
Functions in C++

1. Introduction to Functions

In C++, a function is a block of code that performs a specific task.
Functions help in organizing code into logical units, promoting
reusability, modularity, and readability.
Every C++ program has at least one function: main(). You can define
additional functions to break down complex problems.

2. Function Declaration, Definition, and Call

Function Declaration (Prototype)
Tells the compiler about the function’s name, return type, and parameters.
return_type function_name(parameter_list);
Example:
int add(int a, int b);
Function Definition
Contains the actual implementation of the function.
int add(int a, int b) {
 return a + b;
}

2. Function Declaration, Definition, and Call

Function Call
Invokes the function to execute its code.
int result = add(3, 5); // result is 8

Note: A function must be declared before it is called unless it is defined
before the call.

3. Function Parameters and Arguments

• Parameters are variables listed in the function declaration.
• Arguments are actual values passed to the function when it is called.
C++ supports three main ways to pass arguments:
1. Pass by Value – A copy of the argument is passed. Changes inside the

function do not affect the original variable.
void increment(int x) { x++; } // x is a copy

2. Pass by Reference – The function operates on the original variable.
void increment(int& x) { x++; }
// modifies original variable

3. Pass by Pointer – Similar to reference, but using pointers.
void increment(int* x) { (*x)++; }

4. Return Types

• A function can return a value using the return statement.
• If a function does not return a value, its return type is void.
• Since C++11, you can use auto for return type deduction (especially
useful with lambdas or templates).

Example:
auto multiply(double a, double b) {
 return a * b;
 // return type deduced as double
}

5. Default Arguments

You can specify default values for parameters in the function
declaration:
void greet(std::string name = "Guest") {
 std::cout << "Hello, " << name << "!\n";
}

greet(); // prints "Hello, Guest!"
greet("Alice"); // prints "Hello, Alice!"

Rule: Default arguments must appear after non‐default ones.

6. Function Overloading

C++ allows multiple functions with the same name but different
parameter lists (number, type, or order of parameters).
int add(int a, int b) { return a + b; }
double add(double a, double b) { return a + b; }

The compiler selects the correct version based on the arguments
provided.
Note: Overloading is not possible based only on return type.

7. Inline Functions

The inline keyword suggests to the compiler to insert the function’s
code directly at the call site (to reduce function call overhead).
inline int square(int x) {

return x * x;
}

Modern compilers often ignore inline and decide optimization
themselves.

8. Recursion

A function can call itself — this is called recursion.
Example: factorial function
int factorial(int n) {
 if (n <= 1) return 1;
 return n * factorial(n - 1);
}

Be cautious: infinite recursion leads to stack overflow.

9. Best Practices

• Keep functions short and focused on a single task.
• Use meaningful names (calculateTax, not func1).
• Prefer pass‐by‐reference‐to‐const for large objects to avoid copying
void print(const std::vector<int>& vec);

• Always consider error handling (e.g., invalid inputs).

Function Templates in C++

1. Introduction to Generic Programming

C++ supports generic programming—writing code that works with any
data type without duplicating logic.
The primary mechanism for this is templates.
A function template allows you to define a single function that can
operate on multiple types (e.g., int, double, std::string) while
maintaining type safety.
💡 Goal: Write once, use with many types — safely and efficiently.

2. Why Use Function Templates?

Without templates, you might write:
int max(int a, int b) { return (a > b) ? a : b; }
double max(double a, double b) { return (a > b) ? a : b; }
std::string max(const std::string& a, const std::string& b)
{ return (a > b) ? a : b; }
This is redundant and error‐prone.
With a function template, you write it once:
template <typename T>
T max(T a, T b) {
 return (a > b) ? a : b;
}
Now it works for any type T that supports the > operator.

3. Syntax of Function Templates

Basic Form:
template <typename T>
return_type function_name(parameter_list) {
 // function body
}

template <typename T> declares a template parameter T.
You can also use class instead of typename (they are equivalent here):
template <class T>

3. Syntax of Function Templates
Example:
#include <iostream>

template <typename T>
T add(T a, T b) {
 return a + b;
}

int main() {
 std::cout << add(3, 4) << '\n'; // int
 std::cout << add(2.5, 1.3) << '\n'; // double
 std::cout << add("Hello, ", "World!"); // ❌ Error! Can't add const char*
}

⚠ The compiler instantiates a version of the function for each type used. If the operation isn’t valid for a type, compilation fails.

4. Template Type Deduction

You usually don’t need to specify the type explicitly:
auto result = add(10, 20); // T deduced as int

But you can specify it if needed:
auto result = add<double>(10, 20);
// forces T = double → returns 30.0

This is useful when arguments don’t clearly indicate the type or when
you want to override deduction.

5. Multiple Template Parameters

You can have more than one type parameter:
template <typename T, typename U>
void printPair(T first, U second) {
 std::cout << "First: " << first <<
 ", Second: " << second << '\n';
}

// Usage:
printPair(42, 3.14); // T = int, U = double
printPair("Key", "Value");// T = const char*, U = const char*
Note: T and U can be the same or different types.

6. Non‐Type Template Parameters (Brief Overview)

While less common in function templates, C++ also allows non‐type
parameters (e.g., integers, pointers known at compile time):
template <int N>
void printSize() {
 std::cout << "Array size: " << N << '\n';
}

printSize<10>(); // prints "Array size: 10"

However, non‐type parameters are more frequently used with class
templates.

7. Common Pitfalls

No automatic type conversion between arguments
template <typename T>
T add(T a, T b);

add(1, 2.5); //❌ Error! T cannot be both int and double
Fix: Make types match explicitly:
add<double>(1, 2.5); // OK
Header‐only usage
Function templates must be defined in headers (not .cpp files), because the
compiler needs the full definition to instantiate them for each type.
Operator/operation must be defined
Your template assumes certain operations exist (e.g., +, ==). If not, compilation
fails.

Vectors in C++

Introduction to std::vector

In C++, the std::vector is a dynamic array container provided by the
Standard Template Library (STL). It is part of the <vector> header and
offers a flexible, efficient, and safe way to store sequences of elements.
Unlike built‐in arrays:
• Vectors can grow or shrink at runtime.
• They manage their own memory automatically.
• They provide bounds‐checked access (via .at()) and rich member
functions.
✅ Key advantage: Combines the speed of arrays with the flexibility of
dynamic resizing.

2. Basic Syntax and Declaration
To use std::vector, include the header:
#include <vector>
General form:
std::vector<type> name; // empty vector
std::vector<type> name(size);
// vector with 'size' default-initialized elements
std::vector<type> name(size, value);// vector with 'size' copies of 'value'
std::vector<type> name{init_list}; // initializer list (C++11+)

Examples:
std::vector<int> numbers; // empty
std::vector<double> scores(10); // 10 zeros
std::vector<std::string> words(5, "hello"); // 5 copies of "hello"
std::vector<char> letters{'a', 'b', 'c'}; // initializer list

3. Common Member Functions

Operation Function Description

Add element at end .push_back(x) Appends x

Remove last element .pop_back() Removes (no return)

Access element vec[i] or .at(i) [] is fast; .at(i) throws
std::out_of_range on invalid index

Current size .size() Number of elements

Capacity .capacity() Allocated storage size

Reserve memory .reserve(n) Pre‐allocate memory for efficiency

Resize .resize(n) Change size (adds default or
specified values)

Check if empty .empty() Returns true if size is 0

Clear all .clear() Removes all elements

3. Common Member Functions

Example:
std::vector<int> v;
v.push_back(10);
v.push_back(20);
std::cout << v[0] << '\n'; // 10
std::cout << v.size() << '\n'; // 2
v.pop_back(); // now size = 1

4. Iterators and Range‐Based Loops

Vectors support iterators, enabling generic algorithms:
// Using iterators
for (auto it = v.begin(); it != v.end(); ++it) {
 std::cout << *it << ' ';
}

// Range-based for loop (C++11+)
for (const auto& elem : v) {
 std::cout << elem << ' ‘;
}
🔍 Prefer const auto& to avoid unnecessary copying, especially for large objects.

5. Iterating Over Vector Elements in C++
In C++, there are several common and idiomatic ways to loop through (or iterate over) the elements of a
std::vector. Each method has its own use cases and advantages.
1. Range‐Based for Loop (C++11 and later)
✅ Most common and recommended for simple traversal
#include <vector>
#include <iostream>
std::vector<int> vec = {10, 20, 30};
// Read-only access
for (const auto& element : vec) {
 std::cout << element << ' ';
}
// Modify elements
for (auto& element : vec) {
 element *= 2;
}

5. Iterating Over Vector Elements in C++

• Use const auto& to avoid copying (especially important for large or
non‐trivial types).

• Use auto& if you need to modify the elements.
• Clean, safe, and concise.

5. Iterating Over Vector Elements in C++

2. Traditional for Loop with Index
for (size_t i = 0; i < vec.size(); ++i) {
 std::cout << vec[i] << ' ‘;
}
• Gives you direct access to the index, which is useful when you need
positional information.

• ⚠ Be cautious: vec.size() returns size_t (unsigned). Avoid decrementing
below zero.

🔒 Safer alternative with signed index (C++20):
for (int i = 0;
i < static_cast<int>(vec.size()); ++i)

5. Memory Management & Performance

• Vectors store elements in contiguous memory (like arrays), enabling
cache‐friendly access.

• When capacity is exceeded, the vector reallocates (typically doubling
capacity), which involves copying/moving elements.

• To avoid frequent reallocations:
• Use .reserve(n) if you know the approximate number of elements.
• Use .shrink_to_fit() to reduce excess capacity (non‐binding request).
Example:
std::vector<int> v;
v.reserve(1000);
// avoids reallocations for first 1000 push_backs

