
Practical assignment 4. Gram-Schmidt and QR-factorization 

 

1) Gram-Schmidt process for QR-factorization. Write a Matlab function qr_gs which can 

be used as [Q,R]=qr_gs(A) and, for a given complex (and real) matrix A  of the size 

m×n (m≥n) returns an m×n matrix Q  with orthonormal columns and an n×n upper triangular 

matrix R  such that QRA =  (i.e. thin, or reduced, QR factorization). Use modified Gram-

Schmidt algorithm (see the algorithm below, here X A= ). 

• The QR factorization should be obtained by the Gram-Schmidt process applied to the 

columns of A . 

• You can start with the following commands in your function  

[m,n]=size(A); 

if m<n 

    error('must be m>=n') 

end 

Q=zeros(m,n); 

R=zeros(n); 

 

for j=1:n 

  Q(:,j)=A(:,j);  

end 

• Check that your function works correctly: 1) it produces QR-factorization of A : 

QRA = , 2) matrix Q  is orthonormal and matrix R  is upper-triangular. 

• Answer the question. Do the commands 

[Q1,R1]=qr(A); 

[Q2,R2]=qr_gs(A); 

produce the same result? Should they?  

• How can the call to qr be modified so that it does produce the same result as qr_gs? 

• Check what happens with Gram-Schmidt process, when some columns of the matrix are 

linear dependent. Compare with Matlab qr command. 

 

 



 

 

2) Different QR-factorizations. Try the following Matlab commands 

A=rand(4,2), I=eye(4);  

[Q,R]=qr(A) 

A1=[A,I(:,3:4)], [Q1,R1]=qr(A1)  

norm(A-Q*R,1), norm(A-Q1*R1(:,1:2),1) %R=R1(:,1:2) 

Check that you have computed two different QR-factorizations of A. 

 

3) Solving linear system using QR-factorization. Consider a linear system with an n×n 

random matrix A : bAx = , when n=1000, 2000, 3000 and above. 

• Generate these systems with the following Matlab commands: 
n=1000; 

A=rand(n,n); xexact=rand(n,1); b=A*xexact 

 

• Solve the system in the following ways, reporting, for each case, the CPU 

time required, norm of the absolute error norm(x-xexact,2) and residual norm of the 

solution r=b-A*x; norm(r,2) 

1. Backslash or mldivide: tic x=A\b; toc 

2. QR-decomposition, using A=QR:  

a) tic [Q,R]=qr(A); x=R\(Q’*b); toc 

b) [Q,R]=qr(A); tic x=R\(Q’*b); toc %neglect time to get QR 
 

• Explain the differences in the CPU times you observe for different solution methods as n 

increases. When do you obtain the smallest absolute error and residual? What are the 

advantages and disadvantages of each of the methods used to solve the linear systems? 

 


