling Images in PyQt
	The QPrinter Class
	Center GUI Application on Your Desktop

	Summary

	Chapter 6: Styling Your GUIs
	Changing GUI Appearances with Qt Style Sheets
	Customizing Individual Widget Properties
	Customizing the QApplication Style Sheet

	Project 6.1 – Food Ordering GUI
	Design the Food Ordering GUI
	The QRadioButton Widget
	The QGroupBox Class
	The QTabWidget Class
	Explanation

	Food Ordering GUI Solution
	Explanation
	Applying the Style Sheet

	Event Handling in PyQt
	Explanation

	Creating Custom Signals
	Explanation

	Summary

	Chapter 7: Creating GUIs with Qt Designer
	Getting Started with Qt Designer
	Exploring Qt Designer’s User Interface
	Qt Designer’s Editing Modes

	Creating an Application in Qt Designer
	Project 7.1 – Keypad GUI
	Keypad GUI Solution
	Explanation
	Select a Form
	Arrange Objects on the Form
	The QFrame Class
	Apply Layouts in Qt Designer

	Edit the Properties of Objects
	Connect Signals and Slots in Qt Designer
	Preview Your GUI
	Create and Edit Python Code

	Extra Tips for Using Qt Designer
	Setting Up Main Windows and Menus
	Adding Menus and Submenus in Qt Designer
	Adding Toolbars in Qt Designer
	Adding Actions in Qt Designer

	Display Images in Qt Designer
	Summary

	Chapter 8: Working with the Clipboard
	The QClipboard Class
	Explanation

	Project 8.1 – Sticky Notes GUI
	Sticky Notes GUI Solution
	Explanation

	Drag and Drop in PyQt
	Explanation
	The QListWidget Class

	Explanation

	Summary

	Chapter 9: Graphics and Animation in PyQt
	Introduction to the QPainter Class
	Explanation
	The paintEvent() Method
	The QColor, QPen, and QBrush Classes
	Drawing Points and Lines
	Drawing Text
	Drawing Two-Dimensional Shapes
	Drawing Gradients

	Project 9.1 – Painter GUI
	Painter GUI Solution
	Explanation
	Creating the Canvas Class
	Creating the PainterWindow Class
	Handling Mouse Movement Events
	Creating Tool Tips for Widgets

	Project 9.2 – Animation with QPropertyAnimation
	Animation Solution
	Explanation

	Project 9.3 – RGB Slider Custom Widget
	PyQt’s Image Handling Classes
	The QSlider Widget

	RGB Slider Solution
	Explanation
	Updating the Sliders and Spin Boxes
	Updating the Colors
	Adding Methods to a Custom Widget

	RGB Slider Demo
	Explanation

	Summary

	Chapter 10: Introduction to Handling Databases
	The QTableWidget Class
	Explanation
	Creating Context Menus

	Introduction to Model/View Programming
	The Components of the Model/View Architecture
	PyQt’s Model/View Classes
	Explanation

	Working with SQL Databases in PyQt
	What Is SQL?
	Working with Database Management Systems
	Getting Familiar with SQL Commands

	Project 10.1 – Account Management GUI
	Working with QtSql
	Explanation

	Example Queries Using QSqlQuery
	Explanation

	Working with QSqlTableModel
	Explanation

	Working with QSqlRelationalTableModel
	Explanation

	Account Management GUI Solution
	Explanation

	Summary

	Chapter 11: Managing Threads
	Introduction to Threading
	Threading in PyQt
	Methods for Processing Long Events in PyQt

	Project 11.1 – File Renaming GUI
	The QProgressBar Widget

	File Renaming GUI Solution
	Explanation

	Summary

	Chapter 12: Extra Projects
	Project 12.1 – Directory Viewer GUI
	Explanation

	Project 12.2 – Camera GUI
	Explanation

	Project 12.3 – Simple Clock GUI
	Explanation

	Project 12.4 – Calendar GUI
	Explanation

	Project 12.5 – Hangman GUI
	Explanation
	Creating the Drawing Class
	Creating the Main Window Class

	Project 12.6 – Web Browser GUI
	Explanation
	Creating Tabs for the Web Browser
	Creating the Web View
	Adding a QProgressBar to the Status Bar

	Summary

	Appendix A:Reference Guide for PyQt5
	Installing PyQt5 and Qt Designer
	Getting PyQt for Windows
	Getting PyQt for MacOS
	Getting PyQt for Linux (Ubuntu)
	Other Methods for Getting PyQt

	Selected PyQt5 Modules
	Selected PyQt Classes
	Classes for Building a GUI Window
	QApplication
	QWidget
	Event Handling
	QMainWindow
	QDialog

	QPainter
	Layout Managers
	Button Widgets
	Input Widgets
	Combo Boxes
	QLineEdit
	Text Editing Widgets
	Spin Box Widgets
	Slider Widgets

	Display Widgets
	QLabel
	QProgressBar
	QGraphicsView
	QLCDNumber

	Item Views
	Container Widgets
	Containers with Frames
	QScrollArea
	QMdiArea

	Qt Style Sheets
	Summary

	Appendix B:Python Refresher
	Installing Python
	Getting Python for Windows
	Getting Python for MacOS
	Getting Python for Linux

	Data Types in Python
	Numeric Data Types
	Arithmetic Operators
	Working with Numeric Data Types

	String Data Type
	Workings with Strings

	Boolean Data Type

	Data Structures in Python
	Lists
	Tuples
	Sets
	Dictionaries

	Data Type Conversion
	Conditionals and Loops in Python
	“if-elif-else” Conditional Statements
	“for” Loops
	List Comprehensions

	“while” Loops

	Functions
	Lambda Functions

	Object-Oriented Programming (OOP)
	Exception Handling in Python
	Reading and Writing to Files in Python
	Summary

	Index

