
Lecture: Introduction to Basic
Programming Constructs

1. The Simplest Program

1. The Simplest Program
#include <iostream>

int main() {

return 0;

}

• #include <iostream>: includes input/output functionality.
• int main(): the entry point of the program.
• return 0;: indicates successful execution.

2. Data Types

Fundamental built-in types include:
• Integer types: int, short, long, long long
• Floating-point types: float, double
• Character types: char, wchar_t
• Boolean type: bool (true/false)
Each type has a specific size and range (e.g., int is typically 32 bits).

2. Data Types

1. Fundamental (Built-in) Types
These are provided by the language itself and fall into several
categories.
a) Integral Types
Used to represent whole numbers and characters.

2. Data Types

Type Typical Size Value Range (approx.)

bool 1 byte true or false

char 1 byte –128 to 127 or 0 to 255*

short 2 bytes –32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

int 4 bytes –2,147,483,648 to 2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

long 4 or 8 bytes Platform-dependent

unsigned long 4 or 8 bytes —

long long (C++11) 8 bytes ≈ ±9 × 10¹⁸

unsigned long long 8 bytes 0 to ≈ 1.8 × 10¹⁹

2. Data Types

For portable code, use fixed-width integer types from <cstdint>:
#include <cstdint>

std::int32_t i; // exactly 32-bit signed integer

std::uint8_t flag;//exactly 8-bit unsigned
integer

2. Data Types

Represent real (fractional) numbers.

⚠ Warning: Floating-point arithmetic is not exact—avoid using it for
financial calculations or equality comparisons without tolerance.

Type Size Precision Approximate Range

float 4 bytes ~6–7 digits ±3.4 × 10³⁸

double 8 bytes ~15–16 digits ±1.7 × 10³⁰⁸

long double 8–16 bytes platform-dependent usually ≥ double

3. Variables and Initialization in C++

What Is a Variable?
In C++, a variable is a named storage location in memory that holds a value of a
specific data type. Before using a variable, you must declare it, specifying its type
and name.
Example:
int age; // declaration
age = 25; // assignment
Why Initialization Matters
Uninitialized variables (especially of built-in types like int, double, etc.) contain
garbage values—whatever data happened to be in that memory location. Reading
such values leads to undefined behavior, which can cause bugs that are hard to
detect.
✅ Always initialize your variables!

3. Variables and Initialization in C++

C++ supports several initialization syntaxes. The most important ones
are:
1. Copy Initialization
Uses the = symbol.
int x = 42;

double price = 99.99;

Simple and familiar.
May involve implicit conversions (e.g., int x = 3.14; truncates to 3).

3. Variables and Initialization in C++

2. Uses parentheses.
int x(42);
std::string name("Alice");
• Explicit and often used with constructors.
• Allows more control in object creation.
3. Uniform (Brace) Initialization — C++11 and later
Uses curly braces {}.
int x{42};
double y{3.14};
std::vector<int> v{1, 2, 3};
Also known as list initialization.

3. Variables and Initialization in C++

✅ Advantages:
Prevents narrowing conversions (e.g., int z{3.14}; → compiler error).
Works consistently across all contexts (scalars, arrays, objects).
Avoids the "most vexing parse" problem.
⚠ Example of narrowing prevention:
int bad{3.14}; // Error: cannot narrow double
to int

int ok = 3.14; // Warning (or silent
truncation) — allowed!

3. Variables and Initialization in C++

auto and Initialization
The auto keyword deduces the type from the initializer:
auto count = 10; // int
auto price = 19.99; // double
auto message = "Hello"; // const char*
auto list = {1, 2, 3}; //
std::initializer_list<int>

⚠ Be cautious: auto preserves the exact type, including reference or
const-ness if used with & or const.

4. Input and Output in C++: Console I/O

C++ uses the Standard Library for input and output operations. The
primary tools are:
• std::cin — for input (typically from the keyboard)
• std::cout — for output (to the console)
• std::cerr / std::clog — for error/logging messages
These objects are defined in the <iostream> header.

4. Input and Output in C++: Console I/O

1. Including the Required Header
Always start with:
#include <iostream>

This makes std::cin, std::cout, and related stream objects
available.

4. Input and Output in C++: Console I/O

2. Output with std::cout
Use the insertion operator << to send data to the console.
Basic Example:
#include <iostream>
int main() {
 std::cout << "Hello, World!" << std::endl;
 return 0;
}
Key Points:
• You can chain multiple items:
std::cout << "The value is: " << 42 << '\n’;
• std::endl inserts a newline and flushes the output buffer.
• Prefer '\n' over std::endl unless you explicitly need flushing (for performance reasons).

4. Input and Output in C++: Console I/O

Formatting:
For advanced formatting (e.g., decimal precision), include <iomanip>:
#include <iomanip>
std::cout << std::fixed << std::setprecision(2)
<< 3.14159; // prints 3.14

4. Input and Output in C++: Console I/O

3. Input with std::cin
Use the extraction operator >> to read data from the keyboard.
Basic Example:
int age;
std::cout << "Enter your age: ";
std::cin >> age;
How It Works:
• std::cin >> variable reads formatted input based on the variable’s type.
• Skips leading whitespace (spaces, tabs, newlines).
• Stops reading at the next whitespace or invalid character.
Reading Multiple Values:
int x, y;
std::cin >> x >> y; // e.g., input: "10 20"

6. Implicit and Explicit Type Conversions in C++

In C++, type conversion (or type casting) refers to the process of
converting a value from one data type to another. These conversions
can happen automatically (implicitly) or be explicitly requested by the
programmer.
1. Implicit Type Conversion (Coercion)
Implicit conversion is performed automatically by the compiler without
any programmer intervention. It occurs when an expression of one
type is used in a context that expects a different, but compatible, type.

6. Implicit and Explicit Type Conversions in C++

Common Scenarios:
Assignment:
int i = 42;
double d = i; // int → double (widening — safe)

Arithmetic operations:
char c = 'A';
int result = c + 10; // char promoted to int

6. Implicit and Explicit Type Conversions in C++

Standard Conversions Include:
• Integral promotions (e.g., char → int)
• Floating-point promotions (float → double)
• Conversions between numeric types (int ↔ double, bool → int, etc.)
• Pointer conversions (e.g., derived class pointer → base class pointer)

6. Implicit and Explicit Type Conversions in C++

Narrowing conversions may lose
double pi = 3.14159;
int n = pi; // n = 3 — fractional part lost!

Signed/unsigned mismatches can cause logic errors:
if (-1 < 1U) { /* false! */ }
// -1 becomes a large unsigned value

🔒 Safety Note: Brace initialization ({}) blocks narrowing implicit
conversions:
int x{3.14}; // Compile-time error!

6. Implicit and Explicit Type Conversions in C++

When you need to override the compiler’s default behavior or perform
a conversion that isn’t allowed implicitly, you must use explicit casting.
C++ provides four named cast operators, each with a specific purpose
and level of safety.
static_cast — General-purpose, compile-time cast
double d = 3.99;
int i = static_cast<int>(d); // i = 3

6. Implicit and Explicit Type Conversions in C++

Avoid C-Style Casts
C-style casts look like:
int i = (int)3.14;
int j = int(3.14);
They are dangerous because they:
• Combine multiple C++ cast types silently
• Bypass compiler safety checks
• Are hard to find in code (no clear keyword)
❌ Avoid them in modern C++. Use named casts instead.

7. Implicit and Explicit Type Conversions in C++

In C++, operators are symbols that perform operations on variables
and values. Among the most fundamental are:
• Arithmetic operators – for mathematical calculations
• Logical operators – for combining or inverting Boolean conditions
Understanding these is essential for writing expressions, controlling
program flow, and implementing algorithms.

7. Basic Arithmetic and Logical Operations in C++

Arithmetic Operators
C++ supports the standard mathematical operations. They work
primarily with numeric types (int, float, double, etc.).
Operator Name Example Result (if a = 10, b = 3)

+ Addition a + b 13

- Subtraction a - b 7

* Multiplication a * b 30

/ Division a / b 3 (integer division)

% Modulus (remainder) a % b 1

7. Basic Arithmetic and Logical Operations in C++

Important Notes:
Integer vs. Floating-Point Division
If both operands are integers, / performs truncated integer division:
int x = 10 / 3; // x = 3
If at least one operand is floating-point, the result is floating-point:
double y = 10.0 / 3; // y ≈ 3.333...
Modulus (%)
• Only works with integer types (not float or double).
• Returns the remainder after division:
17 % 5 → 2
-17 % 5 → -2 // sign follows dividend (implementation-
defined in older standards)

7. Basic Arithmetic and Logical Operations in C++

Compound Assignment Operators
Combine operation and assignment:
a += 5; // equivalent to a = a + 5;
b *= 2; // b = b * 2;
c %= 4; // c = c % 4;

Available for: +=, -=, *=, /=, %=

7. Basic Arithmetic and Logical Operations in C++

 Increment and Decrement Operators
Special operators to increase or decrease a variable by 1.
Operator Name Example Effect

++x Pre-increment ++a Increments, then uses
value

x++ Post-increment a++ Uses value, then
increments

--x Pre-decrement --a Decrements, then uses
value

x-- Post-decrement a-- Uses value, then
decrements

7. Basic Arithmetic and Logical Operations in C++

Example:
int x = 5;
int y = ++x; // x = 6, y = 6
int z = x++; // z = 6, x = 7

⚠ Avoid complex expressions like a[++i] = i++ — they lead to
undefined behavior.

7. Basic Arithmetic and Logical Operations in C++

Logical Operators
Used to combine or invert Boolean expressions (true/false). Operands
are typically relational expressions (e.g., x > 5).
Operator Name Description Example

! Logical NOT Inverts the Boolean value !(5 > 3) → false

&& Logical AND True if both operands are
true (x > 0) && (x < 10)

|| Logical OR True if at least one of
operands is true

(x < 0) || (x > 10)

7. Basic Arithmetic and Logical Operations in C++

Short-Circuit Evaluation
C++ uses lazy evaluation:
• For A && B: if A is false, B is not evaluated.
• For A || B: if A is true, B is not evaluated.
This improves performance and enables safe checks.
Operator Precedence
From highest to lowest:
1. ! (NOT)
2. && (AND)
3. || (OR)
Use parentheses to clarify intent:
if (!(age < 18) && (hasLicense || isSupervised))

7. Basic Arithmetic and Logical Operations in C++

Though not logical themselves, they produce Boolean results used in logical
expressions:

❗ Common mistake: using = (assignment) instead of == (comparison):
if (x = 5) { ... } // Always true! Assigns 5 to x.

Operator Meaning Example

== Equal to x == y

!= Not equal to x != y

< Less than x < y

> Greater than x > y

<= Less than or equal x <= y

>= Greater than or equal x >= y

7. Basic Arithmetic and Logical Operations in C++

Operator Precedence Summary (Relevant Subset)
From highest to lowest priority:
1. ++, -- (postfix)
2. ++, --, ! (prefix)
3. *, /, %
4. +, - (binary)
5. <, <=, >, >=
6. ==, !=
7. &&
8. ||
9. =, +=, -=, etc.
👉 When in doubt, use parentheses!

8. The Conditional (if) Statement in C++

The if statement is a fundamental control structure in C++ that allows your
program to make decisions based on conditions. It executes a block of code
only if a specified condition evaluates to true.
Basic Syntax
if (condition) {

// code to execute if condition is true
}
• condition must be an expression of Boolean type (bool) or convertible to

bool (e.g., integers, pointers).
• If the condition is true (non-zero for numeric types), the block inside {} is

executed.
• If the condition is false (zero or false), the block is skipped.

8. The Conditional (if) Statement in C++

Example:
int age = 20;
if (age >= 18) {
 std::cout << "You are an adult.\n";
}

💡 Note: If the block contains only one statement, braces {} are
optional—but always recommended for clarity and safety.

8. The Conditional (if) Statement in C++
if-else Statement
Adds an alternative path when the condition is false:
if (condition) {
 // executed if condition is true
} else {
 // executed if condition is false
}
Example:
int temperature = 5;
if (temperature > 20) {
 std::cout << "It's warm.\n";
} else {
 std::cout << "It's cold.\n";
}

8. The Conditional (if) Statement in C++
if-else if-else Chain
For multiple mutually exclusive conditions:
if (condition1) {
 // ...
} else if (condition2) {
 // ...
} else if (condition3) {
 // ...
} else {
 // default case
}
Conditions are checked top to bottom.
Only the first true condition is executed; the rest are skipped.

8. The Conditional (if) Statement in C++
Example:
int score = 85;
if (score >= 90) {
 std::cout << "Grade: A\n";
} else if (score >= 80) {
 std::cout << "Grade: B\n";
} else if (score >= 70) {
 std::cout << "Grade: C\n";
} else {
 std::cout << "Grade: F\n";
}
⚠ Common mistake: Using multiple independent if statements instead of else if when conditions
are mutually exclusive—this can lead to unintended multiple executions.

8. The Conditional (if) Statement in C++

Important Notes
Condition Evaluation
Any non-zero value is treated as true; zero (or nullptr) is false.
int x = 5;
if (x) { /* true */ }
if (x - 5) { /* false */ }
Scope
Variables declared inside an if block exist only within that block
if (true) {
 int temp = 42;
}
// temp is not accessible here

8. The Conditional (if) Statement in C++

Dangling else Problem
The else always belongs to the nearest unmatched if
if (a)
 if (b)
 foo();
 else
 bar();//this belongs to
 // "if (b)", not "if (a)"
→ Use braces to avoid ambiguity.

8. The Conditional (if) Statement in C++

Best Practices
✅ Always use braces {}, even for single-line blocks.
✅ Keep conditions simple; extract complex logic into well-named
Boolean variables:
bool isEligible = (age >= 18) && (hasLicense);

if (isEligible) { ... }

✅ Prefer else if over nested if when checking multiple alternatives.
✅ Avoid side effects in conditions (e.g., if (x = getValue()) — use ==
for comparison!).

8. The Conditional (if) Statement in C++

Comparison with Ternary Operator
For simple assignments based on a condition, consider the ternary operator:
// Instead of:
if (a > b)
 max = a;
else
 max = b;

// Use:
max = (a > b) ? a : b;
But for complex logic or multiple statements, stick with if-else.

9. Enumerations and the switch Statement in C++

Enumerations (enum)
An enumeration (or enum) is a user-defined type that consists of a set of named integral constants called enumerators. It improves
code readability, maintainability, and type safety by giving meaningful names to related values.
a) Unscoped Enumeration (Traditional enum)
enum Color {
 Red,
 Green,
 Blue
};

By default, enumerators are assigned integer values starting from 0 (Red = 0, Green = 1, Blue = 2).
You can specify custom values:
enum StatusCode {
 OK = 200,
 NotFound = 404,
 ServerError = 500
};

9. Enumerations and the switch Statement in C++

Weak typing: enumerators implicitly convert to integers and "leak" into
the surrounding scope:
Color c = Red; // OK
int x = Red; // Allowed (implicit
 // conversion)

⚠ Problem: Name collisions can occur if two enums define the same
enumerator name.

9. Enumerations and the switch Statement in C++

b) Scoped Enumeration (enum class) — Preferred in Modern C++
enum class Status {
 Pending,
 Approved,
 Rejected
};

• Strongly typed: no implicit conversion to integers.
• Scoped: enumerators must be accessed with the enum name
Status s = Status::Approved; // required
// int x = s; // ERROR: no implicit conversion

Underlying type can be specified (default is int):
enum class Direction : char {
 North, South, East, West
};
✅ Best Practice: Always prefer enum class over plain enum for better type safety and clarity.

The switch statement provides multi-way branching based on the value of an integral or enumeration expression. It is often used with
enum types for clean, readable state handling.
Basic Syntax
switch (expression) {

case constant1:
// code
break;

case constant2:
// code
break;

default:
// optional fallback

}

• expression must be of an integral type, enumeration, or a type convertible to one (e.g., char, int, enum).
• Each case label must be a compile-time constant.
• Execution starts at the matching case and continues until a break or the end of the switch.

9. Enumerations and the switch Statement in C++

Example with enum class
enum class LogLevel { Debug, Info, Warning, Error };

void log(LogLevel level) {

switch (level) {

case LogLevel::Debug:

std::cout << "[DEBUG] "; break;

case LogLevel::Info:

std::cout << "[INFO] "; break;

case LogLevel::Warning:

std::cout << "[WARNING] "; break;

case LogLevel::Error:

std::cout << "[ERROR] "; break;

// No 'default' needed if all cases are covered

}

}

9. Enumerations and the switch Statement in C++

Fallthrough Behavior
If you omit break, execution falls through to the next case:
switch (x) {

case 1:
std::cout << "One";
// fallthrough

case 2:
std::cout << " or Two\n";
break;

}

Intentional fallthrough should be marked with [[fallthrough]] (C++17):
case 1:

handleOne();
[[fallthrough]];

case 2:
handleTwo();
break;

9. Enumerations and the switch Statement in C++

default Case
Acts as a catch-all for unmatched values.
Useful for error handling
or unexpected states:
default:

std::cerr << "Unknown status!\n";

break;

9. Enumerations and the switch Statement in C++

Key Rules & Best Practices
✅ Use enum class with switch — it’s type-safe and self-documenting.
✅ Always include break unless fallthrough is intentional (and documented).
✅ Cover all enumerators in switch statements when possible — omitting default
can help catch missing cases at compile time.
✅ Avoid switch on raw integers — prefer enums to give meaning to values.
Common Pitfalls
❌ Using unscoped enum with switch → risk of name polluƟon and accidental
conversions.
❌ Forgeƫng break → unintended fallthrough bugs.
❌ Switching on non-integral types (e.g., std::string, double) → not allowed in C++.
❌ Assuming order or values — always define explicit values if they matter.

9. Enumerations and the switch Statement in C++

In programming, a fixed-count loop (also called a definite loop) is a loop that executes a
known, predetermined number of times. In C++, the for loop is the primary and most
idiomatic construct for this purpose.
The Classic for Loop
The traditional for loop has three components: initialization, condition, and iteration
expression.
Syntax:
for (initialization; condition; iteration) {

// body — executed repeatedly
}
• Initialization: Runs once before the loop starts (e.g., declare and initialize a counter).
• Condition: Checked before each iteration. If true, the loop continues; if false, it stops.
• Iteration: Executed after each loop body (e.g., increment the counter).

10. Loops with a Fixed Number of Iterations in C++

10. Loops with a Fixed Number of Iterations in C++

Example: Print numbers 0 to 9
for (int i = 0; i < 10; ++i) {
 std::cout << i << " ";
}
// Output: 0 1 2 3 4 5 6 7 8 9
✅ This loop runs exactly 10 times — a fixed, predictable count.
Key Features:
The loop counter (i) is typically an integer.
The scope of the counter is limited to the loop (if declared in the initialization part).
You can count forward, backward, or by any step size
for (int i = 10; i >= 1; --i) { /* countdown */ }
for (int i = 0; i < 100; i += 10) { /* step by 10 */ }

11. Conditional Loops in C++

In C++, conditional loops are loops that continue executing as long as a
specified condition remains true. Unlike fixed-count loops (like the
classic for loop), the number of iterations in a conditional loop is not
known in advance—it depends on runtime conditions.
C++ provides two main conditional loop statements:
while loop
do-while loop
Both are used when you need to repeat an action until a certain logical
condition changes.

11. Conditional Loops in C++

The while Loop
The while loop checks the condition before each iteration. If the
condition is true, the loop body executes; if false, the loop terminates
immediately.
while (condition) {
 // loop body
}

11. Conditional Loops in C++

Example: Read input until valid
int number;
std::cout << "Enter a positive number: ";
std::cin >> number;

while (number <= 0) {
 std::cout << "Invalid! Try again: ";
 std::cin >> number;
}
std::cout << "You entered: " << number << "\n";
🔁 This loop may execute zero times if the condition is initially false.

11. Conditional Loops in C++

Common Use Cases:
• Processing data until end-of-file (while (std::cin >> value))
• Waiting for user input to meet criteria
• Simulating events until a state changes
The do-while Loop
The do-while loop checks the condition after each iteration. This guarantees that the loop
body executes at least once.
Syntax:
do {
 // loop body
} while (condition);
⚠ Note the semicolon (;) after while(condition) — it’s required

11. Conditional Loops in C++
Example: Menu-driven program
char choice;
do {
 std::cout << "Menu:\n"
 << "A. Option A\n"
 << "B. Option B\n"
 << "Q. Quit\n"
 << "Choose: ";
 std::cin >> choice;
 // Process choice...
} while (choice != 'Q' && choice != 'q’);

✅ The menu is displayed at least once, even if the user immediately enters 'Q'.
When to Use do-while:
• When the loop body must run at least once (e.g., input prompts, initialization)
• In interactive programs where user feedback drives repetition

Comparison with for Loop
Although for loops are often used for fixed counts, they can also
implement conditional logic:
for (; condition;) {

// same as while (condition)
}

However, use while for pure condition-based repetition—it’s more
readable and idiomatic.

11. Conditional Loops in C++

The break statement immediately terminates the innermost loop or switch
statement it appears in. Control is transferred to the statement following the
loop or switch.
Usage in Loops
for (int i = 0; i < 10; ++i) {

if (i == 5) {
break; // exit the loop immediately

}
std::cout << i << " ";

}
// Output: 0 1 2 3 4

11. Conditional Loops in C++

The continue statement skips the rest of the current iteration and jumps
directly to the loop’s update and condition check.
In for Loops
for (int i = 0; i < 5; ++i) {

if (i == 2) {
continue; // skip printing 2

}
std::cout << i << " ";

}
// Output: 0 1 3 4
→ AŌer conƟnue, the loop executes ++i and checks i < 5.

11. Conditional Loops in C++

In while and do-while Loops
int i = 0;
while (i < 5) {

++i;
if (i == 3) continue;
std::cout << i << " ";

}
// Output: 1 2 4 5
🔁 In while/do-while, ensure the loop variable is updated before
continue, or you risk an infinite loop.

11. Conditional Loops in C++

