Lecture: Strings in C++



1. Introduction

* Today, we’ll explore one of the most essential and widely used data
types in programming — strings. In C++, strings allow us to work with
sequences of characters, such as names, messages, or entire
documents.

* While C-style character arrays are available, C++ provides a much
more powerful and user-friendly tool: the std: : string class from
the Standard Template Library (STL).



1. Introduction

By the end of this lecture, you will:

* Understand what std: : string is and how it differs from C-style
strings.

* Know how to declare, initialize, and manipulate strings.

* Be familiar with common string operations and member functions.
 Learn about string input/output and best practices.

Let’s get started!



2. What Is a String?

In C++, a string is a sequence of characters stored as an object of the
std::string class, defined in the <string> header.

e Unlike C-style strings (null-terminated character arrays like
char str[] = "Hello";), std::string isaclass, which
means:

* [t manages memory automatically.

* It supports dynamic resizing.

* It comes with many built-in methods for manipulation.

* It prevents common errors like buffer overflows (if used correctly).



2. What Is a String?

* Touse std: :string, include the header:

#include <string>

* And don’t forget to use the standard namespace (or prefix with
std::):

using namespace std;

// ORuse std: :string explicitly



3. Declaring and Initializing Strings

// 1. Empty string
string sl;

// 2. Initialize with a string literal
string s2 = "Hello";

// 3. Direct initialization
string s3 ("World");



3. Declaring and Initializing Strings

e // 4. Copy initialization
string s4(s2); // or auto s4 = s2;

// 5. From a part of another string
string s5(s2, 1, 3); // starts at index 1, takes 3
// chars —» "ell™

// 6. Repeating a character
string s6(5, 'a'); // "aaaaa"“

V| Note: All these are valid and safe. No need to worry about array
bounds!




4. Input and Output of Strings

e Using cin and cout

string name;

cout << "Enter your name: ";
cin >> name; // Reads until whitespace
cout << "Hello, " << name << "I" << endl;

/\ Problem: cin >> stops reading at the first whitespace (space, tab,
newline). So it cannot read full sentences.

Solution: getline ()



4. Input and Output of Strings

Use getline() to read entire lines, including spaces:

string sentence;

cout << "Enter a sentence: ";

getline(cin, sentence);

cout << "You entered: " << sentence << endl;

Tip: If using getline() after cin, you may need to clear the input buffer with
cin.ignore ().

int age;

cin >> age;

cin.ignore(); // Skip the newline left in buffer
getline(cin, sentence);



5. Common String Operations
5.1 Length and Capacity

The std::string class provides many useful member functions.

string s = "C++ Programming";

cout << s.length{(); // 15 — number of
// characters

cout << s.size(); // 15 — same as length ()

cout << s.empty(); // false — checks if
//string is empty



5.2 Accessing Characters

s[0] = '¢'; // Modify first char — "c++
// Programming"
char ¢ = s.at(l);// Safer access (throws

// exception if out of range)

/\ s[i] does not check bounds. Use .at(i) for safety.



5.3 Concatenation

string a = "Hello";

string b = "World";

string c=a + " " + b; // "Hello World"

a += " there!"; // a becomes "Hello

// there!"



5.4 Substring Extraction

string sub = s.substr (4, 5);

// Extract 5 characters starting at index 4



5.5 Finding Substrings

size t pos = s.find("Prog"); // Returns position
// (index) or
// string::npos

1f (pos != string::npos) {

cout << "Found at position: " << pos <<
endl;
} else {

cout << "Not found" << endl;



5.5 Finding Substrings

s.find(s0,pos) // search starts at position pos
Other search functions:

* rfind() — last occurrence

 find_first_of() — any character from a set

 find_last_not_of() — etc.



5.6 Replacing and Erasing

s.replace(6, 4, "Fun"); // Replace 4 chars at
// pos 6 with "Fun"

s.erase (5, 3); // Remove 3 characters
// starting at index 5



6. Comparing Strings

* Use comparison operators (==, I=, <, >, etc.):
string sl = "apple";
string sZ2 = "banana";

1f (sl < s2) {

cout << "apple comes before banana
alphabetically" << endl;

}

Or use .compare() method (returns O if equal, negative if less, positive if
greater):

if (sl.compare(s2) == 0) { /* equal */ }



7. Conversions Between Strings and Numbers

Sometimes you need to convert between strings and numeric types.
String to Number

string numStr = "123";

int x = stoi (numStr); // string to int
double d = stod("3.14"); // string to double
long 1 = stol("1000");

. © Throws invalid_argument or out_of range on error.

* Number to String

int x = 42;

string s = to string(x); // "42"

double pi = 3.14159;

string sp = to string(pi); // "3.141590" (6 decimal places by
— // default)



3. Iterating Over Strings

You can loop through each character:

string text = "Hello";

// Classic for loop

for (int i = 0; 1 < text.length(); ++1i) {
cout << text[i] << endl;

}

// Range-based for loop (C++11 and later)

for (char c : text) {
cout << ¢ << endl;

}

// Using iterators

for (auto it = text.begin(); it != text.end(); ++it) {
cout << *it << endl;



3. Iterating Over Strings

You can also modify characters:
for (char &c : text) { // Note: reference!

c = toupper(c);



9. Important Notes and Best Practices

V| Advantages of std::string:

* Automatic memory management.

 Safe operations (no manual buffer handling).
* Rich API for searching, modifying, comparing.
* Integrates well with other STL components.



9. Important Notes and Best Practices

% Best Practices:

* Always include <string>.

* Prefer get1line () for full-line input.

* Use .empty () instead of length () ==

* Use const stringé& when passing strings to functions to avoid
copying:
vold print (const stringé& str) {
cout << str << endl;



10. Example: Simple String Program

#include <iostream>
#include <string>
using namespace std;

int main () {
string name, city;
cout << "Enter your name: ";
getline(cin, name);
cout << "Enter your city: ";
getline(cin, city);

mw

string message = "Hello, " + name + "! Welcome to " + city + ".";

cout << message << endl;
cout << "Your message has " << message.length() << " characters." << endl;

// Find space

size t pos = message.find(' '");

if (pos != string::npos) {

} cout << "First space at index: " << pos << endl;

return 0O;



11. Summary

* std: :string isthe modern way to handle text in C++.
* It’s safer, easier, and more powerful than C-style strings.

» Key operations: concatenation, substring, find, replace, length,
iteration.

e Use getline () forreading full lines.

* Always validate input and handle exceptions when converting strings
to numbers.



12. Exercises

* Write a program that counts the number of vowels in a string.
* Reverse a string without using extra space (modify in place).

* Check if a string is a palindrome.
* Split a sentence into words and store them in a vector.
* Convert a string to title case (first letter of each word uppercase).



Header Files in C++



1. Introduction

We’re going to talk about one of the most important and widely used
features in C++: header files.

You’'ve probably seen lines like this in your code:
#include <iostream>

#include "myclass.h"

But what exactly are header files? Why do we need them? And how
should we use them correctly?



1. Introduction

By the end of this lecture, you will understand:
 What header files are and why they exist.
* The difference between .h and .cpp files

* How #include works
* Best practices for writing safe and reusable headers.

 Common pitfalls and how to avoid them.
Let’s get started!



2. What Is a Header File?

A header file (usually with extension .h or .hpp) is a file that contains
declarations — not definitions — of functions, classes, variables,

templates, constants, and type aliases.

Its main purpose is to share interface information between different
source files.

Think of a header as a "contract" or "blueprint":

"Here’s what | can do. If you want to use me, include my header."



2. What Is a Header File?

Example:math utils.h
#ifndef MATH UTILS H
#define MATH UTILS H

// Function declaration

int add(int a, int b);

// Class declaration

class Calculator {

public:
double multiply(double x, double vV);
double divide (double x, double vy);

I

#endif // MATH UTILS H



2. What Is a Header File?

This tells other files:

"There is a function called add, and a class called Calculator with these
methods."

The actual implementation goes into a .cpp file.



3. Declaration vs. Definition

It's crucial to understand the difference:

Declaration Says something exists Header file (.h)
(compiler trusts you)

Definition Actually creates the object Source file (.cpp)
or implements the
function



3. Declaration vs

extern 1nt x;
int x = 10;

volid foo () ;
void foo () { }

class MyClass;
class MyClass { };

. Definition

//
//

//
//

//
//

4

4

Declaration
Definition

Declaration
Definition

Forward declaration
Definition

/\ You can have many declarations, but only one definition (ODR — One

Definition Rule).



4. Why Do We Need Header Files?

Imagine a project with multiple .cpp files:

main.cpp

utils.cpp

parser.cpp

If main.cpp wants to call a function from utils.cpp, how does it know about it?
Answer: By including the corresponding header file.

Without headers, the compiler wouldn’t know what functions are available - compilation errors.

Headers enable modular programming: separate concerns, reuse code, and compile files
independently.



5. How #include works

* When you write:
#include "myheader.h"
The preprocessor copies the entire content of myheader . h and inserts it directly into your source file before compilation.
So this:
#include "math utils.h"
int main () {
return add (2, 3);
}
Becomes (after preprocessing):
// [Content of math utils.h inserted here]
int add(int a, int b);
int main () {
return add (2, 3);
}
Now the compiler knows about add().



5. How #include works

Two styles of #include:

SYNTAX PURPOSE

#include <header> For standard or system headers (
<iostream>, <vector>) — searches in
system directories

For your own headers — first looks in

#include "header.h" .
current directory, then system paths



6. The One Definition Rule (ODR)

C++ has a strict rule:

Every class, template, inline function, and variable must have exactly
one definition in the entire program.

But what happens if two .cpp files include the same header?

(7 Without protection, you might get multiple definitions, leading to
linker errors.

That’s where include guards come in.



7. Include Guards (Header Guards)

Include guards prevent a header file from being included more than once in the
same translation unit.

#ifndef MYCLASS H
#define MYCLASS H

// Your declarations here
class MyClass {

//
b

#endif // MYCLASS H



7. Include Guards (Header Guards)

How it works:
First time: MYCLASS His not defined - define it and include content.

Second time: MYCLASS H is already defined - skip everything until
#endif. -

Modern alternative: #pragma once
#fpragma once

// Declarations...

V| #pragma once is simpler and widely supported (but technically not
standard until C++23).

v’| Both work — choose based on team preference or portability needs.




8. What should go into a header file?

v/| Safe to put in headers:

* Function declarations

 Class declarations

* Template definitions (must be in header!)
* inline functions

e Constants (constexpr, const)

* Type aliases (using, typedef)

 #include directives

* Inline variables (C++17)



8. What should go into a header file?

X Avoid in headers (unless necessary):

* Function definitions (except inline, templates)

* Global variable definitions

* using namespace std; (pollutes global scope)

* Large amounts of code that slows down compilation



9. Example Project Structure

project/

F—— main.cpp
F—— calculator.h

F—— calculator.cpp
L— utils.h
calculator.h
#ifndef CALCULATOR H
#define CALCULATOR H
class Calculator {
public:
int add(int a, int b);
int subtract (int a, int Db);
i
#endif



9. Example Project Structure

calculator.cpp
#include "calculator.h"
int Calculator::add(int a, int b) {
return a + b;
}
int Calculator::subtract(int a, int b) {
return a - b;
}
main.cpp
#include <iostream>
#include "calculator.h"™ // Now we can use Calculator
int main () {
Calculator calc;
std::cout << calc.add (5, 3) << std::endl;

return 0;



9. Example Project Structure

g++ main.cpp calculator.cpp -0 program

./program # Output: 8



10. Special Cases: Templates and Inline
Functions

Because the compiler needs to generate code for each type used:
// vector.h
template<typename T>
class MyVector {

T datal[l00];
public:

void push (T value); // Implementation often here
I
Even if implemented outside class, still in header:
template<typename T>
void MyVector<T>::push (T value) {

/]



10. Special Cases: Templates and Inline
Functions

@ inline Functions in Headers

Allowed and common:

inline int square(int x) {
return x * Xx;

J

Multiple translations units can include it — linker merges them safely.



11. Best Practices

Use descriptive names: student.h, network_manager.h
Always use include guards or #pragma once

Keep headers minimal — only what users need

Avoid deep header dependencies

Prefer forward declarations when possible:

// Instead of #include "BigClass.h"

class BigClass; // Forward declare if
pointer/reference used

vold process (const BigClass* obj);
* |VJ Group related declarations in one header

SIKJKJK

S




12. Common Mistakes

XK Putting non-inline function definitions in headers:

// bad.h

void foo () { } // X Multiple definition error if
// included twice!

X Missing include guards: = Compiler errors or duplicate symbols.

X Circular includes:

// a.h

#include "b.h"

// b.h

#include "a.h"

v/| Fix: Use forward declarations instead.




13. Summary

o

Header files (.h/.hpp) contain declarations shared across multiple

source files.

o

S O O O O

They allow modular design and independent compilation.

Use #include to insert their content into .cpp files.

Always protect headers with include guards or #pragma once.
Follow the One Definition Rule.

Templates and inline functions belong in headers.

Headers are not for implementation — save that for .cpp files.



Conclusion

* Header files are the glue that holds large C++ projects together. Used
correctly, they promote clean architecture, code reuse, and faster

builds.

* Now you know not just how to use headers, but why they exist and
what problems they solve.

* Keep your interfaces clear, your implementations hidden, and happy
coding!



