Lecture: Core Concepts of
Object-Oriented Programming
in C++

1. Introduction to OOP

Object-Oriented Programming (OOP) is a programming paradigm based on
the concept of "objects," which can contain data (attributes) and code
(methods or functions). OOP aims to model real-world entities by bundling
related properties and behaviors into reusable and modular units.

The four pillars of OOP are:
* Encapsulation

* Inheritance

* Polymorphism

* Abstraction

These concepts promote code reusability, modularity, maintainability, and
scalability.

2. Encapsulation

Definition

Encapsulation is the bundling of data (member variables) and methods
(member functions) that operate on that data into a single unit—called
a class. It also involves restricting direct access to some of an object’s
components, which is a means of preventing unintended interference
and misuse.

In C++, this is achieved using access specifiers:

* private: accessible only within the class

 protected: accessible within the class and its derived classes
 public: accessible from anywhere

2. Encapsulation

Example

#include <iostream>
#include <string>
class BankAccount {

double balance; // hidden from outside access
public:
// Constructor
BankAccount (double initialBalance) : balance(initialBalance) {}

// Public interface to interact with balance
void deposit (double amount) {
if (amount > 0)
balance += amount;

}

void withdraw (double amount) {
if (amount > 0 && amount <= balance)
balance -= amount;

/]

2. Encapsulation

double getBalance () const {
return balance;

s

int main() {
BankAccount account (100.0);
account.deposit (50.0);
account.withdraw (30.0);
std::cout << "Current balance: $" << account.getBalance() << std::endl;

// account.balance = -1000; // X Compilation error: 'balance' is
private

return 0;

3. Inheritance

Definition
Inheritance allows a class (derived class or subclass) to inherit
properties and behaviors (methods and attributes) from another class

(base class or superclass). This promotes code reuse and establishes a
natural hierarchy.

C++ supports:
* Single inheritance
* Multiple inheritance (a class can inherit from multiple base classes)

3. Inheritance

Example
#include <iostream>

#include <string>

// Base class

class Animal {

protected:
std::string name;

public:
Animal (const std::string& n) : name (n) {}
void eat () const {

std::cout << name << " is eating." << std::endl;

b

3. Inheritance

// Derived class

class Dog : public Animal {

public:
Dog(const std::string& n) : Animal (n) {}
void bark() const {
std::cout << name << " says: Woof!" << std::endl;
}
bi
int main () {

Dog myDog ("Buddy") ;
myDog.eat () ; // Inherited from Animal
myDog.bark(); // Defined in Dog

return 0;

Key Idea: Dog reuses Animal’s functionality and adds its own.

4. Polymorphism

Definition

Polymorphism (from Greek: “many forms”) allows objects of different
types to be treated through a common interface. In OOP, it enables one
interface to represent different underlying forms (data types).

In C++, polymorphism is implemented via:

* Function overloading (compile-time)

e Virtual functions and dynamic dispatch (run-time)

* We focus on run-time polymorphism using virtual functions.
We focus on run-time polymorphism using virtual functions.

4. Polymorphism

Example
#include <iostream>
#include <vector>

class Shape {

public:
virtual ~Shape() = default; // virtual destructor
virtual void draw() const = 0; // pure virtual function - abstract class

}i

class Circle : public Shape {
public:
void draw () const override {
std::cout << "Drawing a Circle" << std::endl;

}s

class Rectangle : public Shape {
public:
void draw () const override {
std::cout << "Drawing a Rectangle" << std::endl;

4. Polymorphism

int main () {
std: :vector<Shape*> shapes;
shapes.push back(new Circle());
shapes.push back(new Rectangle());

for (const auto& shape : shapes) {
shape->draw(); // Polymorphic call

// Clean up

for (auto* shape : shapes) {
delete shape;

t

return 0O;

}
Key Idea: The same call shape->draw() behaves differently depending on the actual object type—this is dynamic polymorphism.

5. Abstraction

Definition
Abstraction means hiding complex implementation details and showing

only the essential features of an object. It helps reduce programming
complexity and effort.

In C++, abstraction is achieved using:
 Classes (to group relevant data and functions)
» Abstract classes (classes with at least one pure virtual function)

e Interfaces (via pure virtual functions)

5. Abstraction

Example
#include <iostream>

// Abstract class (interface)
class Database {

public:
virtual ~Database() = default;

virtual void connect () = 0;
virtual void disconnect () = 0;

}i

class MySQLDatabase : public Database ({
public:
void connect () override {
std::cout << "Connecting to MySQL..." << std::endl;

void disconnect () override {
std::cout << "Disconnecting from MySQL." << std::endl;

5. Abstraction

// User code interacts only with the abstract interface
voilid useDatabase (Database& db) {

db.connect () ;

// ... perform operations

db.disconnect () ;

int main () {
MySQLDatabase db;
useDatabase (db); // No need to know internal details of MySQL
return 0O;
}
Key Idea: The user works with a high-level interface (Database) without caring about the specific
implementation (MySQLDatabase).

6. Summary Table

Encapsulation Protect data, control access
Inheritance Reuse and extend existing code

Use one interface for multiple

Polymorphism R

Hide complexity, expose only

Abstraction)
essentials

private/protected/public

class Derived : public Base

virtual functions, override

Abstract classes, pure virtual funcs

7. Conclusion

Mastering these four OOP principles allows developers to write
cleaner, more maintainable, and scalable C++ programs. They form the
foundation for modern software design patterns (e.g., Strategy,
Factory, Observer) and are essential for large-scale application
development.

Remember: OOP is not just about syntax—it’s about design philosophy.
Use these tools to model real-world problems effectively.

Lambda Expressions, Function Objects, and
Function Pointers in C++

1. Introduction

C++ supports multiple ways to treat code as data—that is, to store,
pass, and invoke functions dynamically. Three key mechanisms enable
this:

* Function pointers — traditional C-style approach
* Function objects (functors) — C++ classes that overload operator()

* Lambda expressions — concise, inline anonymous functions
(introduced in C++11)

These are essential for writing generic, flexible, and expressive code—
especially when working with the Standard Template Library (STL), such
as std::sort, std::transform, or std::for_each.

2. Function Pointers

What is a Function Pointer?

A function pointer stores the address of a function. It can be passed as
an argument, returned from another function, or stored in a data
structure.

Syntax:
return type (*pointer name) (parameter types);

2. Function Pointers

#include <iostream>
void greet () {
std::cout << "Hello from function pointer!\n";
}
int add(int a, int b) {
return a + b;
}
int main () {
// Declare and assign function pointers
void (*func ptr) () = greet;
int (*add ptr) (int, int) = add;

// Call functions via pointers
func _ptr(); // Output: Hello from function pointer!
std::cout << add ptr(3, 4); // Output: 7
return O;
}
Limitations
Cannot capture local variables from surrounding scope.
Verbose and inflexible for complex logic.

2. Function Pointers

Function pointers allow us to store the address of a function and invoke
it dynamically. However, the syntax for declaring function pointers can
be verbose and error-prone. To improve readability and maintainability,
we can use typedef (or, in modern C++, using) to create an alias for a

function pointer type.

This alias can then be used:

* To declare function pointer variables

* As a parameter type in other functions

* To simplify code when working with callbacks or strategy patterns

3. Using typedef to Simplity

We can use typedef to create a readable alias for this type:
typedef int (*Operation) (1nt, int);

Now, Operation is a type alias representing “pointer to a function that takes
two ints and returns an int”.

Declaring Variables
Operation add =
[] (int a, int b) { return a + b; }; //
C++ lambda (capture-less — convertible)
Operation multiply =
[] (1nt a, int b) { return a * b; };

Note: Capture-less lambdas can be implicitly converted to function pointers.

3. Using typedef to Simplity

Or with regular functions:

int add(int a, int b) { return a + b; }
int multiply(int a, int b) { return a * b; }

Operation opl = add;
Operation op2 = multiply;

4. Using Function Pointer Type as a Function
Parameter

Once we have a typedef alias, we can use it in function declarations to accept function pointers cleanly.
Example: A Generic Calculator Function

#include <iostream>

// Step 1: Define the function pointer type
typedef int (*Operation) (int, int);

// Step 2: Define functions that match the signature
int add(int a, int b) { return a + b; }

int subtract (int a, int b) { return a - b; }

// Step 3: Use 'Operation' as a parameter type
int calculate(int x, int vy, Operation op) {

return op(x, V);

4. Using Function Pointer Type as a Function
Parameter

int main() {

}

int a = 10, b = 4;

std::cout << "Add: " << calculate(a, b, add) << std::endl; // 14
std::cout << "Subtract: " << calculate(a, b, subtract) << std::endl;
// 6

// Also works with capture-less lambdas
Operation divide = [] (int a, int b) { return b != 0 2 a / b : 0; };
std::cout << "Divide: " << calculate(a, b, divide) << std::endl; // 2

return 0O;

The calculate function is generic: it works with any operation matching the Operation signature.

5. Modern C++ Alternative: using (C++11+)

Since C++11, using provides a more readable and flexible syntax:
using Operation = int (*) (1nt, int);

This is functionally identical to the typedef version but integrates better
with templates and is generally preferred in modern code.

6. Real-World Use Case: Callbacks

Function pointer types are commonly used for callbacks—e.g., in event handling, numerical integration, or sorting.

Example: Custom Sort Comparator

#include <vector>

#include <algorithm>

#include <iostream>

typedef bool (*Compare) (int, int);

bool ascending(int a, int b) { return a < b; }

bool descending(int a, int b) { return a > b; }

void sortVector (std::vector<int>& v, Compare comp) {
std::sort(v.begin(), v.end(), comp);

}

int main () {
std::vector<int> data = {5, 2, 9, 1, 5};
sortVector (data, descending);
for (int x : data) std::cout << x << " "; // 95521

return 0;

}

Note: In practice, lambdas or functors are often preferred for std::sort, but function pointers (with typedef) remain useful in C-compatible interfaces.

7. Function Objects (Functors)

What is a Functor?

A functor is an object of a class that overloads the function call
operator operator(). It behaves like a function but can maintain state.

Why Use Functors?

Can store data between calls.

Often inlined by the compiler - high performance.
Used extensively in STL (e.g., std::less, std::plus).

7. Function Objects (Functors)

Example
#include <iostream>

#include <vector>

#include <algorithm>

class Multiplier {
int factor;

public:
Multiplier (int f) : factor(f) {}
int operator () (int x) const {
return x * factor;
}
}i
int main () {
std::vector<int> numbers = {1, 2, 3, 4, 5};

// Use functor with std::transform
std::transform(numbers.begin (), numbers.end(), numbers.begin(), Multiplier (10));

for (int n : numbers)
std::cout << n << " "; // Output: 10 20 30 40 50

return 0;

}
Note: Multiplier(10) creates a temporary object that acts like a function.

8. Lambda Expressions (C++11+)

What is a Lambda?

A lambda expression is a convenient way to define an anonymous
function object inline. It’s especially useful for short, one-time-use
functions.

Basic Syntax
[capture clause | (parameters) -> return type

{
// body

8. Lambda Expressions (C++11+)

* Capture clause [...] specifies how variables from the surrounding
scope are captured:
e [=] — capture by value (all used variables)
* [&] — capture by reference
* [x, &y] — capture x by value, y by reference
* [] — capture nothing

* Return type is often optional (compiler deduces it).

8. Lambda Expressions (C++11+)

Simple Example
#include <iostream>
#include <vector>

#include <algorithm>

int main () {

std::vector<int> v = {5, 2, 8, 1, 9};

// Sort in descending order using a lambda

std::sort (v.begin(), v.end(), [](int a, int b) {
return a > b;

}) g

for (int x : Wv)
std::cout << x << " "; // Output: 9 8 5 2 1

return O;

8. Lambda Expressions (C++11+)

Capturing Variables
#include <iostream>

int main () {
int threshold = 5;

// Capture threshold by value
auto 1s large = [threshold] (int x) {
return x > threshold;

b

std::cout << std::boolalpha << is large(6); // true
return O;

8. Lambda Expressions (C++11+)

By default, captured values are const. Use mutable to modify them:
auto counter = [count = 0] () mutable ({
return ++count;
b i
std::cout << counter(); // 1
std::cout << counter(); // 2
Here, count is an init-capture (C++14 feature).

9. Comparison: When to Use What?
Featwe |functonPomter |Functor _|iambda

State X No Yes Yes (via capture)
Capture local vars X No X (must pass manually) Yes

Performance Good (function call) Excellent (often inlined)]E;(giy:rr;t ol
Readability Low for complex logic Medium High (for short logic)
STL compatibility Yes Yes Yes

Modern C++ tip: Prefer lambdas for simple, local logic. Use functors for reusable, stateful operations.
Use function pointers only when interfacing with C APIs.

10. Practical Use Cases

Example: Filtering with std::copy_if
#include <iostream>
#include <vector>

#include <algorithm>

int main () {
std::vector<int> data = {1, 15, 3, 22, 8};
std::vector<int> result;
int min val = 10;
std::copy if (data.begin(), data.end(), std::back inserter (result),
[min val] (int x) { return x >= min val; });
for (int x : result)
std::cout << x << " "; // Output: 15 22

10. Practical Use Cases

Example: Storing Lambdas in std::function
#include <iostream>

#include <functional> // for std::function

int main () {

std::function<int (int, int)> op;

char choice = '*';
if (choice == '+")

op = [](int a, int b) { return a + b; };
else

op = [](int a, int b) { return a * b; };

std::cout << op(3, 4); // Output: 12
}

std::function provides type erasure—it can store any callable with matching signature.

11. Exercises

Exercise 1: Basic Lambda

Write a lambda that takes two double values and returns the smaller one. Use it with std::min_element to find the smallest value in a
std::vector<double>.

Exercise 2: Capture and Modify

Create a lambda that captures an integer counter by reference and increments it every time the lambda is called. Call it 3 times and
print the final value.

Exercise 3: Functor vs Lambda

Implement a functor Power that raises a number to a fixed exponent (provided in constructor). Then rewrite the same logic using a
lambda with init-capture (C++14). Compare both versions.

Exercise 4: Function Pointer Callback

Write a function applyOperation that takes:

* Two int values

* A function pointer int (*op)(int, int)

It should return op(a, b). Test it with add, subtract, and a lambda (hint: you’ll need to convert the lambda to a function pointer—only
possible if it captures nothing).

Exercise 5: STL with Lambda

Given a std::vector<std::string>, use std::sort with a lambda to sort strings by length (shortest first). If lengths are equal, sort
alphabetically.

12. Summary

Function pointers are simple but limited.
* Functors offer state and flexibility but require class definitions.

* Lambdas combine the best of both: conciseness, state (via capture),
and seamless STL integration.

* Modern C++ code heavily uses lambdas for algorithms, callbacks, and
event handling.

Best Practice: Use lambdas by default for local, short logic. Use
std::function when you need to store or pass callables of different

types with the same signature.

std::function in C++

std::function is a general-purpose polymorphic function wrapper introduced
in C++11 as part of the <functional> header. It can store, copy, and invoke
any callable target—including:

e Regular functions

* Function pointers

Lambdas (even those with captures)

Function objects (functors)

Bind expressions (std::bind)

Member functions (with std::bind or lambdas)

This makes std::function far more flexible than raw function pointers or
functors alone.

2. Why Use std::function?

Problem with Raw Function Pointers:

e Cannot store lambdas with captures

* Cannot store functors or member functions

* Type is tied to exact signature—no polymorphism

Advantages of std::function:

Supports any callable with a compatible signature

Enables uniform interface for callbacks, event handlers, and strategies

Integrates seamlessly with STL algorithms, asynchronous code, and APls

3. Syntax

#include <functional>
std::function<Return Type (Param Types...)>
Examples:

std::function<int (int, int)>
// takes two ints, returns int

std::function<void () >
// takes nothing, returns nothing

std: :function<double (double) >
// unary function

std::function<bool (const std::stringé&) >
// predicate

Note: std::function is a template class—the template argument is the function
signature.

4. Basic Usage Examples

Example 1: Storing Different Callables
#include <iostream>

#include <functional>

// Regular function
int add(int a, int b) {
return a + b;

// Functor
struct Multiply {
int operator() (int a, int b)
return a * b;

Y

const {

4. Basic Usage Examples

int main () {
std::function<int (int, int)> op;

}

// Assign a function

op = add;

std::cout << op (3, 4) <<
// Assign a functor

op = Multiply{};
std::cout << op (3, 4) <<
// Assign a lambda (even
int factor = 10;

op = [factor] (int a, int
std::cout << op (3, 4) <<
return 0O;

std:

std:
with

b) A

std::

rendl;

rendl;

// 7

// 12

capture!)

return
endl;

(a + Db)
// 70

All three callables share the same interface via std::function.

* factor;

b

Example 2: Using std::function as a Callback
Parameter

#include <iostream>
#include <functional>

void executeOperation(int x, int y, std::function<int(int, int)> callback) {
std::cout << "Result: " << callback(x, y) << std::endl;
}

int main() {
auto divide = []
return b !=

(int a, int b) -> int {
0?2a/b: 0;
b

executeOperation (10, 2, divide); // Result: 5
executeOperation (10, 3, [](int a, int b) { return a % b; }); // Result: 1

return 0O;

Performance Note

std::function may incur small overhead due to type erasure and
possible heap allocation (for large lambdas or functors).

For performance-critical inner loops, prefer templates
template<typename F>
void call(F £) { £(); } // zero-cost abstraction

But for APIs, callbacks, and heterogeneous storage, std::function is the
right tool.

Essential Functions from <algorithm> in C++

1. Introduction

The <algorithm> header in C++ provides a rich collection of template
functions for performing operations on ranges (typically containers like
std::vector, std::array, etc.). These algorithms are:

* Generic: work with any iterator type
e Efficient: often optimized (e.g., using introsort for std::sort)

 Composable: can be combined with lambdas, functors, or custom
comparators

We’ll cover the most frequently used algorithms in real-world C++
development.

2. Prerequisites

* Include the header: #include <algorithm>
* Most algorithms work on half-open ranges: [first, last)
» Use iterators (e.g., vec.begin(), vec.end())

3. Core Algorithms

3.1 std::sort — Sort a Range

Purpose: Sort elements in ascending order (or custom order).
Signature:

vold sort (RandomIt first, RandomIt last);

vold sort (RandomIt first, RandomIt last, Compare
comp) ;

3. Core Algorithms

#include <iostream>

#include <vector>

#include <algorithm>

int main () {
std: :vector<int> v = {5, 2, 8, 1, 9};
// Default: ascending
std::sort (v.begin(), v.end()); // v = {1, 2, 5,

// Custom: descending

std::sort(v.begin(), v.end(), std::greater<int>());

// With lambda: sort by absolute value

std::vector<int> w = {-3, 2, -1, 4};

std::sort(w.begin(), w.end(), [](int a, int b) {
return std::abs(a) < std::abs(b);

1) // w = {-1, 2, -3, 4}

return 0;

- .
<& Time Complexity: O(N log N)

& Requires: Random-access iterators (e.g., vector, array)

3. Core Algorithms

3.2 std::find — Search for a Value
Purpose: Find the first occurrence of a value.

Signature:
Iterator find(Iterator first, Iterator last,
const T& wvalue);

3. Core Algorithms

Example:
#include <iostream>
#include <vector>
#include <algorithm>
int main () {
std: :vector<int> v = {10, 20, 30, 40};
auto it = std::find(v.begin(), v.end(), 30);
if (it != v.end()) {
std::cout << "Found at index: " << std::distance(v.begin(), it) << std::endl; // 2
}
// Find with condition: use “std::find if"
auto it2 = std::find if(v.begin(), v.end(), [](int x) {
return x > 25;
b))
if (it2 !'= v.end()) {
std::cout << "First >25: " << *it2 << std::endl; // 30
1
return 0;
}
<& std::find_if uses a predicate (callable) instead of a value.

3. Core Algorithms

3.3 std::for_each — Apply Function to Each Element
Purpose: Execute a function for every element.
Signature:

Function for each (InputIt first, InputlIt last,
Function f);

3. Core Algorithms

#include <iostream>
#include <vector>
#include <algorithm>

int main () {
std::vector<int> v = {1, 2, 3, 4};
// Print all elements
std::for each(v.begin(), v.end(), [] (int x)
{ std::cout << x << " "; });
// Output: 1 2 3 4
// Modify elements (use reference in lambda)
std::for each(v.begin(), v.end(), [](int& x) { x *= 2; });
// v = {2, 4, 6, 8}
return 0O;

}
<& Returns the function object (useful for stateful functors).

3. Core Algorithms

3.4 std::transform — Apply Function and Store Results

Purpose: Apply a function to each element and store the result (in
same or another container).

Signature:

OutputIt transform(Inputlt first, InputlIt last,
OutputIt d first, UnaryOp op);

3. Core Algorithms

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
int main () {
std::vector<double> input = {1.0, 4.0, 9.0, 16.0};
std: :vector<double> output (input.size())
// Compute square roots
std::transform(input.begin(), input.end(), output.begin(), [] (double x) {
return std::sqgrt(x);
1) ;
// output = {1, 2, 3, 4}
// In-place transform (same container)
std::transform(output.begin(), output.end(), output.begin(), [] (double x) {
return x * x;
1) ;

return 0O;

3. Core Algorithms

& Use std::back_inserter for dynamic output:

std: :vector<int> result;
std::transform(v.begin(), v.end(),

std::back i1nserter (result), [](int x) { return x
* 27 })

3. Core Algorithms

3.5 std::copy, std::copy_if — Copy Elements
#include <iostream>

#include <vector>

#include <algorithm>

int main() {
std::vector<int> src = {1, 2, 3, 4, 5, 6};
std::vector<int> dest;
// Copy all even numbers

std::copy if(src.begin(), src.end(), std::back inserter(dest), [] (int x) {
return x % 2 == 0;
P) s // dest = {2, 4, 6}

// Copy first 3 elements

std::vector<int> first3(3);

std::copy(src.begin(), src.begin() + 3, first3.begin()); // first3 = {1, 2, 3}
return 0;

3. Core Algorithms

3.6 std::count, std::count_if — Count Elements

Purpose: Count occurrences of a value or elements satisfying a
condition.

Example:

std: :vector<int> v = {1, 3, 3, 7, 3};

int cl = std::count(v.begin(), v.end(), 3); // 3
int ¢2 = std::count i1f(v.begin(), v.end(),

[] (int x) { return x > 2; }); // 4

3. Core Algorithms

3.7 std::max_element, std::min_element
Purpose: Find iterators to the maximum/minimum element.

Example:

std: :vector<int> v = {5, 1, 9, 3};

auto max 1t = std::max element(v.begin(), v.end());

std::cout << "Max: " << *max it << std::endl; // 9

// With custom comparator: longest string

std::vector<std::string> words = {"cat", "elephant", "dog"};

auto longest = std::max element (words.begin(), words.end(),
[] (const std::string& a, const std::stringé& b) {

return a.size() < b.size();

b) g
std::cout << "Longest: " << *longest << std::endl; // "elephant"

3. Core Algorithms

3.8 std::accumulate — (Note: in <numeric>, but often used with

algorithms)

#include <numeric>

std: :vector<int> v = {1, 2, 3, 4};

int sum = std::accumulate(v.begin(), v.end(),
0); // 10

int prod = std::accumulate(v.begin(), v.end(),

1, std::multiplies<int>()); // 24

4. Summary Table

Algorithm

std:
std:
std:
std:
std:
std:
std::
std:

:sort

:find
:for_each
:transform
:copy_if

:count_if

max_element

:accumulate

Sort range

Find value

Apply function to each element
Map elements - new values
Copy elements matching predicate
Count elements by condition

Find largest element

Reduce (sum, product, etc.)

O(N log N), custom comparator
Use find_if for conditions

For side effects

Can be in-place

Use back_inserter

Returns iterator

Requires <numeric>

5. Exercises

Exercise 1: Sorting by Custom Criterion

Given a std::vector<std::string> words, sort them:

* By length (shortest first)

* Iflengths are equal, sort alphabetically

Exercise 2: Transform and Filter

Given a vector of integers, create a new vector containing the squares of all even numbers.
Exercise 3: Find and Replace

Write a function that replaces all occurrences of a value old_val with new_val in a vector.
(Hint: use std::replace or combine find + loop)

Exercise 4: Count Palindromes

Given a vector of strings, count how many are palindromes.

(Hint: write a lambda that checks s == std::string(s.rbegin(), s.rend()))

Exercise 5: Min/Max with Custom Logic

Given a vector of Person structs ({ std::string name; int age; }), find:

* The youngest person

* The person with the longest name

