

Stochastic modeling and Data Processing

Kurbatova Natalia Victorovna

Some typical notions

```
sample - выборка
     data - данные
    occur - случаться
 statistics - количественные характеристики случайных
            данных, характеризующие качество данных,
            являются случайными
parent population - генеральная совокупность
density of distribution - плотность распределения
perceptron with back propagation - персептрон с
            обратным распространением ошибки
```

On Statistics

Statistics - single quantity contained in or computed from a set of data.

Unlike a parameter (a characteristic of a population, parent population, its distribution) a statistics is a characteristic or measure of a sample.

Applied Statistics - consists of <u>mathematical Statistics</u>, which deals with data, having probabilistic nature, and <u>other mathematical tools</u>, based on measures of agreement or deviation (methods of classification, clusterization).

Object of Data Processing

Different kind of data: continuous, discrete one-dimensional, multi-dimensional

Scales

Measures

Data with Missing Values. Robust estimation

Data Nature

The first (historically):

```
categorized data is number of objects with specific properties;
quantitative data are result of measurements (including categorized data);
dualism: categorized ⇔ quantitative. Quantitative data may be divided into categories and category may be assigned the number of class.
```

Numeric:

```
number single random factor

vectors multiple random factor

functions of random variable (single, multiple)
```

Nonnumeric:

- sets; binary relation
- categorized data
- fuzzy sets

Scale and Systems. Qualitative Data

Nonnumeric, for qualitative data:

categorized data: nominal scale - by the name; rigidity ranking data: ordinary scale; talc-1; gypsum-2; ... diamond-10; dichotomous observations (data): Random vector $X = \{X_i\}$, $\{x_i\}$ - current value with values $x_i \in \{0,1\}$ for nominal scale (problem of classification): data is represented as matrix $B(x_1, x_2, \ldots, x_n) = b_{ij}$, where

$$b_{ij} = \begin{cases} 1, x_i = x_j \\ 0, x_i \neq x_j \end{cases}$$

for ordinary scale (sociology, paired comparison, engineering standards): data is represented as matrix $C(x_1, x_2, \ldots, x_n) = c_{ij}$, where

$$c_{ij} = \begin{cases} 1, x_i < x_j, \\ 0, x_i > x_j, \end{cases} \quad c_{ij} = 1 \to c_{ji} = 0.$$

Scales and systems for ND

Scales for numeric data:

```
interval scale (ex.: point on the line) researcher should define zero position and unit
```

```
relation scale (ex.: mass, charge, length) zero - exist; unit - is not exist; unit - add to zero
```

scale of difference of random variable (number of hours, days, years...) unit - exist; zero - is not exist, should be added

absolute scale result of measurements; zero, unit - exist

Mixed data exists → *Bourbaki Nicolas*: → generic methods, based on measures (of distance, differences....), are needed for them; for example: neural network, genetic algorithm

charge ['t∫a:dg] - заряд

Measurements Model

Input data:

Output data:

$$X = X + \triangle X$$

classic approach	in practice
$E(\triangle X) = 0$	$E(\triangle X) \neq 0$
$X, \vartriangle X$ - independent	dependent
$\triangle X \in N(0,\sigma)$	abnormal distribution
	unkown kind of distribution

Two-dimensional random variable;

observing sample:
$$(x_i, y_i) \in \mathbb{R}^2$$

(A - nonlinear model:)
$$y_i = \sum_{k=0}^{m} a_k x_i^k + \varepsilon_i$$
;

(B - linear model:)
$$y_i = \sum_{j \in K} a_{ij} x_{ij} + \varepsilon_i$$
;

(A
$$\leftrightarrow$$
 B) $x_{i0} = 1$, $x_{i1} = x_i$, $x_{i2} = x_i^2$, ..., $x_{ij} = x_i^j$.

$$m = 1, 2 \dots, \varepsilon_i \in N(0, 1), K \subseteq \{1, 2, \dots, n\}$$

 \rightarrow estimate: (A) - (m, a_0, \dots, a_m) ; (B) - (K, a_{ij}) .

Data structure. Static Data

Static data - is the result of observing property of quantitative or qualitative factors and mixed (characteristics) of data. One-dimensional, multi-dimensional.

Aim:

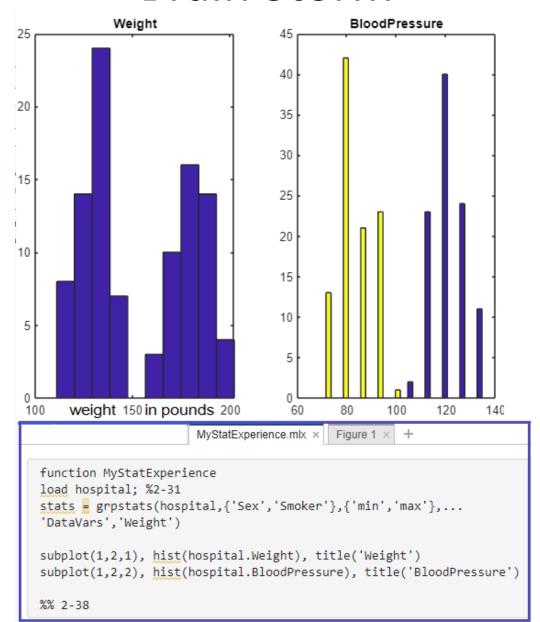
- to estimate shape of data and parent population
- to estimate the concordance between data
- to construct forecasting model

reveal [ri'vi:l] - открывать, обнаруживать concordance $[k\partial n'ko:d(\partial)n(t)s]$ - согласие, согласованность

Data structure. Dynamic data

Dynamic: I. time series - is a sequence of data points, measured typically at successive times spaced at uniform time intervals (Dow Jones index).

Conditions: measurements are taken at the same time each day over several days.


- to reveal of data periodicity
- revealing latent periodicity
- models of data forecasting
- II. Stochastic processes is an ordered collection of random variables (or a family of random variables, dependent upon a parameter which usually denotes time):
 - •the process is a Markov process (in which the present value of the variable depends only upon the immediate past and not upon the whole sequence of past events)
 - the process is white noise
 - •the process is autoregressive
 - the process has a moving average

Statistical research approaches

- INPUT Data →
- ullet o Data storage, formats o
- ullet Selection of the method —
- → Analyzing →
- ullet \rightarrow Output \rightarrow
- ◆ Conclusion

at option - по усмотрению (выбору)

Brain Storm

Basic theory. Try Recall

Sample observing one-dimension case:

small samples	large samples
basic statistics	limit theorems
analysis of variance	continue distribution
lots of statistical graphs	limit theorems
criteria (basic statistics)	criteria of agreement

Sample. Multidimensional case:

Methods	Aim
Principal components method	dimension reduction
	data visualization
	estimates of data nature -
	prerequisite to classification
Linear regression	modelling -
	factors estimation
	forecusting
Nonlinear regression	ways of transformation
	to the linear case
Classification	neural network methods
	perceptron with back propagation

prerequisite [pri:'rekwizit] - предпосылки (supposition, condition) facility [fð'silitð] - возможность perseptron [pəˈseptən]

Adequate transformation, algorithm

```
Definition Let set \Phi=\{\phi\} - of all admissible transformations for current scale, \phi:R^1\to R^1 , \phi\in\Phi ,
```

Adequate algorithm A sequence operations upon data - algorithm $(W:R^n\to A, \text{ where }A\text{ - set of all algorithm's results})$, is adequate in current scale, if for $x_i\in R^1, \forall \phi$ statement holds: $W(x_1,x_2,\ldots,x_n)=W(\phi(x_1),\phi(x_2),\ldots,\phi(x_n))$

- ⇒ Two kinds of problems:
- I. Scale exists. Need to define adequate algorithm $w \in W$.
- II. Algorithm exists. Need to define scale, where this algorithm is adequate.

adequate ['zdikw∂t] - адекватный adequacy ['zdikw∂si] - соответствие, адекватность

R language and Statistics Toolbox

R language - R is an integrated suite of software facilities for data manipulation, calculation and graphical display

Statistics Toolbox - is a package of statistical analysis in Matlab

R contains:

- an effective data handling and storage facility; a suite of operators for calculations on arrays, in particular matrices;
- collection of intermediate tools for data analysis; graphical facilities for data analysis and display either directly at the computer or on hardcopy;
- simple and effective programming language (called 'S') which includes conditionals, loops, user defined recursive functions and input and output facilities.

Statistics Toolbox:

- package contains all the benefits of R;
- is not free; package is very expensive.

Thank you for attention! See you **soon**, I hope ©