

Empirical Characteristics Of The Sample. Theoretical Background

Kurbatova Natalia Victorovna nvkurbatova@sfedu.ru

Random variable (r.v.). Sample, компьютерных based on single elementary outcome.

Definition 1. On a random variable (r.v.) Given Ω - sample space and probability distribution P. A random variable ξ is a function defined on Ω , taking values in R

 $\xi:\Omega\to \mathbb{R}$

(We think, probabilistic space (Ω, A, P) is given!)

Definition 2. About the outcome

The elementary events (outcomes) of a random experiment are such events (atoms of the events) which exactly one of them occurs during the experiment.

Table of probabilities of ξ * (distribution density)

Let's introduce new random variable ξ*, which takes values $x_1, x_2, ..., x_n$ on single elementary outcome as n-surfaces dice with the same probability.

ξ*	x_1	x_2	 x_n
\tilde{p}	1/n	1/n	 1/n

The distribution function:

$$F_n^*(y) = \sum_{x_i < y} \frac{1}{n} = \frac{\text{number } x_i \in (-\infty, y)}{n}$$

-- Distribution function for built ξ*

Descriptive statistics of ξ^*

$$E\xi^* = \sum_{i=1}^n \frac{1}{n} x_i = \frac{1}{n} \sum x_i = \bar{x};$$
 Expectation $E(\xi^*)^k = \bar{x}^k;$

Variance:

$$D\xi^* = \sum_{i=1}^n \frac{1}{n} (x_i - E\xi^*)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = S^2;$$
 (1)

$$Eg(\xi^*) = \frac{1}{n} \sum_{i=1}^n g(x_i) = \overline{g(x)};$$

If we allow an elementary outcome to change — obtain r.v. ξ $F_n^*(y)$, \bar{x} , S^2 , \bar{x}^k , $\overline{g(x)}$ as functions of r.v. x_1, \dots, x_n instead (1).

МЕХАНИКИ КОМПЬЮТЕРНЫХ НАУК

F(y) = P(x1 < y) - Empirical**Distribution Function (EDF)**

Empirical distribution function determined on the sample $\mathbf{x} = (x_1, \dots, x_n)$ volume n – is random function $F_n^*(y): R \times \Omega \to [0, 1], \forall y \in \mathbb{R}$, such that

$$F_n^*(y) = \frac{number \ X_i \in (-\infty, y)}{n} = \frac{1}{n} \sum_{i=1}^n I(x_i < y);$$

Definition 1. EDF

$$F_n^*(y) = \frac{number\ X_i \in (-\infty, y)}{n} = \frac{1}{n} \sum_{i=1}^n I(x_i < y);$$

$$I(x_i < y) = \begin{cases} 1, & \text{if } x_i < y \\ 0, & \text{else} \end{cases} - \text{indicator function.}$$

<u>Definition 2. EDF (after reordering):</u>

Remark.

For any y indicator of event xi<y, has Bernouli [bəˈnjuːlɪ] distribution with p parameter: p = P(xi < y) = F(y), r.v. $I(xi < y) \in B(F(y))$,

Lecture 2 § 3.

$$x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}; \ x_{(1)} = \min_{i} \{x_i\}, x_{(n)} = \max_{(n)} \{x_i\}$$

 $x_{(k)} - k$ -th element, or k -th order statistics.

 $F_n^*(y)$ has jumps in each point x_i with height $\frac{m}{n}$, m – number of elements are equal to x_i

$$F_n^*(y) = \begin{cases} 0, & y \le x_{(1)} \\ \frac{m}{n}, & y \in (x_{(m)}, x_{(m+1)}) \\ 1, & y > x_{(n)}. \end{cases}$$

Empirical probability function (EPF)

- Histogram of relative frequencies
- Table exists for discrete distributions
- Density function for absolutely continuous distributions

НАУК

Histogram - empirical analogue of the механики komпьютерных density function of distribution

Histogram is based on grouped data; the range of data values $x_{max} - x_{min}$ is devided into several bins A_1, \dots, A_k (consecutive, non-overlapping intervals, often equal size - length): v_i - number elements of the sample got into j - th bin A_i . Let construct rectangle R_j with f_j - rectangle height and l_j - rectangle length (see pic.), where

$$f_{j} = \frac{v_{j}}{n * l_{j}}$$

$$R_{j}$$

$$l_{j}$$

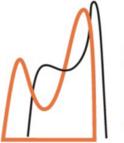
$$v_{j} = \{\text{number } x_{i} \in A_{j}\} = \sum_{i=1}^{l} I(x_{i} \in A_{j}),$$

$$n = \sum_{j=1}^{k} v_{j} \quad \text{for } \forall A_{j}$$

$$f_{j} = \frac{v_{j}}{n * l_{j}} - \text{analogue of the density function}$$

$$\frac{v_{j}}{n} - \text{relative frequency}$$

Figure, consisting of union of k such rectangles, is called histogram, the total squares of rectangles is equal to 1 (S=1).



МАТЕМАТИКИ On relation between a histogram механики on a density function

ожный Федеральный УНИВЕРСИТЕТ

Remark: Let density function of the sample, belongin to General population — continuous function. If number of intervals k=k(n) tends to infinity $k(n)/n \rightarrow 0$, then histogram tends to density function for $\forall y$.

<u>Task:</u> Model such an example for any arbitrary distribution (Normal, Students, Chi-squared), shows the trend corresponding to the remark.

Sample and true moments

Remark. Let ξ – random variable belongs to General Population with true known characteristics; x_1 (or any x_i) – we can consider as outcome (result of experiment) of ξ and random variable too.

True moments	Estimation for true moments		
$E\xi = Ex_1 = a$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i;$		
$D\xi = Dx_1 = \sigma^2$	$S^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$ - biased;		
	$S_0^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ – unbiased;		
$E\xi^k = Ex_1^k = m_k$	$S^{k} = \frac{1}{n} \sum_{i=1}^{n} x_i^{k} - k \text{ moments} ;$		
$Eg(\xi)$	$\overline{g(x)} = \frac{1}{n} \sum_{i=1}^{n} g(x_i)$		

МЕХАНИКИ НАУК

Types of convergence. компьютерных Definitions

<u>Definition 1:</u> Sequence of r.v. $\{X_n\}$ almost probably converge to r.v. X, if

$$P\left\{\lim_{n\to\infty}X_n-X\right\}=1.$$

Definition 2: Sequence of r.v. $\{X_n\}$ converges in probability to r.v. X, if

$$\lim_{n\to\infty} P\{|X_n-X|\leq \varepsilon\}=1.$$

<u>Definition 3:</u> Sequence of r.v. $\{X_n\}$ converges in the distribution to r.v. X (or weakly converges), if for all points of continuity of the probability distribution function the equality holds

$$\lim_{n\to\infty} F_{X_n}(x) = F_{x}(x) \quad \text{or} \quad F_{X_n}(x) \Longrightarrow F_{x}(x)$$

Remark 1: Convergence almost probably implies convergence in probability! include

Remark 2: Convergence in probability implies convergence in distribution!

Convergens EDF To Theoretical One

Theorem 1. On convergence in probability EDF to theoretical distribution function.

Let $x_1, ..., x_n$ – sample from distribution family F with distribution function F and let F_n^* – empirical distribution function, built in accordance with the sample, then

 $F_n^*(y) \to F(y)$, when $n \to \infty$ for $\forall y \in \mathbb{R}$.

Open Lecture 2 § 4. Have you questions?

Conclusion. With an increase in the sample size, the empirical distribution function tends in probability to an unknown theoretical distribution for $\forall y \in R$.

Repetition & Proof of Theorem1

Theorem 1. On convergence in probability EDF to theoretical distribution function.

Proof

Using definition of EDF:

$$F_n^*(y) = \frac{number \ X_i \in (-\infty, y)}{n} = \frac{1}{n} \sum_{i=1}^n I(x_i < y).$$

Random variables $I(x_1 < y)$, $I(x_2 < y)$, ... independent and identically distributed =>

$$\underline{EI(x_1 < y)} = 1 * P(x_1 < y) + 0 * P(x_1 \ge y) = P(x_1 < y) =$$

$$= \underline{F(y)} < \infty; \text{ the consistency property of r.v.}$$

Repetition r. v.
$$\xi_1, ..., \xi_n$$
: $E\xi_1 < \infty$, $E\xi_1 = a$

$$\frac{S_n}{n} = \frac{\xi_1 + \dots + \xi_n}{n} \to a;$$
according to LLN

$$F_n^*(y) = \frac{\sum_{i=1}^n I(x_i < y)}{n} \xrightarrow{P} EI(x_1 < y) = F(y) \quad \square$$

Expectation of sum is equal sum of expectation for r.v. as (*)

Remark:

With increasing sample volume took from General Population, empirical distribution function tends in probability to unknown the same distribution for $\forall y \in R$

Theorems of Convergence (without proof)

Theorem 2. (Glivenko–Cantelli)

In the condition of the theorem 1 we have: $\sup_{y \in R} |F_n^*(y) - F(y)| \xrightarrow{n \to \infty} 0$

Theorem 3. Kolmogorov

Let $x_1, ..., x_n$ sample of F with continuous distribution function F, $F_n^*(y)$ – empirical distribution function for $\forall y \in R$, then

$$\sqrt{n} \sup_{y \in R} |F_n^*(y) - F(y)| \to \eta, \quad n \to \infty$$

and η have Kolmogorov distribution with continuous function

$$F_{\xi}(y) = K(y) = \begin{cases} \sum_{j=-\infty}^{\infty} (-1)^{j} e^{-2j^{2}y^{2}}, & y \ge 0 \\ 0, & y < 0 \end{cases}$$

On EDF Convergence

Theorem 4. (on empirical distribution function)

For any $y \in R$:

- 1) $EF_n^*(y) = F(y), F_n^* unbiased estimation$
- 2) $DF_n^*(y) = \frac{F(y)(1-F(y))}{n}$;
- 3) $\sqrt{n}(F_n^*(y) F(y)) \rightarrow N(0, F(y)(1 F(y)))$ tends asymptotically $F(y) \neq 0, 1$
- 4) $n F_n^*(y)$ has Binomial distribution B(n, F(y))

Proof:

Known:
$$I(x_i < y)$$
 have Bernoulli distribution $I(x_i < y) \in B_{F(y)}, =>$ $EI(x_1 < y) = F(y), DI(x_1 < y) = F(y)(1 - F(y))$

Theorem 4 Proof

1)
$$I(x_i < y)$$
 identically distributed, so $EF_n^*(y) = E\frac{\sum_{i=1}^n I(x_i < y)}{n} = \frac{nEI(x_1 < y)}{n} = F(y)$

explain each step!

2)
$$I(x_i < y)$$
 – independent and identically distributed
$$DF_n^*(y) = D \frac{\sum_{i=1}^n I(x_i < y)}{n} \stackrel{\checkmark}{=} \frac{\sum_{i=1}^n DI(x_i < y)}{n^2} \stackrel{\checkmark}{=} \frac{nDI(x_1 < y)}{n^2} \stackrel{\checkmark}{=} \frac{F(y)(1 - F(y))}{n};$$

3) Based on central limit theorem

$$\sqrt{n} \left(F_n^*(y) - F(y) \right) = \sqrt{n} \left(\frac{\sum_{i=1}^n I(x_i < y)}{n} - F(y) \right) = \left(\frac{\sum_{i=1}^n I(x_i < y) - nF(y)}{\sqrt{n}} \right) = \\
= \frac{\sum_{i=1}^n I(x_i < y) - nEI(x_1 < y)}{\sqrt{n}} \Longrightarrow N(0, DI(x_1 < y)) = N(0, F(y)(1 - F(y));$$

4) $nF_n^*(y) = I(x_1 < y) + \dots + I(x_n < y) \in B(n, F(y));$ (according to property: the stability of the summation)

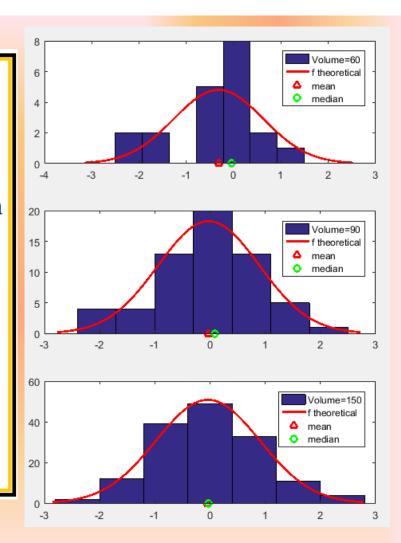
Histogram properties

Let *F* – absolutely continuous distribution, f – true density, k intervals of histogram is not depends on n – sample volume. With increasing n square of histogram column tends to square under density function.

<u>Theorem 5:</u> (without proof)

$$n \to \infty$$
, for $\forall j = 1, ..., k$;

$$l_j * f_j = \frac{v_j}{n} \to P(x_1 \in A_j) = \int_{A_j} f(x) dx$$



Skewness. Characteristic компьютерных of EDF symmetry

Skewness for univariate data $Y_1, Y_2, ..., Y_N$, is:

$$g_1 = rac{\sum_{i=1}^{N} (Y_i - ar{Y})^3/N}{s^3}$$

where Y is the mean, s is the standard deviation, and Nis the number of data points.

Alternative definitions:

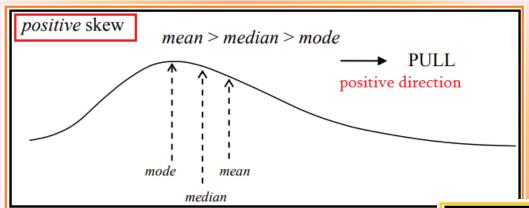
$$\overline{ ext{Galton skewness}} = rac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1}$$

here Q_1, Q_3 —lower and upper quartiles, Q_2 is the median.

Pearson2 skewness
$$= 3\frac{(Y-Y)}{s}$$

where \hat{Y} is the sample median.

Practical approach



See: Teams

"Practical manual.pdf"

pp. 16-21

Correspondent MatLab functions:

mean, median

modal - the most frequently value (existing depends on ML version)

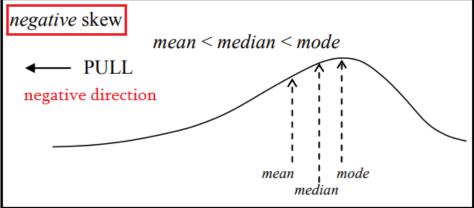
var - variance , std - standard deviation

moment

skewness, kurtosis

histogram

histfit – histogram and density function of standard Normal distribution, density function is built with effective parameters



Moments of univariate data. **Kurtosis (Excess)**

Definition of Kurtosis | Kurtosis indicates how much data resides in the tails

For univariate data $Y_1, Y_2, ..., Y_N$, the formula for kurtosis is:

$$ext{kurtosis} = rac{\sum_{i=1}^{N}(Y_i - ar{Y})^4/N}{s^4}$$

where Y is the mean, s is the standard deviation, and N is the number of data points.

Alternative Definition of Kurtosis

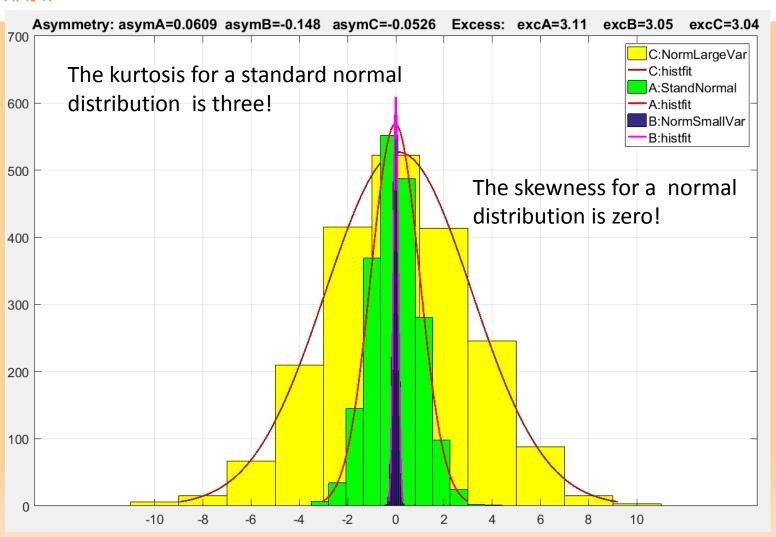
The kurtosis for a standard normal distribution is three. For this reason, some sources use the following definition of kurtosis ("excess kurtosis"):

$$ext{kurtosis} = rac{\sum_{i=1}^{N}(Y_i - ar{Y})^4/N}{s^4} - 3$$
 A large kurtosis – heavy data tails !

This definition is used so that the standard normal distribution has a kurtosis of three. In addition, with the second definition positive kurtosis indicates a "heavy-tailed" distribution and negative kurtosis indicates a "light tailed" distribution.

ИНСТИТУТ МАТЕМАТИКИ МЕХАНИКИ КОМПЬЮТЕРНЫХ НАУК

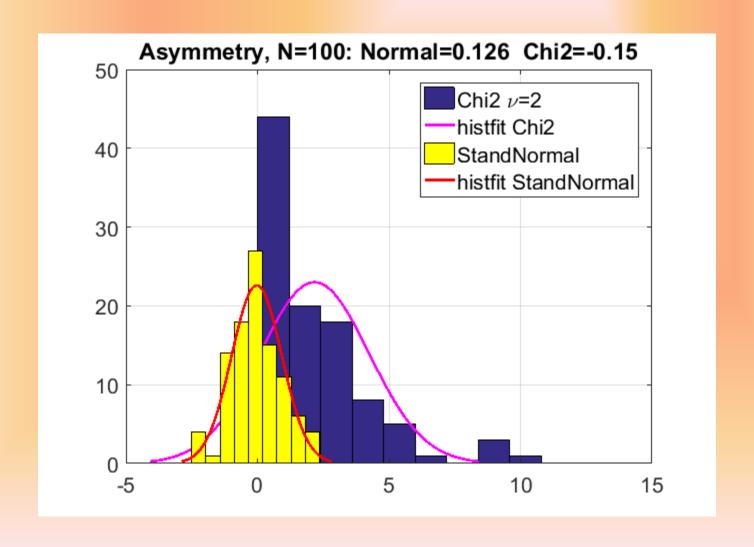
механики Moments in Matlab



SkewnessKurtosis.m - script,

corresponding to this plot. If you need, you can use Debug step by step!

Comparisen. Normal, Chi-Square



Theoretical Basis

What makes it possible to trust empirical characteristics?

Properties of the first-order moment

The sample mean \bar{X} is unbiased, consistent and asymptotically normal estimation for the theoretical mean (expectation of r.v.)

Theorem 6

- 1) If $E|X_1| < \infty$, then $E\bar{X} = EX_1 = a$
- 2) If $E|X_1| < \infty$, then $\bar{X} \stackrel{P}{\to} EX_1 = a, \ n \to \infty$
- 3) If $D|X_1| < \infty$, $DX_1 \neq 0$, then $\sqrt{n}(\bar{X} EX_1) \Longrightarrow N(0, DX_1)$

 $(\bar{X} \text{ is an asymptotically normal estimate for the true expectation EX}_1)$

<u>Proof:</u> According to properties of expectation:

- 1) $E\bar{X} = \frac{1}{n}(EX_1 + ... + EX_n) = \frac{1}{n}nEX_1 = EX_1 = a unbiased$
- 2) and LLN: $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$ $\stackrel{P}{\rightarrow} EX_1 = a$
- 3) $\sqrt{n}(\bar{X} EX_1) = \frac{\sum_{i=1}^{n} X_i nEX_1}{\sqrt{n}} = \frac{X_1 EX_1 + \dots + X_n EX_n}{\sqrt{n}} = \dots$

[according to (CLT):
$$\frac{X_1 - a + \dots + X_n - a}{\sqrt{n}} \Rightarrow \mathcal{N}(0, \mathcal{D}X_1)$$
, $\mathcal{D}X_1 = \sigma^2$ – true variance],

that is if
$$X_i \in \mathcal{N}(a, \sigma^2)$$
 then $S_n = \frac{1}{n} \sum X_i \in \mathcal{N}\left(a, \frac{\sigma^2}{n}\right)$,

and as result we obtain ... =
$$\frac{X_1 - a + \dots + X_n - a}{\sigma / \sqrt{n}} \in \mathcal{N}(0,1)$$

Properties of the high-order moments

Theorem 7

- 1. If $E|X_1|^k < \infty$, then $E\bar{X}^k = EX_1^k = m_k$
- 2. If $E|X_1|^k < \infty$, then $\bar{X}^k \stackrel{P}{\to} EX_1^k = m_k$, $n \to \infty$
- 3. If $DX_1^k < \infty$, and $DX_1^k \neq 0$ then $\sqrt{n}(\bar{X}^k EX_1^k) \Rightarrow \mathcal{N}(0, DX_1^k)$

Theorem 8 *Variance properties.* Let $DX_1 < \infty$, then

- 1. Sample variance $s^2 = \frac{1}{n} \sum_{1}^{n} (X_i \bar{X})^2$ and $s_0^2 = \frac{1}{n-1} \sum_{1}^{n} (X_i \bar{X})^2$ are consistent estimation for true variance: $s^2 \stackrel{P}{\rightarrow} DX_1 = \sigma^2$ and $s_0^2 \stackrel{P}{\rightarrow} DX_1 = \sigma^2$
- 2. Value s^2 biased estimation of variance and s_0^2 unbiased one:

$$Es^{2} = \frac{n-1}{n}DX_{1} = \frac{n-1}{n}\sigma^{2} \neq \sigma^{2}, \qquad Es_{0}^{2} = DX_{1} = \sigma^{2}$$

3. If $0 < D(X_1 - EX_1)^2 < \infty$, then s^2 and s_0^2 – asymptotically normal estimation of the true variance: $\sqrt{n}(s^2 - DX_1) \Rightarrow \mathcal{N}(0, D(X_1 - EX_1)^2)$

ИНСТИТУТ МАТЕМАТИКИ МЕХАНИКИ КОМПЬЮТЕРНЫХ НАУК

Typical Aproaches to proof

Proof:

1.
$$s^2 = \overline{X^2} - (\overline{X})^2 \xrightarrow{P} EX_1^2 - (EX_1)^2 = \sigma^2$$
. (theorem 7.1)
$$\frac{n}{n-1} \mapsto 1, \text{ so } s_0^2 = \frac{n}{n-1} s^2 \xrightarrow{P} \sigma^2$$

2.
$$ES^2 = E(\overline{X^2} - \overline{X}^2) = ^{prop.E} = E\overline{X^2} - E(\overline{X}^2) = theor. 7 = EX_1^2 - E(\overline{X}^2) = [T. K. D(\overline{X}) = E\overline{X}^2 - (E\overline{X})^2] = EX_1^2 - ((E\overline{X})^2 + D(\overline{X})) = EX_1^2 - (EX_1)^2 - D(\frac{1}{n}\sum_{i=1}^n X_i) = \sigma^2 - \frac{1}{n^2}nDX_1 = \sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2, ES_0^2 = \frac{n}{n-1}ES^2 = \sigma^2$$

3. Introduce new variables
$$Y_i = X_i - a$$
: $DY_1 = DX_1 = \sigma^2$, $EY_1 = 0$

Sample variance $s^2 = \frac{1}{n} \sum_{i=1}^n (X_i - a - (\bar{X} - a))^2 = \bar{Y}^2 - (\bar{Y})^2$,

 $so \sqrt{n}(s^2 - \sigma^2) = \sqrt{n}(\bar{Y}^2 - (\bar{Y})^2 - \sigma^2) = \sqrt{n}(\bar{Y}^2 - EY_1^2) - \sqrt{n}(\bar{Y})^2 \Longrightarrow$

(theorem 7) $\Longrightarrow \begin{bmatrix} \sum_{i=1}^n Y_i^2 - nEY_1^2 \\ \sqrt{n} \end{bmatrix} \longrightarrow \{tends\ to\} \ \mathcal{N}(0, DY_1^2) = \mathcal{N}(0, D(X_1 - a)^2), \ because: if \ \bar{Y} \xrightarrow{P} EY_1 = 0, \ then (\bar{Y}\sqrt{n}\bar{Y}) \to 0$

Conclusions

- \overline{X} first order momemt of the sample is unbiased (converge in averadge) and consistent (converge in probability)!
- $\overline{\chi}^k$ k-order momemts (k>2) of the sample are unbiased and consistent!
- Both empirical variances s_0^2 , s_0^2 are consistent!
- But only s_0^2 unbiased!
- Empirical moments are ASYMPTOTICALLY normal estimate of true moments.

THANKS FOR YOUR ATTENTION! BE HEALTHY!