Operator Overloading in C++

1. Introduction

Today we’ll explore one of C++’s most powerful and expressive features:
operator overloading.

Operator overloading allows you to define custom behavior for operators

(like +, -, <<, ==, etc.) when applied to user-defined types (e.g., classes or
structs).

@ Goal: Make your objects behave like built-in types—intuitive, readable,
and natural.

Example:
Vector a(l, 2), b(3, 4);
Vector ¢ = a + bj; // <« This is possible with

// operator overloading!
std::cout << c; // < And this too!

2. Why Overload Operators?

* Improve readability: a + b is clearer than a.add(b)

* Enable natural syntax: Especially for mathematical or collection-like
types

* Integrate with standard libraries: e.g., use your class with std::sort by
overloading <

* Maintain consistency: Objects act like built-in types

/\ Rule of thumb: Overload operators only when the meaning is
obvious and consistent with built-in types.

3. How to Overload Operators

You can overload operators as:

 Member functions (inside the class)

* Non-member (free) functions (often as friend functions)

General Syntax:

// As member function

ReturnType operator@ (Parameters);

// As non-member function

ReturnType operator@ (const Type& lhs, const Type&
rhs) ;

@ represents the operator symbol (e.g., +, ==, <<)

4. Member vs. Non-Member Overloading

ASPECT MEMBER FUNCTION NON-MEMBER FUNCTION

Implicit this Yes (left operand to this) No (both operands passed
explicitly)
Access to private members Yes Only if declared friend
Symmetry Non symmetric (left side must be Symmetric (e.g.,
your type) int + MyType
possible)
Common for Assignment (=), subscript([1]), Stream insertion (<<), arithmetic

function call (()) (+, =), comparison (==, <)

4. Member vs. Non-Member Overloading

Best practice:

e Use member functions for operators that modify the left operand
(e.g., +=, =)
* Use non-member functions for symmetric operators (e.g., +, ==

Overloading Arithmetic Operators in C++

1. Introduction

Arithmetic operators (+, -, *, /, %, +=, -= etc.) are essential for mathematical and
logical operations. In C++, you can customize their behavior for your own classes—
enabling natural, expressive syntax like:

Vector a(l, 2), b(3, 4);

Vector ¢ = a + b; // Binary +
Vector d = -a; // Unary -
a += b; // Compound assignment

we’ll explore:

* Unary vs. binary arithmetic operators

* How to overload them as member functions and non-member (free) functions
* Best practices for consistency, efficiency, and safety

2. Unary vs. Binary Arithmetic Operators

TYPE OPERATORS OPERANDS
Unary +,-,++,--

One operand (e.g., -X, ++x)
Binary +, -, %/ %, += Two operands (e.g., a + b)

@ Note: + and - can be both unary and binary (context determines
which is used).

3. General Guidelines for Overloading

Prefer non-member functions for symmetric binary operators

* Example: a + b should work the same as b + a

 If ais your type and b is int, a member function won’t allow 5 + a
Prefer member functions for compound assignment (+=, -=)

* They modify the left-hand object - natural as members
Implement binary operators in terms of compound assignment
* Ensures consistency and reduces code duplication

4.1. Unary Plus (+) and Minus (-)

These usually return a new object (not modify the original).
As member function:
class Complex {

double re, im;

public:
Complex (double r = 0, double i = 0) : re(r), im(i) {}
// Unary minus (member)
Complex operator-() const {

return Complex(-re, -im);
}
// Unary plus (often unnecessary, but possible)
Complex operator+ () const {

return *this; // Returns copy

4.1. Unary Plus (+) and Minus (-)

As non-member function (rarely needed, but possible):
friend Complex operator-(const Complex& c) |

return Complex(-c.re, —-c.1im);

J

Member form is sufficient and common.

4.2. Increment and Decrement: ++, --

Two forms:
* Pre-increment: ++x - returns reference to modified object
* Post-increment: x++ = returns copy of original value
As member functions (standard approach):
class Counter {
int value;
public:

Counter (int v = 0) : value(v) {}

// Pre-increment: ++x
Counter& operator++() {
++value;
return *this; // return reference to *this

Y/

4.2. Increment and Decrement: ++, --

[/ ..

// Post—-increment: x++

Counter operator++ (int) { dummy 'int' parameter

//
// distinguishes post-
?? increment

Counter temp = *this; save current state
++*this;
return temp; // return copy

}
Y

/\ Never implement these as non-member functions unless you have a very good
reason.

5. Binary Arithmetic Operators

5.1. Compound Assignment Operators (+=, -=, etc.)
These modify the left operand - ideal as member functions.
class Vector {
double x, vy;
public:
Vector (double x = 0, double y = 0) : x(x), y(y) {}
Vector& operator+=(const Vectoré& other) {
X += other.x;
y += other.y;
return *this; // enable chaining: a += b += c;

}

b Always return *this by reference.

5. Binary Arithmetic Operators

These create a new object - best implemented as non-member functions.
Recommended pattern: build on compound assignment

// Non-member binary + (uses +=)

Vector operator+ (Vector lhs, const Vectoré& rhs) {

lhs += rhs; // lhs is a copy — safe to
// modify

return lhs;

Q Why pass lhs by value?

— |t creates a copy automatically, so we can modify it and return it
efficiently (thanks to move semantics in C++11+).

5. Binary Arithmetic Operators

Alternative: pass both by const & and construct new object
Vector operator+ (const Vector& a, const Vectoré& b) {

return Vector(a.x + b.x, a.y + b.vy);

}
Also valid, but doesn’t reuse += logic.

Or
Vector operator+ (const Vector& a, const Vectoré& b) {

auto tmp = a;
return tmp += b;

5. Binary Arithmetic Operators

5.3. Mixed-Type Operations (e.g., Vector + double)
Non-member functions allow symmetry and mixed types:
// Vector * scalar
Vector operator* (Vector v, double scalar) {
V.X *= scalar;
v.y *= scalar;
return v;
}
// scalar * Vector (enabled only by non-member!)
Vector operator* (double scalar, const Vectoré& v) {
return Vector(v.x * scalar, v.y * scalar);

OPERATOR

+ , - (unary)
+ , — (pre)
++ ., — (post)
+.,-.,%. /! (binary)
Mixed-type ops

RECOMMENDED FORM

Member

Member

Member

Member

Non-member

Non-member

RETURN TYPE

New object (by value)

Class&

Class (copy)

Class&

New object (by value)

New object

NOTES

const

Modify *this

Dummy int param

Return *this

Reuse compound assignment

Enables symmetry

6. Best Practices Recap

o U s W PE

Compound assignments (+=) - member functions

Basic binary operators (+) = non-member functions
Implement + in terms of += (and - in terms of += and unary -)
Use const correctness for read-only operations

Enable mixed-type operations with non-member overloads
Avoid overloading just for fun — preserve intuitive meaning

Overloading Comparison Operators in C++

1. Introduction

Comparison operators (==, !=, <, >, <=, >=) are fundamental for
ordering, searching, and decision-making in programs. When you

define your own classes, you can overload these operators to allow
natural comparisons:

Person a("Alice", 25), b("Bob", 30);

if (a ==Db) { /* ... */ } // == operator
if (a<b)y { /* ... */ } // < operator
if (a '=b) { /* ... */ } // = operator

In this lecture, we’ll explore how to overload comparison operators
correctly and efficiently.

2. Which Comparison Operators to Overload?

The “Big Three” to Start With:

e operator== — equality (most fundamental)
* operator< — less-than (for ordering)
e operator!= — inequality (often derived from ==

Once you have == and <, you can derive the rest (>, <=, >=).

3. Equality: operator==

Recommended: Non-member function (often as friend)
class Point {
double x, vy;
public:
Point (double x = 0, double y = 0) : x(x), v(y) {}

// Friend declaration allows access to private members

friend bool operator==(const Pointé& 1lhs, const Pointé& rhs);
y i
bool operator==(const Point& lhs, const Pointé& rhs) {

return lhs.x == rhs.x && lhs.y == rhs.y;

}

% Always pass by const& to avoid copying and to allow comparing const objects.

3. Equality: operator==

Derive operator!= from operator==:

bool operator!=(const Point& lhs, const
rhs) {
return ! (lhs == rhs); // Reuse ==

J

This is more maintainable: only one logic to update.

Pointé&

4. Ordering: operator<

This is crucial for sorting and associative containers like std::set, std::map.
Recommended: Non-member function
bool operator<(const Point& lhs, const Point& rhs) {
1f (lhs.x !'= rhs.x) {
return lhs.x < rhs.x; // Compare x first

}
return lhs.y < rhs.y; // Then compare y

}
% This is a lexicographic (dictionary-style) ordering.

4. Ordering: operator<

. Derive other comparison operators:

bool operator>(const Pointé& lhs, const Pointé& rhs) {
return rhs < lhs; // Reverse operands

}

bool operator<=(const Pointé& lhs, const Pointé& rhs) {
return ! (rhs < lhs); // Not (rhs > 1lhs)

}

bool operator>=(const Point& lhs, const Point& rhs) {
return ! (lhs < rhs); // Not (lhs < rhs)

Overloading Stream Insertion
(<<) and Extraction (>>)
Operators in C++

1. Introduction

In C++, input and output are handled through streames:

* Qutput: std::cout, std::ofstream, std::ostringstream
— use insertion operator <<

* Input: std::cin, std::ifstream, std::istringstream -
use extraction operator >>

By default, these operators work with built-in types (int, string, etc.).
But what if you want to print or read your own class?

Person p("Alice", 30);

std::cout << p; // < How can this work?
std::cin >> p; // « And this?

The answer: overload operator<< and operator>>|

2. Why Overload Stream Operators?

e Enable natural I/O syntax for custom types

* Integrate your classes with the C++ 1/0 system
* Make debugging and logging easier and cleaner
» Support file serialization and parsing

/\ Important: These operators must be overloaded as non-member
functions, because the left operand is a stream (std: :ostream or

std: :istream), not your class.

3. Overloading operator<< (Stream
Insertion)

Goal:
Allow std: :cout << myObject;
Syntax:

std: :ostream& operator<<(std::ostreamé& o0s, const
MyClass& obj);

Key Rules:

* Return std::ostream& — enables chaining: cout << a << b << end];

* Pass object by const reference - avoids copying and doesn’t modify it
* Declare as friend if accessing private members

3. Overloading operator<< (Stream
Insertion

Example: Person Class
#include <iostream>
#include <string>

class Person {
std::string name;
int age;
public:
Person(const std::string& n = "", int a = 0) : name(n), age(a) {}
// Friend declaration allows access to private members
friend std::ostream& operator<<(std::ostream& os, const Personé& p);
}i

// Definition of operator<<

std::ostreamé& operator<<(std::ostream& os, const Personé& p) {
0s << "Name: " << p.name << ", Age: " << p.age;
return os; // Crucial for chaining!

}

Usage:

Person alice("Alice", 28);

std::cout << alice << std::endl;

// Output: Name: Alice, Age: 28

4. Overloading operator>> (Stream
Extraction)

Goal:
Allow std: :cin >> myObject;
Syntax:

std::1stream& operator>>(std::istream& 1s, MyClassé&
obJj);

Key Rules:
e Return std::istream& - enables chaining: cin >> a >> b;
* Pass object by non-const reference - you will modify it

* Do not print prompts inside operator>> (e.g., no "Enter name: ") — keep it
pure

e Often declared as friend

4. Overloading operator>> (Stream
Extraction)

Example: Extending Person
class Person {
// ... (same as before)

// Add friend for input
friend std::istream& operator>>(std::istream& is, Personé& p);

b

std::istream& operator>>(std::istream& is, Personé& p) {
1s >> p.name >> p.age;
return 1is;

}

% This assumes input format: Alice 28 (space-separated)

4. Overloading operator>> (Stream
Extraction)

Usage:

Person p;

std::cout << "Enter name and age: ";
std::cin >> p; // User types: Bob 35

std::cout << "You entered: " << p << std::endl;
// Output: Name: Bob, Age: 35

5. Handling Complex Input Formats

Sometimes data aren’t space-separated. Example: "Alice,28"
Custom Parsing in operator>>:
std::istreamé& operator>>(std::istreamé& is,
std::string line;
if (std::getline(is, line)) {

Personé& p) |

size t comma = line.find(',"');
if (comma != std::string::npos) {
p.name = line.substr (0, comma);
p.age = std::stoi(line.substr (comma + 1));

}

return is;
}
Now input can be:
Alice, 28
@ Tip: For file I/0, this allows reading CSV-like formats easily.

6. Best Practices

Always return the stream Enables cout << a << b;

Use const for << Don’t modify the object when printing
Don’t use const for >> You need to modify the object

Prefer friend only when needed If you can use public getters/setters, do so
Don’t include prompts in >> Keep 1/O operators pure and reusable

Handle input errors gracefully Check stream state if needed

/. Full Working Example

#include <iostream>
class Point {
double x, vy;
public:
Point (double x = 0, double yv = 0) : x(x), v(y) {}
// Output: (x, V)
friend std::ostreamé& operator<<(std::ostream& os, const Pointé& p) {
0s << "(" KK p.x <K< ", "KLK p.y <M,
return os;
}
// Input: x y (space-separated)
friend std::istreamé& operator>>(std::istreamé& is, Pointé& p) |
is >> p.x >> p.y;
return is;

b

/. Full Working Example

int main () {
Point pl(l.5, -2.0);
std::cout << "Point: " << pl << std::endl;
// (1.5, =2)
Point p2;

std::cout << "Enter x y: ";

std::cin >> p2;

std::cout << "You entered: " << pZ << std::endl;
return 0;

8. Common Mistakes to Avoid

X Returning void

vold operator<<(std::ostream& os, const MyClassé& obj);
// X breaks chaining!

X Making it a member function
class MyClass {
public:

std: :o0streamé& operator<<(std::ostream& o0s);
// X left operand is *this (MyClass), not ostream!

i

X Forgetting const in operator<<

std::o0streamé& operator<<(std::ostream& os, MyClassé&
obj); // X can't print const objects!

9. Summary

OPERATOR | PURPOSE MUST BE NON-
MEMBER

Output ostreamé& operator<<(ostreamé&, const T&) .Yes
(insertion)
>> Input (extraction) istream& operator>>(istream&, T&) 4 ves

By overloading these operators:

. Your classes integrate seamlessly with C++ 1/0

. Code becomes cleaner and more readable

. You enable serialization, logging, and user interaction
Remember:

“Make your types behave like built-in types.”

— Stroustrup

Now you can cout << yourObject as naturally as cout << 42!

Singly Linked Lists in C++

Using a Template Node Structure and Solving Common Problems

1. Introduction

In this lecture, we’ll explore singly linked lists in C++ without wrapping them
in a class. Instead, we’ll work directly with:

* A templated Node structure

* Free functions to manipulate the list

* Raw pointers and manual memory management
This approach helps you:

* Understand the core mechanics of linked lists

* Practice pointer manipulation

* Solve classic interview-style problems

We’ll also use templates so our list can store any data type (int, string,
double, etc.).

2. What Is a Singly Linked List?

A singly linked list is a linear collection of elements called nodes.
Each node contains:
* Data (e.g., an integer, string, or object)
* A pointer to the next node in the sequence
The last node
[Data | Next] - [Data | Next] = [Data | Next] = nullptr
T
Head (points to first node)
points to nullptr, marking the end of the list.

% Key idea: No random access — you must traverse from the head to reach
any node.

2. The Node Structure (Templated)

We define a generic Node that can hold any type of data:
template <typename T>
struct Node {

T data;

Node<T>* next;

// Constructor

Node (const T& value) : data(value),
next (nullptr) {}

¥
F Node<int>, Node<std::string>, etc., will be generated automatically by
the compiler.

3. Basic Operations as Free Functions

Since we’re not using a class, the head pointer is managed by the user and
passed to functions by reference (so we can modify it).

3.1. Insert at Front

template <typename T>

vold push front (Node<T>*& head, const T& value) {
Node<T>* newNode = new Node<T> (value);
newNode->next = head;
head = newNode;

J

Gg Note: Node<T>*§& head — we pass the pointer by reference to
update the original head.

3. Basic Operations as Free Functions

3.2. Print the List
template <typename T>
volid print list (const Node<T>* head) {
while (head) {
std: :cout << current->data << " -> ",
head = head->next;

}
std::cout << "nullptr\n";

}
@ const ensures we don’t accidentally modify the list.

3. Basic Operations as Free Functions

3.3. Delete the Entire List
template <typename T>
void delete list (Node<T>*& head)
while (head != nullptr) {
Node<T>* temp = head;
head = head->next;
delete temp;

}
// head is now nullptr

}
Always clean up to avoid memory leaks.

4. Example: Basic Usage

#include <iostream>
#include <string>

int main() {
Node<int>* head = nullptr; // Start with empty list
push front (head, 30);
push front (head, 20);
push front (head, 10);
print list (head); // Output: 10 - 20 - 30 - nullptr
delete list(head); // Clean up
std::cout << "List deleted. head is "

<< (head ? "not null" : "nullptr") << std::endl;
return O;

5. Solving Typical Problems

Let’s implement solutions to common linked list problems using our template-based approach.
Problem 1: Find the Length of the List

Goal: Return the number of nodes.
template <typename T>
int get length(const Node<T>* head) {
int count = 0;
while (head != nullptr) {
count++;
head = head->next;
}

return count;
}
Usage:
std::cout << "Length: " << get length(head) << std::endl; // e.g., 3

Problem 2: Search for a Value

Goal: Return true if value exists.
template <typename T>
bool search (const Node<T>* head, const T& value) {
while (head !'= nullptr) {
if (head->data == wvalue) {
return true;

}
head = head->next;

}

return false;
}

Usage:
if (search(head, 20)) { std::cout << "Found 20!'\n"; }

Problem 3: Insert at the End

Goal: Add a new node at the tail.
template <typename T>
void push back (Node<T>*& head, const T& value) {
Node<T>* newNode = new Node<T> (value);
if (head == nullptr) {
head = newNode;
return;

}

Node<T>* current = head;

while (current->next != nullptr) {
current = current->next;

}

current->next = newNode;

}
Time complexity: O(n)

Problem 4: Delete the First Occurrence of 3
Value

Goal: Remove one node with given value (if exists).

template <typename T>

void delete value (Node<T>*& head, const T& value) {
// Case 1: empty list

if (head == nullptr) return;
// Case 2: delete head
if (head->data == wvalue) {

Node<T>* temp = head;
head = head->next;
delete temp;
return;
}
// Case 3: delete in the middle or end
Node<T>* current = head;
while (current->next != nullptr && current->next->data != value) current = current->next;
if (current->next != nullptr) { // Found it
Node<T>* toDelete = current->next;
current->next = toDelete->next;
delete toDelete;

Problem 5: Reverse the List (In-Place)

Goal: Reverse the direction of pointers.

template <typename T>

void reverse list (Node<T>*& head) {
Node<T>* prev = nullptr;
Node<T>* current = head;
Node<T>* next = nullptr;

while (current != nullptr) {
next = current->next; // Save next
current->next = prev; // Reverse link
prev = current; // Move prev forward
current = next; // Move current forward

}
head = prev; // New head is the last node

}

This is a classic interview question!

/. Key Takeaways

Templated Node Reusable for any data type

Pass head by reference Allows functions to change which node is the head
Manual memory management You must delete every new

Pointer traversal Core skill for linked structures

Edge cases Always test: empty list, single node, head/tail

operations

8. Common Pitfalls

X Forgetting to initialize head to nullptr

X Passing head by value - changes don’t persist
X Not handling empty list in deletion/search

« X Memory leaks from missing delete

Always test with:

* Empty list

* One element

 Two elements

* Operation on head/tail

9. What’s Next?

Once comfortable with raw pointers and free functions, you can:
* Wrap everything in a LinkedList<T> class

* Add iterators

* Implement copy constructor and assignment operator

* Compare performance with std::forward_list

10. Practice Problems

* Write a function to find the middle node (use slow/fast pointers).
* Check if the list is a palindrome.

* Detect a cycle in the list (Floyd’s cycle-finding algorithm).

* Merge two sorted lists into one sorted list.

) These are common in technical interviews!

