
Lecture: Binary Trees in C++



1. Introduction

Today, we will explore binary trees, one of the most fundamental and 
widely used data structures in computer science. Binary trees are 
essential for understanding more complex structures like Binary Search 
Trees (BSTs), heaps, and expression trees, and they form the basis for 
many algorithms in searching, sorting, and parsing.



2. What is a Binary Tree?

A binary tree is a hierarchical data structure in which each node has at most two children, 
referred to as the left child and the right child.
Key Properties:
• Each node contains:

• Data (value)
• Pointer to left child
• Pointer to right child

• The topmost node is called the root.
• Nodes with no children are called leaves.
• The height of a binary tree is the length of the longest path from the root to a leaf.



3. Binary Tree Node Structure in C++

In C++, we typically represent a binary tree node using a struct or a class.
template<class T>
struct tree_node {

T data;
tree_node<T>* left;
tree_node<T>* right;
// ctor
tree_node(const T& data, tree_node<T>* left = 

nullptr, 
tree_node<T>* right = nullptr) :
data(data), left(left), right(right) {}

};



4. Creating a Simple Binary Tree
Let’s manually build a small binary tree:
// Create root    
tree_node<int>* root = new tree_node<int> (1);    
// Attach children    
root->left = new tree_node<int> (2);    
root->right = new tree_node<int> (3);    
// Add grandchildren    
root->left->left = new tree_node<int> (4);    
root->left->right = new tree_node<int> (5);    
// The tree now looks like:    
//        1    
//       / \
//      2   3    
//     / \
//    4   5



5. Applications of Binary Trees

• Binary Search Trees (BSTs): Enable fast search, insertion, and deletion 
(average O(log n)).

• Expression Trees: Represent arithmetic expressions (e.g., (a + b) * c).
• Huffman Coding Trees: Used in data compression.
• Syntax Trees: Used by compilers to parse source code.
• Decision Trees: Used in machine learning and AI.



6. Memory Management & Best Practices
• Always free dynamically allocated memory to avoid leaks (or use smart pointers in modern C++).
• Consider using std::unique_ptr for automatic memory management:
#include <memory>

struct TreeNode {
int data;
std::unique_ptr<TreeNode> left;
std::unique_ptr<TreeNode> right;
TreeNode(int val) : data(val) {}

};
However, for learning purposes, raw pointers are often used to understand pointer manipulation.



7. Summary

• A binary tree is a recursive data structure where each node has up to 
two children.

• Implemented in C++ using structs/classes with pointers.
• Traversals (inorder, preorder, postorder) are foundational for tree 
algorithms.

• Binary trees are the basis for many advanced data structures and 
algorithms.



Destructors in C++ — Purpose and Necessity



1. Introduction

In C++, objects have a lifetime: they are created, used, and eventually destroyed.
While constructors initialize objects, destructors are responsible for cleaning up 
when an object goes out of scope or is explicitly deleted.

Today, we’ll explore:
• What a destructor is
• When it is called automatically
• Why it’s essential in resource management
• Common scenarios requiring a custom destructor
• Pitfalls like resource leaks and double‐deletion



2. What Is a Destructor?
A destructor is a special member function that:
• Has the same name as the class, preceded by a tilde (~)
• Takes no parameters and cannot be overloaded
• Cannot have a return type (not even void)
• Is automatically invoked when an object’s lifetime ends
class MyClass {
public:

~MyClass() {
// Cleanup code here

}
};
🔹 The compiler generates a default destructor if you don’t define one.
🔹 The default destructor calls destructors of member objects and base classes—but does not release 
resources like raw memory, file handles, or network connections. 



3. When Is a Destructor Called?

SCENARIO EXAMPLE

Local object goes out of scope void f() 
{ 

MyClass obj; 
} // ~MyClass() called at }

Object  is deleted (for dynamically allocated objects) MyClass* p = new MyClass(); 
delete p; // ~MyClass() called

Program terminates (for global/static) objects Global objects are destroyed after main() ends

Temporary object is no longer needed MyClass().doSomething(); 
// destroyed after statement



4. When Do You Need a Custom Destructor?

You must define a custom destructor only if your class manages 
resources that are not automatically released.
This follows the Rule of Three/Five:
you need to define any of destructor, copy constructor, or copy 
assignment operator, you likely need to define all three (or five, in 
C++11+ with move operations).



4. When Do You Need a Custom Destructor?

Common resources requiring manual cleanup:
• Dynamically allocated memory (new / new[])
• File handles (fopen, std::fstream)
• Threads, mutexes, sockets, database connections
• External libraries (e.g., OpenGL contexts, SDL windows)



5. Examples
✅ Example 1: Without Custom Destructor → MEMORY LEAK
class BadString {

char* data;
public:

BadString(const char* s) {
data = new char[strlen(s) + 1];
strcpy(data, s);

}
// ❌ No destructor → memory leak!

};
void test() {

BadString s("Hello");
} // 's' destroyed, but 'data' memory is never freed!
Result: Every BadString object leaks memory. 



5. Examples
✅ Example 2: With Proper Destructor
class GoodString {

char* data;
public:

GoodString(const char* s) {
data = new char[strlen(s) + 1];
strcpy(data, s);

}

~GoodString() {
delete[] data;  // ✅ Release memory
data = nullptr; // Optional: defensive programming

}
};

Now, when GoodString goes out of scope, its memory is safely freed.



5. Examples
✅ Example 3: File Handle Management
#include <cstdio>
class LogFile {

FILE* file;
public:

LogFile(const char* filename) {
file = fopen(filename, "w");
if (!file) throw "Cannot open file!";

}
~LogFile() {

if (file) {
fclose(file);  // ✅ Close file on destruction

}
}
void write(const char* msg) {

fprintf(file, "%s\n", msg);
}

};
Without the destructor, the file might remain open, risking data loss or resource exhaustion



6. Important Rules & Best Practices

🚫 Never call a destructor manually (unless using placement new)
MyClass obj;
obj.~MyClass(); 
// Dangerous! Destructor will be 
// called again at scope end → UB
🔄 Order of destruction
• Members are destroyed in the reverse order of declaration.
• Base class destructors are called after derived class destructors.
• Always make base class destructors virtual if the class is meant to 
be inherited:



6. Important Rules & Best Practices

class Base {
public:

virtual ~Base() = default; // ✅ Enables proper 
// cleanup in inheritance

};
class Derived : public Base {

int* ptr;
public:

Derived() : ptr(new int(42)) {}
~Derived() { delete ptr; }

};
Without virtual ~Base(), deleting a Derived object via a Base* pointer causes undefined behavior 
(only Base destructor runs!).



7. Modern C++ Alternative: Smart Pointers
Instead of manually managing resources, prefer smart pointers:
#include <memory>
#include <string>

class ModernString {
std::unique_ptr<char[]> data; // Automatically freed
size_t len;

public:
ModernString(const char* s) : len(strlen(s)) {

data = std::make_unique<char[]>(len + 1);
strcpy(data.get(), s);

}
// ✅ No custom destructor needed!

};
💡 Best practice: If you can avoid new/delete, do so. Use std::string, std::vector, std::unique_ptr, etc. 



8. When Are a Copy Constructor and 
Assignment Operator Necessary?
• In C++, the compiler automatically generates a default copy 
constructor and a default copy assignment operator for every class if 
you don’t define them yourself. These perform member‐wise copying 
(shallow copy).

• However, you must explicitly define both when your class manages 
resources (such as raw pointers, file handles, or other external 
entities). This is known as the Rule of Three (or Rule of Five in C++11 
and later).



8. When Are a Copy Constructor and 
Assignment Operator Necessary?
The Rule of Three
If your class defines any one of the following, it likely needs all three: 
• Destructor
• Copy constructor
• Copy assignment operator
Why?
Because the default (compiler‐generated) versions perform shallow 
copying, which can lead to serious bugs when your class owns 
resources like dynamically allocated memory.



🔍 Common Scenario: Classes with Raw 
Pointers
❌ Problem: Shallow Copy → Double DeleƟon
class BadArray {

int* data;
size_t size;

public:
BadArray(size_t n) : size(n) {

data = new int[size];
}
// ❌ No custom copy constructor or assignment
// ❌ Default destructor (or even with destructor, still 

unsafe)
~BadArray() { delete[] data; }

};



🔍 Common Scenario: Classes with Raw 
Pointers
Now consider:
BadArray a(5);
BadArray b = a; // Uses default copy constructor 

// → copies pointer!
Both a.data and b.data point to the same memory.
When both objects are destroyed, delete[] is called twice on the same 
address → undefined behavior (usually a crash).



✅ Solution: Define All Three
class GoodArray {

int* data;
size_t size;

public:
// Constructor
GoodArray(size_t n) : size(n) {

data = new int[size]();
}
// Destructor
~GoodArray() {

delete[] data;
}
// Copy constructor
GoodArray(const GoodArray& other) : size(other.size) {

data = new int[size];
std::copy(other.data, other.data + size, data);

}



✅ Solution: Define All Three

// Copy assignment operator
GoodArray& operator=(const GoodArray& other) {

if (this == &other) return *this;  // Self-assignment
// check

delete[] data;                     // Free existing
// resource

size = other.size;
data = new int[size];
std::copy(other.data, other.data + size, data);
return *this;

}
};
Now copying creates independent copies (deep copy) — safe and correct.



🛑When Are They Not Needed?
You do NOT need to define them if your class:
• Uses only automatic storage (e.g., int, std::string, std::vector, std::unique_ptr)
• Relies on RAII types from the standard library
Example of a class that does NOT need custom copy/assign:
class SafeStringHolder {

std::string name;      // Manages its own memory
std::vector<int> nums; // Manages its own memory

public:
// ✅ Compiler-generated copy constructor and 
// assignment work perfectly

};
💡Modern C++ Tip: Prefer std::string, std::vector, std::unique_ptr, etc., to avoid manual memory 
management entirely. 



🔒 Bonus: Prevent Copying (C++11+)

If your class should not be copied (e.g., represents a unique resource 
like a thread or file):
class UniqueResource {
public:

UniqueResource(const UniqueResource&) = 
delete;

UniqueResource& operator=(const 
UniqueResource&) = delete;
};



The Copy‐and‐Swap Idiom in C++

1. What Is Copy‐and‐Swap?
Copy‐and‐swap is a powerful and elegant C++ idiom used to implement the 
copy assignment operator in a way that is:
• Exception‐safe
• Strongly exception‐safe (provides the strong guarantee)
• Avoids code duplication
• Automatically handles self‐assignment
Instead of manually copying data and managing resources inside the 
assignment operator, copy‐and‐swap leverages the copy constructor and a 
swap function.



The Copy‐and‐Swap Idiom in C++



1. What Is Copy‐and‐Swap?

Copy‐and‐swap is a powerful and elegant C++ idiom used to implement 
the copy assignment operator in a way that is:
• Exception‐safe
• Strongly exception‐safe (provides the strong guarantee)
• Avoids code duplication
• Automatically handles self‐assignment
Instead of manually copying data and managing resources inside the 
assignment operator, copy‐and‐swap leverages the copy constructor 
and a swap function.



2. How It Works

The idea is simple:
To assign object a = b:
1. Make a copy of b (using the copy constructor)
2. Swap the contents of a with that copy
3. The temporary copy is destroyed automatically, taking the old 

resources of a with it
This approach delegates resource management to the copy constructor 
(which you already need to write correctly) and a non‐throwing swap 
function.



3. Implementation

Step 1: Define a swap member function (or a friend swap)
class MyClass {
private:

int* data;
size_t size;

public:
// Constructor, destructor, copy 

constructor... (Rule of Three/Five)



3. Implementation

// Swap member function (should never throw)
void swap(MyClass& other) noexcept {

std::swap(data, other.data);
std::swap(size, other.size);

}

// Copy assignment using copy-and-swap
MyClass& operator=(MyClass other) {  // Note: passed by VALUE!

swap(other);  // Swap this with the copy
return *this;

}
};



🔑 Key Detail:

• The parameter other is passed by value → this triggers the copy 
constructor.

• If the user writes a = b, b is copied into other.
• If the user writes a = std::move(b), and a move constructor exists, 
other is move‐constructed (even better!).

Thus, one assignment operator supports both copy and move 
assignment (if move constructor is defined)!



4. Why Is It Exception‐Safe?

• All risky operations (like memory allocation) happen during the copy 
construction of the parameter.

• If an exception is thrown during copying, the original object (*this) 
remains unchanged.

• The swap function itself must not throw (hence noexcept) —
swapping pointers/integers is safe.

This gives the strong exception guarantee:
Either the assignment succeeds completely, or the object is left exactly 
as it was.



5. Self‐Assignment? No Problem!

With copy‐and‐swap, self‐assignment (a = a) works correctly without 
any extra checks:
• other becomes a copy of a
• swap(a, other) just exchanges identical values
• No double‐delete, no leaks, no bugs
Compare this to manual assignment, where you often need:
if (this == &other) return *this;  
// Not needed with copy-and-swap!



6. Final Thought

“Do the work in the right place.”
Let the copy constructor handle copying, the destructor handle 
cleanup, and the assignment operator just orchestrate the swap.
The copy‐and‐swap idiom embodies this principle beautifully.



Move Semantics in C++ — Move Constructor 
and Move Assignment Operator



1. Introduction

In C++11, a powerful feature called move semantics was introduced to 
improve performance by avoiding unnecessary deep copies of objects. 
This is especially important for objects that manage expensive 
resources like dynamic memory, files, or network connections.
At the heart of move semantics are:
• Rvalue references (T&&)
• Move constructor
• Move assignment operator
Together, they enable efficient transfer of resources from temporary (or 
no‐longer‐needed) objects.



2. Lvalues vs. Rvalues

Before understanding move semantics, we must distinguish between 
lvalues and rvalues:

💡 Key idea: We can safely "steal" resources from rvalues because they 
won’t be used again.

Type Description Example

Lvalue An object that has a name and 
persists beyond a single 
expression. Has an address.

int x = 5; → x is an lvalue

Rvalue A temporary, unnamed value that 
is about to be destroyed. Cannot 
be assigned to.

5, func(), MyClass()



3. Rvalue References (T&&)

C++11 introduced rvalue references, denoted by T&&, which bind only 
to rvalues.
int&& r = 42;          // OK: 42 is an rvalue
int x = 10;
int&& r2 = x;          // ❌ Error: x is an

// lvalue
int&& r3 = std::move(x); // ✅ OK: std::move 

// casts x to rvalue



4. Move Constructor

Purpose:
Transfer ownership of resources from a temporary object (rvalue) to a 
new object — without copying.
Syntax:
ClassName(ClassName&& other) noexcept;



4. Move Constructor
class MyString {

char* data;
size_t len;

public:
// Regular constructor
MyString(const char* s) {

len = strlen(s);
data = new char[len + 1];
strcpy(data, s);

}
// Move constructor
MyString(MyString&& other) noexcept

: data(other.data), len(other.len) {
// "Steal" the resource
other.data = nullptr;  // Leave source in valid but empty state
other.len = 0;

}
~MyString() { delete[] data; }

};



4. Move Constructor

When is it called?
• When initializing an object from an rvalue:
MyString s1 = MyString("Hello"); // Move 

// constructor 

// (if available)

MyString s2 = std::move(s1); // Explicit move

std::vector<MyString> v;

v.push_back(MyString("World")); // Move, not copy!



5. Move Assignment Operator
Purpose:
Efficiently assign one object to another by moving resources instead of copying.
Syntax:
ClassName& operator=(ClassName&& other) noexcept;

Example:
MyString& operator=(MyString&& other) noexcept {

if (this != &other) {
delete[] data;           // Free current resource
data = other.data;       // Steal resource
len = other.len;
other.data = nullptr;    // Reset source
other.len = 0;

}
return *this;

}
If you already have a move constructor, copy‐and‐swap can work for move assignment—but providing an explicit move assignment 
operator is usually recommended for performance, clarity, and adherence to C++ best practices.



5. Move Assignment Operator

Consider this without move semantics:
std::vector<MyString> v;
v.push_back(MyString("Temp")); // Without move: 

// deep copy + 
// delete temp

With move semantics:
• The temporary MyString("Temp") is moved into the vector.
• No memory allocation or copying — just pointer transfer!
• Much faster, especially for large objects.
📊 Real‐world impact: Moving a std::vector of 1 million elements is O(1) 
instead of O(n)!



7. The Rule of Five

If you define any of the following, you probably need all five:
• Destructor
• Copy constructor
• Copy assignment operator
• Move constructor
• Move assignment operator
💡 If you manage resources (raw pointers, etc.), define all five or disable 
copying/moving as needed.
Modern alternative: Use smart pointers and standard containers to avoid 
manual implementation.



8. When Are Move Operations Automatically 
Suppressed?
The compiler will not generate move operations if you define:
• A custom destructor
• A custom copy constructor or copy assignment
So if you want move semantics, declare them explicitly (or use = default 
if safe).

If you already have a move constructor, copy‐and‐swap can work for 
move assignment—but providing an explicit move assignment operator 
is usually recommended for performance, clarity, and adherence to C++ 
best practices.


