Лабораторная работа 5

Определение достоверности различий по t - критерию Стьюдента

t - критерий Стьюдента относится к параметрическим, следовательно, его использование возможно только в том случае, когда результаты эксперимента представлены в виде измерений по двум последним шкалам - интервальной и отношений и они имеют *нормальное* распределение. Проиллюстрируем возможности критерия Стьюдента на конкретном примере.

Предположим, необходимо выяснить эффективность обучения стрельбе по определенной методике. Для этой цели проводится сравнительный педагогический эксперимент, где одна группа (экспериментальная), состоящая из 8 человек, занимается по предлагаемой экспериментальной методике, а другая (контрольная) - по традиционной, общепринятой. Рабочая гипотеза заключается в том, что новая, предлагаемая методика окажется более эффективной. Итогом эксперимента является контрольная стрельба из пяти выстрелов, по результатам которых (табл. 1) нужно рассчитать достоверность различий и проверить правильность выдвинутой гипотезы.

Таблица 1 Сравнительные результаты обучения стрельбе

Группы	n	Очки							
Экспериментальная	8	35	40	28	32	30	25	43	44
Контрольная	8	23	20	43	35	15	26	24	28

Что же необходимо сделать для расчета достоверности различий по t - критерию Стьюдента?

1. Вычислить средние арифметические величины (\bar{X}) для каждой группы в отдельности по следующей

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} (3)$$

Проставив в формулу фактические значения из таблицы 1, получим:

$$\overline{X}9 = \frac{35 + 40 + \dots + 44}{8} = \frac{277}{8} \approx 35;$$

$$\overline{X}K = \frac{23 + 20 + \dots + 28}{8} = \frac{214}{8} \approx 27.$$

Сопоставление среднеарифметических величин показывает, что в экспериментальной группе данная величина выше, чем в контрольной. Однако для окончательного утверждения о том, что занимающиеся экспериментальной группы научились стрелять лучше, следует убедиться в статистической достоверности различий (t) между рассчитанными среднеарифметическими значениями.

2. Для этой цели дальше необходимо вычислить в обеих группах стандартное (квадратическое) отклонение(σ)по следующей формуле:

$$\sigma = \pm \frac{Xi \max - Xi \min}{K} , \qquad (4)$$

где Xi max - наибольший показатель; Xi min - наименьший показатель; K - табличный коэффициент.

Порядок вычисления стандартного отклонения (σ):

- определить Хі тах в обеих группах;
- определить Xi min в этих группах;
- определить число измерений в каждой группе (n);
- найти значение коэффициента *К* по специальной таблице (приложение 2), который соответствует числу измерений в группе (8). Для этого: в левом крайнем столбце под индексом (*n*) находим цифру 0, так как количество измерений в нашем примере меньше 10, а в верхней

строке - цифру 8; на пересечении этих строк - 2,85, что соответствует значению коэффициента K при 8 испытуемых;

- подставить полученные значения в формулу и произвести необходимые вычисления:

$$\sigma_{9} = \pm \frac{44 - 25}{2.85} \approx 6.6; \quad \sigma_{\kappa} = \pm \frac{43 - 15}{2.85} \approx 9.8.$$

3. Следующим этапом является вычисление стандартной ошибки среднего арифметического значения (m) по формуле:

$$m = \pm \frac{\sigma}{\sqrt{n-1}}$$
, когда $n < 30$ и $m = \pm \frac{\sigma}{\sqrt{n}}$, когда $n \ge 30$.

Для нашего примера подходит первая формула, так как n < 30. Вычислим для каждой группы значения (m):

$$m_9 = \pm \frac{6,6}{\sqrt{8-1}} = \frac{6,6}{2,6} \approx 2,5;$$
 $m_{\kappa} = \pm \frac{9,8}{\sqrt{8-1}} = \frac{9,8}{2,6} \approx 3,8.$

4. Вычислить среднюю ошибку разности по формуле:

$$t = \frac{\overline{X}_9 - \overline{X}_K}{\sqrt{m_9^2 + m_K^2}} = \frac{35 - 27}{\sqrt{2,5^2 + 3,8^2}} = \frac{35 - 27}{\sqrt{6,25 + 14,44}} = \frac{8}{\sqrt{20,69}} = \frac{8}{4,5} \approx 1,7.$$

5. По специальной таблице определить достоверность различий. Для этого полученное значение (t) сравнивается с граничным при 5%-ном уровне значимости $(t_{0,05})$ при числе степеней свободы $f=n_3+n_k-2$, где n_3 и n_k - общее число индивидуальных результатов соответственно в экспериментальной и контрольной группах. Если окажется, что полученное в эксперименте (t_ϕ) больше или равно граничному значению $(t_{\rm rp})$, т.е. $t_\phi \ge t_{\rm rp}$, то различия между средними арифметическими двух групп считаются достоверными при 5%-ном уровне значимости и наоборот, в случае, когда полученное t_ϕ меньше граничного значения $t_{\rm rp}$, считается, что различия недостоверны, и разница в среднеарифметических

показателях групп имеет случайный характер. Граничное значение при 5%ном уровне значимости ($t_{0,05}$) определяется следующим образом: - вычислить число степеней свободы f = 8+8-2=14;

- найти по таблице граничное значение $t_{0,05}$ при f=14.

В нашем примере граничное (табличное) значение $t_{0,05}$ =2,15, сравним это значение с вычисленным t, которое равно 1,7, т. е. *меньше* граничного значения (2,15). Следовательно, различия между полученными в эксперименте арифметическими средними значениями считаются недостоверными, а значит, недостаточно оснований говорить о том, что одна методика обучения стрельбе оказалась эффективнее другой. В этом случае можно записать: t=1,7 при P>0,05, это означает, что в случае проведения 100 вероятность (P) получения аналогичных экспериментов подобных результатов, когда средние арифметические величины экспериментальных групп окажутся выше контрольных, больше 5%-ного уровня значимости или меньше 95 случаев из 100. Итоговое оформление таблицы с учетом полученных расчетов и с приведением соответствующих параметров может выглядеть следующим образом (табл. 2).

Таблица 2 Сравнительные результаты обучения стрельбе

Группы	n				Оч	ки				\overline{X}	σ	m	t p)
Экспериментальная	8	35	40	28	32	30	25	43	44	35	6,6	2,5		
													1,7>0,	,05
Контрольная	8	23	20	43	35	15	26	24	28	27	9,8	3,8		

При сравнительно больших числах измерений условно принято считать, что если разница между средними арифметическими показателями равна или больше трех своих ошибок, то различия считаются достоверными. В этом случае достоверность различий определяется по следующему уравнению:

$$\overline{X}_{9} - \overline{X}_{\kappa} \ge 3\sqrt{m_{_{9}}^{^{2}} + m_{_{\kappa}}^{^{2}}}$$
 (5)

Правильное применение t - критерия предполагает нормальное распределение сравниваемых результатов. Если это условие не выполняется, то данный критерий применять не рекомендуется.

Задания для выполнения:

Задание 1

1. Используя t-критерий Стьюдента, установить уровень статистической значимости различий между двумя классами.

$N_{\underline{0}}$	8 класс А	8 класс Б	No	8 класс А	8 класс Б
1	81	64	10	71	62
2	60	60	11	60	78
3	88	77	12	80	60
4	72	80	13	83	51
5	71	85	14	74	73
6	91	53	15	64	67
7	82	68	16		
8	71	67	17		
9	60	71			

Задание 2

1. Используя t-критерий Стьюдента, установить уровень статистической значимости различий между двумя классами.

Баллы за выполнение контрольной работы

$N_{\underline{0}}$	8 класс А	8 класс Б	No	8 класс А	8 класс Б
1	81	45	10	71	62
2	60	60	11	60	78
3	88	40	12	80	60
4	72	50	13	83	51
5	71	30	14	74	73
6	91	53	15	64	67
7	82	68	16		
8	71	30	17		
9	60	60			

Задание 3

1. Используя t-критерий Стьюдента, установить уровень статистической значимости различий между двумя классами.

Баллы за выполнение контрольной работы

№	8 класс А	8 класс Б	No	8 класс А	8 класс Б	
1	81	64	10	71	62	
2	60	60	11	80	78	
3	75	77	12	80	60	
4	72	80	13	83	62	
5	80	85	14	74	73	
6	91	60	15	64	67	
7	82	68	16		76	
8	71	67	17		60	
9	60	71				

Задине 4

1. Используя t-критерий Стьюдента, установить уровень статистической значимости различий между двумя классами.

Баллы за выполнение контрольной работы

№	8 класс А	8 класс Б	No	8 класс А	8 класс Б
1	81	64	10	71	62
2	90	45	11	80	78
3	75	77	12	80	60
4	72	100	13	83	28
5	80	85	14	74	73
6	91	43	15	64	67
7	82	68	16		76
8	71	67	17		60
9	85	91			