

Parametric families.

Distributions connected with the Normal

Kurbatova Natalia Victorovna nvkurbatova@sfedu.ru

Parametric families.

Lecture 3(II)

Definition 1.

 $X=\{X_i\}$ - sample $\in \mathcal{F}_{\theta}$ (known family, unknown parameter θ (scalar of vector)), $\theta \in \Theta$, Θ - is the set of possible values

for example:

$$\mathcal{F}_{\theta} = \begin{cases} P_{\lambda}, & \theta = \lambda > 0, & Poisson \\ B(p), & \theta = p \in (0,1), & Bernoulli \\ U(a,b), & \theta = a,b; \ a < b, & Uniform \\ \mathcal{N}(a,\sigma^2), & \theta = a,\sigma; \ a \in R,\sigma > 0, & Normal \end{cases}$$

Statistics – an arbitrary Borel, measurable function – $\theta^* = \theta^*(X_1, ... X_n)$ is estimate of θ ; θ^* – random value (as function of the sample **X**).

Point Estimate

Lecture 3(III) in details

<u>Definition 2.</u> Statistics θ^* – unbiased $\theta^* = \theta^*(X_1, ... X_n)$ – estimation of the true parameter θ ; if for $\forall \theta \in \Theta$, $E\theta^* = \theta$, n - fixed

Unbiasedness – no error on average (after using)

<u>Definition 3.</u> Statistics θ^* – asymptotically unbiased estimation of θ ; if $\forall \theta \in \Theta$ the convergence takes place: $E\theta^* \to \theta$ if $n \to \infty$

❖ Asymptotically unbiasedness – the difference between its mean and true parameter decrease with increasing of sample size

<u>Definition 4.</u> Statistics $\theta^* = \theta^*(X_1, ... X_n)$ – consistent estimation of θ , if for $\forall \theta \in \Theta$, $\theta^* \stackrel{P}{\to} \theta$, if $n \to \infty$

❖ Consistence – it means that the sequence of estimates tends to unknown parameter with increasing of the number of observations

Unbiasedness of Statistics

- MLM illustrates definition 1 for Family with Normal distribution (p.7, current presentation).
- Interpretation of asymptotic unbiasedness (definition 2) is presented on the graph



```
clear
         % AsymptoticUnbiasedness.m
X=random('norm',3,1,1,2000);
meani=zeros(1,40); n=zeros(1,40);
 for i=1:40
    rightpoint=50*i;
    meani(i)=mean(X(1:rightpoint));
    n(i)=rightpoint;
 end
 plot(n(1:end),meani(1:end),'r*'); hold on;
 plot([0;n(end)],[3;3],'linewidth',1.5);
 plot(0,2.5,'m0');
set(gca,'fontsize',14)
lg=legend('asymptotic unbiasedness',...
           'theoretical','scale point')
   set(lg,'fontsize',14); grid on;
   title('Asymptotic Unbiasedness')
```


How to get a point estimate? 1. Moment method .

The main idea: each moment of r. v. X_1 – is some function h of θ ; substituting the sample analogue of the moment in the inverse function h⁻¹ with respect to θ instead of the true value, we get an estimate θ^* of the true value θ .

Property of MM estimation:

Let $\theta^* = h^{-1}(\overline{g(X)})$ – MM estimate of , h^{-1} – continuous function then θ^* – consistent estimate.

Interpretation: The MM estimate is taken as an estimate of a random parameter value, at

which the true point coincides with the moment of sampling

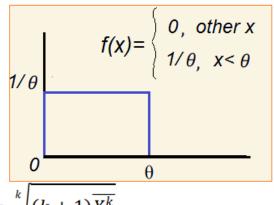
Example: $X_1,...X_n$ − sample ∈ uniform distribution $U(0,\theta)$,

Determine θ_1^* and θ_k^* (using the first and k – th moments):

a) θ_1^* : g(y) = y; for uniform distributed random variable f.e. X_1

$$EX_1 = \frac{\theta}{2}$$
, so $\theta = 2EX_1$, $\theta_1 = 2\overline{X}$

b)
$$\theta_k^* : EX_1^k = \int_0^b y^k \frac{1}{\theta} dy = \frac{\theta^k}{k+1}; \quad \theta = \sqrt[k]{(k+1)EX_1^k} \Rightarrow \theta_k^* = \sqrt[k]{(k+1)\overline{X_1^k}}$$



$$=$$
 $\sqrt[k]{(k+1)\overline{X_1^k}}$

Here you can watch a short explanation about properties of uniform distribution:

2. Maximum likelihood method (MLM)

2. Maximum likelihood method (MLM)

the most likely ~
the most probably

MLM – another approach to construct estimate of unknown distribution's parameters using sample $(X_1, ... X_n)$.

The main idea: as the most plausible parameter value will be taken the value θ , maximizing probability of obtaining the sample $(X_1, ..., X_n)$

$$P(X_1 \in (y, y + dy) = f_{\theta}(y)dy \pmod{f(y, \theta)} = f_{\theta}(y)$$

Given the nature of random variable, we proposed the following kind of density function:

$$f(y,\theta) = \begin{cases} f(y,\theta), & \text{if } \mathcal{F}_{\theta} - \text{absolutely continuous} \\ P_{\theta}(X_1 = y), & \text{if } \mathcal{F}_{\theta} - \text{descrete} \end{cases}$$

Here \mathcal{F}_{θ} – distribution family.

Definition. Likelihood function (LF) is

$$f(x_1, x_2, ..., x_n, \theta) = f(X_1, \theta) \cdot f(X_2, \theta) \cdot ... \cdot f(X_n, \theta) =$$

$$= \prod_{i=1}^n f(X_i, \theta) \text{ and (LLF) Logarithmic likelihood function}$$

$$- is L(X_1, X_2, ..., X_n, \theta) = \ln(f(X_1, X_2, ..., X_n, \theta)) = \sum_{i=1}^n \ln f(X_i, \theta)$$

MLM for Poisson distribution. Example

Let $X_1, ..., X_n \in P_{\lambda}$, Poisson family, $\lambda > 0$.

Find $\widehat{\lambda}$: Based on density function for Poisson family distribution P_{λ} :

$$f_{\lambda}(y) = P(X_1 = y) = \frac{\lambda^y}{y!} e^{-\lambda}; \quad y = 0, 1, 2, ...$$

We will determine likelihood function

$$f(X_1, X_2, ..., X_n, \lambda) = \prod_{i=1}^n \frac{\lambda^{X_i}}{X_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^n X_i}}{\prod_{i=1}^n X_i!} e^{-\lambda n} = \frac{\lambda^{n\bar{X}}}{\prod_{i=1}^n X_i!} e^{-\lambda n}; \quad \lambda > 0,$$

but easier to use L: $L(X_1, X_2, ... X_n, \lambda) = \ln f(X_1, ... X_n, \lambda) =$

$$= \ln \left(\frac{\lambda^{n\bar{X}}}{\prod X_i!} e^{-n\lambda} \right) = \underline{n\bar{X}} \ln \lambda - \ln \prod X_i! - n \lambda;$$

partial derivative:

$$\frac{\partial}{\partial \lambda}L(X_1,X_2,...X_n,\lambda) = \frac{n\bar{X}}{\lambda} - n = 0$$
, $\hat{\lambda} = \bar{X}$, $\hat{\lambda} - maximal\ value$

MLM for Normal distribution. Example

Let sample
$$X_1, ..., X_n \in \mathcal{N}(a, \sigma^2)$$
, $a \in R, \sigma > 0$; a, σ — unknown

$$f(y, a, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(y-a)^2}{2\sigma^2}}; \quad -N(\alpha, \sigma^2)$$

$$LF: f(X_1, X_2, ... X_n, a, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(X_i - a)^2}{2\sigma^2}} = \frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}} e^{\frac{-\sum_{i=1}^n (X_i - a)^2}{2\sigma^2}}$$

$$LLF: L(X_1, X_2, ... X_n, a, \sigma^2) = \ln f(X_1, X_2, ..., X_n, a, \sigma^2) =$$

$$= -\ln(2\pi)^{\frac{n}{2}} - \frac{n}{2}\ln(\sigma^2) - \frac{\sum_{i=1}^{n}(X_i - a)^2}{2\sigma^2}$$

Find extreme points:

$$\begin{cases} \frac{\partial L}{\partial a} = & \frac{2\sum_{i=1}^{n} (X_i - a)}{2\sigma^2} = \frac{n\overline{X} - na}{\sigma^2} = 0\\ \frac{\partial L}{\partial \sigma^2} = & -\frac{n}{2\sigma^2} + \frac{\sum_{i=1}^{n} (X_i - a)^2}{2\sigma^4} = 0 \end{cases}$$

LM estimations :
$$n\bar{X} - na = 0$$
; $-\sigma^2 + \frac{1}{n} \sum_{i=1}^{n} (X_i - a)^2 = 0$

$$\hat{a} = \bar{X}$$
, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = S^2$ – identical to the first and the second empirical moments.

Gamma function properties

Recall the basic properties of the gamma function: Remark:

1)
$$\Gamma(\alpha,\lambda) = \int_0^\infty x^{\lambda-1} e^{-\alpha x} dx = \Gamma(\lambda)/\alpha^{\lambda}$$

1)
$$\Gamma(\alpha, \lambda) = \int_0^\infty x^{\lambda - 1} e^{-\alpha x} dx = \Gamma(\lambda)/\alpha^{\lambda}$$
,
2) $\Gamma(\alpha, \lambda) = \int_0^\infty x^{\lambda - 1} e^{-x/\alpha} dx = \alpha^{\lambda} \Gamma(\lambda)$
3) $\Gamma(1) = 1$, $(\alpha = 1)$
4) $\Gamma(\lambda + 1) = \lambda \Gamma(\lambda)$, $(\alpha = 1)$
5) $\Gamma(1/2) = \sqrt{\pi}$, parameters α – scale, λ – shape.

3)
$$\Gamma(1) = 1$$
, $(\alpha = 1)$

4)
$$\Gamma(\lambda + 1) = \lambda \Gamma(\lambda)$$
, $(\alpha = 1)$

5)
$$\Gamma(1/2) = \sqrt{\pi}$$
, parameters α – scale, λ – shape.

The gamma function provides the relationship of different distributions!

Gamma distribution

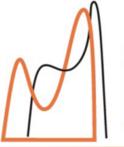
Probability density function:
$$\Gamma \sim \gamma(\alpha,\lambda): \quad f_{\gamma(\alpha,\lambda)}(x) = \begin{cases} \frac{\alpha^{\lambda}}{\Gamma(\lambda)} x^{\lambda-1} e^{-\alpha x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Estimate of distribution parameters by the sample:

Expectation and variance of Gamma distribution:

$$\widehat{\alpha} = \left(\frac{\overline{x}}{S^2}\right), \qquad \widehat{\lambda} = \left(\frac{\overline{x}}{S}\right)^2$$

$$E \gamma(\alpha, \lambda) = \frac{\lambda}{\alpha}, \quad D\gamma(\alpha, \lambda) = \frac{\lambda}{\alpha^2}$$



Properties of Gamma distribution.

КОМПЬЮТЕРНЫХ

<u>Lemma 1.</u>

The property of stability by summation:

Let $X_1, ..., X_n$ are independent and ξ_i have Gamma distribution $\Gamma_{\alpha,\lambda_i}$,

i = 1, ..., n, then their sum has Gamma distribution with parameters α , $\lambda = \lambda_1 + \cdots + \lambda_n$: $\Gamma_{\alpha,\lambda}$.

Remark.

The square of r. v. with standard normal distribution has *Gamma distribution.* $\Gamma(1/2, 1/2)$

It would be great to confirm the Generate sample in ML: remark graphically!

Y=random('gamma',0.5,0.5,1,2000);

Lemma 2

Proof:

If ξ has standard normal distribution, then ξ^2 has Gamma distribution $\Gamma_{1/2,1/2}$.

Find the derivative of distribution function of r.v. ξ^2 , let's show that this resulting function – is the density function:

$$\underline{y \leq 0}: \qquad F_{\xi^{2}}(y) = P(\xi^{2} < y) = 0 \rightarrow \underline{f_{\xi^{2}}(y)} = 0$$

$$\underline{y \geq 0}: \qquad F_{\xi^{2}}(y) = P(-\sqrt{y} < \xi < \sqrt{y}) = F_{\xi}(\sqrt{y}) - F_{\xi}(-\sqrt{y}),$$

$$f_{\xi^{2}}(y) = (F_{\xi^{2}}(y))' = \underline{F_{\xi}'(\sqrt{y})} \frac{1}{2\sqrt{y}} + \underline{F_{\xi}'(-\sqrt{y})} \frac{1}{2\sqrt{y}} = \underbrace{\int_{0}^{Normal st. dens. fur} \underline{f_{\xi}'(\sqrt{y})}}_{Normal st. dens. fur} = \underbrace{\int_{0}^{Normal st. dens. fur} \underline{f_{\xi}'(\sqrt{y})}}_{\sqrt{y}} = \underbrace{\int_{0}^{Normal st. dens. fur} \underline{f_{\xi}'(\sqrt{y})}_{\sqrt{y}}}_{\sqrt{y}} = \underbrace{\int_{0}^{Normal st. dens. fur} \underline{f_{\xi}'(\sqrt{y})}_{\sqrt{y}}}_{\sqrt{y}} = \underbrace{\int_{0}^{Normal st. dens. fur}_{\sqrt{y}}_{\sqrt{y}}_{\sqrt{y}}}_{\sqrt{y$$

Continue proof, taking into account both semi-intervals for F_{ξ^2}

$$\int_{-\infty}^{\infty} f_{\xi^2}(y) \, dy = \int_{-\infty}^{\infty} {1/2 \choose 2}^{1/2} \frac{y^{1/2-1} e^{-y/2}}{\Gamma(1/2)} dy = {1/2 \choose 2}^{1/2} \frac{\Gamma(1/2, 1/2)}{\Gamma(1/2)} = 0$$

$$= [remarks (1,4)] = \frac{\binom{1/2}{2}}{\Gamma(\frac{1}{2})\binom{1/2}{2}} = 1$$

$$= \int_{\Gamma(\frac{1}{2})} \frac{(1/2)^{1/2}}{(1/2)^{1/2}} = 1$$
so $f_{\xi^2}(y)$ - density function

Distribution χ 2 (Pearson)

Lemma 3: If
$$\xi_1, ..., \xi_k$$
 – are independent and have standard normal distribution, then r. v. $\chi^2 = \xi_1^2 + \cdots + \xi_k^2$ has χ^2 or Pearson distribution – $\Gamma\left(\frac{1}{2}, \frac{k}{2}\right)$.

Definition:

Distribution of k squares of independent r. v. with St. Norm. Distr. is called chi-square (χ_k^2) with k-degrees of freedom and denoted H_k .

According to lemma 3 H_k is the same as $\Gamma(1/2, k/2)$, so distribution function for family distributions H_k depends on k and equal

$$f(y) = \begin{cases} \frac{1}{2^{\frac{k}{2}} \Gamma(k/2)} y^{\frac{k}{2} - 1} e^{-\frac{y}{2}}, y > 0 \\ 0, & y \le 0 \end{cases}$$

Remarks:

Stability of χ^2 with respect to summation follows from the stability of Γ - distribution.

Note that $H_2 = \Gamma_{1/2,1} = EXP(1/2)$, Exponential distribution.

Distribution χ 2 properties

ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ ИНИВЕРСИТЕТ

P 2: 3

(1-3)

If r. v.
$$\chi^2 \in H_k$$
 and $\psi^2 \in H_m$, then the sum $\chi^2 + \psi^2 \in H_{m+k}$.

Let ξ_1, ξ_2, \dots – are independent, $\in N(0,1)$, then $\xi_1^2 + \dots + \xi_k^2$ has the same distribution as χ^2 , analogically ψ^2 and $\xi_k^2 + \dots + \xi_{k+m}^2$, so the sum $\xi_1^2 + \dots + \xi_{k+m}^2 \in H_{m+k}$, is proven.

$$(1-3)$$

Try to guess approach for proof, the main idea!

If $\chi^2 \in H_k \implies E\chi^2 = k$, $D\chi^2 = 2k$ $\xi_1, \xi_2, ... -$ are independent with NSD, then

$$E\xi_1^2 = 1, D\xi_1^2 = E\xi_1^4 - (E\xi_1^2)^2 = [...] = 3 - 1 = 2,$$

 $\begin{bmatrix} based \ on \ theory \ prob. \ property: \\ E\xi^{2k} = (2k-1)!! = (2k-1)(2k-3)*...*3*1, \ E\xi_1^4 = 3 \end{bmatrix}$

so
$$E\chi^2 = E(\xi_1^2 + \dots + \xi_k^2) = k$$
:

$$E\chi^2 = E(\xi_1^2 + \dots + \xi_k^2) = k;$$

 $D\chi^2 = D(\xi_1^2 + \dots + \xi_k^2) = kD(\xi_1^2) = 2k, \text{ is proven.}$

Let
$$\chi_n^2 \in H_n$$
, then if $n \to \infty$ $\xrightarrow[n]{\chi_n^2} \xrightarrow[]{P} 1$, $\xrightarrow[\sqrt{2n}]{\chi_n^2 - n} \Rightarrow N(0,1)$.

For any n, χ_n^2 has the same distribution as $\xi_1^2 + \dots + \xi_n^2$, $\xi_i \in N(0,1)$ and independent. According to LLN and CLT (central limit theorem), have

$$(\xi_1^2 + \dots + \xi_n^2)/n \xrightarrow{P} E\xi_1^2 = 1$$
, and $\frac{\xi_1^2 + \dots + \xi_n^2 - n}{\sqrt{2n}} = \frac{\xi_1^2 + \dots + \xi_n^2 - nE \xi_1^2}{\sqrt{nD \xi_1^2}} \Rightarrow N(0,1)$

Distribution χ 2 properties (4-5)

Let $\chi_n^2 \in H_n$, then if $n \to \infty$, the following weak convergence

P 4:

takes place
$$\sqrt{2\chi_n^2} - \sqrt{2n-1} \Rightarrow N(0,1)$$

Therefore for large $n \equiv the$ approximation for distribution function

$$H_n(x) = P(\chi_n^2 < x) \text{ and } H_n(x) \approx \Phi_{0,1}(\sqrt{2x} - \sqrt{2n-1})$$

•
$$\sqrt{2n} - \sqrt{2n-1} \rightarrow 0$$
, $n \rightarrow \infty$ (clear);

$$\sqrt{2\chi_n^2} - \sqrt{2n} = \frac{2}{1 + \sqrt{\chi_n^2/n}} \frac{\chi_n^2 - n}{\sqrt{2n}} \Rightarrow N(0,1)$$
because based on P3 $\frac{2}{1 + \sqrt{\chi_n^2/n}} \stackrel{p}{\rightarrow} 1$ and $\frac{\chi_n^2 - n}{\sqrt{2n}} \Rightarrow N(0,1)$
• $P(\chi_n^2 < x) = P(\sqrt{2\chi_n^2} - \sqrt{2n-1} < \sqrt{2x} - \sqrt{2n-1})$

P 5:

If r. v.
$$\xi_1, ..., \xi_k$$
 – Independent and belong to $N(a, \sigma^2)$,

then
$$\chi_k^2 = \sum_{i=1}^k \left(\frac{\xi_i - a}{\sigma}\right)^2 \in H_k$$
 clear

Examples of real characteristics submitting this law

☐ The normalized sample variance

☐ Measure of deviation of a hypothetical distribution from a theoretical one

Student Distribution (StD)

Definition

Let $\xi_0, \xi_1, ..., \xi_k \in N(0,1)$ and independent, the distribution of the random variable

$$t_k = \frac{\xi_0}{\sqrt{\frac{\xi_1^2 + \dots + \xi_k^2}{k}}}$$

is called Student distribution with k degrees of freedom and denoted T_k or the same r. v.:

$$t_k = \frac{\xi}{\sqrt{\chi_n^2/k}}$$
, $\xi \in N(0,1)$, $\chi_k^2 \in H_k$

with density function:

$$f_k(y) = \frac{\Gamma((k+1)/2)}{\sqrt{\pi k} \Gamma(k/2)} \left(1 + \frac{y^2}{k}\right)^{-(k+1)/2}$$

Student Distribution Properties

P 6:

Student density function $f_k(y)$ is symmetric:

if random variable $t_k \in T_k$, then $-t_k \in T_k$.

P 7:

Student distribution slightly (weakly) converges to N(0,1) if $n \to \infty$.

Proof: According to P3, $\frac{\chi_n^2}{n} \stackrel{P}{\to} 1$, if $n \to \infty$ and $t_k = \frac{\xi}{\sqrt{\chi_k^2/k}} \Rightarrow \xi \in N(0,1)$, is proven.

Remark:

For large k one can use normal density function for approximation StD!

Remark:

For k=1 Student distribution is Cauchy distribution with density function:

$$f_1(y) = \frac{1}{\pi}(1+y^2)^{-1}$$

Proof:

follows from $\Gamma(^1/_2) = \sqrt{\pi}$ and $\Gamma(1) = 1$.

Property. Brain Storm

P.8 There are moments of order m<k for Student distribution and there are no moments of order m≥k.

Brain Storm:

All existing moments of odd order are equal to zero! Why?

Examples of real characteristics submitting Student law

☐ The normalized of the deviation the mean value of the sample taken from a normally distributed General Population and theoretical one

☐ A measure of the deviation of the mean value of two independent samples taken from a normally distributed General Population

Fisher distribution

The Fisher distribution is also closely related to the normal one, it is often called the distribution of the variance ratio!

P 9:

If r. v.
$$f_{k,n} \in F_{k,n} \to \frac{1}{f_{k,n}} \in F_{n,k}$$
. is called Fisher's distribution.

Let $\chi_k^2 \in H_k$, $\psi_n^2 \in H_n$ both r. v. independent. Distribution of r. v.

$$f_{k,n} = \frac{\chi_k^2/k}{\psi_n^2/n} = \frac{n}{k} \frac{\chi_k^2}{\psi_n^2}$$

Definition

For any
$$x : F_{k,n}(x) = P(f_{k,n} < x) =$$

$$= P\left(\frac{1}{f_{k,n}} > \frac{1}{x}\right) = 1 - F_{n,k}\left(\frac{1}{x}\right). \quad \square$$

P 11:

P 10:

The Fisher distribution $F_{k,n}$ weakly converges to the degenerate distribution at the point c = 1for any tendency $k, n \to \infty$.

Let r.v.
$$t_k \in T_k$$
, then $t_k^2 \in F_{1,k}$.

Proof follows from definition of t_k , and $f_{1,k}$

Examples of real characteristics submitting Fisher law

- ☐ Ratio of variances of the two independent samples taken from a normally distributed General Population
- □A multidimensional analogue of Student statistics describing the difference of two sample vector averages constructed from two independent samples taken from a multidimensional normal population

Expectation (theoretical):

Variance: (theoretical):

$$E F(m_1, m_2) = \frac{m_2}{m_2 - 2}, \exists m > 2$$

$$D F(m_1, m_2) = \frac{2m_2^2(m_1 + m_2 - 2)}{m_1(m_2 - 2)^2(m_2 - 4)}, \quad \exists m_2 > 4$$

THANKS FOR YOUR ATTENTION! BE HEALTHY!