Random Numbers in C++

1. Introduction

Today, we're going to learn how to generate random numbers in C++.

Whether you're building a game, simulating data, or shuffling a playlist
— randomness is essential.

We use pseudorandom number generators (PRNGs) — algorithms that
produce sequences of numbers that appear random.

In modern C++, we have a powerful and flexible library for this: the
<random> header.

2. The Problem with rand() and srand()

You may have seen this classic approach:
#include <cstdlib>
#include <ctime>

int main () {

srand (time (0)); // Seed once

int random num = rand() % 100; // O to 99
return 0O;

}
/\ But this method has serious drawbacks:

2. The Problem with rand() and srand()

Poor randomness quality

Limited range
Non-uniform distribution
Global state

Not thread-safe

rand () often uses a simple linear congruential
generator — predictable patterns

RAND MAX is only guaranteed to be 232767
Using % introduces bias (especially with small ranges)
Affects all code in the program

Unsafe in multithreaded programs

Conclusion: Avoid rand () in modern C++. Use <random> instead.

3. The Modern Way: <random> Header

C++11 introduced the <random> library — a complete toolkit for
generating high-quality pseudorandom numbers.

It separates two key components:

1. Engine — Generates raw random numbers

2. Distribution — Shapes numbers into a desired form (e.g.,
uniform, normal)

This separation gives us flexibility, quality, and control.

4. Common Random Engines

An engine is an algorithm that produces a sequence of pseudorandom
bits.

std::default_random_engine Default choice — implementation-defined (often
mt19937)

std::mt19937 Mersenne Twister — excellent quality, fast, widely

used

std::random_device True hardware randomness(if available) — used for

seeding

& Tip: Use std::mt19937 for most purposes.

5. Common Distributions

A distribution transforms engine output into useful values.

DISTRIBUTION PURPOSE

std::uniform_int_distribution<T>

Random integers in a range
std::uniform_real_distribution<T> Random floating-point numbers
std::normal_distribution<T> Bell curve (Gaussian) distribution

std::bernoulli_distribution true/falsewith given probability

6. Example: Generate a Random Integer (1 to
100)

#include <iostream>
#include <random>

int main() {
// Step 1: Create a random device for seeding
std: :random device rd;

// Step 2: Initialize the engine
std: :mt19937 gen(rd());

// Step 3: Define the distribution
std::uniform int distribution<int> dist(l, 100);

// Step 4: Generate random numbers
for (int i = 0; i < 5; ++1i) {

int num = dist (gen);

std::cout << num << " ";
std::cout << std::endl;

return 0;

7. Seeding: Why It Matters

The seed determines the starting point of the random sequence.

* Same seed - same sequence (good for reproducibility).
 Different seed - different sequence (good for real randomness).
Best Practice: Use std: : random device

std::random device rd; // True random seed
// (hardware)

std: :mt19937 gen(rd()); // Seed the engine
For testing, you can use a fixed seed:
std: :mt19937 gen (12345); // Reproducible results

8. Floating-Point Random Numbers

Want a random double between 0.0 and 1.0?
std::random device rd;
std: :mt19937 gen(xrd());

std::uniform real distribution<double> dist (0.0,
1.0);

double value = dist (gen);
std::cout << value << std::endl; // e.g., 0.3742
Useful for probabilities, simulations, etc.

9. Reuse Engines, Not Recreate Them

Good: Create engine once, reuse it:

std::mt19937 gen(std::random device{} ());

// Reuse in loops or functions

for (int i = 0; i < 100; ++1i) {
std::uniform int distribution<int> d(1l, 6);
std::cout << d(gen) << " "; // Roll a die

X Bad: Creating new engine every time:
// DON'T DO THIS!
for (int i = 0; i < 100; ++1i) {
std::mt19937 bad gen(std::random device{} ());
// Each will likely have same seed due to clock resolution!

}

/\ Risk: Poor randomness if seeded too frequently.

10. Shuftling Containers: std::shuffle

#include <algorithm>
#include <vector>
#include <random>

std: :vector<int> v = {1, 2, 3, 4, 5};
std::random device rd;

std: :mt19937 gen(rd())
std::shuffle(v.begin(), v.end(), gen);
// Now v 1is randomly ordered

for (int x : v) std::cout << x << " ";
Great for card games, quizzes, playlists.

Lecture: Arrays and Pointers in C++

1. Introduction

Today, we'll explore two of the most fundamental and powerful concepts in C++: arrays and
pointers.

These features give C++ its efficiency and flexibility — but they can also be confusing at first.

By the end of this lecture, you will understand:

What arrays and pointers are

How they are related

The difference between arrays and pointers
Common operations and pitfalls

Modern alternatives (like std::array and std::vector)

2. Arrays in C++

An array is a contiguous block of memory that stores multiple elements of the same type.
Declaration:

int numbers[5]; // Array of 5 integers

Initialization:

int arr[5] = {1, 2, 3, 4, 5};

double values][] = {1.1, 2.2, 3.3};
// Size deduced automatically

Accessing Elements:
arr[0] = 10; // First element
arr[2] = 30; // Third element

/\ No bounds checking!
Accessing arr[10] on a size-5 array leads to undefined behavior.

3. Memory Layout of Arrays

Arrays are stored contiguously in memory:

int arr[3] = {10, 20, 30};

Memory layout:

Address: ... | 0x1000 | 0x1004 | 0x1008 |

Value: | 10 | 20 | 30 |

Each int takes 4 bytes (typically), so elements are spaced evenly.

4. Pointers: What Is a Pointer?

A pointer is a variable that stores the memory address of another variable.
Declaration:

int* ptr; // Pointer to an integer

double* dptr; // Pointer to a double

Assigning an Address:

int x = 42;

int* ptr = &x; // 'ptr' holds the address of 'x’
Dereferencing:

cout << *ptr; // Outputs 42 — value at the address
*ptr = 100; // Changes 'x' to 100

% Key operators:
& — address-of operator
* — dereference operator

5. The Connection Between Arrays and
Pointers

Here’s where things get interesting:

> An array name is implicitly convertible to a pointer to its first
element.

int arr[b5] = {1, 2, 3, 4, 5};

int* ptr = arr; // Same as &arr[O0]

Now both arr[i] and * (ptr + i) give the same result.
This is known as pointer arithmetic.

6. Pointer Arithmetic

You can perform arithmetic on pointers:

int arr[3] = {10, 20, 30};

int* p = arr;

cout << *p; // 10

cout << *(p+l); // 20

cout << *(p+2); // 30

Rules:

* p+ 1 - moves forward by sizeof(type) bytes
* Forint*, p+ 1 adds 4 bytes (if int is 4 bytes)
* Works for any type: double*, char*, etc.
This is why arr[i] is equivalent to *(arr + i)
And why i[arr] is valid (yes, really!): same as *(i + arr)

/. Arrays vs. Pointers: Key Differences

FEATURE ARRAY POINTER

Type Fixed-size block Variable storing an address
Size Known at compile time (sizeof(ptr)

sizeof(arr) works) gives pointer size (e.g., 8 bytes)
Reassignment X Cannot change arr = .. Can reassign: ptr = &x;
Memory Stores actual data Stores address of data
Decay u Decays to pointer when passed to Already a pointer

function
Example:

void func(int arr[]) { // Actually: void func (int* arr)
cout << sizeof(arr); // Prints 8 (size of pointer), not size of array!

}
/\ When an array is passed to a function, it decays into a pointer — you lose size information!

3. Passing Arrays to Functions

Because arrays decay to pointers, always pass size separately:
vold printArray(const int* arr, 1int size) {
for (int 1 = 0; 1 < size; ++1i) {

" "w.

cout << arr[i] << :

}
cout << endl;

// Usage:
int datal] = {1, 2, 3, 4,
printArray (data, 5);

S5};

9. Dynamic Arrays with new and delete

Sometimes you don’t know the size at compile time.
Use dynamic allocation:

int n;
cout << "Enter size: ";
cin >> n;
int* dynArr = new int[n]; // Allocate on heap
for (int 1 = 0, 1 < n; ++1) {
dynArr[i] = 1 * 1i;

}
// Use the array...

delete[] dynArr; // Must use delete[] for arrays!

9. Dynamic Arrays with new and delete

/\ Rules:

e Usenew|[] —> mustusedelete]]
e Use new — mustuse delete
* Never forget delete[] - causes memory leaks

10. Common Pitfalls

X Buffer overflow:

int arr[5];

arr[10] = 100; // Undefined behavior!
X Dangling pointer:
int* ptr = new int (42);

delete ptr;
*ptr = 10; // Crash! Pointer points to freed memory

X Memory leak:

int* arr = new int[10];

delete arr; // X Wrong! Should be delete]]
X Using delete instead of delete[]:

int* arr = new int[10];

delete arr; // X Wrong! Should be deletel]

11. Modern C++ Alternatives

In modern C++, prefer safer, higher-level containers:
std::array — Fixed-size array (stack)

#include <array>

std: :array<int, 5> arr = {1, 2, 3,
cout << arr.size(); // 5

* No decay to pointer
* Bounds-checked with .at()
 Stack-allocated

11. Modern C++ Alternatives

std::vector — Dynamic array (heap)
#include <vector>

std: :vector<int> vec = {1, 2, 3};
vec.push back(4);

cout << vec.size(); // 4

* Grows dynamically

* Automatic memory management

* Safe 1ndexing

* Preferred over raw dynamilic arrays

12. Summary Table

Size fixed?

Resizable? No Manual No Yes
Memory Stack or static Any Stack Heap

Safe access? No No .at () yes .at () yes
Size available? Yes (in scope) No Yes Yes

Recommended? Legacy code Low-level For fixed size For dynamic size

13. Best Practices

Prefer std::vector and std::array over raw arrays

Avoid new/delete unless necessary (use smart pointers)
Always free dynamically allocated memory

Use const for pointers that shouldn’t change const int™ ptr
Pass large arrays by pointer/reference, not by value

15. Exercises

* Write a function that finds the maximum value in an array using
pointers.

* Dynamically allocate a 2D array and fill it with values.

* Convert a C-style array to std::vector.

* Implement a simple string copy function using pointers.

» Use std::array to store student grades and compute average.

C-Style Strings in C++

1. Introduction

Today, we're going to talk about C-style strings — the original way of
handling text in C and inherited by C++.

You’'ve probably seen them:
char str|[] = "Hello, world!";

These are not the modern std::string — they are arrays of characters,
terminated by a special null character.

1. Introduction

While C++ provides the safer and more convenient std::string,
understanding C-style strings is still important because:

* They appear in legacy code.

* They’re used in system APIs (e.g., file operations, command-line
arguments).

* They help you understand how strings work under the hood.

1. Introduction

By the end of this lecture, you’ll know:

* What C-style strings are
* How to declare, initialize, and manipulate them

 Common functions from <cstring>
* Their limitations and dangers
 When (and when not) to use them

Let’s begin!

2. What Is a C-Style String?

A C-style string is an array of characters (char) that ends with a null
terminator: \0.

This null character has ASCII value 0 and marks the end of the string.

char greeting[] = "H1i";
In memory:
Index: 0 1 2

["H'I["1']1["\0"]
The compiler automatically adds \O when you use a string literal.

X Never forget it — otherwise, functions won’t know where the string
ends!

3. Declaration and Initialization

There are several ways to create a C-string:

// 1. From string literal (size auto-deduced)

char name[] = "Alice";

// - size is 6: 'A','1','i','c','e"',"\O"

// 2. With explicit size

char city[20] = "Paris";

// - Only first 6 chars used; rest zero-initialized
// 3. Character by character (must add \0 manually!)
char msgl[o6] = {'H','e',"1"','1"','0"',"'"\0"'};

// 4. Using a pointer (points to string literal)
char* ptr = "Hello";

// u String literals are read-only! Do NOT modify!

3. Declaration and Initialization

A Important:

e Arrays decay to pointers when passed around.
* Size information is lost unless explicitly tracked.

4. Key Rules and Properties

RULE EXPLANATION

Must be null-terminated Functions like strlen rely on ‘\0’

%Size = content length + 1 For the null terminator

©No bounds checking Writing past array - undefined behavior
@String literals are const @String literals are const

Fixed size Cannot grow dynamically

5. Common Operations and <cstring>

strlen() — Get length (excluding \0)
char str[] = "C++";

cout << strlen(str); // Output: 3
strcpy() — Copy a string
char dest[20];

strcpy (dest, "Copy mel!");
// Now dest contains "Copy me!\0"

/\ Dangerous: No size check = buffer overflow risk.

5. Common Operations and <cstring>

Use strncpy() instead:

strncpy (dest, source, sizeof(dest) - 1);
dest[sizeof (dest)-1] = '\0’;
// Ensure null termination

strcat() — Concatenate strings
char path[50] = "/home/";
strcat (path, "user");

// Result: "/home/user\0"
Safer: strncat(dest, src, max_chars)

5. Common Operations and <cstring>

strcmp() — Compare strings

Returns:

* 0 - equal

e <0 - first string less than second

e > (0 - first string greater

1f (strcmp(strl, str2) == 0) {
cout << "Strings are equall\n";

J

Case-insensitive? Use strcasecmp() or stricmp() (non-standard).

6. Input and Output

Using cin and cout

char name[50];

cout << "Enter name: ";

cin >> name; // Stops at whitespace!
cout << "Hello, " << name << endl;
/\ Problem: cin >> doesn’t handle spaces.

Safer input: cin.getline()

cin.getline (name, 50);
// Reads up to 49 chars + adds \O

Limits input to buffer size — prevents overflow.

/. Passing C-Strings to Functions

Since arrays decay to pointers, functions take char* or const char*:

vold printString(const char* str) {
cout << str << endl; // 'str' is a pointer

// Usage:
printString ("Literal");

printString (name) ;

Use const if you don’t modify the string.
To pass size:
vold safePrint (const char* str, int maxSize) {

8. Common Pitfalls and Security Issues

X Buffer Overflow
char small[5] = "Hi";

strcpy(small, "This is too long!"); // ZZ Crash
or exploit!

> One of the most common sources of security vulnerabilities!

X Missing Null Terminator

char buf[10];

// ... f£ill with data but forget \O

cout << buf; // May print garbage until \0 found

8. Common Pitfalls and Security Issues

X Modifying String Literals

char* p = "Hello";
p[0] = 'h'; // X Undefined behavior!

X Using = to assign

char name[20];
name = "Bob";
// X ERROR: can't assign to array!

Use strcpy(name, "Bob"); instead.

9. Pointers and C-Strings

You can use pointers to traverse strings:

char text[] = "Hello";
char* p = text;
while (*p != "\0'") {
cout << *p;
pt++t;

}
// Output: Hello

Or use pointer arithmetic:
for (int 1 = 0; text[i] !'= "\0'; ++1) {
Both are valid — C-strings and pointers go hand-in-hand.

10. C-Strings vs. std::string

Memory management Manual

Size Fixed

Bounds checking None

Concatenation strcat ()
Comparison strcmp ()

Safety Low (buffer overflows)
Ease of use Harder

Performance Very fast

Use std::string for new code.

Use C-strings only when required (e.g., interfacing with C libraries).

Automatic
Dynamic

.at () provides it
+operator

==, etc.

High

Easier

Slight overhead

11. When Are C-Strings Still Used?

Despite their dangers, C-strings are still relevant in:

* Operating system APIs (e.g., open(), exec())

* Embedded systems (limited resources)

e Legacy C code

* Command-line arguments: int main(int argc, char* argv(])
* File paths, environment variables

So you will encounter them — even in modern C++.

12. Best Practices

Always ensure encin.getline () ough space for \O

Use instead of cin >> for full lines

Prefer strncpy, strncat, snprintf over unsafe versions
Use const char* forinput parameters

Avoid modifying string literals

Prefer std: :string in application-level code

Validate input length before copying

13. Complete Example: Simple String
Manipulation

#include <iostream>

#include <cstring>

using namespace std;

int main() {
char first[20], last[20], full[50];
cout << "First name: ";
cin.getline(first, 20);
cout << "Last name: ";
cin.getline(last, 20);
strcpy (full, first);
strcat (full, " ");
strcat (full, last);
cout << "Full name: " << full << endl;
cout << "Length: " << strlen(full) << endl;
return 0O;

15. Exercises

e Write a function myStrlen(const char* str) that returns string length.
* Implement myStrcpy(char® dest, const char* src).

* Check if a C-string is a palindrome.

* Convert a string to uppercase using pointers.

» Safely concatenate three strings into a fixed buffer.

Conclusion

» C-style strings are a low-level, powerful, but dangerous way to handle
text.

* They give you fine control — but require careful memory
management and awareness of pitfalls like buffer overflows.

* In modern C++, always prefer std::string for general-purpose string
andling.

* But never forget C-strings — they’re part of C++’s heritage and still
appear everywhere in system programming.

Now you understand both worlds: the old and the new.

