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Preface to the second edition

In the six years that passed since the publication of the firstedition of this book,
iterative methods for linear systems have made good progress in scientific and engi-
neering disciplines. This is due in great part to the increased complexity and size of
the new generation of linear and nonlinear systems which arise from typical appli-
cations. At the same time, parallel computing has penetrated the same application
areas, as inexpensive computer power became broadly available and standard com-
munication languages such as MPI gave a much needed standardization. This has
created an incentive to utilize iterative rather than direct solvers because the prob-
lems solved are typically from 3-dimensional models for which direct solvers often
become ineffective. Another incentive is that iterative methods are far easier to im-
plement on parallel computers,

Though iterative methods for linear systems have seen a significant maturation,
there are still many open problems. In particular, it still cannot be stated that an
arbitrary sparse linear system can be solved iteratively inan efficient way. If physical
information about the problem can be exploited, more effective and robust methods
can be tailored for the solutions. This strategy is exploited by multigrid methods. In
addition, parallel computers necessitate different ways of approaching the problem
and solution algorithms that are radically different from classical ones.

Several new texts on the subject of this book have appeared since the first edition.
Among these, are the books by Greenbaum [154], and Meurant [209]. The exhaustive
5-volume treatise by G. W. Stewart [274] is likely to become the de-facto reference
in numerical linear algebra in years to come. The related multigrid literature has
also benefited from a few notable additions, including a new edition of the excellent
“Multigrid tutorial” [65], and a new title by Trottenberg etal. [286].

Most notable among the changes from the first edition, is the addition of a sorely
needed chapter on Multigrid techniques. The chapters whichhave seen the biggest
changes are Chapter 3, 6, 10, and 12. In most cases, the modifications were made to
update the material by adding topics that were developed recently or gained impor-
tance in the last few years. In some instances some of the older topics were removed
or shortened. For example the discussion on parallel architecture has been short-
ened. In the mid-1990’s hypercubes and “fat-trees” were important topic to teach.
This is no longer the case, since manufacturers have taken steps to hide the topology
from the user, in the sense that communication has become much less sensitive to the

xiii



xiv PREFACE

underlying architecture.
The bibliography has been updated to include work that has appeared in the last

few years, as well as to reflect change of emphasis when new topics have gained
importance. Similarly, keeping in mind the educational side of this book, many
new exercises have been added. The first edition suffered many typographical errors
which have been corrected. Many thanks to those readers who took the time to point
out errors.

I would like to reiterate my thanks to all my colleagues who helped make the
the first edition a success (see the preface to the first edition). I received support
and encouragement from many students and colleagues to put together this revised
volume. I also wish to thank those who proofread this book. I found that one of
the best way to improve clarity is to solicit comments and questions from students
in a course which teaches the material. Thanks to all students in Csci 8314 who
helped in this regard. Special thanks to Bernie Sheeham, whopointed out quite a
few typographical errors and made numerous helpful suggestions.

My sincere thanks to Michele Benzi, Howard Elman, and Steve Mc Cormick
for their reviews of this edition. Michele proof-read a few chapters thoroughly and
caught a few misstatements. Steve Mc Cormick’s review of Chapter 13 helped ensure
that my slight bias for Krylov methods (versus multigrid) was not too obvious. His
comments were at the origin of the addition of Section 13.7 (Multigrid vs Krylov
methods).

I would also like to express my appreciation to the SIAM staff, especially Linda
Thiel and Sara Murphy.
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Suggestions for teaching

This book can be used as a text to teach a graduate-level course on iterative methods
for linear systems. Selecting topics to teach depends on whether the course is taught
in a mathematics department or a computer science (or engineering) department, and
whether the course is over a semester or a quarter. Here are a few comments on the
relevance of the topics in each chapter.

For a graduate course in a mathematics department, much of the material in
Chapter 1 should be known already. For non-mathematics majors most of the chap-
ter must be covered or reviewed to acquire a good background for later chapters.
The important topics for the rest of the book are in Sections:1.8.1, 1.8.3, 1.8.4, 1.9,
1.11. Section 1.12 is best treated at the beginning of Chapter 5. Chapter 2 is essen-
tially independent from the rest and could be skipped altogether in a quarter session,
unless multigrid methods are to be included in the course. One lecture on finite dif-
ferences and the resulting matrices would be enough for a non-math course. Chapter
3 aims at familiarizing the student with some implementation issues associated with
iterative solution procedures for general sparse matrices. In a computer science or
engineering department, this can be very relevant. For mathematicians, a mention
of the graph theory aspects of sparse matrices and a few storage schemes may be
sufficient. Most students at this level should be familiar with a few of the elementary
relaxation techniques covered in Chapter 4. The convergence theory can be skipped
for non-math majors. These methods are now often used as preconditioners and this
may be the only motive for covering them.

Chapter 5 introduces key concepts and presents projection techniques in gen-
eral terms. Non-mathematicians may wish to skip Section 5.2.3. Otherwise, it is
recommended to start the theory section by going back to Section 1.12 on general
definitions on projectors. Chapters 6 and 7 represent the heart of the matter. It is
recommended to describe the first algorithms carefully and put emphasis on the fact
that they generalize the one-dimensional methods covered in Chapter 5. It is also
important to stress the optimality properties of those methods in Chapter 6 and the
fact that these follow immediately from the properties of projectors seen in Section
1.12. Chapter 6 is rather long and the instructor will need toselect what to cover
among the non-essential topics as well as topics for reading.

When covering the algorithms in Chapter 7, it is crucial to point out the main
differences between them and those seen in Chapter 6. The variants such as CGS,
BICGSTAB, and TFQMR can be covered in a short time, omitting details of the
algebraic derivations or covering only one of the three. Theclass of methods based
on the normal equation approach, i.e., Chapter 8, can be skipped in a math-oriented
course, especially in the case of a quarter system. For a semester course, selected
topics may be Sections 8.1, 8.2, and 8.4.

Preconditioning is known to be the determining ingredient in the success of iter-
ative methods in solving real-life problems. Therefore, atleast some parts of Chapter
9 and Chapter 10 should be covered. Section 9.2 and (very briefly) 9.3 are recom-
mended. From Chapter 10, discuss the basic ideas in Sections10.1 through 10.3.
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The rest could be skipped in a quarter course.
Chapter 11 may be useful to present to computer science majors, but may be

skimmed through or skipped in a mathematics or an engineering course. Parts of
Chapter 12 could be taught primarily to make the students aware of the importance
of “alternative” preconditioners. Suggested selections are: 12.2, 12.4, and 12.7.2 (for
engineers).

Chapters 13 and 14 present important research areas and are primarily geared
to mathematics majors. Computer scientists or engineers may cover this material in
less detail.

To make these suggestions more specific, the following two tables are offered
as sample course outlines. Numbers refer to sections in the text. A semester course
represents approximately 30 lectures of 75 minutes each whereas a quarter course
is approximately 20 lectures of 75 minutes each. Different topics are selected for a
mathematics course and a non-mathematics course.

Semester course

Weeks Mathematics Computer Science / Eng.

1.9 –1.13 1.1 – 1.6 (Read) ; 1.7; 1.9;
1 – 3 2.1 – 2.5 1.11; 1.12; 2.1 – 2.2

3.1 – 3.3 3.1 – 3.6

4.1 – 4.2 4.1 – 4.2.1; 4.2.3
4 – 6 5. 1 – 5.3; 6.1 – 6.4 5.1 – 5.2.1; 5.3

6.5.1; 6.5.3 – 6.5.9 6.1 – 6.4; 6.5.1 – 6.5.5

6.6 – 6.8 6.7.1 6.8–6.9
7 – 9 6.9 – 6.11; 7.1 – 7.3 6.11.3; 7.1 – 7.3

7.4.1; 7.4.2; 7.4.3 (Read) 7.4.1 – 7.4.2; 7.4.3 (Read)

8.1; 8.2 ; 9.1 – 9.4; 8.1 – 8.3; 9.1 – 9.3
10 – 12 10.1 – 10.3; 10.4.1; 10.1 – 10.3 ; 10.4.1 – 10.4.3;

10.5.1 – 10.5.7 10.5.1 – 10.5.4; 10.5.7

12.2 – 12.4 11.1 – 11.4 (Read); 11.5 – 11.6
13 – 15 13.1 – 13.5 12.1 – 12.2 ; 12.4 – 12.7

14.1 – 14.6 14.1 – 14.3; 14.6
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Quarter course

Weeks Mathematics Computer Science / Eng.

1 – 2 1.9 – 1.13 1.1 – 1.6 (Read); 3.1 – 3.5
4.1 – 4.2; 5.1 – 5.4 4.1; 1.12 (Read)

3 – 4 6.1 – 6.4 5.1 – 5.2.1; 5.3
6.5.1; 6.5.3 – 6.5.5 6.1 – 6.3

5 – 6 6.7.1; 6.11.3; 7.1 – 7.3 6.4; 6.5.1; 6.5.3 – 6.5.5
7.4.1 – 7.4.2; 7.4.3 (Read) 6.7.1; 6.11.3; 7.1 – 7.3

7 – 8 9.1 – 9.3 7.4.1 – 7.4.2 (Read); 9.1 – 9.3
10.1 – 10.3; 10.5.1; 10.5.7 10.1 – 10.3; 10.5.1; 10.5.7

9 – 10 13.1 – 13.5 11.1 – 11.4 (Read); 11.5; 11.6
14.1 – 14.4 12.1 – 12.2; 12.4 – 12.7
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Preface to the first edition

Iterative methods for solving general, large sparse linearsystems have been gain-
ing popularity in many areas of scientific computing. Until recently, direct solution
methods were often preferred to iterative methods in real applications because of
their robustness and predictable behavior. However, a number of efficient iterative
solvers were discovered and the increased need for solving very large linear systems
triggered a noticeable and rapid shift toward iterative techniques in many applica-
tions.

This trend can be traced back to the 1960s and 1970s when two important de-
velopments revolutionized solution methods for large linear systems. First was the
realization that one can take advantage of “sparsity” to design special direct meth-
ods that can be quite economical. Initiated by electrical engineers, these “direct
sparse solution methods” led to the development of reliableand efficient general--
purpose direct solution software codes over the next three decades. Second was
the emergence of preconditioned conjugate gradient-like methods for solving linear
systems. It was found that the combination of preconditioning and Krylov subspace
iterations could provide efficient and simple “general-purpose” procedures that could
compete with direct solvers. Preconditioning involves exploiting ideas from sparse
direct solvers. Gradually, iterative methods started to approach the quality of di-
rect solvers. In earlier times, iterative methods were often special-purpose in nature.
They were developed with certain applications in mind, and their efficiency relied on
many problem-dependent parameters.

Now, three-dimensional models are commonplace and iterative methods are al-
most mandatory. The memory and the computational requirements for solving three-
dimensional Partial Differential Equations, or two-dimensional ones involving many
degrees of freedom per point, may seriously challenge the most efficient direct solvers
available today. Also, iterative methods are gaining ground because they are easier
to implement efficiently on high-performance computers than direct methods.

My intention in writing this volume is to provide up-to-datecoverage of itera-
tive methods for solving large sparse linear systems. I focused the book on practical
methods that work for general sparse matrices rather than for any specific class of
problems. It is indeed becoming important to embrace applications not necessar-
ily governed by Partial Differential Equations, as these applications are on the rise.

xix
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Apart from two recent volumes by Axelsson [14] and Hackbusch[163], few books on
iterative methods have appeared since the excellent ones byVarga [293]. and later
Young [322]. Since then, researchers and practitioners have achieved remarkable
progress in the development and use of effective iterative methods. Unfortunately,
fewer elegant results have been discovered since the 1950s and 1960s. The field has
moved in other directions. Methods have gained not only in efficiency but also in
robustness and in generality. The traditional techniques which required rather com-
plicated procedures to determine optimal acceleration parameters have yielded to the
parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available
today, from both preconditioners and accelerators. One of the aims of the book is
to provide a good mix of theory and practice. It also addresses some of the current
research issues such as parallel implementations and robust preconditioners. The
emphasis is on Krylov subspace methods, currently the most practical and common
group of techniques used in applications. Although there isa tutorial chapter that
covers the discretization of Partial Differential Equations, the book is not biased
toward any specific application area. Instead, the matricesare assumed to be general
sparse, possibly irregularly structured.

The book has been structured in four distinct parts. The firstpart, Chapters 1 to 4,
presents the basic tools. The second part, Chapters 5 to 8, presents projection meth-
ods and Krylov subspace techniques. The third part, Chapters 9 and 10, discusses
preconditioning. The fourth part, Chapters 11 to 13, discusses parallel implementa-
tions and parallel algorithms.
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Chapter 1

BACKGROUND IN LINEAR ALGEBRA

This chapter gives an overview of the relevant concepts in linear algebra which are useful in

later chapters. It begins with a review of basic matrix theory and introduces the elementary

notation used throughout the book. The convergence analysis of iterative methods requires a

good level of knowledge in mathematical analysis and in linear algebra. Traditionally, many of the

concepts presented specifically for these analyses have been geared toward matrices arising from

the discretization of Partial Differential Equations and basic relaxation-type methods. These

concepts are now becoming less important because of the trend toward projection-type methods

which have more robust convergence properties and require different analysis tools. The material

covered in this chapter will be helpful in establishing some theory for the algorithms and defining

the notation used throughout the book.

1.1 Matrices

For the sake of generality, all vector spaces considered in this chapter are complex,
unless otherwise stated. A complexn ×m matrixA is ann ×m array of complex
numbers

aij, i = 1, . . . , n, j = 1, . . . ,m.

The set of alln×mmatrices is a complex vector space denoted byC
n×m. The main

operations with matrices are the following:

• Addition: C = A+B, whereA,B, andC are matrices of sizen×m and

cij = aij + bij, i = 1, 2, . . . n, j = 1, 2, . . . m.

• Multiplication by a scalar:C = αA, where

cij = α aij, i = 1, 2, . . . n, j = 1, 2, . . . m.

1



2 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

• Multiplication by another matrix:

C = AB,

whereA ∈ C
n×m, B ∈ C

m×p, C ∈ C
n×p, and

cij =

m∑

k=1

aikbkj.

Sometimes, a notation with column vectors and row vectors isused. The column
vectora∗j is the vector consisting of thej-th column ofA,

a∗j =







a1j

a2j
...
anj






.

Similarly, the notationai∗ will denote thei-th row of the matrixA

ai∗ = (ai1, ai2, . . . , aim) .

For example, the following could be written

A = (a∗1, a∗2, . . . , a∗m) ,

or

A =









a1∗
a2∗
.
.
an∗









.

The transposeof a matrixA in C
n×m is a matrixC in C

m×n whose elements
are defined bycij = aji, i = 1, . . . ,m, j = 1, . . . , n. It is denoted byAT . It is often
more relevant to use thetranspose conjugatematrix denoted byAH and defined by

AH = ĀT = AT ,

in which the bar denotes the (element-wise) complex conjugation.
Matrices are strongly related to linear mappings between vector spaces of finite

dimension. This is because they represent these mappings with respect to two given
bases: one for the initial vector space and the other for the image vector space, or
rangeof A.
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1.2 Square Matrices and Eigenvalues

A matrix issquareif it has the same number of columns and rows, i.e., ifm = n. An
important square matrix is the identity matrix

I = {δij}i,j=1,...,n,

whereδij is the Kronecker symbol. The identity matrix satisfies the equality AI =
IA = A for every matrixA of sizen. The inverse of a matrix, when it exists, is a
matrixC such that

CA = AC = I.

The inverse ofA is denoted byA−1.
Thedeterminantof a matrix may be defined in several ways. For simplicity, the

following recursive definition is used here. The determinant of a1× 1 matrix (a) is
defined as the scalara. Then the determinant of ann× n matrix is given by

det(A) =

n∑

j=1

(−1)j+1a1jdet(A1j),

whereA1j is an(n − 1)× (n− 1) matrix obtained by deleting the first row and the
j-th column ofA. A matrix is said to besingularwhendet(A) = 0 andnonsingular
otherwise. We have the following simple properties:

• det(AB) = det(A)det(B).

• det(AT ) = det(A).

• det(αA) = αndet(A).

• det(Ā) = det(A).

• det(I) = 1.

From the above definition of determinants it can be shown by induction that the
function that maps a given complex valueλ to the valuepA(λ) = det(A − λI)
is a polynomial of degreen; see Exercise 8. This is known as thecharacteristic
polynomialof the matrixA.

Definition 1.1 A complex scalarλ is called an eigenvalue of the square matrixA
if a nonzero vectoru of C

n exists such thatAu = λu. The vectoru is called an
eigenvector ofA associated withλ. The set of all the eigenvalues ofA is called the
spectrum ofA and is denoted byσ(A).

A scalarλ is an eigenvalue ofA if and only if det(A− λI) ≡ pA(λ) = 0. That
is true if and only if (iff thereafter)λ is a root of the characteristic polynomial. In
particular, there are at mostn distinct eigenvalues.

It is clear that a matrix is singular if and only if it admits zero as an eigenvalue.
A well known result in linear algebra is stated in the following proposition.
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Proposition 1.2 A matrixA is nonsingular if and only if it admits an inverse.

Thus, the determinant of a matrix determines whether or not the matrix admits an
inverse.

The maximum modulus of the eigenvalues is calledspectral radiusand is de-
noted byρ(A)

ρ(A) = max
λ∈σ(A)

|λ|.

Thetraceof a matrix is equal to the sum of all its diagonal elements

tr(A) =
n∑

i=1

aii.

It can be easily shown that the trace ofA is also equal to the sum of the eigenvalues
of A counted with their multiplicities as roots of the characteristic polynomial.

Proposition 1.3 If λ is an eigenvalue ofA, then λ̄ is an eigenvalue ofAH . An
eigenvectorv of AH associated with the eigenvaluēλ is called a left eigenvector of
A.

When a distinction is necessary, an eigenvector ofA is often called a right eigen-
vector. Therefore, the eigenvalueλ as well as the right and left eigenvectors,u and
v, satisfy the relations

Au = λu, vHA = λvH ,

or, equivalently,
uHAH = λ̄uH , AHv = λ̄v.

1.3 Types of Matrices

The choice of a method for solving linear systems will often depend on the structure
of the matrixA. One of the most important properties of matrices is symmetry, be-
cause of its impact on the eigenstructure ofA. A number of other classes of matrices
also have particular eigenstructures. The most important ones are listed below:

• Symmetric matrices:AT = A.

• Hermitian matrices:AH = A.

• Skew-symmetric matrices:AT = −A.

• Skew-Hermitian matrices:AH = −A.

• Normal matrices:AHA = AAH .

• Nonnegative matrices:aij ≥ 0, i, j = 1, . . . , n (similar definition for non-
positive, positive, and negative matrices).
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• Unitary matrices:QHQ = I.

It is worth noting that a unitary matrixQ is a matrix whose inverse is its transpose
conjugateQH , since

QHQ = I → Q−1 = QH . (1.1)

A matrixQ such thatQHQ is diagonal is often called orthogonal.
Some matrices have particular structures that are often convenient for computa-

tional purposes. The following list, though incomplete, gives an idea of these special
matrices which play an important role in numerical analysisand scientific computing
applications.

• Diagonal matrices:aij = 0 for j 6= i. Notation:

A = diag (a11, a22, . . . , ann) .

• Upper triangular matrices:aij = 0 for i > j.

• Lower triangular matrices:aij = 0 for i < j.

• Upper bidiagonal matrices:aij = 0 for j 6= i or j 6= i+ 1.

• Lower bidiagonal matrices:aij = 0 for j 6= i or j 6= i− 1.

• Tridiagonal matrices:aij = 0 for any pairi, j such that|j − i| > 1. Notation:

A = tridiag (ai,i−1, aii, ai,i+1) .

• Banded matrices:aij 6= 0 only if i−ml ≤ j ≤ i+mu, whereml andmu are
two nonnegative integers. The numberml + mu + 1 is called the bandwidth
of A.

• Upper Hessenberg matrices:aij = 0 for any pairi, j such thati > j + 1.
Lower Hessenberg matrices can be defined similarly.

• Outer product matrices:A = uvH , where bothu andv are vectors.

• Permutation matrices:the columns ofA are a permutation of the columns of
the identity matrix.

• Block diagonal matrices:generalizes the diagonal matrix by replacing each
diagonal entry by a matrix. Notation:

A = diag (A11, A22, . . . , Ann) .

• Block tridiagonal matrices:generalizes the tridiagonal matrix by replacing
each nonzero entry by a square matrix. Notation:

A = tridiag (Ai,i−1, Aii, Ai,i+1) .

The above properties emphasize structure, i.e., positionsof the nonzero elements
with respect to the zeros. Also, they assume that there are many zero elements or
that the matrix is of low rank. This is in contrast with the classifications listed earlier,
such as symmetry or normality.
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1.4 Vector Inner Products and Norms

An inner product on a (complex) vector spaceX is any mappings from X × X into
C,

x ∈ X, y ∈ X → s(x, y) ∈ C,

which satisfies the following conditions:

1. s(x, y) is linear with respect tox, i.e.,

s(λ1x1 + λ2x2, y) = λ1s(x1, y) + λ2s(x2, y), ∀ x1, x2 ∈ X,∀ λ1, λ2 ∈ C.

2. s(x, y) is Hermitian, i.e.,

s(y, x) = s(x, y), ∀ x, y ∈ X.

3. s(x, y) is positive definite, i.e.,

s(x, x) > 0, ∀ x 6= 0.

Note that (2) implies thats(x, x) is real and therefore, (3) adds the constraint that
s(x, x) must also be positive for any nonzerox. For anyx andy,

s(x, 0) = s(x, 0.y) = 0.s(x, y) = 0.

Similarly, s(0, y) = 0 for anyy. Hence,s(0, y) = s(x, 0) = 0 for anyx andy. In
particular the condition (3) can be rewritten as

s(x, x) ≥ 0 and s(x, x) = 0 iff x = 0,

as can be readily shown. A useful relation satisfied by any inner product is the so-
called Cauchy-Schwartz inequality:

|s(x, y)|2 ≤ s(x, x) s(y, y). (1.2)

The proof of this inequality begins by expandings(x− λy, x− λy) using the prop-
erties ofs,

s(x− λy, x− λy) = s(x, x)− λ̄s(x, y)− λs(y, x) + |λ|2s(y, y).

If y = 0 then the inequality is trivially satisfied. Assume thaty 6= 0 and take
λ = s(x, y)/s(y, y). Then, from the above equality,s(x − λy, x − λy) ≥ 0 shows
that

0 ≤ s(x− λy, x− λy) = s(x, x)− 2
|s(x, y)|2
s(y, y)

+
|s(x, y)|2
s(y, y)

= s(x, x)− |s(x, y)|
2

s(y, y)
,
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which yields the result (1.2).
In the particular case of the vector spaceX = C

n, a “canonical” inner product
is the Euclidean inner product. The Euclidean inner product of two vectorsx =
(xi)i=1,...,n andy = (yi)i=1,...,n of C

n is defined by

(x, y) =

n∑

i=1

xiȳi, (1.3)

which is often rewritten in matrix notation as

(x, y) = yHx. (1.4)

It is easy to verify that this mapping does indeed satisfy thethree conditions required
for inner products, listed above. A fundamental property ofthe Euclidean inner
product in matrix computations is the simple relation

(Ax, y) = (x,AHy), ∀ x, y ∈ C
n. (1.5)

The proof of this is straightforward. Theadjoint of A with respect to an arbitrary
inner productis a matrixB such that(Ax, y) = (x,By) for all pairs of vectorsx
andy. A matrix is self-adjoint, or Hermitian with respect to this inner product, if it
is equal to its adjoint. The following proposition is a consequence of the equality
(1.5).

Proposition 1.4 Unitary matrices preserve the Euclidean inner product, i.e.,

(Qx,Qy) = (x, y)

for any unitary matrixQ and any vectorsx andy.

Proof. Indeed,(Qx,Qy) = (x,QHQy) = (x, y).

A vector norm on a vector spaceX is a real-valued functionx → ‖x‖ on X,
which satisfies the following three conditions:

1. ‖x‖ ≥ 0, ∀ x ∈ X, and ‖x‖ = 0 iff x = 0.

2. ‖αx‖ = |α|‖x‖, ∀ x ∈ X, ∀α ∈ C.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ X.

For the particular case whenX = C
n, we can associate with the inner product

(1.3) theEuclidean normof a complex vector defined by

‖x‖2 = (x, x)1/2.

It follows from Proposition 1.4 that a unitary matrix preserves the Euclidean norm
metric, i.e.,

‖Qx‖2 = ‖x‖2, ∀ x.
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The linear transformation associated with a unitary matrixQ is therefore anisometry.
The most commonly used vector norms in numerical linear algebra are special

cases of the Hölder norms

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

. (1.6)

Note that the limit of‖x‖p whenp tends to infinity exists and is equal to the maxi-
mum modulus of thexi’s. This defines a norm denoted by‖.‖∞. The casesp = 1,
p = 2, andp =∞ lead to the most important norms in practice,

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|,
‖x‖2 =

[
|x1|2 + |x2|2 + · · · + |xn|2

]1/2
,

‖x‖∞ = max
i=1,...,n

|xi|.

The Cauchy-Schwartz inequality of (1.2) becomes

|(x, y)| ≤ ‖x‖2‖y‖2.

1.5 Matrix Norms

For a general matrixA in C
n×m, we define the following special set of norms

‖A‖pq = max
x∈Cm, x 6=0

‖Ax‖p
‖x‖q

. (1.7)

The norm‖.‖pq is inducedby the two norms‖.‖p and‖.‖q. These norms satisfy the
usual properties of norms, i.e.,

‖A‖ ≥ 0, ∀ A ∈ C
n×m, and ‖A‖ = 0 iff A = 0 (1.8)

‖αA‖ = |α|‖A‖,∀ A ∈ C
n×m, ∀ α ∈ C (1.9)

‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀ A,B ∈ C
n×m. (1.10)

(1.11)

A norm which satisfies the above three properties is nothing but a vector normap-
plied to the matrix considered as a vector consisting of them columns stacked into a
vector of sizenm.

The most important cases are again those associated withp, q = 1, 2,∞. The
caseq = p is of particular interest and the associated norm‖.‖pq is simply denoted
by ‖.‖p and called a “p-norm.” A fundamental property of ap-norm is that

‖AB‖p ≤ ‖A‖p‖B‖p,

an immediate consequence of the definition (1.7). Matrix norms that satisfy the above
property are sometimes calledconsistent. Often a norm satisfying the properties
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(1.8–1.10) and which is consistent is called amatrix norm. A result of consistency is
that for any square matrixA,

‖Ak‖p ≤ ‖A‖kp .
In particular the matrixAk converges to zero ifanyof its p-norms is less than 1.

The Frobenius norm of a matrix is defined by

‖A‖F =





m∑

j=1

n∑

i=1

|aij |2




1/2

. (1.12)

This can be viewed as the 2-norm of the column (or row) vector in C
n2

consisting
of all the columns (respectively rows) ofA listed from1 tom (respectively1 to n.)
It can be shown that this norm is also consistent, in spite of the fact that it is not
induced by a pair of vector norms, i.e., it is not derived froma formula of the form
(1.7); see Exercise 5. However, it does not satisfy some of the other properties of
thep-norms. For example, the Frobenius norm of the identity matrix is not equal to
one. To avoid these difficulties,we will only use the term matrix norm for a norm
that is induced by two norms as in the definition (1.7). Thus, we will not consider
the Frobenius norm to be a proper matrix norm, according to our conventions, even
though it is consistent.

The following equalities satisfied by the matrix norms defined above lead to al-
ternative definitions that are often easier to work with:

‖A‖1 = max
j=1,...,m

n∑

i=1

|aij |, (1.13)

‖A‖∞ = max
i=1,...,n

m∑

j=1

|aij |, (1.14)

‖A‖2 =
[
ρ(AHA)

]1/2
=
[
ρ(AAH)

]1/2
, (1.15)

‖A‖F =
[
tr(AHA)

]1/2
=
[
tr(AAH)

]1/2
. (1.16)

As will be shown later, the eigenvalues ofAHA are nonnegative. Their square
roots are calledsingular valuesof A and are denoted byσi, i = 1, . . . ,m. Thus, the
relation (1.15) states that‖A‖2 is equal toσ1, the largest singular value ofA.

Example 1.1. From the relation (1.15), it is clear that the spectral radius ρ(A) is
equal to the 2-norm of a matrix when the matrix is Hermitian. However, it is not
a matrix norm in general. For example, the first property of norms is not satisfied,
since for

A =

(
0 1
0 0

)

,

we haveρ(A) = 0 whileA 6= 0. Also, the triangle inequality is not satisfied for the
pairA, andB = AT whereA is defined above. Indeed,

ρ(A+B) = 1 while ρ(A) + ρ(B) = 0.
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1.6 Subspaces, Range, and Kernel

A subspace ofCn is a subset ofCn that is also a complex vector space. The set of
all linear combinations of a set of vectorsG = {a1, a2, . . . , aq} of C

n is a vector
subspace called the linear span ofG,

span{G} = span {a1, a2, . . . , aq}

=

{

z ∈ C
n

∣
∣
∣
∣
z =

q
∑

i=1

αiai; {αi}i=1,...,q ∈ C
q

}

.

If the ai’s are linearly independent, then each vector ofspan{G} admits a unique
expression as a linear combination of theai’s. The setG is then called abasisof the
subspacespan{G}.

Given two vector subspacesS1 andS2, theirsum S is a subspace defined as the
set of all vectors that are equal to the sum of a vector ofS1 and a vector ofS2. The
intersection of two subspaces is also a subspace. If the intersection ofS1 andS2 is
reduced to{0}, then the sum ofS1 andS2 is called their direct sum and is denoted
by S = S1

⊕
S2. WhenS is equal toCn, then every vectorx of C

n can be written
in a unique way as the sum of an elementx1 of S1 and an elementx2 of S2. The
transformationP that mapsx into x1 is a linear transformation that isidempotent,
i.e., such thatP 2 = P . It is called aprojectorontoS1 alongS2.

Two important subspaces that are associated with a matrixA of C
n×m are its

range, defined by
Ran(A) = {Ax | x ∈ C

m}, (1.17)

and itskernelor null space

Null(A) = {x ∈ C
m | Ax = 0 }.

The range ofA is clearly equal to the linearspanof its columns. Therank of a
matrix is equal to the dimension of the range ofA, i.e., to the number of linearly
independent columns. Thiscolumn rankis equal to therow rank, the number of
linearly independent rows ofA. A matrix in C

n×m is of full rank when its rank is
equal to the smallest ofm andn. A fundamental result of linear algebra is stated by
the following relation

C
n = Ran(A)⊕Null(AT ) . (1.18)

The same result applied to the transpose ofA yields: C
m = Ran(AT )⊕Null(A).

A subspaceS is said to beinvariant under a (square) matrixA wheneverAS ⊂
S. In particular for any eigenvalueλ of A the subspaceNull(A − λI) is invariant
underA. The subspaceNull(A− λI) is called the eigenspace associated withλ and
consists of all the eigenvectors ofA associated withλ, in addition to the zero-vector.
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1.7 Orthogonal Vectors and Subspaces

A set of vectorsG = {a1, a2, . . . , ar} is said to beorthogonalif

(ai, aj) = 0 when i 6= j.

It is orthonormal if, in addition, every vector ofG has a 2-norm equal to unity. A
vector that is orthogonal to all the vectors of a subspaceS is said to be orthogonal to
this subspace. The set of all the vectors that are orthogonalto S is a vector subspace
called theorthogonal complementof S and denoted byS⊥. The spaceCn is the
direct sum ofS and its orthogonal complement. Thus, any vectorx can be written in
a unique fashion as the sum of a vector inS and a vector inS⊥. The operator which
mapsx into its component in the subspaceS is theorthogonal projectorontoS.

Every subspace admits an orthonormal basis which is obtained by taking any
basis and “orthonormalizing” it. The orthonormalization can be achieved by an al-
gorithm known as the Gram-Schmidt process which we now describe.

Given a set of linearly independent vectors{x1, x2, . . . , xr}, first normalize the
vectorx1, which means divide it by its 2-norm, to obtain the scaled vector q1 of
norm unity. Thenx2 is orthogonalized against the vectorq1 by subtracting fromx2

a multiple ofq1 to make the resulting vector orthogonal toq1, i.e.,

x2 ← x2 − (x2, q1)q1.

The resulting vector is again normalized to yield the secondvectorq2. Thei-th step
of the Gram-Schmidt process consists of orthogonalizing the vectorxi against all
previous vectorsqj .

ALGORITHM 1.1 Gram-Schmidt

1. Computer11 := ‖x1‖2. If r11 = 0 Stop, else computeq1 := x1/r11.
2. Forj = 2, . . . , r Do:
3. Computerij := (xj , qi) , for i = 1, 2, . . . , j − 1

4. q̂ := xj −
j−1∑

i=1
rijqi

5. rjj := ‖q̂‖2 ,
6. If rjj = 0 then Stop, elseqj := q̂/rjj
7. EndDo

It is easy to prove that the above algorithm will not break down, i.e., allr steps
will be completed if and only if the set of vectorsx1, x2, . . . , xr is linearly indepen-
dent. From lines 4 and 5, it is clear that at every step of the algorithm the following
relation holds:

xj =

j
∑

i=1

rijqi.



12 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

If X = [x1, x2, . . . , xr], Q = [q1, q2, . . . , qr], and if R denotes ther × r upper
triangular matrix whose nonzero elements are therij defined in the algorithm, then
the above relation can be written as

X = QR. (1.19)

This is called the QR decomposition of then× r matrixX. From what was said
above, the QR decomposition of a matrix exists whenever the column vectors ofX
form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are alterna-
tive formulations of the algorithm which have better numerical properties. The best
known of these is the Modified Gram-Schmidt (MGS) algorithm.

ALGORITHM 1.2 Modified Gram-Schmidt

1. Definer11 := ‖x1‖2. If r11 = 0 Stop, elseq1 := x1/r11.
2. Forj = 2, . . . , r Do:
3. Defineq̂ := xj

4. Fori = 1, . . . , j − 1, Do:
5. rij := (q̂, qi)
6. q̂ := q̂ − rijqi
7. EndDo
8. Computerjj := ‖q̂‖2,
9. If rjj = 0 then Stop, elseqj := q̂/rjj

10. EndDo

Yet another alternative for orthogonalizing a sequence of vectors is the House-
holder algorithm. This technique uses Householderreflectors, i.e., matrices of the
form

P = I − 2wwT , (1.20)

in whichw is a vector of 2-norm unity. Geometrically, the vectorPx represents a
mirror image ofx with respect to the hyperplanespan{w}⊥.

To describe the Householder orthogonalization process, the problem can be for-
mulated as that of finding a QR factorization of a givenn ×m matrixX. For any
vectorx, the vectorw for the Householder transformation (1.20) is selected in such
a way that

Px = αe1,

whereα is a scalar. Writing(I − 2wwT )x = αe1 yields

2wTx w = x− αe1. (1.21)

This shows that the desiredw is a multiple of the vectorx− αe1,

w = ± x− αe1
‖x− αe1‖2

.

For (1.21) to be satisfied, we must impose the condition

2(x− αe1)Tx = ‖x− αe1‖22
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which gives2(‖x‖21 − αξ1) = ‖x‖22 − 2αξ1 + α2, whereξ1 ≡ eT1 x is the first
component of the vectorx. Therefore, it is necessary that

α = ±‖x‖2.

In order to avoid that the resulting vectorw be small, it is customary to take

α = −sign(ξ1)‖x‖2,

which yields

w =
x+ sign(ξ1)‖x‖2e1
‖x+ sign(ξ1)‖x‖2e1‖2

. (1.22)

Given ann ×m matrix, its first column can be transformed to a multiple of the
columne1, by premultiplying it by a Householder matrixP1,

X1 ≡ P1X, X1e1 = αe1.

Assume, inductively, that the matrixX has been transformed ink − 1 successive
steps into the partially upper triangular form

Xk ≡ Pk−1 . . . P1X1 =
















x11 x12 x13 · · · · · · · · · x1m

x22 x23 · · · · · · · · · x2m

x33 · · · · · · · · · x3m
. . . · · · · · · ...

xkk · · · ...
xk+1,k · · · xk+1,m

...
...

...
xn,k · · · xn,m
















.

This matrix is upper triangular up to column numberk − 1. To advance by one
step, it must be transformed into one which is upper triangular up thek-th column,
leaving the previous columns in the same form. To leave the first k − 1 columns
unchanged, select aw vector which has zeros in positions1 throughk − 1. So the
next Householder reflector matrix is defined as

Pk = I − 2wkw
T
k , (1.23)

in which the vectorwk is defined as

wk =
z

‖z‖2
, (1.24)

where the components of the vectorz are given by

zi =







0 if i < k
β + xii if i = k
xik if i > k

(1.25)
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with

β = sign(xkk)×
(

n∑

i=k

x2
ik

)1/2

. (1.26)

We note in passing that the premultiplication of a matrixX by a Householder
transform requires only a rank-one update since,

(I − 2wwT )X = X − wvT where v = 2XTw.

Therefore, the Householder matrices need not, and should not, be explicitly formed.
In addition, the vectorsw need not be explicitly scaled.

Assume now thatm − 1 Householder transforms have been applied to a certain
matrixX of dimensionn×m, to reduce it into the upper triangular form,

Xm ≡ Pm−1Pm−2 . . . P1X =
















x11 x12 x13 · · · x1m

x22 x23 · · · x2m

x33 · · · x3m
. . .

...
xm,m

0
...
...
















. (1.27)

Recall that our initial goal was to obtain a QR factorizationof X. We now wish to
recover theQ andR matrices from thePk ’s and the above matrix. If we denote by
P the product of thePi on the left-side of (1.27), then (1.27) becomes

PX =

(
R
O

)

, (1.28)

in whichR is anm × m upper triangular matrix, andO is an(n − m) × m zero
block. SinceP is unitary, its inverse is equal to its transpose and, as a result,

X = P T

(
R
O

)

= P1P2 . . . Pm−1

(
R
O

)

.

If Em is the matrix of sizen×mwhich consists of the firstm columns of the identity
matrix, then the above equality translates into

X = P TEmR.

The matrixQ = P TEm represents them first columns ofP T . Since

QTQ = ET
mPP

TEm = I,

Q andR are the matrices sought. In summary,

X = QR,
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in whichR is the triangular matrix obtained from the Householder reduction ofX
(see (1.27) and (1.28)) and

Qej = P1P2 . . . Pm−1ej .

ALGORITHM 1.3 Householder Orthogonalization

1. DefineX = [x1, . . . , xm]
2. Fork = 1, . . . ,m Do:
3. If k > 1 computerk := Pk−1Pk−2 . . . P1xk

4. Computewk using (1.24), (1.25), (1.26)
5. Computerk := Pkrk with Pk = I − 2wkw

T
k

6. Computeqk = P1P2 . . . Pkek
7. EndDo

Note that line 6 can be omitted since theqi are not needed in the execution of the
next steps. It must be executed only when the matrixQ is needed at the completion of
the algorithm. Also, the operation in line 5 consists only ofzeroing the components
k + 1, . . . , n and updating thek-th component ofrk. In practice, a work vector can
be used forrk and its nonzero components after this step can be saved into an upper
triangular matrix. Since the components 1 throughk of the vectorwk are zero, the
upper triangular matrixR can be saved in those zero locations which would otherwise
be unused.

1.8 Canonical Forms of Matrices

This section discusses the reduction of square matrices into matrices that have sim-
pler forms, such as diagonal, bidiagonal, or triangular. Reduction means a transfor-
mation that preserves the eigenvalues of a matrix.

Definition 1.5 Two matricesA andB are said to be similar if there is a nonsingular
matrixX such that

A = XBX−1.

The mappingB → A is called a similarity transformation.

It is clear thatsimilarity is an equivalence relation. Similarity transformations pre-
serve the eigenvalues of matrices. An eigenvectoruB of B is transformed into the
eigenvectoruA = XuB of A. In effect, a similarity transformation amounts to rep-
resenting the matrixB in a different basis.

We now introduce some terminology.

1. An eigenvalueλ of A hasalgebraic multiplicityµ, if it is a root of multiplicity
µ of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A
nonsimple eigenvalue ismultiple.
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3. Thegeometric multiplicityγ of an eigenvalueλ of A is the maximum number
of independent eigenvectors associated with it. In other words, the geometric
multiplicity γ is the dimension of the eigenspaceNull (A− λI).

4. A matrix isderogatoryif the geometric multiplicity of at least one of its eigen-
values is larger than one.

5. An eigenvalue issemisimpleif its algebraic multiplicity is equal to its geomet-
ric multiplicity. An eigenvalue that is not semisimple is called defective.

Often, λ1, λ2, . . . , λp (p ≤ n) are used to denote thedistinct eigenvalues of
A. It is easy to show that the characteristic polynomials of two similar matrices are
identical; see Exercise 9. Therefore, the eigenvalues of two similar matrices are equal
and so are their algebraic multiplicities. Moreover, ifv is an eigenvector ofB, then
Xv is an eigenvector ofA and, conversely, ify is an eigenvector ofA thenX−1y is
an eigenvector ofB. As a result the number of independent eigenvectors associated
with a given eigenvalue is the same for two similar matrices,i.e., their geometric
multiplicity is also the same.

1.8.1 Reduction to the Diagonal Form

The simplest form in which a matrix can be reduced is undoubtedly the diagonal
form. Unfortunately, this reduction is not always possible. A matrix that can be
reduced to the diagonal form is calleddiagonalizable. The following theorem char-
acterizes such matrices.

Theorem 1.6 A matrix of dimensionn is diagonalizable if and only if it hasn line-
arly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingular matrix
X and a diagonal matrixD such thatA = XDX−1, or equivalentlyAX = XD,
whereD is a diagonal matrix. This is equivalent to saying thatn linearly independent
vectors exist — then column-vectors ofX — such thatAxi = dixi. Each of these
column-vectors is an eigenvector ofA.

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all
the eigenvalues of a matrixA are semisimple, thenA hasn eigenvectors. It can be
easily shown that these eigenvectors are linearly independent; see Exercise 2. As a
result, we have the following proposition.

Proposition 1.7 A matrix is diagonalizable if and only if all its eigenvaluesare
semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above
result is: WhenA hasn distinct eigenvalues, then it is diagonalizable.
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1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of ma-
trices is the well known Jordan form. A full development of the steps leading to
the Jordan form is beyond the scope of this book. Only the maintheorem is stated.
Details, including the proof, can be found in standard booksof linear algebra such
as [164]. In the following,mi refers to the algebraic multiplicity of the individual
eigenvalueλi andli is theindexof the eigenvalue, i.e., the smallest integer for which
Null(A− λiI)

li+1 = Null(A− λiI)
li .

Theorem 1.8 Any matrixA can be reduced to a block diagonal matrix consisting
of p diagonal blocks, each associated with a distinct eigenvalue λi. Each of these
diagonal blocks has itself a block diagonal structure consisting of γi sub-blocks,
whereγi is the geometric multiplicity of the eigenvalueλi. Each of the sub-blocks,
referred to as a Jordan block, is an upper bidiagonal matrix of size not exceeding
li ≤ mi, with the constantλi on the diagonal and the constant one on the super
diagonal.

Thei-th diagonal block,i = 1, . . . , p, is known as thei-th Jordan submatrix (some-
times “Jordan Box”). The Jordan submatrix numberi starts in columnji ≡ m1 +
m2 + · · · +mi−1 + 1. Thus,

X−1AX = J =












J1

J2
. . .

Ji
. ..

Jp












,

where eachJi is associated withλi and is of sizemi the algebraic multiplicity ofλi.
It has itself the following structure,

Ji =







Ji1

Ji2
. . .

Jiγi







with Jik =







λi 1
. . . . . .

λi 1
λi






.

Each of the blocksJik corresponds to a different eigenvector associated with the
eigenvalueλi. Its sizeli is the index ofλi.

1.8.3 The Schur Canonical Form

Here, it will be shown that any matrix is unitarily similar toan upper triangular
matrix. The only result needed to prove the following theorem is that any vector of
2-norm one can be completed byn − 1 additional vectors to form an orthonormal
basis ofCn.
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Theorem 1.9 For any square matrixA, there exists a unitary matrixQ such that

QHAQ = R

is upper triangular.

Proof. The proof is by induction over the dimensionn. The result is trivial for
n = 1. Assume that it is true forn − 1 and consider any matrixA of sizen. The
matrix admits at least one eigenvectoru that is associated with an eigenvalueλ. Also
assume without loss of generality that‖u‖2 = 1. First, complete the vectoru into
an orthonormal set, i.e., find ann × (n − 1) matrix V such that then × n matrix
U = [u, V ] is unitary. ThenAU = [λu,AV ] and hence,

UHAU =

[
uH

V H

]

[λu,AV ] =

(
λ uHAV
0 V HAV

)

. (1.29)

Now use the induction hypothesis for the(n − 1) × (n − 1) matrixB = V HAV :
There exists an(n − 1) × (n − 1) unitary matrixQ1 such thatQH

1 BQ1 = R1 is
upper triangular. Define then× n matrix

Q̂1 =

(
1 0
0 Q1

)

and multiply both members of (1.29) bŷQH
1 from the left andQ̂1 from the right. The

resulting matrix is clearly upper triangular and this showsthat the result is true for
A, withQ = Q̂1U which is a unitaryn× n matrix.

A simpler proof that uses the Jordan canonical form and the QRdecomposition is the
subject of Exercise 7. Since the matrixR is triangular and similar toA, its diagonal
elements are equal to the eigenvalues ofA ordered in a certain manner. In fact, it is
easy to extend the proof of the theorem to show that this factorization can be obtained
with any orderfor the eigenvalues. Despite its simplicity, the above theorem has far-
reaching consequences, some of which will be examined in thenext section.

It is important to note that for anyk ≤ n, the subspace spanned by the firstk
columns ofQ is invariant underA. Indeed, the relationAQ = QR implies that for
1 ≤ j ≤ k, we have

Aqj =

i=j
∑

i=1

rijqi.

If we letQk = [q1, q2, . . . , qk] and ifRk is the principal leading submatrix of dimen-
sionk of R, the above relation can be rewritten as

AQk = QkRk,

which is known as the partial Schur decomposition ofA. The simplest case of this
decomposition is whenk = 1, in which caseq1 is an eigenvector. The vectorsqi are
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usually called Schur vectors. Schur vectors are not unique and depend, in particular,
on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quasi-Schur form, also
called the real Schur form. Here, diagonal blocks of size2 × 2 are allowed in the
upper triangular matrixR. The reason for this is to avoid complex arithmetic when
the original matrix is real. A2× 2 block is associated with each complex conjugate
pair of eigenvalues of the matrix.

Example 1.2. Consider the3× 3 matrix

A =





1 10 0
−1 3 1
−1 0 1



 .

The matrixA has the pair of complex conjugate eigenvalues

2.4069 . . . ± i× 3.2110 . . .

and the real eigenvalue0.1863 . . .. The standard (complex) Schur form is given by
the pair of matrices

V =





0.3381 − 0.8462i 0.3572 − 0.1071i 0.1749
0.3193 − 0.0105i −0.2263 − 0.6786i −0.6214
0.1824 + 0.1852i −0.2659 − 0.5277i 0.7637





and

S =





2.4069 + 3.2110i 4.6073 − 4.7030i −2.3418 − 5.2330i
0 2.4069 − 3.2110i −2.0251 − 1.2016i
0 0 0.1863



 .

It is possible to avoid complex arithmetic by using the quasi-Schur form which con-
sists of the pair of matrices

U =





−0.9768 0.1236 0.1749
−0.0121 0.7834 −0.6214

0.2138 0.6091 0.7637





and

R =





1.3129 −7.7033 6.0407
1.4938 3.5008 −1.3870

0 0 0.1863



 .

We conclude this section by pointing out that the Schur and the quasi-Schur
forms of a given matrix are in no way unique. In addition to thedependence on the
ordering of the eigenvalues, any column ofQ can be multiplied by a complex sign
eiθ and a new correspondingR can be found. For the quasi-Schur form, there are
infinitely many ways to select the2× 2 blocks, corresponding to applying arbitrary
rotations to the columns ofQ associated with these blocks.
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1.8.4 Application to Powers of Matrices

The analysis of many numerical techniques is based on understanding the behavior of
the successive powersAk of a given matrixA. In this regard, the following theorem
plays a fundamental role in numerical linear algebra, more particularly in the analysis
of iterative methods.

Theorem 1.10 The sequenceAk, k = 0, 1, . . . , converges to zero if and only if
ρ(A) < 1.

Proof. To prove the necessary condition, assume thatAk → 0 and consideru1 a
unit eigenvector associated with an eigenvalueλ1 of maximum modulus. We have

Aku1 = λk
1u1,

which implies, by taking the 2-norms of both sides,

|λk
1| = ‖Aku1‖2 → 0.

This shows thatρ(A) = |λ1| < 1.
The Jordan canonical form must be used to show the sufficient condition. As-

sume thatρ(A) < 1. Start with the equality

Ak = XJkX−1.

To prove thatAk converges to zero, it is sufficient to show thatJk converges to
zero. An important observation is thatJk preserves its block form. Therefore, it is
sufficient to prove that each of the Jordan blocks converges to zero. Each block is of
the form

Ji = λiI + Ei

whereEi is a nilpotent matrix of indexli, i.e.,Eli
i = 0. Therefore, fork ≥ li,

Jk
i =

li−1∑

j=0

k!

j!(k − j)!λ
k−j
i Ej

i .

Using the triangle inequality for any norm and takingk ≥ li yields

‖Jk
i ‖ ≤

li−1∑

j=0

k!

j!(k − j)! |λi|k−j‖Ej
i ‖.

Since|λi| < 1, each of the terms in thisfinite sum converges to zero ask → ∞.
Therefore, the matrixJk

i converges to zero.

An equally important result is stated in the following theorem.
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Theorem 1.11 The series ∞∑

k=0

Ak

converges if and only ifρ(A) < 1. Under this condition,I − A is nonsingular and
the limit of the series is equal to(I −A)−1.

Proof. The first part of the theorem is an immediate consequence of Theorem 1.10.
Indeed, if the series converges, then‖Ak‖ → 0. By the previous theorem, this
implies thatρ(A) < 1. To show that the converse is also true, use the equality

I −Ak+1 = (I −A)(I +A+A2 + . . .+Ak)

and exploit the fact that sinceρ(A) < 1, thenI −A is nonsingular, and therefore,

(I −A)−1(I −Ak+1) = I +A+A2 + . . .+Ak.

This shows that the series converges since the left-hand side will converge to(I −
A)−1. In addition, it also shows the second part of the theorem.

Another important consequence of the Jordan canonical formis a result that re-
lates the spectral radius of a matrix to its matrix norm.

Theorem 1.12 For any matrix norm‖.‖, we have

lim
k→∞

‖Ak‖1/k = ρ(A).

Proof. The proof is a direct application of the Jordan canonical form and is the
subject of Exercise 10.

1.9 Normal and Hermitian Matrices

This section examines specific properties of normal matrices and Hermitian matrices,
including some optimality properties related to their spectra. The most common
normal matrices that arise in practice are Hermitian or skew-Hermitian.

1.9.1 Normal Matrices

By definition, a matrix is said to be normal if it commutes withits transpose conju-
gate, i.e., if it satisfies the relation

AHA = AAH . (1.30)

An immediate property of normal matrices is stated in the following lemma.

Lemma 1.13 If a normal matrix is triangular, then it is a diagonal matrix.



22 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Proof. Assume, for example, thatA is upper triangular and normal. Compare the
first diagonal element of the left-hand side matrix of (1.30)with the corresponding
element of the matrix on the right-hand side. We obtain that

|a11|2 =

n∑

j=1

|a1j |2,

which shows that the elements of the first row are zeros exceptfor the diagonal one.
The same argument can now be used for the second row, the thirdrow, and so on to
the last row, to show thataij = 0 for i 6= j.

A consequence of this lemma is the following important result.

Theorem 1.14 A matrix is normal if and only if it is unitarily similar to a diagonal
matrix.

Proof. It is straightforward to verify that a matrix which is unitarily similar to a
diagonal matrix is normal. We now prove that any normal matrix A is unitarily
similar to a diagonal matrix. LetA = QRQH be the Schur canonical form ofA
whereQ is unitary andR is upper triangular. By the normality ofA,

QRHQHQRQH = QRQHQRHQH

or,
QRHRQH = QRRHQH .

Upon multiplication byQH on the left andQ on the right, this leads to the equality
RHR = RRH which means thatR is normal, and according to the previous lemma
this is only possible ifR is diagonal.

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigen-
vectors, namely, the column vectors ofQ.

The following result will be used in a later chapter. The question that is asked
is: Assuming that any eigenvector of a matrixA is also an eigenvector ofAH , isA
normal? IfA had a full set of eigenvectors, then the result is true and easy to prove.
Indeed, ifV is then × n matrix of common eigenvectors, thenAV = V D1 and
AHV = V D2, with D1 andD2 diagonal. Then,AAHV = V D1D2 andAHAV =
V D2D1 and, therefore,AAH = AHA. It turns out that the result is true in general,
i.e., independently of the number of eigenvectors thatA admits.

Lemma 1.15 A matrixA is normal if and only if each of its eigenvectors is also an
eigenvector ofAH .

Proof. If A is normal, then its left and right eigenvectors are identical, so the suffi-
cient condition is trivial. Assume now that a matrixA is such that each of its eigen-
vectorsvi, i = 1, . . . , k, with k ≤ n is an eigenvector ofAH . For each eigenvectorvi
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of A, Avi = λivi, and sincevi is also an eigenvector ofAH , thenAHvi = µvi. Ob-
serve that(AHvi, vi) = µ(vi, vi) and because(AHvi, vi) = (vi, Avi) = λ̄i(vi, vi), it
follows thatµ = λ̄i. Next, it is proved by contradiction that there are no elementary
divisors. Assume that the contrary is true forλi. Then, the first principal vectorui

associated withλi is defined by

(A− λiI)ui = vi.

Taking the inner product of the above relation withvi, we obtain

(Aui, vi) = λi(ui, vi) + (vi, vi). (1.31)

On the other hand, it is also true that

(Aui, vi) = (ui, A
Hvi) = (ui, λ̄ivi) = λi(ui, vi). (1.32)

A result of (1.31) and (1.32) is that(vi, vi) = 0 which is a contradiction. Therefore,
A has a full set of eigenvectors. This leads to the situation discussed just before the
lemma, from which it is concluded thatA must be normal.

Clearly, Hermitian matrices are a particular case of normalmatrices. Since a
normal matrix satisfies the relationA = QDQH , withD diagonal andQ unitary, the
eigenvalues ofA are the diagonal entries ofD. Therefore, if these entries are real it
is clear thatAH = A. This is restated in the following corollary.

Corollary 1.16 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., a Hermitian matrix has real
eigenvalues.

An eigenvalueλ of any matrix satisfies the relation

λ =
(Au, u)

(u, u)
,

whereu is an associated eigenvector. Generally, one might consider the complex
scalars

µ(x) =
(Ax, x)

(x, x)
, (1.33)

defined for any nonzero vector inCn. These ratios are known asRayleigh quotients
and are important both for theoretical and practical purposes. The set of all possible
Rayleigh quotients asx runs overCn is called thefield of valuesof A. This set is
clearly bounded since each|µ(x)| is bounded by the the 2-norm ofA, i.e., |µ(x)| ≤
‖A‖2 for all x.

If a matrix is normal, then any vectorx in C
n can be expressed as

n∑

i=1

ξiqi,
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where the vectorsqi form an orthogonal basis of eigenvectors, and the expression for
µ(x) becomes

µ(x) =
(Ax, x)

(x, x)
=

∑n
k=1 λk|ξk|2
∑n

k=1 |ξk|2
≡

n∑

k=1

βkλk, (1.34)

where

0 ≤ βi =
|ξi|2

∑n
k=1 |ξk|2

≤ 1, and
n∑

i=1

βi = 1.

From a well known characterization of convex hulls established by Hausdorff (Haus-
dorff’s convex hull theorem), this means that the set of all possible Rayleigh quo-
tients asx runs over all ofCn is equal to the convex hull of theλi’s. This leads to
the following theorem which is stated without proof.

Theorem 1.17 The field of values of a normal matrix is equal to the convex hull of
its spectrum.

The next question is whether or not this is also true for nonnormal matrices and
the answer is no: The convex hull of the eigenvalues and the field of values of a
nonnormal matrix are different in general. As a generic example, one can take any
nonsymmetric real matrix which has real eigenvalues only. In this case, the convex
hull of the spectrum is a real interval but its field of values will contain imaginary
values. See Exercise 12 for another example. It has been shown (Hausdorff) that
the field of values of a matrix is a convex set. Since the eigenvalues are members
of the field of values, their convex hull is contained in the field of values. This is
summarized in the following proposition.

Proposition 1.18 The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to the convex hull of the spectrum
when the matrix is normal.

A useful definition based on field of values is that of thenumerical radius. The
numerical radiusν(A) of an arbitrary matrixA is the radius of the smallest disk
containing the field of values, i.e.,

ν(A) = max
x ∈ Cn

|µ(x)| .

It is easy to see that
ρ(A) ≤ ν(A) ≤ ‖A‖2 .

The spectral radius and numerical radius are identical for normal matrices. It can
also be easily shown (see Exercise 21) thatν(A) ≥ ‖A‖2/2, which means that

‖A‖2
2
≤ ν(A) ≤ ‖A‖2. (1.35)

The numerical radius is a vector norm, i.e., it satisfies (1.8–1.10), but it is not consis-
tent, see Exercise 22. However, it satisfies the power inequality (See [172, p333]):

ν(Ak) ≤ ν(A)k . (1.36)
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1.9.2 Hermitian Matrices

A first result on Hermitian matrices is the following.

Theorem 1.19 The eigenvalues of a Hermitian matrix are real, i.e.,σ(A) ⊂ R.

Proof. Let λ be an eigenvalue ofA andu an associated eigenvector of 2-norm unity.
Then

λ = (Au, u) = (u,Au) = (Au, u) = λ,

which is the stated result.

It is not difficult to see that if, in addition, the matrix is real, then the eigenvectors
can be chosen to be real; see Exercise 24. Since a Hermitian matrix is normal, the
following is a consequence of Theorem 1.14.

Theorem 1.20 Any Hermitian matrix is unitarily similar to a real diagonalmatrix.

In particular a Hermitian matrix admits a set of orthonormaleigenvectors that form
a basis ofCn.

In the proof of Theorem 1.17 we used the fact that the inner products(Au, u) are
real. Generally, it is clear that any Hermitian matrix is such that(Ax, x) is real for
any vectorx ∈ C

n. It turns out that the converse is also true, i.e., it can be shown that
if (Az, z) is real for all vectorsz in C

n, then the matrixA is Hermitian; see Exercise
15.

Eigenvalues of Hermitian matrices can be characterized by optimality properties
of the Rayleigh quotients (1.33). The best known of these is the min-max principle.
We now label all the eigenvalues ofA in descending order:

λ1 ≥ λ2 ≥ · · · ≥ λn.

Here, the eigenvalues are not necessarily distinct and theyare repeated, each accord-
ing to its multiplicity. In the following theorem, known as theMin-Max Theorem, S
represents a generic subspace ofC

n.

Theorem 1.21 The eigenvalues of a Hermitian matrixA are characterized by the
relation

λk = min
S, dim (S)=n−k+1

max
x∈S,x 6=0

(Ax, x)

(x, x)
. (1.37)

Proof. Let{qi}i=1,...,n be an orthonormal basis ofC
n consisting of eigenvectors ofA

associated withλ1, . . . , λn respectively. LetSk be the subspace spanned by the firstk
of these vectors and denote byµ(S) the maximum of(Ax, x)/(x, x) over all nonzero
vectors of a subspaceS. Since the dimension ofSk is k, a well known theorem of
linear algebra shows that its intersection with any subspaceS of dimensionn−k+1
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is not reduced to{0}, i.e., there is vectorx in S
⋂
Sk. For thisx =

∑k
i=1 ξiqi, we

have
(Ax, x)

(x, x)
=

∑k
i=1 λi|ξi|2
∑k

i=1 |ξi|2
≥ λk

so thatµ(S) ≥ λk.
Consider, on the other hand, the particular subspaceS0 of dimensionn − k + 1

which is spanned byqk, . . . , qn. For each vectorx in this subspace, we have

(Ax, x)

(x, x)
=

∑n
i=k λi|ξi|2
∑n

i=k |ξi|2
≤ λk

so thatµ(S0) ≤ λk. In other words, asS runs over all the(n − k + 1)-dimensional
subspaces,µ(S) is always ≥ λk and there is at least one subspaceS0 for which
µ(S0) ≤ λk. This shows the desired result.

The above result is often called the Courant-Fisher min-maxprinciple or theorem.
As a particular case, the largest eigenvalue ofA satisfies

λ1 = max
x 6=0

(Ax, x)

(x, x)
. (1.38)

Actually, there are four different ways of rewriting the above characterization.
The second formulation is

λk = max
S, dim (S)=k

min
x∈S,x 6=0

(Ax, x)

(x, x)
(1.39)

and the two other ones can be obtained from (1.37) and (1.39) by simply relabeling
the eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the
eigenvalues in descending order, (1.39) tells us that the smallest eigenvalue satisfies

λn = min
x 6=0

(Ax, x)

(x, x)
, (1.40)

with λn replaced byλ1 if the eigenvalues are relabeled increasingly.
In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary

and sufficient that
(Ax, x) > 0, ∀ x ∈ C

n, x 6= 0.

Such a matrix is calledpositive definite. A matrix which satisfies(Ax, x) ≥ 0 for any
x is said to bepositive semidefinite. In particular, the matrixAHA is semipositive
definite for any rectangular matrix, since

(AHAx, x) = (Ax,Ax) ≥ 0, ∀ x.

Similarly, AAH is also a Hermitian semipositive definite matrix. The squareroots
of the eigenvalues ofAHA for a general rectangular matrixA are called thesingular
valuesof A and are denoted byσi. In Section 1.5, we have stated without proof that
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the 2-norm of any matrixA is equal to the largest singular valueσ1 of A. This is now
an obvious fact, because

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

(Ax,Ax)

(x, x)
= max

x 6=0

(AHAx, x)

(x, x)
= σ2

1

which results from (1.38).
Another characterization of eigenvalues, known as the Courant characterization,

is stated in the next theorem. In contrast with the min-max theorem, this property is
recursive in nature.

Theorem 1.22 The eigenvalueλi and the corresponding eigenvectorqi of a Hermi-
tian matrix are such that

λ1 =
(Aq1, q1)

(q1, q1)
= max

x∈Cn,x 6=0

(Ax, x)

(x, x)

and for k > 1,

λk =
(Aqk, qk)

(qk, qk)
= max

x 6=0,qH
1 x=...=qH

k−1x=0

(Ax, x)

(x, x)
. (1.41)

In other words, the maximum of the Rayleigh quotient over a subspace that is
orthogonal to the firstk − 1 eigenvectors is equal toλk and is achieved for the
eigenvectorqk associated withλk. The proof follows easily from the expansion
(1.34) of the Rayleigh quotient.

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are impor-
tant in the study of convergence of iterative methods and arise in many applications
including economics, queuing theory, and chemical engineering.

A nonnegative matrixis simply a matrix whose entries are nonnegative. More
generally, a partial order relation can be defined on the set of matrices.

Definition 1.23 LetA andB be twon×m matrices. Then

A ≤ B

if by definition,aij ≤ bij for 1 ≤ i ≤ n, 1 ≤ j ≤ m. If O denotes then ×m zero
matrix, thenA is nonnegative ifA ≥ O, and positive ifA > O. Similar definitions
hold in which “positive” is replaced by “negative”.

The binary relation “≤” imposes only apartial order onR
n×m since two arbitrary

matrices inR
n×m are not necessarily comparable by this relation. For the remain-

der of this section, we now assume that only square matrices are involved. The next
proposition lists a number of rather trivial properties regarding the partial order rela-
tion just defined.
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Proposition 1.24 The following properties hold.

1. The relation≤ for matrices is reflexive (A ≤ A), antisymmetric (ifA ≤ B and
B ≤ A, thenA = B), and transitive (ifA ≤ B andB ≤ C, thenA ≤ C).

2. IfA andB are nonnegative, then so is their productAB and their sumA+B.

3. If A is nonnegative, then so isAk.

4. If A ≤ B, thenAT ≤ BT .

5. If O ≤ A ≤ B, then‖A‖1 ≤ ‖B‖1 and similarly‖A‖∞ ≤ ‖B‖∞.

The proof of these properties is left as Exercise 26.
A matrix is said to bereducible if there is a permutation matrixP such that

PAP T is block upper triangular. Otherwise, it isirreducible. An important re-
sult concerning nonnegative matrices is the following theorem known as the Perron-
Frobenius theorem.

Theorem 1.25 Let A be a realn × n nonnegative irreducible matrix. Thenλ ≡
ρ(A), the spectral radius ofA, is a simple eigenvalue ofA. Moreover, there exists an
eigenvectoru with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion
is somewhat weakened in the sense that the elements of the eigenvectors are only
guaranteed to benonnegative.

Next, a useful property is established.

Proposition 1.26 LetA,B,C be nonnegative matrices, withA ≤ B. Then

AC ≤ BC and CA ≤ CB.

Proof. Consider the first inequality only, since the proof for the second is identical.
The result that is claimed translates into

n∑

k=1

aikckj ≤
n∑

k=1

bikckj, 1 ≤ i, j ≤ n,

which is clearly true by the assumptions.

A consequence of the proposition is the following corollary.

Corollary 1.27 LetA andB be two nonnegative matrices, withA ≤ B. Then

Ak ≤ Bk, ∀ k ≥ 0. (1.42)
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Proof. The proof is by induction. The inequality is clearly true fork = 0. Assume
that (1.42) is true fork. According to the previous proposition, multiplying (1.42)
from the left byA results in

Ak+1 ≤ ABk. (1.43)

Now, it is clear that ifB ≥ 0, then alsoBk ≥ 0, by Proposition 1.24. We now
multiply both sides of the inequalityA ≤ B byBk to the right, and obtain

ABk ≤ Bk+1. (1.44)

The inequalities (1.43) and (1.44) show thatAk+1 ≤ Bk+1, which completes the
induction proof.

A theorem which has important consequences on the analysis of iterative meth-
ods will now be stated.

Theorem 1.28 LetA andB be two square matrices that satisfy the inequalities

O ≤ A ≤ B. (1.45)

Then
ρ(A) ≤ ρ(B). (1.46)

Proof. The proof is based on the following equality stated in Theorem 1.12

ρ(X) = lim
k→∞

‖Xk‖1/k

for any matrix norm. Choosing the1−norm, for example, we have from the last
property in Proposition 1.24

ρ(A) = lim
k→∞

‖Ak‖1/k
1 ≤ lim

k→∞
‖Bk‖1/k

1 = ρ(B)

which completes the proof.

Theorem 1.29 LetB be a nonnegative matrix. Thenρ(B) < 1 if and only ifI −B
is nonsingular and(I −B)−1 is nonnegative.

Proof. DefineC = I − B. If it is assumed thatρ(B) < 1, then by Theorem 1.11,
C = I −B is nonsingular and

C−1 = (I −B)−1 =
∞∑

i=0

Bi. (1.47)

In addition, sinceB ≥ 0, all the powers ofB as well as their sum in (1.47) are also
nonnegative.
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To prove the sufficient condition, assume thatC is nonsingular and that its in-
verse is nonnegative. By the Perron-Frobenius theorem, there is a nonnegative eigen-
vectoru associated withρ(B), which is an eigenvalue, i.e.,

Bu = ρ(B)u

or, equivalently,

C−1u =
1

1− ρ(B)
u.

Sinceu andC−1 are nonnegative, andI − B is nonsingular, this shows that1 −
ρ(B) > 0, which is the desired result.

Definition 1.30 A matrix is said to be anM -matrix if it satisfies the following four
properties:

1. ai,i > 0 for i = 1, . . . , n.

2. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

3. A is nonsingular.

4. A−1 ≥ 0.

In reality, the four conditions in the above definition are somewhat redundant and
equivalent conditions that are more rigorous will be given later. LetA be any matrix
which satisfies properties (1) and (2) in the above definitionand letD be the diagonal
of A. SinceD > 0,

A = D − (D −A) = D
(
I − (I −D−1A)

)
.

Now define
B ≡ I −D−1A.

Using the previous theorem,I − B = D−1A is nonsingular and(I − B)−1 =
A−1D ≥ 0 if and only if ρ(B) < 1. It is now easy to see that conditions (3) and (4)
of Definition 1.30 can be replaced by the conditionρ(B) < 1.

Theorem 1.31 Let a matrixA be given such that

1. ai,i > 0 for i = 1, . . . , n.

2. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

ThenA is anM -matrix if and only if

3. ρ(B) < 1, whereB = I −D−1A.
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Proof. From the above argument, an immediate application of Theorem 1.29 shows
that properties (3) and (4) of the above definition are equivalent toρ(B) < 1, where
B = I − C andC = D−1A. In addition,C is nonsingular iffA is andC−1 is
nonnegative iffA is.

The next theorem shows that the condition (1) in Definition 1.30 is implied by
the other three.

Theorem 1.32 Let a matrixA be given such that

1. ai,j ≤ 0 for i 6= j, i, j = 1, . . . , n.

2. A is nonsingular.

3. A−1 ≥ 0.

Then

4. ai,i > 0 for i = 1, . . . , n, i.e.,A is anM -matrix.

5. ρ(B) < 1 whereB = I −D−1A.

Proof. DefineC ≡ A−1. Writing that(AC)ii = 1 yields

n∑

k=1

aikcki = 1

which gives

aiicii = 1−
n∑

k=1
k 6=i

aikcki.

Sinceaikcki ≤ 0 for all k, the right-hand side is≥ 1 and sincecii ≥ 0, thenaii > 0.
The second part of the result now follows immediately from anapplication of the
previous theorem.

Finally, this useful result follows.

Theorem 1.33 LetA,B be two matrices which satisfy

1. A ≤ B.

2. bij ≤ 0 for all i 6= j.

Then ifA is anM -matrix, so is the matrixB.
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Proof. Assume thatA is anM -matrix and letDX denote the diagonal of a matrix
X. The matrixDB is positive because

DB ≥ DA > 0.

Consider now the matrixI −D−1
B B. SinceA ≤ B, then

DA −A ≥ DB −B ≥ O

which, upon multiplying through byD−1
A , yields

I −D−1
A A ≥ D−1

A (DB −B) ≥ D−1
B (DB −B) = I −D−1

B B ≥ O.

Since the matricesI − D−1
B B andI − D−1

A A are nonnegative, Theorems 1.28 and
1.31 imply that

ρ(I −D−1
B B) ≤ ρ(I −D−1

A A) < 1.

This establishes the result by using Theorem 1.31 once again.

1.11 Positive-Definite Matrices

A real matrix is said to bepositive definiteor positive realif

(Au, u) > 0, ∀ u ∈ R
n, u 6= 0. (1.48)

It must be emphasized that this definition is only useful whenformulated entirely for
real variables. Indeed, ifu were not restricted to be real, then assuming that(Au, u)
is real for allu complex would imply thatA is Hermitian; see Exercise 15. If, in
addition to the definition stated by 1.48,A is symmetric (real), thenA is said to be
Symmetric Positive Definite(SPD). Similarly, ifA is Hermitian, thenA is said to be
Hermitian Positive Definite(HPD). Some properties of HPD matrices were seen in
Section 1.9, in particular with regards to their eigenvalues. Now the more general
case whereA is non-Hermitian and positive definite is considered.

We begin with the observation that any square matrix (real orcomplex) can be
decomposed as

A = H + iS, (1.49)

in which

H =
1

2
(A+AH) (1.50)

S =
1

2i
(A−AH). (1.51)

Note that bothH andS are Hermitian while the matrixiS in the decomposition
(1.49) is skew-Hermitian. The matrixH in the decomposition is called theHermi-
tian part of A, while the matrixiS is the skew-Hermitian partof A. The above
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decomposition is the analogue of the decomposition of a complex numberz into
z = x+ iy,

x = ℜe(z) =
1

2
(z + z̄), y = ℑm(z) =

1

2i
(z − z̄).

WhenA is real andu is a real vector then(Au, u) is real and, as a result, the
decomposition (1.49) immediately gives the equality

(Au, u) = (Hu, u). (1.52)

This results in the following theorem.

Theorem 1.34 LetA be a real positive definite matrix. ThenA is nonsingular. In
addition, there exists a scalarα > 0 such that

(Au, u) ≥ α‖u‖22, (1.53)

for any real vectoru.

Proof. The first statement is an immediate consequence of the definition of positive
definiteness. Indeed, ifA were singular, then there would be a nonzero vector such
thatAu = 0 and as a result(Au, u) = 0 for this vector, which would contradict
(1.48). We now prove the second part of the theorem. From (1.52) and the fact that
A is positive definite, we conclude thatH is HPD. Hence, from (1.40) based on the
min-max theorem, we get

min
u 6=0

(Au, u)

(u, u)
= min

u 6=0

(Hu, u)

(u, u)
≥ λmin(H) > 0.

Takingα ≡ λmin(H) yields the desired inequality (1.53).

A simple yet important result which locates the eigenvaluesof A in terms of the
spectra ofH andS can now be proved.

Theorem 1.35 LetA be any square (possibly complex) matrix and letH = 1
2(A +

AH) andS = 1
2i(A−AH). Then any eigenvalueλj ofA is such that

λmin(H) ≤ ℜe(λj) ≤ λmax(H) (1.54)

λmin(S) ≤ ℑm(λj) ≤ λmax(S). (1.55)

Proof. When the decomposition (1.49) is applied to the Rayleigh quotient of the
eigenvectoruj associated withλj, we obtain

λj = (Auj , uj) = (Huj, uj) + i(Suj , uj), (1.56)

assuming that‖uj‖2 = 1. This leads to

ℜe(λj) = (Huj , uj)

ℑm(λj) = (Suj , uj).

The result follows using properties established in Section1.9.
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Thus, the eigenvalues of a matrix are contained in a rectangle defined by the
eigenvalues of its Hermitian part and its non-Hermitian part. In the particular case
whereA is real, theniS is skew-Hermitian and its eigenvalues form a set that is
symmetric with respect to the real axis in the complex plane.Indeed, in this case,iS
is real and its eigenvalues come in conjugate pairs.

Note that all the arguments herein are based on the field of values and, therefore,
they provide ways to localize the eigenvalues ofA from knowledge of the field of
values. However, this approximation can be inaccurate in some cases.

Example 1.3. Consider the matrix

A =

(
1 1

104 1

)

.

The eigenvalues ofA are−99 and 101. Those ofH are1 ± (104 + 1)/2 and those
of iS are±i(104 − 1)/2.

When a matrixB is Symmetric Positive Definite, the mapping

x, y → (x, y)B ≡ (Bx, y) (1.57)

from C
n×C

n toC is a proper inner product onCn, in the sense defined in Section 1.4.
The associated norm is often referred to as theenergy normorA-norm. Sometimes,
it is possible to find an appropriate HPD matrixB which makes a given matrixA
Hermitian, i.e., such that

(Ax, y)B = (x,Ay)B , ∀ x, y
althoughA is a non-Hermitian matrix with respect to the Euclidean inner product.
The simplest examples areA = B−1C andA = CB, whereC is Hermitian andB
is Hermitian Positive Definite.

1.12 Projection Operators

Projection operators orprojectorsplay an important role in numerical linear algebra,
particularly in iterative methods for solving various matrix problems. This section
introduces these operators from a purely algebraic point ofview and gives a few of
their important properties.

1.12.1 Range and Null Space of a Projector

A projectorP is any linear mapping fromCn to itself which is idempotent, i.e., such
that

P 2 = P.

A few simple properties follow from this definition. First, if P is a projector, then so
is (I − P ), and the following relation holds,

Null(P ) = Ran(I − P ). (1.58)
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In addition, the two subspacesNull(P ) andRan(P ) intersect only at the element
zero. Indeed, if a vectorx belongs toRan(P ), thenPx = x, by the idempotence
property. If it is also inNull(P ), thenPx = 0. Hence,x = Px = 0 which proves
the result. Moreover, every element ofC

n can be written asx = Px + (I − P )x.
Therefore, the spaceCn can be decomposed as the direct sum

C
n = Null(P ) ⊕ Ran(P ).

Conversely, every pair of subspacesM andS which forms a direct sum ofCn defines
a unique projector such thatRan(P ) = M and Null(P ) = S. This associated
projectorP maps an elementx of C

n into the componentx1, wherex1 is theM -
component in the unique decompositionx = x1 +x2 associated with the direct sum.

In fact, this association is unique, that is, an arbitrary projectorP can be entirely
determined by two subspaces: (1) The rangeM of P , and (2) its null spaceS which
is also the range ofI − P . For anyx, the vectorPx satisfies the conditions,

Px ∈ M

x− Px ∈ S.

The linear mappingP is said to projectx ontoM andalongor parallel to the sub-
spaceS. If P is of rankm, then the range ofI−P is of dimensionn−m. Therefore,
it is natural to defineS through its orthogonal complementL = S⊥ which has di-
mensionm. The above conditions that defineu = Px for anyx become

u ∈ M (1.59)

x− u ⊥ L. (1.60)

These equations define a projectorP ontoM and orthogonal to the subspaceL.
The first statement, (1.59), establishes them degrees of freedom, while the second,
(1.60), gives them constraints that definePx from these degrees of freedom. The
general definition of projectors is illustrated in Figure 1.1.

M

L
x

Px

Px ∈ M
x− Px ⊥ L

Figure 1.1 Projection ofx ontoM and orthogonal toL.
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The question now is: Given two arbitrary subspaces,M andL both of dimension
m, is it always possible to define a projector ontoM orthogonal toL through the
conditions (1.59) and (1.60)? The following lemma answers this question.

Lemma 1.36 Given two subspacesM andL of the same dimensionm, the following
two conditions are mathematically equivalent.

i. No nonzero vector ofM is orthogonal toL;

ii. For any x in C
n there is a unique vectoru which satisfies the conditions

(1.59) and (1.60).

Proof. The first condition states that any vector which is inM and also orthogonal
toL must be the zero vector. It is equivalent to the condition

M ∩ L⊥ = {0}.

SinceL is of dimensionm, L⊥ is of dimensionn − m and the above condition is
equivalent to the condition that

C
n = M ⊕ L⊥. (1.61)

This in turn is equivalent to the statement that for anyx, there exists a unique pair of
vectorsu,w such that

x = u+ w,

whereu belongs toM , andw = x− u belongs toL⊥, a statement which is identical
with ii .

In summary, given two subspacesM andL, satisfying the conditionM ∩L⊥ = {0},
there is a projectorP ontoM orthogonal toL, which defines the projected vectoru
of any vectorx from equations (1.59) and (1.60). This projector is such that

Ran(P ) = M, Null(P ) = L⊥.

In particular, the conditionPx = 0 translates intox ∈ Null(P ) which means that
x ∈ L⊥. The converse is also true. Hence, the following useful property,

Px = 0 iff x ⊥ L. (1.62)

1.12.2 Matrix Representations

Two bases are required to obtain a matrix representation of ageneral projector: a
basisV = [v1, . . . , vm] for the subspaceM = Ran(P ) and a second oneW =
[w1, . . . , wm] for the subspaceL. These two bases arebiorthogonalwhen

(vi, wj) = δij . (1.63)
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In matrix form this meansWHV = I. SincePx belongs toM , let V y be its
representation in theV basis. The constraintx − Px ⊥ L is equivalent to the
condition,

((x− V y), wj) = 0 for j = 1, . . . ,m.

In matrix form, this can be rewritten as

WH(x− V y) = 0. (1.64)

If the two bases are biorthogonal, then it follows thaty = WHx. Therefore, in this
case,Px = VWHx, which yields the matrix representation ofP ,

P = VWH . (1.65)

In case the basesV andW are not biorthogonal, then it is easily seen from the
condition (1.64) that

P = V (WHV )−1WH . (1.66)

If we assume that no vector ofM is orthogonal toL, then it can be shown that the
m×m matrixWHV is nonsingular.

1.12.3 Orthogonal and Oblique Projectors

An important class of projectors is obtained in the case whenthe subspaceL is equal
toM , i.e., when

Null(P ) = Ran(P )⊥.

Then, the projectorP is said to be theorthogonal projectorontoM . A projector that
is not orthogonal isoblique. Thus, an orthogonal projector is defined through the
following requirements satisfied for any vectorx,

Px ∈ M and (I − P ) x ⊥M (1.67)

or equivalently,

Px ∈ M and ((I − P )x, y) = 0 ∀ y ∈M.

?

Px

x

M

Px ∈ M
x− Px ⊥M
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Figure 1.2 Orthogonal projection ofx onto a subspace
M .

It is interesting to consider the mappingPH defined as the adjoint ofP

(PHx, y) = (x, Py), ∀ x, ∀ y. (1.68)

First note thatPH is also a projector because for allx andy,

((PH)2x, y) = (PHx, Py) = (x, P 2y) = (x, Py) = (PHx, y).

A consequence of the relation (1.68) is

Null(PH) = Ran(P )⊥ (1.69)

Null(P ) = Ran(PH)⊥. (1.70)

The above relations lead to the following proposition.

Proposition 1.37 A projector is orthogonal if and only if it is Hermitian.

Proof. By definition, an orthogonal projector is one for whichNull(P ) = Ran(P )⊥.
Therefore, by (1.69), ifP is Hermitian, then it is orthogonal. Conversely, ifP is or-
thogonal, then (1.69) impliesNull(P ) = Null(PH) while (1.70) impliesRan(P ) =
Ran(PH). SincePH is a projector and since projectors are uniquely determinedby
their range and null spaces, this implies thatP = PH .

Givenanyunitaryn×m matrixV whose columns form an orthonormal basis of
M = Ran(P ), we can representP by the matrixP = V V H . This is a particular case
of the matrix representation of projectors (1.65). In addition to being idempotent, the
linear mapping associated with this matrix satisfies the characterization given above,
i.e.,

V V Hx ∈M and (I − V V H)x ∈ M⊥.

It is important to note that this representation of the orthogonal projectorP is not
unique. In fact, any orthonormal basisV will give a different representation ofP in
the above form. As a consequence for any two orthogonal basesV1, V2 of M , we
must haveV1V

H
1 = V2V

H
2 , an equality which can also be verified independently;

see Exercise 5.

1.12.4 Properties of Orthogonal Projectors

WhenP is an orthogonal projector, then the two vectorsPx and (I − P )x in the
decompositionx = Px+ (I − P )x are orthogonal. The following relation results:

‖x‖22 = ‖Px‖22 + ‖(I − P )x‖22.

A consequence of this is that for anyx,

‖Px‖2 ≤ ‖x‖2.
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Thus, the maximum of‖Px‖2/‖x‖2, for all x in C
n does not exceed one. In addition

the value one is reached for any element inRan(P ). Therefore,

‖P‖2 = 1

for any orthogonal projectorP .
An orthogonal projector has only two eigenvalues: zero or one. Any vector of

the range ofP is an eigenvector associated with the eigenvalue one. Any vector of
the null-space is obviously an eigenvector associated withthe eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.

Theorem 1.38 LetP be the orthogonal projector onto a subspaceM . Then for any
given vectorx in C

n, the following is true:

min
y∈M
‖x− y‖2 = ‖x− Px‖2. (1.71)

Proof. Let y be any vector ofM and consider the square of its distance fromx. Since
x− Px is orthogonal toM to whichPx− y belongs, then

‖x− y‖22 = ‖x− Px+ (Px− y)‖22 = ‖x− Px‖22 + ‖(Px− y)‖22.

Therefore,‖x − y‖2 ≥ ‖x − Px‖2 for all y in M . This establishes the result by
noticing that the minimum is reached fory = Px.

By expressing the conditions that definey∗ ≡ Px for an orthogonal projectorP
onto a subspaceM , it is possible to reformulate the above result in the form ofnec-
essary and sufficient conditions which enable us to determine the best approximation
to a given vectorx in the least-squares sense.

Corollary 1.39 Let a subspaceM , and a vectorx in C
n be given. Then

min
y∈M
‖x− y‖2 = ‖x− y∗‖2, (1.72)

if and only if the following two conditions are satisfied,
{
y∗ ∈ M
x− y∗ ⊥ M.

1.13 Basic Concepts in Linear Systems

Linear systems are among the most important and common problems encountered in
scientific computing. From the theoretical point of view, itis well understood when
a solution exists, when it does not, and when there are infinitely many solutions. In
addition, explicit expressions of the solution using determinants exist. However, the
numerical viewpoint is far more complex. Approximations may be available but it
may be difficult to estimate how accurate they are. This clearly will depend on the
data at hand, i.e., primarily on the coefficient matrix. Thissection gives a very brief
overview of the existence theory as well as the sensitivity of the solutions.
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1.13.1 Existence of a Solution

Consider thelinear system
Ax = b. (1.73)

Here,x is termed theunknownandb the right-hand side.When solving the linear
system (1.73), we distinguish three situations.

Case 1 The matrixA is nonsingular. There is a unique solution given byx = A−1b.

Case 2 The matrixA is singular andb ∈ Ran(A). Sinceb ∈ Ran(A), there is an
x0 such thatAx0 = b. Thenx0 + v is also a solution for anyv in Null(A). Since
Null(A) is at least one-dimensional, there are infinitely many solutions.

Case 3 The matrixA is singular andb /∈ Ran(A). There are no solutions.

Example 1.4. The simplest illustration of the above three cases is with small di-
agonal matrices. Let

A =

(
2 0
0 4

)

b =

(
1
8

)

.

ThenA is nonsingular and there is a uniquex given by

x =

(
0.5
2

)

.

Now let

A =

(
2 0
0 0

)

, b =

(
1
0

)

.

ThenA is singular and, as is easily seen,b ∈ Ran(A). For example, a particular
elementx0 such thatAx0 = b is x0 =

(0.5
0

)
. The null space ofA consists of all

vectors whose first component is zero, i.e., all vectors of the form
( 0

α

)
. Therefore,

there are infinitely many solution which are given by

x(α) =

(
0.5
α

)

∀ α.

Finally, letA be the same as in the previous case, but define the right-hand side as

b =

(
1
1

)

.

In this case there are no solutions because the second equation cannot be satisfied.
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1.13.2 Perturbation Analysis

Consider the linear system (1.73) whereA is ann × n nonsingular matrix. Given
any matrixE, the matrixA(ǫ) = A+ ǫE is nonsingular forǫ small enough, i.e., for
ǫ ≤ α whereα is some small number; see Exercise 6. Assume that we perturb the
data in the above system, i.e., that we perturb the matrixA by ǫE and the right-hand
sideb by ǫe. The solutionx(ǫ) of the perturbed system satisfies the equation,

(A+ ǫE)x(ǫ) = b+ ǫe. (1.74)

Let δ(ǫ) = x(ǫ)− x. Then,

(A+ ǫE)δ(ǫ) = (b+ ǫe)− (A+ ǫE)x

= ǫ (e− Ex)
δ(ǫ) = ǫ (A+ ǫE)−1(e− Ex).

As an immediate result, the functionx(ǫ) is differentiable atǫ = 0 and its derivative
is given by

x′(0) = lim
ǫ→0

δ(ǫ)

ǫ
= A−1 (e− Ex) . (1.75)

The size of the derivative ofx(ǫ) is an indication of the size of the variation that
the solutionx(ǫ) undergoes when the data, i.e., the pair[A, b] is perturbed in the
direction [E, e]. In absolute terms, a small variation[ǫE, ǫe] will cause the solution
to vary by roughlyǫx′(0) = ǫA−1(e− Ex). The relative variation is such that

‖x(ǫ) − x‖
‖x‖ ≤ ǫ‖A−1‖

( ‖e‖
‖x‖ + ‖E‖

)

+ o(ǫ).

Using the fact that‖b‖ ≤ ‖A‖‖x‖ in the above equation yields

‖x(ǫ) − x‖
‖x‖ ≤ ǫ‖A‖‖A−1‖

(‖e‖
‖b‖ +

‖E‖
‖A‖

)

+ o(ǫ) (1.76)

which relates the relative variation in the solution to the relative sizes of the pertur-
bations. The quantity

κ(A) = ‖A‖ ‖A−1‖
is called thecondition numberof the linear system (1.73) with respect to the norm
‖.‖. The condition number is relative to a norm. When using the standard norms‖.‖p,
p = 1, . . . ,∞, it is customary to labelκ(A) with the same label as the associated
norm. Thus,

κp(A) = ‖A‖p‖A−1‖p.
For large matrices, the determinant of a matrix is almost never a good indication

of “near” singularity or degree of sensitivity of the linearsystem. The reason is that
det(A) is the product of the eigenvalues which depends very much on ascaling of a
matrix, whereas the condition number of a matrix is scaling-invariant. For example,
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for A = αI the determinant isdet(A) = αn, which can be very small if|α| < 1,
whereasκ(A) = 1 for any of the standard norms.

In addition, small eigenvalues do not always give a good indication of poor con-
ditioning. Indeed, a matrix can have all its eigenvalues equal to one yet be poorly
conditioned.

Example 1.5. The simplest example is provided by matrices of the form

An = I + αe1e
T
n

for largeα. The inverse ofAn is

A−1
n = I − αe1eTn

and for the∞-norm we have

‖An‖∞ = ‖A−1
n ‖∞ = 1 + |α|

so that
κ∞(An) = (1 + |α|)2.

For a largeα, this can give a very large condition number, whereas all theeigenvalues
of An are equal to unity.

When an iterative procedure is used for solving a linear system, we typically
face the problem of choosing a good stopping procedure for the algorithm. Often a
residual norm,

‖r‖ = ‖b−Ax̃‖
is available for some current approximationx̃ and an estimate of the absolute error
‖x− x̃‖ or the relative error‖x − x̃‖/‖x‖ is desired. The following simple relation
is helpful in this regard,

‖x− x̃‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ .

It is necessary to have an estimate of the condition numberκ(A) in order to exploit
the above relation.

PROBLEMS

P-1.1 Verify that the Euclidean inner product defined by (1.4) doesindeed satisfy the gen-
eral definition of inner products on vector spaces.

P-1.2 Show that two eigenvectors associated with two distinct eigenvalues are linearly inde-
pendent. In a more general sense, show that a family of eigenvectors associated with distinct
eigenvalues forms a linearly independent family.



1.13. BASIC CONCEPTS IN LINEAR SYSTEMS 43

P-1.3 Show that ifλ is any nonzero eigenvalue of the matrixAB, then it is also an eigen-
value of the matrixBA. Start with the particular case whereA andB are square andB
is nonsingular, then consider the more general case whereA,B may be singular or even
rectangular (but such thatAB andBA are square).

P-1.4 LetA be ann×n orthogonal matrix, i.e., such thatAHA = D, whereD is a diagonal
matrix. Assuming thatD is nonsingular, what is the inverse ofA? Assuming thatD > 0,
how canA be transformed into a unitary matrix (by operations on its rows or columns)?

P-1.5 Show that the Frobenius norm is consistent. Can this norm be associated to two vector
norms via (1.7)? What is the Frobenius norm of a diagonal matrix? What is thep-norm of a
diagonal matrix (for anyp)?

P-1.6 Find the Jordan canonical form of the matrix:

A =





1 2 −4
0 1 2
0 0 2



 .

Same question for the matrix obtained by replacing the element a33 by 1.

P-1.7 Give an alternative proof of Theorem 1.9 on the Schur form by starting from the
Jordan canonical form. [Hint: WriteA = XJX−1 and use the QR decomposition ofX .]

P-1.8 Show from the definition of determinants used in Section 1.2 that the characteristic
polynomial is a polynomial of degreen for ann× n matrix.

P-1.9 Show that the characteristic polynomials of two similar matrices are equal.

P-1.10 Show that
lim

k→∞
‖Ak‖1/k = ρ(A),

for any matrix norm. [Hint: Use the Jordan canonical form.]

P-1.11 LetX be a nonsingular matrix and, for any matrix norm‖.‖, define‖A‖X = ‖AX‖.
Show that this is indeed a matrix norm. Is this matrix norm consistent? Show the same for
‖XA‖ and‖Y AX‖ whereY is also a nonsingular matrix. These norms are not, in general,
associated with any vector norms, i.e., they can’t be definedby a formula of the form (1.7).
Why? What can you say about the particular case whenY = X−1? Is‖X−1AX‖ induced
by a vector norm in this particular case?

P-1.12 Find the field of values of the matrix

A =

(
0 1
0 0

)

and verify that it is not equal to the convex hull of its eigenvalues.

P-1.13 Show that for a skew-Hermitian matrixS,

ℜe(Sx, x) = 0 for anyx ∈ C
n.

P-1.14 Given an arbitrary matrixS, show that if(Sx, x) = 0 for all x in Cn, then it is true
that

(Sy, z) + (Sz, y) = 0 ∀ y, z ∈ C
n. (1.77)

[Hint: Expand(S(y + z), y + z).]
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P-1.15 Using the results of the previous two problems, show that if(Ax, x) is real for all
x in Cn, thenA must be Hermitian. Would this result be true if the assumption were to be
replaced by:(Ax, x) is real for all realx? Explain.

P-1.16 Show that if(Sx, x) = 0 for all complex vectorsx, thenS is zero. [Hint: Start by
doing Problem 14. Then selectingy = ek, z = eθej in (1.77), for an arbitraryθ, establish
thatskje

2θ = −sjk and conclude thatsjk = sjk = 0]. Is the result true if(Sx, x) = 0 for
all real vectorsx?

P-1.17 The definition of a positive definite matrix is that(Ax, x) be real and positive for all
real vectorsx. Show that this is equivalent to requiring that the Hermitian part ofA, namely,
1
2 (A+AH), be (Hermitian) positive definite.

P-1.18 LetA1 = B−1C andA2 = CB whereC is a Hermitian matrix andB is a Hermitian
Positive Definite matrix. AreA1 andA2 Hermitian in general? Show thatA1 andA2 are
Hermitian (self-adjoint) with respect to theB-inner product.

P-1.19 Let a matrixA be such thatAH = p(A) wherep is a polynomial. Show thatA is
normal. Given a diagonal complex matrixD, show that there exists a polynomial of degree
< n such thatD̄ = p(D). Use this to show that a normal matrix satisfiesAH = p(A) for
a certain polynomial ofp of degree< n. As an application, use this result to provide an
alternative proof of Lemma 1.13.

P-1.20 Show thatA is normal iff its Hermitian and skew-Hermitian parts, as defined in
Section 1.11, commute.

P-1.21 The goal of this exercise is to establish the relation (1.35). Consider the numerical
radiusν(A) of an arbitrary matrixA. Show thatν(A) ≤ ‖A‖2. Show that for a normal
matrix ν(A) = ‖A‖2. Consider the decomposition of a matrix into its Hermtian and skew-
Hermitian parts as shown in (1.49), (1.50), and (1.51). Showthat‖A‖2 ≤ ν(H)+ν(S). Now,
using this inequality and the definition of the numerical radius show that‖A‖2 ≤ 2ν(A).

P-1.22 Show that the numerical radius is a vector norm in the sense that it satisfies the three
properties (1.8–1.10) of norms. [Hint: For (1.8) solve exercise 16 first]. Find a counter-
example to show that the numerical radius is not a (consistent) matrix norm, i.e., thatν(AB)
can be larger thanν(A) ν(B).

P-1.23 LetA be a Hermitian matrix andB a Hermitian Positive Definite matrix defining a
B-inner product. Show thatA is Hermitian (self-adjoint) with respect to theB-inner product
if and only if A andB commute. What condition must satisfyB for the same condition to
hold in the more general case whereA is not Hermitian?

P-1.24 Let A be a real symmetric matrix andλ an eigenvalue ofA. Show that ifu is an
eigenvector associated withλ, then so is̄u. As a result, prove that for any eigenvalue of a
real symmetric matrix, there is an associated eigenvector which is real.

P-1.25 Show that a Hessenberg matrixH such thathj+1,j 6= 0, j = 1, 2, . . . , n− 1, cannot
be derogatory.

P-1.26 Prove all the properties listed in Proposition 1.24.

P-1.27 Let A be anM -matrix andu, v two nonnegative vectors such thatvTA−1u < 1.
Show thatA− uvT is anM -matrix.

P-1.28 Show that ifO ≤ A ≤ B thenO ≤ ATA ≤ BTB. Conclude that under the same
assumption, we have‖A‖2 ≤ ‖B‖2.
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P-1.29 Consider the subspaceM of R4 spanned by the vectors

v1 =






1
0
1
1




 ; v2 =






1
−1
0
−1






a. Write down the matrix representing the orthogonal projector ontoM .

b. What is the null space ofP?

c. What is its range?

d. Find the vectorx in S which is the closest in the 2-norm sense to the vectorc =
[1, 1, 1, 1]T

P-1.5 Show that for two orthonormal basesV1, V2 of the same subspaceM of Cn we have
V1V

H
1 x = V2V

H
2 x, ∀ x.

P-1.6 What are the eigenvalues of a projector? What about its eigenvectors?

P-1.7 Show that if two projectorsP1 andP2 commute, then their productP = P1P2 is a
projector. What are the range and kernel ofP?

P-1.8 Theorem 1.32 shows that the condition (2) in Definition 1.30 is not needed, i.e., it is
implied by (4) (and the other conditions). One is tempted to say that only one of (2) or (4)
is required. Is this true? In other words, does (2) also imply(4)? [Prove or show a counter
example]

P-1.9 Consider the matrixA of sizen× n and the vectorx ∈ Rn,

A =











1 −1 −1 −1 . . . −1
0 1 −1 −1 . . . −1
0 0 1 −1 . . . −1
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 0 . . . 0 1











x =











1
1/2
1/4
1/8

...
1/2n−1











.

a. ComputeAx, ‖Ax‖2, and‖x‖2.

b. Show that‖A‖2 ≥
√
n.

c. Give a lower bound forκ2(A).

P-1.4 What is the inverse of the matrixA of the previous exercise? Give an expression of
κ1(A) andκ∞(A) based on this.

P-1.5 Find a small rank-one perturbation which makes the matrixA in Exercise 9 singular.
Derive a lower bound for the singular values ofA.

P-1.6 Consider a nonsingular matrixA. Given any matrixE, show that there existsα such
that the matrixA(ǫ) = A+ǫE is nonsingular for allǫ < α. What is the largest possible value
for α satisfying the condition? [Hint: Consider the eigenvaluesof the generalized eigenvalue
problemAu = λEu.]

NOTES ANDREFERENCES. For additional reading on the material presented in this chapter, see Golub
and Van Loan [149], Meyer [210], Demmel [99], Datta [93], Stewart [273], and Varga [293]. Volume
2 (“Eigensystems”) of the series [274], offers an up-to-date coverage of algorithms for eigenvalue
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problems. The excellent treatise of nonnegative matrices in the book by Varga [293] remains a good
reference on this topic and on iterative methods four decades after its first publication. State-of-the-art
coverage on iterative methods up to the very beginning of the1970s can be found in the book by Young
[322] which coversM -matrices and related topics in great detail. For a good overview of the linear
algebra aspects of matrix theory and a complete proof of Jordan’s canonical form, Halmos [164] is
recommended.



Chapter 2

DISCRETIZATION OF PDES

Partial Differential Equations (PDEs) constitute by far the biggest source of sparse matrix

problems. The typical way to solve such equations is to discretize them, i.e., to approximate

them by equations that involve a finite number of unknowns. The matrix problems that arise

from these discretizations are generally large and sparse, i.e., they have very few nonzero entries.

There are several different ways to discretize a Partial Differential Equation. The simplest method

uses finite difference approximations for the partial differential operators. The Finite Element

Method replaces the original function by a function which has some degree of smoothness over

the global domain, but which is piecewise polynomial on simple cells, such as small triangles

or rectangles. This method is probably the most general and well understood discretization

technique available. In between these two methods, there are a few conservative schemes called

Finite Volume Methods, which attempt to emulate continuous conservation laws of physics. This

chapter introduces these three different discretization methods.

2.1 Partial Differential Equations

Physical phenomena are often modeled by equations that relate several partial deriva-
tives of physical quantities, such as forces, momentums, velocities, energy, tempera-
ture, etc. These equations rarely have aclosed-form(explicit) solution. In this chap-
ter, a few types of Partial Differential Equations are introduced, which will serve as
models throughout the book. Only one- or two-dimensional problems are considered,
and the space variables are denoted byx in the case of one-dimensional problems or
x1 andx2 for two-dimensional problems. In two dimensions,x denotes the “vector”
of components(x1, x2).

2.1.1 Elliptic Operators

One of the most common Partial Differential Equations encountered in various areas
of engineering is Poisson’s equation:

∂2u

∂x2
1

+
∂2u

∂x2
2

= f, for x =

(
x1

x2

)

in Ω (2.1)

whereΩ is a bounded, open domain inR2. Here,x1, x2 are the two space variables.

47
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~n

x1

x2 Ω

Γ

Figure 2.1: DomainΩ for Poisson’s equation.

The above equation is to be satisfied only for points that are located at the interior
of the domainΩ. Equally important are the conditions that must be satisfiedon the
boundaryΓ of Ω. These are termedboundary conditions, and they come in three
common types:

Dirichlet condition u(x) = φ(x)

Neumann condition ∂u
∂~n(x) = 0

Cauchy condition ∂u
∂~n(x) + α(x)u(x) = γ(x)

The vector~n usually refers to a unit vector that is normal toΓ and directed
outwards. Note that the Neumann boundary conditions are a particular case of the
Cauchy conditions withγ = α = 0. For a given unit vector,~v with componentsv1
andv2, the directional derivative∂u/∂~v is defined by

∂u

∂~v
(x) = lim

h→0

u(x+ h~v)− u(x)
h

=
∂u

∂x1
(x)v1 +

∂u

∂x2
(x)v2 (2.2)

= ∇u.~v (2.3)

where∇u is the gradient ofu,

∇u =

(
∂u
∂x1

∂u
∂x2

)

, (2.4)

and the dot in (2.3) indicates a dot product of two vectors inR
2.

In reality, Poisson’s equation is often a limit case of a time-dependent problem.
Its solution can, for example, represent the steady-state temperature distribution in
a regionΩ when there is a heat sourcef that is constant with respect to time. The
boundary conditions should then model heat loss across the boundaryΓ.

The particular case wheref(x) = 0, i.e., the equation

∆u = 0,
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to which boundary conditions must be added, is called theLaplace equationand its
solutions are calledharmonic functions.

Many problems in physics have boundary conditions ofmixed type, e.g., of
Dirichlet type in one part of the boundary and of Cauchy type in another. Another ob-
servation is that the Neumann conditions do not define the solution uniquely. Indeed,
if u is a solution, then so isu+ c for any constantc.

The operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

is called theLaplacean operatorand appears in many models of physical and me-
chanical phenomena. These models often lead to more generalelliptic operators of
the form

L =
∂

∂x1

(

a
∂

∂x1

)

+
∂

∂x2

(

a
∂

∂x2

)

= ∇. (a∇) (2.5)

where the scalar functiona depends on the coordinate and may represent some spe-
cific parameter of the medium, such as density, porosity, etc. At this point it may
be useful to recall some notation which is widely used in physics and mechanics.
The∇ operator can be considered as a vector consisting of the components ∂

∂x1
and

∂
∂x2

. When applied to a scalar functionu, this operator is nothing but thegradient
operator, since it yields a vector with the components∂u

∂x1
and ∂u

∂x2
as is shown in

(2.4). The dot notation allows dot products of vectors inR
2 to be defined. These

vectors can include partial differential operators. For example, the dot product∇.u
of∇ with u =

(
u1

u2

)

yields the scalar quantity,

∂u1

∂x1
+
∂u2

∂x2
,

which is called thedivergenceof the vector function~u =
(

u1

u2

)

. Applying this
divergence operatorto u = a∇, wherea is a scalar function, yields theL operator
in (2.5). The divergence of the vector function~v is often denoted by div~v or ∇.~v.
Thus,

div ~v = ∇.~v =
∂v1
∂x1

+
∂v2
∂x2

.

The closely related operator

L =
∂

∂x1

(

a1
∂

∂x1

)

+
∂

∂x2

(

a2
∂

∂x2

)

= ∇ (~a.∇) (2.6)

is a further generalization of the Laplacean operator∆ in the case where the medium
is anisotropicandinhomogeneous.The coefficientsa1, a2 depend on the space vari-
ablex and reflect the position as well as the directional dependence of the material
properties, such as porosity in the case of fluid flow or dielectric constants in electro-
statics. In fact, the above operator can be viewed as a particular case ofL = ∇.(A∇),
whereA is a2× 2 matrix which acts on the two components of∇.
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2.1.2 The Convection Diffusion Equation

Many physical problems involve a combination of “diffusion” and “convection” phe-
nomena. Such phenomena are modeled by the convection-diffusion equation

∂u

∂t
+ b1

∂u

∂x1
+ b2

∂u

∂x2
= ∇.(a∇)u+ f

or
∂u

∂t
+~b.∇u = ∇.(a∇)u+ f

the steady-state version of which can be written as

−∇.(a∇)u+~b.∇u = f. (2.7)

Problems of this type are often used as model problems because they represent the
simplest form of conservation of mass in fluid mechanics. Note that the vector~b is
sometimes quite large, which may cause some difficulties either to the discretization
schemes or to the iterative solution techniques.

2.2 Finite Difference Methods

Thefinite differencemethod is based on local approximations of the partial deriva-
tives in a Partial Differential Equation, which are derivedby low order Taylor series
expansions. The method is quite simple to define and rather easy to implement.
Also, it is particularly appealing for simple regions, suchas rectangles, and when
uniform meshes are used. The matrices that result from thesediscretizations are
often well structured, which means that they typically consist of a few nonzero di-
agonals. Another advantage is that there are a number of “fast Poisson solvers” for
constant coefficient problems, which can deliver the solution in logarithmic time per
grid point. This means the total number of operations is of the order ofn log(n)
wheren is the total number of discretization points. This section gives an overview
of finite difference discretization techniques.

2.2.1 Basic Approximations

The simplest way to approximate the first derivative of a function u at the pointx is
via the formula (

du

dx

)

(x) ≈ u(x+ h)− u(x)
h

. (2.8)

Whenu is differentiable atx, then the limit of the above ratio whenh tends to zero is
the derivative ofu atx. For a function that isC4 in the neighborhood ofx, we have
by Taylor’s formula

u(x+ h) = u(x) + h
du

dx
+
h2

2

d2u

dx2
+
h3

6

d3u

dx3
+
h4

24

d4u

dx4
(ξ+), (2.9)
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for someξ+ in the interval(x, x + h). Therefore, the above approximation (2.8)
satisfies

du

dx
=
u(x+ h)− u(x)

h
− h

2

d2u(x)

dx2
+O(h2). (2.10)

The formula (2.9) can be rewritten withh replaced by−h to obtain

u(x− h) = u(x)− hdu
dx

+
h2

2

d2u

dx2
− h3

6

d3u

dx3
+
h4

24

d4u(ξ−)

dx4
, (2.11)

in which ξ− belongs to the interval(x − h, x). Adding (2.9) and (2.11), dividing
through byh2, and using the mean value theorem for the fourth order derivatives
results in the following approximation of the second derivative

d2u(x)

dx2
=

u(x+ h)− 2u(x) + u(x− h)
h2

− h2

12

d4u(ξ)

dx4
, (2.12)

whereξ− ≤ ξ ≤ ξ+. The above formula is called acentered difference approxima-
tion of the second derivative since the point at which the derivative is being approx-
imated is the center of the points used for the approximation. The dependence of
this derivative on the values ofu at the points involved in the approximation is often
represented by a “stencil” or “molecule,” shown in Figure 2.2.

1 −2 1

Figure 2.2: The three-point stencil for the centered difference approximation to the
second order derivative.

The approximation (2.8) for the first derivative isforward rather than centered.
Also, abackwardformula can be used which consists of replacinghwith−h in (2.8).
The two formulas can also be averaged to obtain thecentered differenceformula:

du(x)

dx
≈ u(x+ h)− u(x− h)

2 h
. (2.13)

It is easy to show that the above centered difference formulais of the second
order, while (2.8) is only first order accurate. Denoted byδ+ andδ−, the forward
and backward difference operators are defined by

δ+u(x) = u(x+ h)− u(x) (2.14)

δ−u(x) = u(x)− u(x− h). (2.15)

All previous approximations can be rewritten using these operators.
In addition to standard first order and second order derivatives, it is sometimes

necessary to approximate the second order operator

d

dx

[

a(x)
d

dx

]

.
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A centered difference formula for this, which has second order accuracy, is given by

d

dx

[

a(x)
du

dx

]

=
1

h2
δ+
(
ai−1/2 δ

−u
)

+O(h2) (2.16)

≈
ai+1/2(ui+1 − ui)− ai−1/2(ui − ui−1)

h2
.

2.2.2 Difference Schemes for the Laplacean Operator

If the approximation (2.12) is used for both the∂
2

∂x2
1

and ∂2

∂x2
2

terms in the Laplacean
operator, using a mesh size ofh1 for thex1 variable andh2 for thex2 variable, the
following second order accurate approximation results:

∆u(x) ≈ u(x1 + h1, x2)− 2u(x1, x2) + u(x− h1, x2)

h2
1

+

u(x1, x2 + h2)− 2u(x1, x2) + u(x1, x2 − h2)

h2
2

.

In the particular case where the mesh sizesh1 andh2 are the same and equal to a
mesh sizeh, the approximation becomes

∆u(x) ≈ 1

h2
[u(x1 + h, x2) + u(x1 − h, x2) + u(x1, x2 + h)

+ u(x1, x2 − h)− 4u(x1, x2)] , (2.17)

which is called the five-point centered approximation to theLaplacean. The stencil
of this finite difference approximation is illustrated in (a) of Figure 2.3.

(a)

1

1 -4 1

1

(b)

1 1

-4

1 1

Figure 2.3: Five-point stencils for the centered difference approximation to the
Laplacean operator: (a) the standard stencil, (b) the skewed stencil.

Another approximation may be obtained by exploiting the four pointsu(x1 ±
h, x2 ± h) located on the two diagonal lines fromu(x1, x2). These points can be
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used in the same manner as in the previous approximation except that the mesh size
has changed. The corresponding stencil is illustrated in (b) of Figure 2.3.

The approximation (2.17) is second order accurate and the error takes the form

h2

12

(
∂4u

∂4x1
+

∂4u

∂4x2

)

+O(h3).

There are other schemes that utilize nine-point formulas asopposed to five-point for-
mulas. Two such schemes obtained by combining the standard and skewed stencils
described above are shown in Figure 2.4. Both approximations (c) and (d) are sec-
ond order accurate. However, (d) is sixth order for harmonicfunctions, i.e., functions
whose Laplacean is zero.

(c)

1 1 1

1 -8 1

1 1 1

(d)

1 4 1

4 -20 4

1 4 1

Figure 2.4: Two nine-point centered difference stencils for the Laplacean operator.

2.2.3 Finite Differences for 1-D Problems

Consider the one-dimensional equation,

− u′′(x) = f(x) for x ∈ (0, 1) (2.18)

u(0) = u(1) = 0. (2.19)

The interval [0,1] can be discretized uniformly by taking then+ 2 points

xi = i× h, i = 0, . . . , n+ 1

whereh = 1/(n + 1). Because of the Dirichlet boundary conditions, the values
u(x0) andu(xn+1) are known. At every other point, an approximationui is sought
for the exact solutionu(xi).

If the centered difference approximation (2.12) is used, then by the equation
(2.18) expressed at the pointxi, the unknownsui, ui−1, ui+1 satisfy the relation

−ui−1 + 2ui − ui+1 = h2 fi,
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in which fi ≡ f(xi). Notice that fori = 1 and i = n, the equation will involve
u0 andun+1 which are known quantities, both equal to zero in this case. Thus, for
n = 6, the linear system obtained is of the form

Ax = f

where

A =
1

h2











2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2











.

2.2.4 Upwind Schemes

Consider now the one-dimensional version of the convection-diffusion equation (2.7)
in which the coefficientsa andb are constant, andf = 0, using Dirichlet boundary
conditions, {

−a u′′ + b u′ = 0, 0 < x < L = 1
u(0) = 0, u(L) = 1.

(2.20)

In this particular case, it is easy to verify that the exact solution to the above equation
is given by

u(x) =
1− eRx

1− eR
whereR is the so-called Péclet number defined byR = bL/a. Now consider the
approximate solution provided by using the centered difference schemes seen above,
for both the first- and second order derivatives. The equation for unknown numberi
becomes

b
ui+1 − ui−1

2h
− aui+1 − 2ui + ui−1

h2
= 0,

or, definingc = Rh/2,

− (1− c)ui+1 + 2ui − (1 + c)ui−1 = 0. (2.21)

This is a second order homogeneous linear difference equation and the usual way to
solve it is to seek a general solution in the formuj = rj. Substituting in (2.21),r
must satisfy

(1− c)r2 − 2r + (c+ 1) = 0.

Therefore,r1 = 1 is a root and the second root isr2 = (1 + c)/(1− c). The general
solution of the above difference equation is now sought as a linear combination of
the two solutions corresponding to these two roots,

ui = αri
1 + βri

2 = α+ β

(
1 + c

1− c

)i

.
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Because of the boundary conditionu0 = 0, it is necessary thatβ = −α. Likewise,
the boundary conditionun+1 = 1 yields

α =
1

1− σn+1
with σ ≡ 1 + c

1− c .

Thus, the solution is

ui =
1− σi

1− σn+1
.

Whenh > 2/R the factorσ becomes negative and the above approximations will
oscillate around zero. In contrast, the exact solution is positive and monotone in
the range[0, 1]. In this situation the solution is very inaccurate regardless of the
arithmetic. In other words, the scheme itself creates the oscillations. To avoid this, a
small enough meshh can be taken to ensure thatc < 1. The resulting approximation
is in much better agreement with the exact solution. Unfortunately, this condition
can limit the mesh size too drastically for large values ofb.

Note that whenb < 0, the oscillations disappear sinceσ < 1. In fact, a linear
algebra interpretation of the oscillations comes from comparing the tridiagonal ma-
trices obtained from the discretization. Again, for the case n = 6, the tridiagonal
matrix resulting from discretizing the equation (2.7) takes the form

A =
1

h2











2 −1 + c
−1− c 2 −1 + c

−1− c 2 −1 + c
−1− c 2 −1 + c

−1− c 2 −1 + c
−1− c 2











.

The above matrix is no longer a diagonally dominant M-matrix. Observe that if the
backward difference formula for the first order derivative is used, we obtain

b
ui − ui−1

h
− aui−1 − 2ui + ui+1

h2
= 0.

Then (weak) diagonal dominance is preserved ifb > 0. This is because the new
matrix obtained for the above backward scheme is

A =
1

h2











2 + c −1
−1− c 2 + c −1

−1− c 2 + c −1
−1− c 2 + c −1

−1− c 2 + c −1
−1− c 2 + c











wherec is now defined byc = Rh. Each diagonal termaii gets reinforced by the
positive termc while each subdiagonal termai,i−1 increases by the same amount in
absolute value. In the case whereb < 0, the forward difference formula

b
ui+1 − ui

h
− aui−1 − 2ui + ui+1

h2
= 0
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can be used to achieve the same effect. Generally speaking, if b depends on the
space variablex, the effect of weak-diagonal dominance can be achieved by simply
adopting the following discretization known as an “upwind scheme”:

b
δ∗i ui

h
− a ui−1 − 2ui + ui+1

h2
= 0

where

δ∗i =

{
δ−i if b > 0
δ+i if b < 0.

The above difference scheme can be rewritten by introducingthe sign functionsign (b) =
|b|/b. The approximation tou′ atxi is then defined by

u′(xi) ≈
1

2
(1− sign(b))

δ+ui

h
+

1

2
(1 + sign(b))

δ−ui

h
.

Making use of the notation

(x)+ =
1

2
(x+ |x|), (x)− =

1

2
(x− |x|), (2.22)

a slightly more elegant formula can be obtained by expressing the approximation of
the productb(xi)u

′(xi),

b(xi)u
′(xi) ≈

1

2
(bi − |bi|)

δ+ui

h
+

1

2
(bi + |bi|)

δ−ui

h

≈ 1

h

[
−b+i ui−1 + |bi|ui + b−i ui+1

]
, (2.23)

wherebi stands forb(xi). The diagonal term in the resulting tridiagonal matrix is
nonnegative, the offdiagonal terms are nonpositive, and the diagonal term is the neg-
ative sum of the offdiagonal terms. This property characterizes upwind schemes.

A notable disadvantage of upwind schemes is the low order of approximation
which they yield. An advantage is that upwind schemes yield linear systems that are
easier to solve by iterative methods.

2.2.5 Finite Differences for 2-D Problems

Similar to the previous case, consider this simple problem,

−
(
∂2u

∂x2
1

+
∂2u

∂x2
2

)

= f in Ω (2.24)

u = 0 onΓ (2.25)

whereΩ is now the rectangle(0, l1)× (0, l2) andΓ its boundary. Both intervals can
be discretized uniformly by takingn1 +2 points in thex1 direction andn2 +2 points
in thex2 directions:

x1,i = i× h1, i = 0, . . . , n1 + 1 x2,j = j × h2, j = 0, . . . , n2 + 1
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

-

6

Figure 2.5: Natural ordering of the unknowns for a7× 5 two-dimensional grid.

where
h1 =

l1
n1 + 1

h2 =
l2

n2 + 1
.

Since the values at the boundaries are known, we number only the interior points,
i.e., the points(x1,i, x2,j) with 0 < i < n1 and0 < j < n2. The points are labeled
from the bottom up, one horizontal line at a time. This labeling is callednatural
ordering and is shown in Figure 2.5 for the very simple case whenn1 = 7 and
n2 = 5. The pattern of the matrix corresponding to the above equations appears in
Figure 2.6.

Figure 2.6: Pattern of matrix associated with the7 × 5 finite difference mesh of
Figure 2.5.
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In the case whenh1 = h2 = h the matrix has the following block structure:

A =
1

h2





B −I
−I B −I

−I B



 with B =







4 −1
−1 4 −1

−1 4 −1
−1 4






.

2.2.6 Fast Poisson Solvers

A number of special techniques have been developed for solving linear systems aris-
ing from finite difference discretizations of the Poisson equation on rectangular grids.
These are termed Fast Poisson Solvers (FPS) because of the relatively low number
of arithmetic operations whuch they require, typically of the order ofO(N log(N))
whereN is the size of the matrix.

Consider first the linear systems seen in the previous subsection, which have the
form (after scaling byh2)









B −I
−I B −I

.. . . . . . . .
−I B −I

−I B

















u1

u2
...

um−1

um









=









b1
b2
...

bm−1

bm









(2.26)

in which

B =









4 −1
−1 4 −1

.. . .. . . ..
−1 4 −1

−1 4









(2.27)

The notation has changed slightly in that we callp andm the mesh sizes in thex1

andx2 directions respectively. Therefore, eachui if of dimensionp and corresponds
to a block of solution components along one horizontal line.

Fourier methods exploit the knowledge of the eigenvalues and eigenvectors of
the matrixB. The eigenvalues are known to be

λj = 4− 2 cos

(
jπ

p+ 1

)

j = 1, . . . , p

and, definingθj ≡ (jπ)/(p + 1), the corresponding eigenvectors are given by:

qj =

√
2

p+ 1
× [sin θj, sin(2θj), . . . , sin(pθj)]

T .

Defining,
Q = [q1, . . . , qp]
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it is clear thatQTBQ = Λ = diag (λj). Thej-th (block)-row of the system (2.26)
which can be written as

−uj−1 +Buj − uj+1 = bj ,

will now be transformed by applying the similarity transformationQ to the above
equation, leading to

−QTuj−1 + (QTBQ) QTuj −QTuj+1 = QT bj

If we denote by a bar quantities expressed in theQ basis, then the above equation
becomes

−ūj−1 + Λūj − ūj+1 = b̄j .

Note that the transformation fromuj to ūj can be performed with a (real) Fast Fourier
Transform and this will be exploited shortly. Together the above equations yield the
large system,









Λ −I
−I Λ −I

.. .
. . .

. . .
−I Λ −I

−I Λ

















ū1

ū2
...

ūm−1

ūm









=









b̄1
b̄2
...

b̄m−1

b̄m









(2.28)

As it turns out, the above system disguises a set ofm independent tridiagonal sys-
tems. Indeed, taking thei-th row of each block, yields









λi −1
−1 λi −1

. . .
. . .

. . .
−1 λi −1

−1 λi

















ūi1

ūi2
...

ūip−1

ūip









=









b̄i1
b̄i2
...

b̄ip−1

b̄ip









(2.29)

whereuij andbij represent thej-th components of the vectorsuj andbj respectively.
The procedure becomes clear and is described in the next algorithm.

ALGORITHM 2.1 FFT-based Fast-Poisson Solver

1. Computēbj = QT bj , j = 1, . . . ,m
2. Solve the tridiagonal systems (2.29) fori = 1, . . . , p
3. Computeuj = Qūj , j = 1, . . . ,m

The operations in Lines 1 and 3 are performed by FFT transforms, and require a
total ofO(p log2 p) operations each, leading to a total ofO(m×p log2 p) operations.
Solving them tridiagonal systems requires a total of8 × p × m operations. As a
result, the complexity of the algorithm isO(NlogN) whereN = p×m.
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A second class of Fast Poisson Solvers utilize Block Cyclic Reduction (BCR).
For simplicity, assume thatp = 2µ − 1. Denoting2r by h, at ther-th step of BCR,
the system is of the following form:









B(r) −I
−I B(r) −I

. . . . . . . . .
−I B(r) −I

−I B(r)

















uh

u2h
...

u(pr−1)h

uprh









=









bh
b2h
...

b(pr−1)h

bprh









(2.30)

Equations whose block-indexj is odd are now eliminated by multiplying each equa-
tion indexed2jh byB(r) and adding it to equations(2j − 1)h and(2j + 1)h. This
would yield a system with a size half that of (2.30), which involves only the equations
with indices that are even multiples ofh:

−u(2j−2)h +
[

(B(r))2 − 2I
]

u2jh − u(2j+2)h = B(r)b2jh + b(2j−1)h + b(2j+1)h .

The process can then be repeated until we have only one systemofm equations. This
could then be solved and the other unknowns recovered from itin a back-substitution.
The method based on this direct approach is not stable.

A stable modification due to Buneman [69] consists of writingthe right-hand
sides differently. Eachbjh is written as

b
(r)
jh = B(r)p

(r)
jh + q

(r)
jh (2.31)

Initially, when r = 0, the vectorp(0)
i is zero andq(0)i ≡ bj. The elimination of

block-rowjh proceeds in the same manner, as was described above, leadingto

− u(2j−2)h +
[

(B(r))2 − 2I
]

u2jh − u(2j+2)h = (B(r))2p
(r)
2jh +

B(r)(q
(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h) + q

(r)
(2j−1)h + q

(r)
(2j+1)h .(2.32)

It is clear that the diagonal block matrix for the next step is

B(r+1) = (B(r))2 − 2I . (2.33)

It remains to recast Equation (2.32) in a such way that the right-hand side blocks are
again in the form (2.31). The new right-hand side is rewritten as

b
(r+1)
2jh = (B(r))2

[

p
(r)
2jh + (B(r))−1(q

(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h)

]

+q
(r)
(2j−1)h+q

(r)
(2j+1)h.

The term in the brackets is defined asp(r+1)
2jh

p
(r+1)
2jh = p

(r)
2jh + (B(r))−1(q

(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h), (2.34)

so that,

b
(r+1)
2jh = (B(r))2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h

= [(B(r))2 − 2I]p
(r+1)
2jh + 2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h .
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Then it becomes clear thatq(r+1)
2jh should be defined as

q
(r+1)
2jh = 2p

(r+1)
2jh + q

(r)
(2j−1)h + q

(r)
(2j+1)h . (2.35)

After µ − 1 steps of the above transformation, the original system (2.26) is re-
duced to a system with a single block which can be solved directly. The other un-
known are then obtained by back-substitution, computing theujh’s for odd values of
j from the theujh’s with even values ofj:

u
(r+1)
jh = (B(r))−1[brjh + u(j−1)h + u(j+1)h]

= (B(r))−1[B(r)pr
jh + qr

jh + u(j−1)h + u(j+1)h]

= pr
jh + (B(r))−1[qr

jh + u(j−1)h + u(j+1)h] .

These substitutions are done forh = 2r decreasing fromh = 2µ, to h = 20. Bune-
man’s algorithm is described below.

ALGORITHM 2.2 Block Cyclic Reduction (Buneman’s version)

1. Initialize: p
(0)
i = 0, q

(0)
j = bj , j = 1, . . . , p andh = 1, r = 0.

2. Forward solution: While (h = 2r < p) Do:
3. Form the matrixYr with columns

4. q
(r)
2jh + p

(r)
(2j−1)h + p

(r)
(2j+1)h, j = 1, . . . , (p + 1)/2h − 1

5. Solve the (multi)- linear systemB(r)Xr = Yr

6. Update the vectorsp andq according to (2.34) and (2.35)
7. r := r + 1
8. EndWhile

9. Solve foru: B(r)u = q
(r)
1 and setuh = ph + u.

10. Backward substitution:while h ≥ 1 do
11. h := h/2
12. Form the matrixYr with column vectors

13. q
(r)
jh + u(j−1)h + u(j+1)h , j = 1, 3, 5, . . . , n/h.

14. Solve the (multi)- linear systemB(r)Wr = Yr

15. Update the solution vectorsujh, j = 1, 3 , . . . , by
16. Ur = Pr +Wr, whereUr (resp.Pr) is the matrix with vector
17. columnsujh (resp.pjh ).
18. EndWhile

The bulk of the work in the above algorithms lies in Lines 5 and14, where sys-
tems of equations with multiple right-hand sides are solvedwith the same coefficient
matrixB(r). For this purpose the matrixB(r) is not formed explicitly. Instead, it is
observed thatB(r) is a known polynomial inB, specifically:

B(r) ≡ ph(A) = 2Ch(B/2) =
h∏

i=1

(B − λ(r)
i I)
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whereCk denotes the Chebyshev polynomial of degreek of the first kind (See section
6.11.1 of Chapter 6 for a brief discussion of Chebyshev polynomials). The rootsλi

of the polynomialsph are easily determined from those ofCh:

λ
(r)
i = 2cos

(
(2i − 1)π

2h

)

i = 1, . . . , h

Thus, ifp = 2µ − 1, the systems in Line 5 can be written as

2r
∏

i=1

(A− λ(r)
i I)[x1| · · · |x2µ−r−1−1] = [y1| · · · |y2µ−r−1−1]. (2.36)

An interesting, and more efficient technique, consists of combining BCR with the
FFT approach [280, 170]. In this technique a small number of cyclic reduction steps
are taken and the resulting system is then solved using the Fourier-based approach
described earlier. The cost of the algorithm is still of the formO(mp log p) but the
constant in the cost is smaller.

Block cyclic reduction can also be applied for solving general ‘separable’ equa-
tions using the algorithm described by Swartzrauber [279].However, the roots of the
polynomial must be computed since they are not known in advance.

2.3 The Finite Element Method

The finite element method is best illustrated with the solution of a simple elliptic
Partial Differential Equation in a two-dimensional space.Consider again Poisson’s
equation (2.24) with the Dirichlet boundary condition (2.25), whereΩ is a bounded
open domain inR2 andΓ its boundary. The Laplacean operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

appears in many models of physical and mechanical phenomena. Equations involv-
ing the more general elliptic operators (2.5) and (2.6) can be treated in the same way
as Poisson’s equation (2.24) and (2.25), at least from the viewpoint of the numerical
solutions techniques.

An essential ingredient for understanding the finite element method isGreen’s
formula. The setting for this formula is an open setΩ whose boundary consists of a
closed and smooth curveΓ as illustrated in Figure 2.1. A vector-valued function~v =(

v1

v2

)

, which is continuously differentiable inΩ, is given. Thedivergence theoremin
two-dimensional spaces states that

∫

Ω
div~v dx =

∫

Γ
~v.~n ds. (2.37)

The dot in the right-hand side represents a dot product of twovectors inR
2. In this

case it is between the vector~v and the unit vector~n which is normal toΓ at the point
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of consideration and oriented outward. To derive Green’s formula, consider a scalar
functionv and a vector function~w =

(
w1

w2

)

. By standard differentiation,

∇.(v ~w) = (∇v). ~w + v∇. ~w,

which expresses∇v.~w as

∇v.~w = −v∇. ~w +∇.(v ~w). (2.38)

Integrating the above equality overΩ and using the divergence theorem, we obtain
∫

Ω
∇v.~w dx = −

∫

Ω
v∇. ~w dx+

∫

Ω
∇.(v ~w) dx

= −
∫

Ω
v∇. ~w dx+

∫

Γ
v ~w.~n ds. (2.39)

The above equality can be viewed as a generalization of the standard integration by
part formula in calculus. Green’s formula results from (2.39) by simply taking a
vector ~w which is itself a gradient of a scalar functionu, namely,~w = ∇u,

∫

Ω
∇v.∇u dx = −

∫

Ω
v∇.∇u dx+

∫

Γ
v∇u.~n ds.

Observe that∇.∇u = ∆u. Also the function∇u.~n is called thenormal derivative
and is denoted by

∇u.~n =
∂u

∂~n
.

With this, we obtain Green’s formula
∫

Ω
∇v.∇u dx = −

∫

Ω
v∆u dx+

∫

Γ
v
∂u

∂~n
ds. (2.40)

We now return to the initial problem (2.24-2.25). To solve this problem approxi-
mately, it is necessary to (1) take approximations to the unknown functionu, and (2)
translate the equations into a system which can be solved numerically. The options
for approximatingu are numerous. However, the primary requirement is that these
approximations should be in a (small) finite dimensional space. There are also some
additional desirable numerical properties. For example, it is difficult to approximate
high degree polynomials numerically. To extract systems ofequations which yield
the solution, it is common to use theweak formulationof the problem. Let us define

a(u, v) ≡
∫

Ω
∇u.∇v dx =

∫

Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)

dx,

(f, v) ≡
∫

Ω
fv dx.

An immediate property of the functionala is that it isbilinear. That means that it is
linear with respect tou andv, namely,

a(µ1u1 + µ2u2, v) = µ1a(u1, v) + µ2a(u2, v), ∀µ1, µ2 ∈ R,

a(u, λ1v1 + λ2v2) = λ1a(u, v1) + λ2a(u, v2), ∀λ1, λ2 ∈ R.
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Notice that(u, v) denotes theL2-inner product ofu andv in Ω, i.e.,

(u, v) =

∫

Ω
u(x)v(x)dx,

then, for functions satisfying the Dirichlet boundary conditions, which are at least
twice differentiable, Green’s formula (2.40) shows that

a(u, v) = −(∆u, v).

The weak formulation of the initial problem (2.24-2.25) consists of selecting a sub-
space of referenceV of L2 and then defining the following problem:

Find u ∈ V such that a(u, v) = (f, v), ∀ v ∈ V. (2.41)

In order to understand the usual choices for the spaceV , note that the definition of
the weak problem only requires the dot products of the gradients ofu andv and the
functionsf andv to beL2–integrable. The most generalV under these conditions
is the space of all functions whose derivatives up to the firstorder are inL2. This
is known asH1(Ω). However, this space does not take into account the boundary
conditions. The functions inV must be restricted to have zero values onΓ. The
resulting space is calledH1

0 (Ω).
The finite element method consists of approximating the weakproblem by a

finite-dimensional problem obtained by replacingV with a subspace of functions
that are defined as low-degree polynomials on small pieces (elements) of the original
domain.

Figure 2.7: Finite element triangulation of a domain.

Consider a regionΩ in the plane which is triangulated as shown in Figure 2.7. In
this example, the domain is simply an ellipse but the external enclosing curve is not
shown. The original domain is thus approximated by the unionΩh of m triangles
Ki,

Ωh =
m⋃

i=1

Ki.
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For the triangulation to be valid, these triangles must haveno vertex that lies on the
edge of any other triangle. Themesh sizeh is defined by

h = max
i=1,...,m

diam(Ki)

where diam(K), the diameter of a triangleK, is the length of its longest side.
Then the finite dimensional spaceVh is defined as the space of all functions

which are piecewise linear and continuous on the polygonal regionΩh, and which
vanish on the boundaryΓ. More specifically,

Vh = {φ | φ|Ωh
continuous, φ|Γh

= 0, φ|Kj
linear∀ j}.

Here,φ|X represents the restriction of the functionφ to the subsetX. If xj, j =
1, . . . , n are the nodes of the triangulation, then a functionφj in Vh can be associ-
ated with each nodexj, so that the family of functionsφj ’s satisfies the following
conditions:

φj(xi) = δij =

{
1 if xi = xj

0 if xi 6= xj
. (2.42)

These conditions defineφi, i = 1, . . . , n uniquely. In addition, theφi’s form a basis
of the spaceVh.

Each function ofVh can be expressed as

φ(x) =
n∑

i=1

ξiφi(x).

The finite element approximation consists of writing the Galerkin condition (2.41)
for functions inVh. This defines the approximate problem:

Find u ∈ Vh such that a(u, v) = (f, v), ∀ v ∈ Vh. (2.43)

Sinceu is in Vh, there aren degrees of freedom. By the linearity ofa with respect
to v, it is only necessary to impose the conditiona(u, φi) = (f, φi) for i = 1, . . . , n.
This results inn constraints.

Writing the desired solutionu in the basis{φi} as

u =
n∑

j=1

ξjφj(x)

and substituting in (2.43) gives the linear problem

n∑

j=1

αijξj = βi (2.44)

where
αij = a(φi, φj), βi = (f, φi).
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The above equations form a linear system of equations

Ax = b,

in which the coefficients ofA are theαij ’s; those ofb are theβj ’s. In addition,A is
aSymmetric Positive Definitematrix. Indeed, it is clear that

∫

Ω
∇φi .∇φj dx =

∫

Ω
∇φj .∇φi dx,

which means thatαij = αji. To see thatA is positive definite, first note that
a(u, u) ≥ 0 for any functionu. If a(φ, φ) = 0 for a function inVh, then it must
be true that∇φ = 0 almost everywherein Ωh. Sinceφ is linear in each triangle
and continuous, then it is clear that it must be constant on all Ω. Since, in addition,
it vanishes on the boundary, then it must be equal to zero on all of Ω. The result
follows by exploiting the relation

(Aξ, ξ) = a(φ, φ) with φ =
n∑

i=1

ξiφi,

which is valid for any vector{ξi}i=1....,n.
Another important observation is that the matrixA is also sparse. Indeed,αij is

nonzero only when the two basis functionsφi andφj have common support trian-
gles, or equivalently when the nodesi andj are the vertices of a common triangle.
Specifically, for a given nodei, the coefficientαij will be nonzero only when the
nodej is one of the nodes of a triangle that is adjacent to nodei.

In practice, the matrix is built by summing up the contributions of all triangles
by applying the formula

a(φi, φj) =
∑

K

aK(φi, φj)

in which the sum is over all the trianglesK and

aK(φi, φj) =

∫

K
∇φi ∇φj dx.

Note thataK(φi, φj) is zero unless the nodesi andj are both vertices ofK. Thus, a
triangle contributes nonzero values to its three vertices from the above formula. The
3× 3 matrix

AK =





aK(φi, φi) aK(φi, φj) aK(φi, φk)
aK(φj , φi) aK(φj , φj) aK(φj , φk)
aK(φk, φi) aK(φk, φj) aK(φk, φk)





associated with the triangleK(i, j, k) with verticesi, j, k is called anelement stiff-
ness matrix. In order to form the matrixA, it is necessary to sum up all the con-
tributionsaK(φk, φm) to the positionk,m of the matrix. This process is called an
assemblyprocess. In the assembly, the matrix is computed as

A =

nel∑

e=1

A[e], (2.45)



2.3. THE FINITE ELEMENT METHOD 67

in whichnel is the number of elements. Each of the matricesA[e] is of the form

A[e] = PeAKeP
T
e

whereAKe is the element matrix for the elementKe as defined above. AlsoPe is an
n × 3 Boolean connectivity matrix which maps the coordinates of the3 × 3 matrix
AKe into the coordinates of the full matrixA.

Finite element mesh

1

2 3

4 5

6

1

2

3

4
Assembled matrix

Figure 2.8: A simple finite element mesh and the pattern of thecorresponding as-
sembled matrix.

Example 2.1. The assembly process can be illustrated with a very simple exam-
ple. Consider the finite element mesh shown in Figure 2.8. Thefour elements are
numbered from bottom to top as indicated by the labels located at their centers. There
are six nodes in this mesh and their labeling is indicated in the circled numbers. The
four matricesA[e] associated with these elements are shown in Figure 2.9. Thus, the
first element will contribute to the nodes1, 2, 3, the second to nodes2, 3, 5, the third
to nodes2, 4, 5, and the fourth to nodes4, 5, 6.

A[1] A[2] A[3] A[4]

Figure 2.9: The element matricesA[e], e = 1, . . . , 4 for the finite element mesh
shown in Figure 2.8.
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In fact there are two different ways to represent and use the matrix A. We can
form all the element matrices one by one and then we can store them, e.g., in an
nel × 3 × 3 rectangular array. This representation is often called theunassembled
form of A. Then the matrixA may be assembled if it is needed. However, element
stiffness matrices can also be used in different ways without having to assemble the
matrix. For example,frontal techniquesare direct solution methods that take the
linear system in unassembled form and compute the solution by a form of Gaussian
elimination.

There are also iterative solution techniques which work directly with unassem-
bled matrices. One of the main operations required in many iterative methods is to
computey = Ax, the product of the matrixA by an arbitrary vectorx. In unassem-
bled form, this can be achieved as follows:

y = Ax =

nel∑

e=1

A[e]x =

nel∑

e=1

PeAKe(P
T
e x). (2.46)

Thus, the productP T
e x gathers thex data associated with thee-element into a 3-

vector consistent with the ordering of the matrixAKe . After this is done, this vector
must be multiplied byAKe . Finally, the result is added to the currenty vector in
appropriate locations determined by thePe array. This sequence of operations must
be done for each of thenel elements.

A more common, and somewhat more appealing, technique is to perform the as-
sembly of the matrix. All the elements are scanned one by one and the nine associated
contributionsaK(φk, φm), k,m ∈ {i, j, k} added to the corresponding positions in
the global “stiffness” matrix. The assembled matrix must now be stored but the el-
ement matrices may be discarded. The structure of the assembled matrix depends
on the ordering of the nodes. To facilitate the computations, a widely used strategy
transforms all triangles into a reference triangle with vertices (0, 0), (0, 1), (1, 0).
The area of the triangle is then simply the determinant of theJacobian of the trans-
formation that allows passage from one set of axes to the other.

Simple boundary conditions such as Neumann or Dirichlet do not cause any
difficulty. The simplest way to handle Dirichlet conditionsis to include boundary
values as unknowns and modify the assembled system to incorporate the boundary
values. Thus, each equation associated with the boundary point in the assembled
system is replaced by the equationui = fi. This yields a small identity block hidden
within the linear system.

For Neumann conditions, Green’s formula will give rise to the equations
∫

Ω
∇u.∇φj dx =

∫

Ω
fφjdx+

∫

Γ
φj
∂u

∂~n
ds, (2.47)

which will involve the Neumann data∂u
∂~n over the boundary. Since the Neumann

data is typically given at some points only (the boundary nodes), linear interpolation
(trapezoidal rule) or the mid-line value (midpoint rule) can be used to approximate
the integral. Note that (2.47) can be viewed as thej-th equation of the linear system.
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Another important point is that if the boundary conditions are only of Neumann type,
then the resulting system is singular. An equation must be removed, or the linear
system must be solved by taking this singularity into account.

2.4 Mesh Generation and Refinement

Generating a finite element triangulation can be done easilyby exploiting some initial
grid and then refining the mesh a few times either uniformly orin specific areas. The
simplest refinement technique consists of taking the three midpoints of a triangle,
thus creating four smaller triangles from a larger triangleand losing one triangle,
namely, the original one. A systematic use of one level of this strategy is illustrated
for the mesh in Figure 2.8, and is shown in Figure 2.10.

This approach has the advantage of preserving the angles of the original triangu-
lation. This is an important property since the angles of a good quality triangulation
must satisfy certain bounds. On the other hand, the indiscriminate use of the uniform
refinement strategy may lead to some inefficiencies. It is desirable to introduce more
triangles in areas where the solution is likely to have largevariations. In terms of ver-
tices, midpoints should be introduced only where needed. Toobtain standard finite
element triangles, the points that have been created on the edges of a triangle must
be linked to existing vertices in the triangle. This is because no vertex of a triangle is
allowed to lie on the edge of another triangle.

Figure 2.11 shows three possible cases that can arise. The original triangle is (a).
In (b), only one new vertex (numbered4) has appeared on one edge of the triangle
and it is joined to the vertex opposite to it. In (c), two new vertices appear inside the
original triangle. There is no alternative but to join vertices (4) and (5). However,
after this is done, either vertices (4) and (3) or vertices (1) and (5) must be joined.
If angles are desired that will not become too small with further refinements, the
second choice is clearly better in this case. In fact, various strategies for improving
the quality of the triangles have been devised. The final case(d) corresponds to the
“uniform refinement” case where all edges have been split in two. There are three
new vertices and four new elements, and the larger initial element is removed.

2.5 Finite Volume Method

The finite volume method is geared toward the solution of conservation laws of the
form:

∂u

∂t
+∇. ~F = Q. (2.48)

In the above equation,~F (u, t) is a certain vector function ofu and time, possibly
nonlinear. This is called the “flux vector.” Thesource termQ is a function of space
and time. We now apply the principle used in the weak formulation, described before.
Multiply both sides by a test functionw, and take the integral

∫

Ω
w
∂u

∂t
dx+

∫

Ω
w ∇. ~F dx =

∫

Ω
w Q dx.
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Figure 2.10: The simple finite element mesh of Figure 2.8 after one level of refine-
ment and the corresponding matrix.

Then integrate by part using formula (2.39) for the second term on the left-hand side
to obtain

∫

Ω
w
∂u

∂t
dx−

∫

Ω
∇w.~F dx+

∫

Γ
w ~F .~n ds =

∫

Ω
w Q dx.

Consider now acontrol volumeconsisting, for example, of an elementary triangle
Ki in the two-dimensional case, such as those used in the finite element method.
Take forw a functionwi whose value is one on the triangle and zero elsewhere. The
second term in the above equation vanishes and the followingrelation results:

∫

Ki

∂u

∂t
dx+

∫

Γi

~F .~n ds =

∫

Ki

Q dx. (2.49)

The above relation is at the basis of the finite volume approximation. To go a little
further, the assumptions will be simplified slightly by taking a vector function~F that
is linear with respect tou. Specifically, assume

~F =

(
λ1u

λ2u

)

≡ ~λu.

Note that, in this case, the term∇. ~F in (2.48) becomes~F (u) = ~λ.∇u. In addition,
the right-hand side and the first term in the left-hand side of(2.49) can be approxi-
mated as follows:

∫

Ki

∂u

∂t
dx ≈ ∂ui

∂t
|Ki|,

∫

Ki

Q dx ≈ qi|Ki|.
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Figure 2.11: Original triangle (a) and three possible refinement scenarios.

Here,|Ki| represents the volume ofKi, andqi is some average value ofQ in the cell
Ki (Note that in two dimensions, “volume” is considered to meanarea). These are
crude approximations but they serve the purpose of illustrating the scheme.

The finite volume equation (2.49) yields

∂ui

∂t
|Ki|+ ~λ.

∫

Γi

u ~n ds = qi|Ki|. (2.50)

The contour integral ∫

Γi

u ~n ds

is the sum of the integrals over all edges of the control volume. Let the value ofu
on each edgej be approximated by some “average”ūj . In addition,sj denotes the
length of each edge and a common notation is

~sj = sj~nj.

Then the contour integral is approximated by

~λ.

∫

Γi

u ~n ds ≈
∑

edges

ūj
~λ.~njsj =

∑

edges

ūj
~λ.~sj. (2.51)

The situation in the case where the control volume is a simpletriangle is depicted in
Figure 2.12. The unknowns are the approximationsui of the functionu associated
with each cell. These can be viewed as approximations ofu at the centers of gravity
of each celli. This type of model is calledcell-centeredfinite volume approxima-
tions. Other techniques based on using approximations on the vertices of the cells
are known ascell-vertexfinite volume techniques.
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Figure 2.12: Finite volume cell associated with nodei and three neighboring cells.

The valueūj required in (2.51) can be taken simply as the average betweenthe
approximationui of u in cell i and the approximationuj in the cellj on the other
side of the edge

ūj =
1

2
(uj + ui). (2.52)

This gives
∂ui

∂t
|Ki| +

1

2

∑

j

(ui + uj)~λ.~sj = qi|Ki|.

One further simplification takes place by observing that
∑

j

~sj = 0

and therefore ∑

j

ui
~λ.~sj = ui

~λ.
∑

j

~sj = 0.

This yields
∂ui

∂t
|Ki|+

1

2

∑

j

uj
~λ.~sj = qi|Ki|.

In the above equation, the summation is over all the neighboring cells j. One
problem with such simple approximations is that they do not account for large gradi-
ents ofu in the components. In finite volume approximations, it is typical to exploit
upwind schemes which are more suitable in such cases. By comparing with one-
dimensional upwind schemes, it can be easily seen that the suitable modification to
(2.52) is as follows:

ūj =
1

2
(uj + ui)−

1

2
sign

(

~λ.~sj

)

(uj − ui). (2.53)
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This gives

∂ui

∂t
|Ki|+

∑

j

~λ.~sj

(
1

2
(uj + ui)−

1

2
sign(~λ.~sj)(uj − ui)

)

= qi|Ki|.

Now write

∂ui

∂t
|Ki| +

∑

j

(
1

2
(uj + ui)~λ.~sj −

1

2
|~λ.~sj|(uj − ui)

)

= qi|Ki|

∂ui

∂t
|Ki| +

∑

j

(

ui(~λ.~sj)
+ + uj(~λ.~sj)

−
)

= qi|Ki|

where

(z)± ≡ z ± |z|
2

.

The equation for celli takes the form

∂ui

∂t
|Ki|+ βiui +

∑

j

αijuj = qi|Ki|,

where

βi =
∑

j

(~λ.~sj)
+ ≥ 0, (2.54)

αij = (~λ.~sj)
− ≤ 0. (2.55)

Thus, the diagonal elements of the matrix are nonnegative, while its offdiagonal
elements are nonpositive. In addition, the row-sum of the elements, i.e., the sum of
all elements in the same row, is equal to zero. This is because

βi +
∑

j

αij =
∑

j

(~λ.~sj)
+ +

∑

j

(~λ.~sj)
− =

∑

j

~λ.~sj = ~λ.
∑

j

~sj = 0.

The matrices obtained have the same desirable property of weak diagonal dominance
seen in the one-dimensional case. A disadvantage of upwind schemes, whether in the
context of irregular grids or in one-dimensional equations, is the loss of accuracy due
to the low order of the schemes.

PROBLEMS

P-2.1 Derive Forward Difference formulas similar to (2.8), i.e.,involving u(x), u(x +
h), u(x + 2h), . . ., which are of second and third order. Write down the discretization er-
rors explicitly.

P-2.2 Derive a Centered Difference formula for the first derivative, similar to (2.13), which
is at least of third order.
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P-2.3 Show that the Upwind Difference scheme described in 2.2.4, whena and~b are con-
stant, is stable for the model problem (2.7).

P-2.4 Develop the two nine-point formulas illustrated in Figure 2.4. Find the corresponding
discretization errors. [Hint: Combine13 of the five-point formula (2.17) plus23 of the same
formula based on the diagonal stencil{(x, y), (x + h, y + h) + (x + h, y − h), (x− h, y +
h), (x − h, y − h)} to get one formula. Use the reverse combination2

3 , 1
3 to get the other

formula.]

P-2.5 Consider a (two-dimensional) rectangular mesh which is discretized as in the finite
difference approximation. Show that the finite volume approximation to~λ.∇u yields the
same matrix as an upwind scheme applied to the same problem. What would be the mesh of
the equivalent upwind finite difference approximation?

P-2.6 Show that the right-hand side of equation (2.16) can also be written as

1

h2
δ−
(

ai+ 1

2

δ+u
)

.

P-2.7 Show that the formula (2.16) is indeed second order accuratefor functions that are in
C4.

P-2.8 Show that the functionsφi’s defined by (2.42) form a basis ofVh.

P-2.9 Develop the equivalent of Green’s formula for the elliptic operatorL defined in (2.6).

P-2.10 Write a short FORTRAN or C program to perform a matrix-by-vector product when
the matrix is stored in unassembled form.

P-2.11 Consider the finite element mesh of Example 2.1. Compare the number of opera-
tions required to perform a matrix-by-vector product when the matrix is in assembled and
in unassembled form. Compare also the storage required in each case. For a general finite
element matrix, what can the ratio be between the two in the worst case (consider only linear
approximations on triangular elements) for arithmetic? Express the number of operations in
terms of the number of nodes and edges of the mesh. You may makethe assumption that the
maximum number of elements that are adjacent to a given node isp (e.g.,p = 8).

P-2.12 LetK be a polygon inR2 withm edges, and let~sj = sj~nj , for j = 1, . . . ,m, where
sj is the length of thej-th edge and~nj is the unit outward normal at thej-th edge. Use the
divergence theorem to prove that

∑m
j=1 ~sj = 0.

NOTES AND REFERENCES. The books by C. Johnson [179], P. Ciarlet [84], and G. Strangand G.
Fix [277] are recommended for a good coverage of the finite element method. Axelsson and Barker
[15] discuss solution techniques for finite element problems emphasizing iterative methods. For finite
difference and finite volume methods, see C. Hirsch’s book [168] which also discusses equations and
solution methods for fluid flow problems. A 1965 article by Hockney [169] describes a one-level block
cyclic reduction method which seems to be the first “Fast Poisson Solver”. Block cyclic reduction was
developed by Buneman [69] and Hockney [171] for Poisson’s equations, and extended by Swartzrauber
[279] to separable elliptic equations. An efficient combination of block cyclic reduction and Fourier
analysis known as FACR(l), was developed by Hockney [171] and later extended in [280] and [170].
Parallel block cyclic reduction algorithms were considered in [138, 281].



Chapter 3

SPARSE MATRICES

As described in the previous chapter, standard discretizations of Partial Differential Equations

typically lead to large and sparse matrices. A sparse matrix is defined, somewhat vaguely, as

a matrix which has very few nonzero elements. But, in fact, a matrix can be termed sparse

whenever special techniques can be utilized to take advantage of the large number of zero

elements and their locations. These sparse matrix techniques begin with the idea that the

zero elements need not be stored. One of the key issues is to define data structures for these

matrices that are well suited for efficient implementation of standard solution methods, whether

direct or iterative. This chapter gives an overview of sparse matrices, their properties, their

representations, and the data structures used to store them.

3.1 Introduction

The natural idea to take advantage of the zeros of a matrix andtheir location was ini-
tiated by engineers in various disciplines. In the simplestcase involving banded ma-
trices, special techniques are straightforward to develop. Electrical engineers dealing
with electrical networks in the 1960s were the first to exploit sparsity to solve general
sparse linear systems for matrices with irregular structure. The main issue, and the
first addressed by sparse matrix technology, was to devise direct solution methods
for linear systems. These had to be economical, both in termsof storage and compu-
tational effort. Sparse direct solvers can handle very large problems that cannot be
tackled by the usual “dense” solvers.

Essentially, there are two broad types of sparse matrices:structuredandunstruc-
tured. A structured matrix is one whose nonzero entries form a regular pattern, often
along a small number of diagonals. Alternatively, the nonzero elements may lie in
blocks (dense submatrices) of the same size, which form a regular pattern, typically
along a small number of (block) diagonals. A matrix with irregularly located entries
is said to be irregularly structured. The best example of a regularly structured ma-
trix is a matrix that consists of only a few diagonals. Finitedifference matrices on
rectangular grids, such as the ones seen in the previous chapter, are typical examples
of matrices with regular structure. Most finite element or finite volume techniques

75
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applied to complex geometries lead to irregularly structured matrices. Figure 3.2
shows a small irregularly structured sparse matrix associated with the finite element
grid problem shown in Figure 3.1.
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Figure 3.1: A small finite element grid model.

The distinction between the two types of matrices may not noticeably affect di-
rect solution techniques, and it has not received much attention in the past. However,
this distinction can be important for iterative solution methods. In these methods,
one of the essential operations is matrix-by-vector products. The performance of
these operations can differ significantly on high performance computers, depending
on whether they are regularly structured or not. For example, on vector computers,
storing the matrix by diagonals is ideal, but the more general schemes may suffer
because they require indirect addressing.

The next section discusses graph representations of sparsematrices. This is fol-
lowed by an overview of some of the storage schemes used for sparse matrices and
an explanation of how some of the simplest operations with sparse matrices can be
performed. Then sparse linear system solution methods willbe covered. Finally,
Section 3.7 discusses test matrices.

3.2 Graph Representations

Graph theory is an ideal tool for representing the structureof sparse matrices and for
this reason it plays a major role in sparse matrix techniques. For example, graph the-
ory is the key ingredient used in unraveling parallelism in sparse Gaussian elimina-
tion or in preconditioning techniques. In the following section, graphs are discussed
in general terms and then their applications to finite element or finite difference ma-
trices are discussed.
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Figure 3.2: Sparse matrix associated with the finite elementgrid of Figure 3.1.

3.2.1 Graphs and Adjacency Graphs

Remember that a graph is defined by two sets, a set of vertices

V = {v1, v2, . . . , vn},

and a set of edgesE which consists of pairs(vi, vj), wherevi, vj are elements ofV ,
i.e.,

E ⊆ V × V.
This graphG = (V,E) is often represented by a set of points in the plane linked by
a directed line between the points that are connected by an edge. A graph is a way
of representing a binary relation between objects of a setV . For example,V can
represent the major cities of the world. A line is drawn between any two cities that
are linked by a nonstop airline connection. Such a graph willrepresent the relation
“there is a nonstop flight from city (A) to city (B).” In this particular example, the
binary relation is likely to be symmetric, i.e., when there is a nonstop flight from (A)
to (B) there is also a nonstop flight from (B) to (A). In such situations, the graph is
said to be undirected, as opposed to a general graph which is directed.

Going back to sparse matrices, theadjacency graphof a sparse matrix is a graph
G = (V,E), whosen vertices inV represent then unknowns. Its edges represent
the binary relations established by the equations in the following manner: There is
an edge from nodei to nodej whenaij 6= 0. This edge will therefore represent the
binary relationequationi involves unknownj. Note that the adjacency graph is an
undirected graph when the matrix pattern is symmetric, i.e., whenaij 6= 0 iff aji 6= 0
for all 1 ≤ i, j ≤ n).

When a matrix has a symmetric nonzero pattern, i.e., whenaij andaji are al-
ways nonzero at the same time, then the graph isundirected. Thus, for undirected
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graphs, every edge points in both directions. As a result, undirected graphs can be
represented with nonoriented edges.

As an example of the use of graph models, parallelism in Gaussian elimination
can be extracted by finding unknowns that are independent at agiven stage of the
elimination. These are unknowns which do not depend on each other according to the
above binary relation. The rows corresponding to such unknowns can then be used
as pivots simultaneously. Thus, in one extreme, when the matrix is diagonal, then all
unknowns are independent. Conversely, when a matrix is dense, each unknown will
depend on all other unknowns. Sparse matrices lie somewherebetween these two
extremes.

1 2

4 3

1 2

4 3

Figure 3.3: Graphs of two4× 4 sparse matrices.

There are a few interesting simple properties of adjacency graphs. The graph
of A2 can be interpreted as ann-vertex graph whose edges are the pairs(i, j) for
which there exists at least one path of length exactly two from nodei to nodej in
the original graph ofA. Similarly, the graph ofAk consists of edges which represent
the binary relation “there is at least one path of lengthk from nodei to nodej.” For
details, see Exercise 4.

3.2.2 Graphs of PDE Matrices

For Partial Differential Equations involving only one physical unknown per mesh
point, the adjacency graph of the matrix arising from the discretization is often the
graph represented by the mesh itself. However, it is common to have several un-
knowns per mesh point. For example, the equations modeling fluid flow may involve
the two velocity components of the fluid (in two dimensions) as well as energy and
momentum at each mesh point.

In such situations, there are two choices when labeling the unknowns. They
can be labeled contiguously at each mesh point. Thus, for theexample just men-



3.3. PERMUTATIONS AND REORDERINGS 79

tioned, we can label all four variables (two velocities followed by momentum and
then pressure) at a given mesh point asu(k), . . ., u(k + 3). Alternatively, all un-
knowns associated with one type of variable can be labeled first (e.g., first velocity
components), followed by those associated with the second type of variables (e.g.,
second velocity components), etc. In either case, it is clear that there is redundant
information in the graph of the adjacency matrix.

Thequotientgraph corresponding to thephysical meshcan be used instead. This
results in substantial savings in storage and computation.In the fluid flow example
mentioned above, the storage can be reduced by a factor of almost 16 for the integer
arrays needed to represent the graph. This is because the number of edges has been
reduced by this much, while the number of vertices, which is usually much smaller,
remains the same.

3.3 Permutations and Reorderings

Permuting the rows or the columns, or both the rows and columns, of a sparse matrix
is a common operation. In fact,reordering rows and columns is one of the most
important ingredients used inparallel implementations of both direct and iterative
solution techniques. This section introduces the ideas related to these reordering
techniques and their relations to the adjacency graphs of the matrices. Recall the
notation introduced in Chapter 1 that thej-th column of a matrix is denoted bya∗j
and thei-th row byai∗.

3.3.1 Basic Concepts

We begin with a definition and new notation.

Definition 3.1 LetA be a matrix andπ = {i1, i2, . . . , in} a permutation of the set
{1, 2, . . . , n}. Then the matrices

Aπ,∗ = {aπ(i),j}i=1,...,n;j=1,...,m,

A∗,π = {ai,π(j)}i=1,...,n;j=1,...,m

are called rowπ-permutation and columnπ-permutation ofA, respectively.

It is well known that any permutation of the set{1, 2, . . . , n} results from at most
n interchanges, i.e., elementary permutations in which onlytwo entries have been
interchanged. Aninterchange matrixis the identity matrix with two of its rows in-
terchanged. Denote byXij such matrices, withi and j being the numbers of the
interchanged rows. Note that in order to interchange rowsi andj of a matrixA, we
only need to premultiply it by the matrixXij . Let π = {i1, i2, . . . , in} be an arbi-
trary permutation. This permutation is the product of a sequence ofn consecutive
interchangesσ(ik, jk), k = 1, . . . , n. Then the rows of a matrix can be permuted by
interchanging rowsi1, j1, then rowsi2, j2 of the resulting matrix, etc., and finally by
interchangingin, jn of the resulting matrix. Each of these operations can be achieved
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by a premultiplication byXik ,jk
. The same observation can be made regarding the

columns of a matrix: In order to interchange columnsi andj of a matrix, postmulti-
ply it by Xij . The following proposition follows from these observations.

Proposition 3.2 Let π be a permutation resulting from the product of the inter-
changesσ(ik, jk), k = 1, . . . , n. Then,

Aπ,∗ = PπA, A∗,π = AQπ,

where

Pπ = Xin,jnXin−1,jn−1 . . . Xi1,j1, (3.1)

Qπ = Xi1,j1Xi2,j2 . . . Xin,jn . (3.2)

Products of interchange matrices are calledpermutation matrices. Clearly, a permu-
tation matrix is nothing but the identity matrix with its rows (or columns) permuted.

Observe thatX2
i,j = I, i.e., the square of an interchange matrix is the identity, or

equivalently, the inverse of an interchange matrix is equalto itself, a property which
is intuitively clear. It is easy to see that the matrices (3.1) and (3.2) satisfy

PπQπ = Xin,jnXin−1,jn−1 . . . Xi1,j1 ×Xi1,j1Xi2,j2 . . . Xin,jn = I,

which shows that the two matricesQπ andPπ are nonsingular and that they are the
inverse of one another. In other words, permuting the rows and the columns of a ma-
trix, using the same permutation, actually performs a similarity transformation. An-
other important consequence arises because the products involved in the definitions
(3.1) and (3.2) ofPπ andQπ occur in reverse order. Since each of the elementary
matricesXik,jk

is symmetric, the matrixQπ is the transpose ofPπ. Therefore,

Qπ = P T
π = P−1

π .

Since the inverse of the matrixPπ is its own transpose, permutation matrices are
unitary.

Another way of deriving the above relationships is to express the permutation
matricesPπ andP T

π in terms of the identity matrix, whose columns or rows are
permuted. It can easily be seen (See Exercise 3) that

Pπ = Iπ,∗, P T
π = I∗,π.

It is then possible to verify directly that

Aπ,∗ = Iπ,∗A = PπA, A∗,π = AI∗,π = AP T
π .

It is important to interpret permutation operations for thelinear systems to be
solved. When the rows of a matrix are permuted, the order in which the equations
are written is changed. On the other hand, when the columns are permuted, the
unknowns are in effectrelabeled, or reordered.
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Example 3.1. Consider, for example, the linear systemAx = b where

A =







a11 0 a13 0
0 a22 a23 a24

a31 a32 a33 0
0 a42 0 a44







andπ = {1, 3, 2, 4}, then the (column-) permuted linear system is






a11 a13 0 0
0 a23 a22 a24

a31 a33 a32 0
0 0 a42 a44













x1

x3

x2

x4







=







b1
b2
b3
b4






.

Note that only the unknowns have been permuted, not the equations, and in particular,
the right-hand side has not changed.

In the above example, only the columns ofA have been permuted. Such one-
sided permutations are not as common as two-sided permutations in sparse matrix
techniques. In reality, this is often related to the fact that the diagonal elements in
linear systems play a distinct and important role. For instance, diagonal elements are
typically large in PDE applications and it may be desirable to preserve this important
property in the permuted matrix. In order to do so, it is typical to apply the same
permutation to both the columns and the rows ofA. Such operations are called
symmetric permutations, and if denoted byAπ,π, then the result of such symmetric
permutations satisfies the relation

Aπ,π = PπAP
T
π .

The interpretation of the symmetric permutation is quite simple. The resulting ma-
trix corresponds to renaming, or relabeling, or reorderingthe unknowns and then
reordering the equations in the same manner.

Example 3.2. For the previous example, if the rows are permuted with the same
permutation as the columns, the linear system obtained is







a11 a13 0 0
a31 a33 a32 0
0 a23 a22 a24

0 0 a42 a44













x1

x3

x2

x4







=







b1
b3
b2
b4






.

Observe that the diagonal elements are now diagonal elements from the original ma-
trix, placed in a different order on the main diagonal.

3.3.2 Relations with the Adjacency Graph

From the point of view of graph theory, another important interpretation of a symmet-
ric permutation is thatit is equivalent to relabeling the vertices of the graphwithout
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altering the edges. Indeed, let(i, j) be an edge in the adjacency graph of the original
matrixA and letA′ be the permuted matrix. Thena′ij = aπ(i),π(j) and as a result
(i, j) is an edge in the adjacency graph of the permuted matrixA′, if and only if
(π(i), π(j)) is an edge in the graph of the original matrixA. In essence, it is as if
we simply relabel each node with the “old” labelπ(i) with the “new” labeli. This is
pictured in the following diagram:

π(i) π(j)

i j ← new labels

← old labels

Thus, the graph of the permuted matrix has not changed; rather, the labeling of the
vertices has. In contrast, nonsymmetric permutations do not preserve the graph. In
fact, they can transform an indirected graph into a directedone. Symmetric permuta-
tions change the order in which the nodes are considered in a given algorithm (such
as Gaussian elimination) and this may have a tremendous impact on the performance
of the algorithm.

1

2

3

4

5

6

7

8

9

Figure 3.4: Pattern of a 9× 9 arrow matrix and its adjacency graph.

Example 3.3. Consider the matrix illustrated in Figure 3.4 together withits adja-
cency graph. Such matrices are sometimes called “arrow” matrices because of their
shape, but it would probably be more accurate to term them “star” matrices because
of the structure of their graphs. If the equations are reordered using the permutation
9, 8, . . . , 1, the matrix and graph shown in Figure 3.5 are obtained.

Although the difference between the two graphs may seem slight, the matrices
have a completely different structure, which may have a significant impact on the
algorithms. As an example, if Gaussian elimination is used on the reordered matrix,
no fill-in will occur, i.e., the L and U parts of the LU factorization will have the same
structure as the lower and upper parts ofA, respectively.
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Figure 3.5: Adjacency graph and matrix obtained from above figure after permuting
the nodes in reverse order.

On the other hand, Gaussian elimination on the original matrix results in disas-
trous fill-ins. Specifically, the L and U parts of the LU factorization are now dense
matrices after the first step of Gaussian elimination. With direct sparse matrix tech-
niques, it is important to find permutations of the matrix that will have the effect of
reducing fill-ins during the Gaussian elimination process.

To conclude this section, it should be mentioned that two-sided nonsymmetric
permutations may also arise in practice. However, they are more common in the
context of direct methods.

3.3.3 Common Reorderings

The type of reordering, or permutations, used in applications depends on whether a
direct or an iterative method is being considered. The following is a sample of such
reorderings which are more useful for iterative methods.

Level-set orderings. This class of orderings contains a number of techniques that
are based on traversing the graph bylevel sets. A level set is defined recursively as
the set of all unmarked neighbors of all the nodes of a previous level set. Initially, a
level set consists of one node, although strategies with several starting nodes are also
important and will be considered later. As soon as a level setis traversed, its nodes
are marked and numbered. They can, for example, be numbered in the order in which
they are traversed. In addition, the order in which each level itself is traversed gives
rise to different orderings. For instance, the nodes of a certain level can be visited
in the natural order in which they are listed. The neighbors of each of these nodes
are then inspected. Each time, a neighbor of a visited vertexthat is not numbered is
encountered, it is added to the list and labeled as the next element of the next level
set. This simple strategy is calledBreadth First Search(BFS) traversal in graph
theory. The ordering will depend on the way in which the nodesare traversed in each
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level set. In BFS the elements of a level set are always traversed in the natural order
in which they are listed. In theCuthill-McKee orderingthe nodes adjacent a a visited
node are always traversed from lowest to highest degree.

ALGORITHM 3.1 BFS(G, v)

1. InitializeS = {v}, seen = 1, π(seen) = v; Mark v;
2. Whileseen < n Do
3. Snew = ∅;
4. For each nodev in S do
5. For each unmarkedw in adj(v) do
6. Addw to Snew;
7. Markw;
8. π(+ + seen) = w;
9. EndDo

10. S := Snew

11. EndDo
12. EndWhile

In the above algorithm, the notationπ(+ + seen) = w in Line 8, uses a style bor-
rowed from the C/C++ language. It states thatseen should be first incremented by
one, and thenπ(seen) is assignedw. Two important modifications will be made to
this algorithm to obtain the Cuthill Mc Kee ordering. The first concerns the selection
of the first node to begin the traversal. The second, mentioned above, is the orde in
which the nearest neighbors of a given node are traversed.

ALGORITHM 3.2 Cuthill-McKee (G)

0. Find an intial nodev for the traversal
1. InitializeS = {v}, seen = 1, π(seen) = v; Mark v;
2. Whileseen < n Do
3. Snew = ∅;
4. For each nodev Do:
5. π(+ + seen) = v;
6. For each unmarkedw in adj(v), going from lowest to highest degree Do:
7. Addw to Snew;
8. Markw;
9. EndDo

10. S := Snew

11. EndDo
12. EndWhile

Theπ array obtained from the procedure lists the nodes in the order in which
they are visited and can, in a practical implementation, be used to store the level sets
in succession. A pointer is needed to indicate where each setstarts.
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The main property of level sets is that, at the exception of the first and the last
levels, they are aregraph separators. A graph separator is a set of vertices, the
removal of which separates the graph in two disjoint components. In fact if there
arel levels andV1 = S1US2 . . . Si−1, V2 = Si+1U . . . Sl, then the nodes ofV1 are
V2 are not coupled. This is easy to prove by contradiction. A major consequence of
this property is that the matrix resulting from the Cuthill-McKee (or BFS) ordering
is block-tridiagonal, with thei-th block being of size|Si|.

I order to explain the concept of level sets, the previous twoalgorithms were
described with the explicit use of level sets. A more common,and somewhat simpler,
implementation relies onqueues. The queue implementation is as follows.

ALGORITHM 3.3 Cuthill-McKee (G) – Queue implementation

0. Find an intial nodev for the traversal
1. InitializeQ = {v}, Mark v;
2. While |Q| < n Do
3. head+ + ;
4. For each unmarkedw in adj(h), going from lowest to highest degree Do:
5. Appendw toQ;
6. Markw;
7. EndDo
8. EndWhile

The final arrayQ will give the desired permutationπ. Clearly, this implementation
can also be applied to BFS. As an example, consider the finite element mesh problem
illustrated in Figure 2.10 of Chapter 2, and assume thatv = 3 is the initial node of
the traversal. The state of theQ array after each step along with the head vertexhead
and its adjacency list are shown in the following table. Notethat the adjacency lists
in the third column are listed by increasing degrees.

Q head adj(head)

3 3 7, 10, 8
3, 7, 10, 8 7 1, 9
3, 7, 10, 8, 1, 9 10 5, 11
3, 7, 10, 8, 1, 9, 5, 11 8 2
3, 7, 10, 8, 1, 9, 5, 11, 2 1 -
3, 7, 10, 8, 1, 9, 5, 11, 2 9 -
3, 7, 10, 8, 1, 9, 5, 11, 2 5 14, 12
3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12 11 13
3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13 2 -
3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13 14 6, 15
3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13, 6, 15 12 4
3, 7, 10, 8, 1, 9, 5, 11, 2, 14, 12, 13, 6, 15, 4

An implementation using explicit levels, would find the setsS1 = {3}, S2 =
{7, 8, 10}, S3 = {1, 9, 5, 11, 2}, S4 = {14, 12, 13}, andS5 = {6, 15, 4}. The
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new labeling of the graph along with the corresponding matrix pattern are shown in
Figure 3.6. The partitionning of the matrix pattern corresponds to the levels.

In 1971, George [142] observed thatreversingthe Cuthill-McKee ordering yields
a better scheme for sparse Gaussian elimination. The simplest way to understand
this is to look at the two graphs produced by these orderings.The results of the
standard and reversed Cuthill-McKee orderings on the sample finite element mesh
problem seen earlier are shown in Figures 3.6 and 3.7, when the initial node isi1 = 3
(relative to the labeling of the original ordering of Figure2.10). The case of the
figure, corresponds to a variant of CMK in which the traversals in Line 6, is done
in a random order instead of according to the degree. A large part of the structure
of the two matrices consists of little “arrow” submatrices,similar to the ones seen in
Example 3.3. In the case of the regular CMK ordering, these arrows point upward,
as in Figure 3.4, a consequence of the level set labeling. These blocks are similar
the star matrices of Figure 3.4. As a result, Gaussian elimination will essentially fill
in the square blocks which they span. As was indicated in Example 3.3, a remedy
is to reorder the nodes backward, as is done globally in the reverse Cuthill-McKee
strategy. For the reverse CMK ordering, the arrows are pointing downward, as in
Figure 3.5, and Gaussian elimination yields much less fill-in.
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Figure 3.6: Graph and matrix pattern for example pf Figure 2.10 after Cuthill-McKee
ordering.

Example 3.4. The choice of the initial node in the CMK and RCMK orderings
may be important. Referring to the original ordering of Figure 2.10, the previous
illustration usedi1 = 3. However, it is clearly a poor choice if matrices with small
bandwidth orprofile are desired. Ifi1 = 1 is selected instead, then the reverse
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Figure 3.7: Reverse Cuthill-McKee ordering.

Cuthill-McKee algorithm produces the matrix in Figure 3.8,which is more suitable
for banded orskylinesolvers.

Independent set orderings. The matrices that arise in the model finite element
problems seen in Figures 2.7, 2.10, and 3.2 are all characterized by an upper-left
block that is diagonal, i.e., they have the structure

A =

(
D E
F C

)

, (3.3)

in which D is diagonal andC,E, andF are sparse matrices. The upper-diagonal
block corresponds to unknowns from the previous levels of refinement and its pres-
ence is due to the ordering of the equations in use. As new vertices are created in
the refined grid, they are given new numbers and the initial numbering of the vertices
is unchanged. Since the old connected vertices are “cut” by new ones, they are no
longer related by equations. Sets such as these are calledindependent sets. Indepen-
dent sets are especially useful in parallel computing, for implementing both direct
and iterative methods.

Referring to the adjacency graphG = (V,E) of the matrix, and denoting by
(x, y) the edge from vertexx to vertexy, an independent setS is a subset of the
vertex setV such that

if x ∈ S, then {(x, y) ∈ E or (y, x) ∈ E} → y /∈ S.

To explain this in words: Elements ofS are not allowed to be connected to
other elements ofS either by incoming or outgoing edges. An independent set is
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Figure 3.8: Reverse Cuthill-McKee starting withi1 = 1.

maximalif it cannot be augmented by elements in its complement to form a larger
independent set. Note that a maximal independent set is by nomeans the largest
possible independent set that can be found. In fact, finding the independent set of
maximum cardinal isNP -hard [183]. In the following, the termindependent set
always refers tomaximal independent set.

There are a number of simple and inexpensive heuristics for finding large maxi-
mal independent sets. A greedy heuristic traverses the nodes in a given order, and if
a node is not already marked, it selects the node as a new member of S. Then this
node is marked along with its nearest neighbors. Here, a nearest neighbor of a node
x means any node linked tox by an incoming or an outgoing edge.

ALGORITHM 3.4 Greedy Algorithm for ISO

1. SetS = ∅.
2. Forj = 1, 2, . . . , n Do:
3. If nodej is not marked then
4. S = S ∪ {j}
5. Markj and all its nearest neighbors
6. EndIf
7. EndDo

In the above algorithm, the nodes are traversed in the natural order1, 2, . . . , n,
but they can also be traversed in any permutation{i1, . . . , in} of {1, 2, . . . , n}. Since
the size of the reduced system isn − |S|, it is reasonable to try to maximize the
size ofS in order to obtain a small reduced system. It is possible to give a rough
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idea of the size ofS. Assume that the maximum degree of each node does not
exceedν. Whenever the above algorithm accepts a node as a new member of S, it
potentially puts all its nearest neighbors, i.e., at mostν nodes, in the complement of
S. Therefore, ifs is the size ofS, the size of its complement,n − s, is such that
n− s ≤ νs, and as a result,

s ≥ n

1 + ν
.

This lower bound can be improved slightly by replacingν with the maximum degree
νS of all the vertices that constituteS. This results in the inequality

s ≥ n

1 + νS
,

which suggests that it may be a good idea to first visit the nodes with smaller degrees.
In fact, this observation leads to a general heuristic regarding a good order of traver-
sal. The algorithm can be viewed as follows: Each time a node is visited, remove it
and its nearest neighbors from the graph, and then visit a node from the remaining
graph. Continue in the same manner until all nodes are exhausted. Every node that is
visited is a member ofS and its nearest neighbors are members ofS̄. As result, ifνi

is the degree of the node visited at stepi, adjusted for all the edge deletions resulting
from the previous visitation steps, then the numberni of nodes that are left at stepi
satisfies the relation

ni = ni−1 − νi − 1.

The process adds a new element to the setS at each step and stops whenni = 0.
In order to maximize|S|, the number of steps in the procedure must be maximized.
The difficulty in the analysis arises from the fact that the degrees are updated at each
stepi because of the removal of the edges associated with the removed nodes. If the
process is to be lengthened, a rule of thumb would be to visit the nodes that have the
smallest degrees first.

ALGORITHM 3.5 Increasing Degree Traversal for ISO

1. SetS = ∅. Find an orderingi1, . . . , in of the nodes by increasing degree.
2. Forj = 1, 2, . . . n, Do:
3. If nodeij is not marked then
4. S = S ∪ {ij}
5. Mark ij and all its nearest neighbors
6. EndIf
7. EndDo

A refinement to the above algorithm would be to update the degrees of all nodes
involved in a removal, and dynamically select the one with the smallest degree as the
next node to be visited. This can be implemented efficiently using a min-heap data
structure. A different heuristic is to attempt to maximize the number of elements inS
by a form of local optimization which determines the order oftraversal dynamically.
In the following, removing a vertex from a graph means deleting the vertex and all
edges incident to/from this vertex.
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Example 3.5. The algorithms described in this section were tested on the same
example used before, namely, the finite element mesh problemof Figure 2.10. Here,
all strategies used yield the initial independent set in thematrix itself, which corre-
sponds to the nodes of all the previous levels of refinement. This may well be optimal
in this case, i.e., a larger independent set may not exist.

Multicolor orderings. Graph coloring is a familiar problem in computer science
which refers to the process of labeling (coloring) the nodesof a graph in such a way
that no two adjacent nodes have the same label (color). The goal of graph color-
ing is to obtain a colored graph which uses the smallest possible number of colors.
However, optimality in the context of numerical linear algebra is a secondary issue
and simple heuristics do provide adequate colorings. Basicmethods for obtaining a
multicoloring of an arbitrary grid are quite simple. They rely on greedy techniques,
a simple version of which is as follows.

ALGORITHM 3.6 Greedy Multicoloring Algorithm

1. Fori = 1, . . . , n Do: setColor(i) = 0.
2. Fori = 1, 2, . . . , n Do:
3. Set Color(i) = min {k > 0 | k 6= Color(j),∀ j ∈ Adj(i))}
4. EndDo

Line 3 assigns the smallestallowablecolor number to nodei. Allowable means a
positive number that is different from the colors of the neighbors of nodei. The
procedure is illustrated in Figure 3.9. The node being colored in the figure is indi-
cated by an arrow. It will be assigned color number 3, the smallest positive integer
different from 1, 2, 4, 5.

In the above algorithm, the order1, 2, . . . , n has been arbitrarily selected for
traversing the nodes and coloring them. Instead, the nodes can be traversed in any
order{i1, i2, . . . , in}. If a graph isbipartite, i.e., if it can be colored with two
colors, then the algorithm will find the optimal two-color (Red-Black) ordering for
Breadth-First traversals. In addition, if a graph is bipartite, it is easy to show that
the algorithm will find two colors for any traversal which, ata given step, visits an
unmarked node that is adjacent to at least one visited node. In general, the number
of colors needed does not exceed the maximum degree of each node +1. These
properties are the subject of Exercises 7 and 6.

Example 3.6. Figure 3.10 illustrates the algorithm for the same example used ear-
lier, i.e., the finite element mesh problem of Figure 2.10. The dashed lines separate
the different color sets found. Four colors are found in thisexample.

Once the colors have been found, the matrix can be permuted tohave a block
structure in which the diagonal blocks are diagonal. Alternatively, the color sets
Sj = [i

(j)
1 , . . ., i(j)nj ] and the permutation array in the algorithms can be used.
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Figure 3.9: The greedy multicoloring algorithm.
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Figure 3.10: Graph and matrix corresponding to mesh of Figure 2.10 after multicolor
ordering.

3.3.4 Irreducibility

Remember that apath in a graph is a sequence of verticesv1, v2, . . . , vk, which are
such that(vi, vi+1) is an edge fori = 1, . . . , k − 1. Also, a graph is said to be
connectedif there is a path between any pair of two vertices inV . A connected com-
ponentin a graph is amaximal subsetof vertices which all can be connected to one
another by paths in the graph. Now consider matrices whose graphs may bedirected.
A matrix is reducibleif its graph is not connected, andirreducibleotherwise. When
a matrix is reducible, then it can be permuted by means ofsymmetricpermutations
into a block upper triangular matrix of the form







A11 A12 A13 . . .
A22 A23 . . .

. . .
...

App






,
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where each partition corresponds to a connected component.It is clear that linear
systems with the above matrix can be solved through a sequence of subsystems with
the matricesAii, i = p, p− 1, . . . , 1.

3.4 Storage Schemes

In order to take advantage of the large number of zero elements, special schemes are
required to store sparse matrices. The main goal is to represent only the nonzero
elements, and to be able to perform the common matrix operations. In the following,
Nz denotes the total number of nonzero elements.

The simplest storage scheme for sparse matrices is the so-called coordinate for-
mat. The data structure consists of three arrays: (1) a real array containing all the real
(or complex) values of the nonzero elements ofA in any order; (2) an integer array
containing their row indices; and (3) a second integer arraycontaining their column
indices. All three arrays are of lengthNz, the number of nonzero elements.

Example 3.7. The matrix

A =









1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.









will be represented (for example) by

AA 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR 5 3 3 2 1 1 4 2 3 2 3 4

JC 5 5 3 4 1 4 4 1 1 2 4 3

In the above example, the elements are listed in an arbitraryorder. In fact, they
are usually listed by row or columns. If the elements were listed by row, the arrayJC
which contains redundant information might be replaced by an array which points
to the beginning of each row instead. This would involve nonnegligible savings in
storage. The new data structure has three arrays with the following functions:

• A real arrayAA contains the real valuesaij stored row by row, from row 1 to
n. The length ofAA isNz.

• An integer arrayJA contains the column indices of the elementsaij as stored
in the arrayAA. The length ofJA is Nz.

• An integer arrayIA contains the pointers to the beginning of each row in the
arraysAA andJA. Thus, the content ofIA(i) is the position in arraysAA
andJA where thei-th row starts. The length ofIA is n + 1 with IA(n + 1)
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containing the numberIA(1) + Nz, i.e., the address inA and JA of the
beginning of a fictitious row numbern+ 1.

Thus, the above matrix may be stored as follows:

AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

This format is probably the most popular for storing generalsparse matrices.
It is called theCompressed Sparse Row(CSR) format. This scheme is preferred
over the coordinate scheme because it is often more useful for performing typical
computations. On the other hand, the coordinate scheme is advantageous for its
simplicity and its flexibility. It is often used as an “entry”format in sparse matrix
software packages.

There are a number of variations for the Compressed Sparse Row format. The
most obvious variation is storing the columns instead of therows. The corresponding
scheme is known as theCompressed Sparse Column(CSC) scheme.

Another common variation exploits the fact that the diagonal elements of many
matrices are all usually nonzero and/or that they are accessed more often than the rest
of the elements. As a result, they can be stored separately. TheModified Sparse Row
(MSR) format has only two arrays: a real arrayAA and an integer arrayJA. The first
n positions inAA contain the diagonal elements of the matrix in order. The unused
positionn + 1 of the arrayAA may sometimes carry some information concerning
the matrix.

Starting at positionn + 2, the nonzero entries ofAA, excluding its diagonal
elements, are stored by row. For each elementAA(k), the integerJA(k) represents
its column index on the matrix. Then + 1 first positions ofJA contain the pointer
to the beginning of each row inAA andJA. Thus, for the above example, the two
arrays will be as follows:

AA 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice thatJA(n) = JA(n + 1) = 14, indi-
cating that the last row is a zero row, once the diagonal element has been removed.

Diagonally structured matrices are matrices whose nonzeroelements are located
along a small number of diagonals. These diagonals can be stored in a rectangular
arrayDIAG(1:n,1:Nd), whereNd is the number of diagonals. The offsets of each
of the diagonals with respect to the main diagonal must be known. These will be
stored in an arrayIOFF(1:Nd). Thus, the elementai,i+ioff(j) of the original matrix
is located in position(i, j) of the arrayDIAG, i.e.,

DIAG(i, j)← ai,i+ioff(j).
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The order in which the diagonals are stored in the columns ofDIAG is generally
unimportant, though if several more operations are performed with the main diago-
nal, storing it in the first column may be slightly advantageous. Note also that all the
diagonals except the main diagonal have fewer thann elements, so there are positions
in DIAG that will not be used.

Example 3.8. For example, the following matrix which has three diagonals

A =









1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









will be represented by the two arrays

DIAG =

* 1. 2.
3. 4. 5.
6. 7. 8.
9. 10. *
11 12. *

IOFF = -1 0 2 .

A more general scheme which is popular on vector machines is the so-called
Ellpack-Itpack format. The assumption in this scheme is that there are at mostNd
nonzero elements per row, whereNd is small. Then two rectangular arrays of dimen-
sionn × Nd each are required (one real and one integer). The first,COEF, is similar
to DIAG and contains the nonzero elements ofA. The nonzero elements of each row
of the matrix can be stored in a row of the arrayCOEF(1:n,1:Nd), completing the
row by zeros as necessary. Together withCOEF, an integer arrayJCOEF(1:n,1:Nd)
must be stored which contains the column positions of each entry in COEF.

Example 3.9. Thus, for the matrix of the previous example, the Ellpack-Itpack
storage scheme is

COEF =

1. 2. 0.
3. 4. 5.
6. 7. 8.
9. 10. 0.
11 12. 0.

JCOEF =

1 3 1
1 2 4
2 3 5
3 4 4
4 5 5

.

A certain column number must be chosen for each of the zero elements that must
be added to pad the shorter rows ofA, i.e., rows 1, 4, and 5. In this example, those
integers are selected to be equal to the row numbers, as can beseen in theJCOEF
array. This is somewhat arbitrary, and in fact, any integer between1 andn would be
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acceptable. However, there may be good reasons for not inserting the same integers
too often, e.g. a constant number, for performance considerations.

3.5 Basic Sparse Matrix Operations

The matrix-by-vector product is an important operation which is required in most of
the iterative solution algorithms for solving sparse linear systems. This section shows
how these can be implemented for a small subset of the storageschemes considered
earlier.

The following FORTRAN 90 segment shows the main loop of the matrix-by-
vector operation for matrices stored in the Compressed Sparse Row stored format.

DO I=1, N

K1 = IA(I)

K2 = IA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2),X(JA(K1:K2)))

ENDDO

Notice that each iteration of the loop computes a different component of the
resulting vector. This is advantageous because each of these components can be
computed independently. If the matrix is stored by columns,then the following code
could be used instead:

DO J=1, N

K1 = IA(J)

K2 = IA(J+1)-1

Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)

ENDDO

In each iteration of the loop, a multiple of thej-th column is added to the result,
which is assumed to have been initially set to zero. Notice now that the outer loop
is no longer parallelizable. An alternative to improve parallelization is to try to split
the vector operation in each inner loop. The inner loop has few operations, in gen-
eral, so this is unlikely to be a sound approach. This comparison demonstrates that
data structures may have to change to improve performance when dealing with high
performance computers.

Now consider the matrix-by-vector product in diagonal storage.

DO J=1, NDIAG

JOFF = IOFF(J)

DO I=1, N

Y(I) = Y(I) +DIAG(I,J)*X(JOFF+I)

ENDDO

ENDDO
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Here, each of the diagonals is multiplied by the vectorx and the result added to
the vectory. It is again assumed that the vectory has been filled with zeros at the
start of the loop. From the point of view of parallelization and/or vectorization, the
above code is probably the better to use. On the other hand, itis not general enough.

Solving a lower or upper triangular system is another important “kernel” in
sparse matrix computations. The following segment of code shows a simple rou-
tine for solving a unit lower triangular systemLx = y for the CSR storage format.

X(1) = Y(1)

DO I = 2, N

K1 = IAL(I)

K2 = IAL(I+1)-1

X(I)=Y(I)-DOTPRODUCT(AL(K1:K2),X(JAL(K1:K2)))

ENDDO

At each step, the inner product of the current solutionxwith thei-th row is computed
and subtracted fromy(i). This gives the value ofx(i). Thedotproduct function
computes the dot product of two arbitrary vectorsu(k1:k2) andv(k1:k2). The
vectorAL(K1:K2) is thei-th row of the matrixL in sparse format andX(JAL(K1:K2))
is the vector of the components ofX gatheredinto a short vector which is consistent
with the column indices of the elements in the rowAL(K1:K2).

3.6 Sparse Direct Solution Methods

Most direct methods for sparse linear systems perform an LU factorization of the
original matrix and try to reduce cost by minimizing fill-ins, i.e., nonzero elements
introduced during the elimination process in positions which were initially zeros.
The data structures employed are rather complicated. The early codes relied heavily
on linked listswhich are convenient for inserting new nonzero elements. Linked-
list data structures were dropped in favor of other more dynamic schemes that leave
some initial elbow room in each row for the insertions, and then adjust the structure
as more fill-ins are introduced.

A typical sparse direct solution solver for positive definite matrices consists of
four phases. First, preordering is applied to reduce fill-in. Two popular methods
are used: minimum degree ordering and nested-dissection ordering. Second, a sym-
bolic factorization is performed. This means that the factorization is processed only
symbolically, i.e., without numerical values. Third, the numerical factorization, in
which the actual factorsL andU are formed, is processed. Finally, the forward and
backward triangular sweeps are executed for each differentright-hand side. In a code
where numerical pivoting is necessary, the symbolic phase cannot be separated from
the numerical factorization.
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3.6.1 Minimum degree ordering

The minimum degree (MD) algorithm is perhaps the most popular strategy for min-
imizeing fill-in in sparse Gaussian elimination, specifically for SPD matrices. At a
given step of Gaussian elimination, this strategy selects the node with the smallest
degree as the next pivot row. This will tend to reduce fill-in.To be exact, it will
minimize (locally) an upper bound for the number of fill-ins that will be introduced
at the corrresponding step of Gaussian Elimination.

In contrast with the Cuthill McKee ordering, minimum degreeordering does not
have, nor does it attempt to have, a banded structure. While the algorithm is excellent
for sparse direct solvers, it has been observed that it does not perform as the RCM
ordering when used in conjunction with preconditioning (Chapter 10).

The Multiple Minimum Degree algorithm is a variation due to Liu [204, 143]
which exploits independent sets of pivots at each step. Degrees of nodes adjacent
to any vertex in the independent set are updated only after all vertices in the set are
processed.

3.6.2 Nested Dissection ordering

Nested dissection is used primarily to reduce fill-in in sparse direct solvers for Sym-
metric Positive Definite matrices. The technique is easily described with the help
of recursivity and by exploiting the concept of ‘separators’. A set S of vertices in a
graph is called a separator if the removal ofS results in the graph being split in two
disjoint subgraphs. For example, each of the intermediate levels in the BFS algorithm
is in fact a separator. The nested dissection algorithm can be succinctly described by
the following algorithm

ALGORITHM 3.7 ND(G,nmin)

1. If |V | ≤ nmin
2. label nodes ofV
3. Else
4. Find a separatorS for V
5. Label the nodes ofS
6. SplitV intoGL,GR by removingS
7. ND(GL, nmin)
8. ND(GR, nmin)
9. End

The labeling of the nodes in Lines 2 and 5, usually proceeds insequence, so for
example, in Line 5, the nodes ofS are labeled in a certain order, starting from the
last labeled node so far in the procedure. The main step of theND procedure is to
separate the graph in three parts, two of which have no coupling between each other.
The third set has couplings with vertices from both of the first sets and is referred to
as a sepator. The key idea is to separate the graph in this way and then repeat the



98 CHAPTER 3. SPARSE MATRICES

process recursively in each subgraph. The nodes of the separator are numbered last.
An illustration is shown in 3.11.

1
2

4
3

6
5

7

Figure 3.11: Nested dissection ordering and correspondingreordered matrix

3.7 Test Problems

For comparison purposes it is important to use a common set oftest matrices that
represent a wide spectrum of applications. There are two distinct ways of providing
such data sets. The first approach is to collect sparse matrices in a well-specified
standard format from various applications. This approach is used in the Harwell-
Boeing collection of test matrices. The second approach is to generate these matrices
with a few sample programs such as those provided in the SPARSKIT library [245].
The coming chapters will use examples from these two sources. In particular, five
test problems will be emphasized for their varying degrees of difficulty.

The SPARSKIT package can generate matrices arising from thediscretization of
the two- or three-dimensional Partial Differential Equations

− ∂

∂x

(

a
∂u

∂x

)

− ∂

∂y

(

b
∂u

∂y

)

− ∂

∂z

(

c
∂u

∂z

)

+
∂ (du)

∂x
+
∂ (eu)

∂y
+
∂ (fu)

∂z
+ gu = h

on rectangular regions with general mixed-type boundary conditions. In the test
problems, the regions are the squareΩ = (0, 1)2, or the cubeΩ = (0, 1)3; the
Dirichlet conditionu = 0 is always used on the boundary. Only the discretized ma-
trix is of importance, since the right-hand side will be created artificially. Therefore,
the right-hand side,h, is not relevant.



3.7. TEST PROBLEMS 99

a(x, y) =

b(x, y) =

103

-

6

a(x, y) = b(x, y) = 1

1
4

3
4

1
4

3
4

Figure 3.12: Physical domain and coefficients for Problem 2.

Problem 1: F2DA. In the first test problem which will be labeled F2DA, the
domain is two-dimensional, with

a(x, y) = b(x, y) = 1.0

and

d(x, y) = γ(x+ y), e(x, y) = γ(x− y), f(x, y) = g(x, y) = 0.0, (3.4)

where the constantγ is equal to 10. If the number of points in each direction is 34,
then there arenx = ny = 32 interior points in each direction and a matrix of size
n = nx × ny = 322 = 1024 is obtained. In this test example, as well as the other
ones described below, the right-hand side is generated as

b = Ae,

in which e = (1, 1, . . . , 1)T . The initial guess is always taken to be a vector of
pseudo-random values.

Problem 2: F2DB. The second test problem is similar to the previous one but
involves discontinuous coefficient functionsa andb. Here,nx = ny = 32 and the
functionsd, e, f, g are also defined by (3.4). However, the functionsa andb now
both take the value 1,000 inside the subsquare of width1

2 centered at (12 ,
1
2 ), and one

elsewhere in the domain, i.e.,

a(x, y) = b(x, y) =

{
103 if 1

4 < x, y < 3
4

1 otherwise
.

The domain and coefficients for this problem are shown is Figure 3.12.
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Problem 3: F3D. The third test problem is three-dimensional withnx = ny =
nz = 16 internal mesh points in each direction leading to a problem of size n =
4096. In this case, we take

a(x, y, z) = b(x, y, z) = c(x, y, z) = 1

d(x, y, z) = γexy, e(x, y, z) = γe−xy,

and
f(x, y, z) = g(x, y, z) = 0.0.

The constantγ is taken to be equal to 10.0 as before.
The Harwell-Boeing collection is a large data set consisting of test matrices

which have been contributed by researchers and engineers from many different dis-
ciplines. These have often been used for test purposes in theliterature [108]. The
collection provides a data structure which constitutes an excellent medium for ex-
changing matrices. The matrices are stored as ASCII files with a very specific for-
mat consisting of a four- or five-line header. Then, the data containing the matrix
is stored in CSC format together with any right-hand sides, initial guesses, or exact
solutions when available. The SPARSKIT library also provides routines for reading
and generating matrices in this format.

Only one matrix from the collection was selected for testingthe algorithms de-
scribed in the coming chapters. The matrices in the last two test examples are both
irregularly structured.

Problem 4: ORS The matrix selected from the Harwell-Boeing collection is
ORSIRR1. This matrix arises from a reservoir engineering problem. Its size is
n = 1030 and it has a total ofNz =6,858 nonzero elements. The original prob-
lem is based on a21 × 21 × 5 irregular grid. In this case and the next one, the
matrices are preprocessed by scaling their rows and columns.

Problem 5: FID This test matrix is extracted from the well known fluid flow
simulation package FIDAP [120]. It is actually the test example number 36 from this
package and features a two-dimensional Chemical Vapor Deposition in a Horizontal
Reactor. The matrix has a size ofn = 3079 and hasNz = 53843 nonzero elements.
It has a symmetric pattern and few diagonally dominant rows or columns. The rows
and columns are prescaled in the same way as in the previous example. Figure 3.13
shows the patterns of the matrices ORS and FID.

PROBLEMS

P-3.1 Consider the mesh of a discretized PDE. In which situations is the graph representing
this mesh the same as the adjacency graph of the matrix? Give examples from both Finite
Difference and Finite Element discretizations.
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Figure 3.13: Patterns of the matrices ORS (left) and FID (right).

P-3.2 Let A andB be two sparse (square) matrices of the same dimension. How can the
graph ofC = A+B be characterized with respect to the graphs ofA andB?

P-3.3 Consider the matrix defined as

Pπ = Iπ,∗.

Show directly (without using Proposition 3.2 or interchange matrices) that the following three
relations hold

Aπ,∗ = Iπ,∗A

I∗,π = PT
π

APT
π = A∗,π.

P-3.4 Consider the two matrices

A =










⋆ ⋆ 0 ⋆ 0 0
0 ⋆ 0 0 0 ⋆
0 ⋆ ⋆ 0 0 0
0 ⋆ 0 0 ⋆ 0
0 0 0 0 ⋆ 0
0 0 0 0 0 ⋆










B =










⋆ 0 0 0 0 0
⋆ 0 ⋆ 0 ⋆ 0
0 ⋆ 0 0 0 0
⋆ ⋆ 0 0 0 0
0 ⋆ 0 ⋆ ⋆ 0
0 0 ⋆ 0 0 ⋆










where a⋆ represents an arbitrary nonzero element.

a. Show the adjacency graphs of the matricesA, B, AB, andBA. (Assume that there
are no numerical cancellations in computing the productsAB andBA). Since there
are zero diagonal elements, represent explicitly the cycles corresponding to the(i, i)
edges when they are present.

b. Consider the matrixC = AB. Give an interpretation of an edge in the graph ofC in
terms of edges in the graph ofA andB. Verify this answer using the above matrices.

c. Consider the particular case in whichB = A. Give an interpretation of an edge in the
graph ofC in terms of paths of length two in the graph ofA. The paths must take into
account the cycles corresponding to nonzero diagonal elements ofA.
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d. Now consider the case whereB = A2. Give an interpretation of an edge in the graph
of C = A3 in terms of paths of length three in the graph ofA. Generalize the result to
arbitrary powers ofA.

P-3.5 Consider two matricesA andB of dimensionn×n, whose diagonal elements are all
nonzeros. LetEX denote the set of edges in the adjacency graph of a matrixX (i.e., the set
of pairs(i, j) suchXij 6= 0), then show that

EAB ⊃ EA ∪ EB .

Give extreme examples when|EAB| = n2 while EA ∪ EB is of ordern. What practical
implications does this have on ways to store products of sparse matrices (Is it better so store
the productAB or the pairsA, B separately? Consider both the computational cost for
performing matrix-vector products and the cost of memory)

P-3.6 Consider a6× 6 matrix which has the pattern

A =










⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆
⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆










.

a. Show the adjacency graph ofA.

b. Consider the permutationπ = {1, 3, 4, 2, 5, 6}. Show the adjacency graph and new
pattern for the matrix obtained from a symmetric permutation of A based on the per-
mutation arrayπ.

P-3.3 You are given an8 matrix which has the following pattern:














x x x
x x x x x

x x x x
x x x

x x x
x x x x x
x x x x

x x x














a. Show the adjacency graph ofA ;

b. Find the Cuthill Mc Kee ordering for the matrix (break tiesby giving priority to the
node with lowest index). Show the graph of the matrix permuted according to the
Cuthill-Mc Kee ordering.

c. What is the Reverse Cuthill Mc Kee ordering for this case? Show the matrix reordered
according to the reverse Cuthill Mc Kee ordering.

d. Find a multicoloring of the graph using the greedy multicolor algorithm. What is the
minimum number of colors required for multicoloring the graph?

e. Consider the variation of the Cuthill Mc-Kee ordering in which the first level consists
L0 several vertices instead on only one vertex. Find the Cuthill Mc Kee ordering with
this variant with the starting levelL0 = {1, 8}.
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P-3.6 Consider a matrix which has the pattern

A =














⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆














.

a. Show the adjacency graph ofA. (Place the 8 vertices on a circle.)

b. Consider the permutationπ = {1, 3, 5, 7, 2, 4, 6, 8}. Show the adjacency graph and
new pattern for the matrix obtained from a symmetric permutation ofA based on the
permutation arrayπ.

c. Show the adjacency graph and new pattern for the matrix obtained from a reverse
Cuthill-McKee ordering ofA starting with the node 1. (Assume the vertices adjacent
to a given vertex are always listed in increasing order in thedata structure that describes
the graph.)

d. Find a multicolor ordering forA (give the vertex labels color 1, followed by those for
color 2, etc.).

P-3.5 Given a five-point finite difference graph, show that the greedy algorithm will always
find a coloring of the graph with two colors.

P-3.6 Prove that the total number of colors found by the greedy multicoloring algorithm
does not exceedνmax + 1, whereνmax is the maximum degree of all the vertices of a graph
(not counting the cycles(i, i) associated with diagonal elements).

P-3.7 Consider a graph that is bipartite, i.e., 2-colorable. Assume that the vertices of the
graph are colored by a variant of Algorithm (3.6), in which the nodes are traversed in a certain
orderi1, i2, . . . , in.

a. Is it true that for any permutationi1, . . . , in the number of colors found will be two?

b. Consider now a permutation satisfying the following property: for eachj at least one
of the nodesi1, i2, . . . , ij−1 is adjacent toij . Show that the algorithm will find a
2-coloring of the graph.

c. Among the following traversals indicate which ones satisfy the property of the previous
question: (1) Breadth-First Search, (2) random traversal,(3) traversal defined byij =
any node adjacent toij−1.

P-3.4 Given a matrix that is irreducible and with a symmetric pattern, show that its struc-
tural inverse is dense. Structural inverse means the pattern of the inverse, regardless of the
values, or otherwise stated, is the union of all patterns of the inverses for all possible val-
ues. [Hint: Use Cayley Hamilton’s theorem and a well known result on powers of adjacency
matrices mentioned at the end of Section 3.2.1.]

P-3.5 The most economical storage scheme in terms of memory usage is the following
variation on the coordinate format: Store all nonzero values aij in a real arrayAA[1 : Nz]
and the corresponding “linear array address”(i−1)∗n+j in an integer arrayJA[1 : Nz]. The
order in which these corresponding entries are stored is unimportant as long as they are both
in the same position in their respective arrays. What are theadvantages and disadvantages of
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this data structure? Write a short routine for performing a matrix-by-vector product in this
format.

P-3.6 Write a FORTRAN-90 or C code segment to perform the matrix-by-vector product
for matrices stored in Ellpack-Itpack format.

P-3.7 Write a small subroutine to perform the following operations on a sparse matrix in
coordinate format, diagonal format, and CSR format:

a. Count the number of nonzero elements in the main diagonal;

b. Extract the diagonal whose offset isk;

c. Add a nonzero element in position(i, j) of the matrix (this position may initially con-
tain a zero or a nonzero element);

d. Add a given diagonal to the matrix. What is the most convenient storage scheme for
each of these operations?

P-3.5 Linked lists is another popular scheme often used for storing sparse matrices. These
allow to link togetherk data items (e.g., elements of a given row) in a large linear array. A
starting position is given in the array which contains the first element of the set. Then, a link
to the next element in the array is provided from a LINK array.

a. Show how to implement this scheme. A linked list is to be used for each row.

b. What are the main advantages and disadvantages of linked lists?

c. Write an algorithm to perform a matrix-by-vector productin this format.

NOTES AND REFERENCES. Two good references on sparse matrix computations are the book by
George and Liu [144] and the more recent volume by Duff, Erisman, and Reid [107]. These are geared
toward direct solution methods and the first specializes in symmetric positive definite problems. Also
of interest are [221] and [227] and the early survey by Duff [106].

Sparse matrix techniques have traditionally been associated with direct solution methods. This
has changed in the last decade because of the increased need to solve three-dimensional problems. The
SPARSKIT library, a package for sparse matrix computations[245] is available from the author at:
http://www.cs.umn.edu/ saad/software .
Another available software package which emphasizes object-oriented design with the goal of hiding
complex data structures from users is PETSc [24].

The idea of the greedy multicoloring algorithm is known in Finite Element techniques (to color
elements); see, e.g., Benantar and Flaherty [31]. Wu [319] presents the greedy algorithm for multicol-
oring vertices and uses it for SOR type iterations, see also [248]. The effect of multicoloring has been
extensively studied by Adams [2, 3] and Poole and Ortega [228]. Interesting results regarding multi-
coloring in the context of finite elements based on quad-treestructures have been obtained by Benantar
and Flaherty [31] who show, in particular, that with this structure a maximum of six colors is required.



Chapter 4

BASIC ITERATIVE METHODS

The first iterative methods used for solving large linear systems were based on relaxation of the

coordinates. Beginning with a given approximate solution, these methods modify the compo-

nents of the approximation, one or a few at a time and in a certain order, until convergence is

reached. Each of these modifications, called relaxation steps, is aimed at annihilating one or a

few components of the residual vector. Now, these techniques are rarely used separately. How-

ever, when combined with the more efficient methods described in later chapters, they can be

quite successful. Moreover, there are a few application areas where variations of these methods

are still quite popular.

4.1 Jacobi, Gauss-Seidel, and SOR

This chapter begins by reviewing the basic iterative methods for solving linear sys-
tems. Given ann×n real matrixA and a realn-vectorb, the problem considered is:
Findx belonging toRn such that

Ax = b (4.1)

Equation (4.1) is alinear system, A is the coefficient matrix, b is the right-hand
side vector, andx is the vector of unknowns. Most of the methods covered in
this chapter involve passing from one iterate to the next by modifying one or a few
components of an approximate vector solution at a time. Thisis natural since there
are simple criteria when modifying a component in order to improve an iterate. One
example is to annihilate some component(s) of the residual vector b − Ax. The
convergence of these methods is rarely guaranteed for all matrices, but a large body of
theory exists for the case where the coefficient matrix arises from the finite difference
discretization of Elliptic Partial Differential Equations.

We begin with the decomposition

A = D − E − F, (4.2)

105
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in whichD is the diagonal ofA, −E its strict lower part, and−F its strict upper
part, as illustrated in Figure 4.1. It is always assumed thatthe diagonal entries ofA
are all nonzero.

D

−F

−E

Figure 4.1: Initial partitioning of matrix A.

The Jacobi iteration determines thei-th component of the next approximation
so as to annihilate thei-th component of the residual vector. In the following,ξ

(k)
i

denotes thei-th component of the iteratexk andβi the i-th component of the right-
hand sideb. Thus, writing

(b−Axk+1)i = 0, (4.3)

in which (y)i represents thei-th component of the vectory, yields

aiiξ
(k+1)
i = −

n∑

j=1
j 6=i

aijξ
(k)
j + βi,

or

ξ
(k+1)
i =

1

aii




βi −

n∑

j=1
j 6=i

aijξ
(k)
j




 i = 1, . . . , n. (4.4)

This is a component-wise form of the Jacobi iteration. All components of the next
iterate can be grouped into the vectorxk+1. The above notation can be used to rewrite
the Jacobi iteration (4.4) in vector form as

xk+1 = D−1(E + F )xk +D−1b. (4.5)

Similarly, the Gauss-Seidel iteration corrects thei-th component of the current
approximate solution, in the orderi = 1, 2, . . . , n, again to annihilate thei-th com-
ponent of the residual. However, this time the approximate solution is updated im-
mediately after the new component is determined. The newly computed components
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ξ
(k)
i , i = 1, 2, . . . , n can be changed within a working vector which is redefined at

each relaxation step. Thus, since the order isi = 1, 2, . . ., the result at thei-th step is

βi −
i−1∑

j=1

aijξ
(k+1)
j − aiiξ

(k+1)
i −

n∑

j=i+1

aijξ
(k)
j = 0, (4.6)

which leads to the iteration,

ξ
(k+1)
i =

1

aii



−
i−1∑

j=1

aijξ
(k+1)
j −

n∑

j=i+1

aijξ
(k)
j + βi



 , i = 1, . . . , n. (4.7)

The defining equation (4.6) can be written as

b+ Exk+1 −Dxk+1 + Fxk = 0,

which leads immediately to the vector form of the Gauss-Seidel iteration

xk+1 = (D −E)−1Fxk + (D − E)−1b. (4.8)

Computing the new approximation in (4.5) requires multiplying by the inverse
of the diagonal matrixD. In (4.8) a triangular system must be solved withD − E,
the lower triangular part ofA. Thus, the new approximation in a Gauss-Seidel step
can be determined either by solving a triangular system withthe matrixD − E or
from the relation (4.7).

A backwardGauss-Seidel iteration can also be defined as

(D − F )xk+1 = Exk + b, (4.9)

which is equivalent to making the coordinate corrections inthe ordern, n−1, . . . , 1.
A Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a back-
ward sweep.

The Jacobi and the Gauss-Seidel iterations are both of the form

Mxk+1 = Nxk + b = (M −A)xk + b, (4.10)

in which
A = M −N (4.11)

is asplitting of A, withM = D for Jacobi,M = D − E for forward Gauss-Seidel,
andM = D − F for backward Gauss-Seidel. An iterative method of the form
(4.10) can be defined for any splitting of the form (4.11) whereM is nonsingular.
Overrelaxationis based on the splitting

ωA = (D − ωE)− (ωF + (1− ω)D),

and the correspondingSuccessive Over Relaxation(SOR) method is given by the
recursion

(D − ωE)xk+1 = [ωF + (1− ω)D]xk + ωb. (4.12)
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The above iteration corresponds to the relaxation sequence

ξ
(k+1)
i = ωξGS

i + (1− ω)ξ
(k)
i , i = 1, 2, . . . , n,

in whichξGS
i is defined by the expression in the right-hand side of (4.7). Abackward

SOR sweep can be defined analogously to the backward Gauss-Seidel sweep (4.9).
A Symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a

backward SOR step,

(D − ωE)xk+1/2 = [ωF + (1− ω)D]xk + ωb

(D − ωF )xk+1 = [ωE + (1 − ω)D]xk+1/2 + ωb

This gives the recurrence
xk+1 = Gωxk + fω,

where

Gω = (D − ωF )−1(ωE + (1− ω)D) ×
(D − ωE)−1(ωF + (1− ω)D), (4.13)

fω = ω(D − ωF )−1
(
I + [ωE + (1− ω)D](D − ωE)−1

)
b. (4.14)

Observing that

[ωE + (1− ω)D](D − ωE)−1 = [−(D − ωE) + (2− ω)D](D − ωE)−1

= −I + (2− ω)D(D − ωE)−1,

fω can be rewritten as

fω = ω(2− ω) (D − ωF )−1D(D − ωE)−1b.

4.1.1 Block Relaxation Schemes

Block relaxation schemes are generalizations of the “point” relaxation schemes de-
scribed above. They update a whole set of components at each time, typically a
subvector of the solution vector, instead of only one component. The matrixA and
the right-hand side and solution vectors are partitioned asfollows:

A =









A11 A12 A13 · · · A1p

A21 A22 A23 · · · A2p

A31 A32 A33 · · · A3p
...

...
...

. . .
...

Ap1 Ap2 · · · · · · App









, x =









ξ1
ξ2
ξ3
...
ξp









, b =









β1

β2

β3
...
βp









, (4.15)

in which the partitionings ofb and x into subvectorsβi and ξi are identical and
compatible with the partitioning ofA. Thus, for any vectorx partitioned as in (4.15),

(Ax)i =

p
∑

j=1

Aijξj,
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in which (y)i denotes thei-th component of the vectori according to the above
partitioning. The diagonal blocks inA are square and assumed nonsingular.

Now define, similarly to the scalar case, the splitting

A = D − E − F

with

D =







A11

A22
. . .

App






, (4.16)

E = −







O
A21 O

...
...

.. .
Ap1 Ap2 · · · O






, F = −







O A12 · · · A1p

O · · · A2p
. . .

...
O






.

With these definitions, it is easy to generalize the previousthree iterative procedures
defined earlier, namely, Jacobi, Gauss-Seidel, and SOR. Forexample, the block Ja-
cobi iteration is now defined as a technique in which the new subvectorsξ(k)

i are all
replaced according to

Aiiξ
(k+1)
i = ((E + F )xk)i + βi

or,
ξ
(k+1)
i = A−1

ii ((E + F )xk)i +A−1
ii βi, i = 1, . . . , p,

which leads to the same equation as before,

xk+1 = D−1(E + F )xk +D−1b,

except that the meanings ofD,E, andF have changed to their block analogues.
With finite difference approximations of PDEs, it is standard to block the vari-

ables and the matrix by partitioning along whole lines of themesh. For example, for
the two-dimensional mesh illustrated in Figure 2.5, this partitioning is

ξ1 =









u11

u12

u13

u14

u15









, ξ2 =









u21

u22

u23

u24

u25









, ξ3 =









u31

u32

u33

u34

u35









.

This corresponds to the mesh 2.5 of Chapter 2, whose associated matrix pattern is
shown in Figure 2.6. A relaxation can also be defined along thevertical instead
of the horizontal lines. Techniques of this type are often known asline relaxation
techniques.
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In addition, a block can also correspond to the unknowns associated with a few
consecutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a
6× 6 grid. The corresponding matrix with its block structure is shown in Figure 4.3.
An important difference between this partitioning and the one corresponding to the
single-line partitioning is that now the matricesAii are block-tridiagonal instead of
tridiagonal. As a result, solving linear systems withAii may be much more expen-
sive. On the other hand, the number of iterations required toachieve convergence
often decreases rapidly as the block-size increases.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Figure 4.2: Partitioning of a6× 6 square mesh into three subdomains.

Figure 4.3: Matrix associated with the mesh of Figure 4.2.

Finally, block techniques can be defined in more general terms. First, by using
blocks that allow us to update arbitrary groups of components, and second, by allow-
ing the blocks to overlap. Since this is a form of the domain-decomposition method
which will be seen later, we define the approach carefully. Sofar, our partition has
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been based on an actualset-partitionof the variable setS = {1, 2, . . . , n} into sub-
setsS1, S2, . . . , Sp, with the condition that two distinct subsets are disjoint.In set
theory, this is called apartition of S. More generally, aset-decompositionof S
removes the constraint of disjointness. In other words it isrequired that the union of
the subsetsSi’s be equal toS:

Si ⊆ S,
⋃

i=1,···,p
Si = S.

In the following,ni denotes the size ofSi and the subsetSi is of the form,

Si = {mi(1),mi(2), . . .mi(ni)}.

A general block Jacobi iteration can be defined as follows. Let Vi be then× ni

matrix
Vi = [emi(1), emi(2), . . . emi(ni)]

and
Wi = [ηmi(1)emi(1), ηmi(2)emi(2), . . . , ηmi(ni)emi(ni)],

where eachej is thej-th column of then × n identity matrix, andηmi(j) represents
a weight factor chosen so that

W T
i Vi = I.

When there is no overlap, i.e., when theSi’s form a partition of the whole set
{1, 2, . . . , n}, then defineηmi(j) = 1.

LetAij be theni × nj matrix

Aij = W T
i AVj

and define similarly the partitioned vectors

ξi = W T
i x, βi = W T

i b.

Note thatViW
T
i is a projector fromR

n to the subspaceKi spanned by the columns
mi(1), . . . ,mi(ni). In addition, we have the relation

x =

s∑

i=1

Viξi.

Theni-dimensional vectorW T
i x represents the projectionViW

T
i x of x with respect

to the basis spanned by the columns ofVi. The action ofVi performs the reverse op-
eration. That meansViy is an extension operation from a vectory in Ki (represented
in the basis consisting of the columns ofVi) into a vectorViy in R

n. The operator
W T

i is termed arestriction operatorandVi is anprolongation operator.
Each component of the Jacobi iteration can be obtained by imposing the condi-

tion that the projection of the residual in the span ofSi be zero, i.e.,

W T
i



b−A



ViW
T
i xk+1 +

∑

j 6=i

VjW
T
j xk







 = 0.
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Remember thatξj = W T
j x, which can be rewritten as

ξ
(k+1)
i = ξ

(k)
i +A−1

ii W
T
i (b−Axk). (4.17)

This leads to the following algorithm:

ALGORITHM 4.1 General Block Jacobi Iteration

1. Fork = 0, 1, . . . , until convergence Do:
2. Fori = 1, 2, . . . , p Do:
3. SolveAiiδi = W T

i (b−Axk)
4. Setxk+1 := xk + Viδi
5. EndDo
6. EndDo

As was the case with the scalar algorithms, there is only a slight difference be-
tween the Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the
component to be corrected at stepi, and uses the updated approximate solution to
compute the residual vector needed to correct the next component. However, the Ja-
cobi iteration uses the same previous approximationxk for this purpose. Therefore,
the block Gauss-Seidel iteration can be defined algorithmically as follows:

ALGORITHM 4.2 General Block Gauss-Seidel Iteration

1. Until convergence Do:
2. Fori = 1, 2, . . . , p Do:
3. SolveAiiδi = W T

i (b−Ax)
4. Setx := x+ Viδi
5. EndDo
6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new
approximation can be overwritten over the same vector. Also, it typically converges
faster. On the other hand, the Jacobi iteration has some appeal on parallel computers
since the secondDo loop, corresponding to thep different blocks, can be executed in
parallel. Although the point Jacobi algorithm by itself is rarely a successful technique
for real-life problems, its block Jacobi variant, when using large enough overlapping
blocks, can be quite attractive especially in a parallel computing environment.

4.1.2 Iteration Matrices and Preconditioning

The Jacobi and Gauss-Seidel iterations are of the form

xk+1 = Gxk + f, (4.18)

in which

GJA(A) = I −D−1A, (4.19)

GGS(A) = I − (D − E)−1A, (4.20)
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for the Jacobi and Gauss-Seidel iterations, respectively.Moreover, given the matrix
splitting

A = M −N, (4.21)

whereA is associated with the linear system (4.1), alinear fixed-point iterationcan
be defined by the recurrence

xk+1 = M−1Nxk +M−1b, (4.22)

which has the form (4.18) with

G = M−1N = M−1(M −A) = I −M−1A, f = M−1b. (4.23)

For example, for the Jacobi iteration,M = D,N = D − A, while for the Gauss-
Seidel iteration,M = D − E,N = M −A = F .

The iterationxk+1 = Gxk + f can be viewed as a technique for solving the
system

(I −G)x = f.

SinceG has the formG = I −M−1A, this system can be rewritten as

M−1Ax = M−1b.

The above system which has the same solution as the original system is called apre-
conditioned systemandM is thepreconditioning matrixor preconditioner. In other
words, a relaxation scheme is equivalent to a fixed-point iterationon a precondi-
tioned system.

For example, for the Jacobi, Gauss-Seidel, SOR, and SSOR iterations, these
preconditioning matrices are, respectively,

MJA = D, (4.24)

MGS = D − E, (4.25)

MSOR =
1

ω
(D − ωE), (4.26)

MSSOR =
1

ω(2− ω)
(D − ωE)D−1(D − ωF ). (4.27)

Thus, the Jacobi preconditioner is simply the diagonal ofA, while the Gauss-Seidel
preconditioner is the lower triangular part ofA. The constant coefficients in front of
the matricesMSOR andMSSOR only have the effect of scaling the equations of the
preconditioned system uniformly. Therefore, they are unimportant in the precondi-
tioning context.

Note that the “preconditioned” system may be a full system. Indeed, there is
no reason whyM−1 should be a sparse matrix (even thoughM may be sparse),
since the inverse of a sparse matrix is not necessarily sparse. This limits the number
of techniques that can be applied to solve the preconditioned system. Most of the
iterative techniques used only require matrix-by-vector products. In this case, to
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computew = M−1Av for a given vectorv, first computer = Av and then solve the
systemMw = r:

r = Av,

w = M−1r.

In some cases, it may be advantageous to exploit the splitting A = M − N and
computew = M−1Av asw = (I −M−1N)v by the procedure

r = Nv,

w = M−1r,

w := v − w.

The matrixN may be sparser thanA and the matrix-by-vector productNv may
be less expensive than the productAv. A number of similar but somewhat more
complex ideas have been exploited in the context of preconditioned iterative methods.
A few of these will be examined in Chapter 9.

4.2 Convergence

All the methods seen in the previous section define a sequenceof iterates of the form

xk+1 = Gxk + f, (4.28)

in whichG is a certainiteration matrix. The questions addressed in this section are:
(a) if the iteration converges, then is the limit indeed a solution of the original system?
(b) under which conditions does the iteration converge? (c)when the iteration does
converge, how fast is it?

If the above iteration converges, its limitx satisfies

x = Gx+ f. (4.29)

In the case where the above iteration arises from the splittingA = M −N , it is easy
to see that the solutionx to the above system is identical to that of the original system
Ax = b. Indeed, in this case the sequence (4.28) has the form

xk+1 = M−1Nxk +M−1b

and its limit satisfies
Mx = Nx+ b,

orAx = b. This answers question (a). Next, we focus on the other two questions.
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4.2.1 General Convergence Result

If I −G is nonsingular then there is a solutionx∗ to the equation (4.29). Subtracting
(4.29) from (4.28) yields

xk+1 − x∗ = G(xk − x∗) = · · · = Gk+1(x0 − x∗). (4.30)

Standard results seen in Chapter 1 imply that if the spectralradius of the iteration
matrixG is less than unity, thenxk − x∗ converges to zero and the iteration (4.28)
converges toward the solution defined by (4.29). Conversely, the relation

xk+1 − xk = G(xk − xk−1) = · · · = Gk(f − (I −G)x0).

shows that if the iteration converges foranyx0 andf thenGkv converges to zero for
any vectorv. As a result,ρ(G) must be less than unity and the following theorem is
proved:

Theorem 4.1 LetG be a square matrix such thatρ(G) < 1. ThenI −G is nonsin-
gular and the iteration (4.28) converges for anyf andx0. Conversely, if the iteration
(4.28) converges for for anyf andx0, thenρ(G) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions
that guarantee convergence can be useful in practice. One such sufficient condition
could be obtained by utilizing the inequality,ρ(G) ≤ ‖G‖, for any matrix norm.

Corollary 4.2 LetG be a square matrix such that‖G‖ < 1 for some matrix norm
‖.‖. ThenI − G is nonsingular and the iteration (4.28) converges for any initial
vectorx0.

Apart from knowing that the sequence (4.28) converges, it isalso desirable to
know how fastit converges. The errordk = xk − x∗ at stepk satisfies

dk = Gkd0.

The matrixG can be expressed in the Jordan canonical form asG = XJX−1.
Assume for simplicity that there is only one eigenvalue ofG of largest modulus and
call it λ. Then

dk = λkX

(
J

λ

)k

X−1d0.

A careful look at the powers of the matrixJ/λ shows that all its blocks, except the
block associated with the eigenvalueλ, converge to zero ask tends to infinity. Let
this Jordan block be of sizep and of the form

Jλ = λI + E,

whereE is nilpotent of indexp, i.e.,Ep = 0. Then, fork ≥ p,

Jk
λ = (λI + E)k = λk(I + λ−1E)k = λk

(
p−1
∑

i=0

λ−i

(
k

i

)

Ei

)

.



116 CHAPTER 4. BASIC ITERATIVE METHODS

If k is large enough, then for anyλ the dominant term in the above sum is the last
term, i.e.,

Jk
λ ≈ λk−p+1

(
k

p− 1

)

Ep−1.

Thus, the norm ofdk = Gkd0 has the asymptotical form

‖dk‖ ≈ C × |λk−p+1|
(

k

p− 1

)

,

whereC is some constant. Theconvergence factorof a sequence is the limit

ρ = lim
k→∞

(‖dk‖
‖d0‖

)1/k

.

It follows from the above analysis thatρ = ρ(G). The convergence rateτ is the
(natural) logarithm of the inverse of the convergence factor

τ = − ln ρ.

The above definition depends on the initial vectorx0, so it may be termed a
specificconvergence factor. Ageneralconvergence factor can also be defined by

φ = lim
k→∞

(

max
x0∈Rn

‖dk‖
‖d0‖

)1/k

.

This factor satisfies

φ = lim
k→∞

(

max
d0∈Rn

‖Gkd0‖
‖d0‖

)1/k

= lim
k→∞

(

‖Gk‖
)1/k

= ρ(G).

Thus, the global asymptotic convergence factor is equal to the spectral radius of
the iteration matrixG. Thegeneralconvergence rate differs from thespecificrate
only when the initial error does not have any components in the invariant subspace
associated with the dominant eigenvalue. Since it is hard toknow this information in
advance, thegeneralconvergence factor is more useful in practice.

Example 4.1. Consider the simple example ofRichardson’s Iteration,

xk+1 = xk + α (b−Axk) , (4.31)

whereα is a nonnegative scalar. This iteration can be rewritten as

xk+1 = (I − αA)xk + αb. (4.32)

Thus, the iteration matrix isGα = I −αA and the convergence factor isρ(I −αA).
Assume that the eigenvaluesλi, i = 1, . . . , n, are all real and such that,

λmin ≤ λi ≤ λmax.
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Then, the eigenvaluesµi of Gα are such that

1− αλmax ≤ µi ≤ 1− αλmin.

In particular, ifλmin < 0 andλmax > 0, at least one eigenvalue is> 1, and so
ρ(Gα) > 1 for anyα. In this case the method will always diverge for some initial
guess. Let us assume that all eigenvalues are positive, i.e., λmin > 0. Then, the
following conditions must be satisfied in order for the method to converge:

1− αλmin < 1,

1− αλmax > −1.

The first condition implies thatα > 0, while the second requires thatα ≤ 2/λmax.
In other words, the method converges for any scalarα which satisfies

0 < α <
2

λmax
.

The next question is: What is the best valueαopt for the parameterα, i.e., the value
of α which minimizesρ(Gα)? The spectral radius ofGα is

ρ(Gα) = max{|1− αλmin|, |1− αλmax|}.

This function ofα is depicted in Figure 4.4. As the curve shows, the best possible α
is reached at the point where the curve|1 − λmaxα| with positive slope crosses the
curve|1− λminα| with negative slope, i.e., when

−1 + λmaxα = 1− λminα.

1
λmin

1
λmax

αopt

|1− λminα|
|1− λmaxα|

α

1

Figure 4.4: The curveρ(Gα) as a function ofα.

This gives

αopt =
2

λmin + λmax
. (4.33)
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Replacing this in one of the two curves gives the corresponding optimal spectral
radius

ρopt =
λmax − λmin

λmax + λmin
.

This expression shows the difficulty with the presence of small and large eigenvalues.
The convergence rate can be extremely small for realistic problems. In addition, to
achieve good convergence, eigenvalue estimates are required in order to obtain the
optimal or a near-optimalα, and this may cause difficulties. Finally, sinceλmax can
be very large, the curveρ(Gα) can be extremely sensitive near the optimal value
of α. These observations are common to many iterative methods that depend on an
acceleration parameter.

4.2.2 Regular Splittings

Definition 4.3 LetA,M,N be three given matrices satisfyingA = M − N . The
pair of matricesM,N is a regular splitting ofA, if M is nonsingular andM−1 and
N are nonnegative.

With a regular splitting, we associate the iteration

xk+1 = M−1Nxk +M−1b. (4.34)

The question asked is: Under which conditions does such an iteration converge? The
following result, which generalizes Theorem 1.29, gives the answer.

Theorem 4.4 LetM,N be a regular splitting of a matrixA. Thenρ(M−1N) < 1 if
and only ifA is nonsingular andA−1 is nonnegative.

Proof. DefineG = M−1N . From the fact thatρ(G) < 1, and the relation

A = M(I −G) (4.35)

it follows thatA is nonsingular. The assumptions of Theorem 1.29 are satisfied for
the matrixG sinceG = M−1N is nonnegative andρ(G) < 1. Therefore,(I−G)−1

is nonnegative as isA−1 = (I −G)−1M−1.
To prove the sufficient condition, assume thatA is nonsingular and that its inverse

is nonnegative. SinceA andM are nonsingular, the relation (4.35) shows again that
I −G is nonsingular and in addition,

A−1N =
(
M(I −M−1N)

)−1
N

= (I −M−1N)−1M−1N

= (I −G)−1G. (4.36)

Clearly, G = M−1N is nonnegative by the assumptions, and as a result of the
Perron-Frobenius theorem, there is a nonnegative eigenvector x associated withρ(G)
which is an eigenvalue, such that

Gx = ρ(G)x.
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From this and by virtue of (4.36), it follows that

A−1Nx =
ρ(G)

1− ρ(G)
x.

Sincex andA−1N are nonnegative, this shows that

ρ(G)

1− ρ(G)
≥ 0

and this can be true only when0 ≤ ρ(G) ≤ 1. SinceI − G is nonsingular, then
ρ(G) 6= 1, which implies thatρ(G) < 1.

This theorem establishes that the iteration (4.34) always converges, ifM,N is a
regular splitting andA is an M-matrix.

4.2.3 Diagonally Dominant Matrices

We begin with a few standard definitions.

Definition 4.5 A matrixA is

• (weakly) diagonally dominant if

|ajj| ≥
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

• strictly diagonally dominant if

|ajj| >
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

• irreducibly diagonally dominant ifA is irreducible, and

|ajj| ≥
i=n∑

i=1
i6=j

|aij |, j = 1, . . . , n.

with strict inequality for at least onej.

Often the term diagonally dominant is used instead ofweaklydiagonally dominant.
Diagonal dominance is related to an important result in Numerical Linear Alge-

bra known as Gershgorin’s theorem. This theorem allows rough locations for all the
eigenvalues ofA to be determined. In some situations, it is desirable to determine
these locations in the complex plane by directly exploitingsome knowledge of the
entries of the matrixA. The simplest such result is the bound

|λi| ≤ ‖A‖
for any matrix norm. Gershgorin’s theorem provides a more precise localization
result.
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Theorem 4.6 (Gershgorin) Any eigenvalueλ of a matrixA is located in one of the
closed discs of the complex plane centered ataii and having the radius

ρi =

j=n
∑

j=1
j 6=i

|aij |.

In other words,

∀ λ ∈ σ(A), ∃ i such that |λ− aii| ≤
j=n
∑

j=1
j 6=i

|aij |. (4.37)

Proof. Let x be an eigenvector associated with an eigenvalueλ, and letm be the
index of the component of largest modulus inx. Scalex so that|ξm| = 1, and
|ξi| ≤ 1, for i 6= m. Sincex is an eigenvector, then

(λ− amm)ξm = −
n∑

j=1
j 6=m

amjξj,

which gives

|λ− amm| ≤
n∑

j=1
j 6=m

|amj ||ξj | ≤
n∑

j=1
j 6=m

|amj | = ρm. (4.38)

This completes the proof.

Since the result also holds for the transpose ofA, a version of the theorem can also
be formulated based on column sums instead of row sums.

The n discs defined in the theorem are called Gershgorin discs. Thetheorem
states that the union of thesen discs contains the spectrum ofA. It can also be
shown that if there arem Gershgorin discs whose unionS is disjoint from all other
discs, thenS contains exactlym eigenvalues (counted with their multiplicities). For
example, when one disc is disjoint from the others, then it must contain exactly one
eigenvalue.

An additional refinement which has important consequences concerns the partic-
ular case whenA is irreducible.

Theorem 4.7 LetA be an irreducible matrix, and assume that an eigenvalueλ of
A lies on the boundary of the union of then Gershgorin discs. Thenλ lies on the
boundary of all Gershgorin discs.

Proof. As in the proof of Gershgorin’s theorem, letx be an eigenvector associated
with λ, with |ξm| = 1, and|ξi| ≤ 1, for i 6= m. Start from equation (4.38) in the
proof of Gershgorin’s theorem which states that the pointλ belongs to them-th disc.
In addition,λ belongs to the boundary of the union of all the discs. As a result, it
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cannot be an interior point to the discD(λ, ρm). This implies that|λ− amm| = ρm.
Therefore, the inequalities in (4.38) both become equalities:

|λ− amm| =
n∑

j=1
j 6=m

|amj ||ξj | =
n∑

j=1
j 6=m

|amj | = ρm. (4.39)

Let j be any integer1 ≤ j ≤ n. SinceA is irreducible, its graph is connected and,
therefore, there exists a path from nodem to nodej in the adjacency graph. Let this
path be

m,m1,m2, . . . ,mk = j.

By definition of an edge in the adjacency graph,am,m1 6= 0. Because of the equality
in (4.39), it is necessary that|ξj| = 1 for any nonzeroξj. Therefore,|ξm1 | must be
equal to one. Now repeating the argument withm replaced bym1 shows that the
following equality holds:

|λ− am1,m1| =
n∑

j=1
j 6=m1

|am1,j||ξj | =
n∑

j=1
j 6=m1

|am1,j| = ρm1 . (4.40)

The argument can be continued showing each time that

|λ− ami,mi
| = ρmi

, (4.41)

and this is valid fori = 1, . . . , k. In the end, it will be proved thatλ belongs to the
boundary of thej-th disc for an arbitraryj.

An immediate corollary of the Gershgorin theorem and the above theorem fol-
lows.

Corollary 4.8 If a matrixA is strictly diagonally dominant or irreducibly diagonally
dominant, then it is nonsingular.

Proof. If a matrix is strictly diagonally dominant, then the union of the Gershgorin
disks excludes the origin, soλ = 0 cannot be an eigenvalue. Assume now that it is
only irreducibly diagonal dominant. Then if it is singular,the zero eigenvalue lies on
the boundary of the union of the Gershgorin disks. In this situation, according to the
previous theorem, this eigenvalue should lie on the boundary of all the disks. This
would mean that

|ajj | =
n∑

i=1
i6=j

|aij| for j = 1, . . . , n,

which contradicts the assumption of irreducible diagonal dominance.

The following theorem can now be stated.

Theorem 4.9 If A is a strictly diagonally dominant or an irreducibly diagonally
dominant matrix, then the associated Jacobi and Gauss-Seidel iterations converge
for anyx0.
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Proof. We first prove the results for strictly diagonally dominant matrices. Letλ be
the dominant eigenvalue of the iteration matrixMJ = D−1(E + F ) for Jacobi and
MG = (D − E)−1F for Gauss-Seidel. As in the proof of Gershgorin’s theorem, let
x be an eigenvector associated withλ, with |ξm| = 1, and|ξi| ≤ 1, for i 6= 1. Start
from equation (4.38) in the proof of Gershgorin’s theorem which states that forMJ ,

|λ| ≤
n∑

j=1
j 6=m

|amj |
|amm|

|ξj | ≤
n∑

j=1
j 6=m

|amj |
|amm|

< 1.

This proves the result for Jacobi’s method.
For the Gauss-Seidel iteration, write them-th row of the equationFx = λ(D −

E)x in the form

∑

j<m

amjξj = λ



ammξm +
∑

j>m

amjξj



 ,

which yields the inequality

|λ| ≤
∑

j<m |amj ||ξj |
|amm| −

∑

j>m |amj ||ξj|
≤

∑

j<m |amj |
|amm| −

∑

j>m |amj |
.

The last term in the above equation has the formσ2/(d − σ1) with d, σ1, σ2 all
nonnegative andd− σ1 − σ2 > 0. Therefore,

|λ| ≤ σ2

σ2 + (d− σ2 − σ1)
< 1.

In the case when the matrix is only irreducibly diagonally dominant, the above
proofs only show thatρ(M−1N) ≤ 1, whereM−1N is the iteration matrix for either
Jacobi or Gauss-Seidel. A proof by contradiction will be used to show that in fact
ρ(M−1N) < 1. Assume thatλ is an eigenvalue ofM−1N with |λ| = 1. Then the
matrixM−1N −λI would be singular and, as a result,A′ = N −λM would also be
singular. Since|λ| = 1, it is clear thatA′ is also an irreducibly diagonally dominant
matrix. This would contradict Corollary 4.8.

4.2.4 Symmetric Positive Definite Matrices

It is possible to show that whenA is Symmetric Positive Definite, then SOR will
converge for anyω in the open interval(0, 2) and for any initial guessx0. In fact, the
reverse is also true under certain assumptions.

Theorem 4.10 If A is symmetric with positive diagonal elements and for0<ω < 2,
SOR converges for anyx0 if and only ifA is positive definite.
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4.2.5 Property A and Consistent Orderings

A number of properties which are related to the graph of a finite difference matrix are
now defined. The first of these properties is called Property A. A matrix has Property
A if its graph isbipartite. This means that the graph is two-colorable in the sense
defined in Chapter 3: Its vertices can be partitioned in two sets in such a way that
no two vertices in the same set are connected by an edge. Note that, as usual, the
self-connecting edges which correspond to the diagonal elements are ignored.

Definition 4.11 A matrix has Property A if the vertices of its adjacency graphcan
be partitioned in two setsS1 andS2, so that any edge in the graph links a vertex of
S1 to a vertex ofS2.

In other words, nodes from the first set are connected only to nodes from the second
set and vice versa. This definition is illustrated in Figure 4.5.

S2S1

Figure 4.5: Graph illustration of Property A.

An alternative definition is that a matrix has Property A if itcan be permuted into
a matrix with the following structure:

A′ =

(
D1 −F
−E D2

)

, (4.42)

whereD1 andD2 are diagonal matrices. This structure can be obtained by first
labeling all the unknowns inS1 from 1 to n1, in which n1 = |S1| and the rest
from n1 + 1 to n. Note that the Jacobi iteration matrix will have the same structure
except that theD1,D2 blocks will be replaced by zero blocks. These Jacobi iteration
matrices satisfy an important property stated in the following proposition.

Proposition 4.12 LetB be a matrix with the following structure:

B =

(
O B12

B21 O

)

, (4.43)

and letL andU be the lower and upper triangular parts ofB, respectively. Then
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1. If µ is an eigenvalue ofB, then so is−µ.

2. The eigenvalues of the matrix

B(α) = αL+
1

α
U

defined forα 6= 0 are independent ofα.

Proof. The first property is shown by simply observing that if
(x

v

)
is an eigenvector

associated withµ, then
(

x
−v

)

is an eigenvector ofB associated with the eigenvalue
−µ.

Consider the second property. For anyα, the matrixB(α) is similar toB, i.e.,
B(α) = XBX−1 with X defined by

X =

(
1 O
O α

)

.

This proves the desired result

A definition which generalizes this important property isconsistently ordered matri-
ces. Varga [293] calls a consistently ordered matrix one for which the eigenvalues
of B(α) are independent ofα. Another definition given by Young [322] considers
a specific class of matrices which generalize this property.We will use this defini-
tion here. Unlike Property A, the consistent ordering property depends on the initial
ordering of the unknowns.

Definition 4.13 A matrix is said to be consistently ordered if the vertices ofits adja-
cency graph can be partitioned inp setsS1, S2, . . ., Sp with the property that any
two adjacent verticesi and j in the graph belong to two consecutive partitionsSk

andSk′ , with k′ = k − 1, if j < i, andk′ = k + 1, if j > i.

It is easy to show that consistently ordered matrices satisfy property A: the first color
is made up of all the partitionsSi with odd i and the second with the partitionsSi

with eveni.

Example 4.2. Block tridiagonal matrices of the form

T =










D1 T12

T21 D2 T23

T32 D3
. . .

. . . . . . Tp−1,p

Tp,p−1 Dp










whose diagonal blocksDi are diagonal matrices are calledT -matrices. Clearly, such
matrices are consistently ordered. Note that matrices of the form (4.42) are a partic-
ular case withp = 2.



4.2. CONVERGENCE 125

Consider now a general, consistently ordered matrix. By definition, there is per-
mutationπ of {1, 2, . . . , n} which is the union ofp disjoint subsets

π = π1

⋃

π2 . . .
⋃

πp (4.44)

with the property that ifaij 6= 0, j 6= i andi belongs toπk, thenj belongs toπk±1

depending on whetheri < j or i > j. This permutationπ can be used to permute
A symmetrically. IfP is the permutation matrix associated with the permutationπ,
then clearly

A′ = P TAP

is aT -matrix.
Not every matrix that can be symmetrically permuted into aT -matrix is con-

sistently ordered. The important property here is that the partition {πi} preserves
the order of the indicesi, j of nonzero elements. In terms of the adjacency graph,
there is a partition of the graph with the property that an oriented edgei, j from
i to j always points to a set with a larger index ifj > i, or a smaller index oth-
erwise. In particular, a very important consequence is thatedges corresponding to
the lower triangular part will remain so in the permuted matrix. The same is true
for the upper triangular part. Indeed, if a nonzero element in the permuted matrix
is a′i′,j′ = aπ−1(i),π−1(j) 6= 0 with i′ > j′, then by definition of the permutation
π(i′) > π(j′), or i = π(π−1(i)) > j = π(π−1(j)). Because of the order preserva-
tion, it is necessary thati > j. A similar observation holds for the upper triangular
part. Therefore, this results in the following proposition.

Proposition 4.14 If a matrixA is consistently ordered, then there exists a permuta-
tion matrixP such thatP TAP is aT -matrix and

(P TAP )L = P TALP, (P TAP )U = P TAUP (4.45)

in whichXL represents the (strict) lower part ofX andXU the (strict) upper part of
X.

With the above property it can be shown that for consistentlyordered matrices
the eigenvalues ofB(α) as defined in Proposition 4.12 are also invariant with respect
to α.

Proposition 4.15 LetB be the Jacobi iteration matrix associated with a consistently
ordered matrixA, and letL andU be the lower and upper triangular parts ofB,
respectively. Then the eigenvalues of the matrix

B(α) = αL+
1

α
U

defined forα 6= 0 do not depend onα.
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Proof. First transformB(α) into aT -matrix using the permutationπ in (4.44) pro-
vided by the previous proposition

P TB(α)P = αP TLP +
1

α
P TUP.

From the previous proposition, the lower part ofP TBP is preciselyL′ = P TLP .
Similarly, the upper part isU ′ = P TUP , the lower and upper parts of the associated
T -matrix. Therefore, we only need to show that the property istrue for aT -matrix.

In this case, for anyα, the matrixB(α) is similar toB. This means thatB(α) =
XBX−1 with X being equal to

X =









1
αI

α2I
.. .

αp−1I









,

where the partitioning is associated with the subsetsπ1, . . . , πp respectively.

Note thatT -matrices and matrices with the structure (4.42) are two particular
cases of matrices which fulfill the assumptions of the above proposition. There are a
number of well known properties related to Property A and consistent orderings. For
example, it is possible to show that,

• Property A is invariant under symmetric permutations.

• A matrix has Property A if and only if there is a permutation matrix P such
thatA′ = P−1AP is consistently ordered.

Consistently ordered matrices satisfy an important property which relates the
eigenvalues of the corresponding SOR iteration matrices tothose of the Jacobi iter-
ation matrices. The main theorem regarding the theory for SOR is a consequence of
the following result proved by Young [322]. Remember that

MSOR = (D − ωE)−1 (ωF + (1− ω)D)

= (I − ωD−1E)−1
(
ωD−1F + (1− ω)I

)
.

Theorem 4.16 Let A be a consistently ordered matrix such thataii 6= 0 for i =
1, . . . , n, and letω 6= 0. Then ifλ is a nonzero eigenvalue of the SOR iteration
matrixMSOR, any scalarµ such that

(λ+ ω − 1)2 = λω2µ2 (4.46)

is an eigenvalue of the Jacobi iteration matrixB. Conversely, ifµ is an eigenvalue
of the Jacobi matrixB and if a scalarλ satisfies (4.46), thenλ is an eigenvalue of
MSOR.
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Proof. DenoteD−1E byL andD−1F byU , so that

MSOR = (I − ωL)−1 (ωU + (1− ω)I)

and the Jacobi iteration matrix is merelyL + U . Writing thatλ is an eigenvalue
yields

det
(
λI − (I − ωL)−1(ωU + (1− ω)I)

)
= 0

which is equivalent to

det (λ(I − ωL)− (ωU + (1− ω)I)) = 0

or
det ((λ+ ω − 1)I − ω(λL+ U)) = 0.

Sinceω 6= 0, this can be rewritten as

det

(
λ+ ω − 1

ω
I − (λL+ U)

)

= 0,

which means that(λ+ω−1)/ω is an eigenvalue ofλL+U . SinceA is consistently
ordered, the eigenvalues ofλL + U which are equal toλ1/2(λ1/2L + λ−1/2U) are
the same as those ofλ1/2(L + U), whereL + U is the Jacobi iteration matrix. The
proof follows immediately.

This theorem allows us to compute an optimal value forω, which can be shown
to be equal to

ωopt =
2

1 +
√

1− ρ(B)2
. (4.47)

A typical SOR procedure starts with someω, for example,ω = 1, then proceeds with
a number of SOR steps with thisω. The convergence rate for the resulting iterates is
estimated providing an estimate forρ(B) using Theorem 4.16. A betterω is then ob-
tained from the formula (4.47), and the iteration restarted. Further refinements of the
optimalω are calculated and retrofitted in this manner as the algorithm progresses.

4.3 Alternating Direction Methods

The Alternating Direction Implicit (ADI) method was introduced in the mid-1950s
by Peaceman and Rachford [226] specifically for solving equations arising from fi-
nite difference discretizations of elliptic and parabolicPartial Differential Equations.
Consider a partial differential equation of elliptic type

∂

∂x

(

a(x, y)
∂u(x, y)

∂x

)

+
∂

∂y

(

b(x, y)
∂u(x, y)

∂y

)

= f(x, y) (4.48)

on a rectangular domain with Dirichlet boundary conditions. The equations are dis-
cretized with centered finite differences usingn + 2 points in thex direction and
m+ 2 points in they direction, This results in the system of equations

Hu + V u = b, (4.49)
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in which the matricesH andV represent the three-point central difference approxi-
mations to the operators

∂

∂x

(

a(x, y)
∂

∂x

)

and
∂

∂y

(

b(x, y)
∂

∂y

)

,

respectively. In what follows, the same notation is used to represent the discretized
version of the unknown functionu.

The ADI algorithm consists of iterating by solving (4.49) inthex andy direc-
tions alternatively as follows.

ALGORITHM 4.3 Peaceman-Rachford (PR) ADI

1. Fork = 0., 1, . . . , until convergence Do:
2. Solve:(H + ρkI)uk+ 1

2
= (ρkI − V )uk + b

3. Solve:(V + ρkI)uk+1 = (ρkI −H)uk+ 1
2

+ b

4. EndDo

Here,ρk, k = 1, 2, . . ., is a sequence of positive acceleration parameters.
The specific case whereρk is chosen to be a constantρ deserves particular atten-

tion. In this case, we can formulate the above iteration in the usual form of (4.28)
with

G = (V + ρI)−1(H − ρI)(H + ρI)−1(V − ρI), (4.50)

f = (V + ρI)−1
[
I − (H − ρI)(H + ρI)−1

]
b (4.51)

or, whenρ > 0, in the form (4.22) with

M =
1

2ρ
(H + ρI)(V + ρI), N =

1

2ρ
(H − ρI)(V − ρI). (4.52)

Note that (4.51) can be rewritten in a simpler form; see Exercise 4.
The ADI algorithm is often formulated for solving the time-dependent Partial

Differential Equation

∂u

∂t
=

∂

∂x

(

a(x, y)
∂u

∂x

)

+
∂

∂y

(

b(x, y)
∂u

∂y

)

(4.53)

on the domain(x, y, t) ∈ Ω × [0, T ] ≡ (0, 1) × (0, 1) × [0, T ]. The initial and
boundary conditions are:

u(x, y, 0) = x0(x, y), ∀(x, y) ∈ Ω, (4.54)

u(x̄, ȳ, t) = g(x̄, ȳ, t), ∀(x̄, ȳ) ∈ ∂Ω, t > 0, (4.55)

where∂Ω is the boundary of the unit squareΩ. The equations are discretized with
respect to the space variablesx andy as before, resulting in a system of Ordinary
Differential Equations:

du

dt
= Hu+ V u, (4.56)
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in which the matricesH andV have been defined earlier. The Alternating Direction
Implicit algorithm advances the relation (4.56) forward intime alternately in thex
andy directions as follows:

(I − 1

2
∆t H)uk+ 1

2
= (I +

1

2
∆t V )uk ,

(I − 1

2
∆t V )uk+1 = (I +

1

2
∆t H)uk+ 1

2
.

The acceleration parametersρk of Algorithm 4.3 are replaced by a natural time-step.

Horizontal ordering
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7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

Vertical ordering
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14

15

16

17

18

19

20

21

22

23

24

Figure 4.6: The horizontal and vertical orderings for the unknowns in ADI.

Assuming that the mesh-points are ordered by lines in thex-direction, then the
first step of Algorithm 4.3 constitutes a set ofm independent tridiagonal linear sys-
tems of sizen each. However, the second step constitutes a large tridiagonal system
whose three diagonals are offset by−m, 0, andm, respectively. This second system
can also be rewritten as a set ofn independent tridiagonal systems of sizem each by
reordering the grid points by lines, this time in they direction. The natural (horizon-
tal) and vertical orderings are illustrated in Figure 4.6. Whenever moving from one
half step of ADI to the next, we must implicitly work with the transpose of the matrix
representing the solution on then × m grid points. This data operation may be an
expensive task on parallel machines and often it is cited as one of the drawbacks of
Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 1960s for the particular
case of positive definite systems. For such systems,H andV have real eigenvalues
and the following is a summary of the main results in this situation. First, whenH
andV are Symmetric Positive Definite, then the stationary iteration (ρk = ρ > 0, for
all k) converges. For the model problem, the asymptotic rate of convergence of the
stationary ADI iteration using the optimalρ is the same as that of SSOR using the
optimalω. However, each ADI step is more expensive than one SSOR step.One of
the more important results in the ADI theory is that the rate of convergence of ADI
can be increased appreciably by using a cyclic sequence of parameters,ρk. A theory
for selecting the best sequence ofρk ’s is well understood in the case whenH and
V commute [38]. For the model problem, the parameters can be selected so that the
time complexity is reduced toO(n2 log n), for details see [226].
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PROBLEMS

P-4.1 Consider ann× n tridiagonal matrix of the form

Tα =










α −1
−1 α −1

−1 α −1
−1 α −1

−1 α −1
−1 α










, (4.57)

whereα is a real parameter.

a. Verify that the eigenvalues ofTα are given by

λj = α− 2 cos (jθ) j = 1, . . . , n,

where
θ =

π

n+ 1

and that an eigenvector associated with eachλj is

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]
T
.

Under what condition onα does this matrix become positive definite?

b. Now takeα = 2. How does this matrix relate to the matrices seen in Chapter 2for
one-dimensional problems?

(i) Will the Jacobi iteration converge for this matrix? If so, what will its conver-
gence factor be?

(ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its
convergence factor be?

(iii) For which values ofω will the SOR iteration converge?

P-4.3 Prove that the iteration matrixGω of SSOR, as defined by (4.13), can be expressed as

Gω = I − ω(2− ω)(D − ωF )−1D(D − ωE)−1A.

Deduce the expression (4.27) for the preconditioning matrix associated with the SSOR itera-
tion.

P-4.4 LetA be a matrix with a positive diagonalD.

a. Obtain an expression equivalent to that of (4.13) forGω but which involves the matrices
SE ≡ D−1/2ED−1/2 andSF ≡ D−1/2FD−1/2.

b. Show that

D1/2GωD
−1/2 = (I − ωSF )−1(I − ωSE)−1(ωSE + (1− ω)I)(ωSF + (1− ω)I)

c. Now assume that in addition to having a positive diagonal,A is symmetric. Prove that
the eigenvalues of the SSOR iteration matrixGω are real and nonnegative.
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P-4.4 Let

A =










D1 −F2

−E2 D2 −F3

−E3 D3
. . .

. . .
. . . −Fm

−Em Dm










,

where theDi blocks are nonsingular matrices which are not necessarily diagonal.

a. What are theblock Jacobiandblock Gauss-Seideliteration matrices?

b. Show a result similar to that in Proposition 4.15 for the Jacobi iteration matrix.

c. Show also that forω = 1 (1) the block Gauss-Seidel and block Jacobi iterations either
both converge or both diverge, and (2) when they both converge, then the block Gauss-
Seidel iteration is (asymptotically) twice as fast as the block Jacobi iteration.

P-4.4 According to formula (4.23), thef vector in iteration (4.22) should be equal toM−1b,
whereb is the right-hand side andM is given in (4.52). Yet, formula (4.51) gives a different
expression forf . Reconcile the two results, i.e., show that the expression (4.51) can also be
rewritten as

f = 2ρ(V + ρI)−1(H + ρI)−1b.

P-4.5 Show that a matrix has Property A if and only if there is a permutation matrixP such
thatA′ = P−1AP is consistently ordered.

P-4.6 Consider a matrixA which is consistently ordered. Show that the asymptotic conver-
gence rate for Gauss-Seidel is double that of the Jacobi iteration.

P-4.7 A matrix of the form

B =





0 E 0
0 0 F
H 0 0





is called a three-cyclic matrix.

a. What are the eigenvalues ofB? (Express them in terms of eigenvalues of a certain
matrix which depends onE, F , andH .)

b. Assume that a matrixA has the formA = D +B, whereD is a nonsingular diagonal
matrix, andB is three-cyclic. How can the eigenvalues of the Jacobi iteration matrix
be related to those of the Gauss-Seidel iteration matrix? How does the asymptotic
convergence rate of the Gauss-Seidel iteration compare with that of the Jacobi iteration
matrix in this case?

c. Answer the same questions as in (b) for the case when SOR replaces the Gauss-Seidel
iteration.

d. Generalize the above results top-cyclic matrices, i.e., matrices of the form

B =









0 E1

0 E2

0
. . .
0 Ep−1

Ep 0









.
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NOTES AND REFERENCES. Two good references for the material covered in this chapter are Varga
[293] and and Young [322]. Although relaxation-type methods were very popular up to the 1960s,
they are now mostly used as preconditioners, a topic which will be seen in detail in Chapters 9 and
10. One of the main difficulties with these methods is finding an optimal relaxation factor for general
matrices. Theorem 4.7 is due to Ostrowski. For details on theuse of Gershgorin’s theorem in eigenvalue
problems, see [246]. The original idea of the ADI method is described in [226] and those results on the
optimal parameters for ADI can be found in [38]. A comprehensive text on this class of techniques can
be found in [300].



Chapter 5

PROJECTION METHODS

Most of the existing practical iterative techniques for solving large linear systems of equations

utilize a projection process in one way or another. A projection process represents a canonical

way for extracting an approximation to the solution of a linear system from a subspace. This

chapter describes these techniques in a very general framework and presents some theory. The

one-dimensional case is covered in detail at the end of the chapter, as it provides a good preview

of the more complex projection processes to be seen in later chapters.

5.1 Basic Definitions and Algorithms

Consider the linear system
Ax = b, (5.1)

whereA is ann× n real matrix. In this chapter, the same symbolA is often used to
denote the matrix and the linear mapping inR

n that it represents. The idea ofpro-
jection techniquesis to extract an approximate solution to the above problem from a
subspace ofRn. If K is this subspace ofcandidate approximants, orsearch subspace,
and ifm is its dimension, then, in general,m constraints must be imposed to be able
to extract such an approximation. A typical way of describing these constraints is
to imposem (independent) orthogonality conditions. Specifically, the residual vec-
tor b − Ax is constrained to be orthogonal tom linearly independent vectors. This
defines another subspaceL of dimensionm which will be called thesubspace of
constraintsor left subspacefor reasons that will be explained below. This simple
framework is common to many different mathematical methodsand is known as the
Petrov-Galerkin conditions.

There are two broad classes of projection methods:orthogonalandoblique. In
an orthogonal projection technique, the subspaceL is the same asK. In an oblique
projection method,L is different fromK and may be totally unrelated to it. This
distinction is rather important and gives rise to differenttypes of algorithms.

133
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5.1.1 General Projection Methods

LetA be ann× n real matrix andK andL be twom-dimensional subspaces ofRn.
A projection technique onto the subspaceK and orthogonal toL is a process which
finds an approximate solutioñx to (5.1) by imposing the conditions thatx̃ belong to
K and that the new residual vector be orthogonal toL,

Find x̃ ∈ K, such that b−Ax̃ ⊥ L. (5.2)

If we wish to exploit the knowledge of an initial guessx0 to the solution, then the
approximation must be sought in the affine spacex0 +K instead of the homogeneous
vector spaceK. This requires a slight modification to the above formulation. The
approximate problem should be redefined as

Find x̃ ∈ x0 +K, such that b−Ax̃ ⊥ L. (5.3)

Note that ifx̃ is written in the formx̃ = x0 + δ, and the initial residual vectorr0 is
defined as

r0 = b−Ax0, (5.4)

then the above equation becomesb−A(x0 + δ) ⊥ L or

r0 −Aδ ⊥ L.

In other words, the approximate solution can be defined as

x̃ = x0 + δ, δ ∈ K, (5.5)

(r0 −Aδ,w) = 0, ∀w ∈ L. (5.6)

The orthogonality condition (5.6) imposed on the new residual rnew = r0 − Aδ is
illustrated in Figure 5.1.

L

�
r0-Aδ

6
rnew

O

Figure 5.1: Interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard tech-
niques use a succession of such projections. Typically, a new projection step uses a
new pair of subspaceK andL and an initial guessx0 equal to the most recent ap-
proximation obtained from the previous projection step. Projection methods form a
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unifying framework for many of the well known methods in scientific computing. In
fact, virtually all of the basic iterative techniques seen in the previous chapter can be
considered projection techniques. Whenever an approximation is defined viam de-
grees of freedom (subspaceK) andm constraints (SubspaceL), a projection process
results.

Example 5.1. In the simplest case, an elementary Gauss-Seidel step as defined by
(4.6) is nothing but a projection step withK = L = span{ei}. These projection
steps are cycled fori = 1, . . . , n until convergence. See Exercise 1 for an alternative
way of selecting the sequence ofei’s.

Orthogonal projection methods correspond to the particular case when the two
subspacesL andK are identical. The distinction is particularly important in the
Hermitian case since we are guaranteed that the projected problem will be Hermitian
in this situation, as will be seen shortly. In addition, a number of helpful theoretical
results are true for the orthogonal case. WhenL = K, the Petrov-Galerkin conditions
are often called the Galerkin conditions.

5.1.2 Matrix Representation

Let V = [v1, . . . , vm], ann × m matrix whose column-vectors form a basis ofK
and, similarly,W = [w1, . . . , wm], ann ×m matrix whose column-vectors form a
basis ofL. If the approximate solution is written as

x̃ = x0 + V y,

then the orthogonality condition leads immediately to the following system of equa-
tions for the vectory:

W TAV y = W T r0.

If the assumption is made that them×mmatrixW TAV is nonsingular, the following
expression for the approximate solutionx̃ results,

x̃ = x0 + V (W TAV )−1W T r0. (5.7)

In many algorithms, the matrixW TAV does not have to be formed since it is avail-
able as a by-product of the algorithm. A prototype projection technique is repre-
sented by the following algorithm.

ALGORITHM 5.1 Prototype Projection Method

1. Until convergence, Do:
2. Select a pair of subspacesK andL
3. Choose basesV = [v1, . . . , vm] andW = [w1, . . . , wm] for K andL
4. r := b−Ax
5. y := (W TAV )−1W T r
6. x := x+ V y
7. EndDo
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The approximate solution is defined only when the matrixW TAV is nonsingu-
lar, a property that is not guaranteed to be true even whenA is nonsingular.

Example 5.2. As an example, consider the matrix

A =

(
O I
I I

)

,

whereI is them×m identity matrix andO is them×m zero matrix, and letV =
W = [e1, e2, . . . , em]. AlthoughA is nonsingular, the matrixW TAV is precisely
theO block in the upper-left corner ofA and is therefore singular.

It can be easily verified thatW TAV is nonsingular if and only if no vector of
the subspaceAK is orthogonal to the subspaceL. We have encountered a similar
condition when defining projector operators in Chapter 1. There are two important
particular cases where the nonsingularity ofW TAV is guaranteed. These are dis-
cussed in the following proposition.

Proposition 5.1 LetA, L, andK satisfy either one of the two following conditions,

i. A is positive definite andL = K, or

ii. A is nonsingular andL = AK.

Then the matrixB = W TAV is nonsingular for any basesV andW of K andL,
respectively.

Proof. Consider first the case (i). LetV be any basis ofK andW be any basis ofL.
In fact, sinceL andK are the same,W can always be expressed asW = V G, where
G is a nonsingularm×m matrix. Then

B = W TAV = GTV TAV.

SinceA is positive definite, so isV TAV , see Chapter 1, and this shows thatB is
nonsingular.

Consider now case (ii). LetV be any basis ofK andW be any basis ofL. Since
L = AK, W can be expressed in this case asW = AV G, whereG is a nonsingular
m×m matrix. Then

B = W TAV = GT (AV )TAV. (5.8)

SinceA is nonsingular, then×mmatrixAV is of full rank and as a result,(AV )TAV
is nonsingular. This, along with (5.8), shows thatB is nonsingular.

Now consider the particular case whereA is symmetric (real) and an orthogonal
projection technique is used. In this situation, the same basis can be used forL and
K, which are identical subspaces, and the projected matrix, which isB = V TAV , is
symmetric. In addition, if the matrixA is Symmetric Positive Definite, then so isB.
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5.2 General Theory

This section gives some general theoretical results without being specific about the
subspacesK andL which are used. The goal is to learn about the quality of the
approximation obtained from a general projection process.Two main tools are used
for this. The first is to exploit optimality properties of projection methods. These
properties are induced from those properties of projectorsseen in Section 1.12.4 of
Chapter 1. The second tool consists of interpreting the projected problem with the
help of projection operators in an attempt to extract residual bounds.

5.2.1 Two Optimality Results

In this section, two important optimality results will be established that are satisfied
by the approximate solutions in some cases. Consider first the case whenA is SPD.

Proposition 5.2 Assume thatA is Symmetric Positive Definite andL = K. Then a
vectorx̃ is the result of an (orthogonal) projection method ontoK with the starting
vectorx0 if and only if it minimizes theA-norm of the error overx0 +K, i.e., if and
only if

E(x̃) = min
x∈x0+K

E(x),

where
E(x) ≡ (A(x∗ − x), x∗ − x)1/2.

Proof. As was seen in Section 1.12.4, forx̃ to be the minimizer ofE(x), it is neces-
sary and sufficient thatx∗ − x̃ beA-orthogonal to all the subspaceK. This yields

(A(x∗ − x̃), v) = 0, ∀v ∈ K,

or, equivalently,
(b−Ax̃, v) = 0, ∀v ∈ K,

which is the Galerkin condition defining an orthogonal projection process for the
approximatioñx.

We now take up the case whenL is defined byL = AK.

Proposition 5.3 Let A be an arbitrary square matrix and assume thatL = AK.
Then a vector̃x is the result of an (oblique) projection method ontoK orthogonally
toL with the starting vectorx0 if and only if it minimizes the2-norm of the residual
vectorb−Ax overx ∈ x0 +K, i.e., if and only if

R(x̃) = min
x∈x0+K

R(x),

whereR(x) ≡ ‖b−Ax‖2.
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Proof. As was seen in Section 1.12.4, forx̃ to be the minimizer ofR(x), it is nec-
essary and sufficient thatb − Ax̃ be orthogonal to all vectors of the formv = Ay,
wherey belongs toK, i.e.,

(b−Ax̃, v) = 0, ∀v ∈ AK,

which is precisely the Petrov-Galerkin condition that defines the approximate solu-
tion x̃.

It is worthwhile to point out thatA need not be nonsingular in the above proposition.
WhenA is singular there may be infinitely many vectorsx̃ satisfying the optimality
condition.

5.2.2 Interpretation in Terms of Projectors

We now return to the two important particular cases singled out in the previous sec-
tion, namely, the casesL = K andL = AK. In these cases, the result of the
projection process can be interpreted easily in terms of actions of orthogonal pro-
jectors on the initial residual or initial error. Consider the second case first, as it is
slightly simpler. Letr0 be the initial residualr0 = b − Ax0, and r̃ = b − Ax̃ the
residual obtained after the projection process withL = AK. Then,

r̃ = b−A(x0 + δ) = r0 −Aδ. (5.9)

In addition,δ is obtained by enforcing the condition thatr0 − Aδ be orthogonal to
AK. Therefore, the vectorAδ is the orthogonal projection of the vectorr0 onto the
subspaceAK. This is illustrated in Figure 5.2. Hence, the following proposition can
be stated.

Proposition 5.4 Let x̃ be the approximate solution obtained from a projection pro-
cess ontoK orthogonally toL = AK, and letr̃ = b−Ax̃ be the associated residual.
Then,

r̃ = (I − P )r0, (5.10)

whereP denotes the orthogonal projector onto the subspaceAK.

A result of the proposition is that the 2-norm of the residualvector obtained after
one projection step will not exceed the initial 2-norm of theresidual, i.e.,

‖r̃‖2 ≤ ‖r0‖2,

a result which has been established already. This class of methods may be termed
residual projectionmethods.

Now consider the case whereL = K andA is Symmetric Positive Definite. Let
d0 = x∗ − x0 be the initial error, wherex∗ denotes the exact solution to the system
and, similarly, letd̃ = x∗− x̃ wherex̃ = x0 + δ is the approximate solution resulting
from the projection step. Then (5.9) yields the relation

Ad̃ = r̃ = A(d0 − δ),
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r0

Aδ = Pr0

AK

O

6*
j

Figure 5.2: Interpretation of the projection process for the case whenL = AK.

whereδ is now obtained by constraining the residual vectorr0−Aδ to be orthogonal
toK:

(r0 −Aδ,w) = 0, ∀ w ∈ K.
The above condition is equivalent to

(A(d0 − δ), w) = 0, ∀ w ∈ K.

SinceA is SPD, it defines an inner product (see Section 1.11) which isusually de-
noted by(., .)A and the above condition becomes

(d0 − δ, w)A = 0, ∀ w ∈ K.

The above condition is now easy to interpret:The vectorδ is theA-orthogonal pro-
jection of the initial errord0 onto the subspaceK.

Proposition 5.5 Letx̃ be the approximate solution obtained from an orthogonal pro-
jection process ontoK and letd̃ = x∗ − x̃ be the associated error vector. Then,

d̃ = (I − PA)d0,

wherePA denotes the projector onto the subspaceK, which is orthogonal with re-
spect to theA-inner product.

A result of the proposition is that theA-norm of the error vector obtained after one
projection step does not exceed the initialA-norm of the error, i.e.,

‖d̃‖A ≤ ‖d0‖A,

which is expected because it is known that theA-norm of the error is minimized in
x0 +K. This class of methods may be termederror projection methods.
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5.2.3 General Error Bound

If no vector of the subspaceK comes close to the exact solutionx, then it is im-
possible to find a good approximatioñx to x from K. Therefore, the approximation
obtained by any projection process based onK will be poor. On the other hand, if
there is some vector inK which is a small distanceǫ away fromx, then the question
is: How good can the approximate solution be? The purpose of this section is to try
to answer this question.

K

L

?

x

P
K
x	QL

K
x

P
K
x ∈ K, x− P

K
x ⊥ K

QL
K
x ∈ K, x−QL

K
x ⊥ L

Figure 5.3: Orthogonal and oblique projectors.

LetP
K

be the orthogonal projector onto the subpaceK and letQL
K

be the (oblique)
projector ontoK and orthogonally toL. These projectors are defined by

P
K
x ∈ K, x− P

K
x ⊥ K,

QL
K
x ∈ K, x−QL

K
x ⊥ L,

and are illustrated in Figure 5.3. The symbolAm is used to denote the operator

Am = QL
K
AP

K
,

and it is assumed, without loss of generality, thatx0 = 0. Then according to the
property (1.62), the approximate problem defined in (5.5 – 5.6) can be reformulated
as follows: findx̃ ∈ K such that

QL
K
(b−Ax̃) = 0,

or, equivalently,
Amx̃ = QL

K
b, x̃ ∈ K.
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Thus, ann-dimensional linear system is approximated by anm-dimensional one.
The following proposition examines what happens in the particular case when the

subspaceK is invariant underA. This is a rare occurrence in practice, but the result
helps in understanding the breakdown behavior of the methods to be considered in
later chapters.

Proposition 5.6 Assume thatK is invariant underA, x0 = 0, andb belongs toK.
Then the approximate solution obtained from any (oblique ororthogonal) projection
method ontoK is exact.

Proof. An approximate solutioñx is defined by

QL
K
(b−Ax̃) = 0,

wherex̃ is a nonzero vector inK. The right-hand sideb is inK, so we haveQL
K
b = b.

Similarly, x̃ belongs toK which is invariant underA, and therefore,QL
K
Ax̃ = Ax̃.

Then the above equation becomes

b−Ax̃ = 0,

showing that̃x is an exact solution.

The result can be extended trivially to the case wherex0 6= 0. The required assump-
tion in this case is that the initial residualr0 = b − Ax0 belongs to the invariant
subspaceK.

An important quantity for the convergence properties of projection methods is
the distance‖(I − P

K
)x∗‖2 of the exact solutionx∗ from the subspaceK. This

quantity plays a key role in the analysis of projection methods. Note that the solution
x∗ cannot be well approximated fromK, if ‖(I −P

K
)x∗‖2 is not small because

‖x̃− x∗‖2 ≥ ‖(I − PK
)x∗‖2.

The fundamental quantity‖(I − P
K
)x∗‖2/‖x∗‖2 is thesineof the acute angle be-

tween the solutionx∗ and the subspaceK. The following theorem establishes an
upper bound for the residual norm of theexactsolution with respect to the approxi-
mate operatorAm.

Theorem 5.7 Let γ = ‖QL
K
A(I − P

K
)‖2 and assume thatb is a member ofK and

x0 = 0. Then the exact solutionx∗ of the original problem is such that

‖b−Amx∗‖2 ≤ γ‖(I − PK
)x∗‖2. (5.11)

Proof. Sinceb ∈ K, then

b−Amx∗ = QL
K
(b−AP

K
x∗)

= QL
K

(Ax∗ −APK
x∗)

= QL
K
A(x∗ −PK

x∗)

= QL
K
A(I − P

K
)x∗.
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Noting thatI − P
K

is a projector, it follows that

‖b−Amx∗‖2 = ‖QL
K
A(I − P

K
)(I − P

K
)x∗‖2

≤ ‖QL
K
A(I − P

K
)‖2‖(I − PK

)x∗‖2,

which completes the proof.

It is useful to consider a matrix interpretation of the theorem. We consider only
the particular case of orthogonal projection methods (L = K). Assume thatV is
unitary, i.e., that the basis{v1, . . . , vm} is orthonormal, and thatW = V . Observe
thatb = V V T b. Equation (5.11) can be represented in the basisV as

‖b− V (V TAV )V Tx∗‖2 ≤ γ‖(I −PK
)x∗‖2.

However,

‖b− V (V TAV )V Tx∗‖2 = ‖V (V T b− (V TAV )V Tx∗‖2
= ‖V T b− (V TAV )V Tx∗‖2.

Thus, the projection of the exact solution has a residual norm with respect to the
matrixB = V TAV , which is of the order of‖(I − P

K
)x∗‖2.

5.3 One-Dimensional Projection Processes

This section examines simple examples provided by one-dimensional projection pro-
cesses. In what follows, the vectorr denotes the residual vectorr = b − Ax for the
current approximationx. To avoid subscripts, arrow notation is used to denotevector
updates. Thus, “x ← x + αr” means “computex+ αr and overwrite the result on
the currentx.” (This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

K = span{v} and L = span{w},

wherev andw are two vectors. In this case, the new approximation takes the form
x← x+ αv and the Petrov-Galerkin conditionr −Aδ ⊥ w yields

α =
(r, w)

(Av,w)
. (5.12)

Following are three popular choices to be considered.

5.3.1 Steepest Descent

The steepest descent algorithm is defined for the case where the matrixA is Sym-
metric Positive Definite. It consists of taking at each stepv = r andw = r. This
yields the following iterative procedure:

r ← b−Ax,
α← (r, r)/(Ar, r)
x← x+ αr.
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However, the above procedure requires two matrix-by-vector products and this can be
reduced to only one by rearranging the computation slightly. The variation consists
of computingr differently as is shown next.

ALGORITHM 5.2 Steepest Descent Algorithm

1. Computer = b−Ax andp = Ar
2. Until convergence, Do:
3. α← (r, r)/(p, r)
4. x← x+ αr
5. r ← r − αp
6. computep := Ar
7. EndDo

Each step of the above iteration minimizes

f(x) = ‖x− x∗‖2A = (A(x− x∗), (x− x∗)),

over all vectors of the formx + αd, whered is the negative of the gradient direc-
tion −∇f . The negative of the gradient direction islocally the direction that yields
the fastest rate of decrease forf . Next, we prove that convergence is guaranteed
whenA is SPD. The result is a consequence of the following lemma known as the
Kantorovich inequality.

Lemma 5.8 (Kantorovich inequality) LetB be any Symmetric Positive Definite real
matrix andλmax, λmin its largest and smallest eigenvalues. Then,

(Bx, x)(B−1x, x)

(x, x)2
≤ (λmax + λmin)2

4 λmaxλmin
, ∀x 6= 0. (5.13)

Proof. Clearly, it is equivalent to show that the result is true for any unit vectorx.
SinceB is symmetric, it is unitarily similar to a diagonal matrix,B = QTDQ, and

(Bx, x)(B−1x, x) = (QTDQx, x)(QTD−1Qx, x) = (DQx,Qx)(D−1Qx,Qx).

Settingy = Qx = (y1, . . . , yn)T , andβi = y2
i , note that

λ ≡ (Dy, y) =
n∑

i=1

βiλi

is a convex combination of the eigenvaluesλi, i = 1, . . . , n. The following relation
holds,

(Bx, x)(B−1x, x) = λψ(y) with ψ(y) = (D−1y, y) =
n∑

i=1

βi
1

λi
.
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Noting that the functionf(λ) = 1/λ is convex,ψ(y) is bounded from above by the
linear curve that joins the points(λ1, 1/λ1) and(λn, 1/λn), i.e.,

ψ(y) ≤ 1

λ1
+

1

λn
− λ

λ1λn
.

Therefore,

(Bx, x)(B−1x, x) = λψ(y) ≤ λ
(

1

λ1
+

1

λn
− λ

λ1λn

)

.

The maximum of the right-hand side is reached forλ = 1
2(λ1 + λn) yielding,

λ1 λ2 λi λnλ

Figure 5.4: The point(λ, ψ(y)) is a convex combination of points located on the
curve 1/λ. It is located in the convex set limited by the curve1/λ and the line
1/λ1 + 1/λn − λ/(λ1λn).

(Bx, x)(B−1x, x) = λψ(y) ≤ (λ1 + λn)2

4λ1 λn

which gives the desired result.

This lemma helps to establish the following result regarding the convergence rate
of the method.

Theorem 5.9 LetA be a Symmetric Positive Definite matrix. Then, theA-norms of
the error vectorsdk = x∗ − xk generated by Algorithm 5.2 satisfy the relation

‖dk+1‖A ≤
λmax − λmin

λmax + λmin
‖dk‖A, (5.14)

and Algorithm 5.2 converges for any initial guessx0.
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Proof. Start by expanding the square of theA-norm ofdk+1 = dk − αkrk as

‖dk+1‖2A = (dk+1, dk − αkrk)A = (dk+1, dk)A − αk(dk+1, rk)A = (dk+1, rk)

The last equality is due to the orthogonality betweenrk andrk+1. Thus,

‖dk+1‖2A = (dk − αrk, rk)
= (A−1rk, rk)− αk(rk, rk)

= ‖dk‖2A
(

1− (rk, rk)

(rk, Ark)
× (rk, rk)

(rk, A−1rk)

)

.

The result follows by applying the Kantorovich inequality (5.13).

5.3.2 Minimal Residual (MR) Iteration

We now assume thatA is not necessarily symmetric but only positive definite, i.e.,
its symmetric partA+AT is Symmetric Positive Definite. Taking at each stepv = r
andw = Ar, gives the following procedure.

r ← b−Ax,
α← (Ar, r)/(Ar,Ar)
x← x+ αr.

This procedure can be slightly rearranged again to reduce the number of matrix-
vector products required to only one per step as was done for the steepest descent
algorithm. This results in in the following algorithm.

ALGORITHM 5.3 Minimal Residual Iteration

1. Computer = b−Ax andp = Ar
2. Until convergence, Do:
3. α← (p, r)/(p, p)
4. x← x+ αr
5. r ← r − αp
6. computep := Ar
7. EndDo

Here, each step minimizesf(x) = ‖b − Ax‖22 in the directionr. The iteration con-
verges under the condition thatA is positive definite as is stated in the next theorem.

Theorem 5.10 LetA be a real positive definite matrix, and let

µ = λmin(A+AT )/2, σ = ‖A‖2.

Then the residual vectors generated by Algorithm 5.3 satisfy the relation

‖rk+1‖2 ≤
(

1− µ2

σ2

)1/2

‖rk‖2 (5.15)

and Algorithm (5.3) converges for any initial guessx0.
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Proof. We proceed similarly to the steepest descent method, starting with the relation

‖rk+1‖22 = (rk − αkArk, rk − αkArk) (5.16)

= (rk − αkArk, rk)− αk(rk − αkArk, Ark). (5.17)

By construction, the new residual vectorrk−αkArk must be orthogonal to the search
directionArk, and, as a result, the second term in the right-hand side of the above
equation vanishes and we obtain

‖rk+1‖22 = (rk − αkArk, rk)

= (rk, rk)− αk(Ark, rk)

= ‖rk‖22
(

1− (Ark, rk)

(rk, rk)

(Ark, rk)

(Ark, Ark)

)

(5.18)

= ‖rk‖22
(

1− (Ark, rk)
2

(rk, rk)2
‖rk‖22
‖Ark‖22

)

.

From Theorem 1.34, it can be stated that

(Ax, x)

(x, x)
≥ µ > 0, (5.19)

whereµ = λmin(A + AT )/2. The desired result follows immediately by using the
inequality‖Ark‖2 ≤ ‖A‖2 ‖rk‖2.

There are alternative ways of obtaining inequalities that prove convergence. For
example, starting from (5.18), (5.19) can be used again for the term(Ark, rk)/(rk, rk)
and similarly, we can write

(Ax, x)

(Ax,Ax)
=

(Ax,A−1(Ax))

(Ax,Ax)
≥ λmin

(
A−1 +A−T

2

)

> 0,

sinceA−1 is also positive definite. This would yield the inequality

‖rk+1‖22 ≤
(
1− µ(A)µ(A−1)

)
‖rk‖22, (5.20)

in whichµ(B) = λmin(B +BT )/2.
Another interesting observation is that if we define

cos ∠k =
(Ark, rk)

‖Ark‖2 ‖rk‖2
,

then (5.18) can be rewritten as

‖rk+1‖22 = ‖rk‖22
(

1− (Ark, rk)

(Ark, Ark)

(Ark, rk)

(rk, rk)

)

= ‖rk‖22
(
1− cos2 ∠k

)

= ‖rk‖22 sin2 ∠k.
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At each step the reduction in the residual norm is equal to thesineof the acute angle
betweenr andAr. The convergence factor is therefore bounded by

ρ = max
x ∈ Rn, x 6=0

sin ∠(x,Ax),

in which ∠(x,Ax) is the acute angle betweenx andAx. The maximum angle
∠(x,Ax) is guaranteed to be less thanπ/2 whenA is positive definite as the above
results show.

5.3.3 Residual Norm Steepest Descent

In the residual norm steepest descent algorithm, the assumption thatA is positive
definite is relaxed. In fact, the only requirement is thatA is a (square) nonsingular
matrix. At each step the algorithm usesv = AT r andw = Av, giving the following
sequence of operations:

r ← b−Ax, v = AT r,

α← ‖v‖22/‖Av‖22,
x← x+ αv.

(5.21)

However, an algorithm based on the above sequence of operations would require
three matrix-by-vector products, which is three times as many as the other algorithms
seen in this section. The number of matrix-by-vector operations can be reduced to
two per step by computing the residual differently. This variant is as follows.

ALGORITHM 5.4 Residual Norm Steepest Descent

1. Computer := b−Ax
2. Until convergence, Do:
3. v := AT r
4. ComputeAv andα := ‖v‖22/‖Av‖22
5. x := x+ αv
6. r := r − αAv
7. EndDo

Here, each step minimizesf(x) = ‖b − Ax‖22 in the direction−∇f . As it
turns out, this is equivalent to the steepest descent algorithm of Section 5.3.1 applied
to the normal equationsATAx = AT b. SinceATA is positive definite whenA is
nonsingular, then, according to Theorem 5.9, the method will converge wheneverA
is nonsingular.

5.4 Additive and Multiplicative Processes

We begin by considering again the block relaxation techniques seen in the previous
chapter. To define these techniques, aset-decompositionof S = {1, 2, . . . , n} is
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considered as the definition ofp subsetsS1, . . . , Sp of S with

Si ⊆ S,
⋃

i=1,···,p
Si = S.

Denote byni the size ofSi and define the subsetSi as

Si = {mi(1),mi(2), . . . ,mi(ni)}.

Let Vi be then× ni matrix

Vi = [emi(1), emi(2), . . . , emi(ni)],

where eachej is thej-th column of then× n identity matrix.
If the block Jacobi and block Gauss-Seidel algorithms, Algorithms 4.1 and 4.2,

are examined carefully, it can be observed that each individual step in the main loop
(lines 2 to 5) represents an orthogonal projection process overKi = span{Vi}. In-
deed, the equation (4.17) is exactly (5.7) withW = V = Vi. This individual projec-
tion step modifies only the components corresponding to the subspaceKi. However,
the general block Jacobi iteration combines these modifications, implicitly adding
them together, to obtain the next iteratexk+1. Borrowing from the terminology of
domain decomposition techniques, this will be called anadditive projection proce-
dure. Generally, an additive projection procedure can be definedfor any sequence
of subspacesKi, not just subspaces spanned by the columns of the identity matrix.
The only requirement is that the subspacesKi should be distinct, although they are
allowed to overlap.

Let a sequence ofp orthogonal systemsVi be given, with the condition that
span{Vi} 6= span{Vj} for i 6= j, and define

Ai = V T
i AVi.

The additive projection procedure can be written as

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p ,

xk+1 = xk +

p
∑

i=1

Viyi, (5.22)

which leads to the following algorithm.

ALGORITHM 5.5 Additive Projection Procedure

1. Fork = 0, 1, . . . , until convergence, Do:
2. Fori = 1, 2, . . . , p Do:
3. SolveAiyi = V T

i (b−Axk)
4. EndDo
5. Setxk+1 = xk +

∑p
i=1 Viyi

6. EndDo
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Definingrk = b−Axk, the residual vector at stepk, then clearly

rk+1 = b−Axk+1

= b−Axk −
p
∑

i=1

AVi

(
V T

i AVi

)−1
V T

i rk

=

[

I −
p
∑

i=1

AVi

(
V T

i AVi

)−1
V T

i

]

rk.

Observe that each of thep operators

Pi = AVi

(
V T

i AVi

)−1
V T

i

represents the projector onto the subspace spanned byAVi, and orthogonal toVi.
Often, the additive processes are used in conjunction with an acceleration parameter
ω, thus (5.22) is replaced by

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p ,

xk+1 = xk + ω

p
∑

i=1

Viyi.

Even more generally, a different parameterωi can be used for each projection, i.e.,

yi = A−1
i V T

i (b−Axk), i = 1, . . . , p,

xk+1 = xk +

p
∑

i=1

ωiViyi.

The residual norm in this situation is given by

rk+1 =

(

I −
p
∑

i=1

ωiPi

)

rk, (5.23)

considering the singleω parameter as a particular case. Exercise 6 gives an example
of the choice ofωi which has the effect of producing a sequence with decreasing
residual norms.

We now return to the generic case, whereωi = 1, ∀i. A least-squares option can
be defined by taking for each of the subproblemsLi = AKi. In this situation,Pi

becomes an orthogonal projector ontoAKi, since

Pi = AVi

(
(AVi)

TAVi

)−1
(AVi)

T .

It is interesting to note that the residual vector obtained after one outer loop is related
to the previous residual by

rk+1 =

(

I −
p
∑

i=1

Pi

)

rk,
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where thePi’s are now orthogonal projectors. In particular, in the ideal situation
when theAVi’s are orthogonal to each other, and the total rank of thePi’s is n, then
the exact solution would be obtained in one outer step, sincein this situation

I −
p
∑

i=1

Pi = 0.

Thus, the maximum reduction in the residual norm is achievedwhen theVi’s are
A-orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, what distinguishes the additive
and multiplicative iterations is that the latter updates the component to be corrected
at stepi immediately. Then this updated approximate solution is used to compute the
residual vector needed to correct the next component. The Jacobi iteration uses the
same previous approximationxk to update all the components of the solution. Thus,
the analogue of the block Gauss-Seidel iteration can be defined as follows.

ALGORITHM 5.6 Multiplicative Projection Procedure

1. Until convergence, Do:
2. Fori = 1, 2, . . . , p Do:
3. SolveAiy = V T

i (b−Ax)
4. Setx := x+ Viy
5. EndDo
6. EndDo
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PROBLEMS

P-5.1 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.

a. Consider the sequence of one-dimensional projection processes withK = L = span{ei},
where the sequence of indicesi is selected in any fashion. Letxnew be a new it-
erate after one projection step fromx and letr = b − Ax, d = A−1b − x, and
dnew = A−1b− xnew. Show that

(Adnew , dnew) = (Ad, d) − (r, ei)
2/aii.

Does this equality, as is, establish convergence of the algorithm?

b. Assume now thati is selected at each projection step to be the index of a component
of largest absolute value in the current residual vectorr = b−Ax. Show that

‖dnew‖A ≤
(

1− 1

nκ(A)

)1/2

‖d‖A,

in whichκ(A) is the spectral condition number ofA. [Hint: Use the inequality|eT
i r| ≥

n−1/2‖r‖2.] Does this prove that the algorithm converges?

P-5.3 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.
Consider a projection step withK = L = span{v} wherev is some nonzero vector. Let
xnew be the new iterate after one projection step fromx and letd = A−1b− x, anddnew =
A−1b− xnew.

a. Show that
(Adnew , dnew) = (Ad, d) − (r, v)2/(Av, v).

Does this equality establish convergence of the algorithm?

b. In Gastinel’s method, the vectorv is selected in such a way that(v, r) = ‖r‖1, e.g., by
defining the components ofv to bevi = sign(eT

i r), wherer = b − Ax is the current
residual vector. Show that

‖dnew‖A ≤
(

1− 1

nκ(A)

)1/2

‖d‖A,

in whichκ(A) is the spectral condition number ofA. Does this prove that the algorithm
converges?

c. Compare the cost of one step of this method with that of cyclic Gauss-Seidel (see Ex-
ample 5.1) and that of “optimal” Gauss-Seidel where at each stepK = L = span{ei}
andi is a component of largest magnitude in the current residual vector.

P-5.4 In Section 5.3.3, it was shown that taking a one-dimensionalprojection technique
with K = span {AT r} andL = span{AAT r} is mathematically equivalent to using the
usual steepest descent algorithm applied to the normal equationsATAx = AT b. Show that
anorthogonalprojection method forATAx = AT b using a subspaceK is mathematically
equivalent to applying a projection method ontoK, orthogonally toL = AK for solving the
systemAx = b.

P-5.5 Consider the matrix

A =





1 −6 0
6 2 3
0 3 2



 .
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a. Find a rectangle or square in the complex plane which contains all the eigenvalues of
A, without computing the eigenvalues.

b. Is the Minimal Residual iteration guaranteed to convergefor a linear system with the
matrixA?

P-5.3 Consider the linear system
(
D1 −F
−E −D2

)(
x1

x2

)

=

(
b1
b2

)

in whichD1 andD2 are both nonsingular matrices of sizem each.

a. Define an orthogonal projection method using the set of vectorse1, . . . , em, i.e.,L =
K = span{e1, . . . , em}. Write down the corresponding projection step (x1 is modified
into x̃1). Similarly, write the projection step for the second half of the vectors, i.e.,
whenL = K = span{em+1, . . . , en}.

b. Consider an iteration procedure which consists of performing the two successive half-
steps described above until convergence. Show that this iteration is equivalent to a
(standard) Gauss-Seidel iteration applied to the originalsystem.

c. Now consider a similar idea in whichK is taken to be the same as before for each
half-step andL = AK. Write down the iteration procedure based on this approach.
Name another technique to which it is mathematically equivalent.

P-5.4 Consider the linear systemAx = b, whereA is a Symmetric Positive Definite matrix.
We define a projection method which uses a two-dimensional space at each step. At a given
step, takeL = K = span{r, Ar}, wherer = b −Ax is the current residual.

a. For a basis ofK use the vectorr and the vectorp obtained by orthogonalizingAr
againstr with respect to theA-inner product. Give the formula for computingp (no
need to normalize the resulting vector).

b. Write the algorithm for performing the projection methoddescribed above.

c. Will the algorithm converge for any initial guessx0? Justify the answer. [Hint: Exploit
the convergence results for one-dimensional projection techniques.]

P-5.4 Consider projection methods which update at each step the current solution with lin-
ear combinations from two directions: the current residualr andAr.

a. Consider an orthogonal projection method, i.e., at each stepL = K = span{r, Ar}.
Assuming thatA is Symmetric Positive Definite, establish convergence of the algo-
rithm.

b. Consider a least-squares projection method in which at each stepK = span{r, Ar} and
L = AK. Assuming thatA is positive definite (not necessarily symmetric), establish
convergence of the algorithm.

[Hint: The convergence results for any of the one-dimensional projection techniques can be
exploited.]

P-5.3 Assume that the (one-dimensional) Minimal Residual iteration of Section 5.3.2 is
applied to a symmetric positive matrixA. Will the method converge? What will the result
(5.15) become in this case? Both (5.15) and (5.14) suggest a linear convergence with an
estimate for the linear convergence rate given by the formulas. How do these estimated rates
compare for matrices with large condition spectral condition numbers?

P-5.4 The “least-squares” Gauss-Seidel relaxation method defines a relaxation step asxnew =
x+ δ ei (same as Gauss-Seidel), but choosesδ to minimize the residual norm ofxnew .
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a. Write down the resulting algorithm.

b. Show that this iteration is mathematically equivalent toa Gauss-Seidel iteration applied
to the normal equationsATAx = AT b.

P-5.3 Derive three types of one-dimensional projection algorithms in the same manner as
was done in Section 5.3, by replacing every occurrence of theresidual vectorr by a vector
ei, a column of the identity matrix.

P-5.4 Derive three types of one-dimensional projection algorithms in the same manner as
was done in Section 5.3, by replacing every occurrence of theresidual vectorr by a vector
Aei, a column of the matrixA. What would be an “optimal” choice fori at each projection
step? Show that the method is globally convergent in this case.

P-5.5 A minimal residual iteration as defined in Section 5.3.2 can also be defined for an
arbitrary search directiond, not necessarily related tor in any way. In this case, we still
definee = Ad.

a. Write down the corresponding algorithm.

b. Under which condition are all iterates defined?

c. Under which condition ond does the new iterate make no progress, i.e.,‖rk+1‖2 =
‖rk‖2?

d. Write a general sufficient condition which must be satisfied by d at each step in order
to guarantee convergence.

P-5.5 Consider the following real-valued functions of the vectorvariablex, whereA and
b are the coefficient matrix and right-hand system of a given linear systemAx = b and
x∗ = A−1b.

a(x) = ‖x∗ − x‖22,
f(x) = ‖b−Ax‖22,
g(x) = ‖AT b−ATAx‖22,
h(x) = 2(b, x)− (Ax, x).

a. Calculate the gradients of all four functions above.

b. How is the gradient ofg related to that off?

c. How is the gradient off related to that ofh whenA is symmetric?

d. How does the functionh relate to theA-norm of the errorx∗−x whenA is Symmetric
Positive Definite?

P-5.5 The block Gauss-Seidel iteration can be expressed as a method of successive projec-
tions. The subspaceK used for each projection is of the form

K = span{ei, ei+1, . . . , ei+p}.

What isL? Not too commonly used an alternative is to takeL = AK, which amounts to
solving a least-squares problem instead of a linear system.Develop algorithms for this case.
What are the advantages and disadvantages of the two approaches (ignoring convergence
rates)?

P-5.6 Let the scalarsωi in the additive projection procedure satisfy the constraint
p
∑

i=1

ωi = 1. (5.24)
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It is not assumed that eachωi is positive but only that|ωi| ≤ 1 for all i. The residual vector
is given by the Formula (5.23) or, equivalently,

rk+1 =

p
∑

i=1

ωi(I − Pi)rk.

a. Show that in the least-squares case, we have‖rk+1‖2 ≤ ‖rk‖2 for any choice ofωi’s
which satisfy the constraint (5.24).

b. We wish to choose a set ofωi’s such that the 2-norm of the residual vectorrk+1 is
minimal. Determine this set ofωi’s, assuming that the vectors(I − Pi)rk are all
linearly independent.

c. The “optimal”ωi’s provided in the previous question require the solution ofa p × p
Symmetric Positive Definite linear system. Letzi ≡ Viyi be the “search directions”
provided by each of the individual projection steps. To avoid this difficulty, a simpler
strategy is used which consists of performingp successive minimal residual iterations
along these search directions, as is described below.

r := rk
For i = 1, . . . , p Do:

ωi := (r, Azi)/(Azi, Azi)
x := x+ ωizi

r := r − ωiAzi

EndDo

Show that‖rk+1‖2 ≤ ‖rk‖2. Give a sufficient condition to ensure global convergence.

P-5.4 Consider the iteration:xk+1 = xk + αkdk, wheredk is a vector called thedirection
of search, andαk is a scalar. It is assumed throughout thatdk is a nonzero vector. Consider
a method which determinesxk+1 so that the residual‖rk+1‖2 is the smallest possible.

a. Determineαk so that‖rk+1‖2 is minimal.

b. Show that the residual vectorrk+1 obtained in this manner is orthogonal toAdk.

c. Show that the residual vectors satisfy the relation:

‖rk+1‖2 ≤ ‖rk‖2 sin ∠(rk, Adk).

d. Assume that at each stepk, we have(rk, Adk) 6= 0. Will the method always converge?

e. Now assume thatA is positive definite and select at each stepdk ≡ rk. Prove that the
method will converge for any initial guessx0.

P-5.6 Consider the iteration:xk+1 = xk + αkdk, wheredk is a vector called thedirection
of search, andαk is a scalar. It is assumed throughout thatdk is a vector which is selected
in the formdk = AT fk wherefk is some nonzero vector. Letx∗ = A−1b be the exact
solution. Now consider a method which at each stepk determinesxk+1 so that the error
norm‖x∗ − xk+1‖2 is the smallest possible.

a. Determineαk so that‖x∗ − xk+1‖2 is minimal and show that the error vectorek+1 =
x∗ − xk+1 is orthogonal todk. The expression ofαk should not contain unknown
quantities (e.g.,x∗ or ek).

b. Show that‖ek+1‖2 ≤ ‖ek‖2 sin ∠(ek, dk).

c. Establish the convergence of the algorithm for anyx0, whenfk ≡ rk for all k.
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NOTES AND REFERENCES. Initially, the termprojection methodswas used mainly to describe one--
dimensional techniques such as those presented in Section 5.3. An excellent account of what has been
done in the late 1950s and early 1960s can be found in Householder’s book [173] as well as Gastinel
[140]. For more general, including nonlinear, projection processes, a good reference is Kranoselskii
and co-authors [192].

Projection techniques are present in different forms in many other areas of scientific computing
and can be formulated in abstract Hilbert functional spaces. The termsGalerkinandPetrov-Galerkin
techniques are used commonly in finite element methods to describe projection methods on finite ele-
ment spaces. The principles are identical to those seen in this chapter.
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Chapter 6

KRYLOV SUBSPACE METHODS PART I

The next two chapters explore a few methods which are considered currently to be among the

most important iterative techniques available for solving large linear systems. These techniques

are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which

are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these

techniques approximate A−1b by p(A)b, where p is a “good” polynomial. This chapter covers

methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers

methods based on Lanczos biorthogonalization.

6.1 Introduction

Recall from the previous chapter that a generalprojection methodfor solving the
linear system

Ax = b, (6.1)

extracts an approximate solutionxm from an affine subspacex0 +Km of dimension
m by imposing the Petrov-Galerkin condition

b−Axm ⊥ Lm,

whereLm is another subspace of dimensionm. Here,x0 represents an arbitrary
initial guess to the solution. A Krylov subspace method is a method for which the
subspaceKm is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0} ,

wherer0 = b − Ax0. When there is no ambiguity,Km(A, r0) will be denoted by
Km. The different versions of Krylov subspace methods arise from different choices
of the subspaceLm and from the ways in which the system ispreconditioned, a topic
that will be covered in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approxima-
tions obtained from a Krylov subspace method are of the form

A−1b ≈ xm = x0 + qm−1(A)r0 ,

157
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in which qm−1 is a certain polynomial of degreem − 1. In the simplest case where
x0 = 0, then

A−1b ≈ qm−1(A)b .

In other words,A−1b is approximated byqm−1(A)b.
Although all the techniques provide the same type ofpolynomialapproxima-

tions, the choice ofLm, i.e., the constraints used to build these approximations,will
have an important effect on the iterative technique. Two broad choices forLm give
rise to the best-known techniques. The first is simplyLm = Km and the minimum-
residual variationLm = AKm. A few of the numerous methods in this category will
be described in this chapter. The second class of methods is based on definingLm

to be a Krylov subspace method associated withAT , namely,Lm = Km(AT , r0).
Methods of this class will be covered in the next chapter. There are also block exten-
sions of each of these methods termedblock Krylov subspace methods, which will
be discussed only briefly. Note that a projection method may have several differ-
ent implementations, giving rise to different algorithms which are all mathematically
equivalent.

6.2 Krylov Subspaces

In this section we consider projection methods onKrylov subspaces, i.e., subspaces
of the form

Km(A, v) ≡ span {v,Av,A2v, . . . , Am−1v} (6.2)

which will be denoted simply byKm if there is no ambiguity. The dimension of
the subspace of approximants increases by one at each step ofthe approximation
process. A few elementary properties of Krylov subspaces can be established. A
first property is thatKm is the subspace of all vectors inRn which can be written
asx = p(A)v, wherep is a polynomial of degree not exceedingm − 1. Recall that
the minimal polynomial of a vectorv is the nonzero monic polynomialp of lowest
degree such thatp(A)v = 0. The degree of the minimal polynomial ofv with respect
toA is often called thegrade ofv with respect toA, or simply the grade ofv if there
is no ambiguity. A consequence of the Cayley-Hamilton theorem is that the grade of
v does not exceedn. The following proposition is easy to prove.

Proposition 6.1 Letµ be the grade ofv. ThenKµ is invariant underA andKm =
Kµ for all m ≥ µ.

It was mentioned above that the dimension ofKm is nondecreasing. In fact, the
following proposition determines the dimension ofKm in general.

Proposition 6.2 The Krylov subspaceKm is of dimensionm if and only if the grade
µ of v with respect toA is not less thanm, i.e.,

dim(Km) = m ↔ grade(v) ≥ m. (6.3)

Therefore,
dim(Km) = min {m, grade(v)}. (6.4)
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Proof. The vectorsv,Av, . . . , Am−1v form a basis ofKm if and only if for any
set ofm scalarsαi, i = 0, . . . ,m − 1, where at least oneαi is nonzero, the linear
combination

∑m−1
i=0 αiA

iv is nonzero. This is equivalent to the condition that the
only polynomial of degree≤ m − 1 for which p(A)v = 0 is the zero polynomial.
The equality (6.4) is a consequence of the previous proposition.

Given a certain subspaceX, recall thatA|X denotes the restriction ofA toX. If
Q is a projector ontoX, thesection of the operatorA in X is the operator fromX
onto itself defined byQA|X . The following proposition characterizes the product of
polynomials ofA by v in terms of the section ofA in Km.

Proposition 6.3 LetQm be any projector ontoKm and letAm be the section ofA
toKm, that is,Am = QmA|Km

. Then for any polynomialq of degree not exceeding
m− 1,

q(A)v = q(Am)v ,

and for any polynomial of degree≤ m,

Qmq(A)v = q(Am)v .

Proof. First we prove thatq(A)v = q(Am)v for any polynomialq of degree≤ m−1.
It is sufficient to show the property for the monic polynomials qi(t) ≡ ti, i =
0, . . . ,m − 1. The proof is by induction. The property is true for the polynomial
q0(t) ≡ 1. Assume that it is true forqi(t) ≡ ti:

qi(A)v = qi(Am)v .

Multiplying the above equation byA on both sides yields

qi+1(A)v = Aqi(Am)v .

If i+ 1 ≤ m− 1 the vector on the left-hand side belongs toKm, and therefore if the
above equation is multiplied on both sides byQm, then

qi+1(A)v = QmAqi(Am)v.

Looking at the right-hand side we observe thatqi(Am)v belongs toKm. Hence,

qi+1(A)v = QmA|Km
qi(Am)v = qi+1(Am)v,

which proves that the property is true fori+1, providedi+1 ≤ m− 1. For the case
i + 1 = m, it only remains to show thatQmqm(A)v = qm(Am)v, which follows
from qm−1(A)v = qm−1(Am)v by simply multiplying both sides byQmA.
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6.3 Arnoldi’s Method

Arnoldi’s method [9] is an orthogonal projection method onto Km for general non-
Hermitian matrices. The procedure was first introduced in 1951 as a means of reduc-
ing a dense matrix into Hessenberg form with a unitary transformation. In his paper,
Arnoldi hinted that the eigenvalues of the Hessenberg matrix obtained from a number
of steps smaller thann could provide accurate approximations to some eigenvalues
of the original matrix. It was later discovered that this strategy leads to an efficient
technique for approximating eigenvalues of large sparse matrices and the technique
was then extended to the solution of large sparse linear systems of equations. The
method will first be described theoretically, i.e., assuming exact arithmetic, then im-
plementation details will be addressed.

6.3.1 The Basic Algorithm

Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov
subspaceKm. In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1 Arnoldi

1. Choose a vectorv1, such that‖v1‖2 = 1
2. Forj = 1, 2, . . . ,m Do:
3. Computehij = (Avj , vi) for i = 1, 2, . . . , j

4. Computewj := Avj −
∑j

i=1 hijvi

5. hj+1,j = ‖wj‖2
6. If hj+1,j = 0 then Stop
7. vj+1 = wj/hj+1,j

8. EndDo

At each step, the algorithm multiplies the previous Arnoldivectorvj by A and
then orthonormalizes the resulting vectorwj against all previousvi’s by a standard
Gram-Schmidt procedure. It will stop if the vectorwj computed in line 4 vanishes.
This case will be examined shortly. Now a few simple properties of the algorithm
are proved.

Proposition 6.4 Assume that Algorithm 6.1 does not stop before them-th step. Then
the vectorsv1, v2, . . . , vm form an orthonormal basis of the Krylov subspace

Km = span{v1, Av1, . . . , Am−1v1}.

Proof. The vectorsvj , j = 1, 2, . . . ,m, are orthonormal by construction. That they
spanKm follows from the fact that each vectorvj is of the formqj−1(A)v1 where
qj−1 is a polynomial of degreej−1. This can be shown by induction onj as follows.
The result is clearly true forj = 1, sincev1 = q0(A)v1 with q0(t) ≡ 1. Assume that
the result is true for all integers≤ j and considervj+1. We have

hj+1,jvj+1 = Avj −
j
∑

i=1

hijvi = Aqj−1(A)v1 −
j
∑

i=1

hijqi−1(A)v1 (6.5)



6.3. ARNOLDI’S METHOD 161

which shows thatvj+1 can be expressed asqj(A)v1 whereqj is of degreej and
completes the proof.

Proposition 6.5 Denote byVm, then ×m matrix with column vectorsv1, . . ., vm,
by H̄m, the(m + 1) ×m Hessenberg matrix whose nonzero entrieshij are defined
by Algorithm 6.1, and byHm the matrix obtained from̄Hm by deleting its last row.
Then the following relations hold:

AVm = VmHm + wme
T
m (6.6)

= Vm+1H̄m, (6.7)

V T
mAVm = Hm. (6.8)

Proof. The relation (6.7) follows from the following equality which is readily derived
from lines 4, 5, and 7 of Algorithm 6.1,

Avj =

j+1
∑

i=1

hijvi, j = 1, 2, . . . ,m. (6.9)

Relation (6.6) is a matrix reformulation of (6.9). Relation(6.8) follows by multiply-
ing both sides of (6.6) byV T

m and making use of the orthonormality of{v1, . . . , vm}.

The result of the proposition is illustrated in Figure 6.1.

Vm + wme
T
m=A

Hm

Vm

Figure 6.1: The action ofA onVm givesVmHm plus a rank-one matrix.

As was noted earlier, the algorithm may break down in case thenorm ofwj

vanishes at a certain stepj. In this case, the vectorvj+1 cannot be computed and the
algorithm stops. Still to be determined are the conditions under which this situation
occurs.

Proposition 6.6 Arnoldi’s algorithm breaks down at stepj (i.e.,hj+1,j = 0 in Line
5 of Algorithm 6.1), if and only if the minimal polynomial ofv1 is of degreej. More-
over, in this case the subspaceKj is invariant underA.
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Proof. If the degree of the minimal polynomial isj, thenwj must be equal to zero.
Indeed, otherwisevj+1 can be defined and as a resultKj+1 would be of dimension
j+1. Then Proposition 6.2 would imply thatµ ≥ j+1, which is a contradiction. To
prove the converse, assume thatwj = 0. Then the degreeµ of the minimal polyno-
mial of v1 is such thatµ ≤ j. Moreover, it is impossible thatµ < j. Otherwise, by
the first part of this proof, the vectorwµ would be zero and the algorithm would have
stopped at the earlier step numberµ. The rest of the result follows from Proposition
6.1.

A corollary of the proposition is that a projection method onto the subspaceKj

will be exact when a breakdown occurs at stepj. This result follows from Proposition
5.6 seen in Chapter 5. It is for this reason that such breakdowns are often calledlucky
breakdowns.

6.3.2 Practical Implementations

In the previous description of the Arnoldi process, exact arithmetic was assumed,
mainly for simplicity. In practice, much can be gained by using the Modified Gram-
Schmidt or the Householder algorithm instead of the standard Gram-Schmidt algo-
rithm. With the Modified Gram-Schmidt alternative the algorithm takes the following
form:

ALGORITHM 6.2 Arnoldi-Modified Gram-Schmidt

1. Choose a vectorv1 of norm 1
2. Forj = 1, 2, . . . ,m Do:
3. Computewj := Avj

4. Fori = 1, . . . , j Do:
5. hij = (wj , vi)
6. wj := wj − hijvi

7. EndDo
8. hj+1,j = ‖wj‖2. If hj+1,j = 0 Stop
9. vj+1 = wj/hj+1,j

10. EndDo

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent.
In the presence of round-off the above formulation is much more reliable. However,
there are cases where cancellations are so severe in the orthogonalization steps that
even the Modified Gram-Schmidt option is inadequate. In thiscase, two further
improvements can be utilized.

The first improvement resorts to double orthogonalization.Whenever the final
vectorwj obtained at the end of the main loop in the above algorithm hasbeen
computed, a test is performed to compare its norm with the norm of the initialwj

(which is‖Avj‖2). If the reduction falls below a certain threshold, indicating severe
cancellation might have occurred, a second orthogonalization is made. It is known
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from a result by Kahan that additional orthogonalizations are superfluous (see, for
example, Parlett [224]).

The second improvement is to use a different technique altogether. From the
numerical point of view, one of the most reliable orthogonalization techniques is the
Householder algorithm. Recall from Chapter 1 that the Householder orthogonaliza-
tion uses reflection matrices of the formPk = I − 2wkw

T
k to transform a matrixX

into upper triangular form. In the Arnoldi algorithm, the column vectors of the ma-
trix X to be orthonormalized are not available ahead of time. Instead, the next vector
is obtained asAvj , wherevj is the current basis vector. In the Householder algo-
rithm an orthogonal columnvi is obtained asP1P2 . . . Piei whereP1, . . . , Pi are the
previous Householder matrices. This vector is then multiplied byA and the previous
Householder transforms are applied to it. Then, the next Householder transform is
determined from the resulting vector. This procedure is described in the following
algorithm, which was originally proposed by Walker [303].

ALGORITHM 6.3 Householder Arnoldi

1. Select a nonzero vectorv; Setz1 = v
2. Forj = 1, . . . ,m,m+ 1 Do:
3. Compute the Householder unit vectorwj such that
4. (wj)i = 0, i = 1, . . . , j − 1 and
5. (Pjzj)i = 0, i = j + 1, . . . , n, wherePj = I − 2wjw

T
j

6. hj−1 = Pjzj
7. vj = P1P2 . . . Pjej
8. If j ≤ m computezj+1 := PjPj−1 . . . P1Avj

9. EndDo

For details regarding the determination of the Householdervectorwj in the third
to fifth lines and on its use in the sixth to eight lines, see Chapter 1. Recall that
the matricesPj need not be formed explicitly. To obtainhj−1 from zj in line 6,
zero out all the components from positionj + 1 throughn of then-vectorzj and
change itsj-th component, leaving all others unchanged. Thus, then × m matrix
[h0, h1, . . . , hm] will have the same structure as the matrixXm of equation (1.27)
in Chapter 1. By comparison with the Householder algorithm seen in Chapter 1,
we can infer that the above process computes theQR factorization of the matrix
v,Av1, Av2, Av3, . . . , Avm. Define

Qj = PjPj−1 . . . P1. (6.10)

The definition ofzj+1 in line 8 of the algorithm yields the relation,

QjAvj = zj+1.

After the next Householder transformationPj+1 is applied in line 6,hj satisfies the
relation,

hj = Pj+1zj+1 = Pj+1QjAvj = Qj+1Avj. (6.11)
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Now observe that since the componentsj + 2, . . . , n of hj are zero, thenPihj = hj

for anyi ≥ j + 2. Hence,

hj = PmPm−1 . . . Pj+2hj = QmAvj , j = 1, . . . ,m.

This leads to the factorization,

Qm[v,Av1, Av2, . . . , Avm] = [h0, h1, . . . , hm] (6.12)

where the matrix[h0, . . . , hm] is n × (m + 1) and is upper triangular andQm is
unitary.

It is important to relate the vectorsvi andhi defined in this algorithm with vectors
of the standard Arnoldi process. LetH̄m be the(m+ 1)× m matrix obtained from
the firstm + 1 rows of then × m matrix [h1, . . . , hm]. SinceQj+1 is unitary we
haveQ−1

j+1 = QT
j+1 and hence, from the relation (6.11)

Avj = QT
j+1

j+1
∑

i=1

hijei =

j+1
∑

i=1

hijQ
T
j+1ei

where eachei is thei-th column of then × n identity matrix. SincePkei = ei for
i < k, it is not difficult to see that

QT
j+1ei = P1 . . . Pj+1ei = vi, for i ≤ j + 1. (6.13)

This yields the relationAvj =
∑j+1

i=1 hijvi, for j = 1, . . . ,m, which can be written
in matrix form as

AVm = Vm+1H̄m.

This is identical with the relation (6.7) obtained with the Gram-Schmidt or Modified
Gram-Schmidt implementation. Thevi’s form an orthonormal basis of the Krylov
subspaceKm and are identical with thevi’s defined by the Arnoldi process, apart
from a possible sign difference.

Although the Householder algorithm is numerically more viable than the Gram-
Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of
each of the outer loops, corresponding to thej control variable, is dominated by lines
7 and 8. These apply the reflection matricesPi for i = 1, . . . , j to a vector, perform
the matrix-vector productAvj , and then apply the matricesPi for i = j, j − 1, . . . , 1
to a vector. The application of eachPi to a vector is performed as

(I − 2wiw
T
i )v = v − σwi with σ = 2wT

i v.

This is essentially the result of a dot-product of lengthn− i+1 followed by a vector
update of the same length, requiring a total of about4(n − i + 1) operations for
each application ofPi. Neglecting the last step, the number of operations due to the
Householder transformations alone approximately totals

m∑

j=1

j
∑

i=1

8(n − i+ 1) = 8
m∑

j=1

(

jn − j(j − 1)

2

)

≈ 4m2n− 4

3
m3.
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The table below shows the costs of different orthogonalization procedures. GS stands
for Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-
Schmidt with reorthogonalization, and HO for Householder.

GS MGS MGSR HO

Flops 2m2n 2m2n 4m2n 4m2n− 4
3m

3

Storage (m+ 1)n (m+ 1)n (m+ 1)n (m+ 1)n− 1
2m

2

The number of operations shown for MGSR corresponds to the worst case scenario
when a second orthogonalization is performed each time. In practice, the number
of operations is usually closer to that of the standard MGS. Regarding storage, the
vectorsvi, i = 1, . . . ,m need not be saved. In the algorithms for solving linear
systems, these vectors are needed at the end of the process. This issue will be covered
with the Householder implementations of these algorithms.For now, assume that
only thewi’s are saved. The small gain in memory usage in the Householder version
can be explained by the diminishing lengths of the vectors required at each step of
the Householder transformation. However, this differenceis negligible relative to the
whole storage requirement of the algorithm, becausem≪ n, typically.

The Householder orthogonalization may be a reasonable choice when developing
general purpose, reliable software packages where robustness is a critical criterion.
This is especially true for solving eigenvalue problems since the cost of orthogo-
nalization is then amortized over several eigenvalue/eigenvector calculations. When
solving linear systems, the Modified Gram-Schmidt orthogonalization, with a re-
orthogonalization strategy based on a measure of the level of cancellation, is more
than adequate in most cases.

6.4 Arnoldi’s Method for Linear Systems (FOM)

Given an initial guessx0 to the original linear systemAx = b, we now consider an
orthogonalprojection methodas defined in the previous chapter, which takesL =
K = Km(A, r0), with

Km(A, r0) = span{r0, Ar0, A2r0, . . . , A
m−1r0}, (6.14)

in which r0 = b − Ax0. This method seeks an approximate solutionxm from the
affine subspacex0 +Km of dimensionm by imposing the Galerkin condition

b−Axm ⊥ Km. (6.15)

If v1 = r0/‖r0‖2 in Arnoldi’s method, and we setβ = ‖r0‖2, then

V T
mAVm = Hm

by (6.8) and
V T

m r0 = V T
m (βv1) = βe1.
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As a result, the approximate solution using the abovem-dimensional subspaces is
given by

xm = x0 + Vmym, (6.16)

ym = H−1
m (βe1). (6.17)

A method based on this approach and called the Full Orthogonalization Method
(FOM) is described next. Modified Gram-Schmidt is used in theArnoldi procedure.

ALGORITHM 6.4 Full Orthogonalization Method (FOM)

1. Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0/β
2. Define them×m matrixHm = {hij}i,j=1,...,m; SetHm = 0
3. Forj = 1, 2, . . . ,m Do:
4. Computewj := Avj

5. Fori = 1, . . . , j Do:
6. hij = (wj , vi)
7. wj := wj − hijvi

8. EndDo
9. Computehj+1,j = ‖wj‖2. If hj+1,j = 0 setm := j and Goto 12

10. Computevj+1 = wj/hj+1,j.
11. EndDo
12. Computeym = H−1

m (βe1) andxm = x0 + Vmym

The above algorithm depends on a parameterm which is the dimension of the
Krylov subspace. In practice it is desirable to selectm in a dynamic fashion. This
would be possible if the residual norm of the solutionxm is available inexpensively
(without having to computexm itself). Then the algorithm can be stopped at the
appropriate step using this information. The following proposition gives a result in
this direction.

Proposition 6.7 The residual vector of the approximate solutionxm computed by
the FOM Algorithm is such that

b−Axm = −hm+1,me
T
mymvm+1

and, therefore,
‖b−Axm‖2 = hm+1,m|eTmym|. (6.18)

Proof. We have the relations,

b−Axm = b−A(x0 + Vmym)

= r0 −AVmym

= βv1 − VmHmym − hm+1,me
T
mymvm+1.

By the definition ofym,Hmym = βe1, and soβv1 − VmHmym = 0 from which the
result follows.
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A rough estimate of the cost of each step of the algorithm is determined as fol-
lows. IfNz(A) is the number of nonzero elements ofA, thenm steps of the Arnoldi
procedure will requirem matrix-vector products at the cost of2m × Nz(A). Each
of the Gram-Schmidt steps costs approximately4× j × n operations, which brings
the total over them steps to approximately2m2n. Thus, on the average, a step of
FOM costs approximately

2Nz(A) + 2mn.

Regarding storage,m vectors of lengthn are required to save the basisVm. Addi-
tional vectors must be used to keep the current solution and right-hand side, and a
scratch vector for the matrix-vector product. In addition,the Hessenberg matrixHm

must be saved. The total is therefore roughly

(m+ 3)n+
m2

2
.

In most situationsm is small relative ton, so this cost is dominated by the first term.

6.4.1 Variation 1: Restarted FOM

Consider now the algorithm from a practical viewpoint. Asm increases, the com-
putational cost increases at least asO(m2n) because of the Gram-Schmidt orthogo-
nalization. The memory cost increases asO(mn). For largen this limits the largest
value ofm that can be used. There are two remedies. The first is to restart the
algorithm periodically and the second is to “truncate” the orthogonalization in the
Arnoldi algorithm. In this section we consider the first of these two options, which
is described below.

ALGORITHM 6.5 Restarted FOM (FOM(m))

1. Computer0 = b−Ax0, β = ‖r0‖2, andv1 = r0/β.
2. Generate the Arnoldi basis and the matrixHm using the Arnoldi algorithm
3. starting withv1.
4. Computeym = H−1

m βe1 andxm = x0 + Vmym. If satisfied then Stop.
5. Setx0 := xm and go to 1.

There are many possible variations to this basic scheme. Onethat is generally
more economical in practice is based on the observation thatsometimes a smallm is
sufficient for convergence and sometimes the largest possiblem is necessary. Hence,
the idea of averaging over different values ofm. Start the algorithm withm = 1 and
incrementm by one in line 5 until a certainmmax is reached, after whichm is reset
to one, or kept the same. These variations will not be considered here.

Example 6.1. Table 6.1 shows the results of applying FOM(10) with no precon-
ditioning to three of the test problems described in Section3.7. The column labeled
Iters shows the total actual number of matrix-vector multiplications (matvecs) re-
quired to converge. The stopping criterion used is that the 2-norm of the residual be
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Matrix Iters Kflops Residual Error

F2DA 109 4442 0.36E-03 0.67E-04

F3D 66 11664 0.87E-03 0.35E-03

ORS 300 13558 0.26E+00 0.71E-04

Table 6.1: A test run of FOM with no preconditioning.

reduced by a factor of107 relative to the 2-norm of the initial residual. A maximum
of 300 matvecs are allowed.Kflops is the total number of floating point operations
performed, in thousands.ResidualandError represent the two-norm of the residual
and error vectors, respectively. Note that the method did not succeed in solving the
third problem.

6.4.2 Variation 2: IOM and DIOM

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an
integerk is selected and the following “incomplete” orthogonalization is performed.

ALGORITHM 6.6 Incomplete Orthogonalization Process

1. Forj = 1, 2, . . . ,m Do:
2. Computewj := Avj

3. Fori = max{1, j − k + 1}, . . . , j Do:
4. hi,j = (wj , vi)
5. wj := wj − hijvi

6. EndDo
7. Computehj+1,j = ‖wj‖2 andvj+1 = wj/hj+1,j

8. EndDo

The number of directionsk against which to orthogonalize may be dictated by
memory limitations. The Incomplete Orthogonalization Method (IOM) consists of
performing the above incomplete orthogonalization procedure and computing an ap-
proximate solution using the same formulas (6.16) and (6.17).

ALGORITHM 6.7 IOM Algorithm

Run a modification of Algorithm 6.4 in which the Arnoldi process in lines
3 to 11 is replaced by the Incomplete Orthogonalization process and every
other computation remains unchanged.

It is now necessary to keep only thek previousvi vectors. The others are not
needed in the above process and may be discarded. However, the difficulty re-
mains that when the solution is computed by formula (6.16), all the vectorsvi for



6.4. ARNOLDI’S METHOD FOR LINEAR SYSTEMS (FOM) 169

i = 1, 2, . . . ,m are required. One option is to recompute them at the end, but essen-
tially this doubles the cost of the algorithm. Fortunately,a formula can be developed
whereby the current approximate solutionxm can be updated from the previous ap-
proximationxm−1 and a small number of vectors that are also updated at each step.
Thisprogressiveformulation of the solution leads to an algorithm termedDirect IOM
(DIOM) which we now derive.

The Hessenberg matrixHm obtained from the incomplete orthogonalization pro-
cess has a band structure with a bandwidth ofk + 1. For example, whenk = 3 and
m = 5, it is of the form

Hm =









h11 h12 h13

h21 h22 h23 h24

h32 h33 h34 h35

h43 h44 h45

h54 h55









. (6.19)

The Direct version of IOM is derived from exploiting the special structure of the
LU factorization,Hm = LmUm, of the matrixHm. Assuming no pivoting is used,
the matrixLm is unit lower bidiagonal andUm is banded upper triangular, withk
diagonals. Thus, the above matrix has a factorization of theform

Hm =









1
l21 1

l32 1
l43 1

l54 1









×









u11 u12 u13

u22 u23 u24

u33 u34 u35

u44 u45

u55









.

The approximate solution is then given by

xm = x0 + VmU
−1
m L−1

m (βe1).

Defining
Pm ≡ VmU

−1
m

and
zm = L−1

m (βe1),

the approximate solution is given by

xm = x0 + Pmzm. (6.20)

Because of the structure ofUm, Pm can be updated easily. Indeed, equating the
last columns of the matrix relationPmUm = Vm yields

m∑

i=m−k+1

uimpi = vm,

which allows the vectorpm to be computed from the previouspi’s andvm:

pm =
1

umm

[

vm −
m−1∑

i=m−k+1

uimpi

]

.
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In addition, because of the structure ofLm, we have the relation

zm =

[
zm−1

ζm

]

in which
ζm = −lm,m−1ζm−1.

From (6.20),

xm = x0 + [Pm−1, pm]

[
zm−1

ζm

]

= x0 + Pm−1zm−1 + ζmpm.

Noting thatx0 + Pm−1zm−1 = xm−1, it follows that the approximationxm can be
updated at each step by the relation,

xm = xm−1 + ζmpm (6.21)

wherepm is defined above. This gives the following algorithm, calledthe Direct
Incomplete Orthogonalization Method (DIOM).

ALGORITHM 6.8 DIOM

1. Choosex0 and computer0 = b−Ax0, β := ‖r0‖2, v1 := r0/β.
2. Form = 1, 2, . . ., until convergence Do:
3. Computehim, i = max{1,m − k + 1}, . . . ,m andvm+1 as in
4. lines 2-7 of Algorithm (6.6).
5. Update the LU factorization ofHm, i.e., obtain the last column
6. ofUm using the previousk pivots. If umm = 0 Stop.
7. ζm = { if m = 1 then β, else− lm,m−1 ζm−1}
8. pm = u−1

mm

(

vm −
∑m−1

i=m−k+1 uimpi

)

( for i ≤ 0 setuimpi ≡ 0)

9. xm = xm−1 + ζmpm

10. EndDo

The costs of the above algorithm as well as the IOM algorithm are the subject of
Exercise 5.

Observe that (6.6) is still valid and as a consequence, Proposition 6.7, which is
based on it, still holds. That is because the orthogonality properties were not used to
derive the two relations therein. A result of this is that Equation (6.18) still holds and
it is then easy to show that

‖b−Axm‖2 = hm+1,m|eTmym| = hm+1,m

∣
∣
∣
∣

ζm
umm

∣
∣
∣
∣
.

DIOM can also be derived by imposing the properties that are satisfied by the residual
vector and the conjugate directions, i.e., thepi’s. Note that the above algorithm is
based implicitly on Gaussian elimination without pivotingfor the solution of the
Hessenberg systemHmym = βe1. This may cause a premature termination in line
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6. Fortunately, an implementation is available which relies on Gaussian elimination
with partial pivoting. The details of this variant can be found in [240].

Since the residual vector is a scalar multiple ofvm+1 and since thevi’s are no
longer orthogonal, IOM and DIOM are not orthogonal projection techniques. They
can, however, be viewed as oblique projection techniques onto Km and orthogonal
to an artificially constructed subspace.

Proposition 6.8 IOM and DIOM are mathematically equivalent to a projection pro-
cess ontoKm and orthogonally to

Lm = span{z1, z2, . . . , zm}

where
zi = vi − (vi, vm+1)vm+1, i = 1, . . . ,m.

Proof. The proof is an immediate consequence of the fact thatrm is a multiple of
vm+1 and by construction,vm+1 is orthogonal to allzi’s defined in the proposition.

The following simple properties can be shown:

• The residual vectorsri, i = 1, . . . ,m, are “locally” orthogonal,

(rj , ri) = 0, for |i− j| ≤ k, i 6= j. (6.22)

• Thepj ’s are locallyA-orthogonal to the Arnoldi vectors, i.e.,

(Apj , vi) = 0 for j − k + 1 < i < j. (6.23)

• For the casek =∞ (full orthogonalization) thepj ’s are semi-conjugate, i.e.,

(Apj , pi) = 0 for i < j. (6.24)

6.5 GMRES

The Generalized Minimum Residual Method (GMRES) is a projection method based
on takingK = Km andL = AKm, in whichKm is them-th Krylov subspace with
v1 = r0/‖r0‖2. As seen in Chapter 5, such a technique minimizes the residual norm
over all vectors inx0 + Km. The implementation of an algorithm based on this
approach is similar to that of the FOM algorithm. We first describe the basic idea
and then discuss practical details and a few variations.
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6.5.1 The Basic GMRES Algorithm

There are two ways to derive the algorithm. The first way exploits the optimality
property and the relation (6.7). Any vectorx in x0 +Km can be written as

x = x0 + Vmy, (6.25)

wherey is anm-vector. Defining

J(y) = ‖b−Ax‖2 = ‖b−A (x0 + Vmy) ‖2, (6.26)

the relation (6.7) results in

b−Ax = b−A (x0 + Vmy)

= r0 −AVmy

= βv1 − Vm+1H̄my

= Vm+1

(
βe1 − H̄my

)
. (6.27)

Since the column-vectors ofVm+1 are orthonormal, then

J(y) ≡ ‖b−A (x0 + Vmy) ‖2 = ‖βe1 − H̄my‖2. (6.28)

The GMRES approximation is the unique vector ofx0+Km which minimizes (6.26).
By (6.25) and (6.28), this approximation can be obtained quite simply asxm =
x0 + Vmym whereym minimizes the functionJ(y) = ‖βe1 − H̄my‖2, i.e.,

xm = x0 + Vmym, where (6.29)

ym = argminy‖βe1 − H̄my‖2. (6.30)

The minimizerym is inexpensive to compute since it requires the solution of an
(m + 1) × m least-squares problem wherem is typically small. This gives the
following algorithm.

ALGORITHM 6.9 GMRES

1. Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0/β
2. Forj = 1, 2, . . . ,m Do:
3. Computewj := Avj

4. Fori = 1, . . . , j Do:
5. hij := (wj , vi)
6. wj := wj − hijvi

7. EndDo
8. hj+1,j = ‖wj‖2. If hj+1,j = 0 setm := j and go to 11
9. vj+1 = wj/hj+1,j

10. EndDo
11. Define the(m+ 1)×m Hessenberg matrix̄Hm = {hij}1≤i≤m+1,1≤j≤m.
12. Computeym the minimizer of‖βe1 − H̄my‖2 andxm = x0 + Vmym.

The second way to derive the GMRES algorithm is to use the equations (5.7)
with Wm = AVm. This is the subject of Exercise 4.
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6.5.2 The Householder Version

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the
Arnoldi process. Section 6.3.2 described a Householder variant of the Arnoldi pro-
cess which is numerically more robust than Gram-Schmidt. Here, we focus on a
modification of GMRES which retrofits the Householder orthogonalization. Section
6.3.2 explained how to get thevj and the columns of̄Hm+1 at each step, from the
Householder-Arnoldi algorithm. SinceVm andH̄m are the only items needed to ex-
tract the approximate solution at the end of the GMRES process, the modification
seems rather straightforward. However, this is only true ifthevi’s are stored. In this
case, line 12 would remain the same and the modification to thealgorithm would
be in lines 3-11 which are to be replaced by the Householder variant of the Arnoldi
process. It was mentioned in Section 6.3.2 that it is preferable not to store thevi’s
because this would double the storage requirement. In this case, a formula must be
found to generate the approximate solution in line 12, usingonly thewi’s, i.e., the
Pi’s. Let

ym = (η1, η2, · · · , ηm)T ,

so that the solution is of the formxm = x0 + η1v1 + · · · + ηmvm. Recall that in the
Householder variant of the Arnoldi process, eachvj is defined by

vj = P1P2 . . . Pjej .

Using a Horner-like scheme, we obtain

xm = x0 + η1P1e1 + η2P1P2e2 + . . .+ ηmP1P2 . . . Pmem

= x0 + P1 (η1e1 + P2 (η2e2 + . . .+ Pm−1 (ηm−1em−1 + Pmηmem))) .

Therefore, when Householder orthogonalization is used, then line 12 of the GMRES
algorithm should be replaced by a step of the form

z := 0 (6.31)

z := Pj (ηjej + z) , j = m,m− 1, . . . , 1 (6.32)

xm = x0 + z. (6.33)

The above step requires roughly as many operations as computing the last Arnoldi
vectorvm. Therefore, its cost is negligible relative to the cost of the Arnoldi loop.
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ALGORITHM 6.10 GMRES with Householder orthogonalization

1. Computer0 = b−Ax0, z := r0.
2. Forj = 1, . . . ,m,m+ 1 Do:
3. Compute the Householder unit vectorwj such that
4. (wj)i = 0, i = 1, . . . , j − 1 and
5. (Pjz)i = 0, i = j + 1, . . . , n wherePj = I − 2wjw

T
j ;

6. hj−1 := Pjz; If j = 1 then letβ := eT1 h0.
7. v := P1P2 . . . Pjej.
8. If j ≤ m computez := PjPj−1 . . . P1Av,
9. EndDo

10. DefineH̄m = the(m+ 1)×m upper part of the matrix[h1, . . . , hm].
11. Computeym = Argminy‖βe1 − H̄my‖2. Let ym = (η1, η2, . . . , ηm)T .
12. z := 0
13. Forj = m,m− 1, . . . , 1 Do:
14. z := Pj (ηjej + z),
15. EndDo
16. Computexm = x0 + z

Note that now only the set ofwj vectors needs to be saved. The scalarβ defined
in line 6 is equal to±‖r0‖2. This is becauseP1z = βe1 whereβ is defined by the
equations (1.26) seen in Chapter 1, which define the first Householder transforma-
tion. As was observed earlier the Householder factorization actually obtains the QR
factorization (6.12) withv = r0. We can also formulate GMRES directly from this
factorization. Indeed, ifx = x0 + Vmym, then according to this factorization, the
corresponding residual norm is equal to

‖h0 − η1h1 − η2h2 − . . . − ηmhm‖2

whose minimizer is the same as the one defined by the algorithm.
The details of implementation of the solution of the least-squares problem as well

as the estimate of the residual norm are identical with thoseof the Gram-Schmidt
versions and are discussed next.

6.5.3 Practical Implementation Issues

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate
solutionxm explicitly at each step. As a result, it is not easy to determine when to
stop. One remedy is to compute the approximation solutionxm at regular intervals
and check for convergence by a test on the residual, for example. However, there is a
more elegant solution which is related to the way in which theleast-squares problem
(6.30) is solved.

A common technique to solve the least-squares problemmin ‖βe1−H̄my‖2, is to
transform the Hessenberg matrix into upper triangular formby using plane rotations.
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Define the rotation matrices

Ωi =















1
. . .

1
ci si

−si ci
1

. . .
1















← row i
← row i+ 1

(6.34)

with c2i + s2i = 1. If m steps of the GMRES iteration are performed then these
matrices have dimension(m+ 1)× (m+ 1).

Multiply the Hessenberg matrix̄Hm and the corresponding right-hand sideḡ0 ≡
βe1 by a sequence of such matrices from the left. The coefficientssi, ci are selected
to eliminatehi+1,i at each time. Thus, ifm = 5 we would have

H̄5 =











h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65











, ḡ0 =











β
0
0
0
0
0











.

Then premultiplyH̄5 by

Ω1 =









c1 s1
−s1 c1

1
1

1









with
s1 =

h21
√

h2
11 + h2

21

, c1 =
h11

√

h2
11 + h2

21

to obtain the matrix and right-hand side

H̄
(1)
5 =











h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14 h

(1)
15

h
(1)
22 h

(1)
23 h

(1)
24 h

(1)
25

h32 h33 h34 h35

h43 h44 h45

h54 h55

h65











, ḡ1 =











c1β
−s1β

0
0
0
0











. (6.35)

We can now premultiply the above matrix and right-hand side again by a rotation
matrixΩ2 to eliminateh32. This is achieved by taking

s2 =
h32

√

(h
(1)
22 )2 + h2

32

, c2 =
h

(1)
22

√

(h
(1)
22 )2 + h2

32

.
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This elimination process is continued until them-th rotation is applied, which trans-
forms the problem into one involving the matrix and right-hand side,

H̄
(5)
5 =












h
(5)
11 h

(5)
12 h

(5)
13 h

(5)
14 h

(5)
15

h
(5)
22 h

(5)
23 h

(5)
24 h

(5)
25

h
(5)
33 h

(5)
34 h

(5)
35

h
(5)
44 h

(5)
45

h
(5)
55

0












, ḡ5 =











γ1

γ2

γ3

.

.
γ6











. (6.36)

Generally, the scalarsci andsi of theith rotationΩi are defined as

si =
hi+1,i

√

(h
(i−1)
ii )2 + h2

i+1,i

, ci =
h

(i−1)
ii

√

(h
(i−1)
ii )2 + h2

i+1,i

. (6.37)

DefineQm the product of matricesΩi,

Qm = ΩmΩm−1 . . .Ω1 (6.38)

and

R̄m = H̄(m)
m = QmH̄m, (6.39)

ḡm = Qm(βe1) = (γ1, . . . , γm+1)
T . (6.40)

SinceQm is unitary,

min ‖βe1 − H̄my‖2 = min ‖ḡm − R̄my‖2.

The solution to the above least-squares problem is obtainedby simply solving the
triangular system resulting from deleting the last row of the matrix R̄m and right-
hand sidēgm in (6.36). In addition, it is clear that for the solutiony∗, the “residual”
‖βe1− H̄my∗‖ is nothing but the last element of the right-hand side, i.e.,the termγ6

in the above illustration.

Proposition 6.9 Letm ≤ n andΩi, i = 1, . . . ,m be the rotation matrices used to
transformH̄m into an upper triangular form. Denote byRm, ḡm = (γ1, . . . , γm+1)

T

the resulting matrix and right-hand side, as defined by (6.39), (6.40). and byRm, gm

them×m upper triangular matrix andm-dimensional vector obtained from̄Rm, ḡm

by deleting their last row and component respectively. Then,

1. The rank ofAVm is equal to the rank ofRm. In particular, if rmm = 0 thenA
must be singular.

2. The vectorym which minimizes‖βe1 − H̄my‖2 is given by

ym = R−1
m gm.
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3. The residual vector at stepm satisfies

b−Axm = Vm+1

(
βe1 − H̄mym

)
= Vm+1Q

T
m(γm+1em+1) (6.41)

and, as a result,
‖b−Axm‖2 = |γm+1|. (6.42)

Proof. To prove first part (1), use (6.7), to obtain the relation

AVm = Vm+1H̄m

= Vm+1Q
T
mQmH̄m

= Vm+1Q
T
mR̄m.

SinceVm+1Q
T
m is unitary, the rank ofAVm is that of R̄m, which equals the rank

of Rm since these two matrices differ only by a zero row (the last row of R̄m). If
rmm = 0 thenRm is of rank≤ m− 1 and as a resultAVm is also of rank≤ m− 1.
SinceVm is of full rank, this means thatA must be singular.

The second part (2), was essentially proved before the proposition. For any vec-
tor y,

‖βe1 − H̄my‖22 = ‖Qm(βe1 − H̄my)‖22
= ‖ḡm − R̄my‖22
= |γm+1|2 + ‖gm −Rmy‖22 (6.43)

The minimum of the left-hand side is reached when the second term in the right-hand
side of (6.43) is zero. SinceRm is nonsingular, this is achieved wheny = R−1

m gm.
To prove the third part (3), we start with the definitions usedfor GMRES and the

relation (6.27). For anyx = x0 + Vmy,

b−Ax = Vm+1

(
βe1 − H̄my

)

= Vm+1Q
T
m Qm

(
βe1 − H̄my

)

= Vm+1Q
T
m

(
ḡm − R̄my

)
.

As was seen in the proof of the second part above, the 2-norm ofḡm − R̄my is
minimized wheny annihilates all components of the right-hand sideḡm except the
last one, which is equal toγm+1. As a result,

b−Axm = Vm+1Q
T
m(γm+1em+1)

which is (6.41). The result (6.42) follows from the orthonormality of the column-
vectors ofVm+1Q

T
m.

So far we have only described a process for computing the least-squares solu-
tion ym of (6.30). Note that this approach with plane rotations can also be used to
solve the linear system (6.17) for the FOM method. The only difference is that the
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last rotationΩm must be omitted. In particular, a single program can be written to
implement both algorithms using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each
step of the GMRES algorithm. This approach will allow one to obtain the residual
norm at every step, with virtually no additional arithmeticoperations. To illustrate
this, start with (6.36), i.e., assume that the firstm rotations have already been applied.
Now the residual norm is available forx5 and the stopping criterion can be applied.
Assume that the test dictates that further steps be taken. One more step of the Arnoldi
algorithm must be executed to getAv6 and the6-th column ofH̄6. This column is
appended tōR5 which has been augmented by a zero row to match the dimension.
Then the previous rotationsΩ1, Ω2, . . ., Ω5 are applied to this last column. After this
is done the following matrix and right-hand side are obtained (superscripts are now
omitted from thehij entries):

H̄
(5)
6 =













h11 h12 h13 h14 h15 h16

h22 h23 h24 h25 h26

h33 h34 h35 h36

h44 h45 h46

h55 h56

0 h66

0 h76













, ḡ
(5)
6 =













γ1

γ2

γ3

.

.
γ6

0













. (6.44)

The algorithm now continues in the same way as before. We needto premultiply the
matrix by a rotation matrixΩ6 (now of size7× 7) with

s6 =
h76

√

(h66)2 + h2
76

, c6 =
h

(5)
66

√

(h
(5)
66 )2 + h2

76

(6.45)

to get the matrix and right-hand side,

R̄6 =













r11 r12 r13 r14 r15 r16
r22 r23 r24 r25 r26

r33 r34 r35 r36
r44 r45 r46

r55 r56
r66
0













, ḡ6 =













γ1

γ2

γ3

.

.
c6γ6

−s6γ6













. (6.46)

If the residual norm as given by|γm+1| is small enough, the process must be
stopped. The last rows of̄Rm andḡm are deleted and the resulting upper triangular
system is solved to obtainym. Then the approximate solutionxm = x0 + Vmym is
computed.

Note from (6.46) that the following useful relation forγj+1 results

γj+1 = −sjγj . (6.47)

In particular, ifsj = 0 then the residual norm must be equal to zero which means
that the solution is exact at stepj.
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6.5.4 Breakdown of GMRES

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of
breakdown in GMRES are in the Arnoldi loop, whenwj = 0, i.e., whenhj+1,j = 0
at a given stepj. In this situation, the algorithm stops because the next Arnoldi vec-
tor cannot be generated. However, in this situation, the residual vector is zero, i.e.,
the algorithm will deliver the exact solution at this step. In fact, the converse is also
true: If the algorithm stops at stepj with b−Axj = 0, thenhj+1,j = 0.

Proposition 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm
breaks down at stepj, i.e., hj+1,j = 0, if and only if the approximate solutionxj

is exact.

Proof. To show the necessary condition, observe that ifhj+1,j = 0, thensj = 0.
Indeed, sinceA is nonsingular, thenrjj = h

(j−1)
jj is nonzero by the first part of

Proposition 6.9 and (6.37) impliessj = 0. Then, the relations (6.42) and (6.47)
imply thatrj = 0.

To show the sufficient condition, we use (6.47) again. Since the solution is exact
at stepj and not at stepj−1, thensj = 0. From the formula (6.37), this implies that
hj+1,j = 0.

6.5.5 Variation 1: Restarting

Similar to the FOM algorithm of the previous section, the GMRES algorithm be-
comes impractical whenm is large because of the growth of memory and computa-
tional requirements asm increases. These requirements are identical with those of
FOM. As with FOM, there are two remedies. One is based on restarting and the other
on truncating the Arnoldi orthogonalization. The straightforward restarting option is
described here.

ALGORITHM 6.11 Restarted GMRES

1. Computer0 = b−Ax0, β = ‖r0‖2, andv1 = r0/β
2. Generate the Arnoldi basis and the matrixH̄m using the Arnoldi algorithm
3. starting withv1
4. Computeym which minimizes‖βe1 − H̄my‖2 andxm = x0 + Vmym

5. If satisfied then Stop, else setx0 := xm and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied,
providing the residual norm at each sub-stepj without computing the approximation
xj. This enables the program to exit as soon as this norm is smallenough.

A well known difficulty with the restarted GMRES algorithm isthat it canstag-
natewhen the matrix is not positive definite. The full GMRES algorithm is guaran-
teed to converge in at mostn steps, but this would be impractical if there were many
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Matrix Iters Kflops Residual Error

F2DA 95 3841 0.32E-02 0.11E-03

F3D 67 11862 0.37E-03 0.28E-03

ORS 205 9221 0.33E+00 0.68E-04

Table 6.2: A test run of GMRES with no preconditioning.

steps required for convergence. A typical remedy is to usepreconditioning tech-
niques(see chapters 9 and 10) whose goal is to reduce the number of steps required
to converge.

Example 6.2. Table 6.2 shows the results of applying the GMRES algorithm with
no preconditioning to three of the test problems described in Section 3.7. See Exam-
ple 6.1 for the meaning of the column headers in the table. In this test, the dimension
of the Krylov subspace ism = 10. Observe that the problem ORS, which could not
be solved by FOM(10), is now solved in 205 steps.

6.5.6 Variation 2: Truncated GMRES Versions

It is possible to derive an Incomplete version of the GMRES algorithm. This algo-
rithm is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with
other algorithms developed in the literature (some of whichwill be seen in the next
chapter). A direct version called DQGMRES using exactly thesame arguments as
in Section 6.4.2 for DIOM can also be derived. We begin by defining a hypotheti-
cal QGMRES algorithm, in simple terms, by replacing the Arnoldi Algorithm with
Algorithm 6.6, the Incomplete Orthogonalization procedure.

ALGORITHM 6.12 Quasi-GMRES

Run a modification of Algorithm 6.9 in which the Arnoldi process in lines
2 to 10 is replaced by the Incomplete Orthogonalization process and all
other computations remain unchanged.

Similar to IOM, only thek previousvi vectors must be kept at any given step.
However, this version of GMRES will potentially save computations but not storage.
This is because computing the solution by formula (6.29) requires the vectorsvi for
i = 1, . . . ,m to be accessed. Fortunately, the approximate solution can be updated
in a progressive manner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First,
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note that ifH̄m is banded, as for example, whenm = 5, k = 2,

H̄5 =











h11 h12

h21 h22 h23

h32 h33 h34

h43 h44 h45

h54 h55

h65











, g =











β
0
0
0
0
0











(6.48)

then the premultiplications by the rotation matricesΩi as described in the previous
section will only introduce an additional diagonal. For theabove case, the resulting
least-squares system is̄R5y = ḡ5 with:

R̄5 =











r11 r12 r13
r22 r23 r24

r33 r34 r35
r44 r45

r55
0











, ḡ5 =











γ1

γ2

γ3

.

.
γ6











. (6.49)

The approximate solution is given by

xm = x0 + VmR
−1
m gm

whereRm andgm are obtained by removing the last row ofR̄m andḡm, respectively.
DefiningPm as in DIOM,

Pm ≡ VmR
−1
m

then,
xm = x0 + Pmgm.

Also note that similarly to DIOM,

gm =

[
gm−1

γm

]

in which
γm = cmγ

(m−1)
m ,

whereγ(m−1)
m is the last component of the vectorḡm−1, i.e., the right-hand side

before them-th rotation is applied. Thus,xm can be updated at each step, via the
relation

xm = xm−1 + γmpm.

ALGORITHM 6.13 DQGMRES

1. Computer0 = b−Ax0, γ1 := ‖r0‖2, andv1 := r0/γ1

2. Form = 1, 2, . . ., until convergence Do:
3. Computehim, i = max{1,m − k + 1}, . . . ,m andvm+1
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4. as in lines 2 to 6 of Algorithm 6.6
5. Update the QR factorization of̄Hm, i.e.,
6. Apply Ωi, i = m− k, . . . ,m− 1 to them-th column ofH̄m

7. Compute the rotation coefficientscm, sm by (6.37)
8. Apply Ωm to H̄m andḡm, i.e., Compute:
9. γm+1 := −smγm

10. γm := cmγm

11. hmm := cmhmm + smhm+1,m

(

=
√

h2
m+1,m + h2

mm

)

12. pm =
(

vm −
∑m−1

i=m−k himpi

)

/hmm

13. xm = xm−1 + γmpm

14. If |γm+1| is small enough then Stop
15. EndDo

The above algorithm does not minimize the norm of the residual vector overx0+Km.
Rather, it attempts to perform an approximate minimization. Formula (6.41), which
is still valid since orthogonality was not used to derive it,also yields the following
equaliy for DQGMRES:

‖b−Axm‖2 = ‖Vm+1

(
βe1 − H̄mym

)
‖2

where as beforeym minimizes the norm‖βe1−H̄my‖2 over all vectorsy in R
m. The

norm‖βe1−H̄my‖2 is called the quasi-residual norm of the vectorx0 +Vmy, which
is a member ofx0 + Km. If the vi’s were orthogonal to each other, then the quasi-
residual norm and the actual residual norm would be identical and QGMRES would
be equivalent to GMRES, i.e., the residual norm is minimizedover all vectors of the
form x0 +Vmy. Since only an incomplete orthogonalization is used then thevi’s are
only locally orthogonal and, as a result, only an approximate minimization may be
obtained. Now, (6.42) is no longer valid since its proof required the orthogonality of
thevi’s. However, the following relation will be helpful in understand the behavior
of QGMRES

b−Axm = Vm+1Q
T
m(γm+1em+1) ≡ γm+1zm+1 . (6.50)

The actual residual norm is equal to the quasi-residual norm(i.e., |γm+1|), multiplied
by the norm ofzm+1. The vectorzm+1 is the last column ofVm+1Q

T
m, which is no

longer a unitary matrix. It turns out that in practice,|γm+1| remains a reasonably
good estimate of the actual residual norm because thevi’s are nearly orthogonal.
The following inequality provides an actual upper bound of the residual norm in
terms of computable quantities:

‖b−Axm‖ ≤
√
m− k + 1 |γm+1|. (6.51)

Here,k is to be replaced bym whenm ≤ k. The proof of this inequality is a conse-
quence of (6.50). If the unit vectorq ≡ QT

mem+1 has componentsη1, η2, . . . , ηm+1,
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then

‖b−Axm‖2 = |γm+1| ‖Vm+1q‖2

≤ |γm+1|





∥
∥
∥
∥
∥

k+1∑

i=1

ηivi

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

m+1∑

i=k+2

ηivi

∥
∥
∥
∥
∥

2





≤ |γm+1|





[
k+1∑

i=1

η2
i

]1/2

+
m+1∑

i=k+2

|ηi| ‖vi‖2





≤ |γm+1|





[
k+1∑

i=1

η2
i

]1/2

+
√
m− k

[
m+1∑

i=k+2

η2
i

]1/2




The orthogonality of the firstk+ 1 vectorsvi was used and the last term comes from
using the Cauchy-Schwartz inequality. The desired inequality follows from using the
Cauchy-Schwartz inequality again in the form

1 . a +
√
m− k . b ≤

√
m− k + 1

√

a2 + b2

and from the fact that the vectorq is of norm unity. Thus, using|γm+1| as a residual
estimate, we would make an error of a factor of

√
m− k + 1 at most. In general,

this is an overestimate and|γm+1| tends to give an adequate estimate for the residual
norm.

It is also interesting to observe that with a little bit more arithmetic, the exact
residual vector and norm can be obtained. This is based on theobservation that,
according to (6.50), the residual vector isγm+1 times the vectorzm+1 which is the
last column of the matrix

Zm+1 ≡ Vm+1Q
T
m. (6.52)

It is an easy exercise to see that this last column can be updated fromvm+1 andzm.
Indeed, assuming that all the matrices related to the rotation are of size(m + 1) ×
(m + 1), the last row ofQm−1 is the(m + 1) − st row of the identity, so we can
write

Zm+1 = [Vm, vm+1]Q
T
m−1Ω

T
m

= [Zm, vm+1]Ω
T
m .

The result is that
zm+1 = −smzm + cmvm+1. (6.53)

Thezi’s can be updated at the cost of one extra vector in memory and4n operations
at each step. The norm ofzm+1 can be computed at the cost of2n operations and
the exact residual norm for the current approximate solution can then be obtained by
multiplying this norm by|γm+1|.

Because this is a little expensive, it may be preferred to just “correct” the estimate
provided byγm+1 by exploiting the above recurrence relation,

‖zm+1‖2 ≤ |sm|‖zm‖2 + |cm|.
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If ζm ≡ ‖zm‖2 , then the following recurrence relation holds,

ζm+1 ≤ |sm|ζm + |cm|. (6.54)

The above relation is inexpensive to update, yet provides anupper bound that is
sharper than (6.51); see Exercise 7.

Equation (6.53) shows an interesting relation between two successive residual
vectors:

rm = γm+1zm+1

= γm+1[−smzm + cmvm+1]

= s2mrm−1 + cmγm+1vm+1 . (6.55)

This exploits the fact thatγm+1 = −smγm andrj = γj+1zj+1.
Relating the DQGMRES and FOM residuals may provide some useful insight.

We will denote by the superscriptI all quantities relared to IOM (or DIOM). For
example, them-th iterate in IOM is denoted byxI

m and its residual vector will be
rI
m = b− AxI

m. It is already known that the IOM residual is a scaled versionof the
vectorvm+1 obtained by the incomplete Arnoldi process. To be more accurate, the
following equality holds,

rI
m = −hm+1,me

T
mymvm+1 = −hm+1,m

γm

h
(m−1)
mm

vm+1 =
hm+1,m

smh
(m−1)
mm

γm+1vm+1 .

The next relation is then obtained by observing thathm+1,m/h
(m)
mm = tan θm. Hence,

γm+1vm+1 = cmr
I
m, (6.56)

from which it follows that
ρQ

m = |cm| ρm , (6.57)

whereρm = ‖rI
m‖2 is the actual residual norm of them-th IOM iterate. As an

important consequence of (6.56), note that (6.55) becomes,

rm = s2mrm−1 + c2mr
I
m . (6.58)

Example 6.3. Table 6.3 shows the results of applying the DQGMRES algorithm
with no preconditioning to three of the test problems described in Section 3.7. See
Example 6.1 for the meaning of the column headers in the table. In this test the
numberk of directions in the recurrence isk = 10.

There exist several other ways to relate the quasi-minimal residual norm to the
actual minimal residual norm provided by GMRES. The following result was proved
by Freund and Nachtigal [136] for the QMR algorithm to be seenin the next chapter.
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Matrix Iters Kflops Residual Error

F2DA 98 7216 0.36E-02 0.13E-03

F3D 75 22798 0.64E-03 0.32E-03

ORS 300 24138 0.13E+02 0.25E-02

Table 6.3: A test run of DQGMRES with no preconditioning.

Theorem 6.11 Assume thatVm+1, the Arnoldi basis associated with DQGMRES,
is of full rank. LetrQ

m and rG
m be the residual norms obtained afterm steps of the

DQGMRES and GMRES algorithms, respectively. Then

‖rQ
m‖2 ≤ κ2(Vm+1)‖rG

m‖2. (6.59)

Proof. Consider the subset ofKm+1 defined by

R = {r : r = Vm+1t; t = βe1 − H̄my; y ∈ C
m}.

Denote byym the minimizer of‖βe1−H̄my‖2 overy andtm = βe1−H̄mym, rm =
Vm+1tm ≡ rQ

m. By assumption,Vm+1 is of full rank and there is an(m+1)×(m+1)
nonsingular matrixS such thatWm+1 = Vm+1S is unitary. Then, for any member
ofR,

r = Wm+1S
−1t, t = SWH

m+1r

and, in particular,
‖rm‖2 ≤ ‖S−1‖2‖tm‖2. (6.60)

Now ‖tm‖2 is the minimum of the 2-norm ofβe1 − H̄my over ally’s and therefore,

‖tm‖2 = ‖SWH
m+1rm‖ ≤ ‖SWH

m+1r‖2 ∀r ∈ R
≤ ‖S‖2‖r‖2 ∀r ∈ R
≤ ‖S‖2‖rG‖2. (6.61)

The result follows from (6.60), (6.61), and the fact thatκ2(Vm+1) = κ2(S).

6.5.7 Relations between FOM and GMRES

If the last row of the least-squares system in (6.44) is deleted, instead of the one in
(6.46), i.e., before the last rotationΩ6 is applied, the same approximate solution as
FOM would result. Indeed, this would correspond to solving the systemHmy = βe1
using the QR factorization. As a practical consequence a single subroutine can be
written to handle both cases. This observation can also be helpful in understanding
the relationships between the two algorithms.
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In what follows the FOM and GMRES iterates are denoted by the superscripts
F andG, respectively. The residual norm achieved at stepj will be denoted byρF

j

for FOM andρG
j for GMRES. An important consequence of (6.47) is that

ρG
m = |sm|ρG

m−1 ,

which leads to he following equality:

ρG
m = |s1s2 . . . sm|β . (6.62)

Note that formulas (6.37) yield nonnegativesi’s, so the absolute values are not re-
quired. They are left only for generality.

Define H̄(k)
m to be the matrix resulting form applying the firstk rotations to

H̄m and, similarly, letḡ(k)
m be the vector resulting from applying the firstk rota-

tions to the right-hand sideβe1. As usualH(k)
m is the matrixH̄(k)

m with its last row
deleted andg(k)

m the vector of sizem obtained by removing the last component of
ḡ
(k)
m . By formula (6.18), the residual obtained from the Arnoldi process is given

by ‖rF
m‖2 = ‖b − AxF

m‖2 = hm+1,m|eTmym|. In addition,ym = H−1
m (βe1) can

be obtained by back-solvingH(m−1)
m y = g(m−1). Therefore, its last component is

eTmg
(m−1)
m /h

(m−1)
mm . Hence,

ρF
m = hm+1,m|eTmH−1

m (βe1)| = hm+1,m

∣
∣
∣
∣
∣

eTmg
(m−1)

h
(m−1)
mm

∣
∣
∣
∣
∣
.

As before, letγm denote the last component ofḡm−1, or equivalently, them-th com-
ponent ofg(m−1), i.e., before the last rotationΩm is applied (See (6.36) and (6.44)
for an illustration). Then,

|eTmg(m−1)| = |sm−1γm| = · · · = |s1s2 . . . sm−1β| .

Therefore, the above expression forρF
m becomes,

ρF
m =

hm+1,m

|h(m−1)
mm |

|s1s2 . . . sm−1β|.

Now expressions (6.37) show thathm+1,m/|h(m−1)
mm | is the tangent of the angle defin-

ing them-th rotation, and therefore,

ρF
m =

|sm|
|cm|
|s1s2 . . . sm−1β| .

A comparison with (6.62), yields a revealing relation between the residuals of the
FOM and GMRES algorithms, namely,

ρF
m =

1

|cm|
ρG

m .

The trigonometric relation1/ cos2 θ = 1 + tan2 θ, can now be invoked:1/|cm| =
[1 + (hm+1,m/h

(m−1)
mm )2]1/2. These results are summarized in the following propo-

sition (Brown [66]).
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Proposition 6.12 Assume thatm steps of the Arnoldi process have been taken and
thatHm is nonsingular. Letξ ≡ (Qm−1H̄m)mm andh ≡ hm+1,m. Then the residual
norms produced by the FOM and the GMRES algorithms are related by the equality

ρF
m =

1

|cm|
ρG

m = ρG
m

√

1 +
h2

ξ2
. (6.63)

It is also possible to prove the above result by exploiting the relation (6.75); see
Exercise 4.

The termξ in the expression (6.63) is not readily available and this results in
an expression that is hard to interpret practically. Another, somewhat more explicit
expression, can be obtained from simply relatingcm with two consecutive residual
norms of GMRES. The next result shown by Cullum and Greenbaum[92] follows
immediatly from the above proposition and the relation|sm| = ρG

m/ρ
G
m−1 which is a

consequence of (6.62).

Proposition 6.13 Assume thatm steps of the Arnoldi process have been taken and
that Hm is nonsingular. Then the residual norms produced by the FOM and the
GMRES algorithms are related by the equality

ρF
m =

ρG
m

√

1−
(
ρG

m/ρ
G
m−1

)2
. (6.64)

The above relation can be recast as

1

(ρF
m)2

+
1

(
ρG

m−1

)2 =
1

(ρG
m)2

(6.65)

Consider now these equations form,m− 1, · · ·, 1,

1

(ρF
m)

2 +
1

(
ρG

m−1

)2 =
1

(ρG
m)

2

1
(
ρF

m−1

)2 +
1

(
ρG

m−2

)2 =
1

(
ρG

m−1

)2

· · · = · · ·
1

(
ρF
1

)2 +
1

(
ρG
0

)2 =
1

(
ρG
1

)2

Note thatρG
0 is simply the initial residual norm and can as well be denotedby ρF

0 .
Summing the above equations yields,

m∑

i=0

1
(
ρF

i

)2 =
1

(ρG
m)

2 . (6.66)
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Corollary 6.14 The residual norms produced by the FOM and the GMRES algo-
rithms are related by the equality

ρG
m =

1
√
∑m

i=0

(
1/ρF

i

)2
(6.67)

The above relation establishes rigorously the intuitive fact that FOM and GM-
RES are never too far away from each other. It is clear thatρG

m ≤ ρF
m. On the other

hand, letρF
m∗

by the smallest residual norms achieved the firstm steps of FOM. Then

1

(ρG
m)2

=
m∑

i=0

1
(
ρF

i

)2 ≤
m+ 1
(
ρF

m∗

)2

An immediate consequence of this inequality is the following proposition.

Proposition 6.15 Assume thatm steps of GMRES and FOM are taken (steps in FOM
with a singularHm are skipped). LetρF

m∗
be the smallest residual norm achieved by

FOM in the firstm steps. Then, the following inequalities hold:

ρG
m ≤ ρF

m∗
≤ √m ρG

m (6.68)

We now establish another interesting relation between the FOM and GMRES
iterates, which will be exploited in the next chapter. A general lemma is first shown
regarding the solutions of the triangular systems

Rmym = gm

obtained from applying successive rotations to the Hessenberg matricesH̄m. As was
stated before, the only difference between theym vectors obtained in GMRES and
Arnoldi is that the last rotationΩm is omitted in FOM. In other words, theRm matrix
for the two methods differs only in its(m,m) entry while the right-hand sides differ
only in their last components.

Lemma 6.16 Let R̃m be them × m upper part of the matrixQm−1H̄m and, as
before, letRm be them ×m upper part of the matrixQmH̄m. Similarly, letg̃m be
the vector of the firstm components ofQm−1(βe1) and letgm be the vector of the
firstm components ofQm(βe1). Define

ỹm = R̃−1
m g̃m, ym = R−1

m gm

the y vectors obtained for anm-dimensional FOM and GMRES methods, respec-
tively. Then

ym −
(ym−1

0

)

= c2m

(

ỹm −
(ym−1

0

))

(6.69)

in whichcm is the cosine used in them-th rotationΩm, as defined by (6.37).
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Proof. The following relation holds:

Rm =

(
Rm−1 zm

0 ξm

)

, R̃m =

(
Rm−1 zm

0 ξ̃m

)

.

Similarly, for the right-hand sides,

gm =

(
gm−1

γm

)

, g̃m =

(
gm−1

γ̃m

)

with
γm = cmγ̃m. (6.70)

Denoting byλ the scalar
√

ξ̃2m + h2
m+1,m, and using the definitions ofsm andcm,

we obtain

ξm = cmξ̃m + smhm+1,m =
ξ̃2m
λ

+
h2

m+1,m

λ
= λ =

ξ̃m
cm
. (6.71)

Now,

ym = R−1
m gm =

(
R−1

m−1 − 1
ξm
R−1

m−1zm
0 1

ξm

)(
gm−1

γm

)

(6.72)

which, upon observing thatR−1
m−1gm−1 = ym−1, yields,

ym −
(ym−1

0

)

=
γm

ξm

(−R−1
m−1zm
1

)

. (6.73)

Replacingym, ξm, γm by ỹm, ξ̃m, γ̃m, respectively, in (6.72), a relation similar to
(6.73) would result except thatγm/ξm is replaced bỹγm/ξ̃m which, by (6.70) and
(6.71), satisfies the relation

γm

ξm
= c2m

γ̃m

ξ̃m
.

The result follows immediately.

If the FOM and GMRES iterates are denoted by the superscriptsF andG, respec-
tively, then the relation (6.69) implies that

xG
m − xG

m−1 = c2m
(
xF

m − xG
m−1

)
,

or,
xG

m = s2mx
G
m−1 + c2mx

F
m. (6.74)

This leads to the following relation for the residual vectors obtained by the two meth-
ods,

rG
m = s2mr

G
m−1 + c2mr

F
m (6.75)

which indicates that, in general, the two residual vectors will evolve hand in hand.
In particular, ifcm = 0, then GMRES will not progress at stepm, a phenomenon
known as stagnation. However, in this situation, accordingto the definitions (6.37)
of the rotations,h(m−1)

mm = 0 which implies thatHm is singular and, therefore,xF
m is

not defined. In fact, the reverse of this is also true, a resultdue to Brown [66], which
is stated without proof in the following proposition.
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Proposition 6.17 If at any given stepm, the GMRES iterates make no progress, i.e.,
if xG

m = xG
m−1 thenHm is singular andxF

m is not defined. Conversely, ifHm is
singular at stepm, i.e., if FOM breaks down at stepm, andA is nonsingular, then
xG

m = xG
m−1.

Note also that the use of the above lemma is not restricted to the GMRES-FOM
pair. Some of the iterative methods defined in this chapter and the next involve a
least-squares problem of the form (6.30). In such cases, theiterates of the least-
squares method and those of the orthogonal residual (Galerkin) method will be re-
lated by the same equation.

6.5.8 Residual smoothing

The previous section established strong relations betweenthe GMRES and FOM
iterates. In fact it is possible to derive the GMRES iteratesfrom the FOM iterates,
by simply exploiting the relations (6.74 – 6.75), which we now rewrite as

xG
m = xG

m−1 + c2m(xF
m − xG

m−1) ; rG
m = rG

m−1 + c2m(rF
m − rG

m−1) .

The above relations are instances of a class of algorithms derived by ‘residual smooth-
ing’, which define a new sequence of iterates, denoted here byxS

i from an original
sequence, denoted byxO

i . The residual vectors of the two sequences are denoted by
rS
i andrO

i respectively. The new sequences are as follows:

xS
m = xS

m−1 + ηm(xO
m − xS

m−1) ; rS
m = rS

m−1 + ηm(rO
m − rS

m−1) .

The parameterηm is selected so as to make the residualrm behave better than the
original one, in the sense that large variations in the residual are dampened. InMin-
imal Residual Smoothingthe ηm’s are selected to minimize the new residual norm
‖rS

m‖2. This is in essence a minimal residual projection method in the direction
xO

m − xS
m−1 and it is achieved by selectingηm so that the new residualrS

m is orthog-
onal toA(xO

m − xS
m−1) = −(rO

m − rS
m−1). Thus,

ηm = −(rS
m−1, r

O
m − rS

m−1)

‖rO
m − rS

m−1‖22
,

resulting in the following algorithm.

ALGORITHM 6.14 Minimal residual smoothing

1. xS
0 = xO

0 , rS
0 = rO

0 ;
2. Form = 1, . . . , Do:
3. ComputexO

m andrO
m

4. ηm = −
(
rS
m−1, r

O
m − rS

m−1

)
/‖rO

m − rS
m−1‖22

5. xS
m = xS

m−1 + ηm(xO
m − xS

m−1)
6. rS

m = rS
m−1 + ηm(rO

m − rS
m−1)

7. EndDo
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In the situation whenrO
m is orthogonal torS

m−1, then it is possible to show that the
same relation as (6.64) (or equivalently (6.65)) is satisfied. This result is due to
Weiss [307].

Lemma 6.18 If rO
m is orthogonal torS

m−1 at each stepm ≥ 1, then the residual
norms satisfy the relation

1

‖rS
m‖22

=
1

‖rS
m−1‖22

+
1

‖rO
m‖22

, (6.76)

and the coefficientηm is given by

ηm =
‖rS

m−1‖22
‖rS

m−1‖22 + ‖rO
m‖22

. (6.77)

Proof. SincerO
m ⊥ rS

m−1 it follows that(rS
m−1, r

O
m − rS

m−1) = −(rS
m−1, r

S
m−1) and

‖rO
m − rS

m−1‖22 = ‖rO
m‖22 + ‖rS

m−1‖22. This shows (6.77). The orthogonality ofrS
m

with rS
m − rS

m−1, implies that

‖rS
m‖22 = ‖rS

m−1‖22 − η2
m‖rO

m − rS
m−1‖22

= ‖rS
m−1‖22 −

‖rS
m−1‖42

‖rO
m‖22 + ‖rS

m−1‖22
=
‖rS

m−1‖2‖rO
m‖22

‖rO
m‖22 + ‖rS

m−1‖22
.

The result (6.76) follows by inverting both sides of the above equality.

The assumptions of the lemma are satisfied in particular whenthe residual vec-
tors of the original algorithm are orthogonal to each other,as is the case for the FOM
method. This can be shown by simple induction, using the factthat each newrS

k is
ultimately a linear combination of therO

i ’s, for i ≤ k. Since the relation established
by the lemma is identical with that of the GMRES algorithm, itfollows that the
residual norms are identical, since they both satisfy (6.67). Because the approximate
solutions belong to the same subspace and GMRES minimizes the residual norm, it
is clear thatthe resulting approximate solutions are identical.

This result can also be shown in a different way. Induction shows that the vectors
pj = xO

j − xS
j−1 areATA - orthogonal, i.e.,(Api, Apj) = 0 for i 6=. Then a lemma

to be seen in Section 6.9 (Lemma 6.21) can be expoited to provethe same result.
This is left as an exercise (Exercise 8).

The computation of the scalarηm is likely to be subject to large errors when
the residuals become small because there may be a substantial difference between
the actual residual and the one computed recursively by the algorithm. One remedy
is to explicitly use the directionspj mentioned above. The formulas and the actual
update will then follow closely those seen in Section 5.3, with v replaced bypm,
andw by Apm. Speficially, lines 5 and 6 of Algorithm 6.14 are repaced byxS

m =
xS

m−1 + ηmpm andrS
m = rS

m−1 − ηmApm, respectively, while the coefficientηm

is computed asηm = (rS
m−1, Apm)/(Apm, Apm). Details are omitted but may be

found in [324].
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Lemma 6.18 yields the following equality, in whichρj denotes‖rO
j ‖2 and τj

denotes‖rS
j ‖2,

rS
m =

ρ2
m

ρ2
m + τ2

m−1

rS
m−1 +

τ2
m−1

ρ2
m + τ2

m−1

rO
m

=
1

1
τ2
m−1

+ 1
ρ2

m

[
1

τ2
m−1

rS
m−1 +

1

ρ2
m

rO
m

]

. (6.78)

Summing up the relations (6.76), yields an expression similar to (6.66),

1

τ2
j

=

j
∑

i=0

1

ρ2
j

.

Combining this with (6.78) and using induction immediatly yields the following ex-
pression which holds under the assumptions of Lemma 6.18 :

rS
m =

1
∑m

j=1
1
ρ2

j

m∑

j=1

rO
j

ρ2
j

. (6.79)

The smoothed residual is a convex combination of the residuals obtained by the orig-
inal algorithm (e.g., FOM). The coefficient used for a given residual is inversely
proportional to its norm squared. In other words, residual smoothing will tend to
dampen wide variations in the original residuals. If the original residual moves up
very high then (6.79) or (6.78) show that the next S-residualwill tend to stagnate. If
the other hand, the original residual decreases very rapidly at a given step, then the
smoothed residual will be close to it. In other words, stagnation and fast convergence
of the S-residual goes hand in hand with poor convergence andfast convergence, re-
spectively, of the original scheme.

Consider now the general situation when the residual vectors do not satisfy the
conditions of Lemma 6.18. In this case the above results are not valid. However,
one may ask whether or not it is possible to still select theηm’s by an alternative
formula such that the nice relation (6.79) remains valid. A hint at a possible answer
is provided by a look at Equations (6.76) and (6.77). These are the only relations
used to establish (6.79). This suggests computing theηm’s recursively as follows

ηm =
τ2
m−1

τ2
m−1 + ρ2

m

;
1

τ2
m

=
1

τ2
m−1

+
1

ρ2
m

It is only when the conditions of Lemma 6.18 are satisfied, that τk is the norm of the
residualsrS

k . What is important is that the relation (6.78) can be shown tobe valid
with ‖rS

j ‖22 replaced byτ2
j . As result, the same induction proof as before will show

that (6.79) is also valid. Replacing theηm of Algorithm 6.14 by the one defined above
gives rise to an algorithm known asquasi-minimal residual smoothing, or QMRS.

It can easily be shown that when applied to the sequence of iterates produced
by IOM/DIOM, then QMRS will, in exact arithmetic, yield the same sequence as
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QMRES/DQGMRES. The key relations are (6.47), which is stillvalid, and (6.57).
The quasi-residual norm which replaces the actual normrS

m is now equal toγm+1.
By (6.57), the cosine used in them-th step of QGMRES/DQGMES satisfies:|cm| =
|γm+1|/ρ2

m. By formula (6.47),|sm| = |γm+1/γm|. Writing c2m + s2m = 1 and using
the notationτm ≡ γm+1, yields

γ2
m+1

γ2
m

+
γ2

m+1

ρ2
m

= 1 → 1

τ2
m

=
1

τ2
m−1

+
1

ρ2
m

This, along with the relation (6.58), shows that the residual vectors computed by
QGMRES-/DQGMRES obey the exact same recurrence as those defined by QMRS.
Quasi-minimal residual smoothing is related to several other algorithms to be de-
scribed in the next sections.

6.5.9 GMRES for complex systems

Complex linear systems arise in many important applications. Perhaps the best
known of these is when solving Maxwell’s equations in electromagnetics. The most
common method used in this context gives rise to large dense and complex linear
systems.

Adapting GMRES to the complex case is fairly straightforward. The guiding
principle is that the method should minimize the 2-norm of the residual on the affine
Krylov subspace. This is achieved by Algorithm 6.9 in which the inner products are
now the complex inner produts inCn, defined by (1.3) of Chapter 1. The only part
requiring some attention is the solution of the least-squares problem in Line 12 of the
Algorithm or rather, the practical implementation using Givens rotations outlined in
Section 6.5.3.

Complex Givens rotations are defined in the following way instead of (6.34):

Ωi =















1
. . .

1
c̄i s̄i

−si ci
1

. . .
1















← row i
← row i+ 1

(6.80)

with |ci|2 + |si|2 = 1. The description of Section 6.5.3 can be followed in the same
way. In particular the sine and cosine defined in (6.37) for the Givens rotation matrix
at stepi are given by

si =
hi+1,i

√

|h(i−1)
ii |2 + h2

i+1,i

, ci =
h

(i−1)
ii

√

|h(i−1)
ii |2 + h2

i+1,i

. (6.81)

A slight simplification takes place when applying the successive rotations. Since
hj+1,j is the 2-norm of a vector, it is real (nonnegative), and sosi is also a real
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(nonnegative) number while, in general,ci is complex. The rest of the development
is identical, though it is worth noting that the diagonal entries of the upper triangular
matrixR are (nonnegative) real and that the scalarsγi are real.

6.6 The Symmetric Lanczos Algorithm

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi’s
method for the particular case when the matrix is symmetric.WhenA is symmetric,
then the Hessenberg matrixHm becomes symmetric tridiagonal. This leads to a
three-term recurrence in the Arnoldi process and short-term recurrences for solution
algorithms such as FOM and GMRES. On the theoretical side, there is also much
more that can be said on the resulting approximation in the symmetric case.

6.6.1 The Algorithm

To introduce the Lanczos algorithm we begin by making the observation stated in the
following theorem.

Theorem 6.19 Assume that Arnoldi’s method is applied to a real symmetric matrix
A. Then the coefficientshij generated by the algorithm are such that

hij = 0, for 1 ≤ i < j − 1, (6.82)

hj,j+1 = hj+1,j, j = 1, 2, . . . ,m. (6.83)

In other words, the matrixHm obtained from the Arnoldi process is tridiagonal and
symmetric.

Proof. The proof is an immediate consequence of the fact thatHm = V T
mAVm is

a symmetric matrix which is also a Hessenberg matrix by construction. Therefore,
Hm must be a symmetric tridiagonal matrix.

The standard notation used to describe the Lanczos algorithm is obtained by setting

αj ≡ hjj , βj ≡ hj−1,j,

and ifTm denotes the resultingHm matrix, it is of the form,

Tm =









α1 β2

β2 α2 β3

. . .
βm−1 αm−1 βm

βm αm









. (6.84)

This leads to the following form of the Modified Gram-Schmidtvariant of Arnoldi’s
method, namely, Algorithm 6.2.

ALGORITHM 6.15 The Lanczos Algorithm
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1. Choose an initial vectorv1 of 2-norm unity. Setβ1 ≡ 0, v0 ≡ 0
2. Forj = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1

4. αj := (wj , vj)
5. wj := wj − αjvj

6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo

It is rather surprising that the above simple algorithm guarantees, at least in exact
arithmetic, that the vectorsvi, i = 1, 2, . . . , are orthogonal. In reality, exact orthogo-
nality of these vectors is only observed at the beginning of the process. At some point
thevi’s start losing their global orthogonality rapidly. There has been much research
devoted to finding ways to either recover the orthogonality,or to at least diminish its
effects bypartial or selectiveorthogonalization; see Parlett [224].

The major practical differences with Arnoldi’s method are that the matrixHm is
tridiagonal and, more importantly, that only three vectorsmust be saved, unless some
form of reorthogonalization is employed.

6.6.2 Relation with Orthogonal Polynomials

In exact arithmetic, the core of Algorithm 6.15 is a relationof the form

βj+1vj+1 = Avj − αjvj − βjvj−1.

This three-term recurrence relation is reminiscent of the standard three-term recur-
rence relation of orthogonal polynomials. In fact, there isindeed a strong relationship
between the Lanczos algorithm and orthogonal polynomials.To begin, recall that if
the grade ofv1 is≥ m, then the subspaceKm is of dimensionm and consists of all
vectors of the formq(A)v1, whereq is a polynomial withdegree(q) ≤ m−1. In this
case there is even an isomorphism betweenKm andPm−1, the space of polynomials
of degree≤ m− 1, which is defined by

q ∈ Pm−1 → x = q(A)v1 ∈ Km.

Moreover, we can consider that the subspacePm−1 is provided with the inner product

< p, q >v1= (p(A)v1, q(A)v1). (6.85)

This is indeed a nondegenerate bilinear form under the assumption thatm does not
exceedµ, the grade ofv1. Now observe that the vectorsvi are of the form

vi = qi−1(A)v1

and the orthogonality of thevi’s translates into the orthogonality of the polynomials
with respect to the inner product (6.85).
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It is known that real orthogonal polynomials satisfy a three-term recurrence.
Moreover, the Lanczos procedure is nothing but the Stieltjes algorithm; (see, for
example, Gautschi [141]) for computing a sequence of orthogonal polynomials with
respect to the inner product (6.85). It is known [246] that the characteristic poly-
nomial of the tridiagonal matrix produced by the Lanczos algorithm minimizes the
norm‖.‖v1 over the monic polynomials. The recurrence relation between the char-
acteristic polynomials of tridiagonal matrices also showsthat the Lanczos recurrence
computes the sequence of vectorspTm(A)v1, wherepTm is the characteristic polyno-
mial of Tm.

6.7 The Conjugate Gradient Algorithm

The Conjugate Gradient algorithm is one of the best known iterative techniques for
solving sparse Symmetric Positive Definite linear systems.Described in one sen-
tence, the method is a realization of an orthogonal projection technique onto the
Krylov subspaceKm(r0, A) wherer0 is the initial residual. It is therefore mathemat-
ically equivalent to FOM. However, becauseA is symmetric, some simplifications
resulting from the three-term Lanczos recurrence will leadto more elegant algo-
rithms.

6.7.1 Derivation and Theory

We first derive the analogue of FOM, or Arnoldi’s method, for the case whenA is
symmetric. Given an initial guessx0 to the linear systemAx = b and the Lanczos
vectorsvi, i = 1, . . . ,m together with the tridiagonal matrixTm, the approximate
solution obtained from an orthogonal projection method ontoKm, is given by

xm = x0 + Vmym, ym = T−1
m (βe1). (6.86)

ALGORITHM 6.16 Lanczos Method for Linear Systems

1. Computer0 = b−Ax0, β := ‖r0‖2, andv1 := r0/β
2. Forj = 1, 2, . . . ,m Do:
3. wj = Avj − βjvj−1 (If j = 1 setβ1v0 ≡ 0)
4. αj = (wj , vj)
5. wj := wj − αjvj

6. βj+1 = ‖wj‖2. If βj+1 = 0 setm := j and go to 9
7. vj+1 = wj/βj+1

8. EndDo
9. SetTm = tridiag (βi, αi, βi+1), andVm = [v1, . . . , vm].

10. Computeym = T−1
m (βe1) andxm = x0 + Vmym

Many of the results obtained from Arnoldi’s method for linear systems are still valid.
For example, the residual vector of the approximate solution xm is such that

b−Axm = −βm+1e
T
mymvm+1. (6.87)
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The Conjugate Gradient algorithm can be derived from the Lanczos algorithm in
the same way DIOM was derived from IOM. In fact, the ConjugateGradient algo-
rithm can be viewed as a variation of DIOM(2) for the case whenA is symmetric. We
will follow the same steps as with DIOM, except that the notation will be simplified
whenever possible.

First write the LU factorization ofTm asTm = LmUm. The matrixLm is unit
lower bidiagonal andUm is upper bidiagonal. Thus, the factorization ofTm is of the
form

Tm =









1
λ2 1

λ3 1
λ4 1

λ5 1









×









η1 β2

η2 β3

η3 β4

η4 β5

η5









.

The approximate solution is then given by,

xm = x0 + VmU
−1
m L−1

m (βe1).

Letting
Pm ≡ VmU

−1
m

and
zm = L−1

m βe1,

then,
xm = x0 + Pmzm.

As for DIOM, pm, the last column ofPm, can be computed from the previouspi’s
andvm by the simple update

pm = η−1
m [vm − βmpm−1].

Note thatβm is a scalar computed from the Lanczos algorithm, whileηm results from
them-th Gaussian elimination step on the tridiagonal matrix, i.e.,

λm =
βm

ηm−1
, (6.88)

ηm = αm − λmβm. (6.89)

In addition, following again what has been shown for DIOM,

zm =

[
zm−1

ζm

]

,

in which ζm = −λmζm−1. As a result,xm can be updated at each step as

xm = xm−1 + ζmpm

wherepm is defined above.
This gives the following algorithm, which we call the directversion of the Lanc-

zos algorithm for linear systems.
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ALGORITHM 6.17 D-Lanczos

1. Computer0 = b−Ax0, ζ1 := β := ‖r0‖2, andv1 := r0/β
2. Setλ1 = β1 = 0, p0 = 0
3. Form = 1, 2, . . ., until convergence Do:
4. Computew := Avm − βmvm−1 andαm = (w, vm)

5. If m > 1 then computeλm = βm

ηm−1
andζm = −λmζm−1

6. ηm = αm − λmβm

7. pm = η−1
m (vm − βmpm−1)

8. xm = xm−1 + ζmpm

9. If xm has converged then Stop
10. w := w − αmvm

11. βm+1 = ‖w‖2, vm+1 = w/βm+1

12. EndDo

This algorithm computes the solution of the tridiagonal system Tmym = βe1
progressively by using Gaussian elimination without pivoting. However, as was ex-
plained for DIOM, partial pivoting can also be implemented at the cost of having to
keep an extra vector. In fact, Gaussian elimination with partial pivoting is sufficient
to ensure stability for tridiagonal systems. The more complex LQ factorization has
also been exploited in this context and gave rise to an algorithm known as SYMMLQ
[223].

The two algorithms 6.16 and 6.17 are mathematically equivalent, that is, they
deliver the same approximate solution if they are both executable. However, since
Gaussian elimination without pivoting is being used implicitly to solve the tridiago-
nal systemTmy = βe1, the direct version may be more prone to breakdowns.

Observe that the residual vector for this algorithm is in thedirection ofvm+1 due
to equation (6.87). Therefore, the residual vectors are orthogonal to each other as
in FOM. Likewise, the vectorspi areA-orthogonal, orconjugate. These results are
established in the next proposition.

Proposition 6.20 Letrm = b−Axm,m = 0, 1, . . ., be the residual vectors produced
by the Lanczos and the D-Lanczos algorithms (6.16 and 6.17) andpm,m = 0, 1, . . . ,
the auxiliary vectors produced by Algorithm 6.17. Then,

1. Each residual vectorrm is such thatrm = σmvm+1 whereσm is a certain
scalar. As a result, the residual vectors are orthogonal to each other.

2. The auxiliary vectorspi form anA-conjugate set, i.e.,(Api, pj) = 0, for i 6= j.

Proof. The first part of the proposition is an immediate consequenceof the relation
(6.87). For the second part, it must be proved thatP T

mAPm is a diagonal matrix,
wherePm = VmU

−1
m . This follows from

P T
mAPm = U−T

m V T
mAVmU

−1
m

= U−T
m TmU

−1
m

= U−T
m Lm.
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Now observe thatU−T
m Lm is a lower triangular matrix which is also symmetric since

it is equal to the symmetric matrixP T
mAPm. Therefore, it must be a diagonal matrix.

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Con-
jugate Gradient algorithm which we now derive. The vectorxj+1 can be expressed
as

xj+1 = xj + αjpj . (6.90)

In order to conform with standard notation used in the literature to describe the algo-
rithm, the indexing of thep vectors now begins at zero instead of one as was done so
far. This explains the difference between the above formulaand formula (6.21) used
for DIOM. Now, the residual vectors must satisfy the recurrence

rj+1 = rj − αjApj . (6.91)

If the rj ’s are to be orthogonal, then it is necessary that(rj − αjApj, rj) = 0 and as
a result

αj =
(rj , rj)

(Apj , rj)
. (6.92)

Also, it is known that the next search directionpj+1 is a linear combination ofrj+1

andpj, and after rescaling thep vectors appropriately, it follows that

pj+1 = rj+1 + βjpj . (6.93)

Thus, a first consequence of the above relation is that

(Apj, rj) = (Apj , pj − βj−1pj−1) = (Apj, pj)

becauseApj is orthogonal topj−1. Then, (6.92) becomesαj = (rj , rj)/(Apj , pj).
In addition, writing thatpj+1 as defined by (6.93) is orthogonal toApj yields

βj = −(rj+1, Apj)

(pj , Apj)
.

Note that from (6.91)

Apj = − 1

αj
(rj+1 − rj) (6.94)

and therefore,

βj =
1

αj

(rj+1, (rj+1 − rj))
(Apj, pj)

=
(rj+1, rj+1)

(rj , rj)
.

Putting these relations together gives the following algorithm.

ALGORITHM 6.18 Conjugate Gradient
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1. Computer0 := b−Ax0, p0 := r0.
2. Forj = 0, 1, . . ., until convergence Do:
3. αj := (rj , rj)/(Apj , pj)
4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. βj := (rj+1, rj+1)/(rj , rj)
7. pj+1 := rj+1 + βjpj

8. EndDo

It is important to note that the scalarsαj , βj in this algorithm are different from those
of the Lanczos algorithm. The vectorspj are multiples of thepj ’s of Algorithm 6.17.
In terms of storage, in addition to the matrixA, four vectors (x, p,Ap, andr) must be
saved in Algorithm 6.18, versus five vectors (vm, vm−1, w, p, andx) for Algorithm
6.17.

6.7.2 Alternative Formulations

Algorithm 6.18 is the best known formulation of the Conjugate Gradient algorithm.
There are, however, several alternative formulations. Here, only one such formula-
tion is shown, which can be derived once more from the Lanczosalgorithm.

The residual polynomialrm(t) associated with them-th CG iterate must satisfy
a three-term recurrence, implied by the three-term recurrence of the Lanczos vectors.
Indeed, these vectors are just the scaled versions of the residual vectors. Therefore,
we must seek a three-term recurrence of the form

rm+1(t) = ρm(rm(t)− γmtrm(t)) + δmrm−1(t).

In addition, the consistency conditionrm(0) = 1 must be maintained for eachm,
leading to the recurrence,

rm+1(t) = ρm(rm(t)− γmtrm(t)) + (1− ρm)rm−1(t). (6.95)

Observe that ifrm(0) = 1 andrm−1(0) = 1, thenrm+1(0) = 1, as desired. Trans-
lating the above relation into the sequence of residual vectors yields

rm+1 = ρm(rm − γmArm) + (1− ρm)rm−1. (6.96)

Recall that the vectorsri’s are multiples of the Lanczos vectorsvi’s. As a result,
γm should be the inverse of the scalarαm of the Lanczos algorithm. In terms of the
r-vectors this means

γm =
(rm, rm)

(Arm, rm)
.

Equating the inner products of both sides of (6.96) withrm−1, and using the orthog-
onality of ther-vectors, gives the following expression forρm, after some algebraic
calculations,

ρm =

[

1− γm

γm−1

(rm, rm)

(rm−1, rm−1)

1

ρm−1

]−1

. (6.97)
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The recurrence relation for the approximate solution vectors can be extracted
from the recurrence relation for the residual vectors. Thisis found by starting from
(6.95) and using the relationrm(t) = 1− tsm−1(t) between the solution polynomial
sm−1(t) and the residual polynomialrm(t). Thus,

sm(t) =
1− rm+1(t)

t

= ρm

(
1− rm(t)

t
− γmrm(t)

)

+ (1− ρm)
1− rm−1(t)

t

= ρm (sm−1(t)− γmrm(t)) + (1− ρm)sm−2(t).

This gives the recurrence,

xm+1 = ρm(xm − γmrm) + (1− ρm)xm−1. (6.98)

All that is left for the recurrence to be determined completely is to define the first
two iterates. The initial iteratex0 is given. The first vector should be of the form

x1 = x0 − γ0r0,

to ensure thatr1 is orthogonal tor0. This means that the two-term recurrence can be
started withρ0 = 1, and by settingx−1 ≡ 0. Putting these relations and definitions
together gives the following algorithm.

ALGORITHM 6.19 CG – Three-Term Recurrence Variant

1. Computer0 = b−Ax0. Setx−1 ≡ 0 andρ0 = 1.
2. Forj = 0, 1, . . ., until convergence Do:

3. ComputeArj andγj =
(rj ,rj)

(Arj ,rj)

4. If (j > 0) computeρj =
[

1− γj

γj−1

(rj ,rj)
(rj−1,rj−1)

1
ρj−1

]−1

5. Compute xj+1 = ρj (xj − γjrj) + (1− ρj)xj−1

6. Compute rj+1 = ρj(rj − γjArj) + (1− ρj)rj−1

7. EndDo

This algorithm requires slightly more storage than the standard formulation: in addi-
tion toA, the vectorsrj , Arj , rj−1, xj andxj−1 must be kept. It is possible to avoid
keepingrj−1 by computing the residualrj+1 directly asrj+1 = b−Axj+1 in line 6
of the algorithm, but this would entail an additional matrix-vector product.

6.7.3 Eigenvalue Estimates from the CG Coefficients

Sometimes, it is useful to be able to obtain the tridiagonal matrix Tm related to the
underlying Lanczos iteration from the coefficients of the Conjugate Gradient algo-
rithm 6.18. This tridiagonal matrix can provide valuable eigenvalue information on
the matrixA. For example, the largest and smallest eigenvalues of the tridiagonal
matrix can approximate the smallest and largest eigenvalues of A. This could be
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used to compute an estimate of the condition number ofA which in turn can help
provide estimates of the error norm from the residual norm. Since the Greek letters
αi andβi have been used in both algorithms, notations must be changed. Denote by

Tm = tridiag [ηj, δj , ηj+1],

the tridiagonal matrix (6.84) associated with them-th step of the Lanczos algorithm.
We must seek expressions of the coefficientsηj , δj in terms of the coefficientsαj , βj ,
obtained from the CG algorithm. The key information regarding the correspondence
between the two pairs of coefficients resides in the correspondence between the vec-
tors generated by the two algorithms.

From (6.87) it is known that

rj = scalar× vj+1. (6.99)

As a result,

δj+1 =
(Avj+1, vj+1)

(vj+1, vj+1)
=

(Arj , rj)

(rj , rj)
.

The denominator(rj , rj) is readily available from the coefficients of the CG algo-
rithm, but the numerator(Arj , rj) is not. The relation (6.93) can be exploited to
obtain

rj = pj − βj−1pj−1 (6.100)

which is then substituted in(Arj , rj) to get

(Arj , rj) = (A(pj − βj−1pj−1), pj − βj−1pj−1) .

Note that the termsβj−1pj−1 are defined to be zero whenj = 0. Because thep
vectors areA-orthogonal,

(Arj , rj) = (Apj, pj) + β2
j−1 (Apj−1, pj−1) ,

from which we finally obtain forj > 0,

δj+1 =
(Apj, pj)

(rj , rj)
+ β2

j−1

(Apj−1, pj−1)

(rj, rj)
=

1

αj
+
βj−1

αj−1
. (6.101)

The above expression is only valid forj > 0. For j = 0, the second term in the
right-hand side should be omitted as was observed above. Therefore, the diagonal
elements ofTm are given by

δj+1 =

{
1
αj

for j = 0,
1
αj

+
βj−1

αj−1
for j > 0.

(6.102)

Now an expression for the co-diagonal elementsηj+1 is needed. From the defi-
nitions in the Lanczos algorithm,

ηj+1 = (Avj , vj+1) =
|(Arj−1, rj)|
‖rj−1‖2‖rj‖2

.
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Using (6.100) again and the relation (6.94) as well as orthogonality properties of the
CG algorithm, the following sequence of equalities results:

(Arj−1, rj) = (A(pj−1 − βj−2pj−2), rj)

= (Apj−1, rj)− βj−2(Apj−2, rj)

=
−1

αj−1
(rj − rj−1, rj) +

βj−2

αj−2
(rj−1 − rj−2, rj)

=
−1

αj−1
(rj , rj).

Therefore,

ηj+1 =
1

αj−1

(rj , rj)

‖rj−1‖2‖rj‖2
=

1

αj−1

‖rj‖2
‖rj−1‖2

=

√
βj−1

αj−1
.

This finally gives the general form of them-dimensional Lanczos tridiagonal matrix
in terms of the CG coefficients,

Tm =











1
α0

√
β0

α0√
β0

α0

1
α1

+ β0

α0

√
β1

α1

. . .

. .

√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2











. (6.103)

6.8 The Conjugate Residual Method

In the previous section we derived the Conjugate Gradient algorithm as a special
case of FOM for Symmetric Positive Definite matrices. Similarly, a new algorithm
can be derived from GMRES for the particular case whereA is Hermitian. In this
case, the residual vectors should beA-orthogonal, i.e., conjugate. In addition, the
vectorsApi’s i = 0, 1, . . . , are orthogonal. When looking for an algorithm with the
same structure as CG, but satisfying these conditions, we find the Conjugate Residual
algorithm. Notice that the residual vectors are now conjugate to each other, hence,
the name of the algorithm.

ALGORITHM 6.20 Conjugate Residual Algorithm

1. Computer0 := b−Ax0, p0 := r0
2. Forj = 0, 1, . . . , until convergence Do:
3. αj := (rj , Arj)/(Apj , Apj)
4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. βj := (rj+1, Arj+1)/(rj , Arj)
7. pj+1 := rj+1 + βjpj

8. ComputeApj+1 = Arj+1 + βjApj

9. EndDo
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Line 8 in the above algorithm computesApj+1 from Arj+1 without an additional
matrix-vector product. Five vectors of storage are needed in addition to the matrixA:
x, p,Ap, r,Ar. The algorithm requires one more vector update, i.e.,2n more opera-
tions than the Conjugate Gradient method and one more vectorof storage. Since the
two methods exhibit typically similar convergence, the Conjugate Gradient method
is often preferred.

6.9 GCR, ORTHOMIN, and ORTHODIR

All algorithms developed in this chapter are strongly related to, as well as defined
by, the choice of a basis of the Krylov subspace. The GMRES algorithm uses an or-
thonormal basis. In the Conjugate Gradient algorithm, thep’s areA-orthogonal, i.e.,
conjugate. In the Conjugate Residual method just described, theApi’s are orthog-
onal, i.e., thepi’s areATA-orthogonal. A number of algorithms can be developed
using a basis of this form in the nonsymmetric case as well. The main result that is
exploited in all these algorithms is the following lemma.

Lemma 6.21 Letp0, p1, . . . , pm−1, be a sequence of vectors such that each set{p0, p1,-
. . . , pj−1} for j ≤ m is a basis of the Krylov subspaceKj(A, r0) which isATA-
orthogonal, i.e., such that

(Api, Apk) = 0, for i 6= k.

Then the approximate solutionxm which has the smallest residual norm in the affine
spacex0 +Km(A, r0) is given by

xm = x0 +

m−1∑

i=0

(r0, Api)

(Api, Api)
pi. (6.104)

In addition,xm can be computed fromxm−1 by

xm = xm−1 +
(rm−1, Apm−1)

(Apm−1, Apm−1)
pm−1. (6.105)

Proof. The approximate solution and the associated residual vector can be written in
the form

xm = x0 +
m−1∑

i=0

αipi, rm = r0 −
m−1∑

i=0

αiApi. (6.106)

According to the optimality result of Proposition 5.3, in order for‖rm‖2 to be mini-
mum, the orthogonality relations

(rm, Api) = 0, i = 0, . . . ,m− 1

must be enforced. Using (6.106) and the orthogonality of theApi’s gives immedi-
ately,

αi = (r0, Api)/(Api, Api).
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This proves the first part of the lemma. Assume now thatxm−1 is known and thatxm

must be determined. According to formula (6.104), and the fact thatp0, . . . , pm−2 is
a basis ofKm−1(A, r0), we can writexm = xm−1 +αm−1pm−1 with αm−1 defined
above. Note that from the second part of (6.106),

rm−1 = r0 −
m−2∑

j=0

αjApj

so that

(rm−1, Apm−1) = (r0, Apm−1)−
m−2∑

j=0

αj(Apj , Apm−1) = (r0, Apm−1)

exploiting, once more, the orthogonality of the vectorsApj, j = 0, . . . ,m−1. Thus,

αm−1 =
(rm−1, Apm−1)

(Apm−1, Apm−1)
,

which proves the expression (6.105).

This lemma opens up many different ways to obtain algorithmsthat are mathe-
matically equivalent to the full GMRES. The simplest optioncomputes the next basis
vectorpm+1 as a linear combination of the current residualrm and all previouspi’s.
The approximate solution is updated by using (6.105). This is called the Generalized
Conjugate Residual (GCR) algorithm.

ALGORITHM 6.21 GCR

1. Computer0 = b−Ax0. Setp0 = r0.
2. Forj = 0, 1, . . . , until convergence Do:

3. αj =
(rj ,Apj)

(Apj ,Apj)

4. xj+1 = xj + αjpj

5. rj+1 = rj − αjApj

6. Computeβij = − (Arj+1,Api)
(Api,Api)

, for i = 0, 1, . . . , j

7. pj+1 = rj+1 +
∑j

i=0 βijpi

8. EndDo

To compute the scalarsβij in the above algorithm, the vectorArj and the previous
Api’s are required. In order to limit the number of matrix-vector products per step to
one, we can proceed as follows. Follow line 5 by a computationof Arj+1 and then
computeApj+1 after line 7 from the relation

Apj+1 = Arj+1 +

j
∑

i=0

βijApi.
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Both the set ofpi’s and that of theApi’s need to be saved. This doubles the storage
requirement compared with GMRES. The number of arithmetic operations per step
is also roughly 50% higher than GMRES.

The above version of GCR suffers from the same practical limitations as GM-
RES and FOM. A restarted version called GCR(m) can be trivially defined. Also,
a truncation of the orthogonalization of theApi’s, similar to IOM, leads to an algo-
rithm known as ORTHOMIN(k). Specifically, lines 6 and 7 of Algorithm 6.21 are
replaced by

6a. Computeβij = − (Arj+1,Api)
(Api,Api)

, for i = j − k + 1, . . . , j

7a. pj+1 = rj+1 +
∑j

i=j−k+1 βijpi .

Another class of algorithms is defined by computing the next basis vectorpj+1

as

pj+1 = Apj +

j
∑

i=0

βijpi (6.107)

in which, as before, theβij ’s are selected to make theApi’s orthogonal, i.e.,

βij = −(A2pj, Api)

(Api, Api)
.

The resulting algorithm is called ORTHODIR [178]. Restarted and truncated ver-
sions of ORTHODIR can also be defined.

6.10 The Faber-Manteuffel Theorem

As was seen in Section 6.6 whenA is symmetric, the Arnoldi algorithm simplifies
into the Lanczos procedure, which is defined through a three-term recurrence. As
a consequence, FOM is mathematically equivalent to the Conjugate Gradient algo-
rithm in this case. Similarly, the full GMRES algorithm gives rise to the Conjugate
Residual algorithm. It is clear that the CG-type algorithms, i.e., algorithms defined
through short-term recurrences, are more desirable than those algorithms which re-
quire storing entire sequences of vectors as in the GMRES process. These algorithms
require less memory and operations per step.

Therefore, the question is:Is it possible to define algorithms which are based
on optimal Krylov subspace projection and which give rise tosequences involving
short-term recurrences?An optimal Krylov subspace projection means a technique
which minimizes a certain norm of the error, or residual, on the Krylov subspace.
Such methods can be defined from the Arnoldi process.

It is sufficient to consider the Arnoldi process. If Arnoldi’s algorithm reduces
to thes-term Incomplete Orthogonalization Algoritm (Algorithm 6.6 with k ≡ s),
i.e., if hij = 0 for i < j − s + 1, then an(s − 1)-term recurrence can be defined
for updating the iterates, as was done in Section 6.4.2. Conversely, if the solution is
updated asxj+1 = xj + αjpj andpj satisfies a short recurrence, then the residual
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vectors will satisfy ans-term recurrence, i.e.,hij = 0 for i < j − s + 1. A similar
argument can be used for the the (full) GMRES algorithm when it simplifies into
DQGMRES. For all purposes, it is therefore sufficient to analyze what happens to
the Arnoldi process (or FOM). We start by generalizing the CGresult in a simple
way, by considering the DIOM algorithm.

Proposition 6.22 LetA be a matrix such that

AT v ∈ Ks(A, v)

for any vectorv. Then, DIOM(s) is mathematically equivalent to the FOM algorithm.

Proof. The assumption is equivalent to the statement that, for anyv, there is a poly-
nomialqv of degree≤ s − 1, such thatAT v = qv(A)v. In the Arnoldi process, the
scalarshij are defined byhij = (Avj , vi) and therefore

hij = (Avj , vi) = (vj , A
T vi) = (vj , qvi

(A)vi). (6.108)

Sinceqvi
is a polynomial of degree≤ s− 1, the vectorqvi

(A)vi is a linear combina-
tion of the vectorsvi, vi+1, . . . , vi+s−1. As a result, ifi < j − s + 1, thenhij = 0.
Therefore, DIOM(s) will give the same approximate solution as FOM.

In particular, if
AT = q(A)

whereq is a polynomial of degree≤ s − 1, then the result holds. However, since
Aq(A) = q(A)A for any polynomialq, the above relation implies thatA is normal.
As it turns out, the reverse is also true. That is, whenA is normal, then there is a
polynomial of degree≤ n − 1 such thatAH = q(A). Proving this is easy because
whenA = QΛQH whereQ is unitary andΛ diagonal, thenq(A) = Qq(Λ)QH .
Choosing the polynomialq so that

q(λj) = λ̄j , j = 1, . . . , n

results inq(A) = QΛ̄QH = AH as desired.
Let ν(A) be the smallest degree of all polynomialsq such thatAH = q(A). Then

the following lemma due to Faber and Manteuffel [121] statesan interesting relation
betweens andν(A).

Lemma 6.23 A nonsingular matrixA is such that

AHv ∈ Ks(A, v)

for every vectorv if and only ifA is normal andν(A) ≤ s− 1.
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Proof. The sufficient condition is trivially true. To prove the necessary condition,
assume that, for any vectorv, AHv = qv(A)v whereqv is a polynomial of degree
≤ s − 1. Then it is easily seen that any eigenvector ofA is also an eigenvector
of AH . Therefore, from Lemma 1.15,A is normal. Letµ be the degree of the
minimal polynomial forA. Then, sinceA hasµ distinct eigenvalues, there is a
polynomialq of degreeµ − 1 such thatq(λi) = λ̄i for i = 1, . . . , µ. According to
the above argument, for thisq, it holdsAH = q(A) and thereforeν(A) ≤ µ − 1.
Now it must be shown thatµ ≤ s. Let w be a (nonzero) vector whose grade is
µ. By assumption,AHw ∈ Ks(A,w). On the other hand, we also haveAHw =
q(A)w. Since the vectorsw,Aw, . . . , Aµ−1w are linearly independent,µ − 1 must
not exceeds − 1. Otherwise, two different expressions forAHw with respect to the
basisw,Aw, . . . , Aµ−1w would result and this would imply thatAHw = 0. Since
A is nonsingular, thenw = 0, which is a contradiction.

Proposition 6.22 gives a sufficient condition for DIOM(s) tobe equivalent to
FOM. According to Lemma 6.23, this condition is equivalent toA being normal and
ν(A) ≤ s − 1. Now consider the reverse result. Faber and Manteuffel define CG(s)
to be the class of all matrices such thatfor everyv1, it is true that(Avj , vi) = 0 for
all i, j such thati + s ≤ j ≤ µ(v1) − 1. The inner product can be different from
the canonical Euclidean dot product. With this definition itis possible to show the
following theorem [121] which is stated without proof.

Theorem 6.24A ∈ CG(s), if and only if the minimal polynomial ofA has degree
≤ s, or A is normal andν(A) ≤ s− 1.

It is interesting to consider the particular case whereν(A) ≤ 1, which is the case
of the Conjugate Gradient method. In fact, it is easy to show that in this caseA either
has a minimal degree≤ 1, or is Hermitian, or is of the form

A = eiθ (ρI +B)

whereθ andρ are real andB is skew-Hermitian, i.e.,BH = −B. Thus, the cases
in which DIOM simplifies into an (optimal) algorithm defined from a three-term
recurrence are already known. The first is the Conjugate Gradient method. The
second is a version of the CG algorithm for skew-Hermitian matrices which can be
derived from the Lanczos algorithm in the same way as CG. Thisalgorithm will be
seen in Chapter 9.

6.11 Convergence Analysis

The convergence behavior of the different algorithms seen in this chapter can be
analyzed by exploiting optimality properties whenever such properties exist. This
is the case for the Conjugate Gradient and the GMRES algorithms. On the other
hand, the non-optimal algorithms such as FOM, IOM, and QGMRES will be harder
to analyze.
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One of the main tools used in the analysis of these methods is Chebyshev poly-
nomials. These polynomials are useful both in theory, when studying convergence,
and in practice, as a means of accelerating single-vector iterations or projection pro-
cesses. In the following, real and complex Chebyshev polynomials are discussed
separately.

6.11.1 Real Chebyshev Polynomials

The Chebyshev polynomial of the first kind of degreek is defined by

Ck(t) = cos[k cos−1(t)] for − 1 ≤ t ≤ 1. (6.109)

That this is a polynomial with respect tot can be shown easily by induction from the
trigonometric relation

cos[(k + 1)θ] + cos[(k − 1)θ] = 2 cos θ cos kθ,

and the fact thatC1(t) = t, C0(t) = 1. Incidentally, this also shows the important
three-term recurrence relation

Ck+1(t) = 2 t Ck(t)− Ck−1(t).

The definition (6.109) can be extended to cases where|t| > 1 with the help of the
following formula:

Ck(t) = cosh [k cosh−1(t)], |t| ≥ 1. (6.110)

This is readily seen by passing to complex variables and using the definitioncos θ =
(eiθ + e−iθ)/2. As a result of (6.110) the following expression can be derived:

Ck(t) =
1

2

[(

t+
√

t2 − 1
)k

+
(

t+
√

t2 − 1
)−k

]

, (6.111)

which is valid for |t| ≥ 1 but can also be extended to the case of|t| < 1. The
following approximation, valid for large values ofk, will be sometimes used:

Ck(t) '
1

2

(

t+
√

t2 − 1
)k

for |t| ≥ 1. (6.112)

In what follows we denote byPk the set of all polynomials of degreek. An
important result from approximation theory is the following theorem.

Theorem 6.25 Let [α, β] be a non-empty interval inR and letγ be any real scalar
outside the interval[α, β]. Then the minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached by the polynomial

Ĉk(t) ≡
Ck

(

1 + 2 t−β
β−α

)

Ck

(

1 + 2 γ−β
β−α

) . (6.113)
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For a proof, see Cheney [77]. The maximum ofCk for t in [−1, 1] is 1 and a
corollary of the above result is

min
p∈Pk, p(γ)=1

max
t∈[α,β]

|p(t)| = 1

|Ck(1 + 2 γ−β
β−α )|

=
1

|Ck(2
γ−µ
β−α )|

in which µ ≡ (α + β)/2 is the middle of the interval. The absolute values in the
denominator are needed only whenγ is to the left of the interval, i.e., whenγ ≤ α.
For this case, it may be more convenient to express the best polynomial as

Ĉk(t) ≡
Ck

(

1 + 2 α−t
β−α

)

Ck

(

1 + 2α−γ
β−α

) .

which is obtained by exchanging the roles ofα andβ in (6.113).

6.11.2 Complex Chebyshev Polynomials

The standard definition of real Chebyshev polynomials givenby equation (6.109)
extends without difficulty to complex variables. First, as was seen before, whent is
real and|t| > 1, the alternative definition,Ck(t) = cosh[k cosh−1(t)], can be used.
These definitions can be unified by switching to complex variables and writing

Ck(z) = cosh(kζ), where cosh(ζ) = z .

Defining the variablew = eζ , the above formula is equivalent to

Ck(z) =
1

2
[wk + w−k] where z =

1

2
[w + w−1]. (6.114)

The above definition for Chebyshev polynomials will be used in C. Note that the
equation1

2(w + w−1) = z has two solutionsw which are inverse of each other. As
a result, the value ofCk(z) does not depend on which of these solutions is chosen.
It can be verified directly that theCk’s defined by the above equations are indeed
polynomials in thez variable and that they satisfy the three-term recurrence

Ck+1(z) = 2 zCk(z)− Ck−1(z), (6.115)

C0(z) ≡ 1, C1(z) ≡ z.

As is now explained, Chebyshev polynomials are intimately related to ellipses in
the complex plane. LetCρ be the circle of radiusρ centered at the origin. Then the
so-called Joukowski mapping

J(w) =
1

2
[w + w−1]

transformsCρ into an ellipse centered at the origin, with foci−1, 1, major semi-axis
1
2 [ρ+ ρ−1] and minor semi-axis12 |ρ− ρ−1|. This is illustrated in Figure 6.2.
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There are two circles which have the same image by the mappingJ(w), one
with the radiusρ and the other with the radiusρ−1. So it is sufficient to consider
only those circles with radiusρ ≥ 1. Note that the caseρ = 1 is a degenerate case in
which the ellipseE(0, 1,−1) reduces to the interval[−1, 1] traveled through twice.

An important question is whether or not a generalization of the min-max result of
Theorem 6.25 holds for the complex case. Here, the maximum of|p(z)| is taken over
the ellipse boundary andγ is some point not enclosed by the ellipse. The answer to
the question is no; Chebyshev polynomials are only optimal in some cases. However,
Chebyshev polynomials are asymptotically optimal, which is all that is needed in
practice.

-

6

ℜe(w)

ℑm(w)

w = ρeiθ
•

-
J(w)

-

6

ℜe(z)

ℑm(z)

z = w+w−1

2•

Figure 6.2: The Joukowski mapping transforms a circle into an ellipse in the complex
plane.

To prove the asymptotic optimality, we begin with a lemma dueto Zarantonello,
which deals with the particular case where the ellipse reduces to a circle. This par-
ticular case is important in itself.

Lemma 6.26 (Zarantonello) LetC(0, ρ) be a circle of center the origin and radius
ρ and letγ be a point ofC not enclosed byC(0, ρ). Then

min
p∈Pk, p(γ)=1

max
z ∈ C(0,ρ)

|p(z)| =

(
ρ

|γ|

)k

, (6.116)

the minimum being achieved for the polynomial(z/γ)k.

Proof. See reference [232] for a proof.

Note that by changing variables, shifting, and rescaling the polynomial, then for
any circle centered atc and for any scalarγ such that|γ| > ρ, the following min-max
result holds:

min
p∈Pk p(γ)=1

max
z ∈ C(c,ρ)

|p(z)| =

(
ρ

|γ − c|

)k

.

Now consider the case of an ellipse centered at the origin, with foci 1,−1 and
semi-major axisa, which can be considered as mapped byJ from the circleC(0, ρ),
with the convention thatρ ≥ 1. Denote byEρ such an ellipse.
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Theorem 6.27 Consider the ellipseEρ mapped fromC(0, ρ) by the mappingJ and
let γ be any point in the complex plane not enclosed by it. Then

ρk

|wγ |k
≤ min

p∈Pk p(γ)=1
max

z ∈ Eρ

|p(z)| ≤ ρk + ρ−k

|wk
γ + w−k

γ |
(6.117)

in whichwγ is the dominant root of the equationJ(w) = γ.

Proof. We start by showing the second inequality. Any polynomialp of degreek
satisfying the constraintp(γ) = 1 can be written as

p(z) =

∑k
j=0 ξjz

j

∑k
j=0 ξjγ

j
.

A point z on the ellipse is transformed byJ from a certainw in C(0, ρ). Similarly,
let wγ be one of the two inverse transforms ofγ by the mapping, namely, the one
with largest modulus. Then,p can be rewritten as

p(z) =

∑k
j=0 ξj(w

j + w−j)
∑k

j=0 ξj(w
j
γ + w−j

γ )
. (6.118)

Consider the particular polynomial obtained by settingξk = 1 andξj = 0 for j 6= k,

p∗(z) =
wk + w−k

wk
γ + w−k

γ

which is a scaled Chebyshev polynomial of the first kind of degreek in the variablez.
It is apparent that the maximum modulus of this polynomial isreached in particular
whenw = ρeiθ is real, i.e., whenw = ρ. Thus,

max
z∈Eρ

|p∗(z)| = ρk + ρ−k

|wk
γ + w−k

γ |

which proves the second inequality.
To prove the left inequality, we rewrite (6.118) as

p(z) =

(

w−k

w−k
γ

) ∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

and take the modulus ofp(z),

|p(z)| = ρ−k

|wγ |−k

∣
∣
∣
∣
∣

∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

∣
∣
∣
∣
∣
.

The polynomial inw of degree2k inside the large modulus bars in the right-hand side
is such that its value atwγ is one. By Lemma 6.26, the modulus of this polynomial
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over the circleC(0, ρ) is not less than(ρ/|wγ |)2k, i.e., for any polynomial, satisfying
the constraintp(γ) = 1,

max
z∈ Eρ

|p(z)| ≥ ρ−k

|wγ |−k

ρ2k

|wγ |2k
=

ρk

|wγ |k
.

This proves that the minimum over all such polynomials of themaximum modulus
on the ellipseEρ is≥ (ρ/|wγ |)k.

The difference between the left and right bounds in (6.117) tends to zero ask
increases to infinity. Thus, the important point made by the theorem is that for large
k, the Chebyshev polynomial

p∗(z) =
wk + w−k

wk
γ + w−k

γ

, where z =
w + w−1

2

is close to the optimal polynomial. More specifically, Chebyshev polynomials are
asymptoticallyoptimal.

For a more general ellipseE(c, d, a) centered atc, and with focal distanced and
semi-major axisa, a simple change of variables shows that the near-best polynomial
is given by

Ĉk(z) =
Ck

(
c−z
d

)

Ck

( c−γ
d

) . (6.119)

In addition, by examining the expression(wk + w−k)/2 for w = ρeiθ it is easily
seen that the maximum modulus ofĈk(z), i.e., the infinity norm of this polynomial
over the ellipse, is reached at the pointc + a located on the real axis. From this we
get,

max
z ∈ E(c,d,a)

|Ĉk(z)| =
Ck

(
a
d

)

|Ck

( c−γ
d

)
|

Here, we point out thatd anda both can be purely imaginary [for an example, see part
(B) of Figure 6.3]. In this casea/d is real and the numerator in the above expression
is always real. Using the definition forCk we obtain the following useful expression
and approximation:

Ck

(
a
d

)

Ck

( c−γ
d

) =

(

a
d +

√
(

a
d

)2 − 1

)k

+

(

a
d +

√
(

a
d

)2 − 1

)−k

(

c−γ
d +

√
( c−γ

d

)2 − 1

)k

+

(

c−γ
d +

√
( c−γ

d

)2 − 1

)−k
(6.120)

≈
(

a+
√
a2 − d2

c− γ +
√

(c− γ)2 − d2

)k

(6.121)

Finally, we note that an alternative and more detailed result has been proven by
Fischer and Freund in [127].
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6.11.3 Convergence of the CG Algorithm

As usual,‖x‖A denotes the norm defined by

‖x‖A = (Ax, x)1/2.

The following lemma characterizes the approximation obtained from the Conjugate
Gradient algorithm.

Lemma 6.28 Letxm be the approximate solution obtained from them-th step of the
CG algorithm, and letdm = x∗ − xm wherex∗ is the exact solution. Then,xm is of
the form

xm = x0 + qm(A)r0

whereqm is a polynomial of degreem− 1 such that

‖(I −Aqm(A))d0‖A = min
q ∈ Pm−1

‖(I −Aq(A))d0‖A.

Proof. This is a consequence of the fact thatxm minimizes theA-norm of the error
in the affine subspacex0 + Km, a result of Proposition 5.2, and the fact thatKm is
the set of all vectors of the formx0 + q(A)r0, whereq is a polynomial of degree
≤ m− 1.

From this, the following theorem can be proved.

Theorem 6.29 Letxm be the approximate solution obtained at them-th step of the
Conjugate Gradient algorithm, andx∗ the exact solution and define

η =
λmin

λmax − λmin
. (6.122)

Then,

‖x∗ − xm‖A ≤
‖x∗ − x0‖A
Cm(1 + 2η)

, (6.123)

in whichCm is the Chebyshev polynomial of degreem of the first kind.

Proof. From the previous lemma, it is known that‖x∗ − xm‖A minimizesA-norm
of the error over polynomialsr(t) which take the value one at0, i.e.,

‖x∗ − xm‖A = min
r∈ Pm, r(0)=1

‖r(A)d0‖A.

If λi, i = 1, . . . , n are the eigenvalues ofA, andξi, i = 1, . . . , n the components of
the initial errord0 in the eigenbasis, then

‖r(A)d0‖2A =

n∑

i=1

λir(λi)
2(ξi)

2 ≤ max
i

(r(λi))
2‖d0‖2A

≤ max
λ ∈[λmin,λmax]

(r(λ))2‖d0‖2A.
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Therefore,

‖x∗ − xm‖A ≤ min
r∈ Pm, r(0)=1

max
λ ∈[λmin,λmax]

|r(λ)|‖d0‖A.

The result follows immediately by using the well known result of Theorem 6.25 from
approximation theory. This gives the polynomialr which minimizes the right-hand
side.

A slightly different formulation of inequality (6.123) canbe derived. Using the
relation,

Cm(t) =
1

2

[(

t+
√

t2 − 1
)m

+
(

t+
√

t2 − 1
)−m

]

≥ 1

2

(

t+
√

t2 − 1
)m

then

Cm(1 + 2η) ≥ 1

2

(

1 + 2η +
√

(1 + 2η)2 − 1
)m

≥ 1

2

(

1 + 2η + 2
√

η(η + 1)
)m

.

Now notice that

1 + 2η + 2
√

η(η + 1) =
(√

η +
√

η + 1
)2

(6.124)

=

(√
λmin +

√
λmax

)2

λmax − λmin
(6.125)

=

√
λmax +

√
λmin√

λmax −
√
λmin

(6.126)

=

√
κ+ 1√
κ− 1

(6.127)

in whichκ is the spectral condition numberκ = λmax/λmin.
Substituting this in (6.123) yields,

‖x∗ − xm‖A ≤ 2

[√
κ− 1√
κ+ 1

]m

‖x∗ − x0‖A. (6.128)

This bound is similar to that of the steepest descent algorithm except that the condi-
tion number ofA is now replaced by its square root.

6.11.4 Convergence of GMRES

We begin by stating aglobal convergence result. Recall that a matrixA is called
positive definite if its symmetric part(A + AT )/2 is Symmetric Positive Definite.
This is equivalent to the property that(Ax, x) > 0 for all nonzero real vectorsx.



216 CHAPTER 6. KRYLOV SUBSPACE METHODS PART I

Theorem 6.30 If A is a positive definite matrix, then GMRES(m) converges for any
m ≥ 1.

Proof. This is true because the subspaceKm contains the initial residual vector at
each restart. Since the algorithm minimizes the residual norm in the subspaceKm,
at each outer iteration, the residual norm will be reduced byas much as the result of
one step of the Minimal Residual method seen in the previous chapter. Therefore, the
inequality (5.15) is satisfied by residual vectors producedafter each outer iteration
and the method converges.

Next we wish to establish a result similar to the one for the Conjugate Gradient
method, which would provide an upper bound on the convergence rate of the GMRES
iterates. We begin with a lemma similar to Lemma 6.28.

Lemma 6.31 Letxm be the approximate solution obtained from them-th step of the
GMRES algorithm, and letrm = b−Axm. Then,xm is of the form

xm = x0 + qm(A)r0

and
‖rm‖2 = ‖(I −Aqm(A))r0‖2 = min

q ∈ Pm−1

‖(I −Aq(A))r0‖2.

Proof. This is true becausexm minimizes the2-norm of the residual in the affine
subspacex0 + Km, a result of Proposition 5.3, and the fact thatKm is the set of all
vectors of the formx0 + q(A)r0, whereq is a polynomial of degree≤ m− 1.

Unfortunately, it not possible to prove a simple result suchas Theorem 6.29 unless
A is normal.

Proposition 6.32 Assume thatA is a diagonalizable matrix and letA = XΛX−1

whereΛ = diag {λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues. Define,

ǫ(m) = min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|.

Then, the residual norm achieved by them-th step of GMRES satisfies the inequality

‖rm‖2 ≤ κ2(X)ǫ(m)‖r0‖2.

whereκ2(X) ≡ ‖X‖2‖X−1‖2.

Proof. Let p be any polynomial of degree≤ m which satisfies the constraintp(0) =
1, andx the vector inKm to which it is associated viab−Ax = p(A)r0. Then,

‖b−Ax‖2 = ‖Xp(Λ)X−1r0‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2‖p(Λ)‖2
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SinceΛ is diagonal, observe that

‖p(Λ)‖2 = max
i=1,...,n

|p(λi)|.

Sincexm minimizes the residual norm overx0 + Km, then for any consistent poly-
nomialp,

‖b−Axm‖ ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2 max
i=1,...,n

|p(λi)|.

Now the polynomialp which minimizes the right-hand side in the above inequality
can be used. This yields the desired result,

‖b−Axm‖ ≤ ‖b−Ax‖2 ≤ ‖X‖2‖X−1‖2‖r0‖2ǫ(m).

-
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c − a

(B)

Figure 6.3: Ellipses containing the spectrum ofA. Case (A): reald; case (B): purely
imaginaryd.

The results of Section 6.11.2 on near-optimal Chebyshev polynomials in the
complex plane can now be used to obtain an upper bound forǫ(m). Assume that
the spectrum ofA in contained in an ellipseE(c, d, a) with centerc, focal distance
d, and major semi axisa. In addition it is required that the origin lie outside this
ellipse. The two possible cases are shown in Figure 6.3. Case(B) corresponds to
the situation whend is purely imaginary, i.e., the major semi-axis is aligned with the
imaginary axis.

Corollary 6.33 LetA be a diagonalizable matrix, i.e, letA = XΛX−1 whereΛ =
diag {λ1, λ2, . . . , λn} is the diagonal matrix of eigenvalues. Assume that all the
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eigenvalues ofA are located in the ellipseE(c, d, a) which excludes the origin. Then,
the residual norm achieved at them-th step of GMRES satisfies the inequality,

‖rm‖2 ≤ κ2(X)
Cm

(
a
d

)

∣
∣Cm

(
c
d

)∣
∣
‖r0‖2.

Proof. All that is needed is an upper bound for the scalarǫ(m) under the assumptions.
By definition,

ǫ(m) = min
p∈Pm,p(0)=1

max
i=1,...,n

|p(λi)|

≤ min
p∈Pm,p(0)=1

max
λ ∈ E(c,d,a)

|p(λ)|.

The second inequality is due to the fact that the maximum modulus of a complex
analytical function is reached on the boundary of the domain. We can now use as a
trial polynomialĈm defined by (6.119), withγ = 0:

ǫ(m) ≤ min
p∈Pm,p(0)=1

max
λ ∈ E(c,d,a)

|p(λ)|

≤ max
λ ∈ E(c,d,a)

|Ĉm(λ)| = Cm

(
a
d

)

∣
∣Cm

(
c
d

)∣
∣
.

This completes the proof.

An explicit expression for the coefficientCm

(
a
d

)
/ Cm

(
c
d

)
and an approximation

are readily obtained from (6.120-6.121) by takingγ = 0:

Cm

(
a
d

)

Cm

(
c
d

) =

(

a
d +

√
(

a
d

)2 − 1

)m

+

(

a
d +

√
(

a
d

)2 − 1

)−m

(

c
d +

√
(

c
d

)2 − 1

)m

+

(

c
d +

√
(

c
d

)2 − 1

)−m

≈
(

a+
√
a2 − d2

c+
√
c2 − d2

)m

.

Since the condition numberκ2(X) of the matrix of eigenvectorsX is typically
not known and can be very large, results of the nature of the corollary are of limited
practical interest. They can be useful only when it is known that the matrix is nearly
normal, in which case,κ2(X) ≈ 1.

6.12 Block Krylov Methods

In many circumstances, it is desirable to work with a block ofvectors instead of
a single vector. For example, out-of-core finite-element codes are more efficient
when they are programmed to exploit the presence of a block ofthe matrixA in fast
memory, as much as possible. This can be achieved by using block generalizations of
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Krylov subspace methods, for whichA always operates on a group of vectors instead
of a single vector. We begin by describing a block version of the Arnoldi algorithm.

ALGORITHM 6.22 Block Arnoldi

1. Choose a unitary matrixV1 of dimensionn× p.
2. Forj = 1, 2, . . . ,m Do:
3. ComputeHij = V T

i AVj i = 1, 2, . . . , j

4. ComputeWj = AVj −
∑j

i=1 ViHij

5. Compute the Q-R factorization ofWj: Wj = Vj+1Hj+1,j

6. EndDo

The above algorithm is a straightforward block analogue of Algorithm 6.1. By
construction, the blocks generated by the algorithm are orthogonal blocks that are
also orthogonal to each other. In the following we denote byIk the k × k identity
matrix and use the following notation:

Um = [V1, V2, . . . , Vm],

Hm = (Hij)1≤i,j≤m, Hij ≡ 0, for i > j + 1,

Em = matrix of the lastp columns ofImp.

Then, the following analogue of the relation (6.6) is easilyproved:

AUm = UmHm + Vm+1Hm+1,mE
T
m. (6.129)

Here, the matrixHm is no longer Hessenberg, but band-Hessenberg, meaning thatit
hasp subdiagonals instead of only one. Note that the dimension ofthe subspace in
which the solution is sought is notm butm.p.

A second version of the algorithm uses a modified block Gram-Schmidt proce-
dure instead of the simple Gram-Schmidt procedure used above. This leads to a block
generalization of Algorithm 6.2, the Modified Gram-Schmidtversion of Arnoldi’s
method.

ALGORITHM 6.23 Block Arnoldi with Block MGS

1. Choose a unitary matrixV1 of sizen× p
2. Forj = 1, 2, . . . ,m Do:
3. ComputeWj := AVj

4. Fori = 1, 2, . . . , j do:
5. Hij := V T

i Wj

6. Wj := Wj − ViHij

7. EndDo
8. Compute the Q-R decompositionWj = Vj+1Hj+1,j

9. EndDo

Again, in practice the above algorithm is more viable than its predecessor. Fi-
nally, a third version, developed by A. Ruhe [236] for the symmetric case (block
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Lanczos), yields a variant that is quite similar to the original Arnoldi algorithm. As-
sume that the initial block ofp orthonormal vectors,v1, . . . , vp is available. The first
step of the algorithm is to multiplyv1 byA and orthonormalize the resulting vector
w againstv1, . . . , vp. The resulting vector is defined to bevp+1. In the second step
it is v2 that is multiplied byA and orthonormalized against all availablevi’s. Thus,
the algorithm works similarly to Algorithm 6.2 except for a delay in the vector that
is multiplied byA at each step.

ALGORITHM 6.24 Block Arnoldi–Ruhe’s variant

1. Choosep initial orthonormal vectors{vi}i=1,...,p.
2. Forj = p, p+ 1, . . . ,m+ p− 1 Do:
3. Setk := j − p+ 1;
4. Computew := Avk;
5. Fori = 1, 2, . . . , j Do:
6. hi,k := (w, vi)
7. w := w − hi,kvi

8. EndDo
9. Computehj+1,k := ‖w‖2 andvj+1 := w/hj+1,k.

10. EndDo

Observe that the particular casep = 1 coincides with the usual Arnoldi process.
Also, the dimensionm of the subspace of approximants, is no longer restricted to
being a multiple of the block-sizep as in the previous algorithms. The mathematical
equivalence of Algorithms 6.23 and 6.24 whenm is a multiple ofp is straightfor-
ward to show. The advantage of the above formulation is its simplicity. A slight
disadvantage is that it gives up some potential parallelism. In the original version,
the columns of the matrixAVj can be computed in parallel whereas in the new algo-
rithm, they are computed in sequence. This can be remedied, however, by performing
p matrix-by-vector products everyp steps.

At the end of the loop consisting of lines 5 through 8 of Algorithm 6.24, the
vectorw satisfies the relation

w = Avk −
j
∑

i=1

hikvi,

wherek andj are related byk = j − p + 1. Line 9 givesw = hj+1,kvj+1 which
results in

Avk =

k+p
∑

i=1

hikvi.

As a consequence, the analogue of the relation (6.7) for Algorithm 6.24 is

AVm = Vm+pH̄m. (6.130)

As before, for anyj the matrixVj represents then×j matrix with columnsv1, . . . vj.
The matrixH̄m is now of size(m+ p)×m.
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Now the block generalizations of FOM and GMRES can be defined in a straight-
forward way. These block algorithms can solve linear systems with multiple right-
hand sides,

Ax(i) = b(i), i = 1, · · · , p, (6.131)

or, in matrix form
AX = B, (6.132)

where the columns of then × p matricesB andX are theb(i)’s andx(i)’s, respec-
tively. Given an initial block of initial guessesx(i)

0 for i = 1, . . . , p, we defineR0 the
block of initial residuals

R0 ≡ [r
(1)
0 , r

(2)
0 , . . . , r

(p)
0 ],

where each column isr(i)0 = b(i) − Ax(i)
0 . It is preferable to use the unified notation

derived from Algorithm 6.24. In this notation,m is not restricted to being a multiple
of the block-sizep and the same notation is used for thevi’s as in the scalar Arnoldi
Algorithm. Thus, the first step of the block-FOM or block-GMRES algorithm is to
compute the QR factorization of the block of initial residuals:

R0 = [v1, v2, . . . , vp] R.

Here, the matrix[v1, . . . , vp] is unitary andR is p × p upper triangular. This factor-
ization provides the firstp vectors of the block-Arnoldi basis.

Each of the approximate solutions has the form

x(i) = x
(i)
0 + Vmy

(i), (6.133)

and, grouping these approximationsx(i) in a blockX and they(i) in a blockY , we
can write

X = X0 + VmY. (6.134)

It is now possible to imitate what was done for the standard FOM and GMRES
algorithms. The only missing link is the vectorβe1 in (6.27) which now becomes a
matrix. LetE1 be the(m + p) × p matrix whose upperp × p principal block is an
identity matrix. Then, the relation (6.130) results in

B −AX = B −A (X0 + VmY )

= R0 −AVmY

= [v1, . . . , vp]R− Vm+pH̄mY

= Vm+p

(
E1R− H̄mY

)
. (6.135)

The vector
ḡ(i) ≡ E1Rei

is a vector of lengthm+pwhose components are zero except those from 1 toiwhich
are extracted from thei-th column of the upper triangular matrixR. The matrixH̄m
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is an(m+ p)×m matrix. The block-FOM approximation would consist of deleting
the lastp rows of ḡ(i) andH̄m and solving the resulting system,

Hmy
(i) = g(i).

The approximate solutionx(i) is then computed by (6.133).
The block-GMRES approximationx(i) is the unique vector of the formx(i)

0 +
Vmy

(i) which minimizes the 2-norm of the individual columns of the block-residual
(6.135). Since the column-vectors ofVm+p are orthonormal, then from (6.135) we
get,

‖b(i) −Ax(i)‖2 = ‖ḡ(i) − H̄my
(i)‖2. (6.136)

To minimize the residual norm, the function on the right hand-side must be min-
imized overy(i). The resulting least-squares problem is similar to the one encoun-
tered for GMRES. The only differences are in the right-hand side and the fact that
the matrix is no longer Hessenberg, but band-Hessenberg. Rotations can be used in a
way similar to the scalar case. However,p rotations are now needed at each new step
instead of only one. Thus, ifm = 6 andp = 2, the matrixH̄6 and block right-hand
side would be as follows:

H̄6 =















h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

h31 h32 h33 h34 h35 h36

h42 h43 h44 h45 h46

h53 h54 h55 h56

h64 h65 h66

h75 h76

h86















Ḡ =















g11 g12
g22















.

For each new column generated in the block-Arnoldi process,p rotations are
required to eliminate the elementshk,j, for k = j + p down tok = j + 1. This
backward order is important. In the above example, a rotation is applied to eliminate
h3,1 and then a second rotation is used to eliminate the resultingh2,1, and similarly
for the second, third step, etc. This complicates programming slightly since two-
dimensional arrays must now be used to save the rotations instead of one-dimensional
arrays in the scalar case. After the first column ofH̄m is processed, the block of right-
hand sides will have a diagonal added under the diagonal of the upper triangular
matrix. Specifically, the above two matrices will have the structure,

H̄6 =















⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆















Ḡ =















⋆ ⋆
⋆ ⋆

⋆















,
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where a⋆ represents a nonzero element. After all columns are processed, the follow-
ing least-squares system is obtained.

H̄6 =
















⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆

⋆ ⋆
⋆
















Ḡ =
















⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆
⋆ ⋆

⋆ ⋆
⋆
















.

To obtain the least-squares solutions for each right-hand side, ignore anything below
the horizontal lines in the above matrices and solve the resulting triangular systems.
The residual norm of thei-th system for the original problem is the 2-norm of the
vector consisting of the componentsm+ 1, throughm+ i in thei-th column of the
above block of right-hand sides.

Generally speaking, the block methods are of great practical value in applica-
tions involving linear systems with multiple right-hand sides. However, they are
not as well studied from the theoretical point of view. Perhaps, one of the reasons
is the lack of a convincing analogue for the relationship with orthogonal polyno-
mials, established in subsection 6.6.2 for the single-vector Lanczos algorithm. The
block version of the Lanczos algorithm has not been covered but the generalization
is straightforward.

PROBLEMS

P-6.1 In the Householder implementation of the Arnoldi algorithm, show the following
points of detail:

a. Qj+1 is unitary and its inverse isQT
j+1.

b. QT
j+1 = P1P2 . . . Pj+1.

c. QT
j+1ei = vi for i < j.

d. Qj+1AVm = Vm+1[e1, e2, . . . , ej+1]H̄m, whereei is the i-th column of then × n
identity matrix.

e. Thevi’s are orthonormal.

f. The vectorsv1, . . . , vj are equal to the Arnoldi vectors produced by the Gram-Schmidt
version, except possibly for a scaling factor.

P-6.7 Rewrite the Householder implementation of the Arnoldi algorithm with more detail.
In particular, define precisely the Householder vectorwj used at stepj (lines 3-5).

P-6.8 Consider the Householder implementation of the Arnoldi algorithm. Give a detailed
operation count of the algorithm and compare it with the Gram-Schmidt and Modified Gram-
Schmidt algorithm.
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P-6.9 Consider a variant of the GMRES algorithm in which the Arnoldi process starts with
v1 = Av0/‖Av0‖2 wherev0 ≡ r0. The Arnoldi process is performed the same way as
before to build an orthonormal systemv1, v2, . . . , vm−1. Now the approximate solution is
expressed in the basis{v0, v1, . . . , vm−1}.

a. Show that the least squares problem that must be solved to obtain the approximate
solution is now triangular instead of Hessemberg.

b. Show that the residual vectorrk is orthogonal tov1, v2, . . . , vk−1.

c. Find a formula which computes the residual norm (without computing the approximate
solution) and write the complete algorithm.

P-6.4 Derive the basic version of GMRES by using the standard formula (5.7) withV = Vm

andW = AVm.

P-6.5 Analyze the arithmic cost, i.e., the number of operations, of Algorithms 6.7 and 6.8.
Similarly analyse the memory requirement of both algorithms.

P-6.6 Derive a version of the DIOM algorithm which includes partial pivoting in the solu-
tion of the Hessenberg system.

P-6.7 Show how the GMRES and FOM methods will converge on the linearsystemAx = b
when

A =








1
1

1
1

1







, b =








1
0
0
0
0








and withx0 = 0.

P-6.8 Give a full proof of Proposition 6.17.

P-6.9 Let a matrixA have the form

A =

(
I Y
0 I

)

.

Assume that (full) GMRES is used to solve a linear system, with the coefficient matrixA.
What is the maximum number of steps that GMRES would require to converge?

P-6.10 Let a matrixA have the form:

A =

(
I Y
0 S

)

.

Assume that (full) GMRES is used to solve a linear system withthe coefficient matrixA. Let

r0 =

(
r
(1)
0

r
(2)
0

)

be the initial residual vector. It is assumed that the degreeof the minimal polynomial ofr(2)0

with respect toS (i.e., its grade) isk. What is the maximum number of steps that GMRES
would require to converge for this matrix? [Hint: Evaluate the sum

∑k
i=0 βi(A

i+1 − Ai)r0
where

∑k
i=0 βit

i is the minimal polynomial ofr(2)0 with respect toS.]
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P-6.11 Let

A =











I Y2

I Y3

I
. . .
I Yk−1

I Yk

I











.

a. Show that(I −A)k = 0.

b. Assume that (full) GMRES is used to solve a linear system with the coefficient matrix
A. What is the maximum number of steps that GMRES would requireto converge?

P-6.3 Show that ifHm is nonsingular, i.e., when the FOM iteratexF
m is defined, and if the

GMRES iteratexG
m is such thatxG

m = xF
m, thenrG

m = rF
m = 0, i.e., both the GMRES and

FOM solutions are exact. [Hint: use the relation (6.74) and Proposition 6.17 or Proposition
6.12.]

P-6.4 Derive the relation (6.63) from (6.75). [Hint: Use the fact that the vectors on the
right-hand side of (6.75) are orthogonal.]

P-6.5 In the Householder-GMRES algorithm the approximate solution can be computed by
formulas (6.31-6.33). What is the exact cost of this alternative (compare memory as well as
arithmetic requirements)? How does it compare with the costof keeping thevi’s?

P-6.6 An alternative to formulas (6.31-6.33) for accumulating the approximate solution in
the Householder-GMRES algorithm without keeping thevi’s is to computexm as

xm = x0 + P1P2 . . . Pmy

wherey is a certainn-dimensional vector to be determined. (1) What is the vectory for
the above formula in order to compute the correct approximate solutionxm? [Hint: Exploit
(6.13).] (2) Write down an alternative to formulas (6.31-6.33) derived from this approach.
(3) Compare the cost of this approach with the cost of using (6.31-6.33).

P-6.7 Obtain the formula (6.97) from (6.96).

P-6.8 Show that the determinant of the matrixTm in (6.103) is given by

det (Tm) =
1

∏m−1
i=0 αi

.

P-6.9 The Lanczos algorithm is more closely related to the implementation of Algorithm
6.19 of the Conjugate Gradient algorithm. As a result the Lanczos coefficientsδj+1 andηj+1

are easier to extract from this algorithm than from Algorithm 6.18. Obtain formulas for these
coefficients from the coefficients generated by Algorithm 6.19, as was done in Section 6.7.3
for the standard CG algorithm.

P-6.10 What can be said of the Hessenberg matrixHm whenA is skew-symmetric? What
does this imply on the Arnoldi algorithm?

P-6.11 Consider a matrix of the form

A = I + αB (6.137)

whereB is skew-symmetric (real), i.e., such thatBT = −B.

a. Show that(Ax, x)/(x, x) = 1 for all nonzerox.
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b. Consider the Arnoldi process forA. Show that the resulting Hessenberg matrix will
have the following tridiagonal form

Hm =








1 −η2
η2 1 −η3

. . .
ηm−1 1 −ηm

ηm 1







.

c. Using the result of the previous question, explain why theCG algorithm applied as is
to a linear system with the matrixA, which is nonsymmetric, will still yield residual
vectors that are orthogonal to each other.

P-6.4 Establish the three relations (6.22), (6.23), and (6.24).

P-6.5 Show that if the rotations generated in the course of the GMRES (and DQGMRES)
algorithm are such that

|cm| ≥ c > 0,

then GMRES, DQGMRES, and FOM will all converge.

P-6.6 Show the exact expression of the residual vector in the basisv1, v2, . . . , vm+1 for
either GMRES or DQGMRES. [Hint: A starting point is (6.50).]

P-6.7 Prove that the inequality (6.54) is sharper than (6.51), in the sense thatζm+1 ≤√
m− k + 1 (form ≥ k). [Hint: Use Cauchy-Schwarz inequality on (6.54).]

P-6.8 Consider the minimal residual smoothing algorithm (Algorithm 7.5) in the situation
when the residual vectorsrO

j of the original sequence are orthogonal to each other. Show
that the vectors

rO
j − rS

j−1 = −A(xO
j − xS

j−1)

are orthogonal to each other [Hint: use induction]. Then useLemma 6.21 to conclude that
the iterates of the algorithm are identical with those of ORTHOMIN and GMRES.

P-6.9 Consider the complex GMRES algorithm in Section 6.5.9. Showat least two other
ways of defining complex Givens rotations (the requirement is thatΩi be a unitary matrix,
i.e., thatΩH

i Ωi = I). Which among the three possible choices give (s) a nonnegative real
diagonal for the resultingRm matrix?

P-6.10 Work out the details of a Householder implementation of the GMRES algorithm for
complex linear systems (The Householder matrices are now ofthe formI−2wwH ; part of the
practical implementation details is already available forthe complex case in Section 6.5.9.)

P-6.11 Denote bySm the unit upper triangular matrixS in the proof of Theorem 6.11
which is obtained from the Gram-Schmidt process (exact arithmetic assumed) applied to the
incomplete orthogonalization basisVm. Show that the Hessenberg matrix̄HQ

m obtained in
the incomplete orthogonalization process is related to theHessenberg matrix̄HG

m obtained
from the (complete) Arnoldi process by

H̄G
m = S−1

m+1H̄
Q
mSm.

NOTES AND REFERENCES. The Conjugate Gradient method was developed independently and in
different forms by Lanczos [197] and Hestenes and Stiefel [167]. The method was essentially viewed
as a direct solution technique and was abandoned early on because it did not compare well with other
existing techniques. For example, in inexact arithmetic, the method does not terminate inn steps as
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is predicted by the theory. This is caused by the severe loss of of orthogonality of vector quantities
generated by the algorithm. As a result, research on Krylov-type methods remained dormant for over
two decades thereafter. This changed in the early 1970s whenseveral researchers discovered that this
loss of orthogonality did not prevent convergence. The observations were made and explained for
eigenvalue problems [222, 147] as well as linear systems [231]. The early to the middle 1980s saw
the development of a new class of methods for solving nonsymmetric linear systems [12, 13, 178, 238,
239, 251, 298]. The works of Faber and Manteuffel [121] and Voevodin [299] showed that one could
not find optimal methods which, like CG, are based on short-term recurrences. Many of the methods
developed are mathematically equivalent, in the sense thatthey realize the same projection process,
with different implementations.

Lemma 6.16 was proved by Roland Freund [134] in a slightly different form. Proposition 6.12 is
due to Brown [66] who proved a number of other theoretical results, including Proposition 6.17. The
inequality (6.64), which can be viewed as a reformulation ofBrown’s result, was proved by Cullum
and Greenbaum [92]. This result is equivalent to Equation (6.67) which was shown in a very different
way by Zhou and Walker [324].

The Householder version of GMRES is due to Walker [303]. The Quasi-GMRES algorithm de-
scribed in Section 6.5.6 was initially described by Brown and Hindmarsh [67], and the direct version
DQGMRES was discussed in [255]. The proof of Theorem 6.11 forDQGMRES is adapted from the
result shown in [213] for the QMR algorithm.

Schönauer [260] seems to have been the originator or Minimal Residual Smoothing methods,
but Weiss [307] established much of the theory and connections with other techniques. The Quasi-
minimization extension of these techniques (QMRS) was developed by Zhou and Walker [324].

The non-optimality of the Chebyshev polynomials on ellipses in the complex plane was estab-
lished by Fischer and Freund [128]. Prior to this, a 1963 paper by Clayton [86] was believed to have
established the optimality for the special case where the ellipse has real foci andγ is real.

Various types of Block Krylov methods were considered. In addition to their attraction for solving
linear systems with several right-hand sides [243, 267], one of the other motivations for these techniques
is that they can also help reduce the effect of the sequentialinner products in parallel environments
and minimize I/O costs in out-of-core implementations. A block Lanczos algorithm was developed
by Underwood [287] for the symmetric eigenvalue problem, while O’Leary discussed a block CG
algorithm [215]. The block-GMRES algorithm is analyzed by Simoncini and Gallopoulos [266] and in
[250]. Besides the straightforward extension presented inSection 6.12, a variation was developed by
Jbilou et al., in which a ‘global’ inner product for the blocks was considered instead of the usual scalar
inner product for each column [176].

Alternatives to GMRES which require fewer inner products have been proposed by Sadok [256]
and Jbilou [175]. Sadok investigated a GMRES-like method based on the Hessenberg algorithm [317],
while Jbilou proposed a multi-dimensional generalizationof Gastinel’s method seen in Exercise 3 of
Chapter 5.
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Chapter 7

KRYLOV SUBSPACE METHODS PART II

The previous chapter considered a number of Krylov subspace methods which relied on some

form of orthogonalization of the Krylov vectors in order to compute an approximate solution.

This chapter will describe a class of Krylov subspace methods which are instead based on a bi-

orthogonalization algorithm due to Lanczos. These are projection methods that are intrinsically

non-orthogonal. They have some appealing properties, but are harder to analyze theoretically.

7.1 Lanczos Biorthogonalization

The Lanczos biorthogonalization algorithm is an extensionto nonsymmetric matri-
ces of the symmetric Lanczos algorithm seen in the previous chapter. One such
extension, the Arnoldi procedure, has already been seen. However, the nonsymmet-
ric Lanczos algorithm is quite different in concept from Arnoldi’s method because it
relies on biorthogonal sequences instead of orthogonal sequences.

7.1.1 The Algorithm

The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of bi-
orthogonal bases for the two subspaces

Km(A, v1) = span{v1, Av1, . . . , Am−1v1}

and
Km(AT , w1) = span{w1, A

Tw1, . . . , (A
T )m−1w1}.

The algorithm that achieves this is the following.

ALGORITHM 7.1 The Lanczos Biorthogonalization Procedure

1. Choose two vectorsv1, w1 such that(v1, w1) = 1.
2. Setβ1 = δ1 ≡ 0, w0 = v0 ≡ 0
3. Forj = 1, 2, . . . ,m Do:
4. αj = (Avj , wj)
5. v̂j+1 = Avj − αjvj − βjvj−1

6. ŵj+1 = ATwj − αjwj − δjwj−1

229
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7. δj+1 = |(v̂j+1, ŵj+1)|1/2. If δj+1 = 0 Stop
8. βj+1 = (v̂j+1, ŵj+1)/δj+1

9. wj+1 = ŵj+1/βj+1

10. vj+1 = v̂j+1/δj+1

11. EndDo

Note that there are numerous ways to choose the scalarsδj+1, βj+1 in lines 7 and
8. These two parameters are scaling factors for the two vectors vj+1 andwj+1 and
can be selected in any manner to ensure that(vj+1, wj+1) = 1. As a result of lines
9 and 10 of the algorithm, it is only necessary to choose two scalarsβj+1, δj+1 that
satisfy the equality

δj+1βj+1 = (v̂j+1, ŵj+1). (7.1)

The choice taken in the above algorithm scales the two vectors so that they are di-
vided by two scalars which have the same modulus. Both vectors can also be scaled
by their 2-norms. In that case, the inner product ofvj+1 andwj+1 is no longer equal
to 1 and the algorithm must be modified accordingly; see Exercise 5.

Consider the case where the pair of scalarsδj+1, βj+1 is any pair that satisfies
the relation (7.1). Denote byTm the tridiagonal matrix

Tm =









α1 β2

δ2 α2 β3

. . .
δm−1 αm−1 βm

δm αm









. (7.2)

If the determinations ofβj+1, δj+1 of lines 7–8 are used, then theδj ’s are positive
andβj = ±δj .

Observe from the algorithm that the vectorsvi belong toKm(A, v1), while the
wj ’s are inKm(AT , w1). In fact, the following proposition can be proved.

Proposition 7.1 If the algorithm does not break down before stepm, then the vectors
vi, i = 1, . . . ,m, andwj , j = 1, . . . ,m, form a biorthogonal system, i.e.,

(vj , wi) = δij 1 ≤ i, j ≤ m.

Moreover,{vi}i=1,2,...,m is a basis ofKm(A, v1) and {wi}i=1,2,...,m is a basis of
Km(AT , w1) and the following relations hold,

AVm = VmTm + δm+1vm+1e
T
m, (7.3)

ATWm = WmT
T
m + βm+1wm+1e

T
m, (7.4)

W T
mAVm = Tm. (7.5)

Proof. The biorthogonality of the vectorsvi, wi will be shown by induction. By
assumption(v1, w1) = 1. Assume now that the vectorsv1, . . . vj andw1, . . . wj
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are biorthogonal, and let us prove that the vectorsv1, . . . vj+1 andw1, . . . wj+1 are
biorthogonal.

First, we show that(vj+1, wi) = 0 for i ≤ j. Wheni = j, then

(vj+1, wj) = δ−1
j+1[(Avj , wj)− αj(vj , wj)− βj(vj−1, wj)].

The last inner product in the above expression vanishes by the induction hypothe-
sis. The two other terms cancel each other by the definition ofαj and the fact that
(vj , wj) = 1. Consider now the inner product(vj+1, wi) with i < j,

(vj+1, wi) = δ−1
j+1[(Avj , wi)− αj(vj , wi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , A

Twi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , βi+1wi+1 + αiwi + δiwi−1)− βj(vj−1, wi)].

For i < j − 1, all of the inner products in the above expression vanish, bythe
induction hypothesis. Fori = j − 1, the inner product is

(vj+1, wj−1) = δ−1
j+1[(vj , βjwj + αj−1wj−1 + δj−1wj−2)− βj(vj−1, wj−1)]

= δ−1
j+1[βj(vj , wj)− βj(vj−1, wj−1)]

= 0.

It can be proved in an identical way that(vi, wj+1) = 0 for i ≤ j. Finally, by
construction(vj+1, wj+1) = 1. This completes the induction proof. The proof of
the matrix relations (7.3–7.5) is similar to that of the relations (6.6–6.8) in Arnoldi’s
method.

The relations (7.3–7.5) allow us to interpret the algorithm. The matrixTm is
the projection ofA obtained from an oblique projection process ontoKm(A, v1)
and orthogonally toKm(AT , w1). Similarly, T T

m represents the projection ofAT

on Km(AT , w1) and orthogonally toKm(A, v1). Thus, an interesting new feature
here is that the operatorsA andAT play a dual role because similar operations are
performed with them. In fact, two linear systems are solved implicitly, one withA
and the other withAT . If there were two linear systems to solve, one withA and
the other withAT , then this algorithm is suitable. Otherwise, the operations with
AT are essentially wasted. Later a number of alternative techniques developed in the
literature will be introduced that avoid the use ofAT .

From a practical point of view, the Lanczos algorithm has a significant advan-
tage over Arnoldi’s method because it requires only a few vectors of storage, if no
reorthogonalization is performed. Specifically, six vectors of lengthn are needed,
plus some storage for the tridiagonal matrix, no matter how largem is.

On the other hand, there are potentially more opportunitiesfor breakdown with
the nonsymmetric Lanczos method. The algorithm will break down wheneverδj+1

as defined in line 7 vanishes. This is examined more carefullyin the next section. In
practice, the difficulties are more likely to be caused by thenear occurrence of this
phenomenon. A look at the algorithm indicates that the Lanczos vectors may have
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to be scaled by small quantities when this happens. After a few steps the cumulated
effect of these scalings may introduce excessive rounding errors.

Since the subspace from which the approximations are taken is identical to that
of Arnoldi’s method, the same bounds for the distance‖(I − Pm)u‖2 are valid.
However, this does not mean in any way that the approximations obtained by the two
methods are likely to be similar in quality. The theoreticalbounds shown in Chapter
5 indicate that the norm of the projector may play a significant role.

7.1.2 Practical Implementations

There are various ways to improve the standard nonsymmetricLanczos algorithm
which we now discuss briefly. A major concern here is the potential breakdowns
or “near breakdowns” in the algorithm. There exist a number of approaches that
have been developed to avoid such breakdowns. Other approaches do not attempt to
eliminate the breakdown, but rather try to deal with it. The pros and cons of these
strategies will be discussed after the various existing scenarios are described.

Algorithm 7.1 will abort in line 7 whenever,

(v̂j+1, ŵj+1) = 0. (7.6)

This can arise in two different ways. Either one of the two vectors v̂j+1 or ŵj+1

vanishes, or they are both nonzero, but their inner product is zero. The first case is
the “lucky breakdown” scenario which has been seen for symmetric matrices. Thus,
if v̂j+1 = 0 thenspan{Vj} is invariant and, as was seen in Chapter 5, the approximate
solution is exact. Ifŵj+1 = 0 thenspan{Wj} is invariant. However, in this situation
nothing can be said about the approximate solution for the linear system withA. If
the algorithm is being used to solve a pair of linear systems,one withA and adual
system withAT , then the approximate solution for the dual system will be exact
in this case. The second scenario in which (7.6) can occur is when neither of the
two vectors is zero, but their inner product is zero. Wilkinson (see [317], p. 389)
called this aserious breakdown. Fortunately, there are cures for this problem which
allow the algorithm to continue in most cases. The corresponding modifications of
the algorithm are often put under the denominationLook-Ahead Lanczosalgorithms.
There are also rare cases ofincurable breakdownswhich will not be discussed here
(see references [225] and [284]).

The main idea of Look-Ahead variants of the Lanczos algorithm is that the pair
vj+2, wj+2 can often be defined even though the pairvj+1, wj+1 is not defined. The
algorithm can be pursued from that iterate as before until a new breakdown is en-
countered. If the pairvj+2, wj+2 cannot be defined then the pairvj+3, wj+3 can be
tried, and so on. To better explain the idea, it is best to refer to the connection with or-
thogonal polynomials mentioned earlier for the symmetric case. The relationship can
be extended to the nonsymmetric case by defining the bilinearform on the subspace
Pm−1

< p, q >= (p(A)v1, q(A
T )w1). (7.7)
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Unfortunately, this is now an “indefinite inner product” in general since< p, p >
can be zero or even negative. Note that there is a polynomialpj of degreej such that
v̂j+1 = pj(A)v1 and, in fact, the same polynomial intervenes in the equivalent ex-
pression ofwj+1. More precisely, there is a scalarγj such thatŵj+1 = γjpj(A

T )v1.
Similar to the symmetric case, the nonsymmetric Lanczos algorithm attempts to com-
pute a sequence of polynomials that are orthogonal with respect to the indefinite inner
product defined above. If we define the moment matrix

Mk = {< xi−1, xj−1 >}i,j=1,...,k

then this process is mathematically equivalent to the computation of the factorization

Mk = LkUk

of the moment matrixMk, in whichUk is upper triangular andLk is lower triangular.
Note thatMk is a Hankel matrix, i.e., its coefficientsmij are constant along anti-
diagonals, i.e., fori+ j = constant.

Because
< pj, pj >= γj(pj(A)v1, pj(A

T )w1),

we observe that there is a serious breakdown at stepj if and only if the indefinite
norm of the polynomialpj at stepj vanishes. If this polynomial is skipped, it may
still be possible to computepj+1 and continue to generate the sequence. To explain
this simply, consider

qj(t) = xpj−1(t) and qj+1(t) = x2pj−1(t).

Both qj and qj+1 are orthogonal to the polynomialsp1, . . . , pj−2. We can define
(somewhat arbitrarily)pj = qj, and thenpj+1 can be obtained by orthogonalizing
qj+1 againstpj−1 andpj. It is clear that the resulting polynomial will then be orthog-
onal against all polynomials of degree≤ j; see Exercise 7. Therefore, the algorithm
can be continued from stepj + 1 in the same manner. Exercise 7 generalizes this for
the case wherek polynomials are skipped rather than just one. This is a simplified
description of the mechanism which underlies the various versions of Look-Ahead
Lanczos algorithms proposed in the literature. The Parlett-Taylor-Liu implementa-
tion [225] is based on the observation that the algorithm breaks because the pivots
encountered during the LU factorization of the moment matrix Mk vanish. Then,
divisions by zero are avoided by performingimplicitly a pivot with a2 × 2 matrix
rather than using a standard1× 1 pivot.

The drawback of Look-Ahead implementations is the nonnegligible added com-
plexity. Besides the difficulty of identifying these near breakdown situations, the
matrix Tm ceases to be tridiagonal. Indeed, whenever a step is skipped, elements
are introduced above the superdiagonal positions, in some subsequent step. In the
context of linear systems, near breakdowns are rare and their effect generally benign.
Therefore, a simpler remedy, such as restarting the Lanczosprocedure, may well be
adequate. For eigenvalue problems, Look-Ahead strategiesmay be more justified.
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7.2 The Lanczos Algorithm for Linear Systems

We present in this section a brief description of the Lanczosmethod for solving
nonsymmetric linear systems. Consider the (single) linearsystem:

Ax = b (7.8)

whereA is n × n and nonsymmetric. Suppose that a guessx0 to the solution is
available and let its residual vector ber0 = b − Ax0. Then the Lanczos algorithm
for solving (7.8) can be described as follows.

ALGORITHM 7.2 Two-sided Lanczos Algorithm for Linear Systems

1. Computer0 = b−Ax0 andβ := ‖r0‖2
2. Runm steps of the nonsymmetric Lanczos Algorithm, i.e.,
3. Start withv1 := r0/β, and anyw1 such that(v1, w1) = 1
4. Generate the Lanczos vectorsv1, . . . , vm, w1, . . . , wm

5. and the tridiagonal matrixTm from Algorithm 7.1.
6. Computeym = T−1

m (βe1) andxm := x0 + Vmym.

Note that it is possible to incorporate a convergence test when generating the
Lanczos vectors in the second step without computing the approximate solution ex-
plicitly. This is due to the following formula, which is similar to Equation (6.87) for
the symmetric case,

‖b−Axj‖2 = |δj+1e
T
j yj| ‖vj+1‖2, (7.9)

and which can be proved in the same way, by using (7.3). This formula gives us the
residual norm inexpensively without generating the approximate solution itself.

7.3 The BCG and QMR Algorithms

The Biconjugate Gradient (BCG) algorithm can be derived from Algorithm 7.1 in ex-
actly the same way as the Conjugate Gradient method was derived from Algorithm
6.15. The algorithm was first proposed by Lanczos [197] in 1952 and then in a differ-
ent form (Conjugate Gradient-like version) by Fletcher [130] in 1974. Implicitly, the
algorithm solves not only the original systemAx = b but also a dual linear system
ATx∗ = b∗ with AT . This dual system is often ignored in the formulations of the
algorithm.

7.3.1 The Biconjugate Gradient Algorithm

The Biconjugate Gradient (BCG) algorithm is a projection process onto

Km = span{v1, Av1, · · · , Am−1v1}

orthogonally to
Lm = span{w1, A

Tw1, · · · , (AT )m−1w1}
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taking, as usual,v1 = r0/‖r0‖2. The vectorw1 is arbitrary, provided(v1, w1) 6= 0,
but it is often chosen to be equal tov1. If there is a dual systemATx∗ = b∗ to solve
with AT , thenw1 is obtained by scaling the initial residualb∗ −ATx∗0.

Proceeding in the same manner as for the derivation of the Conjugate Gradient
algorithm from the symmetric Lanczos algorithm, we write the LDU decomposition
of Tm as

Tm = LmUm (7.10)

and define
Pm = VmU

−1
m . (7.11)

The solution is then expressed as

xm = x0 + VmT
−1
m (βe1)

= x0 + VmU
−1
m L−1

m (βe1)

= x0 + PmL
−1
m (βe1).

Notice that the solutionxm is updatable fromxm−1 in a similar way to the Conjugate
Gradient algorithm. Like the Conjugate Gradient algorithm, the vectorsrj andr∗j are
in the same direction asvj+1 andwj+1, respectively. Hence, they form a biortho-
gonal sequence. Define similarly the matrix

P ∗
m = WmL

−T
m . (7.12)

Clearly, the column-vectorsp∗i of P ∗
m and thosepi of Pm are A-conjugate, since,

(P ∗
m)TAPm = L−1

m W T
mAVmU

−1
m = L−1

m TmU
−1
m = I.

Utilizing this information, a Conjugate Gradient–like algorithm can be easily derived
from the Lanczos procedure.

ALGORITHM 7.3 Biconjugate Gradient (BCG)

1. Computer0 := b−Ax0. Chooser∗0 such that(r0, r∗0) 6= 0.
2. Set,p0 := r0, p∗0 := r∗0
3. Forj = 0, 1, . . ., until convergence Do:
4. αj := (rj , r

∗
j )/(Apj , p

∗
j )

5. xj+1 := xj + αjpj

6. rj+1 := rj − αjApj

7. r∗j+1 := r∗j − αjA
T p∗j

8. βj := (rj+1, r
∗
j+1)/(rj , r

∗
j )

9. pj+1 := rj+1 + βjpj

10. p∗j+1 := r∗j+1 + βjp
∗
j

11. EndDo

If a dual system withAT is being solved, then in line 1r∗0 should be defined as
r∗0 = b∗−ATx∗0 and the updatex∗j+1 := x∗j +αjp

∗
j to the dual approximate solution

must beinserted after line 5. The vectors produced by this algorithm satisfy a few
biorthogonality properties stated in the following proposition.
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Proposition 7.2 The vectors produced by the Biconjugate Gradient algorithmsatisfy
the following orthogonality properties:

(rj , r
∗
i ) = 0, for i 6= j, (7.13)

(Apj , p
∗
i ) = 0, for i 6= j. (7.14)

Proof. The proof is either by induction or by simply exploiting the relations between
the vectorsrj , r∗j , pj, p∗j , and the vector columns of the matricesVm, Wm, Pm, P ∗

m.
This is left as an exercise.

Example 7.1. Table 7.1 shows the results of applying the BCG algorithm with no
preconditioning to three of the test problems described in Section 3.7. See Exam-
ple 6.1 for the meaning of the column headers in the table. Recall that Iters really
represents the number of matrix-by-vector multiplications rather the number of Bi-
conjugate Gradient steps.

Matrix Iters Kflops Residual Error

F2DA 163 2974 0.17E-03 0.86E-04

F3D 123 10768 0.34E-04 0.17E-03

ORS 301 6622 0.50E-01 0.37E-02

Table 7.1: A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps of BCG, which require
81 × 2 matrix-by-vector products in the iteration, and an extra one to compute the
initial residual.

7.3.2 Quasi-Minimal Residual Algorithm

The result of the Lanczos algorithm is a relation of the form

AVm = Vm+1T̄m (7.15)

in which T̄m is the(m+ 1)×m tridiagonal matrix

T̄m =

(
Tm

δm+1e
T
m

)

.

Now (7.15) can be exploited in the same way as was done to develop GMRES. Ifv1
is defined as a multiple ofr0, i.e., if v1 = βr0, then the residual vector associated
with an approximate solution of the form

x = x0 + Vmy
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is given by

b−Ax = b−A (x0 + Vmy)

= r0 −AVmy

= βv1 − Vm+1T̄my

= Vm+1

(
βe1 − T̄my

)
. (7.16)

The norm of the residual vector is therefore

‖b−Ax‖ = ‖Vm+1

(
βe1 − T̄my

)
‖2. (7.17)

If the column-vectors ofVm+1 were orthonormal, then we would have‖b − Ax‖ =
‖βe1 − T̄my‖2, as in GMRES. Therefore, a least-squares solution could be obtained
from the Krylov subspace by minimizing‖βe1 − T̄my‖2 over y. In the Lanczos
algorithm, thevi’s are not orthonormal. However, it is still a reasonable idea to
minimize the function

J(y) ≡ ‖βe1 − T̄my‖2
overy and compute the corresponding approximate solutionx0+Vmy. The resulting
solution is called theQuasi-Minimal Residual approximation. The norm‖J(y)‖2 is
called the quasi-residual norm for the approximationx0 + Vmy.

Thus, the Quasi-Minimal Residual (QMR) approximation fromthem-th Krylov
subspace is obtained asxm = x0 +Vmym, which minimizes the quasi residual norm
J(y) = ‖βe1 − T̄my‖2, i.e., just as in GMRES, except that the Arnoldi process is
replaced by the Lanczos process. Because of the structure ofthe matrixT̄m, it is easy
to adapt the DQGMRES algorithm (Algorithm 6.13), and obtainan efficient version
of the QMR method. The algorithm is presented next.

ALGORITHM 7.4 QMR

1. Computer0 = b−Ax0 andγ1 := ‖r0‖2, w1 := v1 := r0/γ1

2. Form = 1, 2, . . ., until convergence Do:
3. Computeαm, δm+1 andvm+1, wm+1 as in Algorithm 7.1
4. Update the QR factorization of̄Tm, i.e.,
5. Apply Ωi, i = m− 2,m− 1 to them-th column ofT̄m

6. Compute the rotation coefficientscm, sm by (6.37)
7. Apply rotationΩm, to last column ofT̄m and toḡm, i.e., compute:
8. γm+1 := −smγm,
9. γm := cmγm, and,

10. αm := cmαm + smδm+1

(

=
√

δ2m+1 + α2
m

)

11. pm =
(

vm −
∑m−1

i=m−2 timpi

)

/tmm

12. xm = xm−1 + γmpm

13. If |γm+1| is small enough then Stop
14. EndDo
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It is clear that the matrixTm is not actually saved. Only the two most recent rotations
need to be saved. For the remainder of this subsection, it is assumed (without loss of
generality) that thevi’s are normalized to have unit two norms. Then, the situationis
similar with that of DQGMRES, in that the “quasi-residual” norm defined by

ρQ
m = ‖βe1 − T̄mym‖2 ≡ min

y ∈ Rm
‖βe1 − T̄my‖2

is usually a fairly good estimate of the actual residual norm. Following the same
arguments as in Section 6.5.3 in Chapter 6, it is easily seen that

ρQ
m = |s1s2 . . . sm| ‖r0‖2 = |sm|ρQ

m−1 (7.18)

If the same notation as in Sections 6.5.3 and 6.5.7 is employed, then the actual resid-
ual rm = b−Axm obtained at them-th step of BCG satisfies

rm = −hm+1,me
T
mymvm+1 = −hm+1,m

γm

h
(m−1)
mm

vm+1 =
hm+1,m

smh
(m−1)
mm

γm+1vm+1 .

For convenience, we have kept the notationhij used in Chapter 6, for the entries of
the matrixT̂m. The next relation is then obtained by noticing, as in Section 6.5.7,
thathm+1,m/h

(m)
mm = tan θm

γm+1vm+1 = cmrm, (7.19)

from which it follows that
ρQ

m = |cm| ρm , (7.20)

whereρm = ‖rm‖2 is the actual residual norm of them-th BCG iterate.
The following proposition, which is similar to Proposition6.9, establishes a re-

sult on the actual residual norm of the solution.

Proposition 7.3 The residual norm of the approximate solutionxm satisfies the re-
lation

‖b−Axm‖ ≤ ‖Vm+1‖2 |s1s2 . . . sm| ‖r0‖2. (7.21)

Proof. According to (7.16) the residual norm is given by

b−Axm = Vm+1[βe1 − T̄mym] (7.22)

and using the same notation as in Proposition 6.9, referringto (6.43)

‖βe1 − H̄my‖22 = |γm+1|2 + ‖gm −Rmy‖22

in which gm − Rmy = 0 by the minimization procedure. In addition, by (6.47) we
have

γm+1 = (−1)ms1 . . . smγ1, γ1 = β.

The result follows immediately using (7.22).
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A simple upper bound for‖Vm+1‖2 can be derived from the Cauchy Schwarz in-
equality:

‖Vm+1‖2 ≤
√
m+ 1.

A comparison theorem which is similar to that of Theorem 6.11can also be stated
for QMR.

Theorem 7.4 Assume that the Lanczos algorithm does not break down on or before
stepm and let Vm+1 be the Lanczos basis obtained at stepm. Let rQ

m and rG
m

be the residual norms obtained afterm steps of the QMR and GMRES algorithms,
respectively. Then,

‖rQ
m‖2 ≤ κ2(Vm+1)‖rG

m‖2.

The proof of this theorem is essentially identical with thatof Theorem 6.11. Note
thatVm+1 is now known to be of full rank, so we need not make this assumption as
in Theorem 6.11.

It is not easy to analyze the QMR algorithm in terms of the exact residual norms,
but the quasi residual norms yield interesting properties.For example, an expression
similar to (6.65) relates the actual BCG residual normρj with the “quasi-residual”
normρQ

j obtained by QMR:

1
(

ρQ
j

)2 =
1

(

ρQ
j−1

)2 +
1

(ρj)
2 . (7.23)

The proof of this result is identical with that of (6.65): it is an immediate consequence
of (7.18) and (7.20). An argument similar to the one used to derive (6.67) leads to a
similar conclusion:

ρQ
m =

1
√
∑m

i=0 (1/ρi)
2

(7.24)

The above equality underlines the smoothing property of theQMR algorithm since
it shows that the quasi residual norm is akin to an (harmonic)average of the BCG
residual norms.

It is clear from (7.20) thatρQ
m ≤ ρm. An argument similar to that used to derive

Proposition 6.15 can be be made. Ifρm∗ is the smallest residual norms achieved
among those of the firstm steps of BCG, then,

1
(

ρQ
m

)2 =
m∑

i=0

1

(ρi)
2 ≤

m+ 1

(ρm∗)
2 .

This proves the following result.

Proposition 7.5 Assume thatm steps of QMR and BCG are taken and letρm∗ be
the smallest residual norm achieved by BCG in the firstm steps. Then, the following
inequalities hold:

ρQ
m ≤ ρm∗ ≤

√
m+ 1 ρQ

m (7.25)
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The above results deal with quasi residuals instead of the actual residuals. However,
it is possible to proceed as for DQGMRES, see Equation (6.50)and (6.53), to express
the actual residual as

b−AxQ
m = γm+1zm+1 (7.26)

where, as before,γm+1 is the last component of the right-hand sideβe1 after the
m Givens rotations have been applied to it. Thereforeγm+1 satisfies the recurrence
(6.47) starting withγ1 = β. The vectorzm+1 can be updated by the same relation,
namely

zm+1 = −smzm + cmvm+1. (7.27)

The sequencezm+1 can be updated and the norm ofzm+1 computed to yield the
exact residual norm, but this entails nonnegligible additional operations (5n in total)
and the compromise based on updating an upper bound seen for DQGMRES can be
used here as well.

It is interesting to explore (7.27) further. Denote byrQ
m the actual residual vector

b−AxQ
m obtained from QMR. Then from (7.26), (7.27), and (6.47), it follows that

rQ
m = s2mr

Q
m−1 + cmγm+1vm+1 (7.28)

When combined with (7.19), the above equality leads to the following relation be-
tween the actual residualsrQ

m produced at them-th step of QMR and the residuals
rm obtained from BCG,

rQ
m = s2mr

Q
m−1 + c2mrm (7.29)

from which follows the same relation on the iterates:

xQ
m = s2mx

Q
m−1 + c2mxm . (7.30)

Whensm is close to zero, which corresponds to fast convergence of BCG, then QMR
will be close to the BCG iterate. On the other hand whensm is close to one, then
QMR will tend to make little progress – just as was shown by Brown [66] for the
FOM/GMRES pair. A more pictural way of stating this is that peaks of the BCG
residual norms will correspond to plateaus of the QMR quasi-residuals. The above
relations can be rewritten as follows:

xQ
m = xQ

m−1 + c2m(xm − xQ
m−1) rQ

m = rQ
m−1 + c2m(rm − rQ

m−1) (7.31)

Schemes of the above general form, where nowc2m can be considered a parameter, are
known as residual smoothing methods, and were also considered in Chapter 6. The
minimal residual smoothing seen in Chapter 6, is now replaced by aquasi-minimal
residual smoothing. Indeed, what the above relation shows is thatit is possible to
implement QMR as a quasi-minimal residual smoothing algorithm. The only miss-
ing ingredient for completing the description of the algorithm is an expression of
the smoothing parameterc2m in terms of quantities that do not refer to the Givens
rotatioms. This expression can be derived from (7.20) whichrelates the cosinecj
with the ratio of the quasi-residual norm and the actual residual norm of BCG and
from (7.23) which allows to computeρQ

j recursively. The quasi-minimal residual
smoothing algorithm, developed by Zhou and Walker [324], can now be sketched.
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ALGORITHM 7.5 Quasi Minimal Residual Smoothing

1. Setr0 = b−Ax0, xQ
0 = x0; Setρ0 = ρQ

0 = ‖r0‖2
2. Forj = 1, 2, . . . , Do:
3. Computexj , and the associated residualrj, and residual normρj

4. ComputeρQ
j from (7.23) and setηj =

(

ρQ
j /ρj

)2

5. Compute xQ
j = xQ

j−1 + ηj(xj − xQ
j−1)

6. EndDo

7.4 Transpose-Free Variants

Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-
vector product with bothA andAT . However, observe that the vectorsp∗i or wj

generated withAT do not contribute directly to the solution. Instead, they are used
only to obtain the scalars needed in the algorithm, e.g., thescalarsαj andβj for
BCG.

The question arises as to whether or not it is possible to bypass the use of the
transpose ofA and still generate iterates that are related to those of the BCG algo-
rithm. One of the motivations for this question is that, in some applications,A is
available only through some approximations and not explicitly. In such situations,
the transpose ofA is usually not available. A simple example is when a CG-like
algorithm is used in the context of Newton’s iteration for solving F (u) = 0.

The linear system that arises at each Newton step can be solved without hav-
ing to compute the JacobianJ(uk) at the current iterateuk explicitly, by using the
difference formula

J(uk)v =
F (uk + ǫv)− F (uk)

ǫ
.

This allows the action of this Jacobian to be computed on an arbitrary vectorv. Un-
fortunately, there is no similar formula for performing operations with the transpose
of J(uk).

7.4.1 Conjugate Gradient Squared

The Conjugate Gradient Squared algorithm was developed by Sonneveld in 1984
[272], mainly to avoid using the transpose ofA in the BCG and to gain faster con-
vergence for roughly the same computational cost. The main idea is based on the
following simple observation. In the BCG algorithm, the residual vector at stepj
can be expressed as

rj = φj(A)r0 (7.32)

whereφj is a certain polynomial of degreej satisfying the constraintφj(0) = 1.
Similarly, the conjugate-direction polynomialπj(t) is given by

pj = πj(A)r0, (7.33)
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in whichπj is a polynomial of degreej. From the algorithm, observe that the direc-
tionsr∗j andp∗j are defined through the same recurrences asrj andpj in whichA is
replaced byAT and, as a result,

r∗j = φj(A
T )r∗0 , p∗j = πj(A

T )r∗0 .

Also, note that the scalarαj in BCG is given by

αj =
(φj(A)r0, φj(A

T )r∗0)

(Aπj(A)r0, πj(AT )r∗0)
=

(φ2
j (A)r0, r

∗
0)

(Aπ2
j (A)r0, r

∗
0)

which indicates that if it is possible to get a recursion for the vectorsφ2
j (A)r0 and

π2
j (A)r0, then computingαj and, similarly,βj causes no problem. Hence, the idea of

seeking an algorithm which would give a sequence of iterateswhose residual norms
r′j satisfy

r′j = φ2
j (A)r0. (7.34)

The derivation of the method relies on simple algebra only. To establish the
desired recurrences for the squared polynomials, start with the recurrences that define
φj andπj , which are,

φj+1(t) = φj(t)− αjtπj(t), (7.35)

πj+1(t) = φj+1(t) + βjπj(t). (7.36)

If the above relations are squared we get

φ2
j+1(t) = φ2

j (t)− 2αjtπj(t)φj(t) + α2
j t

2π2
j (t),

π2
j+1(t) = φ2

j+1(t) + 2βjφj+1(t)πj(t) + β2
jπj(t)

2.

If it were not for the cross termsπj(t)φj(t) andφj+1(t)πj(t) on the right-hand sides,
these equations would form an updatable recurrence system.The solution is to intro-
duce one of these two cross terms, namely,φj+1(t)πj(t), as a third member of the
recurrence. For the other term, i.e.,πj(t)φj(t), we can exploit the relation

φj(t)πj(t) = φj(t) (φj(t) + βj−1πj−1(t)) = φ2
j(t) + βj−1φj(t)πj−1(t).

By putting these relations together the following recurrences can be derived, in which
the variable(t) is omitted where there is no ambiguity:

φ2
j+1 = φ2

j − αjt
(
2φ2

j + 2βj−1φjπj−1 − αjt π
2
j

)
(7.37)

φj+1πj = φ2
j + βj−1φjπj−1 − αjt π

2
j (7.38)

π2
j+1 = φ2

j+1 + 2βjφj+1πj + β2
j π

2
j . (7.39)

These recurrences are at the basis of the algorithm. If we define

rj = φ2
j (A)r0, (7.40)

pj = π2
j (A)r0, (7.41)

qj = φj+1(A)πj(A)r0, (7.42)
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then the above recurrences for the polynomials translate into

rj+1 = rj − αjA (2rj + 2βj−1qj−1 − αjA pj) , (7.43)

qj = rj + βj−1qj−1 − αjA pj, (7.44)

pj+1 = rj+1 + 2βjqj + β2
j pj . (7.45)

It is convenient to define the auxiliary vector

dj = 2rj + 2βj−1qj−1 − αjApj.

With this we obtain the following sequence of operations to compute the approximate
solution, starting withr0 := b−Ax0, p0 := r0, q0 := 0, β0 := 0.

• αj = (rj , r
∗
0)/(Apj , r

∗
0)

• dj = 2rj + 2βj−1qj−1 − αjApj

• qj = rj + βj−1qj−1 − αjApj

• xj+1 = xj + αjdj

• rj+1 = rj − αjAdj

• βj = (rj+1, r
∗
0)/(rj , r

∗
0)

• pj+1 = rj+1 + βj(2qj + βjpj).

A slight simplification to the algorithm can be made by using the auxiliary vector
uj = rj + βj−1qj−1. This definition leads to the relations

dj = uj + qj,

qj = uj − αjApj,

pj+1 = uj+1 + βj(qj + βjpj),

and as a result the vectordj is no longer needed. The resulting algorithm is given
below.

ALGORITHM 7.6 Conjugate Gradient Squared

1. Computer0 := b−Ax0; r∗0 arbitrary.
2. Setp0 := u0 := r0.
3. Forj = 0, 1, 2 . . ., until convergence Do:
4. αj = (rj , r

∗
0)/(Apj , r

∗
0)

5. qj = uj − αjApj

6. xj+1 = xj + αj(uj + qj)
7. rj+1 = rj − αjA(uj + qj)
8. βj = (rj+1, r

∗
0)/(rj , r

∗
0)

9. uj+1 = rj+1 + βjqj
10. pj+1 = uj+1 + βj(qj + βjpj)
11. EndDo
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Observe that there are no matrix-by-vector products with the transpose ofA. Instead,
two matrix-by-vector products with the matrixA are now performed at each step. In
general, one should expect the resulting algorithm to converge twice as fast as BCG.
Therefore, what has essentially been accomplished is to replace the matrix-by-vector
products withAT by more useful work.

The Conjugate Gradient Squared algorithm works quite well in many cases.
However, one difficulty is that, since the polynomials are squared, rounding errors
tend to be more damaging than in the standard BCG algorithm. In particular, very
high variations of the residual vectors often cause the residual norms computed from
the result of line 7 of the above algorithm to become inaccurate.

7.4.2 BICGSTAB

The CGS algorithm is based on squaring the residual polynomial, and, in cases of
irregular convergence, this may lead to substantial build-up of rounding errors, or
possibly even overflow. The Biconjugate Gradient Stabilized (BICGSTAB) algo-
rithm is a variation of CGS which was developed to remedy thisdifficulty. Instead of
seeking a method which delivers a residual vector of the formr′j defined by (7.34),
BICGSTAB produces iterates whose residual vectors are of the form

r′j = ψj(A)φj(A)r0, (7.46)

in which, as before,φj(t) is the residual polynomial associated with the BCG algo-
rithm andψj(t) is a new polynomial which is defined recursively at each step with
the goal of “stabilizing” or “smoothing” the convergence behavior of the original
algorithm. Specifically,ψj(t) is defined by the simple recurrence,

ψj+1(t) = (1− ωjt)ψj(t) (7.47)

in which the scalarωj is to be determined. The derivation of the appropriate recur-
rence relations is similar to that of CGS. Ignoring the scalar coefficients at first, we
start with a relation for the residual polynomialψj+1φj+1. We immediately obtain

ψj+1φj+1 = (1− ωjt)ψj(t)φj+1 (7.48)

= (1− ωjt) (ψjφj − αjtψjπj) (7.49)

which is updatable provided a recurrence relation is found for the productsψjπj. For
this, write

ψjπj = ψj(φj + βj−1πj−1) (7.50)

= ψjφj + βj−1(1− ωj−1t)ψj−1πj−1. (7.51)

Define,

rj = ψj(A)φj(A)r0,

pj = ψj(A)πj(A)r0.
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According to the above formulas, these vectors can be updated from a double recur-
rence provided the scalarsαj andβj were computable. This recurrence is

rj+1 = (I − ωjA)(rj − αjApj) (7.52)

pj+1 = rj+1 + βj(I − ωjA)pj.

Consider now the computation of the scalars needed in the recurrence. Accord-
ing to the original BCG algorithm,βj = ρj+1/ρj with

ρj = (φj(A)r0, φj(A
T )r∗0) = (φj(A)2r0, r

∗
0)

Unfortunately,ρj is not computable from these formulas because none of the vectors
φj(A)r0, φj(A

T )r∗0 orφj(A)2r0 is available. However,ρj can be related to the scalar

ρ̃j = (φj(A)r0, ψj(A
T )r∗0)

which is computable via

ρ̃j = (φj(A)r0, ψj(A
T )r∗0) = (ψj(A)φj(A)r0, r

∗
0) = (rj , r

∗
0).

To relate the two scalarsρj andρ̃j , expandψj(A
T )r∗0 explicitly in the power basis,

to obtain
ρ̃j =

(

φj(A)r0, η
(j)
1 (AT )jr∗0 + η

(j)
2 (AT )j−1r∗0 + . . .

)

.

Sinceφj(A)r0 is orthogonal to all vectors(AT )kr∗0, with k < j, only the leading
power is relevant in the expansion on the right side of the above inner product. In
particular, ifγ(j)

1 is the leading coefficient for the polynomialφj(t), then

ρ̃j =

(

φj(A)r0,
η

(j)
1

γ
(j)
1

φj(A
T )r0

)

=
η

(j)
1

γ
(j)
1

ρj .

When examining the recurrence relations forφj+1 andψj+1, leading coefficients for
these polynomials are found to satisfy the relations

η
(j+1)
1 = −ωjη

(j)
1 , γ

(j+1)
1 = −αjγ

(j)
1 ,

and as a result
ρ̃j+1

ρ̃j
=
ωj

αj

ρj+1

ρj

which yields the following relation forβj :

βj =
ρ̃j+1

ρ̃j
× αj

ωj
. (7.53)

Similarly, a simple recurrence formula forαj can be derived. By definition,

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, πj(AT )r∗0)
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and as in the previous case, the polynomials in the right sides of the inner products
in both the numerator and denominator can be replaced by their leading terms. How-
ever, in this case the leading coefficients forφj(A

T )r∗0 andπj(A
T )r∗0 are identical,

and therefore,

αj =
(φj(A)r0, φj(A

T )r∗0)
(Aπj(A)r0, φj(AT )r∗0)

=
(φj(A)r0, ψj(A

T )r∗0)
(Aπj(A)r0, ψj(AT )r∗0)

=
(ψj(A)φj(A)r0, r

∗
0)

(Aψj(A)πj(A)r0, r∗0)
.

Sincepj = ψj(A)πj(A)r0, this yields,

αj =
ρ̃j

(Apj , r∗0)
. (7.54)

Next, the parameterωj must be defined. This can be thought of as an additional
free parameter. One of the simplest choices, and perhaps themost natural, is to
selectωj to achieve a steepest descent step in the residual directionobtained before
multiplying the residual vector by(I − ωjA) in (7.52). In other words,ωj is chosen
to minimize the 2-norm of the vector(I − ωjA)ψj(A)φj+1(A)r0. Equation (7.52)
can be rewritten as

rj+1 = (I − ωjA)sj

in which
sj ≡ rj − αjApj.

Then the optimal value forωj is given by

ωj =
(Asj, sj)

(Asj, Asj)
. (7.55)

Finally, a formula is needed to update the approximate solution xj+1 from xj.
Equation (7.52) can be rewritten as

rj+1 = sj − ωjAsj = rj − αjApj − ωjAsj

which yields
xj+1 = xj + αjpj + ωjsj.

After putting these relations together, we obtain the final form of the BICGSTAB
algorithm, due to van der Vorst [290].

ALGORITHM 7.7 BICGSTAB

1. Computer0 := b−Ax0; r∗0 arbitrary;
2. p0 := r0.
3. Forj = 0, 1, . . ., until convergence Do:
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4. αj := (rj , r
∗
0)/(Apj , r

∗
0)

5. sj := rj − αjApj

6. ωj := (Asj, sj)/(Asj , Asj)
7. xj+1 := xj + αjpj + ωjsj

8. rj+1 := sj − ωjAsj

9. βj :=
(rj+1,r∗0)
(rj ,r∗0) ×

αj

ωj

10. pj+1 := rj+1 + βj(pj − ωjApj)
11. EndDo

Example 7.2. Table 7.2 shows the results of applying the BICGSTAB algorithm
with no preconditioning to three of the test problems described in Section 3.7. See

Matrix Iters Kflops Residual Error

F2DA 96 2048 0.14E-02 0.77E-04

F3D 64 6407 0.49E-03 0.17E-03

ORS 208 5222 0.22E+00 0.68E-04

Table 7.2: A test run of BICGSTAB with no preconditioning.

Example 6.1 for the meaning of the column headers in the table. As in Example 7.1,
’Iters’ is the number of matrix-by-vector multiplicationsrequired to converge. As can
be seen it is less than with BCG. Thus, using the number of matrix-by-vector products
as a criterion, BCG is more expensive than BICGSTAB in all three examples. For
problem 3, the number matvecs exceeds the 300 limit with BCG.If the number of
actual iterations is used as a criterion, then the two methods come close for the second
problem [61 steps for BCG versus 64 for BICGSTAB] while BCG isslightly faster
for Problem 1. Observe also that the total number of operations favors BICGSTAB.
This illustrates the main weakness of BCG as well as QMR, namely, the matrix-by-
vector products with the transpose are essentially wasted unless a dual system with
AT must be solved simultaneously.

7.4.3 Transpose-Free QMR (TFQMR)

The Transpose-Free QMR algorithm of Freund [134] is derivedfrom the CGS algo-
rithm. Observe thatxj can be updated in two half-steps in line 6 of Algorithm 7.6,
namely,xj+ 1

2
= xj + αjuj andxj+1 = xj+ 1

2
+ αjqj . This is only natural since

the actual update from one iterate to the next involves two matrix-by-vector multi-
plications, i.e., the degree of the residual polynomial is increased by two. In order
to avoid indices that are multiples of1

2 , it is convenient when describing TFQMR to
double all subscripts in the CGS algorithm. With this changeof notation, the main
steps of the Algorithm 7.6 (CGS) become
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α2j = (r2j , r
∗
0)/(Ap2j , r

∗
0) (7.56)

q2j = u2j − α2jAp2j (7.57)

x2j+2 = x2j + α2j(u2j + q2j) (7.58)

r2j+2 = r2j − α2jA(u2j + q2j) (7.59)

β2j = (r2j+2, r
∗
0)/(r2j , r

∗
0) (7.60)

u2j+2 = r2j+2 + β2jq2j (7.61)

p2j+2 = u2j+2 + β2j(q2j + βp2j). (7.62)

The initialization is identical with that of Algorithm 7.6.The update of the ap-
proximate solution in (7.58) can now be split into the following two half-steps:

x2j+1 = x2j + α2ju2j (7.63)

x2j+2 = x2j+1 + α2jq2j. (7.64)

This can be simplified by defining the vectorsum for oddm asu2j+1 = q2j . Simi-
larly, the sequence ofαm is defined for odd values ofm asα2j+1 = α2j . In summary,

for m odd define:

{
um ≡ qm−1

αm ≡ αm−1
. (7.65)

With these definitions, the relations (7.63–7.64) are translated into the single equation

xm = xm−1 + αm−1um−1,

which is valid whetherm is even or odd. The intermediate iteratesxm, withm odd,
which are now defined do not exist in the original CGS algorithm. For even values
of m the sequencexm represents the original sequence or iterates from the CGS
algorithm. It is convenient to introduce theN ×m matrix,

Um = [u0, . . . , um−1]

and them-dimensional vector

zm = (α0, α1, . . . , αm−1)
T .

The general iteratexm satisfies the relation

xm = x0 + Umzm (7.66)

= xm−1 + αm−1um−1. (7.67)

From the above equation, it is clear that the residual vectors rm are related to the
u-vectors by the relations

rm = r0 −AUmzm (7.68)

= rm−1 − αm−1Aum−1. (7.69)
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Next, a relation similar to the relation (6.7) seen for FOM and GMRES will be
extracted using the matrixAUm. As a result of (7.69), the following relation holds:

Aui =
1

αi
(ri − ri+1) .

Translated in matrix form, this relation becomes

AUm = Rm+1B̄m (7.70)

where
Rk = [r0, r1, . . . , rk−1] (7.71)

and whereB̄m is the(m+ 1)×m matrix,

B̄m =












1 0 . . . . . . 0

−1 1
...

0 −1 1 . . .
...

. . . . . .
...

... −1 1
0 . . . −1












× diag

{
1

α0
,

1

α1
, . . .

1

αm−1

}

. (7.72)

The columns ofRm+1 can be rescaled, for example, to make each of them have a
2-norm equal to one, by multiplyingRm+1 to the right by a diagonal matrix. Let this
diagonal matrix be the inverse of the matrix

∆m+1 = diag [δ0, δ1, . . . , δm] .

Then,
AUm = Rm+1∆

−1
m+1∆m+1B̄m. (7.73)

With this, equation (7.68) becomes

rm = r0 −AUmzm = Rm+1

[
e1 − B̄mzm

]
(7.74)

= Rm+1∆
−1
m+1

[
δ0e1 −∆m+1B̄mzm

]
. (7.75)

By analogy with the GMRES algorithm, define

H̄m ≡ ∆m+1B̄m.

Similarly, defineHm to be the matrix obtained from̄Hm by deleting its last row. It is
easy to verify that the CGS iteratesxm (now defined for all integersm = 0, 1, 2, . . .)
satisfy the same definition as FOM, i.e.,

xm = x0 + UmH
−1
m (δ0e1). (7.76)

It is also possible to extract a GMRES-like solution from therelations (7.73) and
(7.75), similar to DQGMRES. In order to minimize the residual norm over the Krylov
subspace, the 2-norm of the right-hand side of (7.75) would have to be minimized,
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but this is not practical since the columns ofRm+1∆
−1
m+1 are not orthonormal as in

GMRES. However, the 2-norm ofδ0e1 − ∆m+1B̄mz can be minimized overz, as
was done for the QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. However, it is now necessary to
find a formula for expressing the iterates in a progressive way. There are two ways
to proceed. The first follows DQGMRES closely, defining the least-squares solution
progressively and exploiting the structure of the matrixRm to obtain a formula for
xm fromxm−1. Because of the special structure ofH̄m, this is equivalent to using the
DQGMRES algorithm withk = 1. The second way to proceed exploits Lemma 6.16
seen in the previous chapter. This lemma, which was shown forthe FOM/GMRES
pair, is also valid for the CGS/TFQMR pair. There is no fundamental difference
between the two situations. Thus, the TFQMR iterates satisfy the relation

xm − xm−1 = c2m (x̃m − xm−1) (7.77)

where the tildes are now used to denote the CGS iterate. Setting

dm ≡
1

αm−1
(x̃m − xm−1) =

1

c2mαm−1
(xm − xm−1) (7.78)

ηm ≡ c2mαm−1,

the above expression forxm becomes

xm = xm−1 + ηmdm. (7.79)

Now observe from (7.67) that the CGS iteratesx̃m satisfy the relation

x̃m = x̃m−1 + αm−1um−1. (7.80)

From the above equations, a recurrence relation fromdm can be extracted. The
definition ofdm and the above relations yield

dm =
1

αm−1
(x̃m − x̃m−1 + x̃m−1 − xm−1)

= um−1 +
1

αm−1
(x̃m−1 − xm−2 − (xm−1 − xm−2))

= um−1 +
1− c2m−1

αm−1
(x̃m−1 − xm−2) .

Therefore,

dm = um−1 +
(1− c2m−1)ηm−1

c2m−1αm−1
dm−1.

The term(1−c2m−1)/c
2
m−1 is the squared tangent of the angle used in the(m−1)−st

rotation. This tangent will be denoted byθm−1, and we have

θm =
sm

cm
, c2m =

1

1 + θ2
m

, dm+1 = um +
θ2
mηm

αm
dm.
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The angle used in them-th rotation, or equivalentlycm, can be obtained by examin-
ing the matrixH̄m:

H̄m =












δ0 0 . . . . . . 0

−δ1 δ1
...

0 −δ2 δ2 . . .
...

. .. .. .
...

... −δm δm
0 . . . −δm+1












× diag

{
1

αi

}

i=0,...,m−1

. (7.81)

The diagonal matrix in the right-hand side scales the columns of the matrix. It is easy
to see that it has no effect on the determination of the rotations. Ignoring this scaling,
the above matrix becomes, afterj rotations,
















⋆ ⋆
⋆ ⋆

. . . . . .
τj 0
−δj+1 δj+1

. . . .. .
−δm δm

−δm+1
















.

The next rotation is then determined by,

sj+1 =
−δj+1

√

τ2
j + δ2j+1

, cj+1 =
τj

√

τ2
j + δ2j+1

, θj+1 =
−δj+1

τj
.

In addition, after this rotation is applied to the above matrix, the diagonal element
δj+1 which is in position(j + 1, j + 1) is transformed into

τj+1 = δj+1 × cj+1 =
τjδj+1

√

τ2
j + δ2j+1

= −τjsj+1 = −τjθj+1cj+1. (7.82)

The above relations enable us to update the directiondm and the required quantities
cm andηm. Since only the squares of these scalars are invoked in the update of the
directiondm+1, a recurrence for their absolute values is sufficient. This gives the
following recurrences which will be used in the algorithm:

dm+1 = um + (θ2
m/αm)ηmdm

θm+1 = δm+1/τm

cm+1 =
(
1 + θ2

m+1

)− 1
2

τm+1 = τmθm+1cm+1

ηm+1 = c2m+1αm.
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Before writing down the algorithm, a few relations must be exploited. Since the
vectorsrm are no longer the actual residuals in the algorithm, we change the notation
towm. These residual vectors can be updated by the formula

wm = wm−1 − αm−1Aum−1.

The vectorsAui can be used to update the vectors

v2j ≡ Ap2j

which are needed in the CGS algorithm. Multiplying (7.62) byA results in

Ap2j = Au2j + β2j−2(Aq2j−2 + βjAp2j−2)

which, upon substituting the relation

q2j = u2j+1

translates into
v2j = Au2j + β2j−2(Au2j−1 + β2j−2v2j−2).

Also, observe that the recurrences in (7.57) and (7.61) forq2j andu2j+2, respectively,
become

u2j+1 = u2j − α2jv2j

u2j+2 = w2j+2 + β2ju2j+1.

The first equation should be used to computeum+1 whenm is even, and the second
whenm is odd. In the following algorithm, the normalizationδm = ‖wm‖2, which
normalize each column ofRm to have 2-norm unity, is used.

ALGORITHM 7.8 Transpose-Free QMR (TFQMR)

1. Computew0 = u0 = r0 = b−Ax0, v0 = Au0, d0 = 0;
2. τ0 = ‖r0‖2, θ0 = η0 = 0.
3. Chooser∗0 such thatρ0 ≡ (r∗0, r0) 6= 0.
4. Form = 0, 1, 2, . . . , until convergence Do:
5. If m is even then
6. αm+1 = αm = ρm/(vm, r

∗
0)

7. um+1 = um − αmvm

8. EndIf
9. wm+1 = wm − αmAum

10. dm+1 = um + (θ2
m/αm)ηmdm

11. θm+1 = ‖wm+1‖2/τm; cm+1 =
(
1 + θ2

m+1

)− 1
2

12. τm+1 = τmθm+1cm+1 ; ηm+1 = c2m+1αm

13. xm+1 = xm + ηm+1dm+1

14. Ifm is odd then
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15. ρm+1 = (wm+1, r
∗
0); βm−1 = ρm+1/ρm−1

16. um+1 = wm+1 + βm−1um

17. vm+1 = Aum+1 + βm−1(Aum + βm−1vm−1)
18. EndIf
19. EndDo

Notice that the quantities in the oddm loop are only defined for even values of
m. The residual norm of the approximate solutionxm is not available from the
above algorithm as it is described. However, good estimatescan be obtained using
similar strategies to those used for DQGMRES. Referring to GMRES, an interesting
observation is that the recurrence (6.47) is identical withthe recurrence of the scalars
τj ’s. In addition, these two sequences start with the same values,δ0 for theτ ’s andβ
for theγ’s. Therefore,

γm+1 = τm.

Recall thatγm+1 is the residual for the(m+ 1)×m least-squares problem

min
z
‖δ0e1 − H̄mz‖2.

Hence, a relation similar to that for DQGMRES holds, namely,

‖b−Axm‖ ≤
√
m+ 1τm. (7.83)

This provides a readily computable estimate of the residualnorm. Another point that
should be made is that it is possible to use the scalarssm, cm in the recurrence instead
of the paircm, θm, as was done above. In this case, the proper recurrences are

dm+1 = um + (s2m/αm)αm−1dm

sm+1 = δm+1/
√

τ2
m + δ2m+1

cm+1 = τm/
√

τ2
m + δ2m+1

τm+1 = τmsm+1

ηm+1 = c2m+1αm.

Table 7.3 shows the results when TFQMR algorithm without preconditioning is ap-
plied to three of the test problems described in Section 3.7.

Example 7.3.

Matrix Iters Kflops Residual Error

F2DA 112 2736 0.46E-04 0.68E-04

F3D 78 8772 0.52E-04 0.61E-03

ORS 252 7107 0.38E-01 0.19E-03

Table 7.3: A test run of TFQMR with no preconditioning.
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See Example 6.1 for the meaning of the column headers in the table. As with
previous examples, ’Iters’ represents the number of matrix-by-vector multiplications
rather the number of Biconjugate Gradient steps. This number is slightly higher than
that of BICGSTAB.

Using the number of matrix-by-vector products as a criterion, TFQMR is more
expensive that BICGSTAB in all three cases, and it is also less expensive than BCG
for all cases. If the number of actual iterations is used as a criterion, then BCG is
just slightly better for Problems 1 and 2. A comparison is notpossible for Problem
3, since the number of matrix-by-vector products required for convergence exceeds
the limit of 300. In general, the number of steps required forconvergence is similar
for BICGSTAB and TFQMR. A comparison with the methods seen inthe previous
chapter indicates that in many cases, GMRES will be faster ifthe problem is well
conditioned, resulting in a moderate number of steps required to converge. If many
steps (say, in the hundreds) are required, then BICGSTAB andTFQMR may perform
better. If memory is not an issue, GMRES or DQGMRES, with a large number
of directions, is often the most reliable choice. The issue then is one of trading
robustness for memory usage. In general, a sound strategy isto focus on finding a
good preconditioner rather than the best accelerator.

PROBLEMS

P-7.1 Consider the following modification of the Lanczos algorithm, Algorithm 7.1. We
replace line 6 by

ŵj+1 = ATwj −
j
∑

i=1

hijwi

where the scalarshij are arbitrary. Lines 5 and 7 through 10 remain the same but line 4 in
whichαj is computed must be changed.

a. Show how to modify line 4 to ensure that the vectorv̂j+1 is orthogonal against the
vectorswi, for i = 1, . . . , j.

b. Prove that the vectorsvi’s and the matrixTm do not depend on the choice of thehij ’s.

c. Consider the simplest possible choice, namely,hij ≡ 0 for all i, j. What are the
advantages and potential difficulties with this choice?

P-7.4 Assume that the Lanczos algorithm does not break down beforestepm, i.e., that it is
possible to generatev1, . . . vm+1. Show thatVm+1 andWm+1 are both of full rank.

P-7.5 Develop a modified version of the non-Hermitian Lanczos algorithm that produces
a sequence of vectorsvi, wi such that eachvi is orthogonal to everywj with j 6= i and
‖vi‖2 = ‖wi‖2 = 1 for all i. What does the projected problem become?

P-7.6 Develop a version of the non-Hermitian Lanczos algorithm that produces a sequence
of vectorsvi, wi which satisfy

(vi, wj) = ±δij ,
but such that the matrixTm is Hermitian tridiagonal. What does the projected problem
become in this situation?
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P-7.7 Using the notation of Section 7.1.2 prove thatqj+k(t) = tkpj(t) is orthogonal to
the polynomialsp1, p2, . . . , pj−k, assuming thatk ≤ j. Show that ifqj+k is orthogonalized
againstp1, p2, . . . , pj−k, the result would be orthogonal to all polynomials of degree< j+k.
Derive a general Look-Ahead non-Hermitian Lanczos procedure based on this observation.

P-7.8 Consider the matricesVm = [v1, . . . , vm] andWm = [w1, . . . , wm] obtained from
the Lanczos biorthogonalization algorithm. (a) What are the matrix representations of the
(oblique) projector ontoKm(A, v1) orthogonal to the subspaceKm(AT , w1), and the pro-
jector ontoKm(AT , w1) orthogonally to the subspaceKm(A, v1)? (b) Express a general
condition for the existence of an oblique projector ontoK, orthogonal toL. (c) How can this
condition be interpreted using the Lanczos vectors and the Lanczos algorithm?

P-7.9 Show a three-term recurrence satisfied by the residual vectors rj of the BCG algo-
rithm. Include the first two iterates to start the recurrence. Similarly, establish a three-term
recurrence for the conjugate direction vectorspj in BCG.

P-7.10 Let φj(t) andπj(t) be the residual polynomial and the conjugate direction polyno-
mial, respectively, for the BCG algorithm, as defined in Section 7.4.1. Letψj(t) be any other
polynomial sequence which is defined from the recurrence

ψ0(t) = 1, ψ1(t) = (1− ξ0t)ψ0(t)

ψj+1(t) = (1 + ηj − ξjt)ψj(t)− ηjψj−1(t)

a. Show that the polynomialsψj are consistent, i.e.,ψj(0) = 1 for all j ≥ 0.

b. Show the following relations

ψj+1φj+1 = ψjφj+1 − ηj(ψj−1 − ψj)φj+1 − ξjtψjφj+1

ψjφj+1 = ψjφj − αjtψjπj

(ψj−1 − ψj)φj+1 = ψj−1φj − ψjφj+1 − αjtψj−1πj

ψj+1πj+1 = ψj+1φj+1 − βjηjψj−1πj + βj(1 + ηj)ψjπj − βjξjtψjπj

ψjπj+1 = ψjφj+1 + βjψjπj .

c. Defining,

tj = ψj(A)φj+1(A)r0, yj = (ψj−1(A) − ψj(A))φj+1(A)r0,
pj = ψj(A)πj(A)r0, sj = ψj−1(A)πj(A)r0

show how the recurrence relations of the previous question translate for these vectors.

d. Find a formula that allows one to update the approximationxj+1 from the vectors
xj−1, xj andtj , pj , yj, sj defined above.

e. Proceeding as in BICGSTAB, find formulas for generating the BCG coefficientsαj

andβj from the vectors defined in the previous question.

P-7.6 Prove the expression (7.76) for the CGS approximation defined by (7.66–7.67). Is
the relation valid for any choice of scaling∆m+1?

P-7.7 Prove that the vectorsrj andr∗i produced by the BCG algorithm are orthogonal to
each other wheni 6= j, while the vectorspi andp∗j areA-orthogonal, i.e.,(Apj , p

∗
i ) = 0 for

i 6= j.

P-7.8 The purpose of this exercise is to develop block variants of the Lanczos algorithm.
Consider a two-sided analogue of the Block-Arnoldi algorithm, in its variant of Algorithm
6.24. Formally, the general step that defines the biorthogonalization process, forj ≥ p, is as
follows:
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1. OrthogonalizeAvj−p+1 versusw1, w2, . . . , wj (by subtracting a linear combination
of v1, . . . , vj fromAvj−p+1). Call v the resulting vector.

2. OrthogonalizeATwj−p+1 versusv1, v2, . . . , vj (by subtracting a linear combination
of w1, . . . , wj fromATwj−p+1). Callw the resulting vector.

3. Normalize the two vectorsv andw so that(v, w) = 1 to getvj+1 andwj+1.

Here,p is the block size and it is assumed that the initial blocks arebiorthogonal:(vi, wj) =
δij for i, j ≤ p.

a. Show thatAvj−p+1 needs only to be orthogonalized against the2p previouswi’s in-
stead of all of them. Similarly,ATwj−p+1 must be orthogonalized only against the2p
previousvi’s.

b. Write down the algorithm completely. Show the orthogonality relations satisfied by
the vectorsvi andwj . Show also relations similar to (7.3) and (7.4).

c. We now assume that the two sets of vectorsvi andwj have different block sizes. Call
q the block-size for thew’s. Line 2 of the above formal algorithm is changed into:

2a. OrthogonalizeATwj−q+1 versusv1, v2, . . . , vj (· · ·). Callw the resulting vector.

and the rest remains unchanged. The initial vectors are again biorthogonal:(vi, wj) =
δij for i ≤ p andj ≤ q. Show that nowAvj−p+1 needs only to be orthogonalized
against theq+p previouswi’s instead of all of them. Show a simlar result for thewj ’s.

d. Show how a block version of BCG and QMR can be developed based on the algorithm
resulting from question (c).

NOTES AND REFERENCES. The pioneering paper by Lanczos [197], on what is now referred to as
Bi-CG, did not receive the attention it deserved. Fletcher [130] who developed the modern version of
the algorithm mentions the 1950 Lanczos paper [195] which isdevoted mostly to eigenvalue problems,
but seemed unaware of the second [197] which is devoted to linear systems. Likewise, the paper by
Sonneveld [272] which proved for the first time that theAT operations were not necessary, received
little attention for several years (the first reference to the method [312] dates back to 1980). TFQMR
(Freund and Nachtigal [136]) and BICGSTAB (van der Vorst [290]) were later developed to cure
some of the numerical problems that plague CGS. Many additions and variations to the basic BCG,
BICGSTAB, and TFQMR techniques appeared, see, e.g., [63, 72, 160, 161, 260], among others. Some
variations were developed to cope with the breakdown of the underlying Lanczos or BCG algorithm;
see, for example, [62, 27, 135, 260, 321]. Finally, block methods of these algorithms have also been
developed, see, e.g., [5].

The Lanczos-type algorithms developed for solving linear systems are rooted in the theory of
orthogonal polynomials and Padé approximation. Lanczos himself certainly used this viewpoint when
he wrote his breakthrough papers [195, 197] in the early 1950s. The monograph by Brezinski [59]
gives an excellent coverage of the intimate relations between approximation theory and the Lanczos-
type algorithms. Freund [133] establishes these relationsfor quasi-minimal residual methods. A few
optimality properties for the class of methods presented inthis chapter can be proved using a variable
metric, i.e., an inner product which is different at each step [29]. A survey by Weiss [308] presents a
framework for Krylov subspace methods explaining some of these optimality properties and the inter-
relationships between Krylov subspace methods. Several authors discuss a class of techniques known
as residual smoothing; see for example [259, 324, 308, 61]. These techniques can be applied to any
iterative sequencexk to build a new sequence of iteratesyk by combiningyk−1 with the difference
xk − yk−1. A remarkable result shown by Zhou and Walker [324] is that the iterates of the QMR
algorithm can be obtained from those of the BCG as a particular case of residual smoothing.
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A number of projection-type methods on Krylov subspaces, other than those seen in this chapter
and the previous one are described in [1]. The group of rank-k update methods discussed by Eirola
and Nevanlinna [113] and Deuflhard et al. [100] is closely related to Krylov subspace methods. In
fact, GMRES can be viewed as a particular example of these methods. Also of interest and not
covered in this book are thevector extrapolationtechniques which are discussed, for example, in the
books Brezinski [59], Brezinski and Radivo Zaglia [60] and the articles [270] and [177]. Connections
between these methods and Krylov subspace methods, have been uncovered, and are discussed by
Brezinski [59] and Sidi [263].
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Chapter 8

METHODS RELATED TO THE NORMAL
EQUATIONS

There are a number of techniques for converting a non-symmetric linear system into a symmetric

one. One such technique solves the equivalent linear system AT Ax = AT b, called the normal

equations. Often, this approach is avoided in practice because the coefficient matrix AT A is

much worse conditioned than A. However, the normal equations approach may be adequate in

some situations. Indeed, there are even applications in which it is preferred to the usual Krylov

subspace techniques. This chapter covers iterative methods which are either directly or implicitly

related to the normal equations.

8.1 The Normal Equations

In order to solve the linear systemAx = b whenA is nonsymmetric, we can solve
the equivalent system

ATA x = AT b (8.1)

which is Symmetric Positive Definite. This system is known asthe system of the
normal equationsassociated with the least-squares problem,

minimize ‖b−Ax‖2. (8.2)

Note that (8.1) is typically used to solve the least-squaresproblem (8.2) forover-
determinedsystems, i.e., whenA is a rectangular matrix of sizen×m,m < n.

A similar well known alternative setsx = ATu and solves the following equation
for u:

AATu = b. (8.3)

Once the solutionu is computed, the original unknownx could be obtained by mul-
tiplying u byAT . However, most of the algorithms we will see do not invoke theu
variable explicitly and work with the original variablex instead. The above system
of equations can be used to solveunder-determinedsystems, i.e., those systems in-
volving rectangular matrices of sizen ×m, with n < m. It is related to (8.1) in the
following way. Assume thatn ≤ m and thatA has full rank. Letx∗ beanysolution
to the underdetermined systemAx = b. Then (8.3) represents the normal equations
for the least-squares problem,

minimize ‖x∗ −ATu‖2. (8.4)

259
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Since by definitionATu = x, then (8.4) will find the solution vectorx that is closest
tox∗ in the 2-norm sense. What is interesting is that whenn < m there are infinitely
many solutionsx∗ to the systemAx = b, but the minimizeru of (8.4) does not
depend on the particularx∗ used.

The system (8.1) and methods derived from it are often labeled with NR (N
for “Normal” and R for “Residual”) while (8.3) and related techniques are labeled
with NE (N for “Normal” and E for “Error”). If A is square and nonsingular, the
coefficient matrices of these systems are both Symmetric Positive Definite, and the
simpler methods for symmetric problems, such as the Conjugate Gradient algorithm,
can be applied. Thus, CGNE denotes the Conjugate Gradient method applied to the
system (8.3) and CGNR the Conjugate Gradient method appliedto (8.1).

There are several alternative ways to formulate symmetric linear systems having
the same solution as the original system. For instance, the symmetric linear system

(
I A
AT O

)(
r
x

)

=

(
b
0

)

(8.5)

with r = b − Ax, arises from the standard necessary conditions satisfied bythe
solution of the constrained optimization problem,

minimize
1

2
‖r − b‖22 (8.6)

subject toAT r = 0. (8.7)

The solutionx to (8.5) is the vector of Lagrange multipliers for the above problem.
Another equivalent symmetric system is of the form

(
O A
AT O

)(
Ax
x

)

=

(
b

AT b

)

.

The eigenvalues of the coefficient matrix for this system are±σi, whereσi is an
arbitrary singular value ofA. Indefinite systems of this sort are not easier to solve
than the original nonsymmetric system in general. Althoughnot obvious immedi-
ately, this approach is similar in nature to the approach (8.1) and the corresponding
Conjugate Gradient iterations applied to them should behave similarly.

A general consensus is that solving the normal equations canbe an inefficient
approach in the case whenA is poorly conditioned. Indeed, the 2-norm condition
number ofATA is given by

Cond2(A
TA) = ‖ATA‖2 ‖(ATA)−1‖2.

Now observe that‖ATA‖2 = σ2
max(A) whereσmax(A) is the largest singular value

of A which, incidentally, is also equal to the 2-norm ofA. Thus, using a similar
argument for the inverse(ATA)−1 yields

Cond2(A
TA) = ‖A‖22 ‖A−1‖22 = Cond2

2(A). (8.8)

The 2-norm condition number forATA is exactly the square of the condition number
of A, which could cause difficulties. For example, if originallyCond2(A) = 108,
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then an iterative method may be able to perform reasonably well. However, a con-
dition number of1016 can be much more difficult to handle by a standard iterative
method. That is because any progress made in one step of the iterative procedure
may be annihilated by the noise due to numerical errors.

On the other hand, if the original matrix has a good 2-norm condition number,
then the normal equation approach should not cause any serious difficulties. In the
extreme case whenA is unitary, i.e., whenAHA = I, then the normal equations
are clearly the best approach (the Conjugate Gradient method will converge in zero
step!).

8.2 Row Projection Methods

When implementing a basic relaxation scheme, such as Jacobior SOR, to solve the
linear system

ATAx = AT b, (8.9)

or
AATu = b, (8.10)

it is possible to exploit the fact that the matricesATA or AAT need not be formed
explicitly. As will be seen, only a row or a column ofA at a time is needed at a given
relaxation step. These methods are known asrow projection methodssince they are
indeed projection methods on rows ofA or AT . Block row projection methods can
also be defined similarly.

8.2.1 Gauss-Seidel on the Normal Equations

It was stated above that in order to use relaxation schemes onthe normal equations,
only access to one column ofA at a time is needed for (8.9) and one row at a time
for (8.10). This is now explained for (8.10) first. Starting from an approximation
to the solution of (8.10), a basic relaxation-based iterative procedure modifies its
components in a certain order using a succession of relaxation steps of the simple
form

unew = u+ δiei (8.11)

whereei is thei-th column of the identity matrix. The scalarδi is chosen so that the
i-th component of the residual vector for (8.10) becomes zero. Therefore,

(b−AAT (u+ δiei), ei) = 0 (8.12)

which, settingr = b−AATu, yields,

δi =
(r, ei)

‖AT ei‖22
. (8.13)

Denote byβi thei-th component ofb. Then a basic relaxation step consists of taking

δi =
βi − (ATu,AT ei)

‖AT ei‖22
. (8.14)
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Also, (8.11) can be rewritten in terms ofx-variables as follows:

xnew = x+ δiA
T ei. (8.15)

The auxiliary variableu has now been removed from the scene and is replaced by
the original variablex = ATu.

Consider the implementation of a forward Gauss-Seidel sweep based on (8.15)
and (8.13) for a general sparse matrix. The evaluation ofδi from (8.13) requires the
inner product of the current approximationx = ATu with AT ei, thei-th row ofA.
This inner product is inexpensive to compute becauseAT ei is usually sparse. If an
acceleration parameterω is used, we only need to changeδi into ωδi. Therefore, a
forward SOR sweep would be as follows.

ALGORITHM 8.1 Forward NE-SOR Sweep

1. Choose an initialx.
2. Fori = 1, 2, . . . , n Do:

3. δi = ω βi−(AT ei,x)
‖AT ei‖2

2

4. x := x+ δiA
T ei

5. EndDo

Note thatAT ei is a vector equal to the transpose of thei-th row ofA. All that is
needed is the row data structure forA to implement the above algorithm. Denoting
by nzi the number of nonzero elements in thei-th row ofA, then each step of the
above sweep requires2nzi + 2 operations in line 3, and another2nzi operations in
line 4, bringing the total to4nzi +2. The total for a whole sweep becomes4nz+2n
operations, wherenz represents the total number of nonzero elements ofA. Twice as
many operations are required for the Symmetric Gauss-Seidel or the SSOR iteration.
Storage consists of the right-hand side, the vectorx, and possibly an additional vector
to store the 2-norms of the rows ofA. A better alternative would be to rescale each
row by its 2-norm at the start.

Similarly, Gauss-Seidel for (8.9) would consist of a sequence of steps of the form

xnew = x+ δiei. (8.16)

Again, the scalarδi is to be selected so that thei-th component of the residual vector
for (8.9) becomes zero, which yields

(AT b−ATA(x+ δiei), ei) = 0. (8.17)

With r ≡ b−Ax, this becomes(AT (r − δiAei), ei) = 0, which yields

δi =
(r,Aei)

‖Aei‖22
. (8.18)

Then the following algorithm is obtained.
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ALGORITHM 8.2 Forward NR-SOR Sweep

1. Choose an initialx, computer := b−Ax.
2. Fori = 1, 2, . . . , n Do:
3. δi = ω (r,Aei)

‖Aei‖2
2

4. x := x+ δiei
5. r := r − δiAei
6. EndDo

In contrast with Algorithm 8.1, the column data structure ofA is now needed for
the implementation instead of its row data structure. Here,the right-hand sideb can
be overwritten by the residual vectorr, so the storage requirement is essentially the
same as in the previous case. In the NE version, the scalarβi− (x, ai) is just thei-th
component of the current residual vectorr = b − Ax. As a result, stopping criteria
can be built for both algorithms based on either the residualvector or the variation
in the solution. Note that the matricesAAT andATA can be dense or generally
much less sparse thanA, yet the cost of the above implementations depends only
on the nonzero structure ofA. This is a significant advantage of relaxation-type
preconditioners over incomplete factorization preconditioners when using Conjugate
Gradient methods to solve the normal equations.

One question remains concerning the acceleration of the above relaxation schemes
by under- or over-relaxation. If the usual acceleration parameterω is introduced, then
we only have to multiply the scalarsδi in the previous algorithms byω. One serious
difficulty here is to determine the optimal relaxation factor. If nothing in particu-
lar is known about the matrixAAT , then the method will converge for anyω lying
strictly between0 and2, as was seen in Chapter 4, because the matrix is positive def-
inite. Moreover, another unanswered question is how convergence can be affected
by various reorderings of the rows. For general sparse matrices, the answer is not
known.

8.2.2 Cimmino’s Method

In a Jacobi iteration for the system (8.9), the components ofthe new iterate satisfy
the following condition:

(AT b−ATA(x+ δiei), ei) = 0. (8.19)

This yields

(b−A(x+ δiei), Aei) = 0 or (r − δiAei, Aei) = 0

in whichr is the old residualb−Ax. As a result, thei-component of the new iterate
xnew is given by

xnew,i = xi + δiei, (8.20)

δi =
(r,Aei)

‖Aei‖22
. (8.21)
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Here, be aware that these equations do not result in the same approximation as that
produced by Algorithm 8.2, even though the modifications aregiven by the same
formula. Indeed, the vectorx is not updated after each step and therefore the scalars
δi are different for the two algorithms. This algorithm is usually described with an
acceleration parameterω, i.e., all δi’s are multiplied uniformly by a certainω. If d
denotes the vector with coordinatesδi, i = 1, . . . , n, the following algorithm results.

ALGORITHM 8.3 Cimmino-NR

1. Choose initial guessx0. Setx = x0, r = b−Ax0

2. Until convergence Do:
3. Fori = 1, . . . , n Do:
4. δi = ω (r,Aei)

‖Aei‖2
2

5. EndDo
6. x := x+ d whered =

∑n
i=1 δiei

7. r := r −Ad
8. EndDo

Notice that all the coordinates will use the same residual vector r to compute
the updatesδi. Whenω = 1, each instance of the above formulas is mathematically
equivalent to performing a projection step for solvingAx = b with K = span{ei},
andL = AK. It is also mathematically equivalent to performing an orthogonal
projection step for solvingATAx = AT b with K = span{ei}.

It is interesting to note that when each columnAei is normalized by its 2-norm,
i.e., if ‖Aei‖2 = 1, i = 1, . . . , n, thenδi = ω(r,Aei) = ω(AT r, ei). In this situation,

d = ωAT r = ωAT (b−Ax)

and the main loop of the algorithm takes the vector form

d := ωAT r

x := x+ d

r := r −Ad.

Each iteration is therefore equivalent to a step of the form

xnew = x+ ω
(
AT b−ATAx

)

which is nothing but the Richardson iteration applied to thenormal equations (8.1).
In particular, as was seen in Example 4.1, convergence is guaranteed for anyω which
satisfies,

0 < ω <
2

λmax
(8.22)

whereλmax is the largest eigenvalue ofATA. In addition, the best acceleration
parameter is given by

ωopt =
2

λmin + λmax
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in which, similarly,λmin is the smallest eigenvalue ofATA. If the columns are not
normalized by their 2-norms, then the procedure is equivalent to a preconditioned
Richardson iteration with diagonal preconditioning. The theory regarding conver-
gence is similar but involves the preconditioned matrix or,equivalently, the matrix
A′ obtained fromA by normalizing its columns.

The algorithm can be expressed in terms of projectors. Observe that the new
residual satisfies

rnew = r −
n∑

i=1

ω
(r,Aei)

‖Aei‖22
Aei. (8.23)

Each of the operators

Pi : r −→ (r,Aei)

‖Aei‖22
Aei ≡ Pir (8.24)

is an orthogonal projector ontoAei, thei-th column ofA. Hence, we can write

rnew =

(

I − ω
n∑

i=1

Pi

)

r. (8.25)

There are two important variations to the above scheme. First, because the point
Jacobi iteration can be very slow, it may be preferable to work with sets of vectors
instead. Letπ1, π2, . . . , πp be a partition of the set{1, 2, . . . , n} and, for eachπj,
letEj be the matrix obtained by extracting the columns of the identity matrix whose
indices belong toπj . Going back to the projection framework, defineAi = AEi. If
an orthogonal projection method is used ontoEj to solve (8.1), then the new iterate
is given by

xnew = x+ ω

p
∑

i

Eidi (8.26)

di = (ET
i A

TAEi)
−1ET

i A
T r = (AT

i Ai)
−1AT

i r. (8.27)

Each individual block-componentdi can be obtained by solving a least-squares prob-
lem

min
d
‖r −Aid‖2.

An interpretation of this indicates that each individual substep attempts to reduce the
residual as much as possible by taking linear combinations from specific columns of
Ai. Similar to the scalar iteration, we also have

rnew =

(

I − ω
n∑

i=1

Pi

)

r

wherePi now represents an orthogonal projector onto the span ofAi.
Note thatA1, A2, . . . , Ap is a partition of the column-set{Aei}i=1,...,n and this

partition can be arbitrary. Another remark is that the original Cimmino method was
formulated for rows instead of columns, i.e., it was based on(8.1) instead of (8.3).
The alternative algorithm based on columns rather than rowsis easy to derive.
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8.3 Conjugate Gradient and Normal Equations

A popular combination to solve nonsymmetric linear systemsapplies the Conjugate
Gradient algorithm to solve either (8.1) or (8.3). As is shown next, the resulting algo-
rithms can be rearranged because of the particular nature ofthe coefficient matrices.

8.3.1 CGNR

We begin with the Conjugate Gradient algorithm applied to (8.1). Applying CG
directly to the system and denoting byzi the residual vector at stepi (instead ofri)
results in the following sequence of operations:

• αj := (zj , zj)/(A
TApj , pj) = (zj , zj)/(Apj , Apj)

• xj+1 := xj + αjpj

• zj+1 := zj − αjA
TApj

• βj := (zj+1, zj+1)/(zj , zj)

• pj+1 := zj+1 + βjpj .

If the original residualri = b−Axi must be available at every step, we may compute
the residualzi+1 in two parts:rj+1 := rj − αjApj and thenzi+1 = AT ri+1 which
is the residual for the normal equations (8.1). It is also convenient to introduce the
vectorwi = Api. With these definitions, the algorithm can be cast in the following
form.

ALGORITHM 8.4 CGNR

1. Computer0 = b−Ax0, z0 = AT r0, p0 = z0.
2. Fori = 0, . . ., until convergence Do:
3. wi = Api

4. αi = ‖zi‖2/‖wi‖22
5. xi+1 = xi + αipi

6. ri+1 = ri − αiwi

7. zi+1 = AT ri+1

8. βi = ‖zi+1‖22/‖zi‖22,
9. pi+1 = zi+1 + βipi

10. EndDo

In Chapter 6, the approximationxm produced at them-th step of the Conjugate
Gradient algorithm was shown to minimize the energy norm of the error over an
affine Krylov subspace. In this case,xm minimizes the function

f(x) ≡ (ATA(x∗ − x), (x∗ − x))

over all vectorsx in the affine Krylov subspace

x0 +Km(ATA,AT r0) = x0 + span{AT r0, A
TAAT r0, . . . , (A

TA)m−1AT r0},
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in which r0 = b − Ax0 is the initial residual with respect to the original equations
Ax = b, andAT r0 is the residual with respect to the normal equationsATAx =
AT b. However, observe that

f(x) = (A(x∗ − x), A(x∗ − x)) = ‖b−Ax‖22.

Therefore, CGNR produces the approximate solution in the above subspace which
has the smallest residual norm with respect to the original linear systemAx = b. The
difference with the GMRES algorithm seen in Chapter 6, is thesubspace in which
the residual norm is minimized.

Example 8.1. Table 8.1 shows the results of applying the CGNR algorithm with
no preconditioning to three of the test problems described in Section 3.7.

Matrix Iters Kflops Residual Error

F2DA 300 4847 0.23E+02 0.62E+00

F3D 300 23704 0.42E+00 0.15E+00

ORS 300 5981 0.30E+02 0.60E-02

Table 8.1: A test run of CGNR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The method
failed to converge in less than 300 steps for all three problems. Failures of this
type, characterized by very slow convergence, are rather common for CGNE and
CGNR applied to problems arising from partial differentialequations. Precondition-
ing should improve performance somewhat but, as will be seenin Chapter 10, normal
equations are also difficult to precondition.

8.3.2 CGNE

A similar reorganization of the CG algorithm is possible forthe system (8.3) as well.
Applying the CG algorithm directly to (8.3) and denoting byqi the conjugate direc-
tions, the actual CG iteration for theu variable would be as follows:

• αj := (rj , rj)/(AA
T qj, qj) = (rj , rj)/(A

T qj, A
T qj)

• uj+1 := uj + αjqj

• rj+1 := rj − αjAA
T qj

• βj := (rj+1, rj+1)/(rj , rj)

• qj+1 := rj+1 + βjqj .



268 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Notice that an iteration can be written with the original variablexi = x0 +AT (ui −
u0) by introducing the vectorpi = AT qi. Then, the residual vectors for the vectors
xi andui are the same. No longer are theqi vectors needed because thepi’s can
be obtained aspj+1 := AT rj+1 + βjpj. The resulting algorithm described below,
the Conjugate Gradient for the normal equations (CGNE), is also known as Craig’s
method.

ALGORITHM 8.5 CGNE (Craig’s Method)

1. Computer0 = b−Ax0, p0 = AT r0.
2. Fori = 0, 1, . . . , until convergence Do:
3. αi = (ri, ri)/(pi, pi)
4. xi+1 = xi + αipi

5. ri+1 = ri − αiApi

6. βi = (ri+1, ri+1)/(ri, ri)
7. pi+1 = AT ri+1 + βipi

8. EndDo

We now explore the optimality properties of this algorithm,as was done for
CGNR. The approximationum related to the variablexm by xm = ATum is the
actualm-th CG approximation for the linear system (8.3). Therefore, it minimizes
the energy norm of the error on the Krylov subspaceKm. In this case,um minimizes
the function

f(u) ≡ (AAT (u∗ − u), (u∗ − u))
over all vectorsu in the affine Krylov subspace,

u0 +Km(AAT , r0) = u0 + span{r0, AAT r0, . . . , (AA
T )m−1r0}.

Notice thatr0 = b−AATu0 = b−Ax0. Also, observe that

f(u) = (AT (u∗ − u), AT (u∗ − u)) = ‖x∗ − x‖22,

wherex = ATu. Therefore, CGNE produces the approximate solution in the sub-
space

x0 +ATKm(AAT , r0) = x0 +Km(ATA,AT r0)

which has the smallest 2-norm of the error. In addition, notethat the subspacex0 +
Km(ATA,AT r0) is identical with the subspace found for CGNR. Therefore,the
two methods find approximations from the same subspace whichachieve different
optimality properties: minimal residual for CGNR and minimal error for CGNE.

8.4 Saddle-Point Problems

Now consider the equivalent system
(

I A
AT O

)(
r
x

)

=

(
b
0

)
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with r = b−Ax. This system can be derived from the necessary conditions applied
to the constrained least-squares problem (8.6–8.7). Thus,the 2-norm ofb− r = Ax
is minimized implicitly under the constraintAT r = 0. Note thatA does not have to
be a square matrix.

This can be extended into a more general constrained quadratic optimization
problem as follows:

minimizef(x) ≡ 1

2
(Ax, x) − (x, b) (8.28)

subject toBTx = c. (8.29)

The necessary conditions for optimality yield the linear system
(
A B
BT O

)(
x
y

)

=

(
b
c

)

(8.30)

in which the names of the variablesr, x are changed intox, y for notational con-
venience. It is assumed that the column dimension ofB does not exceed its row
dimension. The Lagrangian for the above optimization problem is

L(x, y) =
1

2
(Ax, x)− (x, b) + (y, (BTx− c))

and the solution of (8.30) is the saddle point of the above Lagrangian. Optimization
problems of the form (8.28–8.29) and the corresponding linear systems (8.30) are
important and arise in many applications. Because they are intimately related to the
normal equations, we discuss them briefly here.

In the context of fluid dynamics, a well known iteration technique for solving
the linear system (8.30) is Uzawa’s method, which resemblesa relaxed block SOR
iteration.

ALGORITHM 8.6 Uzawa’s Method

1. Choosex0, y0

2. Fork = 0, 1, . . . , until convergence Do:
3. xk+1 = A−1(b−Byk)
4. yk+1 = yk + ω(BTxk+1 − c)
5. EndDo

The algorithm requires the solution of the linear system

Axk+1 = b−Byk (8.31)

at each iteration. By substituting the result of line 3 into line 4, thexk iterates can be
eliminated to obtain the following relation for theyk’s,

yk+1 = yk + ω
(
BTA−1(b−Byk)− c

)
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which is nothing but a Richardson iteration for solving the linear system

BTA−1By = BTA−1b− c. (8.32)

Apart from a sign, this system is the reduced system resulting from eliminating the
x variable from (8.30). Convergence results can be derived from the analysis of the
Richardson iteration.

Corollary 8.1 Let A be a Symmetric Positive Definite matrix andB a matrix of
full rank. ThenS = BTA−1B is also Symmetric Positive Definite and Uzawa’s
algorithm converges, if and only if

0 < ω <
2

λmax(S)
. (8.33)

In addition, the optimal convergence parameterω is given by

ωopt =
2

λmin(S) + λmax(S)
.

Proof. The proof of this result is straightforward and is based on the results seen in
Example 4.1.

It is interesting to observe that whenc = 0 andA is Symmetric Positive Defi-
nite, then the system (8.32) can be regarded as the normal equations for minimizing
theA−1-norm of b − By. Indeed, the optimality conditions are equivalent to the
orthogonality conditions

(b−By,Bw)A−1 = 0, ∀ w,

which translate into the linear systemBTA−1By = BTA−1b. As a consequence,
the problem will tend to be easier to solve if the columns ofB are almost orthogonal
with respect to theA−1 inner product. This is true when solving theStokes problem
whereB represents the discretization of the gradient operator while BT discretizes
the divergence operator, andA is the discretization of a Laplacian. In this case, if
it were not for the boundary conditions, the matrixBTA−1B would be the identity.
This feature can be exploited in developing preconditioners for solving problems
of the form (8.30). Another particular case is whenA is the identity matrix and
c = 0. Then, the linear system (8.32) becomes the system of the normal equations for
minimizing the 2-norm ofb − By. These relations provide insight in understanding
that the block form (8.30) is actually a form of normal equations for solvingBy = b
in the least-squares sense. However, a different inner product is used.

In Uzawa’s method, a linear system at each step must be solved, namely, the sys-
tem (8.31). Solving this system is equivalent to finding the minimum of the quadratic
function

minimize fk(x) ≡
1

2
(Ax, x) − (x, b−Byk). (8.34)
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Apart from constants,fk(x) is the Lagrangian evaluated at the previousy iterate.
The solution of (8.31), or the equivalent optimization problem (8.34), is expensive.
A common alternative replaces thex-variable update (8.31) by taking one step in the
gradient direction for the quadratic function (8.34), usually with fixed step-lengthǫ.
The gradient offk(x) at the current iterate isAxk − (b − Byk). This results in the
Arrow-Hurwicz Algorithm.

ALGORITHM 8.7 The Arrow-Hurwicz algorithm

1. Select an initial guessx0, y0 to the system (8.30)
2. Fork = 0, 1, . . . , until convergence Do:
3. Computexk+1 = xk + ǫ(b−Axk −Byk)
4. Computeyk+1 = yk + ω(BTxk+1 − c)
5. EndDo

The above algorithm is a block-iteration of the form
(

I O
−ωBT I

)(
xk+1

yk+1

)

=

(
I − ǫA −ǫB
O I

)(
xk

yk

)

+

(
ǫb
−ωc

)

.

Uzawa’s method, and many similar techniques for solving (8.30), are based on
solving the reduced system (8.32). An important observation here is that the Schur
complement matrixS ≡ BTA−1B need not be formed explicitly. This can be useful
if this reduced system is to be solved by an iterative method.The matrixA is typically
factored by a Cholesky-type factorization. The linear systems with the coefficient
matrix A can also be solved by a preconditioned Conjugate Gradient method. Of
course these systems must then be solved accurately.

Sometimes it is useful to “regularize” the least-squares problem (8.28) by solving
the following problem in its place:

minimizef(x) ≡ 1

2
(Ax, x) − (x, b) + ρ(Cy, y)

subject toBTx = c

in which ρ is a scalar parameter. For example,C can be the identity matrix or the
matrix BTB. The matrix resulting from the Lagrange multipliers approach then
becomes (

A B
BT ρC

)

.

The new Schur complement matrix is

S = ρC −BTA−1B.

Example 8.2. In the case whereC = BTB, the above matrix takes the form

S = BT (ρI −A−1)B.
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Assuming thatA is SPD,S is also positive definite when

ρ ≥ 1

λmin(A)
.

However, it is alsonegative definitefor

ρ ≤ 1

λmax
(A),

a condition which may be easier to satisfy on practice.

PROBLEMS

P-8.1 Derive the linear system (8.5) by expressing the standard necessary conditions for the
problem (8.6–8.7).

P-8.2 It was stated in Section 8.2.2 that when‖AT ei‖2 = 1 for i = 1, . . . , n, the vectord
defined in Algorithm 8.3 is equal toωAT r.

a. What does this become in the general situation when‖AT ei‖2 6= 1?

b. Is Cimmino’s method still equivalent to a Richardson iteration?

c. Show convergence results similar to those of the scaled case.

P-8.4 In Section 8.2.2, Cimmino’s algorithm was derived based on the Normal Residual
formulation, i.e., on (8.1). Derive an “NE” formulation, i.e., an algorithm based on Jacobi’s
method for (8.3).

P-8.5 What are the eigenvalues of the matrix (8.5)? Derive a systemwhose coefficient
matrix has the form

B(α) =

(
2αI A
AT O

)

.

and which is also equivalent to the original systemAx = b. What are the eigenvalues of
B(α)? Plot the spectral norm ofB(α) as a function ofα.

P-8.6 It was argued in Section 8.4 that whenc = 0 the system (8.32) is nothing but the
normal equations for minimizing theA−1-norm of the residualr = b−By.

a. Write the associated CGNR approach for solving this problem. Find a variant that
requires only one linear system solution with the matrixA at each CG step [Hint:
Write the CG algorithm for the associated normal equations and see how the resulting
procedure can be reorganized to save operations]. Find alsoa variant that is suitable
for the case where the Cholesky factorization ofA is available.

b. Derive a method for solving the equivalent system (8.30) for the case whenc = 0 and
then for the general case wjenc 6= 0. How does this technique compare with Uzawa’s
method?

P-8.3 Consider the linear system (8.30) in whichc = 0 andB is of full rank. Define the
matrix

P = I −B(BTB)−1BT .
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a. Show thatP is a projector. Is it an orthogonal projector? What are the range and null
spaces ofP?

b. Show that the unknownx can be found by solving the linear system

PAPx = Pb, (8.35)

in which the coefficient matrix is singular but the system is consistent, i.e., there is a
nontrivial solution because the right-hand side is in the range of the matrix (see Chapter
1).

c. What must be done toadapt the Conjugate Gradient Algorithm for solving the above
linear system (which is symmetric, but not positive definite)? In which subspace are
the iterates generated from the CG algorithm applied to (8.35)?

d. Assume that the QR factorization of the matrixB is computed. Write an algorithm
based on the approach of the previous questions for solving the linear system (8.30).

P-8.5 Show that Uzawa’s iteration can be formulated as a fixed-point iteration associated
with the splittingC = M −N with

M =

(
A O

−ωBT I

)

, N =

(
O −B
O I

)

.

Derive the convergence result of Corollary 8.1 .

P-8.6 Show that each new vector iterate in Cimmino’s method is suchthat

xnew = x+ ωA−1
∑

i

Pir,

wherePi is defined by (8.24).

P-8.7 In Uzawa’s method a linear system with the matrixA must be solved at each step.
Assume that these systems are solved inaccurately by an iterative process. For each linear
system the iterative process is applied until the norm of theresidualrk+1 = (b − Byk) −
Axk+1 is less than a certain thresholdǫk+1.

a. Assume thatω is chosen so that (8.33) is satisfied and thatǫk converges to zero ask
tends to infinity. Show that the resulting algorithm converges to the solution.

b. Give an explicit upper bound of the error onyk in the case whenǫi is chosen of the
form ǫ = αi, whereα < 1.

P-8.3 Assume‖b−Ax‖2 is to be minimized, in whichA is n×m with n > m. Letx∗ be
the minimizer andr = b−Ax∗. What is the minimizer of‖(b+ αr)−Ax‖2, whereα is an
arbitrary scalar?

P-8.4

P-8.5 Consider a saddle-point linear system of the formAx = b, where

A =

(
B C
CT 0

)

; x =

(
u
p

)

; b =

(
f
0

)

in which B is symmetric positive definite. It is assumed thatA is nonsingular (which is
equivalent to assuming thatC is of full rank).

1. Prove thatA has both negative and positive eigenvalues by showing how toselect
vectorsx =

(
u
p

)

so that(Ax, x) > 0 and vectorsx so that(Ax, x) < 0.
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2. Show how to select an initial guess of the formx0 =
(

u0

0

)
if we want its corresponding

residual vectorr0 = b−Ax0 to be of the formr0 =
(

0
s0

)

. What happens if we attempt
to use the steepest descent algorithm with this initial guess?

3. What happens if the Minimal Residual iteration is appliedusing the same initial guess
as in the previous question?

4. By eliminating the unknownu find a linear systemSp = g that must be satisfied by
the variablep Is the coefficient matrix of this system Symmetric Positive Definite (or
Symmetric Negative Definite)?

5. We now want to solve the linear system by the following iteration:

uk+1 = B−1(f − Cpk)

pk+1 = pk + αkC
Tuk+1

Show thatpk+1 is of the formpk+1 = pk + αksk wheresk is the residual relative
to pk for the reduced linear system found in the previous question. How shouldαk

be selected if we wantpk+1 to correspond to the iterate of steepest descent for this
reduced system.

NOTES AND REFERENCES. Methods based on the normal equations have been among the first to
be used for solving nonsymmetric linear systems by iterative methods [181, 85]. The work by Bjork
and Elfing [39], and Sameh et al. [182, 53, 52] revived these techniques by showing that they have
some advantages from the implementation point of view, and that they can offer good performance for
a broad class of problems. In addition, they are also attractive for parallel computers. In [240], a few
preconditioning ideas for normal equations were describedand these will be covered in Chapter 10. It
would be helpful to be able to determine whether or not it is preferable to use the normal equations ap-
proach rather than the “direct equations” for a given system, but this may require an eigenvalue/singular
value analysis.

It is sometimes argued that the normal equations approach isalwaysbetter than the standard
approach, because it has a quality of robustness which outweighs the additional cost due to the slowness
of the method in the generic elliptic case. Unfortunately, this is not true. Although variants of the
Kaczmarz and Cimmino algorithms deserve a place in any robust iterative solution package, they cannot
be viewed as a panacea. Inmost realistic examples arising from Partial Differential Equations, the
normal equations route gives rise to much slower convergence than the Krylov subspace approach for
the direct equations. For ill-conditioned problems, thesemethods will simply fail to converge, unless a
good preconditioner is available.



Chapter 9

PRECONDITIONED ITERATIONS

Although the methods seen in previous chapters are well founded theoretically, they are all likely

to suffer from slow convergence for problems which arise from typical applications such as fluid

dynamics or electronic device simulation. Preconditioning is a key ingredient for the success

of Krylov subspace methods in these applications. This chapter discusses the preconditioned

versions of the iterative methods already seen, but without being specific about the particu-

lar preconditioners used. The standard preconditioning techniques will be covered in the next

chapter.

9.1 Introduction

Lack of robustness is a widely recognized weakness of iterative solvers, relative to
direct solvers. This drawback hampers the acceptance of iterative methods in indus-
trial applications despite their intrinsic appeal for verylarge linear systems. Both
the efficiency and robustness of iterative techniques can beimproved by usingpre-
conditioning. A term introduced in Chapter 4, preconditioning is simply ameans
of transforming the original linear system into one which has the same solution, but
which is likely to be easier to solve with an iterative solver. In general, the relia-
bility of iterative techniques, when dealing with various applications, depends much
more on the quality of the preconditioner than on the particular Krylov subspace ac-
celerators used. We will cover some of these preconditioners in detail in the next
chapter. This chapter discusses the preconditioned versions of the Krylov subspace
algorithms already seen, using a generic preconditioner.

To begin with, it is worthwhile to consider the options available for precondi-
tioning a system. The first step in preconditioning is to find apreconditioning matrix
M . The matrixM can be defined in many different ways but it must satisfy a few
minimal requirements. From a practical point of view, the most requirement forM is
that it is inexpensive to solve linear systemsMx = b. This is because the precondi-
tioned algorithms will all require a linear system solutionwith the matrixM at each
step. AlsoM should close toA in some sense and it should clearly be nonsingular.
Chapter 10 explores in detail the problem of finding preconditionersM for a given
matrix S, while this chapter considers only the ways in which the preconditioner is
applied to solve the original system.

Once a preconditioning matrixM is available there are three known ways of ap-
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plying the preconditioner. The precondiotioner can be applied from the left, leading
to the preconditioned system

M−1Ax = M−1b (9.1)

Alternatively, it can also be applied to the right:

AM−1u = b, x ≡M−1u . (9.2)

Note that the above formulation amounts to making the changeof variablesu = Mx,
and solving the system with respect to the unknownu. Finally, a common situation
is when the preconditioner is available in the factored form

M = MLMR

where, typicallyML andMR are triangular matrices. In this situation, the precondi-
tioning can be split:

M−1
L AM−1

R u = M−1
L b, x ≡M−1

R u . (9.3)

It is imperative to preserve symmetry when the original matrix is symmetric, so the
split preconditioner seems mandatory this case. However, there are other ways of pre-
serving symmetry, or rather to take advantage of symmetry, even ifM is not available
in a factored form. This is discussed next for the Conjugate Gradient method.

9.2 Preconditioned Conjugate Gradient

Consider a matrixA that is symmetric and positive definite and assume that a pre-
conditionerM is available. The preconditionerM is a matrix which approximates
A in some yet-undefined sense. It is assumed thatM is also Symmetric Positive
Definite. Then, one can precondition the system in the three ways shown in the pre-
vious section, i.e., as in (9.1), (9.2), or (9.3). Note that the first two systems are no
longer symmetric in general. The next section considers strategies for preserving
symmetry. Then, efficient implementations will be described for particular forms of
the preconditioners.

9.2.1 Preserving Symmetry

WhenM is available in the form of an incomplete Cholesky factorization, i.e., when

M = LLT ,

then a simple way to preserve symmetry is to use the “split” the preconditioning
option (9.3) which yields the Symmetric Positive Definite matrix,

L−1AL−Tu = L−1b, x = L−Tu. (9.4)
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However, it is not necessary to split the preconditioner in this manner in order to
preserve symmetry. Observe thatM−1A is self-adjoint for theM -inner product,

(x, y)M ≡ (Mx, y) = (x,My)

since

(M−1Ax, y)M = (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M .

Therefore, an alternative is to replace the usual Euclideaninner product in the Con-
jugate Gradient algorithm by theM -inner product.

If the CG algorithm is rewritten for this new inner product, denoting byrj =
b−Axj the original residual and byzj = M−1rj the residual for the preconditioned
system, the following sequence of operations is obtained, ignoring the initial step:

1. αj := (zj , zj)M/(M
−1Apj , pj)M

2. xj+1 := xj + αjpj

3. rj+1 := rj − αjApj andzj+1 := M−1rj+1

4. βj := (zj+1, zj+1)M/(zj , zj)M

5. pj+1 := zj+1 + βjpj

Since(zj , zj)M = (rj , zj) and(M−1Apj , pj)M = (Apj , pj), theM -inner products
do not have to be computed explicitly. With this observation, the following algorithm
is obtained.

ALGORITHM 9.1 Preconditioned Conjugate Gradient

1. Computer0 := b−Ax0, z0 = M−1r0, andp0 := z0
2. Forj = 0, 1, . . ., until convergence Do:
3. αj := (rj , zj)/(Apj , pj)
4. xj+1 := xj + αjpj

5. rj+1 := rj − αjApj

6. zj+1 := M−1rj+1

7. βj := (rj+1, zj+1)/(rj , zj)
8. pj+1 := zj+1 + βjpj

9. EndDo

It is interesting to observe thatM−1A is also self-adjoint with respect to theA
inner-product. Indeed,

(M−1Ax, y)A = (AM−1Ax, y) = (x,AM−1Ay) = (x,M−1Ay)A

and a similar algorithm can be written for this dot product (see Exercise 2).
In the case whereM is a Cholesky productM = LLT , two options are available,

namely, the split preconditioning option (9.4), or the above algorithm. An immediate
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question arises about the iterates produced by these two options: Is one better than
the other? Surprisingly, the answer is thatthe iterates are identical. To see this, start
from Algorithm 9.1 and define the following auxiliary vectors and matrix from it:

p̂j = LT pj

uj = LTxj

r̂j = LT zj = L−1rj

Â = L−1AL−T .

Observe that

(rj , zj) = (rj , L
−TL−1rj) = (L−1rj, L

−1rj) = (r̂j , r̂j).

Similarly,

(Apj , pj) = (AL−T p̂j, L
−T p̂j)(L

−1AL−T p̂j, p̂j) = (Âp̂j, p̂j).

All the steps of the algorithm can be rewritten with the new variables, yielding the
following sequence of operations:

1. αj := (r̂j , r̂j)/(Âp̂j, p̂j)

2. uj+1 := uj + αj p̂j

3. r̂j+1 := r̂j − αjÂp̂j

4. βj := (r̂j+1, r̂j+1)/(r̂j , r̂j)

5. p̂j+1 := r̂j+1 + βj p̂j .

This is precisely the Conjugate Gradient algorithm appliedto the preconditioned
system

Âu = L−1b

whereu = LTx. It is common when implementing algorithms which involve a right
preconditioner to avoid the use of theu variable, since the iteration can be written
with the originalx variable. If the above steps are rewritten with the originalx andp
variables, the following algorithm results.

ALGORITHM 9.2 Split Preconditioner Conjugate Gradient

1. Computer0 := b−Ax0; r̂0 = L−1r0; andp0 := L−T r̂0.
2. Forj = 0, 1, . . ., until convergence Do:
3. αj := (r̂j , r̂j)/(Apj , pj)
4. xj+1 := xj + αjpj

5. r̂j+1 := r̂j − αjL
−1Apj

6. βj := (r̂j+1, r̂j+1)/(r̂j , r̂j)
7. pj+1 := L−T r̂j+1 + βjpj

8. EndDo
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The iteratesxj produced by the above algorithm and Algorithm 9.1 are identical,
provided the same initial guess is used.

Consider now the right preconditioned system (9.2). The matrix AM−1 is not
Hermitian with either the Standard inner product or theM -inner product. However,
it is Hermitian with respect to theM−1-inner product. If the CG-algorithm is written
with respect to theu-variable and for this new inner product, the following sequence
of operations would be obtained, ignoring again the initialstep:

1. αj := (rj , rj)M−1/(AM−1pj, pj)M−1

2. uj+1 := uj + αjpj

3. rj+1 := rj − αjAM
−1pj

4. βj := (rj+1, rj+1)M−1/(rj , rj)M−1

5. pj+1 := rj+1 + βjpj .

Recall that theu vectors and thex vectors are related byx = M−1u. Since the
u vectors are not actually needed, the update foruj+1 in the second step can be
replaced byxj+1 := xj + αjM

−1pj. Then observe that the whole algorithm can be
recast in terms ofqj = M−1pj andzj = M−1rj.

1. αj := (zj , rj)/(Aqj , qj)

2. xj+1 := xj + αjqj

3. rj+1 := rj − αjAqj andzj+1 = M−1rj+1

4. βj := (zj+1, rj+1)/(zj , rj)

5. qj+1 := zj+1 + βjqj.

Notice that the same sequence of computations is obtained aswith Algorithm
9.1, the left preconditioned Conjugate Gradient. The implication is thatthe left pre-
conditioned CG algorithm with theM -inner product is mathematically equivalent to
the right preconditioned CG algorithm with theM−1-inner product.

9.2.2 Efficient Implementations

When applying a Krylov subspace procedure to a preconditioned linear system, an
operation of the form

v → w = M−1Av

or some similar operation is performed at each step. The mostnatural way to perform
this operation is to multiply the vectorv by A and then applyM−1 to the result.
However, sinceA andM are related, it is sometimes possible to devise procedures
that are more economical than this straightforward approach. For example, it is often
the case that

M = A−R
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in which the number of nonzero elements inR is much smaller than inA. In this
case, the simplest scheme would be to computew = M−1Av as

w = M−1Av = M−1(M +R)v = v +M−1Rv.

This requires thatR be stored explicitly. In approximateLU factorization tech-
niques,R is the matrix of the elements that are dropped during the incomplete fac-
torization. An even more efficient variation of the preconditioned Conjugate Gradient
algorithm can be derived for some common forms of the preconditioner in the special
situation whereA is symmetric. WriteA in the form

A = D0 − E − ET (9.5)

in which−E is the strict lower triangular part ofA andD0 its diagonal. In many
cases, the preconditionerM can be written in the form

M = (D − E)D−1(D −ET ) (9.6)

in whichE is the same as above andD is some diagonal, not necessarily equal toD0.
For example, in the SSOR preconditioner withω = 1, D ≡ D0. Also, for certain
types of matrices, the IC(0) preconditioner can be expressed in this manner, where
D can be obtained by a recurrence formula.

Eisenstat’s implementationconsists of applying the Conjugate Gradient algo-
rithm to the linear system

Âu = (D − E)−1b (9.7)

with
Â ≡ (D − E)−1A(D − ET )−1, x = (D − ET )−1u. (9.8)

This does not quite correspond to a preconditioning with thematrix (9.6). In order
to produce the same iterates as Algorithm 9.1, the matrixÂ must be further pre-
conditioned with the diagonal matrixD−1. Thus, the preconditioned CG algorithm,
Algorithm 9.1, is actually applied to the system (9.7) in which the preconditioning
operation isM−1 = D. Alternatively, we can initially scale the rows and columnsof
the linear system and preconditioning to transform the diagonal to the identity. See
Exercise 7.

Now note that

Â = (D − E)−1A(D −ET )−1

= (D − E)−1(D0 − E − ET )(D − ET )−1

= (D − E)−1
(
D0 − 2D + (D − E) + (D − ET )

)
(D − ET )−1

≡ (D − E)−1D1(D − ET )−1 + (D − E)−1 + (D − ET )−1,

in whichD1 ≡ D0 − 2D. As a result,

Âv = (D − E)−1
[
v +D1(D − ET )−1v

]
+ (D − ET )−1v.

Thus, the vectorw = Âv can be computed by the following procedure:
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z := (D − ET )−1v
w := (D − E)−1(v +D1z)
w := w + z.

One product with the diagonalD can be saved if the matricesD−1E andD−1ET

are stored. Indeed, by settinĝD1 = D−1D1 and v̂ = D−1v, the above procedure
can be reformulated as follows.

ALGORITHM 9.3 Computation ofw = Âv

1. v̂ := D−1v
2. z := (I −D−1ET )−1v̂

3. w := (I −D−1E)−1(v̂ + D̂1z)
4. w := w + z .

Note that the matricesD−1E andD−1ET are not the transpose of one another, so
we actually need to increase the storage requirement for this formulation if these
matrices are stored. However, there is a more economical variant which works with
the matrixD−1/2ED−1/2 and its transpose. This is left as Exercise 4.

Denoting byNz(X) the number of nonzero elements of a sparse matrixX, the
total number of operations (additions and multiplications) of this procedure isn for
(1), 2Nz(E

T ) for (2), 2Nz(E) + 2n for (3), andn for (4). The cost of the precondi-
tioning operation byD−1, i.e.,n operations, must be added to this, yielding the total
number of operations:

Nop = n+ 2Nz(E) + 2Nz(E
T ) + 2n+ n+ n

= 3n + 2(Nz(E) +Nz(E
T ) + n)

= 3n + 2Nz(A).

For the straightforward approach,2Nz(A) operations are needed for the product with
A, 2Nz(E) for the forward solve, andn + 2Nz(E

T ) for the backward solve giving
a total of

2Nz(A) + 2Nz(E) + n+ 2Nz(E
T ) = 4Nz(A)− n.

Thus, Eisenstat’s scheme is always more economical, whenNz is large enough, al-
though the relative gains depend on the total number of nonzero elements inA. One
disadvantage of this scheme is that it is limited to a specialform of the preconditioner.

Example 9.1. For a 5-point finite difference matrix,Nz(A) is roughly5n, so that
with the standard implementation19n operations are performed, while with Eisen-
stat’s implementation only13n operations would be performed, a savings of about1

3 .
However, if the other operations of the Conjugate Gradient algorithm are included,
for a total of about10n operations, the relative savings become smaller. Now the
original scheme will require29n operations, versus23n operations for Eisenstat’s
implementation.
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9.3 Preconditioned GMRES

In the case of GMRES, or other nonsymmetric iterative solvers, the same three
options for applying the preconditioning operation as for the Conjugate Gradient
(namely, left, split, and right preconditioning) are available. However, there will be
one fundamental difference – the right preconditioning versions will give rise to what
is called aflexible variant, i.e., a variant in which the preconditioner can change at
each step. This capability can be very useful in some applications.

9.3.1 Left-Preconditioned GMRES

As before, define the left preconditioned GMRES algorithm, as the GMRES algo-
rithm applied to the system,

M−1Ax = M−1b. (9.9)

The straightforward application of GMRES to the above linear system yields the
following preconditioned version of GMRES.

ALGORITHM 9.4 GMRES with Left Preconditioning

1. Computer0 = M−1(b−Ax0), β = ‖r0‖2 andv1 = r0/β
2. Forj = 1, . . . ,m Do:
3. Computew := M−1Avj

4. Fori = 1, . . . , j, Do:
5 . hi,j := (w, vi)
6. w := w − hi,jvi

7. EndDo
8. Computehj+1,j = ‖w‖2 andvj+1 = w/hj+1,j

9. EndDo
10. DefineVm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

11. Computeym = argminy‖βe1 − H̄my‖2, andxm = x0 + Vmym

12. If satisfied Stop, else setx0 := xm and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the left preconditioned Krylov
subspace

Span{r0,M−1Ar0, . . . , (M
−1A)m−1r0}.

It uses a modified Gram-Schmidt process, in which the new vector to be orthogonal-
ized is obtained from the previous vector in the process. Allresidual vectors and their
norms that are computed by the algorithm correspond to the preconditioned residuals,
namely,zm = M−1(b − Axm), instead of the original (unpreconditioned) residuals
b − Axm. In addition, there is no easy access to these unpreconditioned residuals,
unless they are computed explicitly, e.g., by multiplying the preconditioned residu-
als byM .This can cause some difficulties if a stopping criterion based on the actual
residuals, instead of the preconditioned ones, is desired.
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Sometimes a Symmetric Positive Definite preconditioningM for the nonsym-
metric matrixA may be available. For example, ifA is almost SPD, then (9.9)
would not take advantage of this. It would be wiser to computean approximate fac-
torization to the symmetric part and use GMRES with split preconditioning. This
raises the question as to whether or not a version of the preconditioned GMRES can
be developed, which is similar to Algorithm 9.1, for the CG algorithm. This version
would consist of using GMRES with theM -inner product for the system (9.9).

At stepj of the preconditioned GMRES algorithm, the previousvj is multiplied
byA to get a vector

wj = Avj . (9.10)

Then this vector is preconditioned to get

zj = M−1wj. (9.11)

This vector must beM -orthogonalized against all previousvi’s. If the standard
Gram-Schmidt process is used, we first compute the inner products

hij = (zj , vi)M = (Mzj , vi) = (wj , vi), i = 1, . . . , j, (9.12)

and then modify the vectorzj into the new vector

ẑj := zj −
j
∑

i=1

hijvi. (9.13)

To complete the orthonormalization step, the finalẑj must be normalized. Because
of the orthogonality of̂zj versus all previousvi’s, observe that

(ẑj , ẑj)M = (zj , ẑj)M = (M−1wj , ẑj)M = (wj , ẑj). (9.14)

Thus, the desiredM -norm could be obtained from (9.14), and then we would set

hj+1,j := (ẑj , wj)
1/2 and vj+1 = ẑj/hj+1,j. (9.15)

One serious difficulty with the above procedure is that the inner product(ẑj , ẑj)M
as computed by (9.14) may be negative in the presence of round-off. There are two
remedies. First, thisM -norm can be computed explicitly at the expense of an addi-
tional matrix-vector multiplication withM . Second, the set of vectorsMvi can be
saved in order to accumulate inexpensively both the vectorẑj and the vectorMẑj ,
via the relation

Mẑj = wj −
j
∑

i=1

hijMvi.

A modified Gram-Schmidt version of this second approach can be derived easily.
The details of the algorithm are left as Exercise 8.
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9.3.2 Right-Preconditioned GMRES

The right preconditioned GMRES algorithm is based on solving

AM−1u = b, u = Mx. (9.16)

As we now show, the new variableu never needs to be invoked explicitly. Indeed,
once the initial residualb−Ax0 = b−AM−1u0 is computed, all subsequent vectors
of the Krylov subspace can be obtained without any referenceto theu-variables.
Note thatu0 is not needed at all. The initial residual for the preconditioned system
can be computed fromr0 = b−Ax0, which is the same asb−AM−1u0. In practice,
it is usually x0 that is available, notu0. At the end, theu-variable approximate
solution to (9.16) is given by,

um = u0 +

m∑

i=1

viηi

with u0 = Mx0. Multiplying through byM−1 yields the desired approximation in
terms of thex-variable,

xm = x0 +M−1

[
m∑

i=1

viηi

]

.

Thus, one preconditioning operation is needed at the end of the outer loop, instead
of at the beginning in the case of the left preconditioned version.

ALGORITHM 9.5 GMRES with Right Preconditioning

1. Computer0 = b−Ax0, β = ‖r0‖2, andv1 = r0/β
2. Forj = 1, . . . ,m Do:
3. Computew := AM−1vj

4. Fori = 1, . . . , j, Do:
5. hi,j := (w, vi)
6. w := w − hi,jvi

7. EndDo
8. Computehj+1,j = ‖w‖2 andvj+1 = w/hj+1,j

9. DefineVm := [v1, . . . , vm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

10. EndDo
11. Computeym = argminy‖βe1 − H̄my‖2, andxm = x0 +M−1Vmym.
12. If satisfied Stop, else setx0 := xm and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis of theright preconditioned
Krylov subspace

Span{r0, AM−1r0, . . . , (AM
−1)m−1r0}.

Note that the residual norm is now relative to the initial system, i.e.,b−Axm, since
the algorithm obtains the residualb− Axm = b − AM−1um, implicitly. This is an
essential difference with the left preconditioned GMRES algorithm.
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9.3.3 Split Preconditioning

In many cases,M is the result of a factorization of the form

M = LU.

Then, there is the option of using GMRES on the split-preconditioned system

L−1AU−1u = L−1b, x = U−1u.

In this situation, it is clear that we need to operate on the initial residual byL−1 at
the start of the algorithm and byU−1 on the linear combinationVmym in forming
the approximate solution. The residual norm available is that ofL−1(b−Axm).

A question arises on the differences between the right, left, and split precondi-
tioning options. The fact that different versions of the residuals are available in each
case may affect the stopping criterion and may cause the algorithm to stop either
prematurely or with delay. This can be particularly damaging in caseM is very
ill-conditioned. The degree of symmetry, and therefore performance, can also be
affected by the way in which the preconditioner is applied. For example, a split
preconditioner may be much better ifA is nearly symmetric. Other than these two
situations, there is little difference generally between the three options. The next
section establishes a theoretical connection between leftand right preconditioned
GMRES.

9.3.4 Comparison of Right and Left Preconditioning

When comparing the left, right, and split preconditioning options, a first observa-
tion to make is that the spectra of the three associated operatorsM−1A,AM−1, and
L−1AU−1 are identical. Therefore, in principle one should expect convergence to
be similar, although, as is known, eigenvalues do not alwaysgovern convergence. In
this section, we compare the optimality properties achieved by left- and right precon-
ditioned GMRES.

For the left preconditioning option, GMRES minimizes the residual norm

‖M−1b−M−1Ax‖2,

among all vectors from the affine subspace

x0 +KL
m = x0 + Span {z0,M−1Az0, . . . , (M

−1A)m−1z0} (9.17)

in which z0 is the initial preconditioned residualz0 = M−1r0. Thus, the approxi-
mate solution can be expressed as

xm = x0 +M−1sm−1(M
−1A)z0

wheresm−1 is the polynomial of degreem− 1 which minimizes the norm

‖z0 −M−1A s(M−1A)z0‖2



286 CHAPTER 9. PRECONDITIONED ITERATIONS

among all polynomialss of degree≤ m − 1. It is also possible to express this
optimality condition with respect to the original residualvectorr0. Indeed,

z0 −M−1A s(M−1A)z0 = M−1
[
r0 −A s(M−1A)M−1r0

]
.

A simple algebraic manipulation shows that for any polynomial s,

s(M−1A)M−1r = M−1s(AM−1)r, (9.18)

from which we obtain the relation

z0 −M−1As(M−1A)z0 = M−1
[
r0 −AM−1s(AM−1)r0

]
. (9.19)

Consider now the situation with the right preconditioned GMRES. Here, it is
necessary to distinguish between the originalx variable and the transformed variable
u related tox by x = M−1u. For theu variable, the right preconditioned GMRES
process minimizes the 2-norm ofr = b−AM−1u whereu belongs to

u0 +KR
m = u0 + Span {r0, AM−1r0, . . . , (AM

−1)m−1r0} (9.20)

in whichr0 is the residualr0 = b−AM−1u0. This residual is identical to the resid-
ual associated with the originalx variable sinceM−1u0 = x0. Multiplying (9.20)
through to the left byM−1 and exploiting again (9.18), observe that the generic vari-
ablex associated with a vector of the subspace (9.20) belongs to the affine subspace

M−1u0 +M−1KR
m = x0 + Span {z0,M−1Az0 . . . , (M

−1A)m−1z0}.
This is identical to the affine subspace (9.17) invoked in theleft preconditioned vari-
ant. In other words, for the right preconditioned GMRES, theapproximatex-solution
can also be expressed as

xm = x0 + sm−1(AM
−1)r0.

However, nowsm−1 is a polynomial of degreem− 1 which minimizes the norm

‖r0 −AM−1 s(AM−1)r0‖2 (9.21)

among all polynomialss of degree≤ m − 1. What is surprising is that the two
quantities which are minimized, namely, (9.19) and (9.21),differ only by a multi-
plication byM−1. Specifically, the left preconditioned GMRES minimizesM−1r,
whereas the right preconditioned variant minimizesr, wherer is taken over the same
subspace in both cases.

Proposition 9.1 The approximate solution obtained by left or right preconditioned
GMRES is of the form

xm = x0 + sm−1(M
−1A)z0 = x0 +M−1sm−1(AM

−1)r0

wherez0 = M−1r0 and sm−1 is a polynomial of degreem − 1. The polynomial
sm−1 minimizes the residual norm‖b − Axm‖2 in the right preconditioning case,
and the preconditioned residual norm‖M−1(b−Axm)‖2 in the left preconditioning
case.
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In most practical situations, the difference in the convergence behavior of the
two approaches is not significant. The only exception is whenM is ill-conditioned
which could lead to substantial differences.

9.4 Flexible Variants

In the discussion of preconditioning techniques so far, it is implicitly assumed that
the preconditioning matrixM is fixed, i.e., it does not change from step to step.
However, in some cases, no matrixM is available. Instead, the operationM−1x is
the result of some unspecified computation, possibly another iterative process. In
such cases, it may well happen thatM−1 is not a constant operator. The previous
preconditioned iterative procedures will not converge ifM is not constant. There
are a number of variants of iterative procedures developed in the literature that can
accommodate variations in the preconditioner, i.e., that allow the preconditioner to
vary from step to step. Such iterative procedures are called“flexible” iterations. One
of these iterations, a flexible variant of the GMRES algorithm, is described next.

9.4.1 Flexible GMRES

We begin by examining the right preconditioned GMRES algorithm. In line 11 of
Algorithm 9.5 the approximate solutionxm is expressed as a linear combination
of the preconditioned vectorszi = M−1vi, i = 1, . . . ,m. These vectors are also
computed in line 3, prior to their multiplication byA to obtain the vectorw. They
are all obtained by applying the same preconditioning matrix M−1 to thevi’s. As a
result it is not necessary to save them. Instead, we only needto applyM−1 to the
linear combination of thevi’s, i.e., toVmym in line 11.

Suppose now that the preconditioner could change at every step, i.e., thatzj is
given by

zj = M−1
j vj .

Then it would be natural to compute the approximate solutionas

xm = x0 + Zmym

in which Zm = [z1, . . . , zm], andym is computed as before, as the solution to the
least-squares problem in line 11. These are the only changesthat lead from the right
preconditioned algorithm to the flexible variant, described below.

ALGORITHM 9.6 Flexible GMRES (FGMRES)

1. Computer0 = b−Ax0, β = ‖r0‖2, andv1 = r0/β
2. Forj = 1, . . . ,m Do:
3. Computezj := M−1

j vj

4. Computew := Azj
5. Fori = 1, . . . , j, Do:
6. hi,j := (w, vi)
7. w := w − hi,jvi
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8. EndDo
9. Computehj+1,j = ‖w‖2 andvj+1 = w/hj+1,j

10. DefineZm := [z1, . . . , zm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

11. EndDo
12. Computeym = argminy‖βe1 − H̄my‖2, andxm = x0 + Zmym.
13. If satisfied Stop, else setx0 ← xm and GoTo 1.

As can be seen, the main difference with the right preconditioned version, Al-
gorithm 9.5, is that the preconditioned vectorszj = M−1

j vj must be saved and the
solution updated using these vectors. It is clear that whenMj = M for j = 1, . . . ,m,
then this method is equivalent mathematically to Algorithm9.5. It is important to ob-
serve thatzj can be defined in line 3 without reference to any preconditioner. That
is, any given new vectorzj can be chosen. This added flexibility may cause the algo-
rithm some problems. Indeed,zj may be so poorly selected that a breakdown could
occur, as in the worst-case scenario whenzj is zero.

One difference between FGMRES and the usual GMRES algorithmis that the
action ofAM−1

j on a vectorv of the Krylov subspace is no longer in the span of
Vm+1. Instead, it is easy to show that

AZm = Vm+1H̄m (9.22)

in replacement of the simpler relation(AM−1)Vm = Vm+1 H̄m which holds for
the standard preconditioned GMRES; see (6.7). As before,Hm denotes them ×m
matrix obtained fromH̄m by deleting its last row and̂vj+1 is the vectorw which is
normalized in line 9 of Algorithm 9.6 to obtainvj+1. Then, the following alternative
formulation of (9.22) is valid, even whenhm+1,m = 0:

AZm = VmHm + v̂m+1e
T
m. (9.23)

An optimality property similar to the one which defines GMREScan be proved.
Consider the residual vector for an arbitrary vectorz = x0 +Zmy in the affine space
x0 + span{Zm}. This optimality property is based on the relations

b−Az = b−A(x0 + Zmy)

= r0 −AZmy (9.24)

= βv1 − Vm+1H̄my

= Vm+1[βe1 − H̄my]. (9.25)

If Jm(y) denotes the function

Jm(y) = ‖b−A[x0 + Zmy]‖2,
observe that by (9.25) and the fact thatVm+1 is unitary,

Jm(y) = ‖βe1 − H̄my‖2. (9.26)

Since the algorithm minimizes this norm over all vectorsu in R
m to yield ym, it is

clear that the approximate solutionxm = x0 +Zmym has the smallest residual norm
in x0 + Span{Zm}. Thus, the following result is proved.
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Proposition 9.2 The approximate solutionxm obtained at stepm of FGMRES min-
imizes the residual norm‖b−Axm‖2 overx0 + Span{Zm}.

Next, consider the possibility of breakdown in FGMRES. A breakdown oc-
curs when the vectorvj+1 cannot be computed in line 9 of Algorithm 9.6 because
hj+1,j = 0. For the standard GMRES algorithm, this is not a problem because when
this happens then the approximate solutionxj is exact. The situation for FGMRES
is slightly different.

Proposition 9.3 Assume thatβ = ‖r0‖2 6= 0 and thatj − 1 steps of FGMRES have
been successfully performed, i.e., thathi+1,i 6= 0 for i < j. In addition, assume that
the matrixHj is nonsingular. Thenxj is exact, if and only ifhj+1,j = 0.

Proof. If hj+1,j = 0, thenAZj = VjHj, and as a result

Jj(y) = ‖βv1 −AZjyj‖2 = ‖βv1 − VjHjyj‖2 = ‖βe1 −Hjyj‖2.

If Hj is nonsingular, then the above function is minimized foryj = H−1
j (βe1) and

the corresponding minimum norm reached is zero, i.e.,xj is exact.
Conversely, ifxj is exact, then from (9.23) and (9.24),

0 = b−Axj = Vj [βe1 −Hjyj] + v̂j+1e
T
j yj. (9.27)

We must show, by contraction, thatv̂j+1 = 0. Assume that̂vj+1 6= 0. Sincev̂j+1,
v1, v2, . . ., vm, form an orthogonal system, then it follows from (9.27) thatβe1 −
Hjyj = 0 andeTj yj = 0. The last component ofyj is equal to zero. A simple back-
substitution for the systemHjyj = βe1, starting from the last equation, will show
that all components ofyj are zero. BecauseHm is nonsingular, this would imply that
β = 0 and contradict the assumption.

The only difference between this result and that of Proposition 6.10 for the GM-
RES algorithm is that the additional assumption must be madethatHj is nonsingular
since it is no longer implied by the nonsingularity ofA. However,Hm is guaranteed
to be nonsingular when all thezj ’s are linearly independent andA is nonsingular.
This is a consequence of a modification of the first part of Proposition 6.9. That same
proof shows that the rank ofAZm is equal to the rank of the matrixRm therein. If
Rm is nonsingular andhm+1,m = 0, thenHm is also nonsingular.

A consequence of the above proposition is that ifAzj = vj , at a certain step, i.e.,
if the preconditioning is “exact,” then the approximationxj will be exact provided
thatHj is nonsingular. This is becausew = Azj would depend linearly on the
previousvi’s (it is equal tovj), and as a result the orthogonalization process would
yield v̂j+1 = 0.

A difficulty with the theory of the new algorithm is that general convergence
results, such as those seen in earlier chapters, cannot be proved. That is because the
subspace of approximants is no longer a standard Krylov subspace. However, the
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optimality property of Proposition 9.2 can be exploited in some specific situations.
For example, if within each outer iterationat least oneof the vectorszj is chosen to
be a steepest descent direction vector, e.g., for the functionF (x) = ‖b−Ax‖22, then
FGMRES is guaranteed to converge independently ofm.

The additional cost of the flexible variant over the standardalgorithm is only in
the extra memory required to save the set of vectors{zj}j=1,...,m. Yet, the added
advantage offlexibility may be worth this extra cost. A few applications can benefit
from this flexibility, especially in developing robust iterative methods or precondi-
tioners on parallel computers. Thus,any iterative technique can be used as a pre-
conditioner: block-SOR, SSOR, ADI, Multi-grid, etc. More interestingly, iterative
procedures such as GMRES, CGNR, or CGS can also be used as preconditioners.
Also, it may be useful to mix two or more preconditioners to solve a given problem.
For example, two types of preconditioners can be applied alternatively at each FGM-
RES step to mix the effects of “local” and “global” couplingsin the PDE context.

9.4.2 DQGMRES

Recall that the DQGMRES algorithm presented in Chapter 6 uses an incomplete
orthogonalization process instead of the full Arnoldi orthogonalization. At each step,
the current vector is orthogonalized only against thek previous ones. The vectors
thus generated are “locally” orthogonal to each other, in that (vi, vj) = δij for |i −
j| < k. The matrixH̄m becomes banded and upper Hessenberg. Therefore, the
approximate solution can be updated at stepj from the approximate solution at step
j − 1 via the recurrence

pj =
1

rjj



vj −
j−1
∑

i=j−k+1

rijpi



 , xj = xj−1 + γjpj (9.28)

in which the scalarsγj andrij are obtained recursively from the Hessenberg matrix
H̄j.

An advantage of DQGMRES is that it is alsoflexible. The principle is the same
as in FGMRES. In both cases the vectorszj = M−1

j vj must be computed. In the
case of FGMRES, these vectors must be saved and this requiresextra storage. For
DQGMRES, it can be observed that the preconditioned vectorszj only affect the
update of the vectorpj in the preconditioned version of the update formula (9.28),
yielding

pj =
1

rjj



M−1
j vj −

j−1
∑

i=j−k+1

rijpi



 .

As a result,M−1
j vj can be discarded immediately after it is used to updatepj. The

same memory locations can store this vector and the vectorpj. This contrasts with
FGMRES which requires additional vectors of storage.
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9.5 Preconditioned CG for the Normal Equations

There are several versions of the preconditioned ConjugateGradient method applied
to the normal equations. Two versions come from the NR/NE options, and three other
variations from the right, left, or split preconditioning options. Here, we consider
only the left preconditioned variants.

The left preconditioned CGNR algorithm is easily derived from Algorithm 9.1.
Denote byrj the residual for the original system, i.e.,rj = b − Axj, and byr̃j =
AT rj the residual for the normal equations system. The preconditioned residualzj
is zj = M−1r̃j. The scalarαj in Algorithm 9.1 is now given by

αj =
(r̃j , zj)

(ATApj, pj)
=

(r̃j , zj)

(Apj , Apj)
.

This suggests employing the auxiliary vectorwj = Apj in the algorithm which takes
the following form.

ALGORITHM 9.7 Left-Preconditioned CGNR

1. Computer0 = b−Ax0, r̃0 = AT r0, z0 = M−1r̃0, p0 = z0.
2. Forj = 0, . . ., until convergence Do:
3. wj = Apj

4. αj = (zj , r̃j)/‖wj‖22
5. xj+1 = xj + αjpj

6. rj+1 = rj − αjwj

7. r̃j+1 = AT rj+1

8. zj+1 = M−1r̃j+1

9. βj = (zj+1, r̃j+1)/(zj , r̃j)
10. pj+1 = zj+1 + βjpj

11. EndDo

Similarly, the linear systemAATu = b, with x = ATu, can also be precondi-
tioned from the left, and solved with the preconditioned Conjugate Gradient algo-
rithm. Here, it is observed that the update of theu variable, the associatedx variable,
and two residuals take the form

αj =
(rj , zj)

(AAT pj, pj)
=

(rj , zj)

(AT pj, AT pj)

uj+1 = uj + αjpj ↔ xj+1 = xj + αjA
T pj

rj+1 = rj − αjAA
T pj

zj+1 = M−1rj+1

Thus, if the algorithm for the unknownx is to be written, then the vectorsAT pj can
be used instead of the vectorspj, which are not needed. To update these vectors at
the end of the algorithm the relationpj+1 = zj+1 + βj+1pj in line 8 of Algorithm
9.1 must be multiplied through byAT . This leads to the left preconditioned version
of CGNE, in which the notation has been changed to denote bypj the vectorAT pj

invoked in the above derivation.
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ALGORITHM 9.8 Left-Preconditioned CGNE

1. Computer0 = b−Ax0, z0 = M−1r0, p0 = AT z0.
2. Forj = 0, 1, . . . , until convergence Do:
3. wj = Apj

4. αj = (zj , rj)/(pj , pj)
5. xj+1 = xj + αjpj

6. rj+1 = rj − αjwj

7. zj+1 = M−1rj+1

8. βj = (zj+1, rj+1)/(zj , rj)
9. pj+1 = AT zj+1 + βjpj

10. EndDo

Not shown here are the right and split preconditioned versions which are considered
in Exercise 4.

9.6 The Concus, Golub, and Widlund Algorithm

When the matrix is nearly symmetric, we can think of preconditioning the system
with the symmetric part ofA. This gives rise to a few variants of a method known as
the CGW method, from the names of the three authors Concus andGolub [88], and
Widlund [313] who proposed this technique in the middle of the 1970s. Originally,
the algorithm was not viewed from the angle of preconditioning. WritingA = M −
N , withM = 1

2(A+AH), the authors observed that the preconditioned matrix

M−1A = I −M−1N

is equal to the identity matrix, plus a matrix which is skew-Hermitian with respect
to theM -inner product. It is not too difficult to show that the tridiagonal matrix
corresponding to the Lanczos algorithm, applied toA with theM -inner product, has
the form

Tm =









1 −η2

η2 1 −η3

. . .
ηm−1 1 −ηm

ηm 1









. (9.29)

As a result, a three-term recurrence in the Arnoldi process is obtained, which results
in a solution algorithm that resembles the standard preconditioned CG algorithm
(Algorithm 9.1).

A version of the algorithm can be derived easily. The developments in Section
6.7 relating the Lanczos algorithm to the Conjugate Gradient algorithm, show that
the vectorxj+1 can be expressed as

xj+1 = xj + αjpj .

The preconditioned residual vectors must then satisfy the recurrence

zj+1 = zj − αjM
−1Apj
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and if thezj ’s are to beM -orthogonal, then we must have(zj−αjM
−1Apj, zj)M =

0. As a result,

αj =
(zj , zj)M

(M−1Apj , zj)M
=

(rj , zj)

(Apj, zj)
.

Also, the next search directionpj+1 is a linear combination ofzj+1 andpj ,

pj+1 = zj+1 + βjpj.

SinceM−1Apj is orthogonal to all vectors inKj−1, a first consequence is that

(Apj , zj) = (M−1Apj, pj − βj−1pj−1)M = (M−1Apj, pj)M = (Apj, pj).

In addition,M−1Apj+1 must beM -orthogonal topj, so that

βj = −(M−1Azj+1, pj)M/(M
−1Apj , pj)M .

The relationM−1A = I−M−1N , the fact thatNH = −N , and that(zj+1, pj)M =
0 yield,

(M−1Azj+1, pj)M = −(M−1Nzj+1, pj)M = (zj+1,M
−1Npj)M

= −(zj+1,M
−1Apj)M .

Finally, note thatM−1Apj = − 1
αj

(zj+1 − zj) and therefore we have (note the sign
difference with the standard PCG algorithm)

βj = −(zj+1, zj+1)M
(zj , zj)M

= −(zj+1, rj+1)

(zj , rj)
.

PROBLEMS

P-9.1 Show that the preconditioned matrix has the same eigenvalues for all three precondi-
tioning options (left, right, and split) described in Section 9.1

P-9.2 Let a matrixA and its preconditionerM be SPD. Observing thatM−1A is self-
adjoint with respect to theA inner-product, write an algorithm similar to Algorithm 9.1for
solving the preconditioned linear systemM−1Ax = M−1b, using theA-inner product. The
algorithm should employ only one matrix-by-vector productper CG step.

P-9.3 In Section 9.2.1, the split-preconditioned Conjugate Gradient algorithm, Algorithm
9.2, was derived from the Preconditioned Conjugate Gradient Algorithm 9.1. The opposite
can also be done. Derive Algorithm 9.1 starting from Algorithm 9.2, providing a different
proof of the equivalence of the two algorithms.

P-9.4 Six versions of the CG algorithm applied to the normal equations can be defined. Two
versions come from the NR/NE options, each of which can be preconditioned from left, right,
or on two sides. The left preconditioned variants have been given in Section 9.5. Describe the
four other versions: Right P-CGNR, Right P-CGNE, Split P-CGNR, Split P-CGNE. Suitable
inner products may be used to preserve symmetry.
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P-9.5 When preconditioning the normal equations, whether the NE or NR form, two options
are available in addition to the left, right and split preconditioners. These are “centered”
versions:

AM−1ATu = b, x = M−1ATu

for the NE form, and
ATM−1Ax = ATM−1b

for the NR form. The coefficient matrices in the above systemsare all symmetric. Write
down the adapted versions of the CG algorithm for these options.

P-9.6 Let a matrixA and its preconditionerM be SPD. The standard result about the rate
of convergence of the CG algorithm is not valid for the Preconditioned Conjugate Gradient
algorithm, Algorithm 9.1. Show how to adapt this result by exploiting theM -inner product.
Show how to derive the same result by using the equivalence between Algorithm 9.1 and
Algorithm 9.2.

P-9.7 In Eisenstat’s implementation of the PCG algorithm, the operation with the diagonal
D causes some difficulties when describing the algorithm. This can be avoided.

a. Assume that the diagonalD of the preconditioning (9.6) is equal to the identity ma-
trix. How many operations are needed to perform one step of the PCG algorithm with
Eisenstat’s implementation? Formulate the PCG scheme for this case carefully.

b. The rows and columns of the preconditioning matrixM can be scaled so that the matrix
D of the transformed preconditioner, written in the form (9.6), is equal to the identity
matrix. What scaling should be used (the resultingM should also be SPD)?

c. Assume that the same scaling of question b is also applied to the original matrixA.
Is the resulting iteration mathematically equivalent to using Algorithm 9.1 to solve the
system (9.7) preconditioned with the diagonalD?

P-9.4 In order to save operations, the two matricesD−1E andD−1ET must be stored when
computingÂv by Algorithm 9.3. This exercise considers alternatives.

a. Consider the matrixB ≡ DÂD. Show how to implement an algorithm similar to 9.3
for multiplying a vectorv byB. The requirement is that onlyED−1 must be stored.

b. The matrixB in the previous question is not the proper preconditioned version ofA by
the preconditioning (9.6). CG is used on an equivalent system involvingB but a further
preconditioning by a diagonal must be applied. Which one? How does the resulting
algorithm compare in terms of cost and storage with an Algorithm based on 9.3?

c. It was mentioned in Section 9.2.2 thatÂ needed to be further preconditioned byD−1.
Consider the split-preconditioning option: CG is to be applied to the preconditioned
system associated withC = D1/2ÂD1/2. DefiningÊ = D−1/2ED−1/2 show that,

C = (I − Ê)−1D2(I − Ê)−T + (I − Ê)−1 + (I − Ê)−T

whereD2 is a certain matrix to be determined. Then write an analogue of Algo-
rithm 9.3 using this formulation. How does the operation count compare with that
of Algorithm 9.3?

P-9.4 Assume that the number of nonzero elements of a matrixA is parameterized by
Nz(Z) = αn. How small shouldα be before it does not pay to use Eisenstat’s imple-
mentation for the PCG algorithm? What if the matrixA is initially scaled so thatD is the
identity matrix?
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P-9.5 Let M = LU be a preconditioner for a matrixA. Show that the left, right, and
split preconditioned matrices all have the same eigenvalues. Does this mean that the corre-
sponding preconditioned iterations will converge in (a) exactly the same number of steps?
(b) roughly the same number of steps for any matrix? (c) roughly the same number of steps,
except for ill-conditioned matrices?

P-9.6 Show that the relation (9.18) holds for any polynomials and any vectorr.

P-9.7 Write the equivalent of Algorithm 9.1 for the Conjugate Residual method.

P-9.8 Assume that a Symmetric Positive Definite matrixM is used to precondition GMRES
for solving a nonsymmetric linear system. The main featuresof the P-GMRES algorithm ex-
ploiting this were given in Section 9.2.1. Give a formal description of the algorithm. In
particular give a Modified Gram-Schimdt implementation. [Hint: The vectorsMvi’s must
be saved in addition to thevi’s.] What optimality property does the approximate solution sat-
isfy? What happens if the original matrixA is also symmetric? What is a potential advantage
of the resulting algorithm?

NOTES AND REFERENCES. The preconditioned version of CG described in Algorithm 9.1 is due to
Meijerink and van der Vorst [208]. Eisenstat’s implementation was developed in [114] and is often
referred to asEisenstat’s trick. A number of other similar ideas are described in [217].

Several flexible variants of nonsymmetric Krylov subspace methods have been developed by sev-
eral authors simultaneously; see, e.g., [22], [247], and [291]. There does not seem to exist a similar
technique for left preconditioned variants of the Krylov subspace methods. This is because the right-
hand sideM−1

j b of the preconditioned system now changes at each step. A rigorous flexible variant
of the BCG methods cannot be developed because the short recurrences of these algorithms rely on the
preconditioned operator being constant. However, it is possible to develop an analogue of DQGMRES
for QMR (or other quasi-minimization methods) using identical arguments, see e.g., [282], though,
as is expected, the global biorthogonality of the Lanczos basis vectors is sacrificed. Similarly, flex-
ible variants of the CG method have been developed by sacrificing global optimality properties but
by tightening the flexibilty of the preconditioner, in an attempt to preserve good, possibly superlinear,
convergence; see [214] and [153].

The CGW algorithm can be useful in some instances, such as when the symmetric part ofA can
be inverted easily, e.g., using fast Poisson solvers. Otherwise, its weakness is that linear systems with
the symmetric part must be solved exactly. Inner-outer variations that do not require exact solutions
have been described by Golub and Overton [150].
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Chapter 10

PRECONDITIONING TECHNIQUES

Finding a good preconditioner to solve a given sparse linear system is often viewed as a com-

bination of art and science. Theoretical results are rare and some methods work surprisingly

well, often despite expectations. A preconditioner can be defined as any subsidiary approximate

solver which is combined with an outer iteration technique, typically one of the Krylov subspace

iterations seen in previous chapters. This chapter covers some of the most successful techniques

used to precondition a general sparse linear system. Note at the outset that there are virtually

no limits to available options for obtaining good preconditioners. For example, preconditioners

can be derived from knowledge of the original physical problems from which the linear system

arises. However, a common feature of the preconditioners discussed in this chapter is that they

are built from the original coefficient matrix.

10.1 Introduction

Roughly speaking, a preconditioner is any form of implicit or explicit modification of
an original linear system which makes it “easier” to solve bya given iterative method.
For example, scaling all rows of a linear system to make the diagonal elements equal
to one is an explicit form of preconditioning. The resultingsystem can be solved by
a Krylov subspace method and may require fewer steps to converge than with the
original system (although this is not guaranteed). As another example, solving the
linear system

M−1Ax = M−1b

whereM−1 is some complicated mapping that may involve FFT transforms, inte-
gral calculations, and subsidiary linear system solutions, may be another form of
preconditioning. Here, it is unlikely that the matrixM andM−1A can be computed
explicitly. Instead, the iterative processes operate withA and withM−1 whenever
needed. In practice, the preconditioning operationM−1 should be inexpensive to
apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is to perform anincomplete
factorization of the original matrixA. This entails a decomposition of the form
A = LU − R whereL andU have the same nonzero structure as the lower and
upper parts ofA respectively, andR is theresidualor error of the factorization. This
incomplete factorization known as ILU(0) is rather easy andinexpensive to compute.
On the other hand, it often leads to a crude approximation which may result in the

297
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Krylov subspace accelerator requiring
many iterations to converge. To remedy this, several alternative incomplete fac-

torizations have been developed by allowing more fill-in inL andU . In general, the
more accurate ILU factorizations require fewer iterationsto converge, but the pre-
processing cost to compute the factors is higher. However, if only because of the
improved robustness, these trade-offs generally favor themore accurate factoriza-
tions. This is especially true when several systems with thesame matrix must be
solved because the preprocessing cost can be amortized.

This chapter considers the most common preconditioners used for solving large
sparse matrices and compares their performance. It begins with the simplest precon-
ditioners (SOR and SSOR) and then discusses the more accurate variants such as
ILUT.

10.2 Jacobi, SOR, and SSOR Preconditioners

As was seen in Chapter 4, a fixed-point iteration for solving alinear system

Ax = b

takes the general form
xk+1 = M−1Nxk +M−1b (10.1)

whereM andN realize the splitting ofA into

A = M −N. (10.2)

The above iteration is of the form

xk+1 = Gxk + f (10.3)

wheref = M−1b and

G = M−1N = M−1(M −A)

= I −M−1A. (10.4)

Thus, for Jacobi and Gauss Seidel it has been shown that

GJA(A) = I −D−1A (10.5)

GGS(A) = I − (D − E)−1A, (10.6)

whereA = D − E − F is the splitting defined in Chapter 4.
The iteration (10.3) is attempting to solve

(I −G)x = f (10.7)

which, because of the expression (10.4) forG, can be rewritten as

M−1Ax = M−1b. (10.8)
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The above system is thepreconditioned systemassociated with the splittingA =
M −N , and the iteration (10.3) is nothing but afixed-point iteration on this precon-
ditioned system.

Similarly, a Krylov subspace method, e.g., GMRES, can be used to solve (10.8),
leading to a preconditioned version of the Krylov subspace method, e.g., precon-
ditioned GMRES. The preconditioned versions of some Krylovsubspace methods
have been discussed in the previous chapter with a generic preconditionerM . In
theory, any general splitting in whichM is nonsingular can be used. Ideally,M
should be close toA in some sense. However, note that a linear system with the ma-
trix M must be solved at each step of the iterative procedure. Therefore, a practical
and admittedly somewhat vague requirement is that these solutions steps should be
inexpensive.

As was seen in Chapter 4, the SSOR preconditioner is defined by

MSSOR = (D − ωE)D−1(D − ωF ).

Typically, when this matrix is used as a preconditioner, it is not necessary to choose
ω as carefully as for the underlying fixed-point iteration. Taking ω = 1 leads to the
Symmetric Gauss-Seidel (SGS) iteration,

MSGS = (D − E)D−1(D − F ). (10.9)

An interesting observation is thatD−E is the lower part ofA, including the diagonal,
andD − F is, similarly, the upper part ofA. Thus,

MSGS = LU,

with
L ≡ (D − E)D−1 = I − ED−1, U = D − F.

The matrixL is unit lower triangular andU is upper triangular. One question that
may arise concerns the implementation of the preconditioning operation. To compute
w = M−1

SGSx, proceed as follows:

solve (I − ED−1)z = x,

solve (D − F )w = z.

A FORTRAN implementation of this preconditioning operation is illustrated in the
following code, for matrices stored in the MSR format described in Chapter 3.

FORTRAN CODE

subroutine lusol (n,rhs,sol,luval,lucol,luptr,uptr)
real*8 sol(n), rhs(n), luval(*)
integer n, luptr(*), uptr(n)

c-----------------------------------------------------------
c Performs a forward and a backward solve for an ILU or
c SSOR factorization, i.e., solves (LU) sol = rhs where LU
c is the ILU or the SSOR factorization. For SSOR, L and U
c should contain the matrices L = I - omega E inv(D), and U
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c = D - omega F, respectively with -E = strict lower
c triangular part of A, -F = strict upper triangular part
c of A, and D = diagonal of A.
c-----------------------------------------------------------
c PARAMETERS:
c n = Dimension of problem
c rhs = Right hand side; rhs is unchanged on return
c sol = Solution of (LU) sol = rhs.
c luval = Values of the LU matrix. L and U are stored
c together in CSR format. The diagonal elements of
c U are inverted. In each row, the L values are
c followed by the diagonal element (inverted) and
c then the other U values.
c lucol = Column indices of corresponding elements in luval
c luptr = Contains pointers to the beginning of each row in
c the LU matrix.
c uptr = pointer to the diagonal elements in luval, lucol
c------------------------------------------------------------

integer i,k
c
c FORWARD SOLVE. Solve L . sol = rhs
c

do i = 1, n
c
c compute sol(i) := rhs(i) - sum L(i,j) x sol(j)
c

sol(i) = rhs(i)
do k=luptr(i),uptr(i)-1

sol(i) = sol(i) - luval(k)* sol(lucol(k))
enddo

enddo
c
c BACKWARD SOLVE. Compute sol := inv(U) sol
c

do i = n, 1, -1
c
c compute sol(i) := sol(i) - sum U(i,j) x sol(j)
c

do k=uptr(i)+1, luptr(i+1)-1
sol(i) = sol(i) - luval(k)*sol(lucol(k))

enddo
c
c compute sol(i) := sol(i)/ U(i,i)
c

sol(i) = luval(uptr(i))*sol(i)
enddo
return
end

As was seen above, the SSOR or SGS preconditioning matrix is of the form
M = LU whereL andU have the same pattern as theL-part and theU -part ofA,
respectively. Here,L-part means lower triangular part and, similarly, theU -part is
the upper triangular part. If the error matrixA− LU is computed, then for SGS, for
example, we would find

A− LU = D −E − F − (I − ED−1)(D − F ) = −ED−1F.

If L is restricted to have the same structure as theL-part ofA andU is to have the
same structure as theU -part ofA, the question is whether or not it is possible to find
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L andU that yield an error that is smaller in some sense than the one above. We can,
for example, try to find such an incomplete factorization in which the residual matrix
A− LU has zero elements in locations whereA has nonzero entries.

This turns out to be possible in general and yields the ILU(0)factorization to be
discussed later. Generally, a pattern forL andU can be specified andL andU may
be sought so that they satisfy certain conditions. This leads to the general class of
incomplete factorization techniques which are discussed in the next section.

Example 10.1. Table 10.1 shows the results of applying the GMRES algorithm
with SGS (SSOR withω = 1) preconditioning to the five test problems described
in Section 3.7. See Example 6.1 for the meaning of the column headers in the table.

Matrix Iters Kflops Residual Error

F2DA 38 1986 0.76E-03 0.82E-04

F3D 20 4870 0.14E-02 0.30E-03

ORS 110 6755 0.31E+00 0.68E-04

F2DB 300 15907 0.23E+02 0.66E+00

FID 300 99070 0.26E+02 0.51E-01

Table 10.1: A test run of GMRES with SGS preconditioning.

Notice here that the method did not converge in 300 steps for the last two problems.
The number of iterations for the first three problems is reduced substantially from
those required by GMRES without preconditioning shown in Table 6.2. The total
number of operations required is also reduced, but not proportionally because each
step now costs more due to the preconditioning operation.

10.3 ILU Factorization Preconditioners

Consider a general sparse matrixA whose elements areaij , i, j = 1, . . . , n. A
general Incomplete LU (ILU) factorization process computes a sparse lower trian-
gular matrixL and a sparse upper triangular matrixU so that the residual matrix
R = LU − A satisfies certain constraints, such as having zero entries in some lo-
cations. We first describe a general ILU preconditioner geared towardM -matrices.
Then we discuss the ILU(0) factorization, the simplest formof the ILU precondition-
ers. Finally, we will show how to obtain more accurate factorizations.

10.3.1 Incomplete LU Factorizations

A general algorithm for building Incomplete LU factorizations can be derived by per-
forming Gaussian elimination and dropping some elements inpredetermined nondi-
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agonal positions. To analyze this process and establish existence forM -matrices, the
following result of Ky Fan [122] is needed.

Theorem 10.1 LetA be anM -matrix and letA1 be the matrix obtained from the
first step of Gaussian elimination. ThenA1 is anM -matrix.

Proof. Theorem 1.32 will be used to establish that properties 1, 2, and 3 therein are
satisfied. First, consider the off-diagonal elements ofA1:

a1
ij = aij −

ai1a1j

a11
.

Sinceaij, ai1, a1j are nonpositive anda11 is positive, it follows thata1
ij ≤ 0 for

i 6= j.
Second, the fact thatA1 is nonsingular is a trivial consequence of the following

standard relation of Gaussian elimination

A = L1A1 where L1 =

[
A∗,1
a11

, e2, e3, . . . en

]

. (10.10)

Finally, we establish thatA−1
1 is nonnegative by examiningA−1

1 ej for j =
1, . . . , n. For j = 1, it is clear thatA−1

1 e1 = 1
a11
e1 because of the structure of

A1. For the casej 6= 1, (10.10) can be exploited to yield

A−1
1 ej = A−1L−1

1 ej = A−1ej ≥ 0.

Therefore, all the columns ofA−1
1 are nonnegative by assumption and this completes

the proof.

Clearly, the(n− 1)× (n− 1) matrix obtained fromA1 by removing its first row and
first column is also anM -matrix.

Assume now that some elements are dropped from the result of Gaussian Elim-
ination outside of the main diagonal. Any element that is dropped is a nonpositive
entry which is transformed into a zero. Therefore, the resulting matrix Ã1 is such
that

Ã1 = A1 +R,

where the elements ofR are such thatrii = 0, rij ≥ 0. Thus,

A1 ≤ Ã1

and the off-diagonal elements of̃A1 are nonpositive. SinceA1 is anM -matrix,
theorem 1.33 shows that̃A1 is also anM -matrix. The process can now be repeated
on the matrixÃ(2 : n, 2 : n), and then continued until the incomplete factorization
of A is obtained. The above arguments shows that at each step of this construction,
we obtain anM -matrix and that the process does not break down.

The elements to drop at each step have not yet been specified. This can be done
statically, by choosing some non-zero pattern in advance. The only restriction on the
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zero pattern is that it should exclude diagonal elements because this assumption was
used in the above proof. Therefore, for any zero pattern setP , such that

P ⊂ {(i, j) | i 6= j; 1 ≤ i, j ≤ n}, (10.11)

an Incomplete LU factorization,ILUP , can be computed as follows.

ALGORITHM 10.1 General Static Pattern ILU

0. For each(i, j) ∈ P setaij = 0
1. Fork = 1, . . . , n− 1 Do:
2. Fori = k + 1, n and if (i, k) /∈ P Do:
3. aik := aik/akk

4. Forj = k + 1, . . . , n and for(i, j) /∈ P Do:
5. aij := aij − aik ∗ akj

6. EndDo
7. EndDo
8. EndDo

The initial step (step 0) is necessary for the case, rare in practice, when the zero
pattern ofA does not include the zero pattern defined byP . TheFor loop in line 4
should be interpreted as follows:For j = k + 1, . . . , n and only for those indicesj
that are not inP execute the next line. In practice, it is wasteful to scanj from k+ 1
to n because there is an inexpensive mechanism for identifying those indicesj that
are in the complement ofP . Using the above arguments, the following result can be
proved.

Theorem 10.2 Let A be anM -matrix andP a given zero pattern defined as in
(10.11). Then Algorithm 10.1 does not break down and produces an incomplete
factorization,

A = LU −R
which is a regular splitting ofA.

Proof. At each step of the process, we have

Ãk = Ak +Rk, Ak = LkÃk−1

where, usingOk to denote a zero vector of dimensionk, andAm:n,j to denote the
vector of componentsai,j, i = m, . . . , n,

Lk = I − 1

a
(k)
kk

(
Ok

A(k + 1 : n, k)

)

eTk .

From this follow the relations

Ãk = Ak +Rk = LkÃk−1 +Rk.
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Applying this relation recursively, starting fromk = n − 1 up tok = 1, it is found
that

Ãn−1 = Ln−1 . . . L1A+ Ln−1 . . . L2R1 + . . . + Ln−1Rn−2 +Rn−1. (10.12)

Now define
L = (Ln−1 . . . L1)

−1, U = Ãn−1.

Then,U = L−1A+ S with

S = Ln−1 . . . L2R1 + . . .+ Ln−1Rn−2 +Rn−1.

Observe that at stagek, elements are dropped only in the(n − k) × (n − k) lower
part ofAk. Hence, the firstk rows and columns ofRk are zero and as a result

Ln−1 . . . Lk+1Rk = Ln−1 . . . L1Rk

so thatS can be rewritten as

S = Ln−1 . . . L2(R1 +R2 + . . .+Rn−1).

If R denotes the matrix

R = R1 +R2 + . . .+Rn−1,

then we obtain the factorizationA = LU − R, where(LU)−1 = U−1L−1 is a
nonnegative matrix,R is nonnegative. This completes the proof.

Not accessed 

Accessed but not

Accessed and 
modified 

modified 

Figure 10.1: IKJvariant of the LU factorization.

Now consider a few practical aspects. An ILU factorization based on Algo-
rithm 10.1 is difficult to implement because at each stepk, all rowsk + 1 to n are
being modified. However, ILU factorizations depend on the implementation of Gaus-
sian elimination which is used. Several variants of Gaussian elimination are known
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which depend on the order of the three loops associated with the control variablesi,
j, andk in the algorithm. Thus, Algorithm 10.1 is derived from what is known as the
k, i, j variant. In the context of Incomplete LU factorization, thevariant that is most
commonly used for a row-contiguous data structure is thei, k, j variant, described
next for dense matrices.

ALGORITHM 10.2 Gaussian Elimination – IKJ Variant

1. Fori = 2, . . . , n Do:
2. Fork = 1, . . . , i− 1 Do:
3. aik := aik/akk

4. Forj = k + 1, . . . , n Do:
5. aij := aij − aik ∗ akj

6. EndDo
7. EndDo
8. EndDo

The above algorithm is in place in the sense that thei-th row ofA can be over-
written by thei-th rows of theL andU matrices of the factorization (sinceL is unit
lower triangular, its diagonal entries need not be stored).Stepi of the algorithm gen-
erates thei-th row ofL and thei-th row ofU at the same time. The previous rows
1, 2, . . . , i − 1 of L andU are accessed at stepi but they are not modified. This is
illustrated in Figure 10.1.

Adapting this version for sparse matrices is easy because the rows ofL andU
are generated in succession. These rows can be computed one at a time and accu-
mulated in a row-oriented data structure such as the CSR format. This constitutes an
important advantage. Based on this, the general ILU factorization takes the following
form.

ALGORITHM 10.3 General ILU Factorization, IKJVersion

1. Fori = 2, . . . , n Do:
2. Fork = 1, . . . , i− 1 and if (i, k) /∈ P Do:
3. aik := aik/akk

4. Forj = k + 1, . . . , n and for(i, j) /∈ P , Do:
5. aij := aij − aikakj.
6. EndDo
7. EndDo
8. EndDo

It is not difficult to see that this more practical IKJvariantof ILU is equivalent to the
KIJversion which can be defined from Algorithm 10.1.

Proposition 10.3 LetP be a zero pattern satisfying the condition (10.11). Then the
ILU factors produced by the KIJ-based Algorithm 10.1 and theIKJ-based Algo-
rithm 10.3 are identical if they can both be computed.
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Proof. Algorithm 10.3 is obtained from Algorithm 10.1 by switchingthe order of the
loopsk andi. To see that this gives indeed the same result, reformulate the first two
loops of Algorithm 10.1 as

Fork = 1, n Do:
For i = 1, n Do:

if k < i and for(i, k) /∈ P Do:
ope(row(i),row(k))
. . . . . .

in whichope(row(i),row(k))is the operation represented by lines 3 through 6 of both
Algorithm 10.1 and Algorithm 10.3. In this form, it is clear that thek andi loops
can be safely permuted. Then the resulting algorithm can be reformulated to yield
exactly Algorithm 10.3.

Note that this is only true for a static pattern ILU. If the pattern is dynamically de-
termined as the Gaussian elimination algorithm proceeds, then the patterns obtained
with different versions of GE may be different.

It is helpful to interpret the result of one incomplete elimination step. Denoting
by li∗, ui∗, andai∗ thei-th rows ofL,U , andA, respectively, then thek-loop starting
at line 2 of Algorithm 10.3 can be interpreted as follows. Initially, we haveui∗ = ai∗.
Then, each elimination step is an operation of the form

ui∗ := ui∗ − likuk∗.

However, this operation is performed only on the nonzero pattern, i.e., the comple-
ment ofP . This means that, in reality, the elimination step takes theform

ui∗ := ui∗ − likuk∗ + r
(k)
i∗ ,

in which r(k)
ij is zero when(i, j) /∈ P and equalslikukj when(i, j) ∈ P . Thus,

the rowr(k)
i∗ cancels out the termslikukj that would otherwise be introduced in the

zero pattern. In the end the following relation is obtained:

ui∗ = ai∗ −
i−1∑

k=1

(

likuk∗ − r(k)
i∗

)

.

Note thatlik = 0 for (i, k) ∈ P . We now sum up all ther(k)
i∗ ’s and define

ri∗ =

i−1∑

k=1

r
(k)
i∗ . (10.13)

The rowri∗ contains the elements that fall inside theP pattern at the completion of
thek-loop. Using the fact thatlii = 1, we obtain the relation,

ai∗ =
i∑

k=1

likuk∗ − ri∗. (10.14)

Therefore, the following simple property can be stated.
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Proposition 10.4 Algorithm 10.3 produces factorsL andU such that

A = LU −R

in which−R is the matrix of the elements that are dropped during the incomplete
elimination process. When(i, j) ∈ P , an entryrij of R is equal to the value of
−aij obtained at the completion of thek loop in Algorithm 10.3. Otherwise,rij is
zero.

10.3.2 Zero Fill-in ILU (ILU(0))

The Incomplete LUfactorization technique with no fill-in, denoted by ILU(0),takes
the zero patternP to be precisely the zero pattern ofA. In the following, we denote
by bi,∗ the i-th row of a given matrixB, and byNZ(B), the set of pairs(i, j), 1 ≤
i, j ≤ n such thatbi,j 6= 0. The ILU(0) factorization is best illustrated by the case for
which it was discovered originally, namely, for 5-point and7-point matrices related
to finite difference discretization of elliptic PDEs. Consider one such matrixA as
illustrated in the bottom left corner of Figure 10.2.

TheA matrix represented in this figure is a 5-point matrix of sizen = 32 corre-
sponding to annx × ny = 8× 4 mesh. Consider now any lower triangular matrixL
which has the same structure as the lower part ofA, and any matrixU which has the
same structure as that of the upper part ofA. Two such matrices are shown at the top
of Figure 10.2. If the productLU were performed, the resulting matrix would have
the pattern shown in the bottom right part of the figure. It is impossible in general
to matchA with this product for anyL andU . This is due to the extra diagonals in
the product, namely, the diagonals with offsetsnx − 1 and−nx + 1. The entries in
these extra diagonals are calledfill-in elements. However, if these fill-in elements are
ignored, then it is possible to findL andU so that their product is equal toA in the
other diagonals.

The ILU(0) factorization has just been defined in general terms: Any pair of
matricesL (unit lower triangular) andU (upper triangular) so that the elements of
A − LU are zero in the locations ofNZ(A). These constraints do not define the
ILU(0) factors uniquely since there are, in general, infinitely many pairs of matrices
L andU which satisfy these requirements. However, the standard ILU(0) is defined
constructively using Algorithm 10.3 with the patternP equal to the zero pattern of
A.

ALGORITHM 10.4 ILU(0)

1. Fori = 2, . . . , n Do:
2. Fork = 1, . . . , i− 1 and for(i, k) ∈ NZ(A) Do:
3. Computeaik = aik/akk

4. Forj = k + 1, . . . , n and for(i, j) ∈ NZ(A), Do:
5. Computeaij := aij − aikakj.
6. EndDo
7. EndDo
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A

L U

LU

Figure 10.2: The ILU(0) factorization for a five-point matrix.

8. EndDo

In some cases, it is possible to write the ILU(0) factorization in the form

M = (D − E)D−1(D − F ), (10.15)

where−E and−F are the strict lower and strict upper triangular parts ofA, andD
is a certain diagonal matrix, different from the diagonal ofA, in general. In these
cases it is sufficient to find a recursive formula for determining the elements inD.
A clear advantage is that only an extra diagonal of storage isrequired. This form of
the ILU(0) factorization is equivalent to the incomplete factorizations obtained from
Algorithm 10.4 when the product of thestrict-lower partand thestrict-upper partof
A consists only of diagonal elements and fill-in elements. This is true, for example,
for standard 5-point difference approximations to second order partial differential
operators; see Exercise 3. In these instances, both the SSORpreconditioner with
ω = 1 and the ILU(0) preconditioner can be cast in the form (10.15), but they differ
in the way the diagonal matrixD is defined. For SSOR(ω = 1),D is the diagonal of
the matrixA itself. For ILU(0), it is defined by a recursion so that the diagonal of the
product of matrices (10.15) equals the diagonal ofA. By definition, together theL
andU matrices in ILU(0) have the same number of nonzero elements as the original
matrixA.
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Example 10.2. Table 10.2 shows the results of applying the GMRES algorithm
with ILU(0) preconditioning to the five test problems described in Section 3.7. See
Example 6.1 for the meaning of the column headers in the table.

Matrix Iters Kflops Residual Error

F2DA 28 1456 0.12E-02 0.12E-03

F3D 17 4004 0.52E-03 0.30E-03

ORS 20 1228 0.18E+00 0.67E-04

F2DB 300 15907 0.23E+02 0.67E+00

FID 206 67970 0.19E+00 0.11E-03

Table 10.2: A test run of GMRES with ILU(0) preconditioning.

Observe that for the first two problems, the gains relative tothe performance of
the SSOR preconditioner in Table 10.1 are rather small. For the other three problems,
which are a little harder, the gains are more substantial. For the last problem, the
algorithm achieves convergence in 205 steps whereas SSOR did not convergence in
the 300 steps allowed. The fourth problem (F2DB) is still notsolvable by ILU(0)
within the maximum number of steps allowed.

For the purpose of illustration, below is a sample FORTRAN code for computing
the incompleteL andU factors for general sparse matrices stored in the usual CSR
format. The real values of the resultingL,U factors are stored in the arrayluval,
except that entries of ones of the main diagonal of the unit lower triangular matrix
L are not stored. Thus, one matrix is needed to store these factors together. This
matrix is denoted byL/U . Note that since the pattern ofL/U is identical with that
of A, the other integer arrays of the CSR representation for the LU factors are not
needed. Thus,ja(k), which is the column position of the elementa(k) in the input
matrix, is also the column position of the elementluval(k) in theL/U matrix. The
code below assumes that the nonzero elements in the input matrix A are sorted by
increasing column numbers in each row.

FORTRAN CODE

subroutine ilu0 (n, a, ja, ia, luval, uptr, iw, icode)
integer n, ja(*), ia(n+1), uptr(n), iw(n)
real*8 a(*), luval(*)

c-----------------------------------------------------------
c Set-up routine for ILU(0) preconditioner. This routine
c computes the L and U factors of the ILU(0) factorization
c of a general sparse matrix A stored in CSR format. Since
c L is unit triangular, the L and U factors can be stored
c as a single matrix which occupies the same storage as A.
c The ja and ia arrays are not needed for the LU matrix
c since the pattern of the LU matrix is identical with
c that of A.
c-----------------------------------------------------------
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c INPUT:
c ------
c n = dimension of matrix
c a, ja, ia = sparse matrix in general sparse storage format
c iw = integer work array of length n
c OUTPUT:
c -------
c luval = L/U matrices stored together. On return luval,
c ja, ia is the combined CSR data structure for
c the LU factors
c uptr = pointer to the diagonal elements in the CSR
c data structure luval, ja, ia
c icode = integer indicating error code on return
c icode = 0: normal return
c icode = k: encountered a zero pivot at step k
c
c-----------------------------------------------------------
c initialize work array iw to zero and luval array to a

do 30 i = 1, ia(n+1)-1
luval(i) = a(i)

30 continue
do 31 i=1, n

iw(i) = 0
31 continue

c----------------------- Main loop
do 500 k = 1, n

j1 = ia(k)
j2 = ia(k+1)-1
do 100 j=j1, j2

iw(ja(j)) = j
100 continue

j=j1
150 jrow = ja(j)

c----------------------- Exit if diagonal element is reached
if (jrow .ge. k) goto 200

c----------------------- Compute the multiplier for jrow.
tl = luval(j)*luval(uptr(jrow))
luval(j) = tl

c----------------------- Perform linear combination
do 140 jj = uptr(jrow)+1, ia(jrow+1)-1

jw = iw(ja(jj))
if (jw .ne. 0) luval(jw)=luval(jw)-tl*luval(jj)

140 continue
j=j+1
if (j .le. j2) goto 150

c----------------------- Store pointer to diagonal element
200 uptr(k) = j

if (jrow .ne. k .or. luval(j) .eq. 0.0d0) goto 600
luval(j) = 1.0d0/luval(j)

c----------------------- Refresh all entries of iw to zero.
do 201 i = j1, j2

iw(ja(i)) = 0
201 continue
500 continue

c----------------------- Normal return
icode = 0
return

c----------------------- Error: zero pivot
600 icode = k

return
end
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10.3.3 Level of Fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may be insufficient to yield an
adequate rate of convergence as shown in Example 10.2. More accurate Incomplete
LU factorizations are often more efficient as well as more reliable. These more ac-
curate factorizations will differ from ILU(0) by allowing some fill-in. Thus, ILU(1)
keeps the “first order fill-ins,” a term which will be explained shortly.

To illustrate ILU(p) with the same example as before, the ILU(1) factorization
results from takingP to be the zero pattern of the productLU of the factorsL,U
obtained from ILU(0). This pattern is shown at the bottom right of Figure 10.2. Pre-
tend that the original matrix has this “augmented” patternNZ1(A). In other words,
the fill-in positions created in this product belong to the augmented patternNZ1(A),
but their actual values are zero. The new pattern of the matrix A is shown at the
bottom left part of Figure 10.3. The factorsL1 andU1 of the ILU(1) factorization are
obtained by performing an ILU(0) factorization on this “augmented pattern” matrix.
The patterns ofL1 andU1 are illustrated at the top of Figure 10.3. The new LU
matrix shown at the bottom right of the figure has now two additional diagonals in
the lower and upper parts.

One problem with the construction defined in this illustration is that it does not
extend to general sparse matrices. It can be generalized by introducing the concept of
level of fill. A level of fill is attributed to each element that is processed by Gaussian
elimination, and dropping will be based on the value of the level of fill. Algorithm
10.2 will be used as a model, although any other form of GE can be used.

The rationale is that the level of fill should be indicative ofthe size: the higher
the level, the smaller the elements. A very simple model is employed to justify the
definition: A size ofǫk is attributed to any element whose level of fill isk, where
ǫ < 1. Initially, a nonzero element has a level of fill of one (this will be changed
later) and a zero element has a level of fill of∞. An elementaij is updated in line 5
of Algorithm 10.2 by the formula

aij = aij − aik × akj. (10.16)

If levij is the current level of the elementaij , then our model tells us that the size of
the updated element should be

size(aij) := ǫlevij − ǫlevik × ǫlevkj = ǫlevij − ǫlevik+levkj .

Therefore, roughly speaking, the size ofaij will be the maximum of the two
sizesǫlevij andǫlevik+levkj , and it is natural to define the new level of fill as,

levij := min{levij , levik + levkj}.
In the common definition used in the literature, all the levels of fill are actually shifted
by−1 from the definition used above. This is purely for convenience of notation and
to conform with the definition used for ILU(0). Thus, initially levij = 0 if aij 6= 0,
andlevij =∞ otherwise. Thereafter, define recursively

levij = min{levij , levik + levkj + 1}.
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AugmentedA

L1 U1

L1U1

Figure 10.3: The ILU(1) factorization for a five-point matrix.

Definition 10.5 The initial level of fill of an elementaij of a sparse matrixA is
defined by

levij =

{

0 if aij 6= 0, or i = j
∞ otherwise.

Each time this element is modified in line 5 of Algorithm 10.2,its level of fill must be
updated by

levij = min{levij , levik + levkj + 1}. (10.17)

Observe that the level of fill of an element will never increase during the elimination.
Thus, ifaij 6= 0 in the original matrixA, then the element in locationi, j will have a
level of fill equal to zero throughout the elimination process.

An alternative way of interpreting the above definition of fill-level can be drawn
from the graph model of Gaussian elimination, which is a standard tool used in sparse
direct solvers. Consider the adjacency graphG(A) = (V,E) of the matrixA. At
the completion of stepk − 1 of Gaussian elimination, nodes1, 2, . . . , k − 1 have
been eliminated. LetVk−1 the set of thek − 1 vertices that are eliminated so far and
let vi, vj two vertices not inVk, i.e., such thati, j > k. The vertexvi is said to be
reachable from the vertexvj throughVk−1 if there is a path in the (original) graph
G(A) which connectsvi to vj, in which all intermediate vertices are inVk−1. The set
of all nodesv that are reachable fromu throughVk−1 is denoted byReach(u, Vk−1).
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i

V k-1

j
k

Figure 10.4: Shortest path fromj to j whenk is added toVk−1.

The fill-level of (i, j) at stepk − 1 is simply the length of the shortest path through
Vk−1 betweenvi andvj, minus 1. The initial fill-levels are defined as before, to be
zero when(i, j) ∈ V0 and infinity otherwise. At the next step (k), nodek will be
added toVk−1 to getVk. Now more paths are available and so the path lengths may
be shortened by taking paths that go through the new nodevk.

If we use the shifted levels (all levels are increased by one,so that thelev(i, j) is
the actual minimum path length) then, the shortest path is now the shortest of the old
shortest path and new possible paths throughvk. A path throughvk is a path from
i to vk continued by a path fromvk to j. Therefore, the new pathlength is indeed
min{levij , levik + levkj}. This is illustrated in Figure 10.4.

Another useful concept in sparse direct solution methods isthat of fill-path,
which is a path between two verticesi andj, such that all the vertices in the path,
except the end pointsi andj, are numbered less thani andj. The following result is
well-known in sparse direct solution methods.

Theorem 10.6 There is a fill-in in entry(i, j) at the completion of the Gaussian
elimination process if and only if, there exists a fill-path betweeni andj.

For a proof see [144, 233]. As it turns out, a fill-in entry which has level-of-fill value
p corresponds to fill-paths whose length isp+ 1.

Theorem 10.7 At the completion of the ILU process, a fill-in entry in position (i, j)
has level-of-fill valuep if and only if there exists a fill-path of lengthp+ 1 betweeni
andj.

Proof. If there is a fill-path of lengthp, then from what said above on reachable sets,
it is clear thatlev(aij) ≤ p. However,lev(aij) cannot be< p, otherwise at some step
k we would have a path betweeni andj that is of length< p. Since path lengths do
not increase, this would lead to a contradiction. The converse is also true. Iflev(aij)
is equal top then at the last stepk whenlev(aij) was modified there was a path of
lengthp betweeni andj.

The above systematic definition gives rise to a natural strategy for discarding ele-
ments. In ILU(p), all fill-in elements whose level of fill does not exceedp are kept.
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So using the definition of zero patterns introduced earlier,the zero pattern for ILU(p)
is the set

Pp = {(i, j) | levij > p},
wherelevij is the level of fill value after all updates (10.17) have been performed.
The casep = 0 coincides with the ILU(0) factorization and is consistent with the
earlier definition.

Since fill levels are is essentially path-lengths in the graph, they are bounded
from above byδ(G)+1 where the diameterδ(G) of a graphG is maximum possible
distanced(x, y) between two verticesx andy of the graph

δ(G) = max{d(x, y) | x ∈ V, y ∈ V }.

Recall that the distanced(x, y) between verticesx andy in the graph is the length of
the shortest path betweenx andy.

Definition 10.5 of fill levels is not the only one used in practice. An alternative
definition replaces the updating formula (10.17) by

levij = min{levij ,max{levik, levkj}+ 1}. (10.18)

In practical implementations of the ILU(p) factorization it is common to separate
the symbolic phase (where the structure of theL andU factors are determined) from
the numerical factorization, when the numerical values arecomputed. Here, a variant
is described which does not separate these two phases. In thefollowing description,
ai∗ denotes thei-th row of the matrixA, andaij the(i, j)-th entry ofA.

ALGORITHM 10.5 ILU(p)

1. For all nonzero elementsaij definelev(aij) = 0
2. Fori = 2, . . . , n Do:
3. For eachk = 1, . . . , i− 1 and forlev(aik) ≤ p Do:
4. Computeaik := aik/akk

5. Computeai∗ := ai∗ − aikak∗.
6. Update the levels of fill of the nonzeroai,j ’s using (10.17)
7. EndDo
8. Replace any element in rowi with lev(aij) > p by zero
9. EndDo

There are a number of drawbacks to the above algorithm. First, the amount of fill-in
and computational work for obtaining the ILU(p) factorization is not predictable for
p > 0. Second, the cost of updating the levels can be high. Most importantly, the
level of fill-in for indefinite matrices may not be a good indicator of the size of the
elements that are being dropped. Thus, the algorithm may drop large elements and
result in an inaccurate incomplete factorization, in thatR = LU − A is not small.
Experience reveals thaton the averagethis will lead to a larger number of iterations
to achieve convergence. The techniques which will be described in Section 10.4 have
been developed to remedy these difficulties by producing incomplete factorizations
with small errorR and controlled fill-in.
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10.3.4 Matrices with Regular Structure

Often, the original matrix has a regular structure which canbe exploited to formu-
late the ILU preconditioners in a simpler way. Historically, incomplete factorization
preconditioners were developed first for such matrices, rather than for general sparse
matrices. Here, we call a regularly structured matrix a matrix consisting of a small
number of diagonals. As an example, consider the diffusion-convection equation,
with Dirichlet boundary conditions

−∆u+~b.∇u = f in Ω

u = 0 on ∂Ω

whereΩ is simply a rectangle. As seen in Chapter 2, if the above problem is dis-
cretized using centered differences, a linear system is obtained whose coefficient
matrix has the structure shown in Figure 10.5. In terms of thestencils seen in Chap-
ter 4, the representation of this matrix is rather simple. Each row expresses the
coupling between unknowni and unknownsi+ 1, i− 1 which are in the horizontal,
or x direction, and the unknownsi + m and i − m which are in the vertical, ory
direction. This stencil is represented in Figure 10.7. The desiredL andU matrices
in the ILU(0) factorization are shown in Figure 10.6. Now therespective stencils of
theseL andU matrices can be represented at a mesh pointi as shown in Figure 10.8.

The stencil of the productLU can be obtained easily by manipulating stencils
directly rather than working with the matrices they represent.

δ1 γ2 ϕm+1

β2 δ2 γ3

β3 δ3

ηm+1

ηi βi δi γi+1 ϕi+m

ϕn

ηn βn δn

γn

Figure 10.5: Matrix resulting from the discretization of anelliptic problem on a
rectangle.

Indeed, thei-th row ofLU is obtained by performing the following operation:

rowi(LU) = 1× rowi(U) + bi × rowi−1(U) + ei × rowi−m(U).

This translates into a combination of the stencils associated with the rows:

stencili(LU) = 1× stencili(U) + bi × stencili−1(U) + ei × stencili−m(U)
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1
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em+1
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dn

gn

fm+1

fn

L U

Figure 10.6:L andU factors of the ILU(0) factorization for the 5-point matrix shown
in Figure 10.5.

in which stencilj(X) represents the stencil of the matrixX based at the mesh point
labeledj.

This gives the stencil for theLU matrix represented in Figure 10.9.

γi+1δiβi

ηi

ϕi+m

Figure 10.7: Stencil associated with the 5-point matrix shown in Figure 10.5.

In the figure, the fill-in elements are represented by squaresand all other nonzero
elements of the stencil are filled circles. The ILU(0) process consists of identifying
LU withA in locations where the originalaij ’s are nonzero. In the Gaussian elimina-
tion process, this is done fromi = 1 to i = n. This provides the following equations
obtained directly from comparing the stencils of LU andA (going from lowest to
highest indices)

eidi−m = ηi

bidi−1 = βi

di + bigi + eifi = δi

gi+1 = γi+1

fi+m = ϕi+m.
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ei

1bi

fi+m

di gi+1

Figure 10.8: Stencils associated with theL andU factors shown in Figure 10.6.

gi+1

di + bigi + eifi	

bidi−1

fi+m

eidi−m

bifi+m−1

eigi−m+1

Figure 10.9:Stencil associated with the product of theL andU factors shown in
Figure 10.6.

Observe that the elementsgi+1 andfi+m are identical with the corresponding ele-
ments of theA matrix. The other values are obtained from the following recurrence:

ei =
ηi

di−m

bi =
βi

di−1

di = δi − bigi − eifi.

The above recurrence can be simplified further by making the observation that the
quantitiesηi/di−m andβi/di−1 need not be saved since they are scaled versions of
the corresponding elements inA. With this observation,only a recurrence for the
diagonal elementsdi is needed. This recurrence is:

di = δi −
βiγi

di−1
− ηiϕi

di−m
, i = 1, . . . , n, (10.19)

with the convention that anydj with a non-positive indexj is replaced by1, the
entriesβi, i ≤ 1, γi, i ≤ 1, φi, i ≤ m, andηi, i ≤ m, are zero. The factorization
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obtained takes the form

M = (D − E)D−1(D − F ) (10.20)

in which−E is the strict lower diagonal ofA, −F is the strict upper triangular part
of A, andD is the diagonal obtained with the above recurrence. Note that an ILU(0)
based on the IKJversion of Gaussian elimination would give the same result.

For a general sparse matrixA with irregular structure, one can also determine
a preconditioner in the form (10.20) by requiring only that the diagonal elements
of M match those ofA (see Exercise 8). However, this will not give the same ILU
factorization as the one based on the IKJvariant of Gaussianelimination seen earlier.
Why the ILU(0) factorization gives rise to the same factorization as that of (10.20)
is simple to understand: The product ofL andU does not change the values of
the existing elements in the upper part, except for the diagonal. This also can be
interpreted on the adjacency graph of the matrix.

This approach can now be extended to determine the ILU(1) factorization as well
as factorizations with higher levels of fill. The stencils oftheL andU matrices in
the ILU(1) factorization are the stencils of the lower part and upper parts of the LU
matrix obtained from ILU(0). These are shown in Figure 10.10. In the illustration,
the meaning of a given stencil is not in the usual graph theorysense. Instead, all
the marked nodes at a stencil based at nodei represent those nodes coupled with
unknowni by an equation. Thus, all the filled circles in the picture areadjacent to
the central node. Proceeding as before and combining stencils to form the stencil
associated with the LU matrix, we obtain the stencil shown inFigure 10.11.

ei

1bi

ci

fi+m

di gi+1

hi+m−1

Figure 10.10:Stencils of theL andU factors for the ILU(0) factorization of the
matrix represented by the stencil of Figure 10.9.

As before, the fill-in elements are represented by squares and all other elements
are filled circles. A typical row of the matrix associated with the above stencil has
nine nonzero elements. Two of these are fill-ins, i.e., elements that fall outside the
original structure of theL andU matrices. It is now possible to determine a recur-
rence relation for obtaining the entries ofL andU . There are seven equations in all
which, starting from the bottom, are

eidi−m = ηi
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bihi+m−2

hi+m−1 + bifi+m−1

? fi+m

bidi−1 + eihi−1

di + bigi + eifi + cihi

� gi+1 + cifi+1

eidi−m
eigi−m+1 + cidi−m+1

6 cigi−m+1

Figure 10.11:Stencil associated with the product of theL andU matrices whose
stencils are shown in Figure 10.10.

eigi−m+1 + cidi−m+1 = 0

bidi−1 + eihi−1 = βi

di + bigi + eifi + cihi = δi

gi+1 + cifi+1 = γi+1

hi+m−1 + bifi+m−1 = 0

fi+m = ϕi+m.

This immediately yields the following recurrence relationfor the entries of theL and
U factors:

ei = ηi/di−m

ci = −eigi−m+1/di−m+1

bi = (βi − eihi−1) /di−1

di = δi − bigi − eifi − cihi

gi+1 = γi+1 − cifi+1

hi+m−1 = −bifi+m−1

fi+m = ϕi+m.

In proceeding from the nodes of smallest index to those of largest index, we are in
effect performing implicitly the IKJversion of Gaussian elimination. The result of
the ILU(1) obtained in this manner is therefore identical with that obtained by using
Algorithms 10.1 and 10.3.

10.3.5 Modified ILU (MILU)

In all the techniques thus far, the elements that were dropped out during the incom-
plete elimination process are simply discarded. There are also techniques which at-
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tempt to reduce the effect of dropping bycompensatingfor the discarded entries. For
example, a popular strategy is to add up all the elements thathave been dropped at
the completion of thek-loop of Algorithm 10.3. Then this sum is subtracted from the
diagonal entry inU . Thisdiagonal compensationstrategy gives rise to the Modified
ILU (MILU) factorization.

Thus, in equation (10.13), the final rowui∗ obtained after completion of thek-
loop of Algorithm 10.3 undergoes one more modification, namely,

uii := uii − (ri∗e)

in whiche ≡ (1, 1, . . . , 1)T . Note thatri∗ is a row andri∗e is the sum of the elements
in this row, i.e., itsrow sum. The above equation can be rewritten in row form as
ui∗ := ui∗ − (ri∗e)eTi and equation (10.14) becomes

ai∗ =
i∑

k=1

likuk∗ + (ri∗e)e
T
i − ri∗. (10.21)

Observe that

ai∗e =
i∑

k=1

likuk∗e+ (ri∗e)e
T
i e− ri∗e =

i−1∑

k=1

likuk∗e = LU e.

This establishes thatAe = LUe. As a result, this strategy guarantees that the row
sums ofA are equal to those ofLU . For PDEs, the vector of all ones represents
the discretization of a constant function. This additionalconstraint forces the ILU
factorization to be exact for constant functions in some sense. Therefore, it is not
surprising that often the algorithm does well for such problems. For other problems
or problems with discontinuous coefficients, MILU algorithms usually are not better
than their ILU counterparts, in general.

Example 10.3. For regularly structured matrices there are two elements dropped
at thei-th step of ILU(0). These arebifi+m−1 andeigi−m+1 located on the north-
west and south-east corners of the stencil, respectively. Thus, the row sumri,∗e
associated with stepi is

si =
βiφi+m−1

di−1
+
ηiγm−i+1

di−m

and the MILU variant of the recurrence (10.19) is

si =
βiφi+m−1

di−1
+
ηiγm−i+1

di−m

di = δi −
βiγi

di−1
− ηiϕi

di−m
− si.
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The new ILU factorization is now such thatA = LU − R in which according to
(10.21) thei-th row of the new remainder matrixR is given by

r
(new)
i,∗ = (ri∗e)e

T
i − ri∗

whose row sum is zero.
This generic idea of lumping together all the elements dropped in the elimination

process and adding them to the diagonal ofU can be used forany form of ILU
factorization. In addition, there are variants of diagonalcompensation in which only
a fraction of the dropped elements are added to the diagonal.Thus, the termsi in
the above example would be replaced byωsi before being added touii, whereω
is typically between 0 and 1. Other strategies distribute the sumsi among nonzero
elements ofL andU , other than the diagonal.

10.4 Threshold Strategies and ILUT

Incomplete factorizations which rely on the levels of fill are blind to numerical values
because elements that are dropped depend only on the structure ofA. This can cause
some difficulties for realistic problems that arise in many applications. A few alter-
native methods are available which are based on dropping elements in the Gaussian
elimination process according to their magnitude rather than their locations. With
these techniques, the zero patternP is determined dynamically. The simplest way
to obtain an incomplete factorization of this type is to takea sparse direct solver
and modify it by adding lines of code which will ignore “small” elements. How-
ever, most direct solvers have a complex implementation involving several layers of
data structures that may make this approach ineffective. Itis desirable to develop a
strategy which is more akin to the ILU(0) approach. This section describes one such
technique.

10.4.1 The ILUT Approach

A generic ILU algorithm with threshold can be derived from the IKJversion of Gaus-
sian elimination, Algorithm 10.2, by including a set of rules for dropping small el-
ements. In what follows,applying a dropping rule to an elementwill only mean
replacing the element by zero if it satisfies a set of criteria. A dropping rule can be
applied to a whole row by applying the same rule to all the elements of the row. In
the following algorithm,w is a full-length working row which is used to accumulate
linear combinations of sparse rows in the elimination andwk is thek-th entry of this
row. As usual,ai∗ denotes thei-th row ofA.

ALGORITHM 10.6 ILUT

1. Fori = 1, . . . , n Do:
2. w := ai∗
3. Fork = 1, . . . , i− 1 and whenwk 6= 0 Do:
4. wk := wk/akk
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5. Apply a dropping rule towk

6. If wk 6= 0 then
7. w := w − wk ∗ uk∗
8. EndIf
9. EndDo

10. Apply a dropping rule to roww
11. li,j := wj for j = 1, . . . , i− 1
12. ui,j := wj for j = i, . . . , n
13. w := 0
14. EndDo

Now consider the operations involved in the above algorithm. Line 7 is a sparse
update operation. A common implementation of this is to use afull vector forw and
a companion pointer which points to the positions of its nonzero elements. Similarly,
lines 11 and 12 are sparse-vector copy operations. The vector w is filled with a few
nonzero elements after the

completion of each outer loopi, and therefore it is necessary to zero out those
elements at the end of the Gaussian elimination loop as is done in line 13. This is a
sparseset-to-zerooperation.

ILU(0) can be viewed as a particular case of the above algorithm. The dropping
rule for ILU(0) is to drop elements that are in positions not belonging to the original
structure of the matrix.

In the factorization ILUT(p, τ ), the following rule is used.

1. In line 5, an elementwk is dropped (i.e., replaced by zero) if it is less than the
relative toleranceτi obtained by multiplyingτ by the original norm of thei-th
row (e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, drop again
any element in the row with a magnitude that is below the relative tolerance
τi. Then, keep only thep largest elements in theL part of the row and thep
largest elements in theU part of the row in addition to the diagonal element,
which is always kept.

The goal of the second dropping step is to control the number of elements per row.
Roughly speaking,p can be viewed as a parameter that helps control memory usage,
while τ helps to reduce computational cost. There are several possible variations
on the implementation of dropping step 2. For example we can keep a number of
elements equal tonu(i) + p in the upper part andnl(i) + p in the lower part of the
row, wherenl(i) andnu(i) are the number of nonzero elements in theL part and the
U part of thei-th row ofA, respectively. This variant is adopted in the ILUT code
used in the examples.

Note that no pivoting is performed. Partial (column) pivoting may be incor-
porated at little extra cost and will be discussed later. It is also possible to combine
ILUT with one of the many standard reorderings, such as the nested dissection order-
ing or the reverse Cuthill-McKee ordering. Reordering in the context of incomplete
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factorizations can also be helpful for improving robustness, provided enough accu-
racy is used. For example, when a red-black ordering is used, ILU(0) may lead to
poor performance compared with the natural ordering ILU(0). On the other hand,
if ILUT is used by allowing gradually more fill-in, then the performance starts im-
proving again. In fact, in some examples, the performance ofILUT for the red-black
orderingeventually outperformsthat of ILUT for the natural ordering using the same
parametersp andτ .

10.4.2 Analysis

Existence theorems for the ILUT factorization are similar to those of other incom-
plete factorizations. If the diagonal elements of the original matrix are positive while
the off-diagonal elements are negative, then under certainconditions of diagonal
dominance the matrices generated during the elimination will have the same prop-
erty. If the original matrix is diagonally dominant, then the transformed matrices will
also have the property of being diagonally dominant under certain conditions. These
properties are analyzed in detail in this section.

The row vectorw resulting from line 4 of Algorithm 10.6 will be denoted by
uk+1

i,∗ . Note thatuk+1
i,j = 0 for j ≤ k. Lines 3 to 10 in the algorithm involve a

sequence of operations of the form

lik := uk
ik/ukk (10.22)

if |lik| small enough set lik = 0

else:

uk+1
i,j := uk

i,j − likuk,j − rk
ij j = k + 1, . . . , n (10.23)

for k = 1, . . . , i − 1, in which initially u1
i,∗ := ai,∗ and whererk

ij is an element
subtracted from a fill-in element which is being dropped. It should be equal either to
zero (no dropping) or touk

ij − likukj when the elementuk+1
i,j is being dropped. At

the end of thei-th step of Gaussian elimination (outer loop in Algorithm 10.6), we
obtain thei-th row ofU ,

ui,∗ ≡ ui
i−1,∗ (10.24)

and the following relation is satisfied:

ai,∗ =
i∑

k=1

lk,ju
k
i,∗ + ri,∗,

whereri,∗ is the row containing all the fill-ins.
The existence result which will be proved is valid only for certain modifications

of the basic ILUT(p, τ) strategy. We consider an ILUT strategy which uses the fol-
lowing modification:

• Drop Strategy Modification. For anyi < n, letai,ji
be the element of largest

modulus among the elementsai,j , j = i + 1, . . . n, in the original matrix.
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Then elements generated in position(i, ji) during the ILUT procedure are not
subject to the dropping rule.

This modification prevents elements generated in position(i, ji) from ever being
dropped. Of course, there are many alternative strategies that can lead to the same
effect.

A matrixH whose entrieshij satisfy the following three conditions:

hii > 0 for 1 ≤ i < n and hnn ≥ 0 (10.25)

hij ≤ 0 for i, j = 1, . . . , n and i 6= j; (10.26)
n∑

j=i+1

hij < 0, for 1 ≤ i < n (10.27)

will be referred to as an̂M matrix. The third condition is a requirement that there be
at least one nonzero element to the right of the diagonal element, in each row except
the last. The row sum for thei-th row is defined by

rs(hi,∗) = hi,∗e =

n∑

j=1

hi,j.

A given row of anM̂ matrixH is diagonally dominant, if its row sum is nonnegative.
An M̂ matrix H is said to be diagonally dominant if all its rows are diagonally
dominant. The following theorem is an existence result for ILUT. The underlying
assumption is that an ILUT strategy is used with the modification mentioned above.

Theorem 10.8 If the matrixA is a diagonally dominantM̂ matrix, then the rows
uk

i,∗, k = 0, 1, 2, . . . , i defined by (10.23) starting withu0
i,∗ = 0 and u1

i,∗ = ai,∗
satisfy the following relations fork = 1, . . . , l

uk
ij ≤ 0 j 6= i (10.28)

rs(uk
i,∗) ≥ rs(uk−1

i,∗ ) ≥ 0, (10.29)

uk
ii > 0 when i < n and uk

nn ≥ 0. (10.30)

Proof. The result can be proved by induction onk. It is trivially true for k = 0. To
prove that the relation (10.28) is satisfied, start from the relation

uk+1
i,∗ := uk

i,∗ − likuk,∗ − rk
i∗

in which lik ≤ 0, uk,j ≤ 0. Either rk
ij is zero which yieldsuk+1

ij ≤ uk
ij ≤ 0, or

rk
ij is nonzero which means thatuk+1

ij is being dropped, i.e., replaced by zero, and
therefore againuk+1

ij ≤ 0. This establishes (10.28). Note that by this argument
rk
ij = 0 except when thej-th element in the row is dropped, in which caseuk+1

ij = 0
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andrk
ij = uk

ij− likuk,j ≤ 0. Therefore,rk
ij ≤ 0, always. Moreover, when an element

in position(i, j) is not dropped, then

uk+1
i,j := uk

i,j − likuk,j ≤ uk
i,j

and in particular by the rule in the modification of the basic scheme described above,
for i < n, we will always have forj = ji,

uk+1
i,ji
≤ uk

i,ji
(10.31)

in which ji is defined in the statement of the modification.
Consider the row sum ofuk+1

i∗ . We have

rs(uk+1
i,∗ ) = rs(uk

i,∗)− lik rs(uk,∗)− rs(rk
i∗)

≥ rs(uk
i,∗)− lik rs(uk,∗) (10.32)

≥ rs(uk
i,∗) (10.33)

which establishes (10.29) fork + 1.
It remains to prove (10.30). From (10.29) we have, fori < n,

uk+1
ii ≥

∑

j=k+1,n

− uk+1
i,j =

∑

j=k+1,n

|uk+1
i,j | (10.34)

≥ |uk+1
i,ji
| ≥ |uk

i,ji
| ≥ . . . (10.35)

≥ |u1
i,ji
| = |ai,ji

|. (10.36)

Note that the inequalities in (10.35) are true becauseuk
i,ji

is never dropped by as-
sumption and, as a result, (10.31) applies. By the condition(10.27), which defines
M̂ matrices,|ai,ji

| is positive fori < n. Clearly, wheni = n, we have by (10.34)
unn ≥ 0. This completes the proof.

The theorem does not mean that the factorization is effective only when its condi-
tions are satisfied. In practice, the preconditioner is efficient under fairly general
conditions.

10.4.3 Implementation Details

A poor implementation of ILUT may well lead to an expensive factorization phase,
and possibly an impractical algorithm. The following is a list of the potential diffi-
culties that may cause inefficiencies in the implementationof ILUT.

1. Generation of the linear combination of rows ofA (Line 7 in Algorithm 10.6).

2. Selection of thep largest elements inL andU .

3. Need to access the elements ofL in increasing order of columns (in line 3 of
Algorithm 10.6).
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For (1), the usual technique is to generate a full row and accumulate the linear com-
bination of the previous rows in it. The row is zeroed again after the whole loop is
finished using a sparse set-to-zero operation. A variation on this technique uses only
a full integer arrayjr(1 : n), the values of which are zero except when there is a
nonzero element. With this full row, a short real vectorw(1 : maxw) must be main-
tained which contains the real values of the row, as well as a corresponding short
integer arrayjw(1 : maxw) which points to the column position of the real values
in the row. When a nonzero element resides in positionj of the row, thenjr(j) is set
to the addressk in w, jw where the nonzero element is stored. Thus,jw(k) points
to jr(j), andjr(j) points tojw(k) andw(k). This is illustrated in Figure 10.12.

1

2

0 0 2

4

0 0 3

7

0 4

9

0 0 0 0

x x x x w: real values

jw: pointer to nonzero elements

jr: nonzero
indicator

Figure 10.12: Illustration of data structure used for the working row in ILUT.

Note thatjr holds the information on the row consisting of both theL part and
theU part of the LU factorization. When the linear combinations of the rows are
performed, first determine the pivot. Then, unless it is small enough to be dropped
according to the dropping rule being used, proceed with the elimination. If a new
element in the linear combination is not a fill-in, i.e., ifjr(j) = k 6= 0, then update
the real valuew(k). If it is a fill-in ( jr(j) = 0), then append an element to the arrays
w, jw and updatejr accordingly.

For (2), the natural technique is to employ a heap-sort strategy. The cost of this
implementation would beO(m+ p × log2m), i.e.,O(m) for the heap construction
andO(log2m) for each extraction. Another implementation is to use a modified
quick-sort strategy based on the fact that sorting the arrayis not necessary.

Only the largestp elements must be extracted. This is aquick-split technique to
distinguish it from the full quick-sort. The method consists of choosing an element,
e.g.,x = w(1), in the arrayw(1 : m), then permuting the data so that|w(k)| ≤ |x| if
k ≤ mid and|w(k)| ≥ |x| if k ≥ mid, wheremid is some split point. Ifmid = p,
then exit. Otherwise, splitone of the left or right sub-arraysrecursively, depending
on whethermid is smaller or larger thanp. The cost of this strategyon the average
is O(m). The savings relative to the simpler bubble sort or insertion sort schemes
are small for small values ofp, but they become rather significant for largep andm.

The next implementation difficulty is that the elements in theL part of the row
being built are not in an increasing order of columns. Since these elements must be
accessed from left to right in the elimination process, all elements in the row after
those already eliminated must be scanned. The one with smallest column number
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is then picked as the next element to eliminate. This operation can be efficiently
organized as a binary search tree which allows easy insertions and searches. This
improvement can bring substantial gains in the case when accurate factorizations are
computed.

Example 10.4. Tables 10.3 and 10.4 show the results of applying GMRES(10)
preconditioned with ILUT(1, 10−4) and ILUT(5, 10−4), respectively, to the five test
problems described in Section 3.7. See Example 6.1 for the meaning of the column
headers in the table. As shown, all linear systems are now solved in a relatively
small number of iterations, with the exception of F2DB whichstill takes 130 steps
to converge withlfil = 1 (but only 10 withlfil = 5. ) In addition, observe a marked
improvement in the operation count and error norms. Note that the operation counts
shown in the column Kflops do not account for the operations required in the set-up
phase to build the preconditioners. For large values oflfil , this may be large.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.60E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 59 19112 0.19E+00 0.11E-03

Table 10.3: A test run of GMRES(10)-ILUT(1, 10−4) preconditioning.

If the total time to solve one linear system withA is considered, a typical curve
of the total time required to solve a linear system when thelfil parameter varies would
look like the plot shown in Figure 10.13. Aslfil increases, a critical value is reached
where the preprocessing time and the iteration time are equal. Beyond this critical
point, the preprocessing time dominates the total time. If there are several linear
systems to solve with the same matrixA, then it is advantageous to use a more accu-
rate factorization, since the cost of the factorization will be amortized. Otherwise, a
smaller value oflfil will result in a more efficient, albeit also less reliable, run.

10.4.4 The ILUTP Approach

The ILUT approach may fail for many of the matrices that arisefrom real applica-
tions, for one of the following reasons.

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow condition, because
of an exponential growth of the entries of the factors;
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Matrix Iters Kflops Residual Error

F2DA 7 478 0.13E-02 0.90E-04

F3D 9 2855 0.58E-03 0.35E-03

ORS 4 270 0.92E-01 0.43E-04

F2DB 10 724 0.62E-03 0.26E-03

FID 40 14862 0.11E+00 0.11E-03

Table 10.4: A test run of GMRES(10)-ILUT(5, 10−4) preconditioning.

level of fill-in
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Figure 10.13: Typical CPU time as a function of lfil. Dashed line: ILUT. Dotted line:
GMRES. Solid line: total.

3. The ILUT preconditioner terminates normally but the incomplete factorization
preconditioner which is computed isunstable.

An unstable ILU factorization is one for whichM−1 = U−1L−1 has a very large
norm leading to poor convergence or divergence of the outer iteration. The case (1)
can be overcome to a certain degree by assigning an arbitrarynonzero value to a zero
diagonal element that is

encountered. Clearly, this is not a satisfactory remedy because of the loss in
accuracy in the preconditioner. The ideal solution in this case is to use pivoting.
However, a form of pivoting is desired which leads to an algorithm with similar cost
and complexity to ILUT. Because of the data structure used inILUT, row pivoting is
not practical. Instead, column pivoting can be implementedrather easily.

Here are a few of the features that characterize the new algorithm which is termed
ILUTP (“P” stands for pivoting). ILUTP uses a permutation array perm to hold the
new orderings of the variables, along with the reverse permutation array. At stepi
of the elimination process the largest entry in a row is selected and is defined to be
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the newi-th variable. The two permutation arrays are then updated accordingly. The
matrix elements ofL andU are kept in their original numbering. However, when
expanding theL-U row which corresponds to thei-th outer step of Gaussian elim-
ination, the elements are loaded with respect to the new labeling, using the array
perm for the translation. At the end of the process, there are two options. The first
is to leave all elements labeled with respect to the originallabeling. No additional
work is required since the variables are already in this formin the algorithm, but the
variables must then be permuted at each preconditioning step. The second solution
is to apply the permutation to all elements ofA as well asL/U . This does not re-
quire applying a permutation at each step, but rather produces a permuted solution
which must be permuted back at the end of the iteration phase.The complexity of
the ILUTP procedure is virtually identical to that of ILUT. Afew additional options
can be provided. A tolerance parameter calledpermtol may be included to help
determine whether or not to permute variables: A nondiagonal elementaij is candi-
date for a permutation only whentol × |aij | > |aii|. Furthermore, pivoting may be
restricted to take place only within diagonal blocks of a fixed size. The sizembloc
of these blocks must be provided. A value ofmbloc ≥ n indicates that there are no
restrictions on the pivoting.

For difficult matrices, the following strategy seems to workwell:

1. Apply a scaling to all the rows (or columns) e.g., so that their 1-norms are all
equal to 1; then apply a scaling of the columns (or rows).

2. Use a small drop tolerance (e.g.,ǫ = 10−4 or ǫ = 10−5) and take a large fill-in
parameter (e.g.,lf il = 20).

3. Do not take a small value forpermtol. Reasonable values are between0.5 and
0.01, with 0.5 being the best in many cases.

Matrix Iters Kflops Residual Error

F2DA 18 964 0.47E-03 0.41E-04

F3D 14 3414 0.11E-02 0.39E-03

ORS 6 341 0.13E+00 0.61E-04

F2DB 130 7167 0.45E-02 0.51E-03

FID 50 16224 0.17E+00 0.18E-03

Table 10.5: A test run of GMRES with ILUTP preconditioning.

Example 10.5. Table 10.5 shows the results of applying the GMRES algorithm
with ILUTP(1, 10−4) preconditioning to the five test problems described in Sec-
tion 3.7. Thepermtol parameter is set to 1.0 in this case. See Example 6.1 for
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the meaning of the column headers in the table. The results are identical with those
of ILUT(1, 10−4) shown in Table 10.3, for the first four problems, but there isan
improvement for the fifth problem.

10.4.5 The ILUS Approach

The ILU preconditioners discussed so far are based mainly onthe the IKJvariant
of Gaussian elimination. Different types of ILUs can be derived using other forms
of Gaussian elimination. The main motivation for the version to be described next
is that ILUT does not take advantage of symmetry. IfA is symmetric, then the
resultingM = LU is nonsymmetric in general. Another motivation is that in many
applications including computational fluid dynamics and structural engineering, the
resulting matrices are stored in asparse skyline(SSK) format rather than the standard
Compressed Sparse Row format.

sparse row→

← sparse column

Figure 10.14: Illustration of the sparse skyline format.

In this format, the matrixA is decomposed as

A = D + L1 + LT
2

in whichD is a diagonal ofA andL1, L2 are strictly lower triangular matrices. Then
a sparse representation ofL1 andL2 is used in which, typically,L1 andL2 are stored
in the CSR format andD is stored separately.

Incomplete Factorization techniques may be developed for matrices in this for-
mat without having to convert them into the CSR format. Two notable advantages of
this approach are (1) the savings in storage for structurally symmetric matrices, and
(2) the fact that the algorithm gives a symmetric preconditioner when the original
matrix is symmetric.
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Consider the sequence of matrices

Ak+1 =

(
Ak vk

wk αk+1

)

,

whereAn = A. If Ak is nonsingular and its LDU factorization

Ak = LkDkUk

is already available, then the LDU factorization ofAk+1 is

Ak+1 =

(
Lk 0
yk 1

)(
Dk 0
0 dk+1

)(
Uk zk
0 1

)

in which

zk = D−1
k L−1

k vk (10.37)

yk = wkU
−1
k D−1

k (10.38)

dk+1 = αk+1 − ykDkzk. (10.39)

Hence, the last row/column pairs of the factorization can beobtained by solving
two unit lower triangular systems and computing a scaled dotproduct. This can be
exploited for sparse matrices provided an appropriate datastructure is used to take
advantage of the sparsity of the matricesLk, Uk as well as the vectorsvk, wk, yk,
andzk. A convenient data structure for this is to store the rows/columns pairswk, v

T
k

as a single row in sparse mode. All these pairs are stored in sequence. The diagonal
elements are stored separately. This is called the Unsymmetric Sparse Skyline (USS)
format. Each step of the ILU factorization based on this approach will consist of two
approximate sparse linear system solutions and a sparse dotproduct. The question
that arises is: How can a sparse triangular system be solved inexpensively? It would
seem natural to solve the triangular systems (10.37) and (10.38) exactly and then
drop small terms at the end, using a numerical dropping strategy. However, the total
cost of computing the ILU factorization with this strategy would beO(n2) operations
at least, which is not acceptable for very large problems. Since only an approximate
solution is required, the first idea that comes to mind is the truncated Neumann series,

zk = D−1
k L−1

k vk = D−1
k (I + Ek + E2

k + . . .+ Ep
k)vk (10.40)

in whichEk ≡ I − Lk. In fact, by analogy with ILU(p), it is interesting to note that
the powers ofEk will also tend to become smaller asp increases. A close look at the
structure ofEp

kvk shows that there is indeed a strong relation between this approach
and ILU(p) in the symmetric case. Now we make another important observation,
namely, that the vectorEj

kvk can be computed insparse-sparse mode, i.e., in terms
of operations involving products ofsparse matrices by sparse vectors. Without ex-
ploiting this, the total cost would still beO(n2). When multiplying a sparse matrix
A by a sparse vectorv, the operation can best be done by accumulating the linear
combinations of the columns ofA. A sketch of the resulting ILUS algorithm is as
follows.
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ALGORITHM 10.7 ILUS(ǫ, p)

1. SetA1 = D1 = a11, L1 = U1 = 1
2. Fori = 1, . . . , n− 1 Do:
3. Computezk by (10.40) in sparse-sparse mode
4. Computeyk in a similar way
5. Apply numerical dropping toyk andzk
6. Computedk+1 via (10.39)
7. EndDo

If there are onlyi nonzero components in the vectorv and an average ofν nonzero
elements per column, then the total cost per step will be2 × i × ν on the average.
Note that the computation ofdk via (10.39) involves the inner product of two sparse
vectors which is often implemented by expanding one of the vectors into a full vector
and computing the inner product of a sparse vector by this full vector. As mentioned
before, in the symmetric case ILUS yields the Incomplete Cholesky factorization.
Here, the work can be halved since the generation ofyk is not necessary.

Also note that a simple iterative procedure such as MR or GMRES(m) can be
used to solve the triangular systems in sparse-sparse mode.Similar techniques will
be seen in Section 10.5. Experience shows that these alternatives are not much better
than the Neumann series approach [79].

10.4.6 The Crout ILU Approach

A notable disadvantage of the standard delayed-updateIKJ factorization is that
it requires access to the entries in thek-th row of L in sorted order of columns.
This is further complicated by the fact that the working row (denoted byw in Algo-
rithm 10.6), is dynamically modified by fill-in as the elimination proceeds. Searching
for the leftmost entry in thek-th row ofL is usually not a problem when the fill-in
allowed is small. Otherwise, when an accurate factorization is sought, it can become
a significant burden and may ultimately even dominate the cost of the factorization.
Sparse direct solution methods that are based on the IKJ formof Gaussian elimina-
tion obviate this difficulty by a technique known as the Gilbert-Peierls method [146].
Because of dropping, this technique cannot, however, be used as is. Another possible
option is to reduce the cost of the searches through the use ofclever data structures
and algorithms, such as binary search trees or heaps [90].

The Crout formulation provides the most elegant solution tothe problem. In fact
the Crout version of Gaussian elimination has other advantages which make it one of
the most appealing ways of implementing incomplete LU factorizations.

The Crout form of Gaussian elimination consists of computing, at stepk, the
entriesak+1:n,k (in the unit lower triangular factor,L) andak,k:n (in the upper trian-
gular factor,U ). This is done by post-poning the rank-one update in a way similar
to the IKJ variant. In Figure 10.15 the parts of the factors being computed at the
k-th step are shown in black and those being accessed are in theshaded areas. At the
k-th step, all the updates of the previous steps are applied tothe entriesak+1:n,k and
ak,k:n and it is therefore convenient to storeL by columns andU by rows.
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Figure 10.15: Computational pattern of the Crout algorithm.

ALGORITHM 10.8 Crout LU Factorization

1. Fork = 1 : n Do :
2. Fori = 1 : k − 1 and ifaki 6= 0 Do :
3. ak,k:n = ak,k:n − aki ∗ ai,k:n

4. EndDo
5. Fori = 1 : k − 1 and ifaik 6= 0 Do :
6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo
8. aik = aik/akk for i = k + 1, ..., n
9. EndDo

Thek-th step of the algorithm generates thek-th row ofU and thek-th column of
L. This step is schematically represented in Figure 10.16. The above Algorithm will
now be adapted to the sparse case. Sparsity is taken into account and a dropping
strategy is included, resulting in the following Crout version of ILU (termed ILUC).

ALGORITHM 10.9 ILUC - Crout version of ILU

1. Fork = 1 : n Do :
2. Initialize rowz: z1:k−1 = 0, zk:n = ak,k:n

3. For{i | 1 ≤ i ≤ k − 1 and lki 6= 0} Do :
4. zk:n = zk:n − lki ∗ ui,k:n

5. EndDo
6. Initialize columnw: w1:k = 0, wk+1:n = ak+1:n,k

7. For{i | 1 ≤ i ≤ k − 1 and uik 6= 0} Do :
8. wk+1:n = wk+1:n − uik ∗ lk+1:n,i

9. EndDo
10. Apply a dropping rule to rowz
11. Apply a dropping rule to columnw
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12. uk,: = z
13. l:,k = w/ukk, lkk = 1
14. Enddo

Two potential sources of difficulty will require a careful and somewhat complex
implementation. First, looking at Lines 4 and 8, only the section (k : n) of the i-th
row ofU is required, and similarly, only the section(k+ 1 : n) of thei-th column of
L is needed. Second, Line 3 requires access to thek-th row ofL which is stored by
columns while Line 7 requires access to thek-th column ofU which is accessed by
rows.

The first issue can be easily handled by keeping pointers thatindicate where the
relevant part of each row ofU (resp. column ofL) starts. An arrayUfirst is used
to store for each rowi of U the index of the first column that will used next. Ifk is
the current step number, this means thatUfirst(i) holds the first column index> k
of all nonzero entries in the thei-th row ofU . These pointers are easily updated after
each elimination step, assuming that column indices (resp.column indices forL) are
in increasing order.

Figure 10.16: Computing thek-th row ofU (left side) and thek-column ofL (right
side).

For the second issue, consider the situation with theU factor. The problem is
that thek-th column ofU is required for the update ofL, butU is stored row-wise.
An elegant solution to this problem is known since the pioneering days of sparse di-
rect methods [115, 144]. Before discussing this idea, consider the simpler solution
of including a linked list for each column ofU . These linked lists would be easy
to update because the rows ofU are computed one at a time. Each time a new row
is computed, the nonzero entries of this row are queued to thelinked lists of their
corresponding columns. However, this scheme would entail nonnegligible additional
storage. A clever alternative is to exploit the arrayUfirst mentioned above to form
incomplete linked lists of each column. Every timek is incremented theUfirst
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array is updated. WhenUfirst(i) is updated to point to a new nonzero with column
indexj, then the row indexi is added to the linked list for columni. What is interest-
ing is that though the columns structures constructed in this manner are incomplete,
they become complete as soon as they are needed.A similar technique is used for
the rows of theL factor.

In addition to avoiding searches, the Crout version of ILU has another important
advantage. It enables some new dropping strategies which may be viewed as more
rigorous than the standard ones seen so far. The straightforward dropping rules used
in ILUT can be easily adapted for ILUC. In addition, the data structure of ILUC
allows options which are based on estimating the norms of theinverses ofL andU .

For ILU preconditioners, the error made in the inverses of the factors is more
important to control than the errors in the factors themselves. This is because when
A = LU , and

L̃−1 = L−1 +X Ũ−1 = U−1 + Y,

then the preconditioned matrix is given by

L̃−1AŨ−1 = (L−1 +X)A(U−1 + Y ) = I +AY +XA+XY.

If the errorsX andY in the inverses ofL andU are small, then the preconditioned
matrix will be close to the identity matrix. On the other hand, small errors in the
factors themselves may yield arbitrarily large errors in the preconditioned matrix.

Let Lk denote the matrix composed of the firstk rows ofL and the lastn − k
rows of the identity matrix. Consider a termljk with j > k that is dropped at step
k. Then, the resulting perturbed matrix̃Lk differs fromLk by ljkejeTk . Noticing that
Lkej = ej then,

L̃k = Lk − ljkejeTk = Lk(I − ljkejeTk )

from which this relation between the inverses follows:

L̃−1
k = (I − ljkejeTk )−1L−1

k = L−1
k + ljkeje

T
kL

−1
k .

Therefore, the inverse ofLk will be perturbed byljk times thek-th row ofL−1
k . This

perturbation will affect thej-th row ofL−1
k . Hence, using the infinity norm for exam-

ple, it is important to limit the norm of this perturbing row which is‖ljkejeTkL−1
k ‖∞.

It follows that it is a good strategy to drop a term inL when

|ljk| ‖eTk L−1
k ‖∞ < ǫ.

A similar criterion can be used for the upper triangular factorU .
This strategy is not complete because the matrixL−1 is not available. However,

standard techniques used for estimating condition numbers[149] can be adapted for
estimating the norm of thek-th row ofL−1 (resp. k-th column ofU−1). The idea
is to construct a vectorb one component at a time, by following a greedy strategy
to makeL−1b large at each step. This is possible because the firstk − 1 columns
of L are available at thek-th step. The simplest method constructs a vectorb of
componentsβk = ±1 at each stepk, in such a way as to maximize the norm of the
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k-th component ofL−1b. Since the firstk − 1 columns ofL are available at stepk,
thek-th component of the solutionx is given by

ξk = βk − eTkLk−1xk−1 .

This makes the choice clear: ifξk is to be large in modulus, then the sign ofβk should
be opposite that ofeTkLk−1xk−1. If b is the current right-hand side at stepk, then
‖eTk L−1‖∞ can be estimated by thek-th component of the solutionx of the system
Lx = b:

‖eTk L−1‖∞ ≈
|eTkL−1b|
‖b‖∞

.

Details, along with other strategies for dynamically building b, may be found in
[202].

10.5 Approximate Inverse Preconditioners

The Incomplete LU factorization techniques were developedoriginally forM -matrices
which arise from the discretization of Partial Differential Equations of elliptic type,
usually in one variable. For the common situation whereA is indefinite, standard ILU
factorizations may face several difficulties, and the best known is the fatal breakdown
due to the encounter of a zero pivot. However, there are otherproblems that are just
as serious. Consider an incomplete factorization of the form

A = LU + E (10.41)

whereE is the error. The preconditioned matrices associated with the different forms
of preconditioning are similar to

L−1AU−1 = I + L−1EU−1. (10.42)

What is sometimes missed is the fact that the error matrixE in (10.41) is not as
important as the “preconditioned” error matrixL−1EU−1 shown in (10.42) above.
When the matrixA is diagonally dominant, thenL andU are well conditioned, and
the size ofL−1EU−1 remains confined within reasonable limits, typically with a
nice clustering of its eigenvalues around the origin. On theother hand, when the
original matrix is not diagonally dominant,L−1 orU−1 may have very large norms,
causing the errorL−1EU−1 to be very large and thus adding large perturbations to
the identity matrix. It can be observed experimentally thatILU preconditioners can
be very poor in these situations which often arise when the matrices are indefinite, or
have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner that does not require solv-
ing a linear system. For example, the original system can be preconditioned by a
matrixM which is a direct approximation to the inverse ofA.
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10.5.1 Approximating the Inverse of a Sparse Matrix

A simple technique for finding approximate inverses of arbitrary sparse matrices is
to attempt to find a sparse matrixM which minimizes the Frobenius norm of the
residual matrixI −AM ,

F (M) = ‖I −AM‖2F . (10.43)

A matrixM whose valueF (M) is small would be a right-approximate inverse ofA.
Similarly, a left-approximate inverse can be defined by using the objective function

‖I −MA‖2F . (10.44)

Finally, a left-right pairL,U can be sought to minimize

‖I − LAU‖2F . (10.45)

In the following, only (10.43) and(10.45) are considered. The case (10.44) is
very similar to the right preconditioner case (10.43). The objective function (10.43)
decouples into the sum of the squares of the 2-norms of the individual columns of
the residual matrixI −AM ,

F (M) = ‖I −AM‖2F =

n∑

j=1

‖ej −Amj‖22 (10.46)

in which ej andmj are thej-th columns of the identity matrix and of the matrixM ,
respectively. There are two different ways to proceed in order to minimize (10.46).
The function (10.43) can be minimized globally as a functionof the sparse matrix
M , e.g., by a gradient-type method. Alternatively, the individual functions

fj(m) = ‖ej −Am‖22, j = 1, 2, . . . , n (10.47)

can be minimized. The second approach is appealing for parallel computers, al-
though there is also parallelism to be exploited in the first approach. These two
approaches will be discussed in turn.

10.5.2 Global Iteration

The global iterationapproach consists of treatingM as an unknown sparse matrix
and using a descent-type method to minimize the objective function (10.43). This
function is a quadratic function on the space ofn× n matrices, viewed as objects in
R

n2
. The proper inner product on the space of matrices, to which the squared norm

(10.46) is associated, is
〈X,Y 〉 = tr(Y TX). (10.48)

In the following, anarray representationof ann2 vectorX means then× n matrix
whose column vectors are the successiven-vectors ofX.

In a descent algorithm, a new iterateMnew is defined by taking a step along a
selected directionG, i.e.,

Mnew = M + αG
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in which α is selected to minimize the objective functionF (Mnew). From results
seen in Chapter 5, minimizing the residual norm is equivalent to imposing the con-
dition thatR − αAG be orthogonal toAG with respect to the〈·, ·〉 inner product.
Thus, the optimalα is given by

α =
〈R,AG〉
〈AG,AG〉 =

tr(RTAG)

tr ((AG)TAG)
. (10.49)

The denominator may be computed as‖AG‖2F . The resulting matrixM will tend to
become denser after each descent step and it is therefore essential to apply a numer-
ical dropping strategy to the resultingM . However, the descent property of the step
is now lost, i.e., it is no longer guaranteed thatF (Mnew) ≤ F (M). An alternative
would be to apply numerical dropping to the direction of searchG before taking the
descent step. In this case, the amount of fill-in in the matrixM cannot be controlled.

The simplest choice for the descent directionG is to take it to be equal to the
residual matrixR = I − AM , whereM is the new iterate. Except for the nu-
merical dropping step, the corresponding descent algorithm is nothing but the Min-
imal Residual (MR) algorithm, seen in Section 5.3.2, on then2 × n2 linear system
AM = I. The global Minimal Residual algorithm will have the following form.

ALGORITHM 10.10 Global Minimal Residual Descent Algorithm

1. Select an initialM
2. Until convergence Do:
3. ComputeC := AM andG := I − C
4. Computeα = tr(GTAG)/‖AG‖2F
5. ComputeM := M + αG
6. Apply numerical dropping toM
7. EndDo

A second choice is to takeG to be equal to the direction of steepest descent, i.e.,
the direction opposite to the gradient of the function (10.43) with respect toM . If
all vectors as represented as 2-dimensionaln × n arrays, then the gradient can be
viewed as a matrixG, which satisfies the following relation for small perturbations
E,

F (M + E) = F (M) + 〈G,E〉 + o(‖E‖). (10.50)

This provides a way of expressing the gradient as an operatoron arrays, rather than
n2 vectors.

Proposition 10.9 The array representation of the gradient ofF with respect toM is
the matrix

G = −2ATR

in whichR is the residual matrixR = I −AM .
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Proof. For any matrixE we have

F (M + E)− F (M) = tr
[
(I −A(M + E))T (I −A(M + E))

]

−tr
[
(I −AM)T (I −AM)

]

= tr
[
(R−AE)T (R−AE)−RTR

]

= −tr
[
(AE)TR+RTAE − (AE)T (AE)

]

= −2tr(RTAE) + tr
[
(AE)T (AE)

]

= −2
〈
ATR,E

〉
+ 〈AE,AE〉 .

Comparing this with (10.50) yields the desired result.

Thus, the steepest descent algorithm will consist of replacing G in line 3 of
Algorithm 10.10 byG = ATR = AT (I − AM). As is expected with steepest
descent techniques, the algorithm can be slow.

ALGORITHM 10.11 Global Steepest Descent Algorithm

1. Select an initialM
2. Until convergence Do:
3. ComputeR = I −AM , andG := ATR ;
4. Computeα = ‖G‖2F /‖AG‖2F
5. ComputeM := M + αG
6. Apply numerical dropping toM
7. EndDo

In either steepest descent or minimal residual, theG matrix must be stored ex-
plicitly. The scalars‖AG‖2F andtr(GTAG) needed to obtainα in these algorithms
can be computed from the successive columns ofAG, which can be generated, used,
and discarded. As a result, the matrixAG need not be stored.

10.5.3 Column-Oriented Algorithms

Column-oriented algorithms consist of minimizing the individual objective functions
(10.47) separately. Each minimization can be performed by taking a sparse initial
guess and solving approximately then parallel linear subproblems

Amj = ej , j = 1, 2, . . . , n (10.51)

with a few steps of a nonsymmetric descent-type method, suchas MR or GMRES. If
these linear systems were solved (approximately) without taking advantage of spar-
sity, the cost of constructing the preconditioner would be of ordern2. That is because
each of then columns would requireO(n) operations. Such a cost would become
unacceptable for large linear systems. To avoid this, the iterations must be performed
in sparse-sparse mode, a term which was already introduced in Section 10.4.5. The
columnmj and the subsequent iterates in the MR algorithm must be stored and op-
erated on as sparse vectors. The Arnoldi basis in the GMRES algorithm are now to
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be kept in sparse format. Inner products and vector updates involve pairs of sparse
vectors.

In the following MR algorithm,ni iterations are used to solve (10.51) approxi-
mately for each column, giving an approximation to thej-th column of the inverse
of A. Each initialmj is taken from the columns of an initial guess,M0.

ALGORITHM 10.12 Approximate Inverse via MR Iteration

1. Start: setM = M0

2. For each columnj = 1, . . . , n Do:
3. Definemj = Mej
4. Fori = 1, . . . , nj Do:
5. rj := ej −Amj

6. αj :=
(rj ,Arj)

(Arj ,Arj)

7. mj := mj + αjrj
8. Apply numerical dropping tomj

9. EndDo
10. EndDo

The algorithm computes the current residualrj and then minimizes the residual
norm‖ej −A(mj + αrj)‖2, with respect toα. The resulting column is then pruned
by applying the numerical dropping step in line 8.

In the sparse implementation of MR and GMRES, the matrix-vector product,
SAXPY, and dot product kernels now all involve sparse vectors. The matrix-vector
product is much more efficient if the sparse matrix is stored by columns, since all
the entries do not need to be traversed. Efficient codes for all these kernels may be
constructed which utilize a fulln-length work vector.

Columns from an initial guessM0 for the approximate inverse are used as the
initial guesses for the iterative solution of the linear subproblems. There are two ob-
vious choices:M0 = αI andM0 = αAT . The scale factorα is chosen to minimize
the norm ofI − AM0. Thus, the initial guess is of the formM0 = αG whereG is
either the identity orAT . The optimalα can be computed using the formula (10.49),
in whichR is to be replaced by the identity, soα = tr(AG)/tr(AG(AG)T ). The
identity initial guess is less expensive to use butM0 = αAT is sometimes a much
better initial guess. For this choice, the initial preconditioned systemAM0 is SPD.

The linear systems needed to solve when generating each column of the approx-
imate inverse may themselves be preconditioned with the most recent version of the
preconditioning matrixM . Thus, each system (10.51) for approximating columnj
may be preconditioned withM ′

0 where the firstj − 1 columns ofM ′
0 are themk that

already have been computed,1 ≤ k < j, and the remaining columns are the initial
guesses for themk, j ≤ k ≤ n. Thus,outer iterations can be defined which sweep
over the matrix, as well asinner iterations which compute each column. At each
outer iteration, the initial guess for each column is taken to be the previous result for
that column.
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10.5.4 Theoretical Considerations

The first theoretical question which arises is whether or notthe approximate inverses
obtained by the approximations described earlier can be singular. It cannot be proved
thatM is nonsingular unless the approximation is accurate enough. This requirement
may be in conflict with the requirement of keeping the approximation sparse.

Proposition 10.10 Assume thatA is nonsingular and that the residual of the ap-
proximate inverseM satisfies the relation

‖I −AM‖ < 1 (10.52)

where‖.‖ is any consistent matrix norm. ThenM is nonsingular.

Proof. The result follows immediately from the equality

AM = I − (I −AM) ≡ I −N. (10.53)

Since‖N‖ < 1, Theorem 1.11 seen in Chapter 1 implies thatI −N is nonsingular.

The result is true in particular for the Frobenius norm whichis consistent (see Chapter
1).

It may sometimes be the case thatAM is poorly balanced and as a resultR
can be large. Then balancingAM can yield a smaller norm and possibly a less
restrictive condition for the nonsingularity ofM . It is easy to extend the previous
result as follows. IfA is nonsingular and two nonsingular diagonal matricesD1,D2

exist such that
‖I −D1AMD2‖ < 1 (10.54)

where‖.‖ is any consistent matrix norm, thenM is nonsingular.
Each column is obtained independently by requiring a condition on the residual

norm of the form
‖ej −Amj‖ ≤ τ, (10.55)

for some vector norm‖.‖. From a practical point of view the 2-norm is preferable
since it is related to the objective function which is used, namely, the Frobenius norm
of the residualI−AM . However, the 1-norm is of particular interest since it leads to
a number of simple theoretical results. In the following, itis assumed that a condition
of the form

‖ej −Amj‖1 ≤ τj (10.56)

is required for each column.
The above proposition does not reveal anything about the degree of sparsity of

the resulting approximate inverseM . It may well be the case that in order to guaran-
tee nonsingularity,M must be dense, or nearly dense. In fact, in the particular case
where the norm in the proposition is the 1-norm, it is known that the approximate
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inverse may bestructurally dense, in that it is always possible to find a sparse matrix
A for whichM will be dense if‖I −AM‖1 < 1.

Next, we examine the sparsity ofM and prove a simple result for the case where
an assumption of the form (10.56) is made.

Proposition 10.11 Assume thatM is an approximate inverse ofA computed by en-
forcing the condition (10.56). LetB = A−1 and assume that a given elementbij of
B satisfies the inequality

|bij | > τj max
k=1,n

|bik|, (10.57)

then the elementmij is nonzero.

Proof. From the equalityAM = I −R we haveM = A−1 −A−1R, and hence

mij = bij −
n∑

k=1

bikrkj.

Therefore,

|mij | ≥ |bij | −
n∑

k=1

|bikrkj|

≥ |bij | − max
k=1,n

|bik| ‖rj‖1
≥ |bij | − max

k=1,n
|bik|τj .

Now the condition (10.57) implies that|mij| > 0.

The proposition implies that ifR is small enough, then the nonzero elements ofM
are located in positions corresponding to the larger elements in the inverse ofA. The
following negative result is an immediate corollary.

Corollary 10.12 Assume thatM is an approximate inverse ofA computed by en-
forcing the condition (10.56) and letτ = maxj=1,...,n τj. If the nonzero elements of
B = A−1 are τ -equimodular in that

|bij | > τ max
k=1,n, l=1,n

|blk|,

then the nonzero sparsity pattern ofM includes the nonzero sparsity pattern ofA−1.
In particular, if A−1 is dense and its elements areτ -equimodular, thenM is also
dense.

The smaller the value ofτ , the more likely the condition of the corollary will be sat-
isfied. Another way of stating the corollary is thataccurateandsparseapproximate
inverses may be computed only if the elements of the actual inverse have variations
in size. Unfortunately, this is difficult to verify in advance and it is known to be true
only for certain types of matrices.
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10.5.5 Convergence of Self Preconditioned MR

We now examine the convergence of the MR algorithm in the casewhere self precon-
ditioning is used, but no numerical dropping is applied. Thecolumn-oriented algo-
rithm is considered first. LetM be the current approximate inverse at a given sub-
step. The self preconditioned MR iteration for computing thej-th column of the next
approximate inverse is obtained by the following sequence of operations:

1. rj := ej −Amj = ej −AMej
2. tj := Mrj

3. αj :=
(rj ,Atj)

(Atj ,Atj)

4. mj := mj + αjtj .

Note thatαj can be written as

αj =
(rj, AMrj)

(AMrj , AMrj)
≡ (rj , Crj)

(Crj , Crj)

where
C = AM

is the preconditioned matrix at the given substep. The subscript j is now dropped to
simplify the notation. The new residual associated with thecurrent column is given
by

rnew = r − αAt = r − αAMr ≡ r − αCr.
The orthogonality of the new residual againstAMr can be used to obtain

‖rnew‖22 = ‖r‖22 − α2‖Cr‖22.
Replacingα by its value defined above we get

‖rnew‖22 = ‖r‖22

[

1−
(

(Cr, r)

‖Cr‖2‖r‖2

)2
]

.

Thus, at each inner iteration, the residual norm for thej-th column is reduced ac-
cording to the formula

‖rnew‖2 = ‖r‖2 sin ∠(r, Cr) (10.58)

in which ∠(u, v) denotes the acute angle between the vectorsu andv. Assume that
each column converges. Then, the preconditioned matrixC converges to the identity.
As a result of this, the angle∠(r, Cr) will tend to∠(r, r) = 0, and therefore the con-
vergence ratiosin ∠(r, Cr) will also tend to zero, showing superlinear convergence.

Now consider equation (10.58) more carefully. Denote byR the residual matrix
R = I −AM and observe that

sin ∠(r, Cr) = min
α

‖r − α Cr‖2
‖r‖2

≤ ‖r − Cr‖2
‖r‖2

≡ ‖Rr‖2‖r‖2
≤ ‖R‖2.
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This results in the following statement.

Proposition 10.13 Assume that the self preconditioned MR algorithm is employed
with one inner step per iteration and no numerical dropping.Then the 2-norm of each
residualej −Amj of thej-th column is reduced by a factor of at least‖I −AM‖2,
whereM is the approximate inverse before the current step, i.e.,

‖rnew
j ‖2 ≤ ‖I −AM‖2 ‖rj‖2. (10.59)

In addition, the residual matricesRk = I−AMk obtained after each outer iteration
satisfy

‖Rk+1‖F ≤ ‖Rk‖2F . (10.60)

As a result, when the algorithm converges, it does so quadratically.

Proof. Inequality (10.59) was proved above. To prove quadratic convergence, first
use the inequality‖X‖2 ≤ ‖X‖F and (10.59) to obtain

‖rnew
j ‖2 ≤ ‖Rk,j‖F ‖rj‖2.

Here, thek index corresponds to the outer iteration and thej-index to the column.
Note that the Frobenius norm is reduced for each of the inner steps corresponding to
the columns, and therefore,

‖Rk,j‖F ≤ ‖Rk‖F .

This yields
‖rnew

j ‖22 ≤ ‖Rk‖2F ‖rj‖22
which, upon summation overj, gives

‖Rk+1‖F ≤ ‖Rk‖2F .

This completes the proof.

Note that the above theorem does not prove convergence. It only states that when
the algorithm converges, it does so quadratically at the limit. In addition, the result
ceases to be valid in the presence of dropping.

Consider now the case of the global iteration. When self preconditioning is in-
corporated into the global MR algorithm (Algorithm 10.10),the search direction
becomesZk = MkRk, whereRk is the current residual matrix. Then, the main steps
of the algorithm (without dropping) are as follows.

1. Rk := I −AMk

2. Zk := MkRk

3. αk := 〈Rk,AZk〉
〈AZk,AZk〉

4. Mk+1 := Mk + αkZk
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At each step the new residual matrixRk+1 satisfies the relation

Rk+1 = I −AMk+1 = I −A(Mk + αkZk) = Rk − αkAZk.

An important observation is thatRk is a polynomial inR0. This is because, from the
above relation,

Rk+1 = Rk−αkAMkRk = Rk−αk(I−Rk)Rk = (1−αk)Rk +αkR
2
k. (10.61)

Therefore, induction shows thatRk+1 = p2k(R0) wherepj is a polynomial of degree
j. Now define the preconditioned matrices,

Bk ≡ AMk = I −Rk. (10.62)

Then, the following recurrence follows from (10.61),

Bk+1 = Bk + αkBk(I −Bk) (10.63)

and shows thatBk+1 is also a polynomial of degree2k in B0. In particular,if the
initial B0 is symmetric, then so are all subsequentBk ’s. This is achieved when the
initial M is a multiple ofAT , namely ifM0 = α0A

T .
Similar to the column oriented case, when the algorithm converges it does so

quadratically.

Proposition 10.14 Assume that the self preconditioned global MR algorithm is used
without dropping. Then, the residual matrices obtained at each iteration satisfy

‖Rk+1‖F ≤ ‖R2
k‖F . (10.64)

As a result, when the algorithm converges, then it does so quadratically.

Proof. Define for anyα,

R(α) = (1− α)Rk + αR2
k

Recall thatαk achieves the minimum of‖R(α)‖F over allα’s. In particular,

‖Rk+1‖F = min
α
‖R(α)‖F

≤ ‖R(1)‖F = ‖R2
k‖F (10.65)

≤ ‖Rk‖2F .

This proves quadratic convergence at the limit.

For further properties see Exercise 4.
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10.5.6 Approximate Inverses via bordering

A notable disadvantage of the right or left preconditioningapproach method is that it
is difficult to assess in advance whether or not the resultingapproximate inverseM is
nonsingular. An alternative would be to seek a two-sided approximation, i.e., a pair
L, U , with L lower triangular andU upper triangular, which attempts to minimize
the objective function (10.45). The techniques developed in the previous sections
can be exploited for this purpose.

In the factored approach, two matricesL andU which areunit lower and upper
triangular matrices are sought such that

LAU ≈ D

whereD is some unknown diagonal matrix. WhenD is nonsingular andLAU = D,
thenL,U are calledinverse LU factorsof A since in this caseA−1 = UD−1L.
Once more, the matrices are built one column or row at a time. Assume as in Section
10.4.5 that we have the sequence of matrices

Ak+1 =

(
Ak vk

wk αk+1

)

in whichAn ≡ A. If the inverse factorsLk, Uk are available forAk, i.e.,

LkAkUk = Dk,

then the inverse factorsLk+1, Uk+1 for Ak+1 are easily obtained by writing
(
Lk 0
−yk 1

)(
Ak vk

wk αk+1

)(
Uk −zk
0 1

)

=

(
Dk 0
0 δk+1

)

(10.66)

in which zk, yk, andδk+1 are such that

Akzk = vk (10.67)

ykAk = wk (10.68)

δk+1 = αk+1 − wkzk = αk+1 − ykvk. (10.69)

Note that the formula (10.69) exploits the fact that either the system (10.67) is solved
exactly (middle expression) or the system (10.68) is solvedexactly (second expres-
sion) or both systems are solved exactly (either expression). In the realistic situation
where neither of these two systems is solved exactly, then this formula should be
replaced by

δk+1 = αk+1 − wkzk − ykvk + ykAkzk. (10.70)

The last row/column pairs of the approximate factored inverse can be obtained by
solving two sparse systems and computing a few dot products.It is interesting to
note that the only difference with the ILUS factorization seen in Section 10.4.5 is
that the coefficient matrices for these systems are not the triangular factors ofAk,
but the matrixAk itself.
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To obtain an approximate factorization, simply exploit thefact that theAk ma-
trices are sparse and then employ iterative solvers in sparse-sparse mode. In this
situation, formula (10.70) should be used forδk+1. The algorithm would be as fol-
lows.

ALGORITHM 10.13 Approximate Inverse Factors Algorithm

1. Fork = 1, . . . , n Do:
2. Solve (10.67) approximately;
3. Solve (10.68) approximately;
4. Computeδk+1 = αk+1 − wkzk − ykvk + ykAkzk
5. EndDo

A linear system must be solved withAk in line 2 and a linear system withAT
k in

line 3. This is a good scenario for the Biconjugate Gradient algorithm or its equiva-
lent two-sided Lanczos algorithm. In addition, the most current approximate inverse
factors can be used to precondition the linear systems to be solved in steps 2 and 3.
This was termed “self preconditioning” earlier. All the linear systems in the above
algorithm can be solved in parallel since they are independent of one another. The
diagonalD can then be obtained at the end of the process.

This approach is particularly suitable in the symmetric case. Since there is only
one factor, the amount of work is halved. In addition, there is no problem with the
existence in the positive definite case as is shown in the following lemma which states
that δk+1 is always> 0 whenA is SPD, independently of the accuracy with which
the system (10.67) is solved.

Lemma 10.15 LetA be SPD. Then, the scalarδk+1 as computed by (10.70) is posi-
tive.

Proof. In the symmetric case,wk = vT
k . Note thatδk+1 as computed by formula

(10.70) is the(k + 1, k + 1) element of the matrixLk+1Ak+1L
T
k+1. It is positive

becauseAk+1 is SPD. This is independent of the accuracy for solving the system to
obtainzk.

In the general nonsymmetric case, there is no guarantee thatδk+1 will be nonzero,
unless the systems (10.67) and (10.68) are solved accurately enough. There is no
practical problem here, sinceδk+1 is computable. The only question remaining is
a theoretical one: Canδk+1 be guaranteed to be nonzero if the systems are solved
with enough accuracy? Intuitively, if the system is solved exactly, then theD matrix
must be nonzero since it is equal to theD matrix of the exact inverse factors in this
case. The minimal assumption to make is that eachAk is nonsingular. Letδ∗k+1 be
the value that would be obtained if at least one of the systems(10.67) or (10.68) is
solved exactly. According to equation (10.69), in this situation this value is given by

δ∗k+1 = αk+1 − wkA
−1
k vk. (10.71)
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If Ak+1 is nonsingular, thenδ∗k+1 6= 0. To see this refer to the defining equation
(10.66) and compute the productLk+1Ak+1Uk+1 in the general case. Letrk andsk

be the residuals obtained for these linear systems, i.e.,

rk = vk −Akzk, sk = wk − ykAk. (10.72)

Then a little calculation yields

Lk+1Ak+1Uk+1 =

(
LkAkUk Lkrk
skUk δk+1

)

. (10.73)

If one of rk or sk is zero, then it is clear that the termδk+1 in the above relation be-
comesδ∗k+1 and it must be nonzero since the matrix on the left-hand side is nonsingu-
lar. Incidentally, this relation shows the structure of thelast matrixLnAnUn ≡ LAU .
The components1 to j − 1 of columnj consist of the vectorLjrj , the components
1 to j − 1 of row i make up the vectorskUk, and the diagonal elements are theδi’s.
Consider now the expression forδk+1 from (10.70).

δk+1 = αk+1 − wkzk − ykvk + ykAkzk

= αk+1 − wkA
−1
k (vk − rk)− (wk − sk)A

−1
k vk + (vk − rk)A−1

k (wk − sk)

= αk+1 − vkA
−1
k wk + rkA

−1
k sk

= δ∗k+1 + rkA
−1
k sk.

This perturbation formula is of a second order in the sense that |δk+1 − δ∗k+1| =

O(‖rk‖ ‖sk‖). It guarantees thatδk+1 is nonzero whenever|rkA−1
k sk| < |δ∗k+1|.

10.5.7 Factored inverses via orthogonalization: AINV

The approximate inverse technique (AINV) described in [34,36] computes an ap-
proximate factorization of the formW TAZ = D, whereW,Z are unit upper trian-
gular matrices, andD is a diagonal. The matricesW andZ can be directly computed
by performing an approximate bi-orthogonalization of the Gram-Schmidt type. In-
deed, whenA = LDU is the exact LDU factorization ofA, thenW should be equal
to the inverse ofL and we should have the equality

W TA = DU

which means thatW TA is upper triangular. This translates into the result that any
columni of W is orthogonal to the firsti− 1 columns ofA. A procedure to compute
W is therefore to make thei-th column ofW orthogonal to the columns1, . . . , i− 1
of A by subtracting multiples of the firsti−1 columns ofW . Alternatively, columns
i + 1, . . . , n of W can be made orthogonal to the firsti columns ofA. This will
produce columns that are orthogonal to each of the columns ofA. During this pro-
cedure one can drop small entries, or entries outside a certain sparsity pattern. A
similar process can be applied to obtain the columns ofZ. The resulting incom-
plete biorthogonalization process, which is sketched next, produces an approximate
factored inverse.
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ALGORITHM 10.14 Right–looking factored AINV

1. Letp = q = (0, . . . , 0) ∈ R
n, Z = [z1, . . . , zn] = In,W = [w1, . . . , wn] = In.

2. Fork = 1, . . . , n
3. pk = wT

kAek, qk = eTkAzk
4. Fori = k + 1, . . . , n
5. pi =

(
wT

i Aek
)
/pk, qi =

(
eTkAzi

)
/qk

6. Apply a dropping rule topi, qi
7. wi = wi − wkpi, zi = zi − zkqi
8. Apply a dropping rule towj,i andzj,i, for j = 1, . . . , i.
9. EndDo

10. EndDo
11. Choose diagonal entries ofD as the components ofp or q.

The above algorithm constitutes one of two options for computing factored approxi-
mate inverses via approximate orthogonalization. An alternative is based on the fact
thatW TAZ should become approximately diagonal. Instead of orthogonalizingW
(resp. Z) with respect to the columns ofA, a bi-orthogonalization process can be
applied to force the columns ofW andZ to be conjugate with respect toA. For this
we must require thateTkW

TAZej = 0 for all k 6= j, 1 ≤ k, j ≤ i. The result will be
a simple change to Algorithm 10.14. Specifically, the secondoption, which we label
with a (b), replaces lines (3) and (5) into the following lines:

3a. pk = wT
k Azk, qk = wT

kAzk
5b. pi =

(
wT

i Azk
)
/pk, qi =

(
wT

k Azi
)
/qk

If no entries are dropped and if an LDU factorization ofA exists, thenW = LT ,Z =
U−1. A little induction proof would then show that after stepi, columnsi+1, . . . , n
of W are orthogonal to column1, . . . , i of A and likewise columnsi + 1, . . . , n of
Z are orthogonal to rows1, . . . , i of A. Remarkably, the computations ofZ andW
can be performed independently of each other for the original option represented by
Algorithm 10.14.

In the original version of AINV [34, 36], dropping is performed on the vectorswi

andzi only. Dropping entries frompi, qi seems to not yield as good approximations,
see [34].

10.5.8 Improving a Preconditioner

After a computed ILU factorization results in an unsatisfactory convergence, it is
difficult to improve it by modifying theL andU factors. One solution would be to
discard this factorization and attempt to recompute a freshone possibly with more
fill-in. Clearly, this may be a wasteful process. A better alternative is to use approx-
imate inverse techniques. Assume a (sparse) matrixM is a preconditioner to the
original matrixA, so the preconditioned matrix is

C = M−1A.
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A sparse matrixS is sought to approximate the inverse ofM−1A. This matrix is
then to be used as a preconditioner toM−1A. Unfortunately, the matrixC is usually
dense. However, observe that all that is needed is a matrixS such that

AS ≈M.

Recall that the columns ofA andM are sparse. One approach is to compute a
least-squares approximation in the Frobenius norm sense. This approach was used
already in Section 10.5.1 whenM is the identity matrix. Then the columns ofS were
obtained by approximately solving the linear systemsAsi ≈ ei. The same idea can
be applied here. Now, the systems

Asi = mi

must be solved instead, wheremi is thei-th column ofM which is sparse. Thus, the
coefficient matrix and the right-hand side are sparse, as before.

10.6 Reordering for ILU

The primary goal of reordering techniques (see Chapter 3) isto reduce fill-in during
Gaussian elimination. A difficulty with such methods, whether in the context of di-
rect or iterative solvers, is that a good ordering for reducing fill-in may lead to factors
of poor numerical quality. For example, very small diagonalentries may be encoun-
tered during the process. Two types of permutations are often used to enhance ILU
factorizations. First, fill-reducing symmetric permutations of the type seen in Chap-
ter 3 have been advocated. The argument here is that since these permutations are
likely to produce fewer fill-ins, it is likely that the ILU factorizations resulting from
dropping small terms will be more accurate. A second category of reorderings con-
sists of only permuting the rows of the matrix (or its columns). These unsymmetric
permutations address the other issue mentioned above, namely avoiding poor pivots
in Gaussian elimination.

10.6.1 Symmetric permutations

The Reverse Cuthill McKee ordering seen in Section 3.3.3 is among the most com-
mon techniques used to enhance the effectiveness of ILU factorizations. Recall that
this reordering is designed to reduce the envelope of a matrix. Other reorderings
that are geared specifically toward reducing fill-in, such asthe minimum degree or
multiple minimum degree orderings, have also been advocated, though results re-
ported in the literature are mixed. What is clear is that the results will depend on the
accuracy of the ILU being computed. If ILU(0), or some low-fill, incomplete fac-
torization is being used, then it is often reported that it isgenerally not a good idea
to reorder the matrix. Among candidate permutations that can be applied, the RCM
is the most likely to yield an improvement. As the accuracy ofthe preconditioner
increases, i.e. as more fill-ins are allowed, then the beneficial effect of reordering
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becomes compelling. In many test, see for example [35], a preconditioner built on
an RCM or Minimum Degree reordered matrix will work while thesame precondi-
tioner built from the original ordering fails. In addition,success is often achieved
with less memory than is required for the original ordering.This general observation
is illustrated in the following tests.

Example 10.6. The following experiments shows the performance of GMRES(20)
preconditioned with ILUT for the five test problems described in Section 3.7 of Chap-
ter 3. The first experiment usesILUT (5, 0.25). Prior to performing the ILUT fac-
torization the coefficient matrix is reordered by three possible techniques: Reverse
Cuthill Mc Kee ordering (RCM), Minimum degree ordering (QMD), or Nested Dis-
section ordering (ND). The FORTRAN codes for these three techniques are those
available in the book [144]. It is now important to show the amount of memory
used by the factorization, which is measured here by thefill-factor, i.e., the ratio of
the number of nonzero elements required to store the LU factors over the original
number of nonzero elements. This is referred to asFill in the tables. Along with
this measure, Table 10.6 shows the number of iterations required to reduce the initial
residual by a factor of10−7 with GMRES(20). Notice that reordering does not help.
The RCM ordering is the best among the three orderings, with aperformance that is
close to that of the original ordering, but it fails on the FIDAP matrix. In many other
instances we have tested, RCM does often help or its performance is close to that
achieved by the original ordering. The other reorderings, minimal degree and nested
dissection, rarely help when the factorization is inaccurate as is the case here.

None RCM QMD ND

Martix Iters Fill Iters Fill Iters Fill Iters Fill

F2DA 15 1.471 16 1.448 19 1.588 20 1.592

F3D 12 1.583 13 1.391 16 1.522 15 1.527

ORS 20 0.391 20 0.391 20 0.477 20 0.480

F2DB 21 1.430 21 1.402 41 1.546 55 1.541

FID 66 1.138 300 1.131 300 0.978 300 1.032

Table 10.6: Iteration count and fill-factor for GMRES(20) – ILUT(5,0.25) with three
different reordering techniques.

We now turn to a more accurate preconditioner, namely ILUT(10, 0.01). The
results of Table 10.7 show a different picture from the one above. All reorderings
are now basically helpful. A slight exception is the minimumdegree ordering which
fails on the FIDAP matrix. However, notice that this failurecan be explained by the
low fill-factor, which is the smallest achieved by all the reorderings. What is more,
good convergence of GMRES is now achieved at a lesser cost of memory.
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None RCM QMD ND

Martix Iters Fill Iters Fill Iters Fill Iters Fill

F2DA 7 3.382 6 3.085 8 2.456 9 2.555

F3D 8 3.438 7 3.641 11 2.383 10 2.669

ORS 9 0.708 9 0.699 9 0.779 9 0.807

F2DB 10 3.203 8 2.962 12 2.389 12 2.463

FID 197 1.798 38 1.747 300 1.388 36 1.485

Table 10.7: Iteration count and fill-factor for GMRES(20) – ILUT(10,0.01) with
three different reordering techniques.

If one ignores the fill-factor it may appear that RCM is best. QMD seems to be
good at reducing fill-in but results in a poor factorization.When memory cost is taken
into account the more sophisticated nested dissection ordering is the overall winner
in all cases except for the ORSIR matrix. This conclusion, namely that reordering is
most beneficial when relatively accurate factorizations are computed, is borne out by
other experiments in the literature, see, for example [35].

10.6.2 Nonsymmetric reorderings

Nonsymmetric permutations can be applied to enhance the performance of precondi-
tioners for matrices with extremely poor structure. Such techniques do not perform
too well in other situations, such as for example, for linearsystems arising from the
discretization of elliptic PDEs.

The original idea on which nonsymmetric reorderings are based is to find a per-
mutation matrixQπ, so that the matrix

B = QπA (10.74)

has large entries in its diagonal. Hereπ is a permutation array andQπ the corre-
sponding permutation matrix as defined in Section 3.3. In contrast with standard
fill-reducing techniques, this is a one sided permutation which reorders the rows of
the matrix.

The first algorithm considered in this class attempts to find an ordering of the
form (10.74) which guarantees that the diagonal entries ofB are nonzero. In this
case, the permutation matrixQπ can be viewed from a new angle, that of bipartite
transverals.

A transversal or bipartite matching is a a setM of ordered pairs(i, j) such that
aij 6= 0 and the column indicesj and row indicesi appear only once. This corre-
sponds to selecting one nonzero diagonal element per row/column. The usual repre-



10.6. REORDERING FOR ILU 353

★

★

★
★

★ ★

★

★
★

★
★

★
★

★

★
★

5

3

2

3

4

5

6

2

1

4

5

6

2

4

5

6

1

Reordered matrix Bipartite graph Maximum transversal 

ColumnsRowsColumnsRows  

Original matrix

1

3 3

2

6

1

4

Figure 10.17: Example of a maximum transversal. Left side: bipartite representation
of matrix. Right side: maximum transversal. Middle: matrixbefore and after row
reordering.

sentation uses a graph whose vertices are the rows ofA (squares in Figure 10.17) and
columns ofA (circle in Figure 10.17). There is an outgoing edge between arow i
and a columnj whenaij 6= 0. A transversal is simply a subgraph ofG that isbipar-
tite. The transversal ismaximumwhen it has maximum cardinality. For example, in
Figure 10.17 the set

M = {(1, 2), (2, 1), (3, 3), (4, 5), (5, 6), (6, 4)}

is a maximum transversal. The corresponding row permutation isπ = {2, 1, 3, 6, 4, 5}
and the reordered matrix is shown in the bottom middle part ofthe figure.

WhenA is structurally nonsingular, it can be shown that the maximum transver-
sal has cardinality|M| = n. Finding the maximum transversal is a well-known
problem in management sciences and has received much attention by researchers in
graph theory. In particular, graph-traversal algorithms based on depth-first search
and breadth-first searches, have been developed to find maximum transversals.

These maximum transversal algorithms are the simplest among a class of tech-
niques. The criterion of just finding nonzero diagonal elements to put on the diagonal
is not sufficient and can be changed into one of finding a (row) permutationπ so at
to

maximize
n∏

i=1

|ai,π(i)| . (10.75)

A heuristic for achieving a large product of the diagonal entries is the so-calledbottle-
neckstrategy whose goal is to maximize the smallest diagonal entry. The algorithm
removes enough small elements and finds a maximum transversal of the graph. If the
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transversal is not of cardinalityn then the algorithm backtracks by removing fewer
of the small entries and repeating the process.

Another class of algorithms solve the optimization problem(10.75) more accu-
rately. This problem can be translated into

min
π

n∑

i=1

ci,π(i) where cij =

{
log [ ‖a:,j‖∞ / |aij | ] if aij 6= 0
+∞ otherwise

.

It is known that solving this problem is equivalent to solving its dual, which can be
formulated as follows:

max
ui,uj







n∑

i=1

ui +
n∑

j=1

uj






subject to: cij − ui − uj ≥ 0 .

The algorithms used to solve the above dual problem are basedon graph theory
techniques - in fact they can be viewed as traversal algorithms (such as depth first
search) to which a cost measure is added. Details can be foundin [110].

Experiments reported by Duff and Koster [110] and Benzi et al. [32] show that
nonsymmetric reorderings based on the methods discussed inthis section can be
quite beneficial for those problems which are irregularly structured and have many
zero diagonal entries. On the other hand, they do not performas well for PDE matri-
ces for which symmetric orderings are often superior.

10.7 Block Preconditioners

Block preconditioning is a popular technique for block-tridiagonal matrices arising
from the discretization of elliptic problems. It can also begeneralized to other sparse
matrices. We begin with a discussion of the block-tridiagonal case.

10.7.1 Block-Tridiagonal Matrices

Consider a block-tridiagonal matrix blocked in the form

A =









D1 E2

F2 D2 E3
. . . . . . .. .

Fm−1 Dm−1 Em

Fm Dm









. (10.76)

One of the most popular block preconditioners used in the context of PDEs is based
on this block-tridiagonal form of the coefficient matrixA. Let D be the block-
diagonal matrix consisting of the diagonal blocksDi,L the block strictly-lower trian-
gular matrix consisting of the sub-diagonal blocksFi, andU the block strictly-upper
triangular matrix consisting of the super-diagonal blocksEi. Then, the above matrix
has the form

A = L+D + U.
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A block ILU preconditioner is defined by

M = (L+ ∆)∆−1(∆ + U), (10.77)

whereL andU are the same as above, and∆ is a block-diagonal matrix whose blocks
∆i are defined by the recurrence:

∆i = Di − FiΩi−1Ei, (10.78)

in which Ωj is some sparse approximation to∆−1
j . Thus, to obtain a block factor-

ization, approximations to the inverses of the blocks∆i must be found. This clearly
will lead to difficulties if explicit inverses are used.

An important particular case is when the diagonal blocksDi of the original ma-
trix are tridiagonal, while the co-diagonal blocksEi andFi are diagonal. Then, a
simple recurrence formula for computing the inverse of a tridiagonal matrix can be
exploited. Only the tridiagonal part of the inverse must be kept in the recurrence
(10.78). Thus,

∆1 = D1, (10.79)

∆i = Di − FiΩ
(3)
i−1Ei, i = 1, . . . ,m, (10.80)

whereΩ
(3)
k is the tridiagonal part of∆−1

k .

(Ω
(3)
k )i,j = (∆−1

k )i,j for |i− j| ≤ 1.

The following theorem can be shown.

Theorem 10.16 LetA be Symmetric Positive Definite and such that

• aii > 0, i = 1, . . . , n, andaij ≤ 0 for all j 6= i.

• The matricesDi are all (strict) diagonally dominant.

Then each block∆i computed by the recurrence (10.79), (10.80) is a symmetricM -
matrix. In particular,M is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can be obtained. Let a
tridiagonal matrix∆ of dimensionl be given in the form

∆ =









α1 −β2

−β2 α2 −β3
.. . . . . .. .

−βl−1 αl−1 −βl

−βl αl









,

and let its Cholesky factorization be

∆ = LDLT ,
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with
D = diag {δi}

and

L =









1
−γ2 1

. . . . . .
−γl−1 1

−γl 1









.

The inverse of∆ isL−TD−1L−1. Start by observing that the inverse ofLT is a unit
upper triangular matrix whose coefficientsuij are given by

uij = γi+1γi+2 . . . γj−1γj for 1 ≤ i < j < l.

As a result, thej-th columncj of L−T is related to the(j− 1)-st columncj−1 by the
very simple recurrence,

cj = ej + γjcj−1, for j ≥ 2

starting with the first columnc1 = e1. The inverse of∆ becomes

∆−1 = L−TD−1L−1 =

l∑

j=1

1

δj
cjc

T
j . (10.81)

See Exercise 5 for a proof of the above equality. As noted, therecurrence formulas
for computing∆−1 can be unstable and lead to numerical difficulties for large values
of l.

10.7.2 General Matrices

A general sparse matrix can often be put in the form (10.76) where the blocking is
either natural as provided by the physical problem, or artificial when obtained as a
result of RCMK ordering and some block partitioning. In suchcases, a recurrence
such as (10.78) can still be used to obtain a block factorization defined by (10.77).
A 2-level preconditioner can be defined by using sparse inverse approximate tech-
niques to approximateΩi. These are sometimes termed implicit-explicit precondi-
tioners, the implicit part referring to the block-factorization and the explicit part to
the approximate inverses used to explicitly approximate∆−1

i .

10.8 Preconditioners for the Normal Equations

When the original matrix is strongly indefinite, i.e., when it has eigenvalues spread
on both sides of the imaginary axis, the usual Krylov subspace methods may fail.
The Conjugate Gradient approach applied to the normal equations may then become
a good alternative. Choosing to use this alternative over the standard methods may
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involve inspecting the spectrum of a Hessenberg matrix obtained from a small run of
an unpreconditioned GMRES algorithm.

If the normal equations approach is chosen, the question becomes how to pre-
condition the resulting iteration. An ILU preconditioner can be computed forA and
the preconditioned normal equations,

AT (LU)−T (LU)−1Ax = AT (LU)−T (LU)−1b,

can be solved. However, whenA is not diagonally dominant the ILU factorization
process may encounter a zero pivot. Even when this does not happen, the result-
ing preconditioner may be of poor quality. An incomplete factorization routine with
pivoting, such as ILUTP, may constitute a good choice. ILUTPcan be used to pre-
condition either the original equations or the normal equations shown above. This
section explores a few other options available for preconditioning the normal equa-
tions.

10.8.1 Jacobi, SOR, and Variants

There are several ways to exploit the relaxation schemes forthe Normal Equations
seen in Chapter 8 as preconditioners for the CG method applied to either (8.1) or
(8.3). Consider (8.3), for example, which requires a procedure delivering an approx-
imation to(AAT )−1v for any vectorv. One such procedure is to perform one step
of SSOR to solve the system(AAT )w = v. Denote byM−1 the linear operator that
transformsv into the vector resulting from this procedure, then the usual Conjugate
Gradient method applied to (8.3) can be recast in the same form as Algorithm 8.5.
This algorithm is known as CGNE/SSOR. Similarly, it is possible to incorporate the
SSOR preconditioning in Algorithm 8.4, which is associatedwith the Normal Equa-
tions (8.1), by definingM−1 to be the linear transformation that maps a vectorv
into a vectorw resulting from the forward sweep of Algorithm 8.2 followed by a
backward sweep. We will refer to this algorithm as CGNR/SSOR.

The CGNE/SSOR and CGNR/SSOR algorithms will not break down if A is non-
singular, since then the matricesAAT andATA are Symmetric Positive Definite, as
are the preconditioning matricesM . There are several variations to these algorithms.
The standard alternatives based on the same formulation (8.1) are either to use the
preconditioner on the right, solving the systemATAM−1y = b, or to split the pre-
conditioner into a forward SOR sweep on the left and a backward SOR sweep on
the right of the matrixATA. Similar options can also be written for the Normal
Equations (8.3) again with three different ways of preconditioning. Thus, at least six
different algorithms can be defined.

10.8.2 IC(0) for the Normal Equations

The Incomplete Cholesky IC(0) factorization can be used to precondition the Normal
Equations (8.1) or (8.3). This approach may seem attractivebecause of the success
of incomplete factorization preconditioners. However, a major problem is that the
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Incomplete Cholesky factorization is not guaranteed to exist for an arbitrary Sym-
metric Positive Definite matrixB. All the results that guarantee existence rely on
some form of diagonal dominance. One of the first ideas suggested to handle this
difficulty was to use an Incomplete Cholesky factorization on the “shifted” matrix
B + αI. We refer to IC(0) applied toB = ATA as ICNR(0), and likewise IC(0)
applied toB = AAT as ICNE(0). Shifted variants correspond to applying IC(0) to
the shiftedB matrix.
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Figure 10.18: Iteration count as a function of the shiftα.

One issue often debated is how to find good values for the shiftα. There is no
easy and well-founded solution to this problem for irregularly structured symmetric
sparse matrices. One idea is to select the smallest possibleα that makes the shifted
matrix diagonally dominant. However, this shift tends to betoo large in general
because IC(0) may exist for much smaller values ofα. Another approach is to de-
termine the smallestα for which the IC(0) factorization exists. Unfortunately, this
is not a viable alternative. As is often observed, the numberof steps required for
convergence starts decreasing asα increases, and then increases again. The illustra-
tion shown in Figure 10.18 is from a real example using a smallLaplacean matrix.
This plot suggests that there is an optimal value forα which is far from the smallest
admissible one.

For smallα, the diagonal dominance ofB + αI is weak and, as a result, the
computed IC factorization is a poor approximation to the matrix B(α) ≡ B + αI.
In other words,B(α) is close to the original matrixB, but the IC(0) factorization
is far fromB(α). For largeα, the opposite is true. The matrixB(α) has a large
deviation fromB(0), but its IC(0) factorization may be quite good. Therefore, the
general shape of the curve shown in the figure is not too surprising.

To implement the algorithm, the matrixB = AAT need not be formed explicitly.
All that is required is to be able to access one row ofB at a time. This row can be
computed, used, and then discarded. In the following, thei-th row eTi A of A is
denoted byai. The algorithm is row-oriented and all vectors denote row vectors. It
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is adapted from the ILU(0) factorization of a sparse matrix,i.e., Algorithm 10.4, but
it actually computes theLDLT factorization instead of anLU orLLT factorization.
The main difference with Algorithm 10.4 is that the loop in line 7 is now restricted
to j ≤ i because of symmetry. If only thelij elements are stored row-wise, then the
rows ofU = LT which are needed in this loop are not directly available. Denote
the j-th row ofU = LT by uj . These rows are accessible by adding a column data
structure for theL matrix which is updated dynamically. A linked list data structure
can be used for this purpose. With this in mind, the IC(0) algorithm will have the
following structure.

ALGORITHM 10.15 Shifted ICNE(0)

1. Initial step: Setd1 := a11 , l11 = 1
2. Fori = 2, 3, . . . , n Do:
3. Obtain all thenonzeroinner products
4. lij = (aj , ai), j = 1, 2, . . . , i− 1, andlii := ‖ai‖2 + α
5. SetNZ(i) ≡ {j | lij 6= 0}
6. Fork = 1, . . . , i− 1 and ifk ∈ NZ(i) Do:
7. Extract rowuk = (Lek)T

8. Computelik := lik/dk

9. Forj = k + 1, . . . , i and if (i, j) ∈ NZ(i) Do:
10. Computelik := lik − lijukj

11. EndDo
12. EndDo
13. Setdi := lii, lii := 1
14. EndDo

Note that initially the rowu1 in the algorithm is defined as the first row ofA. All
vectors in the algorithm are row vectors.

The step represented by lines 3 and 4, which computes the inner products of row
numberi with all previous rows, needs particular attention. If the inner products

aT
1 ai, a

T
2 ai, . . . , a

T
i−1ai

are computed separately, the total cost of the incomplete factorization would be of
the order ofn2 steps and the algorithm would be of little practical value. However,
most of these inner products are equal to zero because of sparsity. This indicates that
it may be

possible to compute only those nonzero inner products at a much lower cost.
Indeed, ifc is the column of thei− 1 inner productscij , thenc is the product of the
rectangular(i − 1) × n matrixAi−1 whose rows areaT

1 , . . . , a
T
i−1 by the vectorai,

i.e.,
c = Ai−1ai. (10.82)

This is a sparse matrix-by-sparse vector product which was discussed in Section
10.5. It is best performed as a linear combination of the columns ofAi−1 which are
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sparse. The only difficulty with this implementation is thatit requires both the row
data structure ofA and of its transpose. A standard way to handle this problem is
by building a linked-list data structure for the transpose.There is a similar problem
for accessing the transpose ofL, as mentioned earlier. Therefore, two linked lists
are needed: one for theL matrix and the other for theA matrix. These linked lists
avoid the storage of an additional real array for the matrices involved and simplify
the process of updating the matrixA when new rows are obtained. It is important to
note that these linked lists are used only in the preprocessing phase and are discarded
once the incomplete factorization terminates.

10.8.3 Incomplete Gram-Schmidt and ILQ

Consider a general sparse matrixA and denote its rows bya1, a2, . . . , an . The
(complete) LQ factorization ofA is defined by

A = LQ,

whereL is a lower triangular matrix andQ is unitary, i.e.,QTQ = I. TheL factor in
the above factorization is identical with the Cholesky factor of the matrixB = AAT .
Indeed, ifA = LQ whereL is a lower triangular matrix having positive diagonal
elements, then

B = AAT = LQQTLT = LLT .

The uniqueness of the Cholesky factorization with a factorL having positive diagonal
elements shows thatL is equal to the Cholesky factor ofB. This relationship can be
exploited to obtain preconditioners for the Normal Equations.

Thus, there are two ways to obtain the matrixL. The first is to form the matrix
B explicitly and use a sparse Cholesky factorization. This requires forming the data
structure of the matrixAAT , which may be much denser thanA. However, reorder-
ing techniques can be used to reduce the amount of work required to computeL.
This approach is known assymmetric squaring.

A second approach is to use the Gram-Schmidt process. This idea may seem
undesirable at first because of its poor numerical properties when orthogonalizing
a large number of vectors. However, because the rows remain very sparse in the
incomplete LQ factorization (to be described shortly), anygiven row ofA will be
orthogonal typically to most of the previous rows ofQ. As a result, the Gram-
Schmidt process is much less prone to numerical difficulties. From the data structure
point of view, Gram-Schmidt is optimal because it does not require allocating more
space than is necessary, as is the case with approaches basedon symmetric squaring.
Another advantage over symmetric squaring is the simplicity of the orthogonalization
process and its strong similarity with the LU factorization. At every step, a given row
is combined with previous rows and then normalized. The incomplete Gram-Schmidt
procedure is modeled after the following algorithm.

ALGORITHM 10.16 LQ Factorization ofA
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1. Fori = 1, . . . , n Do:
2. Computelij := (ai, qj) , for j = 1, 2, . . . , i− 1,

3. Computeqi := ai −
∑i−1

j=1 lijqj , andlii = ‖qi‖2
4. If lii := 0 then Stop; else Computeqi := qi/lii.
5. EndDo

If the algorithm completes, then it will result in the factorizationA = LQ where
the rows ofQ andL are the rows defined in the algorithm. To define anincomplete
factorization, adroppingstrategy similar to those defined for Incomplete LU factor-
izations must be incorporated. This can be done in very general terms as follows. Let
PL andPQ be the chosen zero patterns for the matricesL, andQ, respectively. The
only restriction onPL is that

PL ⊂ {(i, j) | i 6= j}.

As for PQ, for each row there must be at least one nonzero element, i.e.,

{j |(i, j) ∈ PQ} 6= {1, 2, . . . , n}, for i = 1, . . . , n.

These two sets can be selected in various ways. For example, similar to ILUT, they
can be determined dynamically by using a drop strategy basedon the magnitude of
the elements generated. As before,xi denotes thei-th row of a matrixX andxij its
(i, j)-th entry.

ALGORITHM 10.17 Incomplete Gram-Schmidt

1. Fori = 1, . . . , n Do:
2. Computelij := (ai, qj) , for j = 1, 2, . . . , i− 1,
3. Replacelij by zero if(i, j) ∈ PL

4. Computeqi := ai −
∑i−1

j=1 lijqj ,
5. Replace eachqij, j = 1, . . . , n by zero if(i, j) ∈ PQ

6. lii := ‖qi‖2
7. If lii = 0 then Stop; else computeqi := qi/lii.
8. EndDo

We recognize in line 2 the same practical problem encountered in the previous
section for IC(0) for the Normal Equations. It can be handledin the same manner.
Thus, the row structures ofA, L, andQ are needed, as well as a linked list for the
column structure ofQ.

After thei-th step is performed, the following relation holds:

qi = liiqi + ri = ai −
j−1
∑

j=1

lijqj

or

ai =

j
∑

j=1

lijqj + ri (10.83)
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whereri is the row of elements that have been dropped from the rowqi in line 5. The
above equation translates into

A = LQ+R (10.84)

whereR is the matrix whosei-th row isri, and the notation forL andQ is as before.
The case where the elements inQ are not dropped, i.e., the case whenPQ is the

empty set, is of particular interest. Indeed, in this situation, R = 0 and we have
the exact relationA = LQ. However,Q is not unitary in general because elements
are dropped fromL. If at a given steplii = 0, then (10.83) implies thatai is a
linear combination of the rowsq1, . . ., qj−1. Each of theseqk is, inductively, a
linear combination ofa1, . . . ak. Therefore,ai would be a linear combination of the
previous rows,a1, . . . , ai−1 which cannot be true ifA is nonsingular. As a result, the
following proposition can be stated.

Proposition 10.17 If A is nonsingular andPQ = ∅, then the Algorithm 10.17 com-
pletes and computes an incomplete LQ factorizationA = LQ, in whichQ is nonsin-
gular andL is a lower triangular matrix with positive elements.

A major problem with the decomposition (10.84) is that the matrix Q is not orthogo-
nal in general. In fact, nothing guarantees that it is even nonsingular unlessQ is not
dropped or the dropping strategy is made tight enough.

Because the matrixL of thecompleteLQ factorization ofA is identical with the
Cholesky factor ofB, one might wonder why the IC(0) factorization ofB does not
always exist while the ILQ factorization seems to always exist. In fact, the relation-
ship between ILQ and ICNE, i.e., the Incomplete Cholesky forB = AAT , can lead
to a more rigorous way of choosing a good pattern for ICNE, as is explained next.

We turn our attention to Modified Gram-Schmidt. The only difference is that the
row qj is updated immediately after an inner product is computed. The algorithm is
described without dropping forQ for simplicity.

ALGORITHM 10.18 Incomplete Modified Gram-Schmidt

1. Fori = 1, . . . , n Do:
2. qi := ai

3. Forj = 1, . . . , i− 1, Do:

4. Computelij :=

{
0 if (i, j) ∈ PL

(qi, qj) otherwise
5. Computeqi := qi − lijqj.
6. EndDo
7. lii := ‖qi‖2
8. If lii = 0 then Stop; else Computeqi := qi/lii.
9. EndDo

WhenA is nonsingular, the same result as before is obtained if no dropping
is used onQ, namely, that the factorization will exist and be exact in that A =
LQ. Regarding the implementation, if the zero patternPL is known in advance,
the computation of the inner products in line 4 does not pose aparticular problem.
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Without any dropping inQ, this algorithm may be too costly in terms of storage. It
is interesting to see that this algorithm has a connection with ICNE, the incomplete
Cholesky applied to the matrixAAT . The following result is stated without proof.

Theorem 10.18 LetA be ann × m matrix and letB = AAT . Consider a zero-
pattern setPL which is such that for any1 ≤ i, j, k ≤ n, with i < j and i < k, the
following holds:

(i, j) ∈ PL and (i, k) /∈ PL → (j, k) ∈ PL.

Then the matrixL obtained from Algorithm 10.18 with the zero-pattern setPL is
identical with theL factor that would be obtained from the Incomplete Cholesky
factorization applied toB with the zero-pattern setPL.

For a proof, see [304]. This result shows how a zero-pattern can be defined which
guarantees the existence of an Incomplete Cholesky factorization onAAT .

PROBLEMS

P-10.1 Assume thatA is the Symmetric Positive Definite matrix arising from the 5-point
finite difference discretization of the Laplacean on a givenmesh. We reorder the matrix using
the red-black ordering and obtain the reordered matrix

B =

(
D1 E
ET D2

)

.

We then form the Incomplete Cholesky factorization on this matrix.

a. Show the fill-in pattern for the IC(0) factorization for a matrix of sizen = 12 associated
with a4× 3 mesh.

b. Show the nodes associated with these fill-ins on the 5-point stencil in the finite differ-
ence mesh.

c. Give an approximate count of the total number of fill-ins when the original mesh is
square, with the same number of mesh points in each direction. How does this compare
with the natural ordering? Any conclusions?

P-10.4 Consider a6× 6 tridiagonal nonsingular matrixA.

a. What can be said about its ILU(0) factorization (when it exists)?

b. Suppose that the matrix is permuted (symmetrically, i.e., both rows and columns) using
the permutation

π = [1, 3, 5, 2, 4, 6].

(i) Show the pattern of the permuted matrix.
(ii) Show the locations of the fill-in elements in the ILU(0) factorization.
(iii) Show the pattern of the ILU(1) factorization as well asthe fill-ins generated.
(iv) Show the level of fill of each element at the end of the ILU(1) process (in-

cluding the fill-ins).
(v) What can be said of the ILU(2) factorization for this permuted matrix?
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P-10.3 Assume thatA is the matrix arising from the 5-point finite difference discretization
of an elliptic operator on a given mesh. We reorder the original linear system using the
red-black ordering and obtain the reordered linear system

(
D1 E
F D2

) (
x1

x2

)

=

(
b1
b2

)

.

a. Show how to obtain a system (called thereduced system) which involves the variable
x2 only.

b. Show that this reduced system is also a sparse matrix. Showthe stencil associated
with the reduced system matrix on the original finite difference mesh and give a graph-
theory interpretation of the reduction process. What is themaximum number of nonzero
elements in each row of the reduced system.

P-10.3 It was stated in Section 10.3.2 that for some specific matrices the ILU(0) factoriza-
tion ofA can be put in the form

M = (D − E)D−1(D − F )

in which−E and−F are the strict-lower and -upper parts ofA, respectively.

a. Characterize these matrices carefully and give an interpretation with respect to their
adjacency graphs.

b. Verify that this is true for standard 5-point matrices associated with any domainΩ.

c. Is it true for 9-point matrices?

d. Is it true for the higher level ILU factorizations?

P-10.5 LetA be a pentadiagonal matrix having diagonals in offset positions−m,−1, 0, 1,m.
The coefficients in these diagonals are all constants:a for the main diagonal and -1 for all
others. It is assumed thata ≥

√
8. Consider the ILU(0) factorization ofA as given in the

form (10.20). The elementsdi of the diagonalD are determined by a recurrence of the form
(10.19).

a. Show thata2 < di ≤ a for i = 1, . . . , n.

b. Show thatdi is a decreasing sequence. [Hint: Use induction].

c. Prove that the formal (infinite) sequence defined by the recurrence converges. What is
its limit?

P-10.4 Consider a matrixA which is split in the formA = D0 − E − F , whereD0 is a
block diagonal matrix whose block-diagonal entries are thesame as those ofA, and where
−E is strictly lower triangular and−F is strictly upper triangular. In some cases the block
form of the ILU(0) factorization can be put in the form (Section 10.3.2):

M = (D − E)D−1(D − F ).

The block entries ofD can be defined by a simple matrix recurrence. Find this recurrence
relation. The algorithm may be expressed in terms of the block entries the matrixA.

P-10.5 Generalize the formulas developed at the end of Section 10.7.1 for the inverses of
symmetric tridiagonal matrices, to the nonsymmetric case.

P-10.6 Develop recurrence relations for Incomplete Cholesky withno fill-in (IC(0)), for
5-point matrices, similar to those seen in Section 10.3.4 for ILU(0). Same question for IC(1).
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P-10.7 What becomes of the formulas seen in Section 10.3.4 in the case of a 7-point ma-
trix (for three-dimensional problems)? In particular, canthe ILU(0) factorization be cast in
the form (10.20) in which−E is the strict-lower diagonal ofA and−F is the strict upper
triangular part ofA, andD is a certain diagonal?

P-10.8 Consider an arbitrary matrixA which is split in the usual manner asA = D0−E−
F , in which−E and−F are the strict-lower and -upper parts ofA, respectively, and define,
for any diagonal matrixD, the approximate factorization ofA given by

M = (D − E)D−1(D − F ).

Show how a diagonalD can be determined such thatA andM have the same diagonal
elements. Find a recurrence relation for the elements ofD. Consider now the symmetric
case and assume that the matrixD which is positive can be found. WriteM in the form

M = (D1/2 − ED−1/2)(D1/2 − ED−1/2)T ≡ L1L
T
1 .

What is the relation between this matrix and the matrix of theSSOR(ω) preconditioning, in
the particular case whenD−1/2 = ωI? Conclude that this form of ILU factorization is in
effect an SSOR preconditioning with a different relaxationfactorω for each equation.

P-10.9 Consider a general sparse matrixA (irregularly structured). We seek an approximate
LU factorization of the form

M = (D − E)D−1(D − F )

in which−E and−F are the strict-lower and -upper parts ofA, respectively. It is assumed
thatA is such that

aii > 0, aijaji ≥ 0 for i, j = 1, . . . , n.

a. By identifying the diagonal elements ofA with those ofM , derive an algorithm for
generating the elements of the diagonal matrixD recursively.

b. Establish that ifdj > 0 for j<i thendi ≤ aii. Is it true in general thatdj>0 for all j?

c. Assume that fori = 1, . . . , j−1 we havedi ≥ α>0. Show a sufficient condition under
whichdj ≥ α. Are there cases in which this condition cannot be satisfied for anyα?

d. Assume now that all diagonal elements ofA are equal to a constant, i.e.,ajj = a for
j = 1, . . . , n. Defineα ≡ a

2 and let

Sj ≡
j−1
∑

i=1

aijaji, σ ≡ max
j=1,...,n

Sj .

Show a condition onσ under whichdj ≥ α, j = 1, 2, . . . , n.

P-10.5 Show the second part of (10.81). [Hint: Exploit the formulaABT =
∑n

j=1 ajb
T
j

whereaj, bj are thej-th columns ofA andB, respectively].

P-10.6 Let a preconditioning matrixM be related to the original matrixA byM = A+E,
in whichE is a matrix of rankk.

a. Assume that bothA andM are Symmetric Positive Definite. How many steps at most
are required for the preconditioned Conjugate Gradient method to converge whenM
is used as a preconditioner?
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b. Answer the same question for the case whenA andM are nonsymmetric and the full
GMRES is used on the preconditioned system.

P-10.3 Formulate the problem for finding an approximate inverseM to a matrixA as a
largen2×n2 linear system. What is the Frobenius norm in the space in which you formulate
this problem?

P-10.4 The concept ofmaskis useful in the global iteration technique. For a sparsity pattern
S, i.e., a set of pairs(i, j) and a matrixB, we define the productC = B⊙S to be the matrix
whose elementscij are zero if(i, j) does not belong toS, andbij otherwise. This is called a
mask operation since its effect is to ignore every value not in the patternS. Consider a global
minimization of the functionFS(M) ≡ ‖S ⊙ (I −AM)‖F .

a. What does the result of Proposition 10.9 become for this new objective function?

b. Formulate an algorithm based on a global masked iteration, in which the mask is fixed
and equal to the pattern ofA.

c. Formulate an algorithm in which the mask is adapted at eachouter step. What criteria
would you use to select the mask?

P-10.4 Consider the global self preconditioned MR iteration algorithm seen in Section 10.5.5.
Define the acute angle between two matrices as

cos∠(X,Y ) ≡ 〈X,Y 〉
‖X‖F‖Y ‖F

.

a. Following what was done for the (standard) Minimal Residual algorithm seen in Chap-
ter 5, establish that the matricesBk = AMk andRk = I − Bk produced by global
MR without dropping are such that

‖Rk+1‖F ≤ ‖Rk‖F sin ∠(Rk, BkRk).

b. Let nowM0 = αAT so thatBk is symmetric for allk (see Section 10.5.5). Assume
that, at a given stepk the matrixBk is positive definite. Show that

cos∠(Rk, BkRk) ≥ λmin(Bk)

λmax(Bk)

in whichλmin(Bk) andλmax(Bk) are, respectively, the smallest and largest eigenval-
ues ofBk.

P-10.3 In the two-sided version of approximate inverse preconditioners, the option of min-
imizing

f(L,U) = ‖I − LAU‖2F
was mentioned, whereL is unit lower triangular andU is upper triangular.

a. What is the gradient off(L,U)?

b. Formulate an algorithm based on minimizing this functionglobally.

P-10.3 Consider the two-sided version of approximate inverse preconditioners, in which a
unit lower triangularL and an upper triangularU are sought so thatLAU ≈ I. One idea is to
use an alternating procedure in which the first half-step computes a right approximate inverse
U toLA, which is restricted to be upper triangular, and the second half-step computes a left
approximate inverseL toAU , which is restricted to be lower triangular.
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a. Consider the first half-step. Since the candidate matrixU is restricted to be upper
triangular, special care must be exercised when writing a column-oriented approximate
inverse algorithm. What are the differences with the standard MR approach described
by Algorithm 10.12?

b. Now consider seeking an upper triangular matrixU such that the matrix(LA)U is
close to the identity only in its upper triangular part. A similar approach is to be taken
for the second half-step. Formulate an algorithm based on this approach.

P-10.3 Write all six variants of the preconditioned Conjugate Gradient algorithm applied to
the Normal Equations, mentioned at the end of Section 10.8.1.

P-10.4 With the standard splittingA = D − E − F , in whichD is the diagonal ofA
and−E,−F its lower- and upper triangular parts, respectively, we associate the factored
approximate inverse factorization,

(I + ED−1)A(I +D−1F ) = D +R. (10.85)

a. DetermineR and show that it consists of second order terms, i.e., terms involving
products of at least two matrices from the pairE,F .

b. Now use the previous approximation forD +R ≡ D1 − E1 − F1,

(I + E1D
−1
1 )(D +R)(I +D−1

1 F1) = D1 +R1.

Show how the approximate inverse factorization (10.85) canbe improved using this
new approximation. What is the order of the resulting approximation?

NOTES AND REFERENCES. The idea of transforming a linear system into one that is easier to solve by
iterations was known quite early on. In a 1937 paper, Cesari [71], proposed what is now known as poly-
nomial preconditioning (see also [43, p.156] where this is discussed). Other forms of preconditioning
were also exploited in some earlier papers. For example, in [11] Axelsson discusses SSOR iteration,
“accelerated” by either the Conjugate Gradient or Chebyshev acceleration. Incomplete factorizations
were also discussed quite early, for example, by Varga [292]and Buleev [68]. The breakthrough article
by Meijerink and van der Vorst [208] established existence of the incomplete factorization forM -
matrices and showed that preconditioning the Conjugate Gradient by using an incomplete factorization
can result in an extremely efficient combination. This article played an essential role in directing the
attention of researchers and practitioners to a rather important topic and marked a turning point. Many
of the early techniques were developed for regularly structured matrices. The generalization, using the
definition of level of fill for high-order Incomplete LU factorizations for unstructured matrices, was
introduced by Watts [306] for petroleum engineering problems.

Recent research on iterative techniques has focussed on preconditioning methods while the impor-
tance of accelerators has diminished. Preconditioners areessential to the success of iterative methods
in real-life applications. A general preconditioning approach based on modifying a given direct solver
by including dropping was one of the first “general-purpose”that was proposed [212, 221, 325, 137].

More economical alternatives, akin to ILU(p), were developed later [249, 97, 96, 314, 323, 245].
ILUT and ILUTP are relatively robust and efficient but they can nonetheless fail. Instances can also
encountered when a more accurate ILUT factorization leads to a larger number of steps to converge.
One source of failure is the instability of the preconditioning operation. These phenomena of instability
have been studied by Elman [116] who proposed a detailed analysis of ILU and MILU precondition-
ers for model problems. The theoretical analysis on ILUT stated as Theorem 10.8 is modeled after
Theorem 1.14 in Axelsson and Barker [15] for ILU(0).

Some theory for block preconditioners is discussed in the book by O. Axelsson [14]. Different
forms of block preconditioners were developed independently by Axelsson, Brinkkemper, and Il’in
[16] and by Concus, Golub, and Meurant [89], initially for block matrices arising from PDEs in two di-
mensions. Later, some generalizations were proposed by Kolotina and Yeremin [191]. Thus, the 2-level
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implicit-explicit preconditioning introduced in [191] consists of using sparse inverse approximations to
∆−1

i for obtainingΩi.
The rebirth of approximate inverse preconditioners [158, 91, 191, 159, 34, 157, 33, 80, 78] has

been spurred both by considerations related to parallel processing and the relative ineffectiveness of
standard ILU preconditioners in dealing with highly indefinite matrices. Other preconditioners which
are not covered here are those based on domain decompositiontechniques. Some of these techniques
will be reviewed in Chapter 14.

The primary motivation for the Crout version of ILU is the overhead in ILUT due to the search
for the leftmost pivot. The idea of exploiting condition number estimators in this context has been
motivated by compelling results in Bollhöefer’s work [44].

The effect of reordering on incomplete factorizations has been a subject of debate among re-
searchers but the problem is still not well understood. Whatexperience shows is that some of the better
reordering techniques used for sparse direct solutions methods do not necessarily perform well for ILU
[35, 64, 111, 112, 96, 97, 265]. As could be expected when fill-in is increased to high levels, then the
effect of reordering starts resembling that of direct solvers. A rule of thumb is that the reversed Cuthill-
McKee ordering does quite well on average. It appears that orderings that take into account the values
of the matrix can perform better, but these may be expensive [87, 96, 97]. The use of nonsymmetric
orderings as a means of enhancing robustness of ILU has been proposed in recent articles by Duff and
Koster [109, 110]. The algorithms developed in this contextare rather complex but lead to remarkable
improvements, especially for matrices with very irregularpatterns.

The saddle-point point problem is a classic example of what can be achieved by a preconditioner
developed by exploiting the physics versus a general purpose preconditioner. An ILUT factorization
for the saddle point problem may work if a high level of fill is used. However, this usually results in
poor performance. A better performance can be obtained by exploiting information about the original
problem, see for example, [152, 305, 264, 118, 119].

On another front, there is also some interest in methods thatutilize normal equations in one way
or another. Earlier, ideas revolved around shifting the matrix B = AT A before applying the IC(0) fac-
torization as was suggested by Kershaw [187] in 1978. Manteuffel [206] also made some suggestions
on how to select a goodα in the context of the CGW algorithm. Currently, new ways of exploiting the
relationship with the QR (or LQ) factorization to define IC(0) more rigorously are being explored; see
the work in [304]. Preconditioning normal equations remains a difficult problem.



Chapter 11

PARALLEL IMPLEMENTATIONS

Parallel computing has recently gained widespread acceptance as a means of handling very large

computational tasks. Since iterative methods are appealing for large linear systems of equations,

it is no surprise that they are the prime candidates for implementations on parallel architectures.

There have been two traditional approaches for developing parallel iterative techniques thus far.

The first extracts parallelism whenever possible from standard algorithms. The advantage of

this viewpoint is that it is easier to understand in general since the underlying method has not

changed from its sequential equivalent. The second approach is to develop alternative algorithms

which have enhanced parallelism. This chapter will give an overview of implementations and will

emphasize methods in the first category. The later chapters will consider alternative algorithms

that have been developed specifically for parallel computing environments.

11.1 Introduction

Because of the increased importance of three-dimensional models and the high cost
associated with sparse direct methods for solving these problems, iterative techniques
play a major role in application areas. The main appeal of iterative methods is their
low storage requirement. Another advantage is that they arefar easier to implement
on parallel computers than sparse direct methods because they only require a rather
small set of computational kernels. Increasingly, direct solvers are being used in
conjunction with iterative solvers to develop robust preconditioners.

The first considerations for high-performance implementations of iterative meth-
ods involved implementations on vector computers. These efforts started in the mid
1970s when the first vector computers appeared. Currently, there is a larger effort
to develop new practical iterative methods that are not onlyefficient in a parallel en-
vironment, but also robust. Often, however, these two requirements seem to be in
conflict.

This chapter begins with a short overview of the various waysin which paral-
lelism has been exploited in the past and a description of thecurrent architectural
models for existing commercial parallel computers. Then, the basic computations
required in Krylov subspace methods will be discussed alongwith their implemen-
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tations.

11.2 Forms of Parallelism

Parallelism has been exploited in a number of different forms since the first com-
puters were built. The six major forms of parallelism are: (1) multiple functional
units; (2) pipelining; (3) vector processing; (4) multiplevector pipelines; (5) mul-
tiprocessing; and (6) distributed computing. Next is a brief description of each of
these approaches.

11.2.1 Multiple Functional Units

This is one of the earliest forms of parallelism. It consistsof multiplying the number
of functional units such as adders and multipliers. Thus, the control units and the
registers are shared by the functional units. The detectionof parallelism is done
at compilation time with a “Dependence Analysis Graph,” an example of which is
shown in Figure 11.1.

+

+ +

a b * *

c d e f

Figure 11.1: Dependence analysis for arithmetic expression: (a+b)+(c∗d+d∗e).

In the example of Figure 11.1, the two multiplications can beperformed simulta-
neously, then the two additions in the middle are performed simultaneously. Finally,
the addition at the root is performed.

11.2.2 Pipelining

The pipelining concept is essentially the same as that of an assembly line used in
car manufacturing. Assume that an operation takess stages to complete. Then the
operands can be passed through thes stages instead of waiting for all stages to be
completed for the first two operands.
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If each stage takes a timeτ to complete, then an operation withn numbers will
take the timesτ + (n− 1)τ = (n+ s− 1)τ . The speed-up would be the ratio of the
time to complete thes stages in a non-pipelined unit versus, i.e.,s× n× τ , over the
above obtained time,

S =
ns

n+ s− 1
.

For largen, this would be close tos.

11.2.3 Vector Processors

Vector computers appeared in the beginning of the 1970s withthe CDC Star 100
and then the CRAY-1 and Cyber 205. These are computers which are equipped with
vector pipelines, i.e., pipelined functional units, such as a pipelined floating-point
adder, or a pipelined floating-point multiplier. In addition, they incorporate vector
instructions explicitly as part of their instruction sets.Typical vector instructions are,
for example:

VLOAD To load a vector from memory to a vector register
VADD To add the content of two vector registers
VMUL To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalar machines, vector pipelines
can be duplicated to take advantage of any fine grain parallelism available in loops.
For example, the Fujitsu and NEC computers tend to obtain a substantial portion of
their performance in this fashion. There are many vector operations that can take
advantage ofmultiple vector pipelines.

11.2.4 Multiprocessing and Distributed Computing

A multiprocessor system is a computer, or a set of several computers, consisting
of several processing elements (PEs), each consisting of a CPU, a memory, an I/O
subsystem, etc. These PEs are connected to one another with some communication
medium, either a bus or some multistage network. There are numerous possible
configurations, some of which will be covered in the next section.

Distributed computing is a more general form of multiprocessing, in which the
processors are actually computers linked by some Local AreaNetwork. Currently,
there are a number of libraries that offer communication mechanisms for exchanging
messages between Unix-based systems. The best known of these are the Parallel
Virtual Machine (PVM) and the Message Passing Interface (MPI). In heterogeneous
networks of computers, the processors are separated by relatively large distances and
that has a negative impact on the performance of distributedapplications. In fact,
this approach is cost-effective only for large applications, in which a high volume of
computation can be performed before more data is to be exchanged.

11.3 Types of Parallel Architectures

There are currently three leading architecture models. These are:
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• The shared memory model.

• SIMD or data parallel models.

• The distributed memory message passing model.

A brief overview of the characteristics of each of the three groups follows. Empha-
sis is on the possible effects these characteristics have onthe implementations of
iterative methods.

11.3.1 Shared Memory Computers

A shared memory computer has the processors connected to a large global memory
with the same global view, meaning the address space is the same for all processors.
One of the main benefits of shared memory models is that accessto data depends
very little on its location in memory. In a shared memory environment, transparent
data access facilitates programming to a great extent. Fromthe user’s point of view,
data are stored in a large global memory that is readily accessible to any processor.
However, memory conflicts as well as the necessity to maintain data coherence can
lead to degraded performance. In addition, shared memory computers cannot easily
take advantage of data locality in problems which have an intrinsically local nature,
as is the case with most discretized PDEs. Some current machines have a physically
distributed memory but they are logically shared, i.e., each processor has the same
view of the global address space.

P P P P P

SHARED MEMORY

HIGH SPEED BUS
? ? ? ? ?6 6 6 6 6

6 6 6 6 6? ? ? ? ?

Figure 11.2: A bus-based shared memory computer.

P P P P P P P P

SWITCHING NETWORK

M M M M M M M M

Figure 11.3: A switch-based shared memory computer.

There are two possible implementations of shared memory machines: (1) bus-
based architectures, and (2) switch-based architecture. These two model architec-
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tures are illustrated in Figure 11.2 and Figure 11.3, respectively. So far, shared mem-
ory computers have been implemented more often with buses than with switching
networks.

Buses are the backbone for communication between the different units of most
computers. Physically, a bus is nothing but a bundle of wires, made of either fiber
or copper. These wires carry information consisting of data, control signals, and
error correction bits. The speed of a bus, often measured in Megabytes per second
and called thebandwidthof the bus, is determined by the number of lines in the bus
and the clock rate. Often, the limiting factor for parallel computers based on bus
architectures is the bus bandwidth rather than the CPU speed.

The primary reason why bus-based multiprocessors are more common than switch-
based ones is that the hardware involved in such implementations is simple. On the
other hand, the difficulty with bus-based machines is that the number of processors
which can be connected to the memory will be small in general.Typically, the bus is
timeshared, meaning slices of time are allocated to the different clients (processors,
IO processors, etc.) that request its use.

In a multiprocessor environment, the bus can easily be saturated. Several reme-
dies are possible. The first, and most common, remedy is to attempt to reduce traffic
by addinglocal memoriesor cachesattached to each processor. Since a data item
used by a given processor is likely to be reused by the same processor in the next
instructions, storing the data item in local memory will help reduce traffic in general.
However, this strategy causes some difficulties due to the requirement to maintain
data coherence. If Processor (A) reads some data from the shared memory, andPro-
cessor (B) modifies the same data in shared memory, immediately after, the result is
two copies of the same data that have different values. A mechanism should be put in
place to ensure that the most recent update of the data is always used. The additional
overhead incurred by such memory coherence operations may well offset the savings
involving memory traffic.

The main features here are the switching network and the factthat a global mem-
ory is shared by all processors through the switch. There canbep processors on one
side connected top memory units or banks on the other side. Alternative designs
based on switches connectp processors to each other instead ofp memory banks.
The switching network can be a crossbar switch when the number of processors is
small. A crossbar switch is analogous to a telephone switch board and allowsp
inputs to be connected tom outputs without conflict. Since crossbar switches for
large numbers of processors are typically expensive they are replaced by multistage
networks. Signals travel across a small number of stages consisting of an array of
elementary switches, e.g.,2× 2 or 4× 4 switches.

There have been two ways of exploiting multistage networks.In circuit switch-
ing networks, the elementary switches are set up by sending electronic signals across
all of the switches. The circuit is set up once in much the sameway that telephone
circuits are switched in a switchboard. Once the switch has been set up, communi-
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cation between processorsP1, . . . , Pn is open to the memories

Mπ1,Mπ2 , . . . ,Mπn ,

in which π represents the desired permutation. This communication will remain
functional for as long as it is not reset. Setting up the switch can be costly, but once it
is done, communication can be quite fast. Inpacket switchingnetworks, a packet of
data will be given an address token and the switching within the different stages will
be determined based on this address token. The elementary switches have to provide
for buffering capabilities, since messages may have to be queued at different stages.

11.3.2 Distributed Memory Architectures

Thedistributed memorymodel refers to the distributed memorymessage passingar-
chitectures as well as to distributed memory SIMD computers. A typical distributed
memory system consists of a large number of identical processors which have their
own memories and which are interconnected in a regular topology. Examples are de-
picted in Figures 11.4 and 11.5. In these diagrams, each processor unit can be viewed
actually as a complete processor with its own memory, CPU, I/O subsystem, control
unit, etc. These processors are linked to a number of “neighboring” processors which
in turn are linked to other neighboring processors, etc. In “Message Passing” mod-
els there is no global synchronization of the parallel tasks. Instead, computations
aredata drivenbecause a processor performs a given task only when the operands
it requires become available. The programmer must program all the data exchanges
explicitly between processors.

P1

P2

P3

P4

P5

P6

P7

P8

Figure 11.4: An eight-processor ring (left) and a4× 4 multiprocessor mesh (right).

In SIMD designs, a different approach is used. A host processor stores the pro-
gram and each slave processor holds different data. The hostthen broadcasts in-
structions to processors which execute them simultaneously. One advantage of this
approach is that there is no need for large memories in each node to store large pro-
grams since the instructions are broadcast one by one to all processors.

Distributed memory computers can exploit locality of data in order to keep com-
munication costs to a minimum. Thus, a two-dimensional processor grid such as
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the one depicted in Figure 11.4 is perfectly suitable for solving discretized elliptic
Partial Differential Equations (e.g., by assigning each grid point to a corresponding
processor) because some iterative methods for solving the resulting linear systems
will require only interchange of data between adjacent gridpoints. A good general
purpose multiprocessor must have powerfulmapping capabilitiesbecause it should
be capable of easily emulating many of the common topologiessuch as 2-D and 3-D
grids or linear arrays, FFT-butterflies, finite element meshes, etc.

Three-dimensional configurations have also been popular.

10 11

010010

101

111
110

100

010 011

001000

Figure 11.5: Then-cubes of dimensionsn = 1, 2, 3.

Hypercubes are highly concurrent multiprocessors based onthe binaryn-cube topol-
ogy which is well known for its rich interconnection capabilities. A parallel processor
based on then-cube topology, called ahypercubehereafter, consists of2n identical
processors, interconnected withn neighbors. A3-cube can be represented as an ordi-
nary cube in three dimensions where the vertices are the8 = 23 nodes of the 3-cube;
see Figure 11.5. More generally, one can construct ann-cube as follows: First, the
2n nodes are labeled by the2n binary numbers from0 to 2n−1. Then a link between
two nodes is drawn if and only if their binary numbers differ by one (and only one)
bit.

An n-cube graph can be constructed recursively from lower dimensional cubes.
More precisely, consider two identical(n−1)-cubes whose vertices are labeled like-
wise from 0 to2n−1. By joining every vertex of the first(n − 1)-cube to the vertex
of the second having the same number, one obtains ann-cube. Indeed, it suffices to
renumber the nodes of the first cube as0 ∧ ai and those of the second as1 ∧ ai

whereai is a binary number representing the two similar nodes of the(n− 1)-cubes
and where∧ denotes the concatenation of binary numbers.

Distributed memory computers come in two different designs, namely, SIMD
and MIMD. Many of the early projects have adopted the SIMD organization. For
example, the historical ILLIAC IV Project of the Universityof Illinois was a machine
based on a mesh topology where all processors execute the same instructions.

SIMD distributed processors are sometimes called array processors because of
the regular arrays that they constitute. In this category, systolic arrays can be clas-
sified as an example of distributed computing. Systolic arrays, which popular in the
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1980s, are organized in connected cells, which are programmed (possibly micro-
coded) to perform only one of a few operations. All the cells are synchronized and
perform the same task. Systolic arrays are designed in VLSI technology and are
meant to be used for special purpose applications, primarily in signal processing.

In the last few years, parallel computing technologies haveseen a healthy matu-
ration. Currently, the architecture of choice is the distributed memory machine using
message passing. There is no doubt that this is due to the availability of excellent
communication software, such the Message Passing Interface (MPI), see [156]. In
addition, the topology

is often hidden from the user, so there is no need to code communication on
specific configurations such as hypercubes. Since this mode of computing has pen-
etrated the applications areas, and industrial applications it is likely to remain for
some time.

11.4 Types of Operations

Now consider two prototype Krylov subspace techniques, namely, the precondi-
tioned Conjugate Gradient method for the symmetric case andthe preconditioned
GMRES algorithm for the nonsymmetric case. It should be emphasized that all
Krylov subspace techniques require the same basic operations.

Consider Algorithm 9.1. The first step when implementing this algorithm on a
high-performance computer is identifying the main operations that it requires. We
distinguish five types of operations, which are: (1) Preconditioner setup; (2) Matrix
vector multiplications; (3) Vector updates; (4) Dot products; and (5) Preconditioning
operations. In this list the potential bottlenecks are (1),setting up the preconditioner
and (5), solving linear systems withM , i.e., the preconditioning operation. Section
11.6 discusses the implementation of traditional preconditioners, and the last two
chapters are devoted to preconditioners that are specialized to parallel environments.
Next come the matrix-by-vector products which deserve particular attention. The
rest of the algorithm consists essentially of dot products and vector updates which
do not cause significant difficulties in parallel machines, although inner products can
lead to some loss of efficiency on certain types of computers with large numbers of
processors.

If we now consider the GMRES algorithm, the only new operation here with
respect to the Conjugate Gradient method is the orthogonalization of the vectorAvi

against the previousv’s. The usual way to accomplish this is via the modified Gram-
Schmidt process, which is basically a sequence of subprocesses of the form:

• Computeα = (y, v).

• Computeŷ := y − αv.

This orthogonalizes a vectory against another vectorv of norm one. Thus, the outer
loop of the modified Gram-Schmidt is sequential, but the inner loop, i.e., each sub-
process, can be parallelized by dividing the inner product and SAXPY operations
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among processors. Although this constitutes a perfectly acceptable approach for a
small number of processors, the elementary subtasks may be too small to be efficient
on a large number of processors. An alternative for this caseis to use a standard
Gram-Schmidt process with reorthogonalization. This replaces the previous sequen-
tial orthogonalization process by a matrix operation of theform ŷ = y−V V T y, i.e.,
BLAS-1 kernels are replaced by BLAS-2 kernels.

Recall that the next level of BLAS, i.e., level 3 BLAS, exploits blocking in
dense matrix operations in order to obtain performance on machines with hierarchi-
cal memories. Unfortunately, level 3 BLAS kernels cannot beexploited here because
at every step, there is only one vector to orthogonalize against all previous ones. This
may be remedied by using block Krylov methods.

Vector operations, such as linear combinations of vectors and dot-products are
usually the simplest to implement on any computer. In sharedmemory computers,
compilers are capable of recognizing these operations and invoking the appropriate
machine instructions, possibly vector instructions. We consider now these operations
in turn.

Vector Updates Operations of the form

y(1:n) = y(1:n) + a * x(1:n),

wherea is a scalar andy andx two vectors, are known asvector updatesor SAXPY
operations. They are typically straightforward to implement in all three machine
models discussed earlier. For example, the above FORTRAN-90 code segment can
be used on most shared memory (’symmetric multiprocessing’) and the compiler will
translate it into the proper parallel version.

On distributed memory computers, some assumptions must be made about the
way in which the vectors are distributed. The main assumption is that the vectorsx
andy are distributed in the same manner among the processors, meaning the indices
of the components of any vector that are mapped to a given processor are the same.
In this case, the vector-update operation will be translated into p independent vector
updates, requiring no communication. Specifically, ifnloc is the number of variables
local to a given processor, this processor will simply execute a vector loop of the form

y(1:nloc) = y(1:nloc) + a * x(1:nloc)

and all processors will execute a similar operation simultaneously.

Dot products A number of operations use all the components of a given vector to
compute a single floating-point result which is then needed by all processors. These
are termedReduction Operationsand the dot product is the prototype example. A
distributed version of the dot-product is needed to computethe inner product of two
vectorsx and y that are distributed the same way across the processors. In fact,
to be more specific, this distributed dot-product operationshould compute the inner
productt = xT y of these two vectors and then make the resultt available in each
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processor. Typically, this result is needed to perform vector updates or other opera-
tions in each node. For a large number of processors, this sort of operation can be
demanding in terms of communication costs. On the other hand, parallel computer
designers have become aware of their importance and are starting to provide hard-
ware and software support for performingglobal reduction operationsefficiently.
Reduction operations that can be useful include global sums, global max/min cal-
culations, etc. A commonly adopted convention provides a single subroutine for all
these operations, and passes the type of operation to be performed (add, max, min,
multiply,. . . ) as one of the arguments. With this in mind, a distributed dot-product
function can be programmed roughly as follows (using C syntax).

tloc = DDOT(nrow, x, incx, y, incy);

MPI\_Allreduce(\&t, \&tsum, 1, MPI\_DOUBLE, MPI\_SUM, comm);

The function DDOT performs the usual BLAS-1 dot product ofx andy with strides
incx and incy, respectively. The MPIAllreduce operation, which is called with
“MPI SUM” as the operation-type parameter, sums all the variables “tloc” from each
processor and put the resulting global sum in the variabletsum in each processor.

11.5 Matrix-by-Vector Products

Matrix-by-vector multiplications (sometimes called “Matvecs” for short) are rela-
tively easy to implement efficiently on high performance computers. For a descrip-
tion of storage formats for sparse matrices, see Chapter 3. We will first discuss
matrix-by-vector algorithms without consideration of sparsity. Then we will cover
sparse Matvec operations for a few different storage formats.

The computational kernels for performing sparse matrix operations such as matrix-
by-vector products are intimately associated with the datastructures used. How-
ever, there are a few general approaches that are common to different algorithms for
matrix-by-vector products which can be described for densematrices. Two popu-
lar ways of performing these operations are the inner product form and the SAXPY
form. In the inner product form for computingy = Ax, the componentyi is obtained
as a dot-product of thei-th row of i and the vectorx. The SAXPY form computes
y as a linear combination of the columns ofA, specifically as the sum ofxiA:,i for
i = 1, . . . , n. A third option consists of performing the product by diagonals. This
option bears no interest in the dense case, but it is at the basis of many important
matrix-by-vector algorithms in the sparse case as will be seen shortly.

11.5.1 The CSR and CSC Formats

Recall that the CSR data-structure seen in Chapter 3 consists of three arrays: a real
arrayA(1:nnz)to store the nonzero elements of the matrix row-wise, an integer array
JA(1:nnz)to store the column positions of the elements in the real array A, and,
finally, a pointer arrayIA(1:n+1), thei-th entry of which points to the beginning of
thei-th row in the arraysA andJA. To perform the matrix-by-vector producty = Ax
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in parallel using this format, note that each component of the resulting vectory can
be computed independently as the dot product of thei-th row of the matrix with the
vectorx.

ALGORITHM 11.1 CSR Format – Dot Product Form

1. Do i = 1, n
2. k1 = ia(i)
3. k2 = ia(i+1)-1
4. y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))
5. EndDo

Line 4 computes the dot product of the vector with componentsa(k1), a(k1+1),· · ·,
a(k2)with the vector with componentsx(ja(k1)), x(ja(k1+1)),· · ·, x(ja(k2)).

The fact that the outer loop can be performed in parallel can be exploited on
any parallel platform. On some shared-memory machines, thesynchronization of
this outer loop is inexpensive and the performance of the above program can be
excellent. On distributed memory machines, the outer loop can be split in a number
of steps to be executed on each processor. Thus, each processor will handle a few
rows that are assigned to it. It is common to assign a certain number of rows (often
contiguous) to each processor and to also assign the component of each of the vectors
similarly. The part of the matrix that is needed is loaded in each processor initially.
When performing a matrix-by-vector product, interprocessor communication will be
necessary to get the needed components of the vectorx that do not reside in a given
processor. This important case will return in Section 11.5.5.
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+
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x(1:n) 

y(i) 

Figure 11.6: Illustration of the row-oriented matrix-by-vector multiplication.

The indirect addressing involved in the second vector in thedot product is called
a gather operation. The vectorx(ja(k1:k2)) is first “gathered” from memory into
a vector of contiguous elements. The dot product is then carried out as a standard
dot-product operation between two dense vectors. This is illustrated in Figure 11.6.

Now assume that the matrix is stored by columns (CSC format).The matrix-by-
vector product can be performed by the following algorithm.

ALGORITHM 11.2 CSC Format – SAXPY Form
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1. y(1:n) = 0.0
2. Do i = 1, n
3. k1 = ia(i)
4. k2 = ia(i + 1)-1
5. y(ja(k1:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)
6. EndDo

The above code initializesy to zero and then adds the vectorsx(j) × a(1 : n, j)
for j = 1, . . . , n to it. It can also be used to compute the product of thetranspose
of a matrix by a vector, when the matrix is stored (row-wise) in the CSR format.
Normally, the vectory(ja(k1:k2))is gathered and the SAXPY operation is performed
in vector mode. Then the resulting vector is “scattered” back into the positionsja(*) ,
by what is called aScatteroperation. This is illustrated in Figure 11.7.

A major difficulty with the above FORTRAN program is that it isintrinsically
sequential. First, the outer loop is not parallelizable as it is, but this may be remedied
as will be seen shortly. Second, the inner loop involves writing back results of the
right-hand side into memory positions that are determined by the indirect address
function ja. To be correct,y(ja(1)) must be copied first, followed byy(ja(2)), etc.
However, if it is known that the mappingja(i) is one-to-one, then the order of the
assignments no longer matters. Since compilers are not capable of deciding whether
this is the case, a compiler directive from the user is necessary for the Scatter to be
invoked.

Going back to the outer loop,p subsums can be computed (independently) into
p separate temporary vectors. Once all thep separate subsums are completed, these
thesep temporary vectors can be added to obtain the final result. Note that the final
sum incurs some additional work but it is highly vectorizable and parallelizable.
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Figure 11.7: Illustration of the column-oriented matrix-by-vector multiplication.

11.5.2 Matvecs in the Diagonal Format

Thediagonal storage formatwas one of the first data structures used in the context
of high performance computing to take advantage of special sparse structures. Often,
sparse matrices consist of a small number of diagonals in which case the matrix-by-
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vector product can be performed by diagonals. There are again different variants of
Matvec algorithms for the diagonal format, related to different orderings of the loops
in the basic FORTRAN program. Recall that the matrix is stored in a rectangular
array diag(1:n,1:ndiag)and the offsets of these diagonals from the main diagonal
may be stored in a small integer arrayoffset(1:ndiag). Consider a “dot-product”
variant first.

ALGORITHM 11.3 DIA Format – Dot Product Form

1. Do i = 1, n
2. tmp = 0.0d0
3. Do j = 1, ndiag
4. tmp = tmp + diag(i,j)*x(i+offset(j))
5. EndDo
6. y(i) = tmp
7. EndDo

In a second variant, the vectory is initialized to zero, and thenx is multiplied by
each of the diagonals and the separate results are added toy. The innermost loop in
this computation is sometimes called aTriad operation.

ALGORITHM 11.4 Matvec in Triad Form

1. y = 0.0d0
2. Do j = 1, ndiag
3. joff = offset(j)
4. i1 = max(1, 1-offset(j))
5. i2 = min(n, n-offset(j))
6. y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)
7. EndDo

Good speeds can be reached on vector machines for large enough matrices. A
drawback with diagonal schemes is that it are not general. For general sparse ma-
trices, we can either generalize the diagonal storage scheme or reorder the matrix in
order to obtain a diagonal structure. The simplest generalization is the Ellpack-Itpack
Format.

11.5.3 The Ellpack-Itpack Format

The Ellpack-Itpack (or Ellpack) format is of interest only for matrices whose maxi-
mum number of nonzeros per row,jmax, is small. The nonzero entries are stored in
a real arrayae(1:n,1:jmax). Along with this is integer arrayjae(1:n,1:jmax)which
stores the column indices of each corresponding entry inae. Similar to the diagonal
scheme, there are also two basic ways of implementing a matrix-by-vector product
when using the Ellpack format. We begin with an analogue of Algorithm 11.3.
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ALGORITHM 11.5 Ellpack Format – Dot-Product Form

1. Do i = 1, n
2. yi = 0
3. Do j = 1, ncol
4. yi = yi + ae(i,j) * x(jae(i,j))
5. EndDo
6. y(i) = yi
7. EndDo

If the number of nonzero elements per row varies substantially, many zero ele-
ments must be stored unnecessarily. Then the scheme becomesinefficient. As an
extreme example, if all rows are very sparse except for one ofthem which is full,
then the arraysae, jae must be fulln × n arrays, containing mostly zeros. This is
remedied by a variant of the format which is called thejagged diagonal format.

11.5.4 The Jagged Diagonal Format

The Jagged Diagonal (JAD) format can be viewed as a generalization of the Ellpack-
Itpack format which removes the assumption on the fixed length rows. To build the
jagged diagonal structure, start from the CSR data structure and sort the rows of the
matrix by decreasing number of nonzero elements. To build the first “j-diagonal”
extract the first element from each row of the CSR data structure. The second jagged
diagonal consists of the second elements of each row in the CSR data structure.
The third, fourth,. . ., jagged diagonals can then be extracted in the same fashion.
The lengths of the successive j-diagonals decreases. The number of j-diagonals that
can be extracted is equal to the number of nonzero elements ofthe first row of the
permuted matrix, i.e., to the largest number of nonzero elements per row. To store
this data structure, three arrays are needed: a real arrayDJ to store the values of
the jagged diagonals, the associated arrayJDIAG which stores the column positions
of these values, and a pointer arrayIDIAG which points to the beginning of each
j-diagonal in theDJ, JDIAGarrays.

Example 11.1. Consider the following matrix and its sorted versionPA:

A =









1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









→ PA =









3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
1. 0. 2. 0. 0.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.









The rows ofPA have been obtained from those ofA by sorting them by number
of nonzero elements, from the largest to the smallest number. Then the JAD data
structure forA is as follows:
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DJ 3. 6. 1. 9. 11. 4. 7. 2. 10. 12. 5. 8.

JDIAG 1 2 1 3 4 2 3 3 4 5 4 5

IDIAG 1 6 11 13

Thus, there are two j-diagonals of full length (five) and one of length two.

A matrix-by-vector product with this storage scheme can be performed by the
following code segment.

1. Do j=1, ndiag
2. k1 = idiag(j)
3. k2 = idiag(j+1) – 1
4. len = idiag(j+1) – k1
5. y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))
6. EndDo

Since the rows of the matrixA have been permuted, the above code will compute
PAx, a permutation of the vectorAx, rather than the desiredAx. It is possible
to permute the result back to the original ordering after theexecution of the above
program. This operation can also be performed until the finalsolution has been
computed, so that only two permutations on the solution vector are needed, one at the
beginning and one at the end. For preconditioning operations, it may be necessary to
perform a permutation before or within each call to the preconditioning subroutines.
There are many possible variants of the jagged diagonal format. One variant which
does not require permuting the rows is described in Exercise5.

11.5.5 The Case of Distributed Sparse Matrices

Given a sparse linear system to be solved on a distributed memory environment, it is
natural to map pairs of equations-unknowns to the same processor in a certain prede-
termined way. This mapping can be determined automaticallyby a graph partitioner
or it can be assigned ad hoc from knowledge of the problem. Without any loss of
generality, the matrix under consideration can be viewed asoriginating from the dis-
cretization of a Partial Differential Equation on a certaindomain. This is illustrated
in Figure 11.8. Assume that each subgraph (or subdomain, in the PDE literature)
is assigned to a different processor, although this restriction can be relaxed, i.e., a
processor can hold several subgraphs to increase parallelism.

A local data structure must be set up in each processor (or subdomain, or sub-
graph) which will allow the basic operations such as (global) matrix-by-vector prod-
ucts and preconditioning operations to be performed efficiently. The only assumption
to make regarding the mapping is that if row numberi is mapped into processorp,
then so is the unknowni, i.e., the matrix is distributed row-wise across the processors
according to the distribution of the variables. The graph isassumed to be undirected,
i.e., the matrix has a symmetric pattern.
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Internal
points

Internal
interface
points

External Interface

points 

Figure 11.8: Decomposition of physical domain or adjacencygraph and the local
data structure.

It is important to “preprocess the data” in order to facilitate the implementation
of the communication tasks and to gain efficiency during the iterative process. The
preprocessing requires setting up the following: information in each processor.

1. List of processors with which communication will take place. These are called
“neighboring processors” although they may not be physically nearest neigh-
bors.

2. List of local nodes that are coupled with external nodes. These are thelocal
interface nodes.

3. Local representation of the distributed matrix in each processor.

To perform a matrix-by-vector product with the global matrix A, the matrix con-
sisting of rows that are local to a given processor must be multiplied by some global
vectorv. Some components of this vector will be local, and some components must
be brought from external processors. These external variables correspond to inter-
face points belonging to adjacent subdomains. When performing a matrix-by-vector
product, neighboring processors must exchange values of their adjacent interface
nodes.

LetAloc be the local part of the matrix, i.e., the (rectangular) matrix consisting of
all the rows that are mapped tomyproc. CallAloc the “diagonal block” ofA located
in Aloc, i.e., the submatrix ofAloc whose nonzero elementsaij are such thatj is
a local variable. Similarly, callBext the “offdiagonal” block, i.e., the submatrix of
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Aloc whose nonzero elementsaij are such thatj is not a local variable. To perform
a matrix-by-vector product, start multiplying the diagonal block Aloc by the local
variables. Then, multiply the external variables by the sparse matrixBext. Notice
that since the external interface points are not coupled with local internal points, only
the rowsnint + 1 to nnloc in the matrixBext will have nonzero elements.

Thus, the matrix-by-vector product can be separated into two such operations,
one involving only the local variables and the other involving external variables. It is
necessary to construct these two matrices and define a local numbering of the local
variables in order to perform the two matrix-by-vector products efficiently each time.

To perform a global matrix-by-vector product, with the distributed data structure
described above, each processor must perform the followingoperations. First, multi-
ply the local variables by the matrixAloc. Second, obtain the external variables from
the neighboring processors in a certain order. Third, multiply these by the matrix
Bext and add the resulting vector to the one obtained from the firstmultiplication by
Aloc. Note that the first and second steps can be done in parallel.

Bext

Internal
points

Local
interface
points 

+

Aloc

Figure 11.9: The local matrices and data structure associated with each subdomain.

With this decomposition, the global matrix-by-vector product can be imple-
mented as indicated in Algorithm 11.6 below. In what follows, xloc is a vector of
variables that are local to a given processor. The components corresponding to the
local interface points (ordered to be the last components inxloc for convenience) are
calledxbnd. The external interface points, listed in a certain order, constitute a vector
which is calledxext. The matrixAloc is a sparsenloc×nlocmatrix representing the
restriction ofA to the local variablesxloc. The matrixBext operates on the external
variablesxext to give the correction which must be added to the vectorAlocxloc in
order to obtain the desired result(Ax)loc.

ALGORITHM 11.6 Distributed Sparse Matrix Product Kernel

1. Exchange interface data, i.e.,
2. Scatterxbnd to neighbors and
3. Gatherxext from neighbors
4. Do Local Matvec:y = Alocxloc

5. Do External Matvec:y = y +Bextxext
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An important observation is that the matrix-by-vector products in lines 4 and 5 can
use any convenient data structure that will improve efficiency by exploiting knowl-
edge on the local architecture. An example of the implementation of this operation
is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,iout)
y(1:nloc) = 0.0
call amux1 (nloc,x,y,aloc,jaloc,ialoc)
nrow = nloc – nbnd + 1
call amux1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

The only routine requiring communication isbdxchgwhose purpose is to ex-
change interface values between nearest neighbor processors. The first call toamux1
performs the operationy := y + Alocxloc, wherey has been initialized to zero prior
to the call. The second call toamux1performsy := y + Bextxext. Notice that the
data for the matrixBext is simply appended to that ofAloc, a standard technique
used for storing a succession of sparse matrices. TheBext matrix acts only on the
subvector ofx which starts at locationnbnd of x. The size of theBext matrix is
nrow = nloc− nbnd+ 1.

11.6 Standard Preconditioning Operations

Each preconditioned step requires the solution of a linear system of equations o the
form Mz = y. This section only considers those traditional preconditioners, such
as ILU or SOR or SSOR, in which the solution withM is the result of solving tri-
angular systems. Since these are commonly used, it is important to explore ways to
implement them efficiently in a parallel environment. It is also important to stress
that the techniques to be described in this section are mostly useful on shared mem-
ory computers. Distributed memory computers utilize different strategies. We only
consider lower triangular systems of the form

Lx = b. (11.1)

Without loss of generality, it is assumed thatL is unit lower triangular.

11.6.1 Parallelism in Forward Sweeps

Typically in solving a lower triangular system, the solution is overwritten onto the
right-hand side on return. In other words, there is one arrayx for both the solution
and the right-hand side. Therefore, the forward sweep for solving a lower triangular
system with coefficientsal(i, j) and right-hand-sidex is as follows.

ALGORITHM 11.7 Sparse Forward Elimination

1. Do i=2, n
2. For (all j such that al(i,j) is nonzero) Do:
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3. x(i) := x(i) – al(i,j) * x(j)
4. EndDo
5. EndDo

Assume that the matrix is stored row wise in the general Compressed Sparse Row
(CSR) format, except that the diagonal elements (ones) are not stored. Then the
above algorithm translates into the following code segment:

1. Do i=2, n
2. Do j=ial(i), ial(i+1) – 1
3. x(i)=x(i) – al(j) * x(jal(j))
4. EndDo
5. EndDo

The outer loop corresponding to the variablei is sequential. Thej loop is a sparse
dot product of theith row ofL and the (dense) vectorx. This dot product may be split
among the processors and the partial results may be added at the end. However, the
length of the vector involved in the dot product is typicallyshort. So, this approach
is quite inefficient in general. We examine next a few alternative approaches. The
regularly structured and the irregularly structured casesare treated separately.

11.6.2 Level Scheduling: the Case of 5-Point Matrices

First, consider an example which consists of a 5-point matrix associated with a4× 3
mesh as represented in Figure 11.10. The lower triangular matrix associated with
this mesh is represented in the left side of Figure 11.10. Thestencil represented in
the right side of Figure 11.10 establishes the data dependence between the unknowns
in the lower triangular system solution when considered from the point of view of a
grid of unknowns. It tells us that in order to compute the unknown in position(i, j),
only the two unknowns in positions(i−1, j) and(i, j−1) are needed . The unknown
x11 does not depend on any other variable and can be computed first. Then the value
of x11 can be used to getx1,2 andx2,1 simultaneously. Then these two values will
in turn enablex3,1, x2,2 andx1,3 to be obtained simultaneously, and so on. Thus, the
computation can proceed in wavefronts.

The steps for this wavefront algorithm are shown with dashedlines in Figure
11.10. Observe that the maximum degree of parallelism (or vector length, in the case
of vector processing) that can be reached is the minimum ofnx, ny, the number of
mesh points in thex andy directions, respectively, for 2-D problems.

For 3-D problems, the parallelism is of the order of the maximum size of the sets
of domain pointsxi,j,k, wherei+ j+k = lev, a constant levellev. It is important to
note that there is little parallelism or vectorization at the beginning and at the end of
the sweep. The degree of parallelism is equal to one initially, and then increases by
one for each wave reaching its maximum, and then decreasing back down to one at
the end of the sweep. For example, for a4× 3 grid, the levels (sets of equations that
can be solved in parallel) are{1}, {2, 5}, {3, 6, 9}, {4, 7, 10}, {8, 11}, and finally
{12}. The first and last few steps may take a heavy toll on achievable speed-ups.
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Figure 11.10: Level scheduling for a4× 3 grid problem.

The idea of proceeding bylevelsor wavefrontsis a natural one for finite differ-
ence matrices on rectangles. Discussed next is the more general case of irregular
matrices, a textbook example of scheduling, ortopological sorting, it is well known
in different forms to computer scientists.

11.6.3 Level Scheduling for Irregular Graphs

The simple scheme described above can be generalized for irregular grids. The ob-
jective of the technique, calledlevel scheduling, is to group the unknowns in subsets
so that they can be determined simultaneously. To explain the idea, consider again
Algorithm 11.7 for solving a unit lower triangular system. Thei-th unknown can be
determined once all the other ones that participate in equation i become available.
In the i-th step, all unknownsj that al(i, j) 6= 0 must be known. To use graph
terminology, these unknowns areadjacentto unknown numberi. SinceL is lower
triangular, the adjacency graph is a directed acyclic graph. The edgej → i in the
graph simply indicates thatxj must be known beforexi can be determined. It is
possible and quite easy to find a labeling of the nodes that satisfy the property that
if label(j) < label(i), then taskj must be executed before taski. This is called a
topological sorting of the unknowns.

The first step computesx1 and any other unknowns for which there are no prede-
cessors in the graph, i.e., all those unknownsxi for which the offdiagonal elements
of row i are zero. These unknowns will constitute the elements of thefirst level. The
next step computes in parallel all those unknowns that will have the nodes of the first
level as their (only) predecessors in the graph. The following steps can be defined
similarly: The unknowns that can be determined at stepl are all those that have as
predecessors equations that have been determined in steps1, 2, . . . , l− 1. This leads
naturally to the definition of adepthfor each unknown. Thedepthof a vertex is de-
fined by performing the following loop for= 1, 2, . . . , n, after initializingdepth(j)
to zero for allj.

depth(i) = 1 + max
j
{depth(j), for all j such thatal(i, j) 6= 0}.
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By definition, alevel of the graph is the set of nodes with the same depth. A data
structure for the levels can be defined: A permutationq(1 : n) defines the new
ordering andlevel(i), i = 1, · · · , nlev+ 1 points to the beginning of thei-th level in
that array.

Natural ordering Wavefront ordering

Figure 11.11: Lower triangular matrix associated with meshof Figure 11.10.

Once these level sets are found, there are two different waysto proceed. The
permutation vectorq can be used to permute the matrix according to the new order.
In the4× 3 example mentioned in the previous subsection, this means renumbering
the variables{1}, {2, 5}, {3, 6, 9}, . . ., consecutively, i.e., as{1, 2, 3, . . .}. The re-
sulting matrix after the permutation is shown in the right side of Figure 11.11. An
alternative is simply to keep the permutation array and use it to identify unknowns
that correspond to a given level in the solution. Then the algorithm for solving the
triangular systems can be written as follows, assuming thatthe matrix is stored in the
usual row sparse matrix format.

ALGORITHM 11.8 Forward Elimination with Level Scheduling

1. Do lev=1, nlev
2. j1 = level(lev)
3. j2 = level(lev+1) – 1
4. Do k = j1, j2
5. i = q(k)
6. Do j= ial(i), ial(i+1) – 1
7. x(i) = x(i) – al(j) * x(jal(j))
8. EndDo
9. EndDo

10. EndDo

An important observation here is that the outer loop, which corresponds to a
level, performs an operation of the form

x := x−Bx
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whereB is a submatrix consisting only of the rows of levellev, and excluding the
diagonal elements. This operation can in turn be optimized by using a proper data
structure for these submatrices.

For example, the JAD data structure can be used. The resulting performance can
be quite good. On the other hand, implementation can be quiteinvolved since two
embedded data structures are required.

Example 11.2. Consider a finite element matrix obtained from the example shown
in Figure 3.1. After an additional level of refinement, done in the same way as was
described in Chapter 3, the resulting matrix, shown in the left part of Figure 11.12,
is of sizen = 145. In this case,8 levels are obtained. If the matrix is reordered by
levels, the matrix shown in the right side of the figure results. The last level consists
of only one element.

Natural ordering Level-Scheduling ordering

Figure 11.12: Lower-triangular matrix associated with a finite element matrix and its
level-ordered version.

PROBLEMS

P-11.1 Give a short answer to each of the following questions:

a. What is the main disadvantage of shared memory computers based on a bus architec-
ture?

b. What is the main factor in yielding the speed-up in pipelined processors?

c. Related to the previous question: What is the main limitation of pipelined processors
in regards to their potential for providing high speed-ups?

P-11.4 Show that the number of edges in a binaryn-cube isn2n−1.

P-11.5 Show that a binary4-cube is identical with atorus which is a4 × 4 mesh with
wrap-around connections. Are there hypercubes of any otherdimensions that are equivalent
topologically to toruses?
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P-11.6 A Gray code of lengthk = 2n is a sequencea0, . . . , ak−1 of n-bit binary numbers
such that (a) any two successive numbers in the sequence differ by one and only one bit; (b)
all n-bit binary numbers are represented in the sequence; and (c)a0 andak−1 differ by one
bit.

a. Find a Gray code sequence of lengthk = 8 and show the (closed) path defined by
the sequence of nodes of a 3-cube, whose labels are the elements of the Gray code
sequence. What type of paths does a Gray code define in a hypercube?

b. To build a “binary reflected” Gray code, start with the trivial Gray code sequence con-
sisting of the two one-bit numbers 0 and 1. To build a two-bit Gray code, take the same
sequence and insert a zero in front of each number, then take the sequence inreverse
order and insert a one in front of each number. This givesG2 = {00, 01, 11, 10}.
The process is repeated until ann-bit sequence is generated. Show the binary reflected
Gray code sequences of length 2, 4, 8, and 16. Prove (by induction) that this process
does indeed produce a valid Gray code sequence.

c. Let ann-bit Gray code be given and consider the sub-sequence of all elements whose
first bit is constant (e.g., zero). Is this ann − 1 bit Gray code sequence? Generalize
this to any of then-bit positions. Generalize further to any set ofk < n bit positions.

d. Use the previous question to find a strategy to map a2n1 × 2n2 mesh into an(n1+n2)-
cube.

P-11.5 Consider a ring ofk processors which are characterized by the following communi-
cation performance characteristics. Each processor can communicate with its two neighbors
simultaneously, i.e., it can send or receive a message while sending or receiving another mes-
sage. The time for a message of lengthm to be transmitted between two nearest neighbors is
of the form

β +mτ.

a. A message of lengthm is “broadcast” to all processors by sending it fromP1 toP2 and
then fromP2 to P3, etc., until it reaches all destinations, i.e., until it reachesPk. How
much time does it take for the message to complete this process?

b. Now split the message into packets of equal size and pipeline the data transfer. Typi-
cally, each processor will receive packet numberi from the previous processor, while
sending packeti − 1 it has already received to the next processor. The packets will
travel in chain fromP1 to P2, . . ., to Pk. In other words, each processor executes a
program that is described roughly as follows:

Do i=1, Num\_packets

Receive Packet number i from Previous Processor

Send Packet number i to Next Processor

EndDo

There are a few additional conditionals. Assume that the number of packets is equal to
k− 1. How much time does it take for all packets to reach allk processors? How does
this compare with the simple method in (a)?

P-11.3 (a) Write a short FORTRAN routine (or C function) which sets up the level number
of each unknown of an upper triangular matrix. The input matrix is in CSR format and the
output should be an array of lengthn containing the level number of each node. (b) What
data structure should be used to represent levels? Without writing the code, show how to
determine this data structure from the output of your routine. (c) Assuming the data structure
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of the levels has been determined, write a short FORTRAN routine (or C function) to solve
an upper triangular system using the data structure resulting in the previous question. Show
clearly which loop should be executed in parallel.

P-11.4 In the jagged diagonal format described in Section 11.5.4, it is necessary to pre-
process the matrix by sorting its rows by decreasing number of rows. What type of sorting
should be used for this purpose?

P-11.5 In the jagged diagonal format described in Section 11.5.4, the matrix had to be
preprocessed by sorting it by rows of decreasing number of elements.

a. What is the main reason it is necessary to reorder the rows?

b. Assume that the same process of extracting one element perrow is used. At some point
the extraction process will come to a stop and the remainder of the matrix can be put
into a CSR data structure. Write down a good data structure tostore the two pieces of
data and a corresponding algorithm for matrix-by-vector products.

c. This scheme is efficient in many situations but can lead to problems if the first row is
very short. Suggest how to remedy the situation by padding with zero elements, as is
done for the Ellpack format.

P-11.4 Many matrices that arise in PDE applications have a structure that consists of a few
diagonals and a small number of nonzero elements scattered irregularly in the matrix. In
such cases, it is advantageous to extract the diagonal part and put the rest in a general sparse
(e.g., CSR) format. Write a pseudo-code to extract the main diagonals and the sparse part.
As input parameter, the number of diagonals desired must be specified.

NOTES AND REFERENCES. General recommended reading on parallel computing are thebooks
by Kumar et al. [194]. Foster [131], and Wilkinson and Allen [316]. Trends in high-performance
architectures seem to come and go rapidly. In the 80s, it seemed that the paradigm of shared memory
computers with massive parallelism and coarse grain parallelism was sure to win in the long run. Then,
a decade ago massive parallelism of the SIMD type dominated the scene for while, with hypercube
topologies at the forefront. Thereafter, computer vendorsstarted mixing message-passing paradigms
with “global address space”. Currently, it appears that distributed heteregenous computing will be
dominating the high-performance computing scene for some time to come. Another recent development
is the advent of network computing or grid-computing.

Until the advent of supercomputing in the mid 1970s, storageschemes for sparse matrices were
chosen mostly for convenience as performance was not an issue, in general. The first paper showing the
advantage of diagonal storage schemes in sparse matrix computations is probably [184]. The discovery
by supercomputer manufacturers of the specificity of sparsematrix computations was the painful real-
ization that without hardware support, vector computers could be inefficient. Indeed, the early vector
machines (CRAY) did not have hardware instructions for gather and scatter operations but this was
soon remedied in the second-generation machines. For a detailed account of the beneficial impact of
hardware for “scatter” and “gather” on vector machines, see[201].

Level scheduling is a textbook example of topological sorting in graph theory and was discussed
from this viewpoint in, e.g., [8, 258, 318]. For the special case of finite difference matrices on rectan-
gular domains, the idea was suggested by several authors independently, [288, 289, 155, 252, 10]. In
fact, the level scheduling approach described in this chapter is a “greedy” approach and is unlikely to
be optimal. It may be preferable to use abackward scheduling[7] which define the levels from bottom
up in the graph. Thus, the last level consists of the leaves ofthe graph, the previous level consists of
their predecessors, etc. Instead of static scheduling, it is also possible to perform a dynamic scheduling
whereby the order of the computation is determined at run-time. The advantage over pre-scheduled
triangular solutions is that it allows processors to alwaysexecute a task as soon as its predecessors have
been completed, which reduces idle time. Some of the earlierreferences on implementations and tests
wih level-scheduling are [30, 257, 165, 30, 37, 7, 8, 294, 296].



Chapter 12

PARALLEL PRECONDITIONERS

This chapter covers a few alternative methods for preconditioning a linear system. These

methods are suitable when the desired goal is to maximize parallelism. The simplest approach is

the diagonal (or Jacobi) preconditioning. Often, this preconditioner is not very useful, since the

number of iterations of the resulting iteration tends to be much larger than the more standard

variants, such as ILU or SSOR. When developing parallel preconditioners, one should beware that

the benefits of increased parallelism are not outweighed by the increased amount of computations.

The main question to ask is whether or not it is possible to find preconditioning techniques that

have a high degree of parallelism, as well as good intrinsic qualities.

12.1 Introduction

As seen in the previous chapter, a limited amount of parallelism can be extracted
from the standard preconditioners such as ILU and SSOR. Fortunately, a number
of alternative techniques can be developed that are specifically targeted at parallel
environments. These are preconditioning techniques that would normally not be used
on a standard machine, but only for parallel computers. There are at least three such
types of techniques discussed in this chapter. The simplestapproach is to use a Jacobi
or, even better, a block Jacobi approach. In the simplest case, a Jacobi preconditioner
may consist of the diagonal or a block-diagonal ofA. To enhance performance, these
preconditioners can themselves be accelerated by polynomial iterations, i.e., a second
level of preconditioning calledpolynomial preconditioning.

A different strategy altogether is to enhance parallelism by using graph theory
algorithms, such as graph-coloring techniques. These consist of coloring nodes such
that two adjacent nodes have different colors. The gist of this approach is that all
unknowns associated with the same color can be determined simultaneously in the
forward and backward sweeps of the ILU preconditioning operation.

Finally, a third strategy uses generalizations of “partitioning” techniques, which
can be put in the general framework of “domain decomposition” approaches. These
will be covered in detail in the next chapter.

Algorithms are emphasized rather than implementations. There are essentially
two types of algorithms, namely, those which can be termedcoarse-grainand those
which can be termedfine-grain. In coarse-grain algorithms, the parallel tasks are
relatively big and may, for example, involve the solution ofsmall linear systems.

393
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In fine-grain parallelism, the subtasks can be elementary floating-point operations
or consist of a few such operations. As always, the dividing line between the two
classes of algorithms is somewhat blurred.

12.2 Block-Jacobi Preconditioners

Overlapping block-Jacobi preconditioning consists of a general block-Jacobi ap-
proach as described in Chapter 4, in which the setsSi overlap. Thus, we define
the index sets

Si = {j | li ≤ j ≤ ri}
with

l1 = 1

rp = n

ri > li+1, 1 ≤ i ≤ p− 1

wherep is the number of blocks. Now use the block-Jacobi method withthis partic-
ular partitioning, or employ the general framework of additive projection processes
of Chapter 5, and use an additive projection method onto the sequence of subspaces

Ki = span{Vi}, Vi = [eli , eli+1, . . . , eri
].

Each of the blocks will give rise to a correction of the form

ξ
(k+1)
i = ξ

(k)
i +A−1

i V T
i (b−Ax(k)). (12.1)

One problem with the above formula is related to the overlapping portions of thex
variables. The overlapping sections will receive two different corrections in general.
According to the definition of “additive projection processes” seen in Chapter 5, the
next iterate can be defined as

xk+1 = xk +

p
∑

i=1

ViA
−1
i V T

i rk

whererk = b − Axk is the residual vector at the previous iteration. Thus, the
corrections for the overlapping regions simply are added together. It is also possible
to weigh these contributions before adding them up. This is equivalent to redefining
(12.1) into

ξ
(k+1)
i = ξ

(k)
i +DiA

−1
i V T

i (b−Axk)

in which Di is a nonnegative diagonal matrix of weights. It is typical toweigh a
nonoverlapping contribution by one and an overlapping contribution by1/k wherek
is the number of times the unknown is represented in the partitioning.
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Figure 12.1: The block-Jacobi matrix with overlapping blocks.

The block-Jacobi iteration is often over- or under-relaxed, using a relaxation
parameterω. The iteration can be defined in the form

xk+1 = xk +

p
∑

i=1

ωiViA
−1
i V T

i rk.

Recall that the residual at stepk + 1 is then related to that at stepk by

rk+1 =

[

I −
p
∑

i=1

ωiAVi

(
V T

i AVi

)−1
V T

i

]

rk.

The solution of a sparse linear system is required at each projection step. These sys-
tems can be solved by direct methods if the subblocks are small enough. Otherwise,
iterative methods may be used. The outer loop accelerator should then be a flexible
variant, such as FGMRES, which can accommodate variations in the preconditioners.

12.3 Polynomial Preconditioners

In polynomial preconditioning the matrixM is defined by

M−1 = s(A)

wheres is a polynomial, typically of low degree. Thus, the originalsystem is re-
placed by the preconditioned system

s(A)Ax = s(A)b (12.2)
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which is then solved by a conjugate gradient-type technique. Note thats(A) and
A commute and, as a result, the preconditioned matrix is the same for right or left
preconditioning. In addition, the matrixs(A) or As(A) does not need to be formed
explicitly sinceAs(A)v can be computed for any vectorv from a sequence of matrix-
by-vector products.

Initially, this approach was motivated by the good performance of matrix-vector
operations on vector computers for long vectors, e.g., the Cyber 205. However, the
idea itself is an old one and has been suggested by Stiefel [276] for eigenvalue cal-
culations in the mid 1950s. Next, some of the popular choicesfor the polynomials
are described.

12.3.1 Neumann Polynomials

The simplest polynomials which has been used is the polynomial of the Neumann
series expansion

I +N +N2 + · · · +N s

in which
N = I − ωA

andω is a scaling parameter. The above series comes from expanding the inverse of
ωA using the splitting

ωA = I − (I − ωA).

This approach can also be generalized by using a splitting ofthe form

ωA = D − (D − ωA)

whereD can be the diagonal ofA or, more appropriately, a block diagonal ofA.
Then,

(ωA)−1 =
[
D(I − (I − ωD−1A))

]−1

=
[
I − (I − ωD−1A)

]−1
D−1.

Thus, setting
N = I − ωD−1A

results in the approximates-term expansion

(ωA)−1 ≈M−1 ≡ [I +N + · · · +N s]D−1. (12.3)

SinceD−1A = ω−1 [I −N ] , note that

M−1A = [I +N + · · · +N s]D−1A

=
1

ω
[I +N + · · · +N s] (I −N)

=
1

ω
(I −N s+1).

The matrix operation with the preconditioned matrix can be difficult numerically for
large s. If the original matrix is Symmetric Positive Definite, thenM−1A is not
symmetric, but it is self-adjoint with respect to theD-inner product; see Exercise 1.
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12.3.2 Chebyshev Polynomials

The polynomials can be selected to be optimal in some sense, and this leads to the
use of Chebyshev polynomials. The criterion that is used makes the preconditioned
matrix s(A)A as close as possible to the identity matrix in some sense. Forexam-
ple, the spectrum of the preconditioned matrix can be made asclose as possible to
that of the identity. Denoting byσ(A) the spectrum ofA, and byPk the space of
polynomials of degree not exceedingk, the following may be solved.

Find s ∈ Pk which minimizes:

max
λ∈σ(A)

|1− λs(λ)|. (12.4)

Unfortunately, this problem involves all the eigenvalues of A and is harder to solve
than the original problem. Usually, problem (12.4) is replaced by the problem

Find s ∈ Pk which minimizes:

max
λ∈E
|1− λs(λ)|, (12.5)

which is obtained from replacing the setσ(A) by some continuous setE that encloses
it. Thus, a rough idea of the spectrum of the matrixA is needed. Consider first the
particular case whereA is Symmetric Positive Definite, in which caseE can be taken
to be an interval[α, β] containing the eigenvalues ofA.

A variation of Theorem 6.25 is that for any real scalarγ such withγ ≤ α, the
minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached for the shifted and scaled Chebyshev polynomial of the first kind,

Ĉk(t) ≡
Ck

(

1 + 2 α−t
β−α

)

Ck

(

1 + 2α−γ
β−α

) .

Of interest is the case whereγ = 0 which gives the polynomial

Tk(t) ≡
1

σk
Ck

(
β + α− 2t

β − α

)

with σk ≡ Ck

(
β + α

β − α

)

.

Denote the center and mid-width of the interval[α, β], respectively, by

θ ≡ β + α

2
, δ ≡ β − α

2
.

Using these parameters instead ofα, β, the above expressions then become

Tk(t) ≡
1

σk
Ck

(
θ − t
δ

)

with σk ≡ Ck

(
θ

δ

)

.
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The three-term recurrence for the Chebyshev polynomials results in the following
three-term recurrences:

σk+1 = 2
θ

δ
σk − σk−1, k = 1, 2 . . . ,

with
σ1 =

θ

δ
, σ0 = 1,

and

Tk+1(t) ≡
1

σk+1

[

2
θ − t
δ

σkTk(t)− σk−1Tk−1(t)

]

=
σk

σk+1

[

2
θ − t
δ

Tk(t)−
σk−1

σk
Tk−1(t)

]

, k ≥ 1,

with
T1(t) = 1− t

θ
, T0(t) = 1.

Define

ρk ≡ σk

σk+1
, k = 1, 2, . . . . (12.6)

Note that the above recurrences can be put together as

ρk =
1

2σ1 − ρk−1
(12.7)

Tk+1(t) = ρk

[

2

(

σ1 −
t

δ

)

Tk(t)− ρk−1Tk−1(t)

]

, k ≥ 1. (12.8)

Observe that formulas (12.7–12.8) can be started atk = 0 provided we setT−1 ≡ 0
andρ−1 ≡ 0, so thatρ0 = 1/(2σ1).

The goal is to obtain an iteration that produces a residual vector of the form
rk+1 = Tk+1(A)r0 whereTk is the polynomial defined by the above recurrence.
The difference between two successive residual vectors is given by

rk+1 − rk = (Tk+1(A)− Tk(A))r0.

The identity1 = (2σ1 − ρk−1)ρk and the relations (12.8) yield

Tk+1(t)− Tk(t) = Tk+1(t)− (2σ1 − ρk−1)ρkTk(t)

= ρk

[

−2t

δ
Tk(t) + ρk−1(Tk(t)− Tk−1(t))

]

.

As a result,

Tk+1(t)− Tk(t)

t
= ρk

[

ρk−1
Tk(t)− Tk−1(t)

t
− 2

δ
Tk(t)

]

. (12.9)
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Define
dk ≡ xk+1 − xk,

and note thatrk+1 − rk = −Adk. As a result, the relation (12.9) translates into the
recurrence,

dk = ρk

[

ρk−1dk−1 +
2

δ
rk

]

.

Finally, the following algorithm is obtained.

ALGORITHM 12.1 Chebyshev Acceleration

1. r0 = b−Ax0; σ1 = θ/δ;
2. ρ0 = 1/σ1; d0 = 1

θr0;
3. Fork = 0, . . . , until convergence Do:
4. xk+1 = xk + dk

5. rk+1 = rk −Adk

6. ρk+1 = (2σ1 − ρk)
−1;

7. dk+1 = ρk+1ρkdk +
2ρk+1

δ rk+1

8. EndDo

Note that the algorithm requires no inner products, and thisconstitutes one of its
attractions in a parallel computing environment. Lines 7 and 4 can also be recast into
one single update of the form

xk+1 = xk + ρk

[

ρk−1(xk − xk−1) +
2

δ
(b−Axk)

]

.

It can be shown that whenα = λ1 andβ = λN , the resulting preconditioned
matrix minimizes the condition number of the preconditioned matrices of the form
As(A) over all polynomialss of degree≤ k − 1. However, when used in conjunc-
tion with the Conjugate Gradient method, it is observed thatthe polynomial which
minimizes the total number of Conjugate Gradient iterations is far from being the
one which minimizes the condition number.If instead of takingα = λ1 andβ = λN ,
the interval [α, β] is chosen to be slightly inside the interval [λ1, λN ], a much faster
convergence might be achieved. The true optimal parameters, i.e., those that mini-
mize the number of iterations of the polynomial preconditioned Conjugate Gradient
method, are difficult to determine in practice.

There is a slight disadvantage to the approaches described above. The parameters
α andβ, which approximate the smallest and largest eigenvalues ofA, are usually
not available beforehand and must be obtained in some dynamic way. This may be
a problem mainly because a software code based on Chebyshev acceleration could
become quite complex.

To remedy this, one may ask whether the values provided by an application of
Gershgorin’s theorem can be used forα andβ. Thus, in the symmetric case, the
parameterα, whichestimatesthe smallest eigenvalue ofA, may be nonpositive even
whenA is a positive definite matrix. However, whenα ≤ 0, the problem of minimiz-
ing (12.5) is not well defined, since it does not have a unique solution due to the non
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strict-convexity of the uniform norm. An alternative uses theL2-norm on [α, β] with
respect to some weight functionw(λ). This “least-squares” polynomials approach is
considered next.

12.3.3 Least-Squares Polynomials

Consider the inner product on the spacePk:

〈p, q〉 =

∫ β

α
p(λ)q(λ)w(λ)dλ (12.10)

wherew(λ) is some non-negative weight function on (α, β). Denote by‖p‖w and
callw-norm, the 2-norm induced by this inner product.

We seek the polynomialsk−1 which minimizes

‖1− λs(λ)‖w (12.11)

over all polynomialss of degree≤ k− 1. Call sk−1 the least-squares iteration poly-
nomial, or simply the least-squares polynomial, and refer toRk(λ) ≡ 1− λsk−1(λ)
as the least-squares residual polynomial. A crucial observation is that the least
squares polynomial is well defined for arbitrary values ofα andβ. Computing the
polynomial sk−1(λ) is not a difficult task when the weight functionw is suitably
chosen.

Computation of the least-squares polynomials There are three ways to com-
pute the least-squares polynomialsk defined in the previous section. The first ap-
proach is to use an explicit formula forRk, known as the kernel polynomials for-
mula,

Rk(λ) =

∑k
i=0 qi(0)qi(λ)
∑k

i=0 qi(0)
2

(12.12)

in which theqi’s represent a sequence of polynomials orthogonal with respect to the
weight functionw(λ). The second approach generates a three-term recurrence sat-
isfied by the residual polynomialsRk(λ). These polynomials are orthogonal with
respect to the weight functionλw(λ). From this three-term recurrence, we can pro-
ceed exactly as for the Chebyshev iteration to obtain a recurrence formula for the
sequence of approximate solutionsxk. Finally, a third approach solves the Normal
Equations associated with the minimization of (12.11), namely,

〈1− λsk−1(λ), λQj(λ)〉 = 0, j = 0, 1, 2, . . . , k − 1

whereQj, j = 1, . . . , k − 1 is any basis of the spacePk−1 of polynomials of degree
≤ k − 1.

These three approaches can all be useful in different situations. For example, the
first approach can be useful for computing least-squares polynomials of low degree
explicitly. For high-degree polynomials, the last two approaches are preferable for
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their better numerical behavior. The second approach is restricted to the case where
α ≥ 0, while the third is more general.

Since the degrees of the polynomial preconditioners are often low, e.g., not ex-
ceeding 5 or 10, we will give some details on the first formulation. Let qi(λ), i =
0, 1, . . . , n, . . ., be theorthonormalpolynomials with respect tow(λ). It is known
that the least-squares residual polynomialRk(λ) of degreek is determined by the
kernel polynomials formula (12.12). To obtainsk−1(λ), simply notice that

sk−1(λ) =
1−Rk(λ)

λ

=

∑k
i=0 qi(0)ti(λ)
∑k

i=0 qi(0)
2

, with (12.13)

ti(λ) =
qi(0)− qi(λ)

λ
. (12.14)

This allowssk−1 to be computed as a linear combination of the polynomialsti(λ).
Thus, we can obtain the desired least-squares polynomials from the sequence of or-
thogonal polynomialsqi which satisfy a three-term recurrence of the form:

βi+1qi+1(λ) = (λ− αi)qi(λ)− βiqi−1(λ), i = 1, 2, . . . .

From this, the following recurrence for theti’s can be derived:

βi+1ti+1(λ) = (λ− αi)ti(λ)− βiti−1(λ) + qi(0), i = 1, 2, . . . .

The weight functionw is chosen so that the three-term recurrence of the orthog-
onal polynomialsqi is known explicitly and/or is easy to generate. An interesting
class of weight functions that satisfy this requirement is considered next.

Choice of the weight functions This section assumes thatα = 0 andβ = 1.
Consider the Jacobi weights

w(λ) = λµ−1(1− λ)ν ,whereµ > 0 andν ≥ −1

2
. (12.15)

For these weight functions, the recurrence relations are known explicitly for the poly-
nomials that are orthogonal with respect tow(λ), λw(λ), orλ2w(λ). This allows the
use of any of the three methods described in the previous section for computing
sk−1(λ). Moreover, it has been shown [180] that the preconditioned matrixAsk(A)
is Symmetric Positive Definite whenA is Symmetric Positive Definite, provided that
µ− 1 ≥ ν ≥ −1

2 .
The following explicit formula forRk(λ) can be derived easily from the explicit

expression of the Jacobi polynomials and the fact that{Rk} is orthogonal with re-
spect to the weightλw(λ):

Rk(λ) =
k∑

j=0

κ
(k)
j (1− λ)k−j(−λ)j (12.16)
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κ
(k)
j =

(
k
j

) j−1
∏

i=0

k − i+ ν

i+ 1 + µ
.

Using (12.13), the polynomialsk−1(λ) = (1 − Rk(λ))/λ can be derived easily “by
hand” for small degrees; see Exercise 4.

Example 12.1. As an illustration, we list the least-squares polynomialssk for k =
1, . . ., 8, obtained for the Jacobi weights withµ = 1

2 andν = −1
2 . The polynomials

listed are for the interval[0, 4] as this leads to integer coefficients. For a general
interval [0, β], the best polynomial of degreek is sk(4λ/β). Also, each polynomial
sk is rescaled by(3+2k)/4 to simplify the expressions. However, this scaling factor
is unimportant if these polynomials are used for preconditioning.

1 λ λ2 λ3 λ4 λ5 λ6 λ7 λ8

s1 5 − 1
s2 14 −7 1
s3 30 − 27 9 − 1
s4 55 − 77 44 − 11 1
s5 91 − 182 156 − 65 13 − 1
s6 140 − 378 450 − 275 90 − 15 1
s7 204 − 714 1122 − 935 442 − 119 17 − 1
s8 285 − 1254 2508 − 2717 1729 − 665 152 − 19 1

We selectedµ = 1
2 andν = −1

2 only because these choices lead to a very simple
recurrence for the polynomialsqi, which are the Chebyshev polynomials of the first
kind.

Theoretical considerations An interesting theoretical question is whether the
least-squares residual polynomial becomes small in some sense as its degree in-
creases. Consider first the case0 < α < β. Since the residual polynomialRk

minimizes the norm‖R‖w associated with the weightw, over all polynomialsR of
degree≤ k such thatR(0) = 1, the polynomial(1 − (λ/θ))k with θ = (α + β)/2
satisfies

‖Rk‖w ≤
∥
∥
∥
∥
∥

(

1− λ

c

)k
∥
∥
∥
∥
∥

w

≤
∥
∥
∥
∥
∥

[
b− a
b+ a

]k
∥
∥
∥
∥
∥

w

= κ

[
β − α
β + α

]k

whereκ is thew-norm of the function unity on the interval[α, β]. The norm ofRk

will tend to zero geometrically ask tends to infinity, providedα > 0.
Consider now the caseα = 0, β = 1 and the Jacobi weight (12.15). For this

choice of the weight function, the least-squares residual polynomial is known to be
pk(λ)/pk(0) wherepk is thekth degree Jacobi polynomial associated with the weight
functionw′(λ) = λµ(1 − λ)ν . It can be shown that the 2-norm of such a residual
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polynomial with respect to this weight is given by

‖pk/pk(0)‖2w′ =
Γ2(µ+ 1)Γ(k + ν + 1)

(2k + µ+ ν + 1)(Γ(k + µ+ ν + 1)

Γ(k + 1)

Γ(k + µ+ 1)

in whichΓ is the Gamma function. For the caseµ = 1
2 andν = −1

2 , this becomes

‖pk/pk(0)‖2w′ =
[Γ(3

2 )]2

(2k + 1)(k + 1
2)

=
π

2(2k + 1)2
.

Therefore, thew′-norm of the least-squares residual polynomial converges to zero
like 1/k as the degreek increases (a much slower rate than whenα > 0). However,
note that the conditionp(0) = 1 implies that the polynomial must be large in some
interval around the origin.

12.3.4 The Nonsymmetric Case

Given a set of approximate eigenvalues of a nonsymmetric matrix A, a simple region
E can be constructed in the complex plane, e.g., a disk, an ellipse, or a polygon,
which encloses the spectrum of the matrixA. There are several choices forE. The
first idea uses an ellipseE that encloses an approximate convex hull of the spectrum.
Consider an ellipse centered atθ, and with focal distanceδ. Then as seen in Chapter
6, the shifted and scaled Chebyshev polynomials defined by

Tk(λ) =
Ck

(
θ−λ

δ

)

Ck

(
θ
δ

)

are nearly optimal. The use of these polynomials leads againto an attractive three-
term recurrence and to an algorithm similar to Algorithm 12.1. In fact, the recurrence
is identical, except that the scalars involved can now be complex to accommodate
cases where the ellipse has foci not necessarily located on the real axis. However,
whenA is real, then the symmetry of the foci with respect to the realaxis can be
exploited. The algorithm can still be written in real arithmetic.

An alternative to Chebyshev polynomials over ellipses employs a polygonH
that containsσ(A). Polygonal regions may better represent the shape of an arbitrary
spectrum. The best polynomial for the infinity norm is not known explicitly but it
may be computed by an algorithm known in approximation theory as the Remez
algorithm. It may be simpler to use anL2-norm instead of the infinity norm, i.e.,
to solve (12.11) wherew is some weight function defined on the boundary of the
polygonH.

Now here is a sketch of an algorithm based on this approach. AnL2-norm asso-
ciated with Chebyshev weights on the edges of the polygon is used. If the contour of
H consists ofk edges each with centerθi and half-lengthδi, then the weight on each
edge is defined by

wi(λ) =
2

π
|δi − (λ− θi)

2|−1/2, i = 1, . . . , k. (12.17)
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Using the power basis to express the best polynomial is not viable. It is preferable
to use the Chebyshev polynomials associated with the ellipse of smallest area con-
tainingH. With the above weights or any other Jacobi weights on the edges, there is
a finite procedurewhich does not require numerical integrationto compute the best
polynomial. To do this, each of the polynomials of the basis (i.e., the Chebyshev
polynomials associated with the ellipse of smallest area containingH) must be ex-
pressed as a linear combination of the Chebyshev polynomials associated with the
different intervals[θi− δi, θi + δi]. This redundancy allows exact expressions for the
integrals involved in computing the least-squares solution to (12.11).

Next, the main lines of a preconditioned GMRES algorithm aredescribed based
on least-squares polynomials. Eigenvalue estimates are obtained from a GMRES step
at the beginning of the outer loop. This GMRES adaptive corrects the current solution
and the eigenvalue estimates are used to update the current polygonH. Correcting
the solution at this stage is particularly important since it often results in a few orders
of magnitude improvement. This is because the polygonH may be inaccurate and
the residual vector is dominated by components in one or two eigenvectors. The
GMRES step will immediately annihilate those dominating components. In addition,
the eigenvalues associated with these components will now be accurately represented
by eigenvalues of the Hessenberg matrix.

ALGORITHM 12.2 Polynomial Preconditioned GMRES

1. Start or Restart:
2. Compute current residual vectorr := b−Ax.
3. Adaptive GMRES step:
4. Runm1 steps of GMRES for solvingAd = r.
5. Updatex by x := x+ d.
6. Get eigenvalue estimates from the eigenvalues of the
7. Hessenberg matrix.
8. Compute new polynomial:
9. RefineH from previous hullH and new eigenvalue estimates.

10. Get new best polynomialsk.
11. Polynomial Iteration:
12. Compute the current residual vectorr = b−Ax.
13. Runm2 steps of GMRES applied tosk(A)Ad = sk(A)r.
14. Updatex by x := x+ d.
15. Test for convergence.
16. If solution converged then Stop; else GoTo 1.

Example 12.2. Table 12.1 shows the results of applying GMRES(20) with poly-
nomial preconditioning to the first four test problems described in Section 3.7. See
Example 6.1 for the meaning of the column headers in the table. In fact, the system is
preconditioned by ILU(0) before polynomial preconditioning is applied to it. Degree
10 polynomials (maximum) are used. The tolerance for stopping is 10−7. Recall
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Matrix Iters Kflops Residual Error

F2DA 56 2774 0.22E-05 0.51E-06

F3D 22 7203 0.18E-05 0.22E-05

ORS 78 4454 0.16E-05 0.32E-08

F2DB 100 4432 0.47E-05 0.19E-05

Table 12.1: A test run of ILU(0)-GMRES accelerated with polynomial precondition-
ing.

that Iters is the number of matrix-by-vector products rather than the number of GM-
RES iterations. Notice that, for most cases, the method doesnot compare well with
the simpler ILU(0) example seen in Chapter 10. The notable exception is example
F2DB for which the method converges fairly fast in contrast with the simple ILU(0)-
GMRES; see Example 10.2. An attempt to use the method for the fifth matrix in the
test set, namely, the FIDAP matrix FID, failed because the matrix has eigenvalues on
both sides of the imaginary axis and the code tested does not handle this situation.

It is interesting to follow the progress of the algorithm in the above examples.
For the first example, the coordinates of the vertices of the upper part of the first
polygonH are

ℜe(ci) ℑm(ci)

0.06492 0.00000
0.17641 0.02035
0.29340 0.03545
0.62858 0.04977
1.18052 0.00000

This hull is computed from the 20 eigenvalues of the20 × 20 Hessenberg matrix
resulting from the first run of GMRES(20). In the ensuing GMRES loop, the outer
iteration converges in three steps, each using a polynomialof degree 10, i.e., there is
no further adaptation required. For the second problem, themethod converges in the
20 first steps of GMRES, so polynomial acceleration was neverinvoked. For the third
example, the initial convex hull found is the interval[0.06319, 1.67243] of the real
line. The polynomial preconditioned GMRES then convergences in five iterations.
Finally, the initial convex hull found for the last example is

ℜe(ci) ℑm(ci)

0.17131 0.00000
0.39337 0.10758
1.43826 0.00000
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and the outer loop converges again without another adaptation step, this time in seven
steps.

12.4 Multicoloring

The general idea of multicoloring, or graph coloring, has been used for a long time
by numerical analysts. It was exploited, in particular, in the context of relaxation
techniques both for understanding their theory and for deriving efficient algorithms.
More recently, these techniques were found to be useful in improving parallelism
in iterative solution techniques. This discussion begins with the 2-color case, called
red-blackordering.

12.4.1 Red-Black Ordering

The problem addressed by multicoloring is to determine a coloring of the nodes of the
adjacency graph of a matrix such that any two adjacent nodes have different colors.
For a 2-dimensional finite difference grid (5-point operator), this can be achieved
with two colors, typically referred to as “red” and “black.”This red-black coloring
is illustrated in Figure 12.2 for a6 × 4 mesh where the black nodes are represented
by filled circles.

1 3 5

8 10 12

13 15 17

20 22 24

2 4 6

7 9 11

14 16 18

19 21 23

Figure 12.2: Red-black coloring of a6× 4 grid. Natural labeling of the nodes.

Assume that the unknowns are labeled by listing the red unknowns first together,
followed by the black ones. The new labeling of the unknowns is shown in Figure
12.3. Since the red nodes are not coupled with other red nodesand, similarly, the
black nodes are not coupled with other black nodes, the system that results from this
reordering will have the structure

(
D1 F
E D2

)(
x1

x2

)

=

(
b1
b2

)

, (12.18)

in which D1 andD2 are diagonal matrices. The reordered matrix associated with
this new labeling is shown in Figure 12.4.
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1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

Figure 12.3: Red-black coloring of a6× 4 grid. Red-black labeling of the nodes.

Figure 12.4: Matrix associated with the red-black reordering of Figure 12.3.

Two issues will be explored regarding red-black ordering. The first is how to
exploit this structure for solving linear systems. The second is how to generalize this
approach for systems whose graphs are not necessarily 2-colorable.

12.4.2 Solution of Red-Black Systems

The easiest way to exploit the red-black ordering is to use the standard SSOR or
ILU(0) preconditioners for solving the block system (12.18) which is derived from
the original system. The resulting preconditioning operations are highly parallel. For
example, the linear system that arises from the forward solve in SSOR will have the
form (

D1 O
E D2

)(
x1

x2

)

=

(
b1
b2

)

.

This system can be solved by performing the following sequence of operations:

1. SolveD1x1 = b1.
2. Computêb2 := b2 − Ex1.
3. SolveD2x2 = b̂2.



408 CHAPTER 12. PARALLEL PRECONDITIONERS

This consists of two diagonal scalings (operations 1 and 3) and a sparse matrix-
by-vector product. Therefore, the degree of parallelism, is at leastn/2 if an atomic
task is considered to be any arithmetic operation. The situation is identical with
the ILU(0) preconditioning. However, since the matrix has been reordered before
ILU(0) is applied to it, the resulting LU factors are not related in any simple way
to those associated with the original matrix. In fact, a simple look at the structure
of the ILU factors reveals that many more elements are dropped with the red-black
ordering than with the natural ordering. The result is that the number of iterations
to achieve convergence can be much higher with red-black ordering than with the
natural ordering.

A second method that has been used in connection with the red-black ordering
solves the reduced system which involves only the black unknowns. Eliminating the
red unknowns from (12.18) results in the reduced system:

(D2 − ED−1
1 F )x2 = b2 − ED−1

1 b1.

Note that this new system is again a sparse linear system withabout half as many
unknowns. In addition, it has been observed that for “easy problems,” the reduced
system can often be solved efficiently with only diagonal preconditioning. The com-
putation of the reduced system is a highly parallel and inexpensive process. Note
that it is not necessary to form the reduced system. This strategy is more often em-
ployed whenD1 is not diagonal, such as in domain decomposition methods, but it
can also have some uses in other situations. For example, applying the matrix to a
given vectorx can be performed using nearest-neighbor communication, and this can
be more efficient than the standard approach of multiplying the vector by the Schur
complement matrixD2 −ED−1

1 F . In addition, this can save storage, which may be
more critical in some cases.

12.4.3 Multicoloring for General Sparse Matrices

Chapter 3 discussed a general greedy approach for multicoloring a graph. Given a
general sparse matrixA, this inexpensive technique allows us to reorder it into a
block form where the diagonal blocks are diagonal matrices.The number of blocks
is the number of colors. For example, for six colors, a matrixwould result with the
structure shown in Figure 12.5 where theDi’s are diagonal andE, F are general
sparse. This structure is obviously a generalization of thered-black ordering.

Just as for the red-black ordering, ILU(0), SOR, or SSOR preconditioning can
be used on this reordered system. The parallelism of SOR/SSOR is now of ordern/p
wherep is the number of colors. A loss in efficiency may occur since the number of
iterations is likely to increase.

A Gauss-Seidel sweep will essentially consist ofp scalings andp− 1 matrix-by-
vector products, wherep is the number of colors. Specifically, assume that the matrix
is stored in the well known Ellpack-Itpack format and that the block structure of the
permuted matrix is defined by a pointer arrayiptr. The indexiptr(j) is the index of
the first row in thej-th block.
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D1

D2

D3

D4

D5

D6

F

E

Figure 12.5: A six-color ordering of a general sparse matrix.

Thus, the pairA(n1 : n2, ∗), JA(n1 : n2, ∗) represents the sparse matrix con-
sisting of the rowsn1 to n2 in the Ellpack-Itpack format. The main diagonal ofA
is assumed to be stored separately in inverted form in a one-dimensional arraydiag.
One single step of the multicolor SOR iteration will then take the following form.

ALGORITHM 12.3 Multicolor SOR Sweep in the Ellpack Format

1. Do col = 1, ncol
2. n1 = iptr(col)
3. n2 = iptr(col+1) – 1
4. y(n1:n2) = rhs(n1:n2)
5. Do j = 1, ndiag
6. Do i = n1, n2
7. y(i) = y(i) – a(i,j)*y(ja(i,j))
8. EndDo
9. EndDo

10. y(n1:n2) = diag(n1:n2) * y(n1:n2)
11. EndDo

In the above algorithm,ncol is the number of colors. The integersn1 andn2 set in
lines 2 and 3 represent the beginning and the end of blockcol. In line 10,y(n1 : n2)
is multiplied by the diagonalD−1 which is kept in inverted form in the arraydiag.
The outer loop, i.e., the loop starting in line 1, is sequential. The loop starting in
line 6 is vectorizable/parallelizable. There is additional parallelism which can be
extracted in the combination of the two loops starting in lines 5 and 6.

12.5 Multi-Elimination ILU

The discussion in this section begins with the Gaussian elimination algorithm for a
general sparse linear system. Parallelism in sparse Gaussian elimination can be ob-
tained by finding unknowns that are independent at a given stage of the elimination,
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i.e., unknowns that do not depend on each other according to the binary relation de-
fined by the graph of the matrix. A set of unknowns of a linear system which are
independent is called an independent set. Thus, independent set orderings can be
viewed as permutations to put the original matrix in the form

(
D E
F C

)

(12.19)

in which D is diagonal, butC can be arbitrary. This amounts to a less restrictive
form of multicoloring, in which a set of vertices in the adjacency graph is found so
that no equation in the set involves unknowns from the same set. A few algorithms
for finding independent set orderings of a general sparse graph were discussed in
Chapter 3.

The rows associated with an independent set can be used as pivots simultane-
ously. When such rows are eliminated, a smaller linear system results, which is again
sparse. Then we can find an independent set for this reduced system and repeat the
process of reduction. The resulting second reduced system is called the second-level
reduced system.

The process can be repeated recursively a few times. As the level of the reduc-
tion increases, the reduced systems gradually lose their sparsity. A direct solution
method would continue the reduction until the reduced system is small enough or
dense enough to switch to a dense Gaussian elimination to solve it. This process is
illustrated in Figure 12.6. There exists a number of sparse direct solution techniques
based on this approach.

Figure 12.6: Illustration of two levels of multi-elimination for sparse linear systems.

After a brief review of the direct solution method based on independent set or-
derings, we will explain how to exploit this approach for deriving incomplete LU
factorizations by incorporating drop tolerance strategies.

12.5.1 Multi-Elimination

We start by a discussion of anexactreduction step. LetAj be the matrix obtained
at thej-th step of the reduction,j = 0, . . . , nlev with A0 = A. Assume that an
independent set ordering is applied toAj and that the matrix is permuted accordingly
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as follows:

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

(12.20)

whereDj is a diagonal matrix. Now eliminate the unknowns of the independent set
to get the next reduced matrix,

Aj+1 = Cj − EjD
−1
j Fj . (12.21)

This results, implicitly, in a block LU factorization

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

=

(
I O

EjD
−1
j I

)

×
(
Dj Fj

O Aj+1

)

with Aj+1 defined above. Thus, in order to solve a system with the matrixAj , both
a forward and a backward substitution need to be performed with the block matrices
on the right-hand side of the above system. The backward solution involves solving
a system with the matrixAj+1.

This block factorization approach can be used recursively until a system results
that is small enough to be solved with a standard method. The transformations used
in the elimination process, i.e., the matricesEjD

−1
j and the matricesFj must be

saved. The permutation matricesPj can also be saved. Alternatively, the matrices
involved in the factorization at each new reordering step can be permuted explicitly.

Figure 12.7: Illustration of the processed matrices obtained from three steps of in-
dependent set ordering and reductions.
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12.5.2 ILUM

The successive reduction steps described above will give rise to matrices that be-
come more and more dense due to the fill-ins introduced by the elimination process.
In iterative methods, a common cure for this is to neglect some of the fill-ins intro-
duced by using a simple dropping strategy as the reduced systems are formed. For
example, any fill-in element introduced is dropped, whenever its size is less than a
given tolerance times the 2-norm of the original row. Thus, an “approximate” ver-
sion of the successive reduction steps can be used to providean approximate solution
M−1v to A−1v for any givenv. This can be used to precondition the original lin-
ear system. Conceptually, the modification leading to an “incomplete” factorization
replaces (12.21) by

Aj+1 = (Cj − EjD
−1
j Fj)−Rj (12.22)

in which Rj is the matrix of the elements that are dropped in this reduction step.
Globally, the algorithm can be viewed as a form of incompleteblock LU with per-
mutations.

Thus, there is a succession of block ILU factorizations of the form

PjAjP
T
j =

(
Dj Fj

Ej Cj

)

=

(
I O

EjD
−1
j I

)

×
(
Dj Fj

O Aj+1

)

+

(
O O
O Rj

)

with Aj+1 defined by (12.22). An independent set ordering for the new matrix Aj+1

will then be found and this matrix is reduced again in the samemanner. It is not
necessary to save the successiveAj matrices, but only the last one that is generated.
We need also to save the sequence of sparse matrices

Bj+1 =

(
Dj Fj

EjD
−1
j O

)

(12.23)

which contain the transformation needed at levelj of the reduction. The succes-
sive permutation matricesPj can be discarded if they are applied to the previous
Bi matrices as soon as these permutation matrices are known. Then only the global
permutation is needed, which is the product of all these successive permutations.

An illustration of the matrices obtained after three reduction steps is shown in
Figure 12.7. The original matrix is a 5-point matrix associated with a15×15 grid and
is therefore of sizeN = 225. Here, the successive matricesBi (with permutations
applied) are shown together with the lastAj matrix which occupies the location of
theO block in (12.23).

We refer to this incomplete factorization as ILUM (ILU with Multi-Elimination).
The preprocessing phase consists of a succession ofnlev applications of the follow-
ing three steps: (1) finding the independent set ordering, (2) permuting the matrix,
and (3) reducing it.

ALGORITHM 12.4 ILUM: Preprocessing Phase
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1. SetA0 = A.
2. Forj = 0, 1, . . . , nlev − 1 Do:
3. Find an independent set ordering permutationPj for Aj ;
4. ApplyPj toAj to permute it into the form (12.20);
5. ApplyPj toB1, . . . , Bj ;
6. ApplyPj toP0, . . . , Pj−1;
7. Compute the matricesAj+1 andBj+1 defined by (12.22) and (12.23).
8. EndDo

In the backward and forward solution phases, the last reduced system must be solved
but not necessarily with high accuracy. For example, we can solve it according to the
level of tolerance allowed in the dropping strategy during the preprocessing phase.

Observe that if the linear system is solved inaccurately, only an accelerator that
allows variations in the preconditioning should be used. Such algorithms have been
discussed in Chapter 9. Alternatively, we can use a fixed number of multicolor SOR
or SSOR steps or a fixed polynomial iteration. The implementation of the ILUM pre-
conditioner corresponding to this strategy is rather complicated and involves several
parameters.

In order to describe the forward and backward solution, we introduce some no-
tation. We start by applying the “global permutation,” i.e., the product

Pnlev−1, Pnlev−2 . . . , P0

to the right-hand side. We overwrite the result on the current solution vector, an
N -vector calledx0. Now partition this vector into

x0 =

(
y0

x1

)

according to the partitioning (12.20). The forward step consists of transforming the
second component of the right-hand side as

x1 := x1 − E0D
−1
0 y0.

Now x1 is partitioned in the same manner asx0 and the forward elimination is con-
tinued the same way. Thus, at each step, eachxj is partitioned as

xj =

(
yj

xj+1

)

.

A forward elimination step defines the newxj+1 using the oldxj+1 andyj for j =
0, . . . , nlev − 1 while a backward step definesyj using the oldyj andxj+1, for
j = nlev − 1, . . . , 0. Algorithm 12.5 describes the general structure of the forward
and backward solution sweeps. Because the global permutation was applied at the
beginning, the successive permutations need not be applied. However, the final result
obtained must be permuted back into the original ordering.
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ALGORITHM 12.5 ILUM: Forward and Backward Solutions

1. Apply global permutation to right-hand-sideb and copy intox0.
2. Forj = 0, 1, . . . , nlev − 1 Do: [Forward sweep]
3. xj+1 := xj+1 − EjD

−1
j yj

4. EndDo
5. Solve with a relative toleranceǫ:
6. Anlevxnlev := xnlev.
7. Forj = nlev − 1, . . . , 1, 0 Do: [Backward sweep]
8. yj := D−1

j (yj − Fjxj+1).
9. EndDo

10. Permute the resulting solution vector back to the original
11. ordering to obtain the solutionx.

Computer implementations of ILUM can be rather tedious. Theimplementa-
tion issues are similar to those of parallel direct-solution methods for sparse linear
systems.

12.6 Distributed ILU and SSOR

This section describes parallel variants of the block Successive Over-Relaxation
(BSOR) and ILU(0) preconditioners which are suitable for distributed memory en-
vironments. Chapter 11 briefly discusseddistributed sparse matrices. A distributed
matrix is a matrix whose entries are located in the memories of different processors
in a multiprocessor system. These types of data structures are very convenient for
distributed memory computers and it is useful to discuss implementations of precon-
ditioners that are specifically developed for them. Refer toSection 11.5.5 for the
terminology used here. In particular, the termsubdomainis used in the very general
sense of subgraph. For both ILU and SOR, multicoloring or level scheduling can be
used at the macro level, to extract parallelism. Here, macrolevel means the level of
parallelism corresponding to the processors, or blocks, orsubdomains.

In the ILU(0) factorization, the LU factors have the same nonzero patterns as
the original matrixA, so that the references of the entries belonging to the external
subdomains in the ILU(0) factorization are identical with those of the matrix-by-
vector product operation with the matrixA. This is not the case for the more accurate
ILU(p) factorization, withp > 0. If an attempt is made to implement a wavefront
ILU preconditioner on a distributed memory computer, a difficulty arises because the
natural ordering for the original sparse problem may put an unnecessary limit on the
amount of parallelism available. Instead, a two-level ordering is used. First, define a
“global” ordering which is a wavefront ordering for the subdomains. This is based on
the graph which describes the coupling between the subdomains: Two subdomains
are coupled if and only if they contain at least a pair of coupled unknowns, one from
each subdomain. Then, within each subdomain, define a local ordering.
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Figure 12.8: A local view of the distributed ILU(0).

To describe the possible parallel implementations of theseILU(0) precondition-
ers, it is sufficient to consider a local view of the distributed sparse matrix, illustrated
in Figure 12.8. The problem is partitioned intop subdomains or subgraphs using
some graph partitioning technique. This results in a mapping of the matrix into pro-
cessors where it is assumed that thei-th equation (row) and thei-th unknown are
mapped to the same processor. We distinguish betweeninterior points andinterface
points. The interior points are those nodes that are not coupled with nodes belonging
to other processors. Interface nodes are those local nodes that are coupled with at
least one node which belongs to another processor. Thus, processor number 10 in
the figure holds a certain number of rows that are local rows.

Consider the rows associated with the interior nodes. The unknowns associated
with these nodes are not coupled with variables from other processors. As a result,
the rows associated with these nodes can be eliminated independently in the ILU(0)
process. The rows associated with the nodes on the interfaceof the subdomain will
require more attention. Recall that an ILU(0) factorization is determined entirely by
the order in which the rows are processed.

The interior nodes can be eliminated first. Once this is done,the interface rows
can be eliminatedin a certain order. There are two natural choices for this order.
The first would be to impose a global order based on the labels of the processors.
Thus, in the illustration, the interface rows belonging to Processors 2, 4, and 6 are
processed before those in Processor 10. The interface rows in Processor 10 must in
turn be processed before those of Processors 13 and 14.

The local order, i.e., the order in which we process the interface rows in the same
processor (e.g. Processor 10), may not be as important. Thisglobal order based on
PE-number defines a natural priority graph and parallelism can be exploited easily in
a data-driven implementation.

It is somewhat unnatural to base the ordering just on the processor labeling.
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Observe that a proper order can also be defined for performingthe elimination by
replacing the PE-numbers with any labels, provided that anytwo neighboring pro-
cessors have a different label. The most natural way to do this is by performing a
multicoloring of the subdomains, and using the colors in exactly the same way as
before to define an order of the tasks. The algorithms will be written in this general
form, i.e., with a label associated with each processor. Thus, the simplest valid labels
are the PE numbers, which lead to the PE-label-based order. In the following, we
defineLabj as the label of Processor numberj.

ALGORITHM 12.6 Distributed ILU(0) factorization

1. In each processorPi, i = 1, . . . , p Do:
2. Perform the ILU(0) factorization for interior local rows.
3. Receive the factored rows from the adjacent processorsj with
4. Labj < Labi.
5. Perform the ILU(0) factorization for the interface rows with
6. pivots received from the external processors in step 3.
7. Perform the ILU(0) factorization for the boundary nodes,with
8. pivots from the interior rows completed in step 2.
9. Send the completed interface rows to adjacent processorsj with

10. Labj > Labi.
11. EndDo

Step 2 of the above algorithm can be performed in parallel because it does not de-
pend on data from other subdomains. Once this distributed ILU(0) factorization is
completed, the preconditioned Krylov subspace algorithm will require a forward and
backward sweep at each step. The distributed forward/backward solution based on
this factorization can be implemented as follows.

ALGORITHM 12.7 Distributed Forward and Backward Sweep

1. In each processorPi, i = 1, . . . , p Do:
2. Forward solve:
3. Perform the forward solve for the interior nodes.
4. Receive the updated values from the adjacent processorsj
5. withLabj < Labi.
6. Perform the forward solve for the interface nodes.
7. Send the updated values of boundary nodes to the adjacent
8. processorsj with Labj > Labi.
9. Backward solve:

10. Receive the updated values from the adjacent processorsj
11. withLabj > Labi.
12. Perform the backward solve for the boundary nodes.
13. Send the updated values of boundary nodes to the adjacent
14. processors,j with Labj < Labi.
15. Perform the backward solve for the interior nodes.
16. EndDo
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As in the ILU(0) factorization, the interior nodes do not depend on the nodes from
the external processors and can be computed in parallel in lines 3 and 15. In the
forward solve, the solution of the interior nodes is followed by an exchange of data
and the solution on the interface. The backward solve works in reverse in that the
boundary nodes are first computed, then they are sent to adjacent processors. Finally,
interior nodes are updated.

12.7 Other Techniques

This section gives a brief account of other parallel preconditioning techniques which
are sometimes used. The next chapter also examines another important class of meth-
ods, which were briefly mentioned before, namely, the class of Domain Decomposi-
tion methods.

12.7.1 Approximate Inverses

Another class of preconditioners that require only matrix-by-vector products, is the
class of approximate inverse preconditioners. Discussed in Chapter 10, these can be
used in many different ways. Besides being simple to implement, both their prepro-
cessing phase and iteration phase allow a large degree of parallelism. Their disadvan-
tage is similar to polynomial preconditioners, namely, thenumber of steps required
for convergence may be large, possibly substantially larger than with the standard
techniques. On the positive side, they are fairly robust techniques which can work
well where standard methods may fail.

12.7.2 Element-by-Element Techniques

A somewhat specialized set of techniques is the class of Element-By-Element (EBE)
preconditioners which are geared toward finite element problems and are motivated
by the desire to avoid assembling finite element matrices. Many finite element codes
keep the data related to the linear system in unassembled form. The element matrices
associated with each element are stored and never added together. This is convenient
when using direct methods since there are techniques, knownas frontal methods, that
allow Gaussian elimination to be performed by using a few elements at a time.

It was seen in Chapter 2 that the global stiffness matrixA is the sum of matrices
A[e] associated with each element, i.e.,

A =

Nel∑

e=1

A[e].

Here, the matrixA[e] is ann× n matrix defined as

A[e] = PeAKeP
T
e

in whichAKe is the element matrix andPe is a Boolean connectivity matrix which
maps the coordinates of the smallAKe matrix into those of the full matrixA. Chapter
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2 showed how matrix-by-vector products can be performed in unassembled form. To
perform this product in parallel, note that the only potential obstacle to performing
the matrix-by-vector product in parallel, i.e., across allelements, is in the last phase,
i.e., when the contributions are summed to the resulting vector y. In order to add the
contributionsA[e]x in parallel, group elements that do not have nodes in common.
Referring to Equation (2.46), the contributions

ye = AKe(P
T
e x)

can all be computed in parallel and do not depend on one another. The operations

y := y + Peye

can be processed in parallel for any group of elements that donot share any vertices.
This grouping can be found by performing a multicoloring of the elements. Any two
elements which have a node in common receive a different color. Using this idea,
good performance can be achieved on vector computers.

EBE preconditioners are based on similar principles and many different variants
have been developed. They are defined by first normalizing each of the element
matrices. In the sequel, assume thatA is a Symmetric Positive Definite matrix.
Typically, a diagonal, or block diagonal, scaling is first applied to A to obtain a
scaled matrixÃ,

Ã = D−1/2AD−1/2. (12.24)

This results in each matrixA[e] and element matrixAKe being transformed similarly:

Ã[e] = D−1/2A[e]D−1/2

= D−1/2PeAKeD
−1/2

= Pe(P
T
e D

−1/2Pe)A
[e](PeD

−1/2P T
e )

≡ PeÃKeP
T
e .

The second step in defining an EBE preconditioner is toregularizeeach of these
transformed matrices. Indeed, each of the matricesA[e] is of rankpe at most, where
pe is the size of the element matrixAKe , i.e., the number of nodes which constitute
thee-th element. In the so-calledWinget regularization, the diagonal of eachA[e] is
forced to be the identity matrix. In other words, the regularized matrix is defined as

Ā[e] = I + Ã[e] − diag(Ã[e]). (12.25)

These matrices are positive definite; see Exercise 4.
The third and final step in defining an EBE preconditioner is tochoose the fac-

torization itself. In the EBE Cholesky factorization, the Cholesky (or Crout) factor-
ization of each regularized matrix̄A[e] is performed,

Ā[e] = LeDeL
T
e . (12.26)
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The preconditioner from it is defined as

M =

nel∏

e=1

Le ×
nel∏

e=1

De ×
1∏

e=nel

LT
e . (12.27)

Note that to ensure symmetry, the last product is in reverse order of the first one.
The factorization (12.26) consists of a factorization of the smallpe× pe matrix ĀKe .
Performing the preconditioning operations will thereforeconsist of a sequence of
smallpe×pe backward or forward solves. The gather and scatter matricesPe defined
in Chapter 2 must also be applied for each element. These solves are applied to
the right-hand side in sequence. In addition, the same multicoloring idea as for the
matrix-by-vector product can be exploited to perform thesesweeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioner is that an additional
set of element matrices must be stored. That is because the factorizations (12.26)
must be stored for each element. In EBE/SSOR, this is avoided. Instead of factor-
ing eachĀ[e], the usual splitting of each̄A[e] is exploited. Assuming the Winget
regularization, we have

Ā[e] = I − Ee − ET
e (12.28)

in which−Ee is the strict-lower part of̄A[e]. By analogy with the SSOR precondi-
tioner, the EBE-SSOR preconditioner is defined by

M =
nel∏

e=1

(I − ωEe)×
nel∏

e=1

De ×
1∏

e=nel

(I − ωET
e ). (12.29)

12.7.3 Parallel Row Projection Preconditioners

One of the attractions of row-projection methods seen in Chapter 8 is their high de-
gree of parallelism. In Cimmino’s method, the scalarsδi as well as the new residual
vector can be computed in parallel. In the Gauss-Seidel-NE (respectively Gauss-
Seidel-NR), it is also possible to group the unknowns in sucha way that any pair
of rows (respectively columns) have disjointed nonzero patterns. Updates of com-
ponents in the same group can then be performed in parallel. This approach essen-
tially requires finding a multicolor ordering for the matrixB = AAT (respectively
B = ATA ).

It is necessary to first identify a partition of the set{1, 2, . . . , N} into subsets
S1, . . ., Sk such that the rows (respectively columns) whose indices belong to the
same setSi arestructurallyorthogonal to each other, i.e., have no nonzero elements
in the same column locations. When implementing a block SOR scheme where the
blocking is identical with that defined by the partition, allof the unknowns belonging
to the same setSj can be updated in parallel. To be more specific, the rows are
reordered by scanning those inS1 followed by those inS2, etc.. Denote byAi the
matrix consisting of the rows belonging to thei-th block. We assume that all rows
of the same set are orthogonal to each other and that they havebeen normalized
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so that their 2-norm is unity. Then a block Gauss-Seidel sweep, which generalizes
Algorithm 8.1, follows.

ALGORITHM 12.8 Forward Block NE-Gauss-Seidel Sweep

1. Select an initialx0.
2. Fori = 1, 2, . . . , k Do:
3. di = bi −Aix
4. x := x+AT

i di

5. EndDo

Here,xi andbi are subvectors corresponding to the blocking anddi is a vector of
length the size of the block, which replaces the scalarδi of Algorithm 8.1. There is
parallelism in each of the steps 3 and 4.

The question that arises is how to find good partitionsSi. In simple cases, such
as block-tridiagonal matrices, this can easily be done; seeExercise 3. For general
sparse matrices, a multicoloring algorithm on the graph ofAAT (respectivelyATA)
can be employed. However, these matrices are never stored explicitly. Their rows
can be generated, used, and then discarded.

PROBLEMS

P-12.1 LetA be a Symmetric Positive Definite matrix and considerN = I −D−1A where
D is a block diagonal ofA.

a. Show thatD is a Symmetric Positive Definite matrix. Denote by(., .)D the associated
inner product.

b. Show thatN is self-adjoint with respect to to(., .)D.

c. Show thatNk is self-adjoint with respect to to(., .)D for any integerk.

d. Show that the Neumann series expansion preconditioner defined by the right-hand side
of (12.3) leads to a preconditioned matrix that is self-adjoint with respect to theD-inner
product.

e. Describe an implementation of the preconditioned CG algorithm using this precondi-
tioner.

P-12.6 The development of the Chebyshev iteration algorithm seen in Section 12.3.2 can
be exploited to derive yet another formulation of the conjugate algorithm from the Lanczos
algorithm. Observe that the recurrence relation (12.8) is not restricted to scaled Chebyshev
polynomials.

a. The scaled Lanczos polynomials, i.e., the polynomialspk(t)/pk(0), in whichpk(t) is
the polynomial such thatvk+1 = pk(A)v1 in the Lanczos algorithm, satisfy a relation
of the form (12.8). What are the coefficientsρk andδ in this case?

b. Proceed in the same manner as in Section 12.3.2 to derive a version of the Conjugate
Gradient algorithm.
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P-12.3 Show thatρk as defined by (12.7) has a limitρ. What is this limit? Assume that
Algorithm 12.1 is to be executed with theρk ’s all replaced by this limitρ. Will the method
converge? What is the asymptotic rate of convergence of thismodified method?

P-12.4 Derive the least-squares polynomials forα = − 1
2 , β = 1

2 for the interval[0, 1] for
k = 1, 2, 3, 4. Check that these results agree with those of the table shownat the end of
Section 12.3.3.

P-12.5 Consider the mesh shown below. Assume that the objective is to solve the Poisson
equation with Dirichlet boundary conditions.

a. Consider the resulting matrix obtained (before boundaryconditions are applied) from
ordering the nodes from bottom up, and left to right (thus, the bottom left vertex is
labeled 1 and the top right vertex is labeled 13). What is the bandwidth of the linear
system? How many memory locations would be needed to store the matrix in Skyline
format? (Assume that the matrix is nonsymmetric so both upper and lower triangular
parts must be stored).

b. Is it possible to find a 2-color ordering of the mesh points?If so, show the ordering, or
otherwise prove that it is not possible.

c. Find an independent set of size 5. Show the pattern of the matrix associated with this
independent set ordering.

d. Find a multicolor ordering of the mesh by using the greedy multicolor algorithm. Can
you find a better coloring (i.e., a coloring with fewer colors)? If so, show the coloring
[use letters to represent each color].

P-12.5 A linear systemAx = b whereA is a 5-point matrix, is reordered using red-black
ordering as (

D1 F
E D2

)(
x
y

)

=

(
f
g

)

.

a. Write the block Gauss-Seidel iteration associated with the above partitioned system
(where the blocking in block Gauss-Seidel is the same as the above blocking).

b. Express they iterates, independently of thex iterates, i.e., find an iteration which
involves onlyy-iterates. What type of iteration is the resulting scheme?

P-12.3 Consider a tridiagonal matrixT = tridiag (ai, bi, ci). Find a grouping of the rows
such that rows in each group arestructurally orthogonal, i.e., orthogonal regardless of the
values of the entry. Find a set of three groups at most. How canthis be generalized to block
tridiagonal matrices such as those arising from 2-D and 3-D centered difference matrices?

P-12.4 Why are the Winget regularized matrices̄A[e] defined by (12.25) positive definite
when the matrixÃ is obtained fromA by adiagonalscaling fromA?
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NOTES AND REFERENCES. When vector processing appeared in the middle to late 1970s, a number
of efforts were made to change algorithms, or implementations of standard methods, to exploit the
new architectures. One of the first ideas in this context was to perform matrix-by-vector products by
diagonals [184]. Matrix-by-vector products using this format can yield excellent performance. Hence,
came the idea of using polynomial preconditioning.

Polynomial preconditioning was exploited independently of supercomputing, as early as 1937 in
a paper by Cesari [71], and then in a 1952 paper by Lanczos [196]. The same idea was later applied
for eigenvalue problems by Stiefel who employed least-squares polynomials [276], and Rutishauser
[237] who combined the QD algorithm with Chebyshev acceleration. Dubois et al. [105] suggested
using polynomial preconditioning, specifically, the Neumann series expansion, for solving Symmetric
Positive Definite linear systems on vector computers. Johnson et al. [180] later extended the idea by
exploiting Chebyshev polynomials, and other orthogonal polynomials. It was observed in [180] that
least-squares polynomials tend to perform better than those based on the uniform norm, in that they lead
to a better overall clustering of the spectrum. Moreover, aswas already observed by Rutishauser [237],
in the symmetric case there is no need for accurate eigenvalue estimates: It suffices to use the simple
bounds that are provided by Gershgorin’s theorem. In [241] it was also observed that in some cases the
least-squares polynomial approach which requires less information than the Chebyshev approach tends
to perform better.

The use of least-squares polynomials over polygons was firstadvocated by Smolarski and Saylor
[271] and later by Saad [242]. The application to the indefinite case was examined in detail in [240].
Still in the context of using polygons instead of ellipses, yet another attractive possibility proposed
by Fischer and Reichel [129] avoids the problem of best approximation altogether. The polygon can
be conformally transformed into a circle and the theory of Faber polynomials yields a simple way of
deriving good polynomials from exploiting specific points on the circle.

Although only approaches based on the formulation (12.5) and (12.11) have been discussed in
this book, there are other lesser known possibilities basedon minimizing ‖1/λ − s(λ)‖∞. There
has been very little work on polynomial preconditioning or Krylov subspace methods for highly non-
normal matrices; see, however, the recent analysis in [285]. Another important point is that polynomial
preconditioning can be combined with a subsidiary relaxation-type preconditioning such as SSOR [2,
217]. Finally, polynomial preconditionings can be useful in some special situations such as that of
complex linear systems arising from the Helmholtz equation[132].

Multicoloring has been known for a long time in the numericalanalysis literature and was used
in particular for understanding the theory of relaxation techniques [322, 293] as well as for deriving
efficient alternative formulations of some relaxation algorithms [293, 151]. With the advent of parallel
processing, it became an essential ingredient in parallelizing iterative algorithms, see for example [4,
2, 117, 219, 218, 228]. In [98] and [248] it was observed thatk-step SOR preconditioning was very
competitive relative to the standard ILU preconditioners.Combined with multicolor ordering, multiple-
step SOR can perform quite well on vector computers. Multicoloring is also useful in finite element
methods, where elements instead of nodes are colored [31, 297]. In Element-By-Element techniques,
multicoloring is used when forming the residual, i.e., whenmultiplying an unassembled matrix by a
vector [174, 126, 262]. The contributions of the elements ofthe same color can all be evaluated and
applied simultaneously to the resulting vector.

Independent set orderings have been used in the context of parallel direct solution techniques for
sparse matrices [95, 199, 200] and multifrontal techniques[107] can be viewed as a particular case. The
gist of all these techniques is that it is possible to reorderthe system in groups of equations which can be
solved simultaneously. A parallel direct solution sparse solver based on performing several successive
levels of independent set orderings and reduction was suggested in [199] and in a more general form in
[94].



Chapter 13

MULTIGRID METHODS

The convergence of preconditioned Krylov subspace methods for solving linear systems arising

from discretized Partial Differential Equations tends to slow down considerably as these systems

become larger. This deterioration in the convergence rate, compounded with the increased

operation count per step due to the sheer problem size, results in a severe loss of efficiency. In

contrast, the class of methods to be described in this chapter are capable of achieving convergence

rates which are, in theory, independent of the mesh size. One significant difference with the

preconditioned Krylov subspace approach is that Multigrid methods have been initially designed

specifically for the solution of discretized elliptic Partial Differential Equations. The method

was later extended in different ways to handle other PDE problems, including nonlinear ones,

as well as problems not modeled by PDEs. Because these methods exploit more information on

the problem than do standard preconditioned Krylov subspace methods, their performance can

be vastly superior. On the other hand, they may require implementations that are specific to

the physical problem at hand, in contrast with preconditioned Krylov subspace methods which

attempt to be ‘general-purpose’.

13.1 Introduction

Multigrid techniques exploit discretizations with different mesh sizes of a given prob-
lem to obtain optimal convergence from relaxation techniques. At the foundation of
these techniques is the basic and powerful principle of divide and conquer. Though
most relaxation-type iterative processes, such as Gauss-Seidel, may converge slowly
for typical problems, it can be noticed that the components of the errors (or resid-
uals) in the directions of the eigenvectors of the iterationmatrix corresponding to
the large eigenvalues are damped very rapidly. These eigenvectors are known as the
oscillatory modes or high-frequency modes. The other components, associated with
low-frequency or smooth modes, are difficult to damp with standard relaxation. This
causes the observed slow down of all basic iterative methods. However, many of
these modes (say half) are mapped naturally into high-frequency modes on a coarser
mesh. Hence the idea of moving to a coarser mesh to eliminate the corresponding
error components. The process can obviously be repeated with the help of recursion,
using a hierarchy of meshes.

423
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The methods described in this chapter will differ in one essential way from those
seen so far. They will require to take a special look at the original physical problem
and in particular at the modes associated with different meshes. The availability of
a hierarchy of meshes and the corresponding linear problemsopens up possibilities
which were not available with the methods seen so far which have only access to
the coefficient matrix and the right-hand side. There are, however, generalizations of
multigrid methods, termed Algebraic Multigrid (AMG), which attempt to reproduce
the outstanding performance enjoyed by multigrid in the regularly structured ellip-
tic case. This is done by extending in a purely algebraic manner the fundamental
principles just described to general sparse linear systems.

This chapter will begin with a description of the model problems and the spectra
of the associated matrices. This is required for understanding the motivation and
theory behind multigrid.

13.2 Matrices and spectra of model problems

Consider first the one-dimensional model problem seen in Chapter 2:

− u′′(x) = f(x) for x ∈ (0, 1) (13.1)

u(0) = u(1) = 0 . (13.2)

The interval [0,1] is discretized with centered differenceapproximations, using the
equally spacedn+ 2 points

xi = i× h, i = 0, . . . , n+ 1 ,

whereh = 1/(n+1). A common notation is to call the original (continuous) domain
Ω and its discrete versionΩh. So Ω = (0, 1) and Ωh = {xi}i=0,...,n+1. The
discretization results in the system

Ax = b (13.3)

where

A =









2 −1
−1 2 −1

. . . . . . .. .
−1 2 −1

−1 2









; b = h2









f(x0)
f(x1)

...
f(xn−2)
f(xn−1)









. (13.4)

The above system is of sizen× n.
Next, the eigenvalues and eigenvectors of the matrixA will be determined. The

following trigonometric relation will be useful:

sin((j + 1)θ) + sin((j − 1)θ) = 2 sin(jθ) cos θ . (13.5)
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Consider the vectoru whose components aresin θ, sin 2θ, · · · , sin nθ. Using the
relation (13.5) we find that

(A− 2(1 − cos θ)I)u = sin ((n+ 1)θ) en

whereen is then-th column of the identity. The right-hand side in the above relation
is equal to zero for the following values ofθ:

θk =
kπ

n+ 1
, (13.6)

For any integer valuek. Therefore, the eigenvalues ofA are

λk = 2(1− cos θk) = 4 sin2 θk

2
k = 1, . . . , n, (13.7)

and the associated eigenvectors are given by:

wk =







sin θk

sin(2θk)
...

sin(nθk)






. (13.8)

Thei-th component ofwk can be rewritten in the form

sin
ikπ

n+ 1
= sin(kπxi)

and represents the value of the functionsin(kπx) at the discretization pointxi. This
component of the eigenvector may therefore be written

wk(xi) = sin(kπxi) . (13.9)

Note that these eigenfunctions satisfy the boundary conditionswk(x0) = wk(xn+1) =
0. These eigenfunctions are illustrated in Figure 13.1 for the casen = 7.

Now consider the 2-D Poisson equation

−
(
∂2u

∂x2
+
∂2u

∂y2

)

= f in Ω (13.10)

u = 0 onΓ (13.11)

whereΩ is the rectangle(0, l1) × (0, l2) andΓ its boundary. Both intervals can be
discretized uniformly by takingn + 2 points in thex direction andm + 2 points in
they directions:

xi = i× h1, i = 0, . . . , n+ 1 ; yj = j × h2, j = 0, . . . ,m+ 1

where
h1 =

l1
n+ 1

; h2 =
l2

m+ 1
.

For simplicity we now assume thath1 = h2.
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0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Figure 13.1:The seven eigenfunctions of the discretized one-dimensional Laplacean
whenn = 7.
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In this case the linear system has the form (13.3) whereA has the form

A =









B −I
−I B −I

.. . . . . . . .
−I B −I

−I B









with B =









4 −1
−1 4 −1

. . . .. . .. .
−1 4 −1

−1 4









.

The right-hand side is again the discrete version of the function f scaled byh2.
The above matrix can be represented in a succinct way using tensor product notation.
Given anm× p matrixX and ann× q matrixY , the matrix

X ⊗ Y

can be viewed as a block matrix which has in (block) location(i, j) the matrixxijY .
In other words,X⊗Y is of size(nm)×(pq) and is obtained by expanding each entry
xij of X into the blockxijY . This definition is also valid for vectors by considering
them as matrices (p = q = 1).

With this notation, the matrixA given above, can be written as

A = I ⊗ Tx + Ty ⊗ I, (13.12)

in which Tx abdTy are tridiagonal matrices of the same form as the matrixA in
(13.4) and of dimensionn andm respectively. Often, the right-hand side of (13.12)
is called thetensor sumof Tx andTy and is denoted byTx ⊕ Ty. A few simple
properties are easy to show (see Exercise 1) for tensor products and tensor sums.
One that is important for determining the spectrum ofA is

(Tx ⊕ Ty)(v ⊗ w) = v ⊗ (Txw) + (Tyv)⊗ w . (13.13)

In particular ifwk is an eigenvector ofTx associated withσk andvl is an eigenvector
of Tl associated withµl, it is clear that

(Tx ⊕ Ty)(vl ⊗ wk) = vl ⊗ (Txwk) + (Tyvk)⊗wk = (σk + µl) vl ⊗ wk .

So,λkl = σk + µl is an eigenvalue ofA for each pair of eigenvaluesσk ∈ Λ(Tx)
andµk ∈ Λ(Ty). The associated eigenvector isvl ⊗ wk. These eigenvalues and
associated eigenvectors are best labeled with two indices:

λkl = 2

(

1− cos
kπ

n+ 1

)

+ 2

(

1− cos
lπ

m+ 1

)

= 4

(

sin2 kπ

2(n + 1)
+ sin2 lπ

2(m+ 1)

)

. (13.14)

Their associated eigenvectorszk,l are

zk,l = vl ⊗ wk
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and they are best expressed by their values at the points(xi, yj) on the grid:

zk,l(xi, yj) = sin(kπxi) sin(lπyj) .

When all the sumsσk + µl are distinct this gives all the eigenvalues and eigenvec-
tors ofA. Otherwise, we must show that the multiple eigenvalues correspond to
independent eigenvectors. In fact it can be shown that the system

{vl ⊗ wk}k=1,...,n; l=1...,m

is an orthonormal system if both the system of thevl’s and thewk ’s are orthonormal.

13.2.1 Richardson’s iteration

Multigrid can be easily motivated by taking an in-depth lookat simple iterative
schemes such as the Richardson iteration and Jacobi’s method. Note that these two
methods are essentially identical for the model problems under consideration, be-
cause the diagonal of the matrix is a multiple of the identitymatrix. Richardson’s
iteration is considered here for the one-dimensional case,using a fixed parameterω.
In the next section, the weighted Jacobi iteration is fully analyzed with an emphasis
on studying the effect of varying the parameterω.

Richardson’s iteration takes the form:

uj+1 = uj + ω(b−Auj) = (I − ωA)uj + ωb .

Thus, the iteration matrix is
Mω = I − ωA . (13.15)

Recall from Example 4.1 from Chapter 4, that convergence takes place for0 < ω <
2/ρ(A). In realistic situations, the optimalω given by (4.33) is difficult to use.
Instead, an upper boundρ(A) ≤ γ is often available from, e.g., Gershgorin’s the-
orem, and we can simply takeω = 1/γ. This yields a converging iteration since
1/γ ≤ 1/ρ(A) < 2/ρ(A).

By the relation (13.15), the eigenvalues of the iteration matrix are1−ωλk, where
λk is given by (13.7). The eigenvectors are the same as those ofA. If u∗ is the exact
solution, it was seen in Chapter 4 that the error vectordj ≡ u∗ − uj , obeys the
relation,

dj = M j
ωd0 . (13.16)

It is useful to expand the error vectord0 in the eigenbasis ofMω, as

d0 =
n∑

k=1

ξkwk .

From (13.16) and (13.15) this implies that at stepj,

dj =
n∑

k=1

(

1− λk

γ

)j

ξkwk .
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Each component is reduced by(1 − λk/γ)
j . The slowest converging component

corresponds to the smallest eigenvalueλ1, which could yield a very slow convergence
rate when|λ1/γ| ≪ 1.

For the model problem seen above, in the one-dimensional case, Gershgorin’s
theorem yieldsγ = 4 and the corresponding reduction coefficient is

1− sin2 π

2(n+ 1)
≈ 1− (πh/2)2 = 1−O(h2) .

As a result, convergence can be quite slow for fine meshes, i.e., whenh is small.
However, the basic observation on which multigrid methods are founded is that con-
vergence is not similar for all components. Half of the errorcomponents see actually
a very good decrease. This is the case for thehigh frequencycomponents, that is,
all those components corresponding tok > n/2. This part of the error is often re-
ferred to as theoscillatory part, for obvious reasons. The reduction factors for these
components are

ηk = 1− sin2 kπ

2(n+ 1)
= cos2 kπ

2(n + 1)
≤ 1

2
.

η

η

n

1

n

1/2

1

1 n/2+1 θθθ

Figure 13.2: Reduction coefficients for Richardson’s method applied to the 1-D
model problem

These coefficients are illustrated in Figure 13.2. Two important observations can
be made. The first is that the oscillatory components, i.e., those corresponding to
θn/2+1, . . . , θn, undergo excellent reduction, better than1/2, at each step of the
iteration. It is also important to note that this factor is independent of the step-size
h. The next observation will give a hint as to what might be doneto reduce the other
components. In order to see this we now introduce, for the first time, a coarse grid
problem. Assume thatn is odd and consider the problem issued from discretizing
the original PDE (13.1) on a meshΩ2h with the mesh-size2h. The superscriptsh
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and2h will now be used to distinguish between quantities related to each grid. The
grid points on the coarser mesh arex2h

i = i ∗ (2h). The second observation is based
on the simple fact thatx2h

i = xh
2i from which it follows that, fork ≤ n/2,

wh
k (xh

2i) = sin(kπxh
2i) = sin(kπx2h

i ) = w2h
k (x2h

i ) .

In other words, taking a smooth mode on the fine grid (wh
k with k ≤ n/2) and

canonically injecting it into the coarse grid, i.e., defining its values on the coarse
points to be the same as those on the fine points, yields thek-th mode on the coarse
grid. This is illustrated in Figure 13.3 fork = 2 and grids of9 points (n = 7) and5
points (n = 3).

Some of the modes which were smooth on the fine grid, become oscillatory. For
example, whenn is odd, the modewh

(n+1)/2 becomes precisely the highest mode on
Ω2h. At the same time the oscillatory modes on the fine mesh are no longer rep-
resented on the coarse mesh. The iteration fails to make progress on the fine grid
when the only components left are those associated with the smooth modes. Multi-
grid strategies do not attempt to eliminate these components on the fine grid. Instead,
they first move down to a coarser grid where smooth modes are translated into oscil-
latory ones. Practically, this requires going back and forth between different grids.
The necessarygrid-transfer operations will be discussed in detail later.

0 1 2 3 4 5 6 7 8

Fine mesh

0 1 2 3 4

Coarse mesh

Figure 13.3: The modew2 on a fine grid(n = 7) and a coarse grid(n = 3).



13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 431

13.2.2 Weighted Jacobi iteration

In this section a weighted Jacobi iteration is considered and analyzed for both 1-D
and 2-D model problems. The standard Jacobi iteration is of the form

uj+1 = D−1(E + F )uj +D−1f .

The weighted version of this iteration uses a parameterω and combines the above
iterate with the currentuj :

uj+1 = ω
(
D−1(E + F )uj +D−1f

)
+ (1− ω)uj

=
[
(1− ω)I + ωD−1(E + F )

]
uj + ωD−1f (13.17)

≡ Jωuj + fω . (13.18)

Using the relationE + F = D −A it follows that

Jω = I − ωD−1A . (13.19)

In particular note that whenA is SPD, the weighted Jacobi iteration will converge
when0 < ω < 2/ρ(D−1A). In the case of our 1-D model problem the diagonal is
D = 2I, so the following expression forJω is obtained,

Jω = (1− ω)I +
ω

2
(2I −A) = I − ω

2
A. (13.20)

For the 2-D case, a similar result can be obtained in which thedenominator 2 is
replaced by 4. The eigenvalues of the iteration matrix follow immediately from the
expression (13.7),

µk(ω) = 1− ω
(

1− cos
kπ

n+ 1

)

= 1− 2ω

(

sin2 kπ

2(n + 1)

)

. (13.21)

In the 2-D case, these become,

µk,l(ω) = 1− ω
(

sin2 kπ

2(n + 1)
+ sin2 lπ

2(m+ 1)

)

.

Consider the 1-D case first. The sine termssin2(kπ/2(n + 1)) lie in between
1−s2 ands2, in whichs = sin(π/2(n+1)). Therefore, the eigenvalues are bounded
as follows:

(1− 2ω) + 2ωs2 ≤ µk(ω) ≤ 1− 2ωs2 . (13.22)

The spectral radius ofJω is

ρ(Jω) = max{|(1 − 2ω) + 2ωs2|, |1− 2ωs2|} .

Whenω is < 0 or > 1, it can be shown thatρ(Jω) > 1 for h small enough (See
Problem 1). Whenω is between 0 and 1, then the spectral radius is simply1−2ωs2 ≈
1− ωπ2h2/2.
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It is interesting to note that the bestω in the interval[0, 1] is ω = 1, so no
acceleration of the original Jacobi iteration can be achieved. On the other hand, if
the weighted Jacobi iteration is regarded as a smoother, thesituation is different. For
those modes associated withk > n/2, the termsin2 θk is≥ 1/2 so

1− 2ω < (1− 2ω) + 2ωs2 ≤ µk(ω) ≤ 1− 1

2
ω . (13.23)

For example whenω = 1/2, then all reduction coefficients for the oscillatory modes
will be in between 0 and 3/4, thus guaranteeing again a reduction of h. Forω = 2/3
the eigenvalues are between -1/3 and 1/3, leading to a smoothing factor of 1/3. This
is the best that can achievedindependently ofh.

For 2-D problems, the situation is qualitatively the same. The bound (13.22)
becomes,

(1− 2ω) + ω(s2x + s2y) ≤ µk,l(ω) ≤ 1− ω(s2x + s2y) (13.24)

in which sx is the same ass andsy = sin(π/(2(m + 1))). The conclusion for the
spectral radius and rate of convergence of the iteration is similar, in thatρ(Jω) ≈
1−O(h2) and the bestω is one. In addition, the high-frequency modes are damped
with coefficients which satisfy:

1− 2ω < (1− 2ω) + ω(s2x + s2y) ≤ µk,l(ω) ≤ 1− 1

2
ω . (13.25)

As before,ω = 1/2 yields a smoothing factor of 3/4, andω = 3/5 yields, a smooth-
ing factor of4/5. Here the best that can be done, is to takeω = 4/5.

13.2.3 Gauss-Seidel iteration

In pratice, Gauss-Seidel and red-black Gauss-Seidel relaxation are more common
smoothers than Jacobi or Richardson’s iterations. Also, SOR (with ω 6= 1) is rarely
used as it is known that overrelaxation adds no benefit in general. Gauss-Seidel and
SOR schemes are somewhat more difficult to analyze.

Consider the iteration matrix

G = (D − E)−1F (13.26)

in the one-dimensional case. The eigenvalues and eigenvectors ofG satisfy the rela-
tion

[F − λ(D − E)]u = 0

thej-th row of which is

ξj+1 − 2λξj + λξj−1 = 0, (13.27)

whereξj is thej-component of the vectoru. The boundary conditionsξ0 = ξn+1 =
0, should be added to the above equations. Note that becauseξn+1 = 0, equation
(13.27) is valid whenj = n (despite the fact that entry(n, n+1) of F is not defined).
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This is a difference equation, similar to Equation (2.21) encountered in Chapter 2
and and it can be solved similarly by seeking a general solution in the formξj = rj.
Substituting in (13.27),r must satisfy the quadratic equation

r2 − 2λr + λ = 0,

whose roots are

r1 = λ+
√

λ2 − λ, r2 = λ−
√

λ2 − λ .

This leads to the general solutionξj = αrj
1 + βrj

2. The first boundary condition
ξ0 = 0, implies thatβ = −α. The boundary conditionξn+1 = 0 yields the equation
in λ

(

λ+
√

λ2 − λ
)n+1

−
(

λ−
√

λ2 − λ
)n+1

= 0 →
(

(λ+
√
λ2 − λ)2

λ

)n+1

= 1 ,

in which it is assumed thatλ 6= 0. With the change of variablesλ ≡ cos2 θ, this
becomes(cos θ ± i sin θ)2(n+1) = 1, where the sign± is positive whencos θ and
sin θ are of the same sign and negative otherwise. Hence,

± 2(n+ 1)θ = ±2k π → θ = θk ≡
kπ

n+ 1
, k = 1, . . . , n (13.28)

Therefore the eigenvalues are of the formλk = cos2 θk, whereθk was defined above,
i.e.,

λk = cos2 kπ

n+ 1
.

In fact this result could have been obtained in a simpler way.According to Theorem
4.16 seen in Chapter 4, whenω = 1, the eigenvalues of SOR iteration matrix are the
squares of those of the corresponding Jacobi iteration matrix with the sameω, which
according to (13.21) (left side) areµk = cos[kπ/(n + 1)].

Some care must be exercised when computing the eigenvectors. Thej-th com-
ponent of the eigenvector is given byξj = rj

1 − rj
2. Proceeding as before, we have

rj
1 =

(

cos2 θk +
√

cos4 θk − cos2 θk

)j
= (cos θk)

j (cos θk ± i sin θk)
j ,

where the± sign was defined before. Similarly,rj
2 = (cos θk)

j (cos θk ∓ i sin θk)
j

where∓ is the opposite sign from±. Therefore,

ξj = (cos θk)
j
[

(cos θk ∓ i sin θk)
j − (cos θk ± i sin θk)

j
]

= 2i (cos θk)
j [± sin(jθk)] .
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Figure 13.4:The eigenfunctions of 13-point one-dimensional mesh (n = 11). The
casek = 6 is omitted.
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Sinceθk is defined by (13.28),sin θk is nonnegative, and therefore the± sign
is simply the sign ofcos θk. In addition the constant factor2i can be deleted since
eigenvectors are defined up to a scalar constant. Therefore,we can set

uk =
[
| cos θk|j sin(jθk)

]

j=1,...,n
. (13.29)

The above formula would yield an incorrect answer (a zero vector) for the situation
whenλk = 0. This special case can be handled by going back to (13.27) which
yields the vectore1 as an eigenvector. In addition, it is left to show that indeedthe
above set of vectors constitutes a basis. This is the subjectof Exercise 6.

0 1 2 3 4 5 6 7 8 9 10 11 12
-

6

k

λk(G)

Figure 13.5: Eigenvalues of the Gauss-Seidel iteration fora 13-point one-
dimensional mesh (n = 11).

The smallest eigenvalues are those for whichk is close ton/2, as is illustrated
in Figure 13.5. Components in the directions of the corresponding eigenvectors, i.e.,
those associated with the eigenvalues ofG in the middle of the spectrum, are damped
rapidly by the process. The others are harder to eliminate. This is in contrast with
the situation for the Jacobi iteration where the modes corresponding to the largest
eigenvalues are damped first.

Interestingly, the eigenvectors corresponding to the middle eigenvalues are not
the most oscillatory in the proper sense of the word. Specifically, a look at the eigen-
functions ofG illustrated in Figure 13.4, reveals that the modes with high

oscillations are those corresponding to eigenvalues with the larger values ofk,
and these are not damped rapidly. The figure shows the eigenfunctions ofG, for a 13-
point discretization of the 1-D Laplacean. It omits the casek = 6, which corresponds
to the special case of a zero eigenvalue mentioned above.

The eigenvectors of the Gauss-Seidel iteration matrix are not related in a simple
way to those of the original matrixA. As it turns out, the low frequency eigenfunc-
tions of the original matrixA are damped slowly while the high frequency modes are
damped rapidly, just as is the case for the Jacobi and Richardson iteration. This can
be readily verified experimentally, see Exercise 7
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13.3 Inter-grid operations

Multigrid algorithms require going back and forth between several grid problems
related to the solution of the same original equations. It issufficient to present these
grid transfer operations for the simple case of two meshes,Ωh (fine) andΩH (coarse),
and to only consider the situation whenH = 2h. In particular, the problem size of
the fine mesh problem will be about2d times as large as that of the coarse mesh
problem, whered is the space dimension. In the previous section, the 1-D casewas
already considered and the subscripth corresponding to the mesh problem under
consideration was introduced.

13.3.1 Prolongation

A prolongation operation takes a vector fromΩH and defines the analogue vector in
Ωh. A common notation in use is:

Ih
H : ΩH −→ Ωh .

The simplest way to define a prolongation operator is throughlinear interpolation,
which is now presented for the 1-D case first. The generic situation is that ofn + 2
points,x0, x1, . . . , xn+1 wherex0 andxn+1 are boundary points. The number of
internal pointsn is assumed to be odd, so that halving the size of each subinterval
amounts to introducing the middle points. Given a vector(v2h

i )i=0,...,(n+1)/2, the
vectorvh = Ih

2hv
2h of Ωh is defined as follows

{

vh
2j = v2h

j

vh
2j+1 = (v2h

j + v2h
j+1)/2

for j = 0, . . . ,
n+ 1

2
.

In matrix form, the above defined prolongation can be writtenas

vh =
1

2




















1
2
1 1

2
1 1

...

...
1 1

2
1




















v2h . (13.30)

In 2-D, the linear interpolation can be defined in a straightforward manner from
the 1-D case. Thinking in terms of a matrixvij representing the coordinate of a
function v at the pointsxi, yj, it is possible to define the interpolation in 2-D in
two stages. In the followingIh

x,2h denotes the interpolation in thex direction only
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and Ih
y,2h the interpolation fory variables only. First, interpolate all values in the

x-direction only:

vh,x = Ih
x,2hv where

{

vh,x
2i,: = v2h

i,:

vh,x
2i+1,: = (v2h

i,: + v2h
i+1,:)/2

for i = 0, . . . ,
m+ 1

2
.

Then interpolate this semi-interpolated result, with respect to they variable:

vh = Ih
y,2hv

h,x where

{

vh
:,2j = vx,2h

:,j

vh
:,2j+1 = (vx,2h

:,j + vx,2h
:,j+1)/2

for j = 0, . . . ,
n+ 1

2
.

This gives the following formulas for the 2-D interpolationof an elementvH in ΩH ,
into the corresponding elementvh = Ih

H in Ωh,






vh
2i,2j = v2h

ij

vh
2i+1,2j = (v2h

ij + v2h
i+1,j)/2

vh
2i,2j+1 = (v2h

ij + v2h
i,j+1)/2

vh
2i+1,2j+1 = (v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1)/4

for

{
i = 0, . . . , n+1

2 ;

j = 0, . . . , m+1
2

.

From the above derivation, it is useful to observe that the 2-D interpolation can be
expressed as the tensor product of the two one-dimensional interpolations, i.e.,

Ih
2h = Ih

y,2h ⊗ Ih
x,2h. (13.31)

This is the subject of Exercise 8.
It is common to represent the prolongation operators using avariation of the

stencil notation employed in Chapter 4 and Chapter 10. The stencil now operates on
a grid to give values on a different grid. The one-dimensional stencil is denoted by

p =

]
1

2
1

1

2

[

.

The open brackets notation only means that the stencil must be interpreted as a fan-
out rather than fan-in operation as in the cases we have seen in earlier chapters. In
other words it is a column instead of a row operation, as can also be understood by a
look at the matrix in (13.30). Each stencil is associated with a coarse grid point. The
result of the stencil operation are the valuesvH

i /2, v
H
i , v

H
i /2, contributed to the three

fine mesh-pointsxh
2i−1, x

h
2i, andxh

2i+1 by the valuevH
i . Another, possibly clearer,

interpretation is that the function with value one at the coarse grid pointx2h
i , and zero

elsewhere, will be interpolated to a function in the fine meshwhich has the values
0.5, 1, 0.5 at the pointsxh

2i−1, x
h
2i, x

h
2i+1, respectively, and zero elsewhere. Under

this interpretation, the stencil for the 2-D linear interpolation is

1

4





1 2 1
2 4 2
1 2 1



 .

It is also interesting to note that the 2-D stencil can be viewed as a tensor product of
the one dimensional stencilp and its transposepT . The stencilpT acts on the vertical
coordinates in exactly the same way thatp acts on the horizontal coordinates.
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Example 13.1. This example illustrates the use of the tensor product notation to
determine the 2-D stencil. The stencil can also be understood in terms of the action
of the interpolation operation on a unit vector. Using the stencil notation, this unit
vector is of the formei ⊗ ej and we have (see Exercise 1)

Ih
2h(ei ⊗ ej) = (Ih

y,2h ⊗ Ih
x,2h)(ei ⊗ ej) = (Ih

y,2hei)⊗ (Ih
x,2hej) .

When written in coordinate (or matrix) form this is a vector which corresponds to
the outer productppT with pT ≡ [12 1 1

2 ], centered at the point with coordinate
xi, yj .

13.3.2 Restriction

The restriction operation is the reverse of prolongation. Given a functionvh on the
fine mesh, a corresponding function inΩH must be defined fromvh. In the earlier
analysis one such operation was encountered. It was simply based on defining the
functionv2h from the functionvh as follows

v2h
i = vh

2i. (13.32)

Because this is simply a canonical injection fromΩh to Ω2h, it is termed theinjection
operator. This injection has an obvious 2-D analogue:v2h

i,j = vh
2i,2j .

A more common restriction operator, called full weighting (FW), definesv2h as
follows in the 1-D case:

v2h
j =

1

4

(

vh
2j−1 + 2vh

2j + vh
2j+1

)

. (13.33)

This averages the neighboring values using the weights0.25, 0.5, 0.25. An important
property can be seen by considering the matrix associated with this definition ofI2h

h :

I2h
h =

1

4









1 2 1
1 2 1

1 2 1
· · · · · · · · ·

1 2 1









. (13.34)

Apart from a scaling factor, this matrix is the transpose of the interpolation operator
seen earlier. Specifically,

Ih
2h = 2 (I2h

h )T . (13.35)

The stencil for the above operator is

1

4
[1 2 1]

where the closed brackets are now used to indicate the standard fan-in (row) opera-
tion.
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In the 2-D case, the stencil for the full-weighting averaging is given by

1

16





1 2 1
2 4 2
1 2 1



 .

This takes foruh
2i,2j the result of a weighted average of the 9 pointsuH

i+q,j+p with
|p|, |q| ≤ 1 with the associated weights2−|p|−|q|−2. Note that because the Full
Weighting stencil is a scaled row (fan-in) version of the linear interpolation sten-
cil, the matrix associated with the operatorI2h

h is essentially a transpose of the
prolongation (interpolation) operator:

Ih
2h = 4(I2h

h )T . (13.36)

The statements (13.35) and (13.36), can be summarized by

Ih
H = 2d(IH

h )T (13.37)

whered is the space dimension.
The following relation can be shown

I2h
h = I2h

y,h ⊗ I2h
x,h (13.38)

which is analogous to (13.31) (see Exercise 9).

13.4 Standard multigrid techniques

One of the most natural ways to exploit a hierarchy of grids when solving PDEs, is to
obtain an initial guess from interpolating a solution computed on a coarser grid. The
process can be recursively repeated until a given grid is reached. This interpolation
from a coarser grid can be followed by a few steps of a smoothing iteration. This
is known as nested iteration. General multigrid cycles are intrinsically recursive
processes which use essentially two main ingredients. The first is a hierarchy of
grid problems along with restrictions and prolongations tomove between grids. The
second is a smoother, i.e., any scheme which has the smoothing property of damping
quickly the high frequency components of the error. A few such schemes, such as
the Richardson and weighted Jacobi iterations, have been seen in earlier sections.
Other smoothers which are often used in practice are the Gauss-Seidel and Red-
Black Gauss-Seidel iterations seen in Chapter 4.

13.4.1 Coarse problems and smoothers

At the highest level (finest grid) a mesh-size ofh is used and the resulting problem
to solve is of the form:

Ahu
h = fh .

One of the requirements of multigrid techniques is that a system similar to the one
above must be solved at the coarser levels. It is natural to define this problem at the



440 CHAPTER 13. MULTIGRID METHODS

next level where a mesh of size, say,H, is used, as simply the system arising from
discretizing the same problem on the coarser meshΩH . In other cases, it may be
more useful to define the linear system byGalerkin projection, where the coarse
grid problem is defined by

AH = IH
h AhI

h
H , fH = IH

h f
h . (13.39)

This formulation is more common in finite element methods. Italso has some ad-
vantages from a theoretical point of view.

Example 13.2. Consider the model problem in 1-D, and the situation whenAH

is defined from the Galerkin projection, i.e., via, formula (13.39), where the pro-
longation and restriction operators are related by (13.35)(1-D) or (13.36) (2-D). In
1-D,AH can be easily defined for the model problem when full-weighting is used.
Indeed,

AHe
H
j = IH

h AhI
h
He

H
j

= IH
h Ah

[
1

2
eh2j−1 + eh2j +

1

2
eh2j+1

]

= IH
h

[

−1

2
eh2j−2 + eh2j −

1

2
eh2j+2

]

= −eHj−1 + 2eHj − eHj+1 .

This defines thej-th column ofAH , which has a 2 in the diagonal, -1 in the super
and sub-diagonal and zero elsewhere. This means that the operatorAH defined by
the Galerkin property is identical with the operator that would be defined from a
coarse discretization. This property is not true in 2-D whenfull weighting is used.
see Exercise 10.

The notation
uh

ν = smoothν(Ah, u
h
0 , fh)

means thatuh
ν is the result ofν smoothing steps for solving the above system, starting

with the initial guessuh
0 . Smoothing iterations are of the form

uh
j+1 = Shu

h
j + gh (13.40)

whereSh is the iteration matrix associated with one smoothing step.As was seen in
earlier chapters, the above iteration can always be rewritten in the ‘preconditioning’
form:

uh
j+1 = uh

j +Bh(fh −Ahu
h
j ) (13.41)

where

Sh ≡ I −BhAh, Bh ≡ (I − Sh)A−1
h gh ≡ Bhf

h . (13.42)
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The errordh
ν and residualrh

ν resulting fromν smoothing steps satisfy

dh
ν = (Sh)νdh

0 = (I −BhAh)νdh
0 ; rν

h = (I −AhBh)νrh
0 .

It will be useful later to make use of the following observation. Whenfh = 0 then
gh is also zero and as a result, one step of the iteration (13.40)will provide the result
of one product with the operatorSh.

Example 13.3. For example, settingf ≡ 0 in (13.17), yields the Jacobi iteration
matrix,

B = (I −D−1(E + F ))A−1 = D−1(D − E − F )A−1 = D−1 .

In a similar way one finds that for the Gauss-Seidel iteration, B = (D−E)−1F and
for Richardson iterationB = ωI.

Nested iteration was mentioned earlier as a means of obtaining good initial
guesses from coarser meshes in a recursive way. The algorithm, presented here to il-
lustrate the notation just introduced is described below. The assumption is that there
arep+ 1 grids, with mesh sizesh, 2h, . . . , 2pn ≡ h0.

ALGORITHM 13.1 Nested Iteration

1. Seth := h0. Given an initial guessuh
0 , setuh = smoothνp(Ah, u

h
0 , f

h)
2. Forl = p− 1, . . . , 0 Do

3. uh/2 = I
h/2
h uh

4. h := h/2;
5. uh := smoothνl(Ah, u

h, fh)
6. End

In practice, nested iteration is not much used in this form. However, it provides
the foundation for one of the most effective multigrid algorithms, namely the Full
Multi-Grid (FMG) which will be described in a later section.

13.4.2 Two-grid cycles

When a smoother is applied to a linear system at a fine level, the residual

rh = fh −Auh

obtained at the end of the smoothing step will typically still be large. However, it
will have small components in the space associated with the high-frequency modes.
If these components are removed by solving the above system (exactly) at the lower
level, then a better approximation should result. Two-gridmethods are rarely prac-
tical because the coarse-mesh problem may still be too largeto be solved exactly.
However, they are useful from a theoretical point of view. Inthe following algorithm
H = 2h.
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ALGORITHM 13.2 Two-Grid cycle

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IH
h r

h

4. Solve: AHδ
H = rH

5. Correct: uh := uh + Ih
Hδ

H

6. Post-smooth:uh := smoothν2(Ah, u
h, fh)

It is clear that the result of one iteration of the above algorithm corresponds to
some iteration process of the form

uh
new = Mhu

h
0 + gMh

.

In order to determine the operatorMh we exploit the observation made above that
taking fh = 0 provides the productMhu

h
0 . Whenfh = 0, then in line 1 of the

algorithm, uh becomesSν1
h u

h
0 . In line 3, we haverH = IH

h (fh − AhS
ν1
h ) =

IH
h (−AhS

ν1
h ). Following this process, the vectoruh resulting from one cycle of

the algorithm becomes

uh
new = Sν2

h [Sν1
h u

h
0 + Ih

HA
−1
H IH

h (−AhS
ν1
h u

h
0)].

Therefore, the 2-grid iteration operator is given by

Mh
H = Sν2

h [I − Ih
HA

−1
H IH

h Ah]Sν1
h .

The matrix inside the brackets,

TH
h = I − Ih

HA
−1
H IH

h Ah , (13.43)

acts as another iteration by itself known as thecoarse grid correction,which can be
viewed as a particular case of the two-grid operator with no smoothing, i.e., with
ν1 = ν2 = 0. Note that theB preconditioning matrix associated with this iteration
is, according to (13.42),Bh = Ih

HA
−1
H IH

h .
An important property of the coarse grid correction operator is discussed in the

following lemma. It is assumed thatAh is symmetric positive definite.

Lemma 13.1 When the coarse grid matrix is defined via (13.39), then the coarse
grid correction operator (13.43) is a projector which is orthogonal with respect to
theAh-inner product. In addition, the range ofTH

h isAh-orthogonal to the range of
IH
h .

Proof. It suffices to show thatI − TH
h = Ih

HA
−1
H IH

h Ah is a projector:

(Ih
HA

−1
H IH

h Ah)×(Ih
HA

−1
H IH

h Ah) = Ih
HA

−1
H (IH

h AhI
h
H)

︸ ︷︷ ︸

AH

A−1
H IH

h Ah = Ih
HA

−1
H IH

h Ah.
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That Ih
HA

−1
H IH

h Ah is an A-orthogonal projector follows from its self-adjointness
with respect to theAh-inner product (see Chapter 1):

(TH
h x, y)Ah

= (AhI
h
HA

−1
H IH

h Ahx, y) = (x,AhI
h
HA

−1
H IH

h Ahy) = (x, TH
h y)Ah

.

Finally, the statement thatRan(TH
h ) is orthogonal toRan(IH

h ) is equivalent to stat-
ing that for allx of the formx = TH

h y, we haveIH
h Ahx = 0 which is readily

verified.

13.4.3 V-cycles and W-cycles

Anyone familiar with recursivity will immediately think ofthe following practical
version of the 2-grid iteration: apply the 2-grid cycle recursively until a coarse
enough level is reached and then solve exactly (typically using a direct solver). This
gives the algorithm described below, called the V-cycle multigrid. In the algorithm,
H stands for2h andh0 for the coarsest mesh-size.

ALGORITHM 13.3 uh = V-cycle(Ah, u
h
0 , f

h)

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IH
h r

h

4. If (H == h0)
5. Solve: AHδ

H = rH

6. Else
7. Recursion: δH = V-cycle(AH , 0, r

H)
8. EndIf
9. Correct: uh := uh + Ih

Hδ
H

10. Post-smooth:uh := smoothν2(Ah, u
h, fh)

11. Returnuh

Consider the cost of one cycle, i.e., one iteration of the above algorithm. A few
simple assumptions are needed along with new notation. The number of nonzero
elements ofAh is denoted bynnzh. It is assumed thatnnzh ≤ αnh, whereα does
not depend onh. The cost of each smoothing step is equal tonnzh while the cost of
the transfer operations (interpolation and restriction) is of the formβnh where again
β does not depend onh. The cost at the level where the grid size ish, is given by

C(nh) = (α(ν1 + ν2) + 2β)nh +C(n2h) .

Noting thatn2h = nh/2 in the one-dimensional case, This gives the recurrence
relation

C(n) = ηn+ C(n/2) (13.44)

in which η = (α(ν1 + ν2) + 2β). The solution of this recurrence relations yields
C(n) ≤ 2ηn. For 2-dimensional problems,nh = 4n2h and in this case the cost
becomes≤ 7/3ηn.



444 CHAPTER 13. MULTIGRID METHODS

We now introduce the general multigrid cycle which generalizes the V-cycle seen
above. Once more, the implementation of the multigrid cycleis of a recursive nature.

ALGORITHM 13.4 uh = MG (Ah, u
h
0 , f

h, ν1, ν2, γ)

1. Pre-smooth: uh := smoothν1(Ah, u
h
0 , f

h)
2. Get residual: rh = fh −Ahu

h

3. Coarsen: rH = IH
h r

h

4. If (H == h0)
5. Solve: AHδ

H = rH

6. Else
7. Recursion: δH = MGγ(AH , 0, r

H , ν1, ν2, γ)
8. EndIf
9. Correct: uh := uh + Ih

Hδ
H

10. Post-smooth:uh := smoothν2(Ah, u
h, fh)

11. Returnuh

Notice now that there is a new parameter,γ, which determines how many times MG
is iterated in Line 7. Each of the MG iterations in Line 7 takesthe form

δH
new = MG(AH , δ

H , rH , ν1, ν2, γ) (13.45)

and this is iteratedγ times. The initial guess for the iteration isδH = 0 the second
argument to the MG call in line 7 shows. The caseγ = 1 yields the V-cycle multigrid.
The caseγ = 2 is known as theW-cycle multigrid. The resulting inter-grid up and
down moves can be complex as is illustrated by the diagrams inFigure 13.6. The
caseγ = 3 is rarely used.

Now consider the cost of the general multigrid cycle. The only significant dif-
ference with the V-cycle algorithm is that the recursive call to MG is iteratedγ times
instead of only once for the V-cycle. Therefore, the cost formula (13.44) becomes

C(n) = ηn+ γC(n/2), (1-D case) C(n) = ηn+ γC(n/4), (2-D case).
(13.46)

It can easily be shown that the cost of each loop is still linear whenγ < 2 in 1-D and
γ < 4 in the 2-D case, see Exercise 16. In other cases, the cost per cycle increases to
O(n log2 n).

Example 13.4. This example illustrates the convergence behavior of the V-cycle
multigrid for solving a model Poisson problem with Dirichlet boundary conditions
in two-dimensional space. The problem considered is of the form :

−∆u = 13 sin(2πx) × sin(3πy) (13.47)

and has the exact solutionu(x, y) = sin(2πx) × sin(3πy). The Poisson equation is
set on a square grid and discretized usingnx = ny = 33 points, including the two



13.4. STANDARD MULTIGRID TECHNIQUES 445

lev=1,γ=1 lev=2,γ=1 lev=3,γ=1 lev=4,γ=1

lev=1,γ=2 lev=2,γ=2 lev=3,γ=2

lev=3,γ=3

Figure 13.6: Representations of Various V-cycles and W-cycles

boundary points in each direction. This leads to a linear system of dimensionN =
312 = 961. The V-cycle multigrid was tested with three smoothers: (1)The weighted
Jacobi relaxation withω = 2/3; (2) Gauss-Seidel relaxation, and (3) the red-black
Gauss-Seidel relaxation. Various values ofν1 andν2, the number of pre- and post-
smoothing steps, respectively, were used. Table 13.1 showsthe convergence factors
ρ as estimated from the expression,

ρ = exp

(
1

k
log
‖rk‖2
‖r0‖2

)

,

for each of the smoothers. Herek is the total number of smoothing steps taken.
The convergence was stopped as soon as the 2-norm of the residual was reduced by
a factor oftol = 10−8. The overall winner is clearly the Red-Black Gauss Seidel
smoother. It is remarkable that even with a number of total smoothing stepsν1 + ν2

as small as two, a reduction factor of less than 0.1 is achieved with RB-GS. Also,
it is worth pointing out that whenν1 + ν2 is constant, the red-black Gauss-Seidel
smoother tends to perform better whenν1 andν2 are more or less balanced (compare
the case(ν1, ν2) = (0, 2) versus(ν1, ν2) = (1, 1) for example). In the asymptotic
regime (or very largek), the two ratios should be identical in theory.
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(ν1, ν2 ) smoother ρ (ν1, ν2 ) smoother ρ

(0,1) w-Jac 0.570674 (1,1) w-Jac 0.387701
(0,1) GS 0.308054 (1,1) GS 0.148234
(0,1) RB-GS 0.170635 (1,1) RB-GS 0.087510

(0,2) w-Jac 0.358478 (1,2) w-Jac 0.240107
(0,2) GS 0.138477 (1,2) GS 0.107802
(0,2) RB-GS 0.122895 (1,2) RB-GS 0.069331

(0,3) w-Jac 0.213354 (1,3) w-Jac 0.155938
(0,3) GS 0.105081 (1,3) GS 0.083473
(0,3) RB-GS 0.095490 (1,3) RB-GS 0.055480

Table 13.1: Tests with V-cycle multigrid for a model Poissonequation using three
smoothers and various number of pre-smoothing steps (ν1), and post-smoothing steps
(ν2).

It is important to determine the iteration operator corresponding to the applica-
tion of one Multigrid loop. We start with the 2-grid operatorseen earlier, which
is

Mh
H = Sν2

h [I − Ih
HA

−1
H IH

h Ah]Sν1
h .

The only difference between this operator and the sought MG operator is that the
inverse ofAH is replaced by an application ofγ steps of MG on the gridΩH . Each
of these steps is of the form (13.45). However, the above formula uses the inverse of
AH , so it is necessary to replaceAH by the correspondingB-form (preconditioned
form) of the MG operator, which, according to (13.42) is given by

(I −MH)A−1
H .

Therefore,

Mh = Sν2
h [I − Ih

H(I −MH)A−1
H IH

h Ah]Sν1
h

= Sν2
h [I − Ih

HA
−1
H IH

h Ah + Ih
HMHA

−1
H IH

h Ah]Sν1
h

= Mh
H + Sν2

h I
h
HMHA

−1
H IH

h AhS
ν1
h

showing that the MG operatorMh can be viewed as a perturbation of the 2-grid
operatorMH

h .
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lev=2,γ=1 lev=3,γ=1

lev=3,γ=2

Figure 13.7:Representation of various FMG cycles (withµ = 1). The doubled lines
correspond to the FMG interpolation.

13.4.4 Full Multigrid

The Full Multigrid (FMG), sometimes also referred to as nested iteration, takes a
slightly different approach from the MG algorithms seen in the previous section.
FMG can be viewed as an improvement of nested iteration seen earlier whereby the
smoothing step in Line 5 is replaced by an MG cycle. The difference in viewpoint is
that it seeks to find an approximation to the solution with only one sweep through the
levels, going from bottom to top. The error of the resulting approximation is guaran-
teed, under certain conditions, to be of the order of the discretization. In practice, no
more accuracy than this should ever be required. The algorithm is described below.

ALGORITHM 13.5 Full Multigrid

1. Seth := h0. SolveAhu
h = fh

2. For l = 1, . . . , p, Do

3. uh/2 = Î
h/2
h uh

4. h := h/2;
5. uh := MGµ(Ah, u

h, fh, ν1, ν2, γ)
6. End

Notice that the interpolation operator in Line 2 is denoted with a hat. This is in order
to distinguish it from the interpolation operator used in the MG loop, which is some-
times different, typically of a lower order. The tasks and transfer operations of FMG
are illustrated in Figure 13.7. The MG iteration requires the standard parameters
nu1, ν2, gamma, in addition to the other choices of smoothers and interpolation op-
erators.

In the followinguh represents the exact (discrete) solution of the problem on grid
Ωh andũh will be the approximation resulting from the FMG cycle on thegrid Ωh.
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Thus,ũh is the result of Line 5 in Algorithm 13.5. One of the main assumptions made
in analyzing FMG is that the exact solution of the discrete linear systemAhu

h = fh

is close, within the discretization accuracy, to the exact solution of the PDE problem:

‖u− uh‖ ≤ chκ. (13.48)

The left-hand side represents the norm of the difference between the exact solution
uh of the discrete problem and the solution of the continuous problem sampled at the
grid points ofΩh. Any norm onΩh can be used, and the choice of the norm will
reexamined shortly. Using an argument based on the triangleinequality, a particular
consequence of the above assumption is thatuh andÎh

Hu
H should also be close since

they are close to the same (continuous) functionu. Specifically, the assumption
(13.48) is replaced by:

‖uh − Îh
Hu

H‖ ≤ c1hκ . (13.49)

A bound of this type can be shown by making a more direct assumption on the
interpolation operator, see Exercise 17. The next important assumption to make is
that the MG iteration operator is uniformly bounded,

‖Mh‖ ≤ ξ<1 . (13.50)

Finally, the interpolation̂Ih
H must also be bounded, a condition which is convenient

to state as follows,
‖Îh

H‖ ≤ c22−κ . (13.51)

Theorem 13.2 Assume that (13.49), (13.50), and (13.51) are satisfied, andthatµ is
sufficiently large that

c2ξ
µ < 1 . (13.52)

Then the FMG iteration produces approximationsũh, which at each level satisfy,

‖uh − ũh‖ ≤ c3c1hκ (13.53)

with
c3 = ξµ/(1 − c2ξµ) . (13.54)

Proof. The proof is by induction. At the lowest level, equation (13.53) is clearly
satisfied because the solutioñuh is exact at the coarsest level and so the error is
zero. Consider now the problem associated with the mesh sizeh and assume that the
theorem is valid for the mesh sizeH. The error vector is given by

uh − ũh = (Mh)µ(uh − uh
0). (13.55)

The initial guess is defined byuh
0 = Îh

H ũ
H . Therefore,

‖uh − uh
0‖ = ‖uh − Îh

Hu
H + Îh

H(uH − ũH)‖
≤ ‖uh − Îh

Hu
H‖+ ‖Îh

H(uH − ũH)‖
≤ c1h

κ + ‖Îh
H‖c1c3Hκ (by (13.49) and induction hypothesis

≤ hκ(c1 + 2−κc2H
κc1c3) (by (13.51))

≤ hκc1(1 + c2c3) .
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Combining the above with (13.55) and (13.50) yields

‖uh − ũh‖ ≤ ξµhκc1(1 + c2c3) .

From the relation (13.54), we getξµ = c3/(1+c2c3) and this shows the result (13.53)
for the next level and completes the induction proof.

In practice it is accepted that takingµ = 1 is generally sufficient to satisfy the as-
sumptions of the theorem. For example, if‖Îh

H‖ ≤ 1, andκ = 1, thenc2 = 4. In this
case, withµ = 1, the result of the theorem will be valid providedξ < 0.25, which is
easily achieved by a simple V-cycle using Gauss-Seidel smoothers.

Example 13.5. This example illustrates the behavior of the full multigridcycle
when solving the same model Poisson problem as in Example 13.4. As before, the
Poisson equation is set on a square grid and discretized withcentered differences.
The problem is solved using the mesh sizesnx = ny = 9, 17, 33, 65, and129 points
(including the two boundary points) in each direction. Thus, for example, the last
problem leads to a linear system of dimensionN = 1272 = 16, 129.

Figure 13.8 shows in log scale the 2-norm of the actual error achieved for three
FMG schemes as a function oflog(nx − 1). It also shows the 2-norm of the dis-
cretization error. Note that whennx = 9, all methods show the same error as the
discretization error because the system is solved exactly at the coarsest level, i.e.,
whennx = 9. The first FMG scheme uses a weighted Jacobi iteration with the
weightω = 2/3, and(ν1, ν2) = (1, 0). As can be seen the error achieved becomes
too large relative to the discretization error when the number of levels increases. On
the other hand, the other two schemes, RB-GS with(ν1, ν2) = (4, 0) and GS with
(ν1, ν2) = (2, 0) perform well. It is remarkable that the error achieved by RB-GS is
actually slightly smaller than the discretization error itself.

The result of the above theorem is valid in any norm. However,it is important to
note that the type of bound obtained will depend on the norm used.

Example 13.6. It is useful to illustrate the basic discretization error bound (13.48)
for the 1-D model problem. As before, we abuse the notation slightly by denoting by
u the vector inΩh whose values at the grid points are the values of the (continuous)
solutionu of the differential equation (13.1–13.2). Now the discreteL2-norm on
Ωh, denoted by‖v‖h will be used. In this particular case, this norm is also equalto
h1/2‖v‖2, the Euclidean norm scaled by

√
h. Then we note that,

‖uh − u‖h = ‖(Ah)−1Ah(uh − u)‖h = ‖(Ah)−1[fh −Ahu]‖h
≤ ‖(Ah)−1‖h ‖fh −Ahu‖h . (13.56)

Assuming that the continuousu is in C4, (four times differentiable with continuous
fourth derivative), Equation (2.12) from Chapter 2 gives

(f −Ahu)i = fi + u′′(xi) +
h2

12
u(4)(ξi) =

h2

12
u(4)(ξi)
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Figure 13.8: FMG error norms with various smoothers versus the discretization error
as a function of the mesh size.

whereξi is in the interval(xi−h, xi+h). Sinceu ∈ C4(Ω), we have|u(4)(ξi)| ≤ K
whereK is the maximum ofu(4) overΩ, and therefore,

‖
(

u(4)(ξi)
)

i=1,...,n
‖h ≤ h1/2‖ (K)i=1,...,n ‖2 ≤ K .

This provides the bound‖fh −Ahu‖h ≤ Kh2/12 for the second term in (13.56).
The norm‖(Ah)−1‖h in (13.56) can be computed by noting that

‖(Ah)−1‖h = ‖(Ah)−1‖2 = 1/λmin(Ah) .

According to (13.7),

λmin(Ah) =
4

h2
sin2(πh/2) = π2 sin2(πh/2)

(πh/2)2
.

It can be shown that when, for example,x < 1, then1 ≥ sin(x)/x ≥ 1 − x2/6.
Therefore, whenπh < 2, we have

1

π2
≤ ‖(Ah)−1‖h ≤

1

π2
(

1− 1
6

(
πh
2

)2
) .
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Putting these results together yields the inequality:

‖uh − u‖h ≤
K

12π2
(

1− 1
6

(
πh
2

)2
) h2 .

Exercise 20 considers an extension of this argument to 2-D problems. Exercise 21
explores what happens if other norms are used.

13.5 Analysis for the two-grid cycle

The two-grid correction cycle is at the basis of most of the more complex multigrid
cycles. For example, it was seen that the general MG cycle canbe viewed as a
perturbation of a 2-Grid correction cycle. Similarly, practical FMG schemes use a
V-cycle iteration for their inner loop. This section will take a in-depth look at the
convergence of the 2-grid cycle, for the case when the coarsegrid problem is defined
by the Galerkin approximation (13.39). This case is important in particular because
it is at the basis of all the algebraic multigrid techniques which will be covered in the
next section.

13.5.1 Two important subspaces

Consider the two-grid correction operatorTH
h defined by (13.43). As was seen in

Section 13.4.2, see Lemma 13.1, this is anAh-orthogonal projector onto the subspace
Ωh. It is of the formI −Qh where

Qh = Ih
HA

−1
H IH

h Ah .

Clearly,Qh is also anAh-orthogonal projector (sinceI −Qh is, see Chapter 1), and
we have

Ωh = Ran(Qh)⊕Null(Qh) ≡ Ran(Qh)⊕ Ran(I −Qh) . (13.57)

The definition ofQh implies that

Ran(Qh) ⊂ Ran(Ih
H) .

As it turns out, the inclusion also holds in the other direction, which means that the
two subspaces are the same. To show this, take a vectorz in the range ofIh

H , so
z = Ih

Hy for a certainy ∈ Ωh. Remembering thatAH = IH
h AhI

h
H , we obtain

Qhz = Ih
HA

−1
H IH

h Ah I
h
Hy = Ih

Hy = z ,

which shows thatz belongs toRan(Qh). Hence,

Ran(Qh) = Ran(Ih
H) .
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This says thatQh is theAh- orthogonal projector onto the spaceRan(Ih
H), while

TH
h is theAh- orthogonal projector onto the orthogonal complement. This orthog-

onal complement, which is the range ofI − Qh, is also the null space ofQh ac-
cording to the fundamental relation (1.58) of Chapter 1. Finally, the null space of
Qh is identical with the null space of the restriction operatorIH

h . It is clear that
Null(IH

h ) ⊂ Null(Qh). The reverse inclusion is not as clear and may be derived
from the fundamental relation (1.18) seen in Chapter 1. Thisrelation implies that

Ωh = Ran(Ih
H)⊕Null

(

(Ih
H)T

)

= Ran(Qh)⊕Null
(

(Ih
H)T

)

.

However, by (13.37),Null
(
(Ih

H)T
)

= Null(IH
h ). Comparing this with the decom-

position (13.57), it follows that

Null(Qh) = Null(IH
h ) .

In summary, if we set

Sh ≡ Ran(Qh) , Th ≡ Ran(TH
h ) (13.58)

then the following relations can be stated:

Ωh = Sh ⊕ Th (13.59)

Sh = Ran(Qh) = Null(Th) = Ran(Ih
H) (13.60)

Th = Null(Qh) = Ran(Th) = Null(IH
h ) . (13.61)

These two subspaces are fundamental when analyzing MG methods. Intuitively,
it can be guessed that the null space ofTH

h is somewhat close to the space of smooth
modes. This is because it is constructed so that its desired action on a smooth com-
ponent is to annihilate it. On the other hand it should leave an oscillatory component
more or less unchanged. Ifs is a smooth mode andt an oscillatory one, then this
translates into the rough statements,

TH
h s ≈ 0, TH

h t ≈ t .

Clearly, opposite relations are true withQh, namelyQht ≈ 0 andQhs ≈ s.

Example 13.7. Consider the case when the prolongation operatorIH
h corresponds

to the case of full weighting in the one-dimensional case. Consider the effect of this
operator on any eigenmodewh

k , which has componentssin(jθk) for j = 1, . . . , n.
whereθk = kπ/(n + 1). Then, according to (13.33)

(IH
h w

h
k)j =

1

4
[sin((2j − 1)θk) + 2 sin(2jθk) + sin((2j + 1)θk)]

=
1

4
[2 sin(2jθk) cos θk + 2 sin(2jθk)]

=
1

2
(1 + cos θk) sin(2jθk)

= cos2

(
θk

2

)

sin(2jθk) .
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Consider a modewk wherek is large, i.e., close ton. Then,θk ≈ π. In this case, the
restriction operator will transform this mode into a constant times the same mode on
the coarser grid. The multiplicative constant, which iscos2(θk/2), is close to zero
in this situation, indicating thatIH

h wk ≈ 0, i.e., thatwk is near the null space of
IH
h . Oscillatory modes are close to being in the null space ofIH

h , or equivalently the
range ofTH

h .
When k is small, i.e., for smooth modes, the constantcos2(θk/2) is close to

one. In this situation the interpolation produces the equivalent smooth mode inΩH

without damping it.

13.5.2 Convergence analysis

When analyzing convergence for the Galerkin case, theAh norm is often used. In
addition, 2-norms weighted byD1/2, orD−1/2, whereD is the diagonal ofA, are
convenient. For example, we will use the notation,

‖x‖D = (Dx, x)1/2 ≡ ‖D1/2x‖2 .

The following norm also plays a significant role,

‖e‖AhD−1Ah
= (D−1Ahe,Ahe)

1/2 ≡ ‖Ahe‖D−1 .

To avoid burdening the notation unnecessarily we simply use‖Ahe‖D−1 to denote
this particular norm ofe. It can be shown that standard 2-grid cycles satisfy an
inequality of the form,

‖She
h‖2Ah

≤ ‖eh‖2Ah
− α‖Aeh‖2D−1 ∀ eh ∈ Ωh (13.62)

independently ofh. This is referred to as thesmoothing property.
In addition to the above requirement which characterizes the smoother, another

assumption will be made which characterizes the discretization. This assumption is
referred to as theapproximation property, and can be stated as follows:

min
uH∈ΩH

‖eh − Ih
He

H‖2D ≤ β‖eh‖2Ah
, (13.63)

whereβ does not depent onh. In the following theorem, it is assumed thatA is SPD,
and that the restriction and prolongation operators are linked by a relation of the form
(13.37), withIh

H being of full rank.

Theorem 13.3 Assume that inequalities (13.62) and (13.63) are satisfied for a cer-
tain smoother, whereα > 0 and β > 0. Thenα ≤ β, the two-level iteration
converges, and the norm of its operator is bounded as follows:

‖ShT
H
h ‖Ah

≤
√

1− α

β
. (13.64)
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Proof. It was seen in the previous section thatRan(TH
h ) = Th is Ah-orthogonal to

Ran(Ih
H) = Sh. As a result,(eh, Ih

He
H)Ah

= 0 for anyeh ∈ Ran(TH
h ), and so,

‖eh‖2Ah
= (Ahe

h, eh − Ih
He

H) ∀ eh ∈ Ran(TH
h ).

For anyeh ∈ Ran(TH
h ), the cauchy-schwarz inequality gives

‖eh‖2Ah
= (D−1/2Ahe

h,D1/2(eh − Ih
He

H))

≤ ‖D−1/2Ahe
h‖2 ‖D1/2(eh − Ih

He
H)‖2

= ‖Ahe
h‖D−1 ‖eh − Ih

He
H‖D .

By (13.63), this implies that‖eh‖Ah
≤ √β‖Ahe

h‖D−1 for anyeh ∈ Ran(T h
H), or

equivalently,‖TH
h eh‖2Ah

≤ β‖AhT
h
He

h‖2D−1 for any eh in Ωh. The proof is com-
pleted by exploiting the smoothing property, i.e., inequality (13.62),

0 ≤ ‖ShT
H
h eh‖2Ah

≤ ‖TH
h eh‖2Ah

− α‖AhT
H
h eh‖2D−1

≤ ‖TH
h eh‖2Ah

− α

β
‖TH

h eh‖2Ah

=

(

1− α

β

)

‖TH
h eh‖2Ah

≤
(

1− α

β

)

‖eh‖2Ah
.

The fact thatTH
h is anAh-orthogonal projector was used to show the last step.

Example 13.8. As an example, we will explore the smoothing property (13.62) in
the case of the weighted Jacobi iteration. The indexh is now dropped for clarity.
From (13.19) the smoothing operator in this case is

S(ω) ≡ I − ωD−1A .

WhenA is SPD, then the weighted Jacobi iteration will converge for0 < ω <
2/ρ(D−1A). For any vectore we have

‖S(ω)e‖2A = (A(I − ωD−1A)e, (I − ωD−1Ae))

= (Ae, e) − 2ω(AD−1Ae, e) + ω2(AD−1Ae,D−1Ae)

= (Ae, e) − 2ω(D− 1
2Ae,D− 1

2Ae) + ω2
(

(D− 1
2AD− 1

2 )D− 1
2Ae,D− 1

2Ae
)

= (Ae, e) −
([

ω(2I − ωD− 1
2AD− 1

2 )
]

D− 1
2Ae,D− 1

2Ae
)

≤ ‖e‖2A − λmin

[

ω(2I − ωD− 1
2AD− 1

2 )
]

‖Ae‖2D−1 . (13.65)

Let γ = ρ(D− 1
2AD− 1

2 ) = ρ(D−1A). Then the above restriction onω implies
that2 − ωγ > 0, and the matrix in the brackets in (13.65) is positive definite with
minimum eigenvalueω(2− ωγ). Then, it suffices to take

α = ω(2− ωγ)
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to satisfy the requirement (13.62). Note that (13.62) is also valid with α replaced
by any positive number that does not exceed the above value, but inequality which
would result would be less sharp. Exercise 19 explores the same question when
Richardson’s iteration is used instead of weighted Jacobi.

13.6 Algebraic Multigrid

Throughout the previous sections of this chapter, it was seen that multigrid methods
depend in a fundamental way on the availability of an underlying mesh. In addi-
tion to this, the performance of multigrid deteriorates forproblems with anisotropic
coefficients or discontinuous coefficients. It is also difficult to define multigrid on
domains that are not rectangular, especially in three dimensions. Given the success
of these techniques, it is clear that it is important to consider alternatives which use
similar principles which do not face the same disadvantages. Algebraic multigrid
methods have been defined to fill this gap. The main strategy used in AMG is to
exploit the Galerkin approach, see Equation (13.39), in which the interpolation and
prolongation operators are defined in an algebraic way, i.e., only from the knowledge
of the matrix.

In this section the matrixA is assumed to be positive definite. Since meshes
are no longer available, the notation must be changed, or interpreted differently, to
reflect levels rather than grid sizes. Hereh is no longer a mesh-size but an index to
a certain level, andH is used to index a coarser level. The meshΩh is now replaced
by a subspaceXh of Rn at a certain level andXH denotes the subspace of the coarse
problem. Since there are no meshes, one might wonder how the coarse problems can
be defined.

In AMG, the coarse problem is typically defined using the Galerkin approach,
which we restate here:

AH = IH
h AhI

h
H , fH = IH

h f
h (13.66)

whereIH
h the restriction operator, andIh

H the prolongation operator, both defined
algebraically. The prolongation and restriction operators are now related by transpo-
sition:

IH
h = (Ih

H)T . (13.67)

A minimum assumption made on the prolongation operator is that it is of full rank.
It can therefore be said that only two ingredients are required to generalize the

multigrid framework:

1. A way to define the ‘coarse’ subspaceXH from a fine subspaceXh;

2. A way to define the interpolation operatorIH
h fromXh toXH .

In other words, all that is required is a scheme forcoarseninga fine space along with
an interpolation operator which would map a coarse node intoa fine one.
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In order to understand the motivations for the choices made in AMG when defin-
ing the above two components, it is necessary to extend the notion of smooth and
oscillatory modes. This is examined in the next section.

Note that Lemma 13.1 is valid and it implies thatTH
h is a projector, which is

orthogonal when theAh inner product is used. The corresponding relations (13.59
– 13.61) also hold. Therefore, Theorem 13.3 is also valid andthis is a fundamental
tool used in the analysis of AMG.

13.6.1 Smoothness in AMG

By analogy with multigrid, an error is decomposed into smooth and oscillatory com-
ponents. However, these concepts are now defined with respect to the ability or in-
ability of the smoother to reduce these modes. Specifically,an error is smooth when
its convergence with respect to the smoother is slow. The common way to state this
is to say that, for a smooth errors,

‖Shs‖A ≈ ‖s‖A .

Note the use of the energy norm which simplifies the analysis.If the smoother sat-
isfies the smoothing property (13.62), then this means that for a smooth errors, we
would have

‖As‖D−1 ≪ ‖s‖Ah
.

Expanding the norms and using the Cauchy-Schwarz inequality gives

‖s‖2Ah
= (D−1/2Ahs,D

1/2s)

≤ ‖D−1/2Ahs‖2 ‖D1/2s‖2
= ‖Ahs‖D−1 ‖s‖D .

Since‖As‖D−1 ≪ ‖s‖Ah
this means that‖s‖Ah

≪ ‖s‖D, or

(As, s)≪ (Ds, s) . (13.68)

It simplifies the analysis to setv = D1/2s. Then,

(D− 1
2AD− 1

2 v, v)≪ (v, v) .

The matrixÂ ≡ D− 1
2AD− 1

2 is a scaled version ofA in which the diagonal entries
are transformed into ones. The above requirement states that the Rayleigh quotient
of D1/2s is small. This is in good agreement with standard multigrid since, a small
Rayleigh quotient implies that the vectorv is a linear combination of the eigenvectors
of A with smallest eigenvalues. In particular,(As, s) ≈ 0 also implies thatAs ≈ 0,
i.e.,

aiisi ≈ −
∑

j 6=i

aijsj . (13.69)
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It is also interesting to see how to interpret smoothness in terms of the matrix coeffi-
cients. A common argument held in AMG methods exploits the following expansion
of (As, s):

(As, s) =
∑

i,j

aijsisj

=
1

2

∑

i,j

−aij

(
(sj − si)

2 − s2i − s2j
)

=
1

2

∑

i,j

−aij(sj − si)
2 +

∑

i




∑

j

aij



 s2i .

The condition (13.68) can be rewritten as(As, s) = ǫ(Ds, s), in which0 < ǫ ≪ 1.
For the special case when the row-sums of the matrix are zero,and the off-diagonal
elements are negative, then this gives,

1

2

∑

i,j

|aij |(sj−si)
2 = ǫ

∑

i

aiis
2
i →

∑

i

aiis
2
i




∑

j 6=i

|aij |
aii

(
si − sj

si

)2

− 2ǫ



 = 0 .

A weighted sum, with nonnegative weights, of the bracketed terms must vanish. It
cannot be rigorously argued that the bracketed term must be of the order2ǫ, but one
can say thaton averagethis will be true, i.e.,

∑

j 6=i

|aij |
aii

(
si − sj

si

)2

≪ 1 . (13.70)

For the above relation to hold,|si− sj|/|si|must be small when|aji/aii| is large. In
other words, the components ofs vary slowly in the direction of the strong connec-
tions. This observation is used in AMG when defining interpolation operators and
for coarsening.

13.6.2 Interpolation in AMG

The argument given at the end of the previous section is at thebasis of many AMG
techniques. Consider a coarse nodei and its adjacent nodesj, i.e., those indices
such thataij 6= 0. The argument following (13.70) makes it possible to distinguish
between weak couplings,|aij/aii| is smaller than a certain thresholdσ, and strong
couplings, when it is larger. Therefore, there are three types of nodes among the
nearest neighbors of a fine nodei. First there is a set of coarse nodes, denoted byCi.
Then among the fine nodes we have a setF s

i of nodes that are strongly connected
with i, and a setFw

i of nodes that are weakly connected withi. An illustration is
shown in Figure 13.9. The smaller filled circles represent the fine nodes, and the thin
dashed lines represent the weak connections. The thick dash-dot lines represent the
strong connections.
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According to the argument given above, a good criterion for finding an interpola-
tion formula is to use the relation (13.69) which heuristically characterizes a smooth
error. This is because interpolation should average out, i.e., eliminate, highly oscil-
latory elements inXh, and produce a function that is smooth in the coarser space.
Then we rewrite (13.69) as

aiisi ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aijsj −
∑

j ∈ F w
i

aijsj . (13.71)

Consider eliminating the weak connections first. Instead ofjust removing them from
the picture, it is natural to lump their action and add the result into the diagonal term,
in a manner similar to the compensation strategy used in ILU.This gives,



aii +
∑

j ∈ F w
i

aij



 si ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aijsj . (13.72)

F

C

C

F

F

F

C

C

Figure 13.9: Example of nodes adjacent to a fine nodei (center). Fine mesh nodes
are labeled with F, coarse nodes with C.

The end result should be a formula in which the right-hand side depends only on
coarse points. Therefore, there remains to express each of the terms of the second
sum in the right-hand side of the above equation, in terms of values at coarse points.
Consider the termsj for j ∈ F s

i . At nodej, the following expression can be written
that is similar to (13.69)

ajjsj ≈ −
∑

l ∈ Cj

ajlsl −
∑

l ∈ F s
j

ajlsl −
∑

l ∈ F w
j

ajlsl .

If the aim is to invoke only those nodes inCi, then a rough approximation is to
remove all other nodes from the formula, so the first sum is replaced by a sum over
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all k ∈ Ci (in effect l will belong toCi ∩ Cj), and write

ajjsj ≈ −
∑

l ∈ Ci

ajlsl .

However, this would not be a consistent formula in the sense that it would lead to in-
correct approximations for constant functions. To remedy this,ajj should be changed
to the opposite of the sum of the coefficientsajl. This gives,


−
∑

l ∈ Ci

ajl



 sj ≈ −
∑

l ∈ Ci

ajlsl → sj ≈
∑

l ∈ Ci

ajl

δj
sl; with δj ≡

∑

l ∈ Ci

ajl .

Substituting this into (13.72) yields,


aii +
∑

j ∈ F w
i

aij



 si ≈ −
∑

j ∈ Ci

aijsj −
∑

j ∈ F s
i

aij

∑

l ∈ Ci

ajl

δj
sl . (13.73)

This is the desired formula since it expresses the new fine valuesi in terms of coarse
valuessj andsl, for j, l in Ci. A little manipulation will help put it in a ‘matrix-form’
in which si is expressed as a combination of thesj ’s for j ∈ Ci:

si =
∑

j ∈ Ci

wijsj with wij ≡ −
aij +

∑

k ∈ F s
i

aikakj

δk

aii +
∑

k ∈ F w
i
aik

. (13.74)

Once the weights are determined, the resulting interpolation formula generalizes
the formulas seen for standard multigrid:

(Ih
Hx)i =

{
xi if i ∈ XH
∑

j ∈ Ci
wijxj otherwise

.

Example 13.9. Consider the situation depicted in Figure 13.10 which can corre-
spond to a 9-point discretization of some convection-diffusion equation on a regular
grid. The coarse and fine nodes can be obtained by a red-black coloring of the cor-
responding 5-point graph. For example black nodes can be thecoarse nodes and red
nodes the fine nodes.
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Figure 13.10: Darker filled circles represent the fine nodes.Thick dash-dot lines
represent the strong connections. Values on edges are theaij ’s. The value 20 at the
center (fine) point isaii.

In this case, Equation (13.73) yields,

si =
1

18

[

4sS + 4sN + 3sW + 3sE + 2
3sN + 4sW

7
+ 2

3sN + 4sE

7

]

=
1

18

[

4sS +

(

4 +
12

7

)

sN +

(

3 +
8

7

)

sW +

(

3 +
8

7

)

sE

]

.

Notice that, as is expected from an interpolation formula, the weights are all nonneg-
ative and they add up to one.

13.6.3 Defining coarse spaces in AMG

Coarsening, i.e., the mechanism by which the coarse subspaceXH is defined from
Xh can be achieved in several heuristic ways. One of the simplest methods, men-
tioned in the above example, uses the ideas of multicoloring, or independent set or-
derings seen in Chapter 3. These techniques do not utilize information about strong
and weak connections seen in the previous section. A detailed description of these
techniques is beyond the scope of this book. However some of the guiding principles
used to defined coarsening heuristics are formulated below.

• When defining the coarse problem, it is important to ensure that it will provide
a good representation of smooth functions. In addition, interpolation of smooth
functions should be accurate.

• The number of points is much smaller than on the finer problem.

• Ensure that strong couplings are not lost in coarsening. Forexample, ifi is
strongly coupled withj thenj must be either aC node or anF node that is
strongly coupled with aC-node.
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• The process should reach a balance between the size ofXH and the accuracy
of the interpolation/ restriction functions.

13.6.4 AMG via Multilevel ILU

It was stated in the introduction of this section that the main ingredients needed for
defining an Algebraic Multigrid method are a coarsening scheme and an interpola-
tion operator. A number of techniques have been recently developed which attempt
to use the framework of incomplete factorizations to define AMG preconditioners.
Let us consider coarsening first. Coarsening can be achievedby using variations of
independent set orderings which were covered in Chapter 3. Often the independent
set is called the fine set and the complement is the coarse set,though this naming is
now somewhat arbitrary.

Recall that independent set orderings transform the original linear system into a
system of the form (

B F
E C

)(
x

y

)

=

(
f

g

)

(13.75)

in which theB block is a diagonal matrix. A block LU factorization will help estab-
lish the link with AMG-type methods.

(
B F
E C

)

=

(
I 0

EB−1 I

)(
B F
0 S

)

whereS is the Schur complement,

S = C − EB−1F .

The above factorization, using independent sets, was at thebasis of the ILU factoriza-
tion with Multi-elimination (ILUM) seen in Chapter 12. Since the Schur complement
matrixS is sparse and the above procedure can be repeated recursively for a few lev-
els. Clearly, dropping is applied each time to prune the Schur complementS which
becomes denser as the number of levels increases. In this section we consider this
factorization again from the angle of AMG and will define block generalizations.

No Coupling

Figure 13.11: Group- (or Block-) -Independent sets.
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Figure 13.12: Group-independent set reorderings of a 9-point matrix: Left: Small
groups (fine-grain), Right: large groups (coarse-grain).

Factorizations that generalize the one shown above are now considered in which
B is not necessarily diagonal. Such generalizations use the concept ofblockor group
independent sets which generalize standard independent sets. A group-independent
set is a collection of subsets of unknowns such that there is no coupling between
unknowns of any two different groups. Unknowns within the same group may be
coupled. An illustration is shown in Figure 13.11.

If the unknowns are permuted such that those associated withthe group-independent
set are listed first, followed by the other unknowns, the original coefficient system
will take the form (13.75) where now the matrixB is no longer diagonal but block
diagonal. An illustration of two such matrices is given in Figure 13.12. Consider
now an LU factorization (exact or incomplete) ofB,

B = LU +R .

Then the matrixA can be factored as follows,
(
B F
E C

)

≈
(

L 0
EU−1 I

)(
I 0
0 S

)(
U L−1F
0 I

)

. (13.76)

The above factorization, which is of the formA = LDU , gives rise to an analogue of
a 2-grid cycle. Solving with theL matrix, would take a vector with componentsu, y
in the fine and coarse space, respectively to produce the vector yH = y − EU−1u
in the coarse space. The Schur complement system can now be solved in some
unspecified manner. Once this is done, we need to back-solve with the U matrix.
This takes a vector from the coarse space and produces theu-variable from the fine
space,u := u− L−1Fy.

ALGORITHM 13.6 Two-level Block-Solve
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1. f := L−1f
2. g := g −EU−1f1

3. SolveSy = g
4. f := f − L−1Fy
5. x = U−1f

The above solution steps are reminiscent of the two-grid cycle algorithm (Algo-
rithm 13.2). The interpolation and restriction operationsare replaced by those in
lines 2 and 4, respectively.

A few strategies have recently been developed based on this parallel between a
recursive ILU factorization and AMG. One such technique is the Algebraic Recur-
sive Multilevel Solver [253]. In ARMS, the block factorization (13.76) is repeated
recursively on the Schur complementS which is kept sparse by dropping small ele-
ments. At thel-th level, we would write
(
Bl Fl

El Cl

)

≈
(

Ll 0

ElU
−1
l I

)

×
(
I 0
0 Al+1

)

×
(
Ul L−1

l Fl

0 I

)

, (13.77)

whereLlUl ≈ Bl, andAl+1 ≈ Cl − (ElU
−1
l )(L−1

l Fl).
In a nutshell the ARMS procedure consists of essentially three steps: first, obtain

a group-independent set and reorder the matrix in the form (13.75); second, obtain
an ILU factorizationBl ≈ LlUl for Bl; third, obtain approximations to the matrices
L−1

l Fl, ElU
−1
l , andAl+1, and use these to compute an approximation to the Schur

complementAl+1. The process is repeated recursively on the matrixAl+1 until a
selected number of levels is reached. At the last level, a simple ILUT factorization,
possibly with pivoting, or an approximate inverse method can be applied.

Each of theAi’s is sparse but will become denser as the number of levels in-
creases, so small elements are dropped in the block factorization to maintain sparsity.
The matricesGl ≡ ElU

−1
l , andWl ≡ L−1

l Fl are only computed in order to obtain
the Schur complement

Al+1 ≈ Cl −GlWl. (13.78)

OnceAl+1 is available,Wl andGl are discarded to save storage. Subsequent opera-
tions withL−1

l Fl andElU
−1
l are performed usingUl, Ll and the blocksEl andFl. It

is important to distinguish between possible variants. To conform with the Galerkin
approach, we may elect not to drop terms onceAl+1 is obtained from (13.78). In this
case (13.78) is not an approximation but an exact equality.

There are also many possible variations in the solution phase which can be
viewed as a recursive version of Algorithm 13.6. Step 3 of thealgorithm now reads

3. SolveAl+1yl = gl

which essentially meanssolve in some unspecified way. At the l-th level, this re-
cursive solution step, which we call RSolve for reference, would be replaced by a
sequence of statements like
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3.0 If lev = last
3.1 SolveAl+1yl = gl

3.2 Else
3.3 RSolve (Al+1, gl)
3.4 End

Iterative processes can be used in step 3.3. The preconditioner for this iterative pro-
cess can, for example, be defined using the next,(l+ 2)-th level (without iterating at
each level). This is the simplest approach. It is also possible to use an iterative proce-
dure at each level preconditioned (recursively) with the ARMS preconditioner below
that level. This variation leads to a procedure similar the MG-cycle, if the number
of stepsγ is specificed. Finally, the localBl block can be used to precondition the
system of thel-th level.

13.7 Multigrid vs Krylov methods

The main differences between preconditioned Krylov subspace methods and the
multigrid approach may now have become clearer to the reader. In broef, Krylov
methods take a matrixA and a right-hand sideb and try to produce a solution, using
no other information. The termblack boxis often used for those methods which re-
quire minimal input from the user, a good example being that of sparse direct solvers.
Preconditioned Krylov subspace methods attempt to duplicate this attribute of direct
solvers, but they are not ‘black-box’ solvers since they require parameters and do not
always succeed in solving the problem.

The approach taken by Multigrid methods is to tackle the original problem, e.g.
the PDE, directly instead. By doing so, it is possible to exploit properties which are
not always readily available from the dataA, b. For example, what makes multigrid
work in the Poisson equation case, is the strong relation between eigenfunctions of
the iteration matrixM and the mesh. It is this strong relation that makes it possible
to take advantage of coarser meshes and to exploit a divide-and-conquer principle
based on the spectral decomposition ofM . AMG methods try to recover similar
relationships directly fromA, but this is not always easy.

The answer to the question “which method to use?”, cannot be asimple one be-
cause it is related to two other important and subjective considerations. The first is
the cost of the coding effort. Whether or not one is willing tospend a substantial
amount of time coding and testing, is now a factor. The secondis how important it is
to develop an “optimal” code for the problem at hand. If the goal is to solve a single
linear system then a direct solver (assuming enough memory is available) or a pre-
conditioned Krylov solver (in case memory is an issue) may bebest. Here, optimality
is a secondary consideration. On the other extreme, the bestpossible performance
may be required from the solver if it is meant to be part of a large simulation code
which may take, say, days on a high-performance computer to complete one run. In
this case, it may be worth the time and cost to build the best solver possible, because
this cost will be amortized over the lifetime of the simulation code. Here, multi-
level techniques can constitute a significant part of the solution scheme. A wide grey
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zone lies in between these two extremes wherein Krylov subspace methods are often
invoked.

It may be important to comment on another practical consideration, which is that
most industrial solvers are not monolithic schemes based onone single approach.
Rather, they are comprised of building blocks which includetools extracted from
various methodologies: direct sparse techniques, multilevel methods, ILU type pre-
conditioners, as well as strategies that exploit the specificity of the problem. For
example, a solver could utilize the knowledge of the problemto reduce the system
by eliminating part of the unknowns, then invoke an AMG or multigrid scheme to
solve the resulting reduced system in cases when it is known to be Poisson-like and an
ILU-Krylov approach combined with some reordering schemes(from sparse direct
solvers) in other cases. Good iterative solvers must rely ona battery of techniques
if they are to be robust and efficient at the same time. To ensure robustness, indus-
trial codes may include an option to resort to direct solversfor those, hopefully rare,
instances when the main iterative scheme fails.

PROBLEMS

P-13.1 The following notation will be used. Given a vectorz of sizen.m denote by

Z = [z]n,m

the matrix of dimensionn ×m with entriesZij = z(j−1)∗n+i. When there is no ambiguity
the subscriptsn,m are omitted. In other wordsn consecutive entries ofz will form the
columns ofZ. The opposite operation, which consists of stacking the consecutive columns
of a matrixZ into a vectorz, is denoted by

z = Z| .

a. Letu ∈ Rm, v ∈ Rn. What is the matrixZ = [z]n,m whenz = u⊗ v?

b. Show that

(I ⊗A)z = (A.[z])| and (A⊗ I)z =
(
[z].AT

)

|

c. Show, more generally, that

(A⊗B)z =
(
B.[z].AT

)

|

d. What becomes of the above relation whenz = u ⊗ v? Find an eigenvector ofA ⊗ B
based on this.

e. Show that(A⊗B)T = (AT ⊗BT ).

P-13.6 Establish that the eigenvectors of the Gauss-Seidel operator given by (13.29) are
indeed a set ofn linearly independent vectors. (Hint: notice that the eigenvalues other than
for k = (n + 1)/2 are all double, it suffices to show that the two eigenvectors defined by
the formula are independent.) What happens if the absolute values are removed from the
expression (13.29)?
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P-13.7 Consider the Gauss-Seidel iteration as a smoother for the 1-D model problem, when
n = 11 (spectrum illustrated in Figure 13.4.) For each eigenvector ui of the original matrix
A, compute the norm reduction‖Gui‖/‖ui‖, whereG is the Gauss-Seidel iteration matrix.
Plot these ratios againsti, in a way that is similar to Figure 13.4. What can you conclude?
Repeat for the powersG2, andG4, andG8. What can you conclude (see the statement made
at end of Section 13.2.3)?

P-13.8 Show relation (13.31). Consider as an example, a7 × 5 grid and illustrate for this
case the semi-interpolation operatorsIh

x,2h andIh
y,2h. Then derive the relation by seeing how

the 2-D interpolation operator was defined in Section 13.3.1.

P-13.9 Show the relation (13.38). Consider first as an example, a7 × 5 grid and illustrate
for this case the semi-restriction operatorsI2h

x,h andI2h
y,h. Then use (13.31) (see previous

exercise) and part (e) of Exercise 1.

P-13.10 What is the matrixIH
h AhI

h
H for the 2-D model problem when Full Weighting is

used? [Hint: Use the tensor product notation and the resultsof Exercises 9 and 8.]

P-13.11 Consider the matrixJω given by (13.20). Show that it is possible to findω > 1
such thatρ(Jω) > 1. Similar question forω < 0.

P-13.12 Derive the full weighting formula by applying the trapezoidal rule to approximate
the numerator and denominator in the following approximation:

u(x) ≈
∫ x+h

x−h
u(t)dt

∫ x+h

x−h 1.dt
.

P-13.13 Derive theB-form (or preconditioning form, see (13.41)) of the weighted Jacobi
iteration.

P-13.14 Do the following experiment using an interactive package such as Matlab - (or
code in FORTRAN or C). Consider the linear systemAx = 0 whereA arises from the
discretization of−u′′ on [0, 1] using 64 internal points. Takeu0 to be the average of the two
modesun/4 = u16 andu3n/4 = u48. Plot the initial error (Hint: the error is justu0), then the
error after 2 steps of the Richardson process, then the errorafter 5 steps of the Richardson
process. Plot also the components of the final error after the5 Richardson steps, with respect
to the eigenbasis. Now obtain the residual on the gridΩ2h, and plot the residual obtained
after 2 and 5 Richardson steps on the coarse-grid problem. Show also the components of the
error in the eigenbasis of the original problem (on the fine mesh). Finally, interpolate to the
fine grid and repeat the process again, doing 2 and then 5 stepsof the Richardson process.

P-13.15 Repeat Exercise 14 using the Gauss-Seidel iteration instead of the Richardson iter-
ation.

P-13.16 Consider the cost of the general MG algorithm as given by the recurrence formula
(13.46). Solve the recurrence equation (in terms ofη andγ) for the 1-D case. You may
assume thatn = 2k + 1 and that the maximum number of levels are used so that the costof
the last system to solve is zero. For the 2-D case, you may assume thatn = m = 2k + 1.
Under which condition is the costO(n log n) wheren is the size of the finest grid under
consideration? What would be the situation for 3-D problems?

P-13.17 It was stated in Section 13.4.4 that condition (13.48) implies the condition (13.49)
provided an assumption is made on the interpolationÎh

H . Prove a rigorous bound of the type
(13.49) (i.e., findc1) by assuming the conditions (13.48) (13.51) and

‖u− Îh
Hu‖ ≤ c4hκ
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in which as beforeu represents the discretization of the the solution of the continuous prob-
lem (i.e., the continuous solution sampled at the grid points ofΩh or ΩH ).

P-13.18 Justify the definition of the norm‖v‖h in Example 13.6 by considering that the
integral

∫ 1

0

v(t)2 dt

is approximated by the Trapezoidal rule. It is assumed thatv(x0) = v(xn+1) = 0 and the
composite trapezoidal rule uses all pointsx0, . . . , xn+1.

P-13.19 Find the constantα in the smoothing property (13.62), for the case of Richardon’s
iteration whenA is SPD. [Hint: Richardson’s iteration is like a Jacobi iteration where the
diagonal is replaced by the identity.]

P-13.20 Extend the argument of Example 13.6 to the 2-D case. Start with the case of
the square(0, 1)2 which uses the same discretization in each direction. Then consider the
more general situation. Define the norm‖v‖h from the discreteL2 norm (see also previous
exercise).

P-13.21 Establish a bound of the type shown in Example 13.6 using the 2-norm instead of
the discreteL2 norm. What if theAh norm is used?

P-13.22 The energy norm can be used to establish a result similar to that of Theorem 13.2
leading to a slightly simpler argument. It is now assumed that (13.49) is satisfied with respect
to theAh-norm, i.e., that

‖uh − Îh
Hu

H‖Ah
≤ c1hκ .

a. Show that for any vectorv in ΩH we have

‖Ih
Hv‖Ah

= ‖v‖AH
.

b. Letuh
0 the initial guess at gridΩh in FMG and assume that the error achieved by the

system at levelH = 2h satisfies‖uH − ũH‖AH
≤ c1c3H

κ, in which c3 is to be
determined. Follow the argument of the proof of Theorem (13.2) and use the relation
established in (a) to show that

‖uh − uh
0‖Ah

≤ ‖uh − Îh
Hu

H‖Ah
+ ‖uH − ũH‖AH

≤ c1hκ + c1c3H
κ .

c. Show a result analogous to that of Theorem 13.2 which uses theAh-norm, i.e., findc3
such that‖uh − ũh‖Ah

≤ c1c3hκ, on each grid.

P-13.4 Starting from the relation (13.73), establish (13.74).

NOTES AND REFERENCES. The material presented in this chapter is based on several sources. Fore-
most among these are the references [65, 207, 163, 286, 301].A highly recommended reference is the
“Multigrid tutorial, second edition” by Briggs, Van Hansen, and Mc Cormick [65], for its excellent
introduction to the subject. This tutorial includes enoughtheory to understand how multigrid meth-
ods work. More detailed volumes include the books by Mc Cormick et al. [207], Hackbusch [162],
Hackbusch [163], Wesseling [311], and the more recent book by Trottenberg and al. [286].

Early work on multigrid methods dates back to the 1960s and includes the papers by Brakhage [46],
Fedorenko [124, 125], Bakhvalov [23], and Kronsjö and Dahlquist [193]. However, Multigrid meth-
ods have seen much of their modern development in the 1970s and early 1980s, essentially under the
pioneering work of Brandt [54, 55, 56]. Brandt played a key role in promoting the use of MG by estab-
lishing their overwhelming superiority over existing techniques for elliptic PDEs and by introducing
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many new concepts which are now widely use in MG literature. Algebraic multigrid methods were
later developed to attempt to obtain similar performance. These methods were introduced in [58] and
analyzed in a number of papers, see e.g., [57, 235].

Closely related to the multigrid approach is the Aggregation-Disaggregation technique which is
popular in Markov chain modeling. A recommended book for these methods and others used in the
context of Markov chain modeling is [275].

Today MG methods are still among the most efficient techniques available for solving Elliptic
PDEs on regularly structured problems. Their Algebraic variants do not seem to have proven as ef-
fective and the search for the elusive “black-box” iterative solver is still under way, with research on
multilevel methods in general and AMG in particular still quite active. With computer power con-
stantly improving, problems are becoming larger and more complex, and this makes mesh-independent
convergence look ever more attractive.

The paper [253] describes a scalar version of the Algebraic Recursive Multilevel Solver and the
report [203] describes a parallel implementation. The related method named MLILU described in [28]
also exploits the connection between ILU and AMG. The parallel version of ARMS (called pARMS)
is available from the author’s web site:www.cs.umn.edu/∼saad.

Resources for Multigrid are available inwww.mgnet.org which provides bibliographical refer-
ences, software, and a newsletter. In particular, Examples13.4 and 13.5 have been run with the
MGLAB matlab codes (contributed by James Bordner and FaisalSaied) available from this site. A
parallel code named HYPRE which is available from the Lawrence Livermore National Lab, includes
implementations of AMG.



Chapter 14

DOMAIN DECOMPOSITION METHODS

As multiprocessing technology is steadily gaining ground, new classes of numerical methods

that can take better advantage of parallelism are emerging. Among these techniques, domain

decomposition methods are undoubtedly the best known and perhaps the most promising for

certain types of problems. These methods combine ideas from Partial Differential Equations,

linear algebra, mathematical analysis, and techniques from graph theory. This chapter is devoted

to “decomposition” methods, which are based on the general concepts of graph partitionings.

14.1 Introduction

Domain decomposition methods refer to a collection of techniques which revolve
around the principle of divide-and-conquer. Such methods have been primarily de-
veloped for solving Partial Differential Equations over regions in two or three dimen-
sions. However, similar principles have been exploited in other contexts of science
and engineering. In fact, one of the earliest practical usesfor domain decomposition
approaches was in structural engineering, a discipline which is not dominated by Par-
tial Differential Equations. Although this chapter considers these techniques from a
purely linear algebra view-point, the basic concepts, as well as the terminology, are
introduced from a model Partial Differential Equation.

Consider the problem of solving the Laplace Equation on an L-shaped domain
Ω partitioned as shown in Figure 14.1. Domain decomposition or substructuring
methods attempt to solve the problem on the entire domain

Ω =

s⋃

i=1

Ωi,

from problem solutions on the subdomainsΩi. There are several reasons why such
techniques can be advantageous. In the case of the above picture, one obvious rea-
son is that the subproblems are much simpler because of theirrectangular geometry.
For example, fast Poisson solvers can be used on each subdomain in this case. A
second reason is that the physical problem can sometimes be split naturally into a
small number of subregions where the modeling equations aredifferent (e.g., Euler’s
equations on one region and Navier-Stokes in another).

Substructuring can also be used to develop “out-of-core” solution techniques.
As already mentioned, such techniques were often used in thepast to analyze very

469
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Ω1 Ω2

Ω3

Γ12

Γ13

Figure 14.1: An L-shaped domain subdivided into three subdomains.

large mechanical structures. The original structure is partitioned intos pieces, each
of which is small enough to fit into memory. Then a form of block-Gaussian elim-
ination is used to solve the global linear system from a sequence of solutions using
s subsystems. More recent interest in domain decomposition techniques has been
motivated by parallel processing.

14.1.1 Notation

In order to review the issues and techniques in use and to introduce some notation,
assume that the following problem is to be solved:

∆u = f in Ω

u = uΓ onΓ = ∂Ω.

Domain decomposition methods are all implicitly or explicitly based on different
ways of handling the unknown at the interfaces. From the PDE point of view, if the
value of the solution is known at the interfaces between the different regions, these
values could be used in Dirichlet-type boundary conditionsand we will obtains
uncoupled Poisson equations. We can then solve these equations to obtain the value
of the solution at the interior points. If the whole domain isdiscretized by either
finite elements or finite difference techniques, then this iseasily translated into the
resulting linear system.

Now some terminology and notation will be introduced for usethroughout this
chapter. Assume that the problem associated with domain shown in Figure 14.1 is
discretized with centered differences. We can label the nodes by subdomain as shown
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in Figure 14.3. Note that the interface nodes are labeled last. As a result, the matrix
associated with this problem will have the structure shown in Figure 14.4.

For a general partitioning intos subdomains, the linear system associated with
the problem has the following structure:









B1 E1

B2 E2
. ..

...
Bs Es

F1 F2 · · · Fs C

















x1

x2
...
xs

y









=









f1

f2
...
fs

g









(14.1)

where eachxi represents the subvector of unknowns that are interior to subdomain
Ωi andy represents the vector of all interface unknowns. It is useful to express the
above system in the simpler form,

A

(
x
y

)

=

(
f
g

)

with A =

(
B E
F C

)

. (14.2)

Thus,E represents the subdomain to interface coupling seen from the subdomains,
while F represents the interface to subdomain coupling seen from the interface
nodes.

1 2 3 4

5 6 7 8

9 10 11 12

(a)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(b)

1 2 3 4

5 6 7 8

9 10 11 12

Ω1

Ω2

(c)

Figure 14.2: (a) Vertex-based, (b) edge-based, and (c) element-based partitioning of
a4× 3 mesh into two subregions.
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14.1.2 Types of Partitionings

When partitioning a problem, it is common to use graph representations. Since the
subproblems obtained from a given partitioning will eventually be mapped into dis-
tinct processors, there are some restrictions regarding the type of partitioning needed.
For example, in Element-By-Element finite element techniques, it may be desirable
to map elements into processors instead of vertices. In thiscase, the restriction means
no element should be split between two subdomains, i.e., allinformation related to
a given element is mapped to the same processor. These partitionings are termed
element-based. A somewhat less restrictive class of partitionings are the edge-based
partitionings, which do not allow edges to be split between two subdomains. These
may be useful for finite volume techniques where computations are expressed in
terms of fluxes across edges in two dimensions. Finally, vertex-based partitionings
work by dividing the origin vertex set into subsets of vertices and have no restrictions
on the edges, i.e., they allow edges or elements to straddle between subdomains. See
Figure 14.2, (a), (b), and (c).

14.1.3 Types of Techniques

The interface values can be obtained by employing a form of block-Gaussian elimi-
nation which may be too expensive for large problems. In somesimple cases, using
FFT’s, it is possible to explicitly obtain the solution of the problem on the interfaces
inexpensively.

Other methods alternate between the subdomains, solving a new problem each
time, with boundary conditions updated from the most recentsubdomain solutions.
These methods are calledSchwarz Alternating Procedures, after the Swiss math-
ematician who used the idea to prove the existence for a solution of the Dirichlet
problem on irregular regions.

The subdomains may be allowed tooverlap. This means that theΩi’s are such
that

Ω =
⋃

i=1,s

Ωi, Ωi ∩Ωj 6= φ.

For a discretized problem, it is typical to quantify the extent of overlapping by the
number of mesh-lines that are common to the two subdomains. In the particular case
of Figure 14.3, the overlap is of order one.

The various domain decomposition techniques are distinguished by four features:

1. Type of Partitioning.For example, should partitioning occur along edges, or
along vertices, or by elements? Is the union of the subdomains equal to the
original domain or a superset of it (fictitious domain methods)?

2. Overlap.Should sub-domains overlap or not, and by how much?

3. Processing of interface values.For example, is the Schur complement ap-
proach used? Should there be successive updates to the interface values?
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4. Subdomain solution.Should the subdomain problems be solved exactly or
approximately by an iterative method?

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24 25

26 27 28 29

30 31 32 33

34

35

36

37383940

Figure 14.3: Discretization of problem shown in Figure 14.1.

Figure 14.4: Matrix associated with the finite difference mesh of Figure 14.3.
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The methods to be discussed in this chapter will be classifiedin four distinct
groups. First, direct methods and the substructuring approach are useful for intro-
ducing some definitions and for providing practical insight. Second, among the sim-
plest and oldest techniques are the Schwarz Alternating Procedures. Then, there are
methods based on preconditioning the Schur complement system. The last category
groups all the methods based on solving the linear system with the matrixA, by using
a preconditioning derived from Domain Decomposition concepts.

14.2 Direct Solution and the Schur Complement

One of the first divide-and-conquer ideas used in structuralanalysis exploited the
partitioning (14.1) in a direct solution framework. This approach, which is covered
in this section, introduces the Schur complement and explains some of its properties.

14.2.1 Block Gaussian Elimination

Consider the linear system written in the form (14.2), in whichB is assumed to be
nonsingular. From the first equation the unknownx can be expressed as

x = B−1(f −Ey). (14.3)

Upon substituting this into the second equation, the following reduced systemis ob-
tained:

(C − FB−1E)y = g − FB−1f. (14.4)

The matrix
S = C − FB−1E (14.5)

is called theSchur complementmatrix associated with they variable. If this matrix
can be formed and the linear system (14.4) can be solved, all the interface variables
y will become available. Once these variables are known, the remaining unknowns
can be computed, via (14.3). Because of the particular structure ofB, observe that
any linear system solution with it decouples ins separate systems. The parallelism
in this situation arises from this natural decoupling.

A solution method based on this approach involves four steps:

1. Obtain the right-hand side of the reduced system (14.4).

2. Form the Schur complement matrix (14.5).

3. Solve the reduced system (14.4).

4. Back-substitute using (14.3) to obtain the other unknowns.

One linear system solution with the matrixB can be saved by reformulating the
algorithm in a more elegant form. Define

E′ = B−1E and f ′ = B−1f.
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The matrixE′ and the vectorf ′ are needed in steps (1) and (2). Then rewrite step (4)
as

x = B−1f −B−1Ey = f ′ − E′y,

which gives the following algorithm.

ALGORITHM 14.1 Block-Gaussian Elimination

1. SolveBE′ = E, andBf ′ = f for E′ andf ′, respectively
2. Computeg′ = g − Ff ′
3. ComputeS = C − FE′

4. SolveSy = g′

5. Computex = f ′ − E′y.

In a practical implementation, all theBi matrices are factored and then the sys-
temsBiE

′
i = Ei andBif

′
i = fi are solved. In general, many columns inEi will

be zero. These zero columns correspond to interfaces that are not adjacent to subdo-
main i. Therefore, any efficient code based on the above algorithm should start by
identifying the nonzero columns.

14.2.2 Properties of the Schur Complement

Now the connections between the Schur complement and standard Gaussian elimi-
nation will be explored and a few simple properties will be established. Start with
the block-LU factorization ofA,

(
B E
F C

)

=

(
I O

FB−1 I

)(
B E
O S

)

(14.6)

which is readily verified. The Schur complement can therefore be regarded as the
(2,2) block in theU part of the block-LU factorization ofA. From the above relation,
note that ifA is nonsingular, then so isS. Taking the inverse ofA with the help of
the above equality yields

(
B E
F C

)−1

=

(
B−1 −B−1ES−1

O S−1

)(
I O

−FB−1 I

)

=

(
B−1 +B−1ES−1FB−1 −B−1ES−1

−S−1FB−1 S−1

)

. (14.7)

Observe thatS−1 is the (2,2) block in the block-inverse ofA. In particular, if the
original matrixA is Symmetric Positive Definite, then so isA−1. As a result,S is
also Symmetric Positive Definite in this case.

Although simple to prove, the above properties are nonetheless important. They
are summarized in the following proposition.
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Proposition 14.1 LetA be a nonsingular matrix partitioned as in (14.2) and such
that the submatrixB is nonsingular and letRy be the restriction operator onto the
interface variables, i.e, the linear operator defined by

Ry

(
x
y

)

= y.

Then the following properties are true.

1. The Schur complement matrixS is nonsingular.

2. If A is SPD, then so isS.

3. For anyy, S−1y = RyA
−1
(

0
y

)

.

The first property indicates that a method that uses the aboveblock Gaussian
elimination algorithm is feasible sinceS is nonsingular. A consequence of the sec-
ond property is that whenA is positive definite, an algorithm such as the Conjugate
Gradient algorithm can be used to solve the reduced system (14.4). Finally, the third
property establishes a relation which may allow preconditioners forS to be defined
based on solution techniques with the matrixA.

14.2.3 Schur Complement for Vertex-Based Partitionings

The partitioning used in Figure 14.3 is edge-based, meaningthat a given edge in the
graph does not straddle two subdomains, or that if two vertices are coupled, then they
cannot belong to the two distinct subdomains. From the graphtheory point of view,
this is perhaps less common than vertex-based partitionings in which a vertex is not
shared by two partitions (except when domains overlap). A vertex-based partitioning
is illustrated in Figure 14.5.

We will call interface edges all edges that link vertices that do not belong to the
same subdomain. In the case of overlapping, this needs clarification. An overlapping
edge or vertex belongs to the same subdomain. Interface edges are only those that
link a vertex to another vertex which is not in the same subdomain already, whether in
the overlapping portion or elsewhere. Interface vertices are those vertices in a given
subdomain that are adjacent to an interface edge. For the example of the figure, the
interface vertices for subdomain one (bottom, left subsquare) are the vertices labeled
10 to 16. The matrix shown at the bottom of Figure 14.5 differsfrom the one of
Figure 14.4, because here the interface nodes are not relabeled the last in the global
labeling as was done in Figure 14.3. Instead, the interface nodes are labeled as the
last nodes in each subdomain. The number of interface nodes is about twice that of
the edge-based partitioning.

Consider the Schur complement system obtained with this newlabeling. It can
be written similar to the edge-based case using a reorderingin which all interface
variables are listed last. The matrix associated with the domain partitioning of the
variables will have a naturals-block structure wheres is the number of subdomains.
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Figure 14.5: Discretization of problem shown in Figure 14.1and associated matrix.
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For example, whens = 3 (as is the case in the above illustration), the matrix has the
block structure defined by the solid lines in the figure, i.e.,

A =





A1 A12 A13

A21 A2 A23

A31 A32 A3



 . (14.8)

In each subdomain, the variables are of the form

zi =

(
xi

yi

)

,

wherexi denotes interior nodes whileyi denotes the interface nodes associated with
subdomaini. Each matrixAi will be called the local matrix.

The structure ofAi is as follows:

Ai =

(
Bi Ei

Fi Ci

)

(14.9)

in which, as before,Bi represents the matrix associated with the internal nodes of
subdomaini andEi andFi represent the couplings to/from local interface nodes. The
matrixCi is the local part of the interface matrixC defined before, and represents the
coupling between local interface points. A careful look at the matrix in Figure 14.5
reveals an additional structure for the blocksAij j 6= i. PartitioningAij according
to the variablesxi, yi on the one hand (rows) andxj, yj on the other, reveals that it is
comprised of only one nonzero block. Indeed, there is no coupling betweenxi and
xj, betweenxi andyj, or betweenyi andxj. Therefore, the submatrixAij has the
following structure,

Aij =

(
0 0
0 Eij

)

. (14.10)

In addition, most of theEij matrices are zero since only those indicesj of the sub-
domains that have couplings with subdomaini will yield a nonzeroEij.

Now write the part of the linear system that is local to subdomain i, as

Bixi + Eiyi = fi

Fixi + Ciyi +
∑

j∈Ni
Eijyj = gi

. (14.11)

The termEijyj is the contribution to the equation from the neighboring subdomain
numberj, andNi is the set of subdomains that are adjacent to subdomaini. As-
suming thatBi is nonsingular, the variablexi can be eliminated from this system by
extracting from the first equationxi = B−1

i (fi − Eiyi) which yields, upon substitu-
tion in the second equation,

Siyi +
∑

j∈Ni

Eijyj = gi − FiB
−1
i fi, i = 1, . . . , s (14.12)

in whichSi is the “local” Schur complement

Si = Ci − FiB
−1
i Ei. (14.13)
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When written for all subdomainsi, the equations (14.12) yield a system of equations
which involves only the interface pointsyj, j = 1, 2, . . . , s and which has a natural
block structure associated with these vector variables

S =









S1 E12 E13 · · · E1s

E21 S2 E23 · · · E2s
...

.. .
...

...
.. .

...
Es1 Es2 Es3 · · · Ss









. (14.14)

The diagonal blocks in this system, namely, the matricesSi, are dense in general,
but the offdiagonal blocksEij are sparse and most of them are zero. Specifically,
Eij 6= 0 only if subdomainsi andj have at least one equation that couples them.

A structure of the global Schur complementS has been unraveled which has the
following important implication:For vertex-based partitionings, the Schur comple-
ment matrix can be assembled from local Schur complement matrices (theSi’s) and
interface-to-interface information (theEij ’s). The term “assembled” was used on
purpose because a similar idea will be exploited for finite element partitionings.

14.2.4 Schur Complement for Finite-Element Partitionings

In finite-element partitionings, the original discrete setΩ is subdivided intos subsets
Ωi, each consisting of a distinct set of elements. Given a finiteelement discretiza-
tion of the domainΩ, a finite dimensional spaceVh of functions overΩ is defined,
e.g., functions that are piecewise linear and continuous onΩ, and that vanish on the
boundaryΓ of Ω. Consider now the Dirichlet problem onΩ and recall that its weak
formulation on the finite element discretization can be stated as follows (see Section
2.3):

Find u ∈ Vh such that a(u, v) = (f, v), ∀ v ∈ Vh,

where the bilinear forma(., .) is defined by

a(u, v) =

∫

Ω
∇u.∇v dx =

∫

Ω

(
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂u

∂x2

)

dx.

It is interesting to observe that since the set of the elements of the differentΩi’s are
disjoint,a(., .) can be decomposed as

a(u, v) =

s∑

i=1

ai(u, v),

where
ai(u, v) =

∫

Ωi

∇u.∇v dx.

In fact, this is a generalization of the technique used to assemble the stiffness ma-
trix from element matrices, which corresponds to the extreme case where eachΩi

consists of exactly one element.
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If the unknowns are ordered again by subdomains and the interface nodes are
placed last as was done in Section 14.1, immediately the system shows the same
structure, 







B1 E1

B2 E2
. . .

...
Bs Es

F1 F2 · · · Fs C

















x1

x2
...
xs

y









=









f1

f2
...
fs

g









(14.15)

where eachBi represents the coupling between interior nodes andEi andFi repre-
sent the coupling between the interface nodes and the nodes interior toΩi. Note that
each of these matrices has been assembled from element matrices and can therefore
be obtained from contributions over all subdomainΩj that contain any node ofΩi.

In particular, assume that the assembly is considered only with respect toΩi.
Then the assembled matrix will have the structure

Ai =

(
Bi Ei

Fi Ci

)

,

whereCi contains only contributions from local elements, i.e., elements that are in
Ωi. Clearly,C is the sum of theCi’s,

C =

s∑

i=1

Ci.

The Schur complement associated with the interface variables is such that

S = C − FB−1E

= C −
s∑

i=1

FiB
−1
i Ei

=

s∑

i=1

Ci −
s∑

i=1

FiB
−1
i Ei

=

s∑

i=1

[
Ci − FiB

−1
i Ei

]
.

Therefore, ifSi denotes thelocal Schur complement

Si = Ci − FiB
−1
i Ei,

then the above proves that,

S =

s∑

i=1

Si, (14.16)

showing again that the Schur complement can be obtained easily from smaller Schur
complement matrices.
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Another important observation is that the stiffness matrixAk, defined above by
restricting the assembly toΩk, solves a Neumann-Dirichlet problem onΩk. Indeed,
consider the problem

(
Bk Ek

Fk Ck

) (
xk

yk

)

=

(
fk

gk

)

. (14.17)

The elements of the submatrixCk are the termsak(φi, φj) whereφi, φj are the basis
functions associated with nodes belonging to the interfaceΓk. As was stated above,
the matrixC is the sum of these submatrices. Consider the problem of solving the
Poisson equation onΩk with boundary conditions defined as follows: OnΓk0, the
part of the boundary which belongs toΓk, use the original boundary conditions;
on the interfacesΓkj with other subdomains, use a Neumann boundary condition.
According to Equation (2.47) seen in Section 2.3, thej-th equation will be of the
form, ∫

Ωk

∇u.∇φj dx =

∫

Ωk

fφjdx+

∫

Γk

φj
∂u

∂~n
ds. (14.18)

This gives rise to a system of the form (14.17) in which thegk part of the right-hand
side incorporates the Neumann data related to the second integral on the right-hand
side of (14.18).

It is interesting to note that if a problem were to be solved with all-Dirichlet con-
ditions, i.e., if the Neumann conditions at the interfaces were replaced by Dirichlet
conditions, the resulting matrix problem would be of the form,

(
Bk Ek

0 I

) (
xk

yk

)

=

(
fk

gk

)

(14.19)

wheregk represents precisely the Dirichlet data. Indeed, according to what was
seen in Section 2.3, Dirichlet conditions are handled simply by replacing equations
associated with boundary points by identity equations.

14.2.5 Schur Complement for the model problem

An explicit expression for the Schur complement can be foundin the simple case of
a rectangular region partitioned into two sub-domains as illustrated in Figure 14.6.
The figure shows a vertex based partitioning but what followsis also valid for edge-
based partitionings since we will only compute the local Schur complementsS1, S2

from which the the global Schur complement is constituted. For an edge-based parti-
tioning, the Schur complementS is the sum of the local Schur complementsS1 and
S2. For a vertex-based partitioning,S is of the form (14.14), withs = 2.
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Figure 14.6: A two-domain partitioning of the model problemon a rectangular
domain.

To determineS1, start by writing the discretized matrix for the model problem
in the subdomainΩ1:

A =









B −I
−I B −I

.. . . . . . . .
−I B −I

−I B









with B =









4 −1
−1 4 −1

. . . .. . .. .
−1 4 −1

−1 4









.

Assume that the size of each block (i.e., the number of pointsin the vertical direction
in Ω1) is m with the number of blocks (i.e., the number of points in the horizontal
direction inΩ1) is n. Also the points are ordered naturally, with the last vertical line
forming the interface. ThenA is factored in the following block LU decomposition:

A =










I
−T−1

1 I
. . . . . .

−T−1
j−1 I

−T−1
n−1 I


















T1 −I
T2 −I

. . . . . .
Tn−1 −I

Tn









.

The matricesTi satisfy the recurrence:

T1 = B; Tk+1 = B − T−1
k , k = 1, . . . , n− 1. (14.20)

It can easily be shown that the above recurrence does not break down, i.e., that each
inverse does indeed exist. Also, the matrixTn is the desired local Schur complement
S1.

EachTk is a rational function ofB, i.e., Tk = fk(B) wherefk is a rational
function defined by

fk+1(µ) = µ− 1

fk(µ)
.
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To each eigenvalueµ of B, is associated an eigenvalueλk. This sequence of eigen-
values satisfies the recurrence

λk+1 = µ− 1

λk
.

To calculatefn it is sufficient to calculateλk in terms ofµ. The above difference
equation, differs from the ones we have encountered in otherchapters, in that it is
nonlinear. It can be solved by defining the auxiliarly unknown

ηk =

k∏

j=0

λj .

By definitionλ0 = 1, λ1 = µ so thatη0 = 1, η1 = µ. The sequenceηk satisfies the
recurrence:

ηk+1 = µηk − ηk−1

which is now a linear difference equation. The characteristic roots of the equation
are(µ ±

√

µ2 − 4)/2. Let ρ denote the largest root and note that the other root is
equal to1/ρ. The general solution of the difference equation is therefore,

ηk = αρk + βρ−k = α

[

µ+
√

µ2 − 4

2

]k

+ β

[

µ−
√

µ2 − 4

2

]k

.

The condition atk = 0 yieldsα+β = 1. Then, writing the conditionη1 = µ, yields,

α =

√

µ2 − 4 + µ

2
√

µ2 − 4
; β =

√

µ2 − 4− µ
2
√

µ2 − 4
.

Therefore,

ηk =
1

√

µ2 − 4

[

ρk+1 − ρ−k−1
]

.

The sequenceλk is ηk/ηk−1, which yields,

λk = ρ
1− ρ−2(k+1)

1− ρ−2k
.

This gives the desired expression forfn, andTn. Specifically, if we define

Ŝ =
B +

√
B2 − 4I

2
,

then,

S1 = Tn = ŜX where X =
(

I − B̂−2(k+1)
)(

I − B̂−2k
)−1

.

Despite the apparent nonsymmetry of the above expression, it is worth noting that the
operator thus defined is symmetric positive definite. In addition, the factorX is usu-
ally very close to the identity matrix because the powersB−2j decay exponentially
to zero (the eigenvalues ofB are all larger then 2).
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The result can be stated in terms of the one dimensional finitedifference operator
T instead ofB becauseB = T + 2I. Either way, the final expression is a rather
complex one, since it involves a square root, even whenŜ, the approximation toS1

is used. It is possible, however, to use FFTs or sine transforms to perform a solve
with the matrix Ŝ. This is because if the spectral decomposition ofB is written
asB = QΛQT , thenS1 = Qfn(Λ)QT , and the products withQ andQT can be
performed with FFT, see Section 2.2.6.

14.3 Schwarz Alternating Procedures

The original alternating procedure described by Schwarz in1870 consisted of three
parts: alternating between two overlapping domains, solving the Dirichlet problem
on one domain at each iteration, and taking boundary conditions based on the most
recent solution obtained from the other domain. This procedure is called the Multi-
plicative Schwarz procedure. In matrix terms, this is very reminiscent of the block
Gauss-Seidel iteration with overlap defined with the help ofprojectors, as seen in
Chapter 5. The analogue of the block-Jacobi procedure is known as the Additive
Schwarz procedure.

14.3.1 Multiplicative Schwarz Procedure

In the following, assume that each subdomainΩi extends into its neighboring sub-
domains by one level, which will be used as a boundary forΩi. The boundary of
subdomainΩi that is included in subdomainj is denoted byΓij.

Ω1

Ω3

Ω2

Γ1,3

Γ3,1

Γ2,1 Γ1,2Γ1,0 Γ2,0

Γ3,0

Figure 14.7: An L-shaped domain subdivided into three overlapping subdomains.

This is illustrated in Figure 14.7 for the L-shaped domain example. A more spe-
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cific illustration is in Figure (14.5), where, for example,Γ12 = {29, 30, 31, 32} and
Γ31 = {13, 14, 15, 16}. Call Γi the boundary ofΩi consisting of its original bound-
ary (which consists of theΓi0 pieces in the figure) and theΓij ’s, and denote byuji

the restriction of the solutionu to the boundaryΓji. Then the Schwarz Alternating
Procedure can be described as follows.

ALGORITHM 14.2 SAP

1. Choose an initial guessu to the solution
2. Until convergence Do:
3. Fori = 1, · · · , s Do:
4. Solve∆u = f in Ωi with u = uij in Γij

5. Updateu values onΓji, ∀j
6. EndDo
7. EndDo

The algorithm sweeps through thes subdomains and solves the original equation in
each of them by using boundary conditions that are updated from the most recent
values ofu. Since each of the subproblems is likely to be solved by some iterative
method, we can take advantage of a good initial guess. It is natural to take as initial
guess for a given subproblem the most recent approximation.Going back to the
expression (14.11) of the local problems, observe that eachof the solutions in line 4
of the algorithm will be translated into an update of the form

ui := ui + δi,

where the correctionδi solves the system

Aiδi = ri.

Here,ri is the local part of the most recent global residual vectorb − Ax, and the
above system represents the system associated with the problem in line 4 of the
algorithm when a nonzero initial guess is used in some iterative procedure. The
matrixAi has the block structure (14.9). Writing

ui =

(
xi

yi

)

, δi =

(
δx,i

δy,i

)

, ri =

(
rx,i

ry,i

)

,

the correction to the current solution step in the algorithmleads to

(
xi

yi

)

:=

(
xi

yi

)

+

(
Bi Ei

Fi Ci

)−1(
rx,i

ry,i

)

. (14.21)

After this step is taken, normally a residual vectorr would have to be computed
again to get the components associated with domaini + 1 and to proceed with a
similar step for the next subdomain. However, only those residual components that
have been affected by the change of the solution need to be updated. Specifically,
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employing the same notation used in equation (14.11), we cansimply update the
residualry,j for each subdomainj for which i ∈ Nj as

ry,j := ry,j − Ejiδy,i.

This amounts implicitly to performing Step 5 of the above algorithm. Note that since
the matrix pattern is assumed to be symmetric, then the set ofall indicesj such that
i ∈ Nj , i.e.,N∗

i = {j |i ∈ Ni}, is identical toNi. Now the loop starting in line 3
of Algorithm 14.2 and calleddomain sweepcan be restated as follows.

ALGORITHM 14.3 Multiplicative Schwarz Sweep – Matrix Form

1. Fori = 1, · · · , s Do:
2. SolveAiδi = ri
3. Computexi := xi + δx,i, yi := yi + δy,i, and setri := 0
4. For eachj ∈ Ni Computery,j := ry,j − Ejiδy,i

5. EndDo

Considering only they iterates, the above iteration would resemble a form of Gauss-
Seidel procedure on the Schur complement matrix (14.14). Infact, it is mathemati-
cally equivalent, provided a consistent initial guess is taken. This is stated in the next
result established by Chan and Goovaerts [73]:

Theorem 14.2 Let the guess

(
x
(0)
i

y
(0)
i

)

for the Schwarz procedure in each subdomain

be chosen such that
x

(0)
i = B−1

i [fi − Eiy
(0)
i ]. (14.22)

Then they iterates produced by the Algorithm 14.3 are identical to those of a Gauss-
Seidel sweep applied to the Schur complement system (14.12).

Proof. We start by showing that with the choice (14.22), they components of the
initial residuals produced by the algorithm are identical to those of the Schur com-
plement system (14.12). Refer to Section 14.2.3 and the relation (14.10) which de-
fines theEij ’s from the block structure (14.8) of the global matrix. Observe that

Aijuj =
(

0
Eijyj

)

and note from (14.11) that for the global system they components
of the initial residual vectors are

r
(0)
y,i = gi − Fix

(0)
i −Ciy

(0)
i −

∑

j∈Ni

Eijy
(0)
j

= gi − FiB
−1[fi − Eiy

(0)
i ]− Ciy

(0)
i −

∑

j∈Ni

Eijy
(0)
j

= gi − FiB
−1fi − Siy

(0)
i −

∑

j∈Ni

Eijy
(0)
j .

This is precisely the expression of the residual vector associated with the Schur com-
plement system (14.12) with the initial guessy(0)

i .
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Now observe that the initial guess has been selected so thatr
(0)
x,i = 0 for all i.

Because only they components of the residual vector are modified, according toline
4 of Algorithm 14.3, this property remains valid throughoutthe iterative process. By
the updating equation (14.21) and the relation (14.7), we have

yi := yi + S−1
i ry,i,

which is precisely a Gauss-Seidel step associated with the system (14.14). Note that
the update of the residual vector in the algorithm results inthe same update for they
components as in the Gauss-Seidel iteration for (14.14).

It is interesting to interpret Algorithm 14.2, or rather itsdiscrete version, in terms
of projectors. For this we follow the model of the overlapping block-Jacobi technique
seen in the previous chapter. LetSi be an index set

Si = {j1, j2, . . . , jni
},

where the indicesjk are those associated with theni mesh points of the interior of
the discrete subdomainΩi. Note that as before, theSi’s form a collection of index
sets such that ⋃

i=1,...,s

Si = {1, . . . , n},

and theSi’s are not necessarily disjoint. LetRi be arestriction operatorfrom Ω
to Ωi. By definition,Rix belongs toΩi and keeps only those components of an
arbitrary vectorx that are inΩi. It is represented by anni × n matrix of zeros and
ones. The matricesRi associated with the partitioning of Figure 14.4 are represented
in the three diagrams of Figure 14.8, where each square represents a nonzero element
(equal to one) and every other element is a zero. These matrices depend on the
ordering chosen for the local problem. Here, boundary nodesare labeled last, for
simplicity. Observe that each row of eachRi has exactly one nonzero element (equal
to one). Boundary points such as the nodes 36 and 37 are represented several times
in the matricesR1, R2, andR3 because of the overlapping of the boundary points.
Thus, node36 is represented in matricesR1 andR2, while 37 is represented in all
three matrices.

From the linear algebra point of view, the restriction operator Ri is anni × n
matrix formed by the transposes of columnsej of then × n identity matrix, where
j belongs to the index setSi. The transposeRT

i of this matrix is aprolongation
operatorwhich takes a variable fromΩi andextendsit to the equivalent variable in
Ω. The matrix

Ai = RiAR
T
i

of dimensionni×ni defines a restriction ofA to Ωi. Now a problem associated with
Ai can be solved which would update the unknowns in the domainΩi. With this
notation, the multiplicative Schwarz procedure can be described as follows:
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1. Fori = 1, . . . , s Do
2. x := x+RT

i A
−1
i Ri(b−Ax)

3. EndDo

R1 =

R2 =

R3 =

Figure 14.8: Patterns of the three matricesRi associated with the partitioning of
Figure 14.4.

We change notation and rewrite step 2 as

xnew = x+RT
i A

−1
i Ri(b−Ax). (14.23)

If the errorsd = x∗ − x are considered wherex∗ is the exact solution, then notice
that b − Ax = A(x∗ − x) and, at each iteration the following equation relates the
new errordnew and the previous errord,

dnew = d−RT
i A

−1
i RiAd.

Starting from a givenx0 whose error vector isd0 = x∗ − x, each sub-iteration
produces an error vector which satisfies the relation

di = di−1 −RT
i A

−1
i RiAdi−1,

for i = 1, . . . , s. As a result,

di = (I − Pi)di−1
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in which
Pi = RT

i A
−1
i RiA. (14.24)

Observe that the operatorPi ≡ RT
i A

−1
i RiA is a projector since

(RT
i A

−1
i RiA)2 = RT

i A
−1
i (RiAR

T
i )A−1

i RiA = RT
i A

−1
i RiA.

Thus, one sweep produces an error which satisfies the relation

ds = (I − Ps)(I − Ps−1) . . . (I − P1)d0. (14.25)

In the following, we use the notation

Qs ≡ (I − Ps)(I − Ps−1) . . . (I − P1). (14.26)

14.3.2 Multiplicative Schwarz Preconditioning

Because of the equivalence of the multiplicative Schwarz procedure and a block
Gauss-Seidel iteration, it is possible to recast one Multiplicative Schwarz sweep in
the form of a global fixed-point iteration of the formxnew = Gx + f . Recall that
this is a fixed-point iteration for solving thepreconditionedsystemM−1Ax = M−1b
where the preconditioning matrixM and the matrixG are related byG = I−M−1A.
To interpret the operation associated withM−1, it is helpful to identify the re-
sult of the error vector produced by this iteration with thatof (14.25), which is
xnew − x∗ = Qs(x− x∗). This comparison yields,

xnew = Qsx+ (I −Qs)x∗,

and therefore,
G = Qs f = (I −Qs)x∗.

Hence, the preconditioned matrix isM−1A = I − Qs. This result is restated as
follows.

Proposition 14.3 The multiplicative Schwarz procedure is equivalent to a fixed-
point iteration for the “preconditioned” problem

M−1Ax = M−1b,

in which

M−1A = I −Qs (14.27)

M−1b = (I −Qs)x∗ = (I −Qs)A
−1b. (14.28)

The transformed right-hand side in the proposition is not known explicitly since it
is expressed in terms of the exact solution. However, a procedure can be found to
compute it. In other words, it is possible to operate withM−1 without invoking
A−1. Note thatM−1 = (I − Qs)A

−1. As the next lemma indicates,M−1, as well
asM−1A, can be computed recursively.



490 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Lemma 14.4 Define the matrices

Zi = I −Qi (14.29)

Mi = ZiA
−1 (14.30)

Ti = PiA
−1 = RT

i A
−1
i Ri (14.31)

for i = 1, . . . , s. ThenM−1 = Ms, M−1A = Zs, and the matricesZi andMi

satisfy the recurrence relations

Z1 = P1,

Zi = Zi−1 + Pi(I − Zi−1), i = 2, . . . , s (14.32)

and

M1 = T1,

Mi = Mi−1 + Ti(I −AMi−1), i = 2, . . . , s. (14.33)

Proof. It is clear by the definitions (14.29) and (14.30) thatMs = M−1 and that
M1 = T1, Z1 = P1. For the casesi > 1, by definition ofQi andQi−1

Zi = I − (I − Pi)(I − Zi−1) = Pi + Zi−1 − PiZi−1, (14.34)

which gives the relation (14.32). Multiplying (14.34) to the right byA−1 yields,

Mi = Ti +Mi−1 − PiMi−1.

Rewriting the termPi asTiA above yields the desired formula (14.33).

Note that (14.32) yields immediately the important relation

Zi =
i∑

j=1

PjQj−1. (14.35)

If the relation (14.33) is multiplied to the right by a vectorv and if the vectorMiv is
denoted byzi, then the following recurrence results.

zi = zi−1 + Ti(v −Azi−1).

Sincezs = (I − Qs)A
−1v = M−1v, the end result is thatM−1v can be computed

for an arbitrary vectorv, by the following procedure.

ALGORITHM 14.4 Multiplicative Schwarz Preconditioner

1. Input:v; Output:z = M−1v.
2. z := T1v
3. Fori = 2, . . . , s Do:
4. z := z + Ti(v −Az)
5. EndDo



14.3. SCHWARZ ALTERNATING PROCEDURES 491

By a similar argument, a procedure can be found to compute vectors of the form
z = M−1Av. In this case, the following algorithm results:

ALGORITHM 14.5 Multiplicative Schwarz Preconditioned Operator

1. Input:v, Output:z = M−1Av.
2. z := P1v
3. Fori = 2, . . . , s Do
4. z := z + Pi(v − z)
5. EndDo

In summary, the Multiplicative Schwarz procedure is equivalent to solving the
“preconditioned system”

(I −Qs)x = g (14.36)

where the operationz = (I −Qs)v can be computed from Algorithm 14.5 andg =
M−1b can be computed from Algorithm 14.4. Now the above procedures can be used
within an accelerator such as GMRES. First, to obtain the right-hand sideg of the
preconditioned system (14.36), Algorithm 14.4 must be applied to the original right-
hand sideb. Then GMRES can be applied to (14.36) in which the preconditioned
operationsI −Qs are performed by Algorithm 14.5.

Another important aspect of the Multiplicative Schwarz procedure is that multi-
coloring can be exploited in the same way as it is done traditionally for block SOR.
Finally, note that symmetry is lost in the preconditioned system but it can be recov-
ered by following the sweep 1, 2,. . . , s by a sweep in the other direction, namely,
s− 1, s− 2, . . . , 1. This yields a form of the block SSOR algorithm.

14.3.3 Additive Schwarz Procedure

The additive Schwarz procedure is similar to a block-Jacobiiteration and consists
of updating all the new (block) components from the same residual. Thus, it differs
from the multiplicative procedure only because the components in each subdomain
are not updated until a whole cycle of updates through all domains are completed.
The basic Additive Schwarz iteration would therefore be as follows:

1. Fori = 1, . . . , s Do
2. Computeδi = RT

i A
−1
i Ri(b−Ax)

3. EndDo
4. xnew = x+

∑s
i=1 δi

The new approximation (obtained after a cycle of thes substeps in the above
algorithm are applied) is

xnew = x+

s∑

i=1

RT
i A

−1
i Ri(b−Ax).
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Each instance of the loop redefines different components of the new approximation
and there is no data dependency between the subproblems involved in the loop.

The preconditioning matrix is rather simple to obtain for the additive Schwarz
procedure. Using the matrix notation defined in the previoussection, notice that the
new iterate satisfies the relation

xnew = x+

s∑

i=1

Ti(b−Ax) =

(

I −
s∑

i=1

Pi

)

x+

s∑

i=1

Tib.

Thus, using the same analogy as in the previous section, thisiteration corresponds to
a fixed-point iterationxnew = Gx+ f with

G = I −
s∑

i=1

Pi, f =
s∑

i=1

Tib.

With the relationG = I −M−1A, betweenG and the preconditioning matrixM ,
the result is that

M−1A =

s∑

i=1

Pi,

and

M−1 =
s∑

i=1

PiA
−1 =

s∑

i=1

Ti.

Now the procedure for applying the preconditioned operatorM−1 becomes clear.

ALGORITHM 14.6 Additive Schwarz Preconditioner

1. Input:v; Output:z = M−1v.
2. Fori = 1, . . . , s Do:
3. Computezi := Tiv
4. EndDo
5. Computez := z1 + z2 . . .+ zs.

Note that the do loop can be performed in parallel. Step 5 sumsup the vectorszi
in each domain to obtain a global vectorz. In the nonoverlapping case, this step is
parallel and consists of just forming these different components since the addition is
trivial. In the presence of overlap, the situation is similar except that the overlapping
components are added up from the different results obtainedin each subdomain.

The procedure for computingM−1Av is identical to the one above except that
Ti in line 3 is replaced byPi.

14.3.4 Convergence

Throughout this section, it is assumed thatA is Symmetric Positive Definite. The
projectorsPi defined by (14.24) play an important role in the convergence theory of
both additive and multiplicative Schwarz. A crucial observation here is that these
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projectors are orthogonal with respect to theA-inner product. Indeed, it is sufficient
to show thatPi is self-adjoint with respect to theA-inner product,

(Pix, y)A = (ART
i A

−1
i RiAx, y) = (Ax,RT

i A
−1
i RiAy) = (x, Piy)A.

Consider the operator,

AJ =

s∑

i=1

Pi. (14.37)

Since eachPj is self-adjoint with respect to theA-inner product, i.e.,A-self-adjoint,
their sumAJ is alsoA-self-adjoint. Therefore, it will have real eigenvalues. An im-
mediate consequence of the fact that thePi’s are projectors is stated in the following
theorem.

Theorem 14.5 The largest eigenvalue ofAJ is such that

λmax(AJ) ≤ s,

wheres is the number of subdomains.

Proof. For any matrix norm,λmax(AJ ) ≤ ‖AJ‖. In particular, if theA-norm is
used, we have

λmax(AJ) ≤
s∑

i=1

‖Pi‖A.

Each of theA-norms ofPi is equal to one sincePi is anA-orthogonal projector. This
proves the desired result.

This result can be improved substantially by observing thatthe projectors can be
grouped in sets that have disjoint ranges. Graph coloring techniques seen in Chap-
ter 3 can be used to obtain such colorings of the subdomains. Assume thatc sets
of indicesΘi, i = 1, . . . , c are such that all the subdomainsΩj for j ∈ Θi have no
intersection with one another. Then,

PΘi
=
∑

j ∈ Θi

Pj (14.38)

is again an orthogonal projector.
This shows that the result of the previous theorem can be improved trivially into

the following.

Theorem 14.6 Suppose that the subdomains can be colored in such a way that two
subdomains with the same color have no common nodes. Then, the largest eigenvalue
ofAJ is such that

λmax(AJ) ≤ c,
wherec is the number of colors.

In order to estimate the lowest eigenvalue of the preconditioned matrix, an assump-
tion must be made regarding the decomposition of an arbitrary vectorx into compo-
nents ofΩi.
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Assumption 1. There exists a constantK0 such that the inequality

s∑

i=1

(Aui, ui) ≤ K0(Au, u),

is satisfied by the representation ofu ∈ Ω as the sum

u =
s∑

i=1

ui, ui ∈ Ωi.

The following theorem has been proved by several authors in slightly different forms
and contexts.

Theorem 14.7 If Assumption 1 holds, then

λmin(AJ) ≥ 1

K0
.

Proof. Unless otherwise stated, all summations in this proof are from 1 to s. Start
with an arbitraryu decomposed asu =

∑
ui and write

(u, u)A =
∑

(ui, u)A =
∑

(Piui, u)A =
∑

(ui, Piu)A.

The last equality is due to the fact thatPi is anA-orthogonal projector ontoΩi and
it is therefore self-adjoint. Now, using Cauchy-Schwarz inequality, we get

(u, u)A =
∑

(ui, Piu)A ≤
(∑

(ui, ui)A

)1/2 (∑

(Piu, Piu)A

)1/2
.

By Assumption 1, this leads to

‖u‖2A ≤ K
1/2
0 ‖u‖A

(∑

(Piu, Piu)A

)1/2
,

which, after squaring, yields

‖u‖2A ≤ K0

∑

(Piu, Piu)A.

Finally, observe that since eachPi is anA-orthogonal projector, we have

∑

(Piu, Piu)A =
∑

(Piu, u)A =
(∑

Piu, u
)

A
.

Therefore, for anyu, the inequality

(AJu, u)A ≥
1

K0
(u, u)A

holds, which yields the desired upper bound by the min-max theorem.
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Note that the proof uses the following form of the Cauchy-Schwarz inequality:

p
∑

i=1

(xi, yi) ≤
(

p
∑

i=1

(xi, xi)

)1/2( p
∑

i=1

(yi, yi)

)1/2

.

See Exercise 1 for a proof of this variation.
We now turn to the analysis of the Multiplicative Schwarz procedure. We start

by recalling that the error after each outer iteration (sweep) is given by

d = Qsd0.

We wish to find an upper bound for‖Qs‖A. First note that (14.32) in Lemma 14.4
results in

Qi = Qi−1 − PiQi−1,

from which we get, using theA-orthogonality ofPi,

‖Qiv‖2A = ‖Qi−1v‖2A − ‖PiQi−1v‖2A.

The above equality is valid fori = 1, providedQ0 ≡ I. Summing these equalities
from i = 1 to s gives the result,

‖Qsv‖2A = ‖v‖2A −
s∑

i=1

‖PiQi−1v‖2A. (14.39)

This indicates that theA-norm of the error will not increase at each substep of the
sweep.

Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subsetS of {1, 2, . . . , s}2 andui, vj ∈ Ω, the following
inequality holds:

∑

(i,j) ∈ S

(Piui, Pjvj)A ≤ K1

(
s∑

i=1

‖Piui‖2A

)1/2




s∑

j=1

‖Pjvj‖2A





1/2

. (14.40)

Lemma 14.8 If Assumptions 1 and 2 are satisfied, then the following is true,

s∑

i=1

‖Piv‖2A ≤ (1 +K1)
2

s∑

i=1

‖PiQi−1v‖2A. (14.41)

Proof. Begin with the relation which follows from the fact thatPi is anA-orthogonal
projector,

(Piv, Piv)A = (Piv, PiQi−1v)A + (Piv, (I −Qi−1)v)A,
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which yields, with the help of (14.35),

s∑

i=1

‖Piv‖2A =

s∑

i=1

(Piv, PiQi−1v)A +

s∑

i=1

i−1∑

j=1

(Piv, PjQj−1v)A. (14.42)

For the first term of the right-hand side, use the Cauchy-Schwarz inequality to obtain

s∑

i=1

(Piv, PiQi−1v)A ≤
(

s∑

i=1

‖Piv‖2A

)1/2( s∑

i=1

‖PiQi−1v‖2A

)1/2

.

For the second term of the right-hand side of (14.42), use theassumption (14.40) to
get

s∑

i=1

i−1∑

j=1

(Piv, PjQj−1v)A ≤ K1

(
s∑

i=1

‖Piv‖2A)

)1/2




s∑

j=1

‖PjQj−1v‖2A)





1/2

.

Adding these two inequalities, squaring the result, and using (14.42) leads to the
inequality (14.41).

From (14.39), it can be deduced that if Assumption 2 holds, then,

‖Qsv‖2A ≤ ‖v‖2A −
1

(1 +K1)2

s∑

i=1

‖Piv‖2A. (14.43)

Assumption 1 can now be exploited to derive a lower bound on
∑s

i=1 ‖Piv‖2A. This
will yield the following theorem.

Theorem 14.9 Assume that Assumptions 1 and 2 hold. Then,

‖Qs‖A ≤
[

1− 1

K0(1 +K1)2

]1/2

. (14.44)

Proof. Using the notation of Section 14.3.3, the relation‖Piv‖2A = (Piv, v)A yields

s∑

i=1

‖Piv‖2A =

(
s∑

i=1

Piv, v

)

A

= (AJv, v)A.

According to Theorem 14.7,λmin(AJ ) ≥ 1
K0

, which implies(AJv, v)A ≥ (v, v)A/K0.
Thus,

s∑

i=1

‖Piv‖2A ≥
(v, v)A
K0

,

which upon substitution into (14.43) gives the inequality

‖Qsv‖2A
‖v‖2A

≤ 1− 1

K0(1 +K1)2
.

The result follows by taking the maximum over all vectorsv.
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This result provides information on the speed of convergence of the multiplica-
tive Schwarz procedure by making two key assumptions. Theseassumptions are not
verifiable from linear algebra arguments alone. In other words, given a linear sys-
tem, it is unlikely that one can establish that these assumptions are satisfied. How-
ever, they are satisfied for equations originating from finite element discretization
of elliptic Partial Differential Equations. For details, refer to Dryja and Widlund
[102, 103, 104] and Xu [320].

14.4 Schur Complement Approaches

Schur complement methods are based on solving the reduced system (14.4) by some
preconditioned Krylov subspace method. Procedures of thistype involve three steps.

1. Get the right-hand sideg′ = g − FB−1f .
2. Solve the reduced systemSy = g′ via an iterative method.
3. Back-substitute, i.e., computex via (14.3).

The different methods relate to the way in which step 2 is performed. First
observe that the matrixS need not be formed explicitlyin order to solve the reduced
system by an iterative method. For example, if a Krylov subspace method without
preconditioning is used, then the only operations that are required with the matrix
S are matrix-by-vector operationsw = Sv. Such operations can be performed as
follows.

1. Computev′ = Ev,
2. SolveBz = v′

3. Computew = Cv − Fz.

The above procedure involves only matrix-by-vector multiplications and one lin-
ear system solution withB. Recall that a linear system involvingB translates into
s-independent linear systems. Also note that the linear systems withB must be
solved exactly, either by a direct solution technique or by an iterative technique with
a high level of accuracy.

While matrix-by-vector multiplications withS cause little difficulty, it is much
harder to precondition the matrixS, since this full matrix is often not available ex-
plicitly. There have been a number of methods, derived mostly using arguments
from Partial Differential Equations to precondition the Schur complement. Here, we
consider only those preconditioners that are derived from alinear algebra viewpoint.

14.4.1 Induced Preconditioners

One of the easiest ways to derive an approximation toS is to exploit Proposition 14.1
and the intimate relation between the Schur complement and Gaussian elimination.
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This proposition tells us that a preconditioning operatorM to S can be defined from
the (approximate) solution obtained withA. To precondition a given vectorv, i.e.,
to computew = M−1v, whereM is the desired preconditioner toS, first solve the
system

A

(
x
y

)

=

(
0
v

)

, (14.45)

then takew = y. Use any approximate solution technique to solve the above system.
Let MA be any preconditioner forA. Using the notation defined earlier, letRy

represent the restriction operator on the interface variables, as defined in Proposition
14.1. Then the preconditioning operation forS which is induced fromMA is defined
by

M−1
S v = RyM

−1
A

(
0
v

)

= RyM
−1
A RT

y v.

Observe that whenMA is an exact preconditioner, i.e., whenMA = A, then accord-
ing to Proposition 14.1,MS is also an exact preconditioner, i.e.,MS = S. This
induced preconditioner can be expressed as

MS =
(
RyM

−1
A RT

y

)−1
. (14.46)

It may be argued that this uses a preconditioner related to the original problem to
be solved in the first place. However, even though the preconditioning onS may be
defined from a preconditioning ofA, the linear system is being solved for the inter-
face variables. That is typically much smaller than the original linear system. For
example, GMRES can be used with a much larger dimension of theKrylov subspace
since the Arnoldi vectors to keep in memory are much smaller.Also note that from
a Partial Differential Equations viewpoint, systems of theform (14.45) correspond
to the Laplace equation, the solutions of which are “Harmonic” functions. There are
fast techniques which provide the solution of such equations inexpensively.

In the case whereMA is an ILU factorization ofA, MS can be expressed in an
explicit form in terms of the entries of the factors ofMA. This defines a precondi-
tioner toS that is induced canonically from an incomplete LU factorization of A.
Assume that the preconditionerMA is in a factored formMA = LAUA, where

LA =

(
LB 0
FU−1

B LS

)

UA =

(
UB L−1

B E
0 US

)

.

Then, the inverse ofMA will have the following structure:

M−1
A = U−1

A L−1
A

=

(
⋆ ⋆
0 U−1

S

)(
⋆ 0
⋆ L−1

S

)

=

(
⋆ ⋆
⋆ U−1

S L−1
S

)

where a star denotes a matrix whose actual expression is unimportant. Recall that by
definition,

Ry = ( 0 I ) ,
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where this partitioning conforms to the above ones. This means that

RyM
−1
A RT

y = U−1
S L−1

S

and, therefore, according to (14.46),MS = LSUS. This result is stated in the fol-
lowing proposition.

Proposition 14.10 Let MA = LAUA be an ILU preconditioner forA. Then the
preconditionerMS for S induced byMA, as defined by (14.46), is given by

MS = LSUS , with LS = RyLAR
T
y , US = RyUAR

T
y .

In words, the proposition states that the L and U factors forMS are the(2, 2) blocks
of the L and U factors of the ILU factorization ofA. An important consequence of
the above idea is that the parallel Gaussian elimination canbe exploited for deriving
an ILU preconditioner forS by using a general purpose ILU factorization. In fact,
theL andU factors ofMA have the following structure:

A = LAUA −R with,

LA =









L1

L2
.. .

Ls

F1U
−1
1 F2U

−1
2 · · · FsU

−1
s L









UA =









U1 L−1
1 E1

U2 L−1
2 E2

. . .
...

Us L−1
s Es

U









.

EachLi, Ui pair is an incomplete LU factorization of the localBi matrix. These ILU
factorizations can be computed independently. Similarly,the matricesL−1

i Ei and
FiU

−1
i can also be computed independently once the LU factors are obtained. Then

each of the matrices
S̃i = Ci − FiU

−1
i L−1

i Ei,

which are the approximate local Schur complements, is obtained. Note that since an
incomplete LU factorization is being performed, some drop strategy is applied to the
elements inS̃i. LetTi be the matrix obtained after this is done,

Ti = S̃i −Ri.

Then a final stage would be to compute the ILU factorization ofthe matrix (14.14)
where eachSi is replaced byTi.
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14.4.2 Probing

To derive preconditioners for the Schur complement, another general purpose tech-
nique exploits ideas used in approximating sparse Jacobians when solving nonlinear
equations. In general,S is a dense matrix. However, it can be observed, and there
are physical justifications for model problems,

that its entries decay away from the main diagonal. Assume that S is nearly
tridiagonal, i.e., neglect all diagonals apart from the main diagonal and the two codi-
agonals, and write the corresponding tridiagonal approximation toS as

T =









a1 b2
c2 a2 b3

. . . . . . . ..
cm−1 am−1 bm

cm am









.

Then, it is easy to recoverT by applying it to three well-chosen vectors. Consider
the three vectors

w1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . . , )T ,

w2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, . . . , )T ,

w3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, . . . , )T .

Then we have

Tw1 = (a1, c2, b4, a4, c5, . . . , b3i+1, a3i+1, c3i+2, . . .)
T ,

Tw2 = (b2, a2, c3, b5, a5, c6, . . . , b3i+2, a3i+2, c3i+3, . . .)
T ,

Tw3 = (b3, a3, c4, b6, a6, c7, . . . , b3i, a3i, c3i+1, . . .)
T .

This shows that all the coefficients of the matrixT are indeed all represented in the
above three vectors. The first vector contains the nonzero elements of the columns
1, 4, 7, . . ., 3i + 1, . . ., in succession written as a long vector. Similarly,Tw2

contains the columns2, 5, 8, . . ., andTw3 contains the columns3, 6, 9, . . .. We can
easily computeSwi, i = 1, 3 and obtain a resulting approximationT which can be
used as a preconditioner toS. The idea can be extended to compute any banded
approximation toS. For details and analysis see [74].

14.4.3 Preconditioning Vertex-Based Schur Complements

We now discuss some issues related to the preconditioning ofa linear system with
the matrix coefficient of (14.14) associated with a vertex-based partitioning. As was
mentioned before, this structure is helpful in the direct solution context because it
allows the Schur complement to be formed by local pieces. Since incomplete LU
factorizations will utilize the same structure, this can beexploited as well.

Note that multicolor SOR or SSOR can also be exploited and that graph color-
ing can be used to color the interface valuesyi in such a way that no two adjacent
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interface variables will have the same color. In fact, this can be achieved by coloring
the domains. In the course of a multicolor block-SOR iteration, a linear system must
be solved with the diagonal blocksSi. For this purpose, it is helpful to interpret the
Schur complement. CallP the canonical injection matrix from the local interface
points to the local nodes. Ifni points are local and ifmi is the number of the local
interface points, thenP is anni×mi matrix whose columns are the lastmi columns
of theni × ni identity matrix. Then it is easy to see that

Si = (P TA−1
loc,iP )−1. (14.47)

If Aloc,i = LU is the LU factorization ofAloc,i then it can be verified that

S−1
i = P TU−1L−1P = P TU−1PP TL−1P, (14.48)

which indicates that in order to operate withP TL−1P , the lastmi × mi principal
submatrix ofL must be used. The same is true forP TU−1P which requires only a
back-solve with the lastmi ×mi principal submatrix ofU . Therefore, only the LU
factorization ofAloc,i is needed to solve a system with the matrixSi. Interestingly,
approximate solution methods associated with incomplete factorizations ofAloc,i can
be exploited.

14.5 Full Matrix Methods

We call any technique that iterates on the original system (14.2) afull matrix method.
In the same way that preconditioners were derived from the LUfactorization ofA
for the Schur complement, preconditioners forA can be derived from approximating
interface values.

Before starting with preconditioning techniques, we establish a few simple rela-
tions between iterations involvingA andS.

Proposition 14.11 Let

LA =

(
I O

FB−1 I

)

, UA =

(
B E
O I

)

(14.49)

and assume that a Krylov subspace method is applied to the original system (14.1)
with left preconditioningLA and right preconditioningUA, and with an initial guess
of the form (

x0

y0

)

=

(
B−1(f − Ey0)

y0

)

. (14.50)

Then this preconditioned Krylov iteration will produce iterates of the form
(
xm

ym

)

=

(
B−1(f − Eym)

ym

)

(14.51)

in which the sequenceym is the result of the same Krylov subspace method applied
without preconditioning to the reduced linear systemSy = g′ with g′ = g−FB−1f
starting with the vectory0.
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Proof. The proof is a consequence of the factorization
(
B E
F C

)

=

(
I O

FB−1 I

)(
I O
O S

)(
B E
O I

)

. (14.52)

Applying an iterative method (e.g., GMRES) on the original system, preconditioned
from the left byLA and from the right byUA, is equivalent to applying this iterative
method to

L−1
A AU−1

A =

(
I O
O S

)

≡ A′. (14.53)

The initial residual for the preconditioned system is

L−1
A

(
f

g

)

− (L−1
A AU−1

A )UA

(
x0

y0

)

=

(
I O

−FB−1 I

)((
f

g

)

−
(

f
FB−1(f − Ey0) +Cy0

))

=

(
0

g′ − Sy0

)

≡
(

0
r0

)

.

As a result, the Krylov vectors obtained from the preconditioned linear system asso-
ciated with the matrixA′ have the form

(
0

r0

)

,

(
0

Sr0

)

· · · ,
(

0

Sm−1r0

)

(14.54)

and the associated approximate solution will be of the form
(
xm

ym

)

=

(
x0

y0

)

+

(
B−1 −B−1E
O I

)(
0

∑m−1
i=0 αiS

ir0

)

=

(
B−1(f − Ey0)−B−1E(ym − y0)

ym

)

=

(
B−1(f − Eym)

ym

)

.

Finally, the scalarsαi that express the approximate solution in the Krylov basis are
obtained implicitly via inner products of vectors among thevector sequence (14.54).
These inner products are identical to those of the sequencer0, Sr0, · · · , Sm−1r0.
Therefore, these coefficients will achieve the same result as the same Krylov method
applied to the reduced systemSy = g′, if the initial guess gives the residual guess
r0.

A version of this proposition should allowS to be preconditioned. The following
result is an immediate extension that achieves this goal.

Proposition 14.12 Let S = LSUS − R be an approximate factorization ofS and
define

LA =

(
I O

FB−1 LS

)

, UA =

(
B E
O US

)

. (14.55)
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Assume that a Krylov subspace method is applied to the original system (14.1) with
left preconditioningLA and right preconditioningUA, and with an initial guess of
the form (

x0

y0

)

=

(
B−1(f − Ey0)

y0

)

. (14.56)

Then this preconditioned Krylov iteration will produce iterates of the form
(
xm

ym

)

=

(
B−1(f − Eym)

ym

)

. (14.57)

Moreover, the sequenceym is the result of the same Krylov subspace method applied
to the reduced linear systemSy = g − FB−1f , left preconditioned withLS, right
preconditioned withUS , and starting with the vectory0.

Proof. The proof starts with the equality
(
B E
F C

)

=

(
I O

FB−1 LS

)(
I O
O L−1

S SU−1
S

)(
B E
O US

)

. (14.58)

The rest of the proof is similar to that of the previous resultand is omitted.

Also there are two other versions in whichS is allowed to be preconditioned
from the left or from the right. Thus, ifMS is a certain preconditioner forS, use the
following factorizations

(
B E
F C

)

=

(
I O

FB−1 MS

)(
I O
O M−1

S S

)(
B E
O I

)

(14.59)

=

(
I O

FB−1 I

)(
I O
O SM−1

S

)(
B E
O MS

)

, (14.60)

to derive the appropriate left or right preconditioners. Observe that when the precon-
ditionerMS to S is exact, i.e., whenM = S, then the block preconditionerLA, UA

toA induced fromMS is also exact.
Although the previous results indicate that a Preconditioned Schur Complement

iteration is mathematically equivalent to a certain preconditioned full matrix method,
there are some practical benefits in iterating with the nonreduced system. The main
benefit involves the requirement in the Schur Complement techniques to computeSx
exactly at each Krylov subspace iteration. Indeed, the matrix S represents the coeffi-
cient matrix of the linear system, and inaccuracies in the matrix-by-vector operation
may result in loss of convergence. In the full matrix techniques, the operationSx is
never needed explicitly. In addition, this opens up the possibility of preconditioning
the original matrix with approximate solves with the matrixB in the preconditioning
operationLA andUA.
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14.6 Graph Partitioning

The very first task that a programmer faces when solving a problem on a parallel
computer, be it a dense or a sparse linear system, is to decidehow to subdivide and
map the data into the processors. Distributed memory computers allow mapping the
data in an arbitrary fashion but this added flexibility puts the burden on the user to
find good mappings. When implementing Domain Decomposition- type ideas on a
parallel computer, efficient techniques must be available for partitioning an arbitrary
graph. This section gives an overview of the issues and covers a few techniques.

14.6.1 Basic Definitions

Consider a general sparse linear system whose adjacency graph is G = (V,E).
Graph partitioning algorithms aim at subdividing the original linear system into
smaller sets of equations which will be assigned to different processors for their
parallel solution.

This translates into partitioning the graph intpp subgraphs, with the underlying
goal to achieve a good load balance of the work among the processors as well as
ensure that the ratio of communication over computation is small for the given task.
We begin with a general definition.

Definition 14.13 We call a map ofV , any setV1, V2, . . . , Vs, of subsets of the vertex
setV , whose union is equal toV :

Vi ⊆ V,
⋃

i=1,s

Vi = V.

When all theVi subsets are disjoint, the map is called a proper partition; otherwise
we refer to it as an overlapping partition.

The most general way to describe a node-to-processor mapping is by setting up
a list for each processor, containing all the nodes that are mapped to that processor.
Three distinct classes of algorithms have been developed for partitioning graphs. An
overview of each of these three approaches is given next.

1 2 3 4

5 6 7 8

9 10 11 12

P1
P2

P3

P4

Figure 14.9: Mapping of a simple4× 3 mesh to 4 processors.
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14.6.2 Geometric Approach

The geometric approach works on the physical mesh and requires the coordinates of
the mesh points. In the simplest case, for a 2-dimensional rectangular grid, stripes in
the horizontal and vertical direction can be defined to get square subregions which
have roughly the same number of points. Other techniques utilize notions of moment
of inertia to divide the region recursively into two roughlyequal-sized subregions.

Next is a brief description of a technique based on work by Miller, Teng, Thur-
ston, and Vavasis [211]. This technique finds good separators for a mesh using pro-
jections into a higher space. Given a mesh inR

d, the method projects the mesh points
into a unit sphere centered at the origin inR

d+1. Stereographic projection is used: A
line is drawn from a given pointp in the plane to the North Pole(0, . . . , 0, 1) and the
stereographic projection ofp is the point where this line intersects the sphere. In the
next step, acenterpointof the projected points is found. A centerpointc of a discrete
setS is defined as a point where every hyperplane passing throughc will divide S
approximately evenly.

Once the centerpoint is found, the points of the sphere are rotated so that the
centerpoint is aligned with the North Pole, i.e., so that coordinates ofc are trans-
formed into(0, . . . , 0, r). The points are further transformed by dilating them so that
the centerpoint becomes the origin. Through all these transformations, the pointc
remains a centerpoint. Therefore, if any hyperplane is taken that passes through the
centerpoint which is now the origin, it should cut the sphereinto two roughly equal-
sized subsets. Any hyperplane passing through the origin will intersect the sphere
along a large circleC. Transforming this circle back into the original space willgive
a desired separator. Notice that there is an infinity of circles to choose from.

One of the main ingredients in the above algorithm is a heuristic for finding
centerpoints inRd space (actually,Rd+1 in the algorithm). The heuristic that is used
repeatedly replaces randomly chosen sets ofd+ 2 points by their centerpoint, which
are easy to find in this case. There are a number of interestingresults that analyze
the quality of geometric graph partitionings based on separators. With some minimal
assumptions on the meshes, it is possible to show that there exist “good” separators.
In addition, the algorithm discussed above constructs suchseparators. We start with
two definitions.

Definition 14.14 A k-ply neighborhood system inRd is a set ofn closed disksDi,
i = 1, . . . , n in R

d such that no point inRd is (strictly) interior to more thank disks.

Definition 14.15 Letα ≥ 1 and letD1, . . . ,Dn be ak-ply neighborhood system in
R

d. The(α, k)-overlap graph for the neighborhood system is the graph withvertex
setV = {1, 2, . . . , n} and edge set, the subset ofV × V defined by

{(i, j) : (Di ∩ (α.Dj) 6= φ) and(Dj ∩ (α.Di) 6= φ)}.

A mesh inR
d is associated with an overlap graph by assigning the coordinate of the

centerci of disk i to each nodei of the graph. Overlap graphs model computational
meshes ind dimensions. Indeed, every mesh with boundedaspect ratioelements
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(ratio of largest to smallest edge length of each element) iscontained in an overlap
graph. In addition, any planar graph is an overlap graph. Themain result regarding
separators of overlap graphs is the following theorem [211].

Theorem 14.16 LetG be ann-vertex(α, k) overlap graph ind dimensions. Then
the vertices ofG can be partitioned into three setsA,B, andC such that:

1. No edge joinsA andB.

2. A andB each have at mostn(d+ 1)/(d + 2) vertices.

3. C has onlyO(α k1/dn(d−1)/d) vertices.

Thus, ford = 2, the theorem states that it is possible to partition the graph into two
subgraphsA andB, with a separatorC, such that the number of nodes for each ofA
andB does not exceed34n vertices in the worst case and such that the separator has
a number of nodes of the orderO(α k1/2n1/2).

14.6.3 Spectral Techniques

Spectral bisectionrefers to a technique which exploits some known properties of the
eigenvectors of theLaplacean of a graph. Given an adjacency graphG = (V,E),
we associate to it a Laplacian matrixL which is a sparse matrix having the same
adjacency graphG and defined as follows:

lij =







−1 if(vi, vj) ∈ E and i 6= j
deg(i) if i = j
0 otherwise.

These matrices have some interesting fundamental properties. When the graph is
undirectedL is symmetric. It can be shown to be alsonegative semi definite(see
Exercise 11). Zero is an eigenvalue and it is the smallest one. An eigenvector as-
sociated with this eigenvalue is any constant vector, and this eigenvector bears little
interest. The second smallest eigenvector, called theFiedler vector, has the useful
property that the signs of its components divide the domain into roughly two equal
subdomains.

The Recursive Spectral Bisection (RSB) algorithm consistsof sorting the com-
ponents of the Fiedler vector and assigning the first half of the sorted vertices to
the first subdomain and the second half to the second subdomain. The two subdo-
mains are then partitioned in two recursively, until a desirable number of domains is
reached.

ALGORITHM 14.7 RSB (Recursive Spectral Bisection)

1. Compute the Fiedler vectorf of the graphG.
2. Sort the components off , e.g., increasingly.
3. Assign first⌊n/2⌋ nodes toV1, and the rest toV2 .
4. Apply RSB recursively toV1, V2, until the desired number of partitions
5. is reached.
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The main theoretical property that is exploited here is thatthe differences be-
tween the components of the Fiedler vector represent some sort of distance between
the corresponding nodes. Thus, if these components are sorted they would be effec-
tively grouping the associated node by preserving nearness. Another interesting fact
is that the algorithm will also tend to minimize the numbernc of edge-cuts, i.e., the
number of edges(vi, vj) such thatvi ∈ V1 andvj ∈ V2. Assume thatV1 andV2

are of equal size and define apartition vectordefinep whosei-th component is+1
if vi ∈ V1, and−1 if vi ∈ V2. By the assumptions the sum of allpi’s is zero. Then
notice that

(Lp, p) = 4nc, (p, e) = 0.

Ideally, the objective function(Lp, p) should be minimized subject to the constraint
(p, e) = 0. Herep is a vector of signs. If, instead, the objective function(Lx, x)/(x, x)
were minimized forx real, subject to(x, e) = 0, the solution would be the Fiedler
vector, sincee is the eigenvector associated with the eigenvalue zero. TheFiedler
vector can be computed by the Lanczos algorithm or any other method efficient for
large sparse matrices. Recursive Specrtal Bisection givesexcellent partitionings. On
the other hand, it is rather unattractive because it requires computing an eigenvector.

14.6.4 Graph Theory Techniques

A number of other techniques exist which, like spectral techniques, are also based
on the adjacency graph only. The simplest idea is one that is borrowed from the
technique ofnested dissectionin the context of direct sparse solution methods, see
Sections 3.6.2 and 3.3.3. An initial node is given which constitutes the level zero.
Then, the method recursively traverses thek-th level (k ≥ 1), which consists of the
neighbors of all the elements that constitute levelk−1. A simple idea for partitioning
the graph in two traverses enough levels to visit about half of all the nodes. The
visited nodes will be assigned to one subdomain and the others will constitute the
second subdomain. The process can then be repeated recursively on each of the
subdomains.

A key ingredient for this technique to be successful is to determine a good initial
node from which to start the traversal. Often, a heuristic isused for this purpose.
Recall thatd(x, y) is the distance between verticesx andy in the graph, i.e., the
length of the shortest path betweenx andy.

If the diameter of a graph is defined as

δ(G) = max{d(x, y) | x ∈ V, y ∈ V }

then, ideally, one of two nodes in a pair(x, y) that achieves the diameter can be used
as a starting node. Theseperipheral nodes, are expensive to determine. Instead, a
pseudo-peripheralnode, as defined through the following procedure, is often em-
ployed [144]



508 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Figure 14.10: The RGB algorithm (top) and the double-striping algorithm (bottom)
for partitioning a graph into 16 subgraphs.
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ALGORITHM 14.8 Pseudo-Peripheral Node

1. Select an initial nodex. Setδ = 0.
2. Do a level set traversal fromx
3. Select a nodey in the last level set, with minimum degree
4. If d(x, y) > δ then
5. Setx := y andδ := d(x, y)
6. GoTo 2
7. Else Stop:x is a pseudo-peripheral node.
8. EndIf

The distanced(x, y) in line 5 is the number of levels in the level set traversal needed
in Step 2. The algorithm traverses the graph from a node of thelast level in the
previous traversal, until the number of levels stabilizes.It is easy to see that the
algorithm does indeed stop after a finite number of steps, typically small.

A first heuristic approach based on level set traversals is the recursive dissection
procedure mentioned above and described next.

ALGORITHM 14.9 Recursive Graph Bisection

1. SetG∗ := G, S := {G}, ndom := 1
2. Whilendom < s Do:
3. Select inS the subgraphG∗ with largest size.
4. Find a pseudo-peripheral nodep in G∗ and
5. Do a level set traversal fromp. Let lev := number of levels.
6. LetG1 the subgraph ofG∗ consisting of the firstlev/2
7. levels, andG2 the subgraph containing the rest ofG∗.
8. RemoveG∗ from S and addG1 andG2 to it
9. ndom := ndom + 1

10. EndWhile

The cost of this algorithm is rather small. Each traversal ofa graphG = (V,E) costs
around|E|, where|E| is the number of edges (assuming that|V | = O(|E|)). Since
there ares traversals of graphs whose size decreases by 2 at each step, it is clear that
the cost isO(|E|), the order of edges in the original graph. As can be expected,the
results of such an algorithm are not always good. Typically,two qualities that are
measured are the sizes of the domains as well as the number of edge-cuts.

Ideally, the domains should be equal. In addition, since thevalues at the interface
points should be exchanged with those of neighboring processors, their total number,
as determined by the number of edge-cuts, should be as small as possible. The first
measure can be easily controlled in a recursive Graph Bisection Algorithm — for
example, by using variants in which the number of nodes is forced to be exactly half
that of the original subdomain. The second measure is more difficult to control.

As an example, the top part of Figure 14.10 shows the result ofthe RGB algo-
rithm on a sample finite-element mesh. Thus, the top part of Figure 14.10 shows the
result of the RGB algorithm on a sample finite-element mesh. This is a vertex-based
partitioning. The dashed lines represent the edge-cuts.
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An approach that is competitive with the one described aboveis that of dou-
ble striping. This method uses two parametersp1, p2 such thatp1p2 = s. The
original graph is first partitioned intop1 large partitions, using one-way partition-
ing, then each of these partitions is subdivided intop2 partitions similarly. One-
way partitioning intop subgraphs consists of performing a level set traversal froma
pseudo-peripheral node and assigning each set of roughlyn/p consecutive nodes in
the traversal to a different subgraph. The result of this approach withp1 = p2 = 4 is
shown in Figure 14.10 on the same graph as before.

As can be observed, the subregions obtained by both methods have elongated
and twisted shapes. This has the effect of giving a larger number of edge-cuts. There
are a number of heuristic ways to remedy this. One strategy isbased on the fact that
a level set traversal fromk nodes can be defined instead of only one node. Thesek
nodes are called thecentersor sites. Each subdomain will expand from one of these
k centers and the expansion will stop when it is no longer possible to acquire another
point that is not already assigned. The boundaries of each domain that are formed this
way will tend to be more “circular.” To smooth the boundariesof an initial partition,
find some center point of each domain and perform a level set expansion from the set
of points. The process can be repeated a few times.

ALGORITHM 14.10 Multinode Level-Set Expansion Algorithm

1. Find a partitionS = {G1, G2, . . . , Gs}.
2. Foriter = 1, . . . , nouter Do:
3. Fork = 1, . . . , s Do:
4. Find a centerck of Gk. Setlabel(ck) = k.
5. EndDo
6. Do a level set traversal from{c1, c2, . . . , cs}. Label each child
7. in the traversal with the same label as its parent.
8. Fork = 1, . . . , s setGk:= subgraph of all nodes having labelk
9. EndDo

For this method, a total number of edge-cuts equal to 548 and arather small
standard deviation of 0.5 are obtained for the example seen earlier. Still to be decided
is how to select the center nodes mentioned in line 4 of the algorithm. Once more,
the pseudo-peripheral algorithm will be helpful. Find a pseudo-peripheral node, then
do a traversal from it until about one-half of the nodes have been traversed. Then,
traverse the latest level set (typically a line or a very narrow graph), and take the
middle point as the center.

A typical number of outer steps,nouter, to be used in line 2, is less than five.
This heuristic works well in spite of its simplicity. For example, if this is applied to
the graph obtained from the RGB algorithm, withnouter = 3, the partition shown
in Figure 14.11 is obtained. With this technique, the resulting total number of edge-
cuts is equal to 441 and the standard deviation is 7.04. As is somewhat expected, the
number of edge-cuts has decreased dramatically, while the standard deviation of the
various sizes has increased.
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Figure 14.11: Multinode expansion starting with the partition obtained in Figure
14.10.

PROBLEMS

P-14.1 In the proof of Theorem 14.7, the following form of the Cauchy-Schwarz inequality
was used:

p
∑

i=1

(xi, yi) ≤
(

p
∑

i=1

(xi, xi)

)1/2( p
∑

i=1

(yi, yi)

)1/2

.

(a) Prove that this result is a consequence of the standard Cauchy-Schwarz inequality. (b)
Extend the result to theA-inner product. (c) Assume that thexi’s andyi’s are the columns
of two n× p matrixX andY . Rewrite the result in terms of these matrices.

P-14.2 Using Lemma 14.4, write explicitly the vectorM−1b for the Multiplicative Schwarz
procedure, in terms of the matrixA and theRi’s, whens = 2, and then whens = 3.

P-14.3 Justify Algorithm (14.5), i.e., show that it does indeed compute the vectorM−1Av
for an input vectorv, whereM is the multiplicative Schwarz preconditioner. Then find a
similar algorithm which computesAM−1v (right preconditioning).

P-14.4

P-14.5 (a) Show that in the multiplicative Schwarz procedure, the residual vectorsri =
b−Axi obtained at each step satisfy the recurrence,

ri = ri−1 −ART
i A

−1
i Riri−1
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for i = 1, . . . , s. (b) Consider the operatorQi ≡ ART
i A

−1
i Ri. Show thatQi is a projector.

(c) IsQi an orthogonal projector with respect to theA-inner product? With respect to which
inner product is it orthogonal?

P-14.6 The analysis of the Additive Schwarz procedure assumes thatA−1
i is “exact,” i.e.,

that linear systemsAix = b are solved exactly, each timeA−1
i is applied. Assume thatA−1

i

is replaced by some approximationΘ−1
i . (a) IsPi still a projector? (b) Show that ifΘi is

Symmetric Positive Definite, then so isPi. (c) Now make the assumption thatλmax(Pi) ≤
ω∗. What becomes of the result of Theorem 14.5?

P-14.7 In Element-By-Element (EBE) methods, the extreme cases of the Additive or the
Multiplicative Schwarz procedures are considered in whichthe subdomain partition corre-
sponds to takingΩi to be an element. The advantage here is that the matrices do not have to
be assembled. Instead, they are kept in unassembled form (see Chapter 2). Assume that Pois-
son’s equation is being solved. (a) What are the matricesAi? (b) Are they SPD? (c) Write
down the EBE preconditioning corresponding to the multiplicative Schwarz procedure, its
multicolor version, and the additive Schwarz procedure.

P-14.8 Theorem 14.2 was stated only for the multiplicative versionof the Schwarz proce-
dure. There is a similar result for the additive Schwarz procedure. State this result and prove
it.

P-14.9 Show that the matrix defined by (14.38) is indeed a projector.Is it possible to for-
mulate Schwarz procedures in terms of projection processesas seen in Chapter 5?

P-14.10 It was stated at the end of the proof of Theorem 14.7 that if

(AJu, u)A ≥
1

C
(u, u)A

for any nonzerou, thenλmin(AJ) ≥ 1
C . (a) Prove this result without invoking the min-max

theory. (b) Prove a version of the min-max theorem with theA-inner product, i.e., prove that
the min-max theorem is valid for any inner product for whichA is self-adjoint.

P-14.11 Consider the Laplacean of a graph as defined in Section 14.6. Show that

(Lx, x) =
∑

(i,j) ∈ E

(xi − xj)
2.

P-14.12 Consider a rectangular finite difference mesh, with mesh size ∆x = h in thex-
direction and∆y = h closest to they-direction.

a. To each mesh pointp = (xi, yj), associate the closed diskDij of radiush centered at
pi. What is the smallestk such that the family{Dij} is ak-ply system?

b. Answer the same question for the case where the radius is reduced toh/2. What is the
overlap graph (and associated mesh) for anyα such that

1

2
< α <

√
2

2
?

What about whenα = 2?

P-14.3 Determine the cost of a level set expansion algorithm starting fromp distinct centers.

P-14.4 Write recursive versions of the Recursive Graph Partitioning algorithm and Recur-
sive Spectral Bisection algorithm. [Hint: Recall that a recursive program unit is a subpro-
gram or function, sayfoo, which calls itself, sofoo is allowed to make a subroutine call to
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foo within its body.] (a) Give a pseudo-code for the RGB algorithm which processes the
subgraphs in any order. (b) Give a pseudo-code for the RGB algorithm case when the larger
subgraph is to be processed before the smaller one in any dissection. Is this second version
equivalent to Algorithm 14.9?

P-14.5 Write a FORTRAN-90 subroutine or (C function) which implements the Recursive
Graph Partitioning algorithm.

NOTES AND REFERENCES. To start with, the original paper by Schwarz is the reference [261], but an
earlier note appeared in 1870. In recent years, research on Domain Decomposition techniques has been
very active and productive. This rebirth of an old techniquehas been in large part motivated by parallel
processing. However, the first practical use of Domain Decomposition ideas has been in applications
to very large structures; see [230, 41], and elasticity problems; see, e.g., [234, 283, 269, 76, 40] for
references.

The book by Smith, Bjørstad, and Gropp, [268] gives a thorough survey of domain decomposition
methods. Two other monographs, one by P. Le Tallec [198], andthe other by C. Farhat and J. X.
Roux [123], describe the use of Domain Decomposition approaches specifically for solving problems in
structural mechanics. Survey papers include those by Keyesand Gropp [189] and by Chan and Matthew
[75]. The volume [190] discusses the various uses of “domain-based” parallelism in computational
sciences and engineering.

The bulk of recent work on Domain Decomposition methods has been geared toward a Partial
Differential Equations viewpoint. Often, there appears tobe a dichotomy between this viewpoint and
that of “applied Domain Decomposition,” in that the good methods from a theoretical point of view are
hard to implement in practice. The additive Schwarz procedure, with overlapping, represents a com-
promise between good intrinsic properties and ease of implementation. For example, Venkatakrishnan
concludes in [295] that although the use of global coarse meshes may accelerate convergence of local,
domain-based, ILU preconditioners, it does not necessarily reduce the overall time to solve a practical
aerodynamics problem.

Much is known about the convergence of the Schwarz procedure; refer in particular to the work by
Widlund and co-authors [42, 102, 103, 104, 70]. The convergence results of Section 14.3.4 have been
adapted from Xu [320] as well as Hackbusch [163]. The result on the equivalence between Schwarz
and Schur complement iterations stated in Theorem 14.2 seems to have been originally proved by Chan
and Goovaerts [73], see also the more recent article by Wilders and Brakkee [315]. The results on
the equivalence between the full matrix techniques and the Schur matrix techniques seen in Section
14.5 have been adapted from results by S. E. Eisenstat, reported in [189]. These connections are rather
interesting and useful in practice since they provide some flexibility on ways to implement a method.
A number of preconditioners have also been derived using similar connections in the PDE framework
[48, 47, 49, 50, 51].

Research on graph partitioning has slowed in recent years, no doubt due to the appearance of
Metis, a well-designed and efficient graph partitioning code [185]. Variations of the Recursive Spectral
Bisection algorithm [229] seem to give the best results in terms of overall quality of the subgraphs.
However, the algorithm is rather expensive, and the less costly multilevel techniques such as the ones
in the codes Metis [185] and Chaco [166], are usually preferred. The description of the geometric
partitioning techniques in Section 14.6.2 is based on the papers [145] and [211]. Earlier approaches
have been developed in [81, 82, 83].
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algorithm for multiple starting vectors, Tech. Rep. Numerical Analysis Manuscript
No 95-11, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

[6] F. L. ALVARADO , Manipulation and visualization of sparse matrices, ORSA Journal
on Computing, 2 (1990), pp. 186–206.

[7] E. C. ANDERSON, Parallel implementation of preconditioned conjugate gradient
methods for solving sparse systems of linear equations, Tech. Rep. 805, CSRD, Uni-
versity of Illinois, Urbana, IL, 1988. MS Thesis.

[8] E. C. ANDERSON ANDY. SAAD , Solving sparse triangular systems on parallel com-
puters., International Journal of High Speed Computing, 1 (1989), pp. 73–96.

[9] W. E. ARNOLDI, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.

[10] C. C. ASHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization
and SSOR preconditioners, SIAM Journal on Scientific and Statistical Computing,
9 (1988), pp. 122–151.

[11] O. AXELSSON, A generalized SSOR method, BIT, 12 (1972), pp. 443–467.

[12] , Conjugate gradient type-methods for unsymmetric and inconsistent systems of
linear equations, Linear Algebra and its Applications, 29 (1980), pp. 1–16.

[13] , A generalized conjugate gradient, least squares method, Numerische Mathe-
matik, 51 (1987), pp. 209–227.

[14] , Iterative Solution Methods, Cambridge University Press, New York, 1994.

[15] O. AXELSSON ANDV. A. BARKER, Finite Element Solution of Boundary Value Prob-
lems, Academic Press, Orlando, FL, 1984.

515



516 BIBLIOGRAPHY

[16] O. AXELSSON, S. BRINKKEMPER, AND V. P. ILL’ N, On some versions of incomplete
block-matrix factorization iterative methods, Linear Algebra and its Applications, 58
(1984), pp. 3–15.

[17] O. AXELSSON ANDM. NEYTCHEVA, Algebraic multilevel iteration method for stielt-
jes matrices, Numer. Linear Algebra Appl., 1 (1994), pp. 213–236.

[18] O. AXELSSON AND B. POLMAN , A robust preconditioner based on algebraic sub-
structuring and two-level grids, in Robust multigrid methods. Proc., Kiel, Jan. 1988.,
W. Hackbusch, ed., Notes on Numerical Fluid Mechanics, Volume 23, Vieweg, Braun-
schweig, 1988, pp. 1–26.

[19] O. AXELSSON AND P. VASSILEVSKI, Algebraic multilevel preconditioning methods.
I, Numer. Math., 56 (1989), pp. 157–177.

[20] , A survey of multilevel preconditioned iterative methods, BIT, 29 (1989),
pp. 769–793.

[21] , Algebraic multilevel preconditioning methods. II, SIAM J. Numer. Anal., 27
(1990), pp. 1569–1590.

[22] O. AXELSSON AND P. S. VASSILEVSKI, A block generalized conjugate gradient
solver with inner iterations and variable step preconditioning, SIAM Journal on Ma-
trix Analysis and Applications, 12 (1991).

[23] N. S. BAKHVALOV , On the convergence of a relaxation method with natural con-
straints on the elliptic operator, U.S.S.R Computational Math. and Math. Phys., 6
(1966), pp. 101–135.

[24] S. BALAY , W. D. GROPP, L. C. MCINNES, AND B. F. SMITH , PETSc 2.0 users man-
ual, Tech. Rep. ANL-95/11 - Revision 2.0.24, Argonne National Laboratory, 1999.

[25] R. BANK , T. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid
method, Numer. Math., 52 (1988), pp. 427–458.

[26] R. BANK AND J. XU, The hierarchical basis multigrid method and incomplete LU
decomposition, tech. rep., U.C. San Diego, Dept. of Math., 1994.

[27] R. E. BANK AND T. F. CHAN, An analysis of the composite step biconjugate gradient
method, Numerische Mathematik, 66 (1993), pp. 259–319.

[28] R. E. BANK AND C. WAGNER, Multilevel ILU decomposition, Numerische Mathe-
matik, 82 (1999), pp. 543–576.

[29] T. BARTH AND T. MANTEUFFEL, Variable metric conjugate gradient methods, in
Advances in Numerical Methods for Large Sparse Sets of Linear Equations, Number
10, Matrix Analysis and Parallel Computing, PCG 94, Keio University, Yokohama,
Japan, 1994, pp. 165–188.

[30] D. BAXTER, J. SALTZ , M. H. SCHULTZ, S. C. EISENSTAT, AND K. CROWLEY, An
experimental study of methods for parallel preconditionedKrylov methods, in Pro-
ceedings of the 1988 Hypercube Multiprocessors Conference, Pasadena, CA, Jan.
1988, pp. 1698–1711.

[31] M. BENANTAR AND J. E. FLAHERTY, A six color procedure for the parallel so-
lution of Elliptic systems using the finite quadtree structure, in Proceedings of the
Fourth SIAM Conference on Parallel Processing for Scientific Computing, J. Don-
garra, P. Messina, D. C. Sorenson, and R. G. Voigt, eds., 1990, pp. 230–236.



BIBLIOGRAPHY 517

[32] M. BENZI, J. C. HAWS, AND M. TUMA , Preconditioning highly indefinite and non-
symmetric matrices, SIAM Journal on Scientific Computing, 22 (2000), pp. 1333–
1353.
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[36] M. BENZI AND M. TŮMA , A sparse approximate inverse preconditioner for nonsym-
metric linear systems, SIAM Journal on Scientific Computing, 19 (1998), pp. 968–
994.

[37] H. BERRYMAN, J. SALTZ , W. GROPP, AND R. MIRCHANDANEY, Krylov methods
preconditioned with incompletely factored matrices on theCM-2, Journal of Parallel
and Distributed Computing, 8 (1990), pp. 186–190.

[38] G. BIRKHOFF, R. S. VARGA, AND D. M. YOUNG, Alternating direction implicit
methods, in Advances in Computers, F. Alt and M. Rubinov, eds., New York, 1962,
Academic Press, pp. 189–273.
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