
Practical assignment 4. Gram-Schmidt and QR-factorization

1) Gram-Schmidt process for QR-factorization. Write a Matlab function qr_gs which can

be used as [Q,R]=qr_gs(A) and, for a given complex (and real) matrix A of the size

m×n (m≥n) returns an m×n matrix Q with orthonormal columns and an n×n upper triangular

matrix R such that QRA = (i.e. thin, or reduced, QR factorization). Use modified Gram-

Schmidt algorithm (see the algorithm below, here X A=).

• The QR factorization should be obtained by the Gram-Schmidt process applied to the

columns of A .

• You can start with the following commands in your function

[m,n]=size(A);

if m<n

 error('must be m>=n')

end

Q=zeros(m,n);

R=zeros(n);

for j=1:n

 Q(:,j)=A(:,j);

end

• Check that your function works correctly: 1) it produces QR-factorization of A :

QRA = , 2) matrix Q is orthonormal and matrix R is upper-triangular.

• Answer the question. Do the commands

[Q1,R1]=qr(A);

[Q2,R2]=qr_gs(A);

produce the same result? Should they?

• How can the call to qr be modified so that it does produce the same result as qr_gs?

• Check what happens with Gram-Schmidt process, when some columns of the matrix are

linear dependent. Compare with Matlab qr command.

2) Different QR-factorizations. Try the following Matlab commands

A=rand(4,2), I=eye(4);

[Q,R]=qr(A)

A1=[A,I(:,3:4)], [Q1,R1]=qr(A1)

norm(A-Q*R,1), norm(A-Q1*R1(:,1:2),1) %R=R1(:,1:2)

Check that you have computed two different QR-factorizations of A.

3) Solving linear system using QR-factorization. Consider a linear system with an n×n

random matrix A : bAx = , when n=1000, 2000, 3000 and above.

• Generate these systems with the following Matlab commands:
n=1000;

A=rand(n,n); xexact=rand(n,1); b=A*xexact

• Solve the system in the following ways, reporting, for each case, the CPU

time required, norm of the absolute error norm(x-xexact,2) and residual norm of the

solution r=b-A*x; norm(r,2)

1. Backslash or mldivide: tic x=A\b; toc

2. QR-decomposition, using A=QR:

a) tic [Q,R]=qr(A); x=R\(Q’*b); toc

b) [Q,R]=qr(A); tic x=R\(Q’*b); toc %neglect time to get QR

• Explain the differences in the CPU times you observe for different solution methods as n

increases. When do you obtain the smallest absolute error and residual? What are the

advantages and disadvantages of each of the methods used to solve the linear systems?

