Practical assignment 4. Gram-Schmidt and QR-factorization

1) Gram-Schmidt process for QR-factorization. Write a Matlab function gr gs which can
be used as [Q,R]=gr gs (2) and, for a given complex (and real) matrix A of the size
mxn (m>n) returns an mxn matrix Q with orthonormal columns and an nxn upper triangular
matrix R such that A=QR (i.e. thin, or reduced, QR factorization). Use modified Gram-
Schmidt algorithm (see the algorithm below, here X = A).

The QR factorization should be obtained by the Gram-Schmidt process applied to the
columns of A.
You can start with the following commands in your function
[m,n]=size (A);
if m<n
error ('must be m>=n"')
end
Q=zeros (m,n) ;
R=zeros (n) ;

for j=1:n
Q(:rj)zA(:rj);
end

e Check that your function works correctly: 1) it produces QR-factorization of A:
A=QR, 2) matrix Q is orthonormal and matrix R is upper-triangular.

e Answer the question. Do the commands

[Q1,R1]=qr (A);

[Q2,R2]=qgr_gs(A);

produce the same result? Should they?

How can the call to gr be modified so that it does produce the same result as gr gs?

Check what happens with Gram-Schmidt process, when some columns of the matrix are

linear dependent. Compare with Matlab gr command.

ATGORITHEM 1.1 Gram-Schmuidt

1
2
3
4

~N o

Compute ryy = ||z{||a. If ry; = 0 Stop, else compute q; = /1.
Forj=2,..., r Do:
Compute ri; = (z;.q;) .fori =1,2,..., j—1

7—1
@::JJ"E;VU%
2
ri; == |lgllz .
Ifr;; = 0 then Stop, else q; 1= q/r;
EndDo

2)

3)

AIGORITEM 1.2 Modified Gram-Schmidt

1 Define ryy := ||zq||a- If r{; = 0 Stop, else q; := z /13-
2 Forj=2,..., r Do:

3 Define g := x;

4. Fori=1,...,7—1, Do:

3 ri; == (q.q:)

6. g = q—Tijgi

7. EndDo

8 Compute r;; := ||g||2.

9. Ifrj; = 0 then Stop, else q; == §/r;;
10. EndDo

Different QR-factorizations. Try the following Matlab commands
A=rand (4,2), I=eye(4);

[Q,R]=qr (A)

Al=[A,I(:,3:4)]1, [Q1l,R1]l=gr(Al)

norm (A-Q*R, 1), norm(A-Ql1*R1(:,1:2),1) %R=R1(:,1:2)
Check that you have computed two different QR-factorizations of A.

Solving linear system using QR-factorization. Consider a linear system with an nxn
random matrix A: Ax =b, when n=1000, 2000, 3000 and above.

e Generate these systems with the following Matlab commands:
n=1000;
A=rand(n,n); xexact=rand(n,l); b=A*xexact

e Solve the system in the following ways, reporting, for each case, the CPU
time required, norm of the absolute error norm (x-xexact, 2) and residual norm of the
solution r=b-A*x; norm(r,2)

1. Backslashor mldivide: tic x=A\b; toc

2. QR-decomposition, using A=QR:

a) tic [Q,R]=gr(A); x=R\(Q’*b); toc

b) [Q,R]l=gr (2); tic x=R\ (Q’*b); toc %neglect time to get QR

e Explain the differences in the CPU times you observe for different solution methods as n
increases. When do you obtain the smallest absolute error and residual? What are the
advantages and disadvantages of each of the methods used to solve the linear systems?

