

Контрольная работа 1. Базовые конструкции языка Питон

Демонстрационный вариант

* Required

Информация о студенте

Имя *		
Фамилия	*	
Фамилия	препода	вателя *

Задача № 1 (1 балл)

Студенты Иванов, Петров, Сидоров и Степанов пытались написать фрагмент кода, который должен проверять, принадлежит ли точка с координатами (хр, ур) прямоугольнику, ограниченному осями координат и прямыми x=5, y=1.

Вот что у них получилось:

```
Иванов
                                       Петров
if xp>=0 and xp<=5:
                                       if xp>=0 and xp<=5 and yp>=0 and yp<=1:
   if yp>=0 and yp<=1:
                                         print ('да')
       print ('да')
                                       else:
   else:
                                          print ('HeT')
       print ('Her')
else:
  print ('HeT')
Сидоров
                                       Степанов
if 0<=xp<=5 and 0<=yp<=1:
                                       if xp>=0:
   print ('да')
                                         if xp<=5:
                                              if yp>=0:
   print ('HeT')
                                                if yp<=1:
                                                     print ('да')
                                       else:
                                          print ('HeT')
```

К сожалению, одному из четырех не удалось написать правильный код. Кто это? *

(три остальные варианта решают поставленную задачу)

- Иванов
- Петров
- Сидоров
- Степанов

Задача № 2 (1 балл)

Студенты Иванов, Петров, Сидоров и Степанов пытались написать проверку условия делимости числа х на 3.

Вот что у них получилось:

Иванов	Петров
x%3==0	(x//10+x%10)%3==0
Сидоров	Степанов
0 <x%3<3< td=""><td>x%3+1==1</td></x%3<3<>	x%3+1==1

Чье решение оказалось неправильным? *

(Ошибся только один...)

- Иванов
- Петров
- Сидоров
- Степанов

Задача № 3 (1 балл)

Студенты Иванов, Петров, Сидоров и Степанов разглядывали фрагмент текста программы, пытаясь понять, какая формула за ним скрывается:

```
x = 1

p = x

s = p

for i in range(1,11):

p = -p*x**2/(2*i+1)*(2*i-1)

s = s+p
```

После долгих размышлений каждый из них предложил свой вариант:

Иванов	Петров
$\sum_{i=0}^{10} (-1)^n \frac{x^{2n+1}}{2n+1}$	$\sum_{i=0}^{10} (-1)^{n-1} \frac{x^{2n+1}}{2n+1}$
Сидоров	Степанов
$\sum_{i=1}^{11} (-1)^n \frac{x^{2n}}{2n-1}$	$\sum_{i=1}^{10} (-1)^{n-1} \frac{2n-1}{2n+1} x^{2n-1}$

Кто из студентов восстановил формулу правильно? *

- Иванов
- Петров
- Сидоров
- Степанов

Задача 4 (2 балла)

Как известно, $2015^{2016} > 2016^{2015}$ (это легко проверить, используя IDLE).

А насколько сумма цифр первого из чисел больше суммы цифр второго?

Задача 5 (2 балла)

В 1593 году Франсуа Виет получил следующее представление для числа π в виде бесконечного произведения, каждый сомножитель которого содержит сложное выражение с увеличивающимся количеством радикалов – знаков квадратного корня:

$$\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2+\sqrt{2}}} \cdot \frac{2}{\sqrt{2+\sqrt{2+\sqrt{2}}}} \cdot \dots$$

Если ограничиться написанными тремя множителями, то для π получаем не очень точное значение, равное 3.1214451522580524. А каково будет это значение, если выполнить умножение двадцати множителей?

Введите ответ в текстовое поле *

Задача 6 (4 балла)

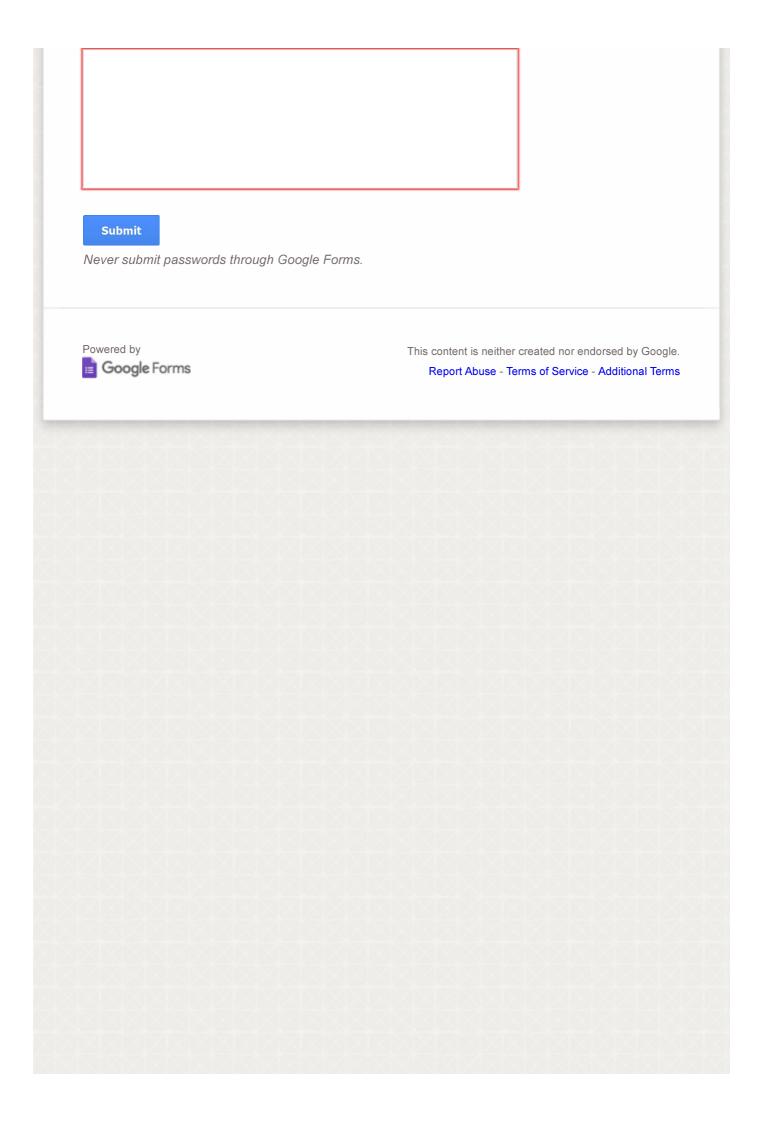
Из четырех баллов - один дается за полную проверку введенных значений в соответствии с образцом

Немецкий математик Лотар Коллатц в 1937 году предложил следующее правило построения одной замечательной последовательности. Берём любое натуральное число п. Если оно чётное, то делим его на 2, а если нечётное, то умножаем на 3 и прибавляем 1 (получаем 3n + 1). Над полученным числом выполняем те же самые действия, и так далее. Гипотеза Коллатца состоит в том, что для любого натурального п такая последовательность за конечное число шагов приведет нас к единице. И хотя эта гипотеза до сих пор строго не доказана, будем считать ее верной.

Назовём последовательность построенных таким образом чисел (от n до 1) «цепочкой Коллатца». Например, для числа 13 эта цепочка имеет длину 10, т.е. содержит 10 элементов:

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Напишите программу, которая для двух заданных натуральных чисел k и m (0 < k < 1000000) ищет количество цепочек Коллатца длины m для всех натуральных значений n из отрезка [1, k] .


Примерная схема взаимодействия с пользователем:

Введенные числа	Сообщение программы	
k = -100, m = 1000	Введенные Вами числа должны быть положительны.	
	Учтите это при следующем запуске программы	
k = 1000, m = -10	Введенные Вами числа должны быть положительны.	
	Учтите это при следующем запуске программы	
k = 1000001, m = 10	Диапазон поиска больше миллиона. Устанете ждать.	
	В следующий раз введите число, не превосходящее миллион.	
k = 20, m = 10	Количество цепочек длины 10 в диапазоне 1 < n < 20 равно 2	
k = 10000, m = 10	Количество цепочек длины 10 в диапазоне 1 < n < 10000 равно 6	
k = 2000, m = 100	Количество цепочек длины 100 в диапазоне 1 < n < 2000 равно 17	

Внимание! При k=1000000 Ваша программа может работать достаточно долго (порядка 1-2 минут). Отлаживайте ее при меньших значениях k.

В расположенное ниже поле введите текст программы, решающей задачу *

Обращайте внимание на форматирование согласно требованиям языка Питон

