lterative Methods

for Sparse

Linear Systems

Second Edition

iy "y, |
|||:"'.::"|| :
II"l.:"' 1) :
! ;;:!!hlI
AT
byl [l
I"'I."'.Ill :'ll. !
: 'y 'h"n |||“ v
L by
1 Ly Iliig!}: W
; "’l-.,:u., k "t
ke "t
a ,Ill:i.!h: .| W |
gty "
"'.Mllikg“ b
Mk, L, R 0.19E+07
My, "
1 II!IEI;' i
i i
' .'|'::| 3 b
'nllmh . H
iy, "y
) [".,.
N .| :|| I|I||I “"n.:llll f
| W !
y A
o o ' s
i oy
] '|||||| 0.10E-06
i

Yousef Saad

Copyright(©2003 by the Society for Industrial and Applied Mathematics

Contents

[Prdface Xiii
tosecondedition xiii

m tofirstedition XiX

e "

1.2 Square Matrices and Eigenvalues 3
1.3 TvpesofMatrics 4
L4 Vectornner Productsand Noims 6
L5 MatrixNormb 8

L8 Canonical Formsof Mafrides 15
oy oo e Rag e -
i m 17
.83 The Schur Canonical Fdrm 17
L84 Application to Powers of Matrides 20
L9 Normal and Hermitian Matrides 21
91 NormalMatricds 21
L9.2 Hermitian Mafricés 25
.10 Nonnegative Matrices. M-Matri¢es 27
itive-Defini iCes 32
[1.12 Projection Operatdrs 34
[1.12.1 Range and Null Space of a Projgctor 34
1122 Matrix Representatidns 36
1.12.3 Orthogonal and Oblique Projedtors 37
[1.12.4 Properties of Orthogonal Projedtors 38
[1.13 Basic Conceptsin Linear Systéms 39
L1331 ExistenceofaSaluton 40
1132 Perturbation Analybis 41
, . — E | 47
2.1 Partial Differential Equationso 47

P11 FllipticOperatols 47

\Y

Vi CONTENTS

- S. ... 53

P24 UpwindSchemles 54

inite Di - S 56
26 __ FastPoisson Solvers 58

2.3 The Finite ElementMethbd 62
2.4 Mesh Generation and Refinemhent 69

.5 Finite Volume Methdd 69

B Sparse Matricek 75

B1 Introductioh 75
B2 GraphRepresentatibns 76
B.2.1 Graphs and Adjacency Graphs 77

322 Graphs of PDE Matrides 78
B3 Permutations and Reorderings 79

B33 __ CommonReorderidgs 83
B34 meducibility 01

B.6 _ Sparse Direct Solution Methbds 96
B.6.1 Minimum degree ordering 97
B.6.2 _____Nested Dissection ordefing 97

R.7 lestProbleths o 98

K Basic lterative Method$ 105

KU1 Jacobi, Gauss-Seidel, and $OR 105
4.1.1 Block Relaxation Schemes 108
W12 lteration Matrices and Preconditioding 112

4.2.2 Regular Splittings 118
K123 Diagonally Dominant Matrides 119
Uo4 Symmetric Positive Definite Matrites 122
Ku25 Property A and Consistent Orderlngs 123
K3 Alternafing Direction Metholls 127

CONTENTS vii

512 Matrix Representation 135
B2 GeneralThearyoo..... 137
Bb21 Two Optimality Results 137
5.2.2 Interpretation in Terms of Projeciors 138
23 ____ GeneralErrorBouhd 140
5.3 One-Dimensional Projection Procekses 42 1
5.3.1 SteepestDesdent 142
.32 Minimal Residual (MR) lteratibn 145
533 Residual Norm Steepest Descent 147
5.4 Additive and Multiplicative Proces$es 147
l6__ Krylov Subspace Methods Partll 157
bl Introductioh, 157
6.2 Krvlov Subspacks 158
6.3 _ AmaldisMethol 160
6.3.1 TheBasicAlgorithm 160
6.3.2 Practical Implementations 162
6.4 Arnoldi's Method for Linear Systems (EOM) 516
6.41 Variation 1: Restarted EOM 167
6.42 Variation 2: IOMand DIOM 168
6.5 GMRES 171
e e e
on 173
6.5.3 Practical Implementation Issues 174
6.5.4 ___ Breakdown of GMRES 179
6.5.5 ___ Variation 1: Restartihg 179
jation 2: ns 180
6.5.7 _ Relations between FOM and GMRES 185
b.5.8 __ Residualsmoothihg 190
6.5.9 GMRES for complex systeims 193
6.6 The Symmetric | anczos Algorithm 194
6.6.1 The Algorithin 194
62 Relation with Orthogonal Polynomlals 195
6.7 The Conjugate Gradient Algorithm 196
6.71 Derivationand Thedry 196
.72 Alternative Formulatiohs 200

6.9 __GCR, ORTHOMIN, and ORTHODIR 204
- m ... 206
b_llJ_Q_nw_Lgence AnalVBis 208
b.11.1 Real Chebyshev Polynonfials 209
6.11.2 Complex Chebyshev Polynondials 210

viii CONTENTS

[z__Krvlov Subspace Methads Part 1} 229
i i N .. 229
Z11 The Algorithn 229
7.1.2 Practical Implementations 232
i i ms........... 423
23 TheBCGand QMRAlgoriths 234
[z.3.1 The Biconiug,a.Le_G.La.dj.enLAlg%lLLLhm 234
[7.3.2 Quasi-Minimal Residual Algorithm 236
7.4 Transpose-Free Varidnts 241
Wred 241
.................... 244
743 Transpose-Free QMR (TEQMIR) 247
259
I8.1 The Normal EQuations o v v oo e e 259
i8.2 Row Projection Methads v v 261
821 Gauss-Seidel on the Normal Equalions 261
B22 ___ Cimming'sMethdd 263
8.3 Conjugate Gradient and Normal Equations | 6 26
B31 CGNR, 266
B32 CGNE 267
-Poi S . e 268
|9 Preconditioned IIetaIiQIﬁ 275
[9.1 l[]t[QductiQh 275
0.2 Preconditioned Conjugate Gradient 6 27
9.2.1 __ Preserving Symmeitry 276
.22 Ffficient Implementations 279
0.3 Preconditioned GMRES 282
031 left-Preconditioned GMRES 282
932 Right-Preconditioned GMRES 284
0.3.3 Split Preconditionilg 285
9.34 Comparison of Right and | eft Preconditioning . . 285
0.4 Flexible Varianls 287
041 FlexibleGMRES. 287
0.42 DQGMREB 290
0.5 Preconditioned CG for the Normal Equatlons 912
9.6 The Concus, Golub, and Widlund Algorithm 292
l o roiord 097
IlQ.l I[]t[Qductjdl 297

CONTENTS iX

[10.3 LU Factorization Preconditioners 013
[10.3.1 Incomplete LU Factorizations 301
0032 ZeroFilllin WU WUQ) 307
1033 levelofFilland WUEY 311
h.o.u_mmngesmm_aagg‘imumbre 315
[10.3.5 Modified ILU (MILU)Y oot .. 319

104 Threshold Strategiesand WUT 321
1041 ThellUTApproaéh 321
1042 Analysls 323
[10.4.3 Implementation Detdils 325
1044 ThellUTPApproath 327
045 ThellUSApproath 330
046 TheCroutllUApproath 332

[10.5 Approximate Inverse Preconditiofers 336
[10.5.1 Approximating the Inverse of a Sparse Mhtrix 337
1052 Globallteratidn 337

-Oi S i 339
ns 341
1055 Convergence of Self PreconditionedIMR 343
[10.5.6 _ Approximate Inverses via bordefing 346
[10.5.7 Factored inverses via orthogonalization: AINV . . 834
[10.5.8 Improving a Preconditioher 349
ingfor W 350
[10.6.1 Symmetric permutations 350
[10.6.2 Nonsymmetric reorderifigs 352
[L0.7 _Block Preconditiondrs

[11.3 Tvpes of Parallel Architectutes 137
11.3.1 Shared Memory Computers 372
[11.32 Distributed Memory Architectufes 374

CONTENTS

[11.5 Matrix-by-Vector Produdts v i e 378
1151 The CSRand CSCFormats 378
1152 Matvecs in the Diagonal Format 380
[11.5.3 The Ellpack-ltpack Formhat 381
1154 The Jagged Diagonal Format 382
[11.5.5 __ The Case of Distributed Sparse Mattices 383

[11.6 Standard Preconditioning Qperafions 386
[11.6.1 Parallelism in Forward Swebps 386
11.6.2 Level Scheduling: the Case of 5-Point Matfices . 387
[11.6.3 | evel Scheduling for lrregular Grabhs 388

[12_Parallel Preconditioners 393

21 Introductidn 393

- i IS & e e e e 439

2.3 Polynomial Preconditioners 395
1231 Neumann Polynomibls 396
[12.3.2 Chebyshev Polynomials 397
1233 | east-Squares Polynondials 400
1234 The NonsymmetricCase 403

[2.4 Mulicoloning 406
2.41 Red-Black Orderihg 406
[12.4.2 Solution of Red-Black Systdms 407
[12.4.3 Multicoloring for General Sparse Matrices 408

25 Multi-Flimination WW. 409
1251 Multi-Fliminatioh 410
252 UM, 412

2.6 Distributed 1Uand SSOR 414

2.7 _Other Techniques 417
12.7.1 Approximate Inverdes 417
h2.7.2 Element-by-Flement Technigues 417
12.7.3 Parallel Row Projection Preconditiohers 419

........................... 423

[13.2 Matrices and spectra of model problems 4 42
1321 Richardson'siteration 428
[13.22 Weighted Jacobiiteration 431

-Seidel | ON i 432

[13.3 Inter-grid operatiohs, 436

Hﬁ@n 436
ictidn 438

[13.4 Standard multigrid technighies 943

[13.4.1 Coarse problems and smoathers 439

[13.4.3 V-cyclesandW-cvcles 443

................... 447
[13.5 Analysis forthe two-gridcydle 451
[13.5.1 Two important subspakes 451
1352 Convergence analysis 453

[13.6.4 AMG via Multilevel LU 461
[13.7 _ Multigrid vs Krylov methods 464
[14 Domain Decomposition Methads 469
D41 ntroductidn 469
411 Notatidn, 470
412 Types of Partitionings 472
14.1.3 Types of Technigdes 472
[14.2 Direct Solution and the Schur Complerhent 74 4
421 Block Gaussian Flimination 474
1422 Properties of the Schur Complerhent 475
423 Schur Complement for Vertex-Based Partitiohings6 47
1424 Schur Complement for Finite-Element Partitiodidg®
425 Schur Complement for the model proilem 481
i F€S . . v v v i e e e 4 48
1431 Multiplicative Schwarz Procedre 484
1432 Multiplicative Schwarz Preconditioning 489
[14.3.3 Additive Schwarz Procedlre 491
1434 Convergente 492
14.4 Schur Complement Approadheso oo 497
1441 Induced Preconditioners 497
442 Probidg. 500
1443 Preconditioning Vertex-Based Schur Complement® 50
45 FullMatrixMethods 501
146 GraphPartitionilgo 504
1461 BasicDefiniiohs 504
1462 Geometric Approach 505
[14.6.3 Spectral Techniglhes 506
464 Graph Theory Techniglies 507
[References 514

Xii CONTENTS

Preface to the second edition

In the six years that passed since the publication of theefitision of this book,
iterative methods for linear systems have made good pregnescientific and engi-
neering disciplines. This is due in great part to the in@daomplexity and size of
the new generation of linear and nonlinear systems whigedrom typical appli-
cations. At the same time, parallel computing has penetréie same application
areas, as inexpensive computer power became broadly laleaélad standard com-
munication languages such as MPI gave a much needed steradiard This has
created an incentive to utilize iterative rather than disadvers because the prob-
lems solved are typically from 3-dimensional models for ebhdirect solvers often
become ineffective. Another incentive is that iterativetimoels are far easier to im-
plement on parallel computers,

Though iterative methods for linear systems have seen #isat maturation,
there are still many open problems. In particular, it stdhnot be stated that an
arbitrary sparse linear system can be solved iterativedyiafficient way. If physical
information about the problem can be exploited, more dffeand robust methods
can be tailored for the solutions. This strategy is exptblig multigrid methods. In
addition, parallel computers necessitate different wdyspproaching the problem
and solution algorithms that are radically different frolassical ones.

Several new texts on the subject of this book have appeared gie first edition.
Among these, are the books by Greenbauml|[154], and Melr@€}. [Zhe exhaustive
5-volume treatise by G. W. Stewalt[274] is likely to becorhe tle-facto reference
in numerical linear algebra in years to come. The relatedigrid literature has
also benefited from a few notable additions, including a neivam of the excellent
“Multigrid tutorial” [65], and a new title by Trottenberg el. [288].

Most notable among the changes from the first edition, isdadian of a sorely
needed chapter on Multigrid techniques. The chapters wiesle seen the biggest
changes are Chapter 3, 6, 10, and 12. In most cases, the ratdifcwere made to
update the material by adding topics that were developeghtlycor gained impor-
tance in the last few years. In some instances some of thetolgies were removed
or shortened. For example the discussion on parallel aathite has been short-
ened. In the mid-1990’s hypercubes and “fat-trees” wereomamt topic to teach.
This is no longer the case, since manufacturers have ta&pa &i hide the topology
from the user, in the sense that communication has becomie leggsensitive to the

Xiii

Xiv PREFACE

underlying architecture.

The bibliography has been updated to include work that hpeapd in the last
few years, as well as to reflect change of emphasis when neestbpve gained
importance. Similarly, keeping in mind the educationalesaf this book, many
new exercises have been added. The first edition suffereg typographical errors
which have been corrected. Many thanks to those readersaskdtie time to point
out errors.

| would like to reiterate my thanks to all my colleagues whépkd make the
the first edition a success (see the preface to the first ejlitibreceived support
and encouragement from many students and colleagues togmihér this revised
volume. | also wish to thank those who proofread this bookounfd that one of
the best way to improve clarity is to solicit comments andsfjoas from students
in a course which teaches the material. Thanks to all stadenCsci 8314 who
helped in this regard. Special thanks to Bernie Sheeham,pshded out quite a
few typographical errors and made numerous helpful sumgest

My sincere thanks to Michele Benzi, Howard Elman, and StewveQérmick
for their reviews of this edition. Michele proof-read a fehapters thoroughly and
caught a few misstatements. Steve Mc Cormick’s review op@rel 3 helped ensure
that my slight bias for Krylov methods (versus multigrid) smaot too obvious. His
comments were at the origin of the addition of Section 13.1l{idrid vs Krylov
methods).

| would also like to express my appreciation to the SIAM stedfpecially Linda
Thiel and Sara Murphy.

PREFACE XV

Suggestions for teaching

This book can be used as a text to teach a graduate-leveleconiigerative methods
for linear systems. Selecting topics to teach depends othehthe course is taught
in a mathematics department or a computer science (or esrgige department, and
whether the course is over a semester or a quarter. Here ave@mments on the
relevance of the topics in each chapter.

For a graduate course in a mathematics department, mucle oh#terial in
Chapter 1 should be known already. For non-mathematicsrengjost of the chap-
ter must be covered or reviewed to acquire a good backgroointhter chapters.
The important topics for the rest of the book are in Sectidn®:1, 1.8.3, 1.8.4, 1.9,
1.11. Section 1.12 is best treated at the beginning of Chapt€hapter 2 is essen-
tially independent from the rest and could be skipped attoggein a quarter session,
unless multigrid methods are to be included in the courses I€cture on finite dif-
ferences and the resulting matrices would be enough for amath course. Chapter
3 aims at familiarizing the student with some implementaissues associated with
iterative solution procedures for general sparse matrites computer science or
engineering department, this can be very relevant. Forenadlicians, a mention
of the graph theory aspects of sparse matrices and a fewgstanemes may be
sufficient. Most students at this level should be familiattva few of the elementary
relaxation technigues covered in Chapter 4. The conveggtreory can be skipped
for non-math majors. These methods are now often used asrgliéoners and this
may be the only motive for covering them.

Chapter 5 introduces key concepts and presents proje@amigues in gen-
eral terms. Non-mathematicians may wish to skip SectiorB35.®Dtherwise, it is
recommended to start the theory section by going back tadpettl2 on general
definitions on projectors. Chapters 6 and 7 represent the bbthe matter. It is
recommended to describe the first algorithms carefully anémphasis on the fact
that they generalize the one-dimensional methods coveré&hapter 5. It is also
important to stress the optimality properties of those meshin Chapter 6 and the
fact that these follow immediately from the properties afjpctors seen in Section
1.12. Chapter 6 is rather long and the instructor will needdiect what to cover
among the non-essential topics as well as topics for reading

When covering the algorithms in Chapter 7, it is crucial tinpout the main
differences between them and those seen in Chapter 6. Thmtgasuch as CGS,
BICGSTAB, and TFQMR can be covered in a short time, omittiegads of the
algebraic derivations or covering only one of the three. d@lass of methods based
on the normal equation approach, i.e., Chapter 8, can bpetkim a math-oriented
course, especially in the case of a quarter system. For assenwurse, selected
topics may be Sections 8.1, 8.2, and 8.4.

Preconditioning is known to be the determining ingredierthie success of iter-
ative methods in solving real-life problems. Therefordeast some parts of Chapter
9 and Chapter 10 should be covered. Section 9.2 and (verfjypri@3 are recom-
mended. From Chapter 10, discuss the basic ideas in Seditohghrough 10.3.

XVi

PREFACE

The rest could be skipped in a quarter course.

Chapter 11 may be useful to present to computer science sndjot may be
skimmed through or skipped in a mathematics or an engingeaurse. Parts of
Chapter 12 could be taught primarily to make the studentseaafathe importance
of “alternative” preconditioners. Suggested selectiors 42.2, 12.4, and 12.7.2 (for

engineers).

Chapters 13 and 14 present important research areas andraegily geared

to mathematics majors. Computer scientists or engineeysconger this material in

less detail.

To make these suggestions more specific, the following twtesaare offered
as sample course outlines. Numbers refer to sections irefheA semester course
represents approximately 30 lectures of 75 minutes eacheabe quarter course
is approximately 20 lectures of 75 minutes each. Differeptds are selected for a

mathematics course and a non-mathematics course.

~

Semester course

Weeks Mathematics Computer Science / Eng.
1.9-1.13 1.1-16(Read); 1.7; 1.9

1-3 21-25 1.11; 1.12; 2.1-2.72
3.1-33 3.1-3.6

41-42 41-421; 4.2.3

4-6 5.1-53; 6.1-6.4 51-5.2.1; 5.3
6.5.1; 6.5.3-6.5.9 6.1-6.4; 6.5.1-6.5.%

6.6 —6.8 6.7.16.8-6.9

7-9 6.9-6.11; 7.1 7.3 6.11.3; 7.1-7.3
7.4.1; 7.4.2; 7.4.3 (Read) 7.4.1-7.4.2; 7.4.3 (Read

8.1, 8.2; 9.1-9.4; 8.1-8.3; 9.1-9.3

10-12 10.1-10.3; 10.4.1;) 10.1-10.3; 10.4.1-10.4.3;
10.5.1 - 10.5.7 10.5.1 - 10.5.4; 10.5.]

12.2-12.4] 11.1 -11.4 (Read); 11.5-11

13-15 13.1-135 121-12.2; 12.4-12.]
14.1-146 14.1 -14.3; 14.6

PREFACE

XVii

Quarter course
Weeks Mathematics Computer Science / Eng.
1-2 1.9-1.13 1.1-1.6 (Read); 3.1-3.b
41-4.2; 51-54 4.1; 1.12 (Read
3-4 6.1-6.4 5.1-5.2.1; 5.3
6.5.1; 6.5.3-6.5.5 6.1-6.3
5-6 6.7.1; 6.11.3; 7.1-7.3 6.4; 6.5.1;, 6.5.3-6.5.5
7.4.1-7.4.2; 7.4.3 (Read) 6.7.1; 6.11.3; 7.1-7.3
7-8 9.1-9.3| 7.4.1-7.4.2(Read); 9.1-9/3
10.1-10.3; 10.5.1; 10.5.fy 10.1-10.3; 10.5.1; 10.5.F
9-10 13.1-13.5| 11.1-11.4 (Read); 11.5; 116
141 -14.4 12.1-12.2; 12.4-12.

XViii PREFACE

Preface to the first edition

Iterative methods for solving general, large sparse lisgstems have been gain-
ing popularity in many areas of scientific computing. Ungitently, direct solution
methods were often preferred to iterative methods in repligiions because of
their robustness and predictable behavior. However, a rumibefficient iterative
solvers were discovered and the increased need for soleirnglarge linear systems
triggered a noticeable and rapid shift toward iterativéntégues in many applica-
tions.

This trend can be traced back to the 1960s and 1970s when tpartiamt de-
velopments revolutionized solution methods for largedmsystems. First was the
realization that one can take advantage of “sparsity” tagteespecial direct meth-
ods that can be quite economical. Initiated by electricajirgers, these “direct
sparse solution methods” led to the development of reliabkk efficient general--
purpose direct solution software codes over the next thesadbs. Second was
the emergence of preconditioned conjugate gradient-ligghads for solving linear
systems. It was found that the combination of preconditigrand Krylov subspace
iterations could provide efficient and simple “generalgmse” procedures that could
compete with direct solvers. Preconditioning involvesleiting ideas from sparse
direct solvers. Gradually, iterative methods started toreg@ch the quality of di-
rect solvers. In earlier times, iterative methods werero$igecial-purpose in nature.
They were developed with certain applications in mind, &k tefficiency relied on
many problem-dependent parameters.

Now, three-dimensional models are commonplace and Weratiethods are al-
most mandatory. The memory and the computational requimeshier solving three-
dimensional Partial Differential Equations, or two-dirs&mal ones involving many
degrees of freedom per point, may seriously challenge trst efficient direct solvers
available today. Also, iterative methods are gaining gcbbacause they are easier
to implement efficiently on high-performance computersittisect methods.

My intention in writing this volume is to provide up-to-dateverage of itera-
tive methods for solving large sparse linear systems. Ideduhe book on practical
methods that work for general sparse matrices rather thaanip specific class of
problems. It is indeed becoming important to embrace agfplics not necessar-
ily governed by Partial Differential Equations, as thespligations are on the rise.

XiX

XX PREFACE

Apart from two recent volumes by Axelssan[14] and HackbUg&i], few books on
iterative methods have appeared since the excellent on®argg [293]. and later
Young [322]. Since then, researchers and practitionerg laahieved remarkable
progress in the development and use of effective iteratigthods. Unfortunately,
fewer elegant results have been discovered since the 188052860s. The field has
moved in other directions. Methods have gained not only ficiehcy but also in
robustness and in generality. The traditional techniquieislwrequired rather com-
plicated procedures to determine optimal acceleratioarpaters have yielded to the
parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the besirtiegies available
today, from both preconditioners and accelerators. Onbeftms of the book is
to provide a good mix of theory and practice. It also addiessene of the current
research issues such as parallel implementations andtrpteeonditioners. The
emphasis is on Krylov subspace methods, currently the nmastipal and common
group of techniques used in applications. Although thera tigtorial chapter that
covers the discretization of Partial Differential Equagp the book is not biased
toward any specific application area. Instead, the matdoesassumed to be general
sparse, possibly irregularly structured.

The book has been structured in four distinct parts. Thedadt Chapters 1 to 4,
presents the basic tools. The second part, Chapters 5 tesris projection meth-
ods and Krylov subspace techniques. The third part, Creptand 10, discusses
preconditioning. The fourth part, Chapters 11 to 13, diseagarallel implementa-
tions and parallel algorithms.

Acknowledgments

| am grateful to a number of colleagues who proofread or vexikdifferent ver-
sions of the manuscript. Among them are Randy Bramley (Usityeof Indiana
at Bloomingtin), Xiao-Chuan Cai (University of ColoradoBaulder), Tony Chan
(University of California at Los Angeles), Jane Cullum (IBMorktown Heights),
Alan Edelman (Massachussett Institute of Technology)| Piaaher (Brown Univer-
sity), David Keyes (Old Dominion University), Beresfordrkedt (University of Cali-
fornia at Berkeley) and Shang-Hua Teng (University of Msot@). Their numerous
comments, corrections, and encouragements were a higbitg@ated contribution.
In particular, they helped improve the presentation carsidly and prompted the
addition of a number of topics missing from earlier versions

This book evolved from several successive improvementsef af lecture notes
for the course “Iterative Methods for Linear Systems” whitchught at the Univer-
sity of Minnesota in the last few years. | apologize to thaselents who used the
earlier error-laden and incomplete manuscripts. Theintiapd criticism contributed
significantly to improving the manuscript. | also wish totkahose students at MIT
(with Alan Edelman) and UCLA (with Tony Chan) who used thikdn manuscript
form and provided helpful feedback. My colleagues at theensity of Minnesota,
staff and faculty members, have helped in different waysshwo thank in particular

PREFACE XXi

Ahmed Sameh for his encouragements and for fostering a ptiwdwenvironment in
the department. Finally, | am grateful to the National SceeRoundation for their
continued financial support of my research, part of whiclesesented in this work.

Yousef Saad

Chapter 1

BACKGROUND IN LINEAR ALGEBRA

This chapter gives an overview of the relevant concepts in linear algebra which are useful in
later chapters. It begins with a review of basic matrix theory and introduces the elementary
notation used throughout the book. The convergence analysis of iterative methods requires a
good level of knowledge in mathematical analysis and in linear algebra. Traditionally, many of the
concepts presented specifically for these analyses have been geared toward matrices arising from
the discretization of Partial Differential Equations and basic relaxation-type methods. These
concepts are now becoming less important because of the trend toward projection-type methods
which have more robust convergence properties and require different analysis tools. The material
covered in this chapter will be helpful in establishing some theory for the algorithms and defining
the notation used throughout the book.

1.1 Matrices

For the sake of generality, all vector spaces considereldisrchapter are complex,
unless otherwise stated. A complexx m matrix A is ann x m array of complex
numbers

aij, 1=1,...,n, 7=1,...,m.

The set of alln x m matrices is a complex vector space denotedby"™. The main
operations with matrices are the following:

e Addition: C = A + B, whereA, B, andC are matrices of size x m and

cij:aij—l—bij, 1=1,2,...n, j=12...m.

e Multiplication by a scalarC' = a A, where

Cij = & Gy, i:1,2,...n, j:1,2,...m.

2 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

e Multiplication by another matrix:
C =AB,

whered € C"*™ B € C"™*P,C' € C"*P, and
m

Cij = Zaikzbkzj-
k=1

Sometimes, a notation with column vectors and row vectausésl. The column
vectora,; is the vector consisting of theth column ofA,
alj
agj
a*]— =

anj

Similarly, the notatioru;, will denote thei-th row of the matrixA
Qe = (aﬂ, Ai2y .« -« ,aim) .

For example, the following could be written

A= (a*la A2 - - - 7a*m))
or
A%
A2x
A=
A

The transposeof a matrix A in C™*™ is a matrixC' in C™*™ whose elements
are defined by;; = a;;,1 =1,...,m, j =1,...,n. Itisdenoted byd”'. Itis often
more relevant to use thieanspose conjugatmatrix denoted byt and defined by

A = AT = AT,

in which the bar denotes the (element-wise) complex cotipga

Matrices are strongly related to linear mappings betweetovespaces of finite
dimension. This is because they represent these mappitigsespect to two given
bases: one for the initial vector space and the other forrttae vector space, or
rangeof A.

1.2. SQUARE MATRICES AND EIGENVALUES 3

1.2 Square Matrices and Eigenvalues

A matrix is squareif it has the same number of columns and rows, i.en i n. An
important square matrix is the identity matrix

I={6i}ij=1,.m

whered;; is the Kronecker symbol. The identity matrix satisfies thaadity A =
1A = A for every matrixA of sizen. The inverse of a matrix, when it exists, is a
matrix C' such that

CA=AC=1.

The inverse ofA is denoted byd—!.

Thedeterminantof a matrix may be defined in several ways. For simplicity, the
following recursive definition is used here. The determirafra 1 x 1 matrix (a) is
defined as the scalar Then the determinant of anx n matrix is given by

n

det(A) = (=1 ay;det(Ay)),

j=1

whereA;; is an(n — 1) x (n — 1) matrix obtained by deleting the first row and the
j-th column ofA. A matrix is said to besingularwhendet(A) = 0 andnonsingular
otherwise. We have the following simple properties:

From the above definition of determinants it can be shown tydtion that the
function that maps a given complex valieto the valuep4(\) = det(A — AI)
is a polynomial of degree; see Exercis€l8. This is known as tblearacteristic
polynomialof the matrix A.

Definition 1.1 A complex scalar is called an eigenvalue of the square matAx
if a nonzero vector, of C" exists such thatlu. = Au. The vectory is called an
eigenvector ofd associated with\. The set of all the eigenvalues 4fis called the
spectrum ofd and is denoted by (A).

A scalar)\ is an eigenvalue ofl if and only if det(A — AI) = pa(A) = 0. That
is trueif and only if (iff thereafter)\ is a root of the characteristic polynomial. In
particular, there are at mostdistinct eigenvalues.

It is clear that a matrix is singular if and only if it admitsreeas an eigenvalue.
A well known result in linear algebra is stated in the follogiproposition.

4 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Proposition 1.2 A matrix A is nonsingular if and only if it admits an inverse.

Thus, the determinant of a matrix determines whether or m@htatrix admits an
inverse.
The maximum modulus of the eigenvalues is calipéctral radiusand is de-

noted byp(A)
A) = max |A|.
p())\EUE}A)| |

Thetraceof a matrix is equal to the sum of all its diagonal elements

tr(A) = Zn: Qs .
i=1

It can be easily shown that the tracefis also equal to the sum of the eigenvalues
of A counted with their multiplicities as roots of the charaistigr polynomial.

Proposition 1.3 If \ is an eigenvalue of4, then X is an eigenvalue ofA”. An
eigenvecton of AY associated with the eigenvalueis called a left eigenvector of
A.

When a distinction is necessary, an eigenvectot of often called a right eigen-
vector. Therefore, the eigenvalueas well as the right and left eigenvectorsand
v, satisfy the relations

Au=du, vTA=x ",
or, equivalently,
uT AR =X, APy = N

1.3 Types of Matrices

The choice of a method for solving linear systems will ofteppehnd on the structure
of the matrixA. One of the most important properties of matrices is symynbt-
cause of its impact on the eigenstructuredofA number of other classes of matrices
also have particular eigenstructures. The most importaes are listed below:

e Symmetric matricesA” = A.

e Hermitian matrices: A% = A.

e Skew-symmetric matricesA” = —A.
e Skew-Hermitian matricesA? = —A.
e Normal matrices: A7 A = AAT.

e Nonnegative matricesu;; > 0, ¢,7 = 1,...,n (similar definition for non-
positive, positive, and negative matrices).

1.3. TYPES OF MATRICES 5

e Unitary matrices: Q7Q = I.

It is worth noting that a unitary matrig is a matrix whose inverse is its transpose
conjugateQ’, since

QiQ=1 — Q'=q". (1.1)
A matrix Q such that®’ Q is diagonal is often called orthogonal.

Some matrices have particular structures that are oftevectent for computa-
tional purposes. The following list, though incompletejeg an idea of these special
matrices which play an important role in numerical analgsid scientific computing
applications.

e Diagonal matricesia;; = 0 for j # 7. Notation:
A = diag (a11,a22,...,ann) -

e Upper triangular matricesa;; = 0 for¢ > j.

e Lower triangular matricesu,;; = 0 fori < j.

e Upper bidiagonal matricesa;; = 0 forj #iorj # i+ 1.

e Lower bidiagonal matricesu;; = 0forj #iorj #i— 1.

e Tridiagonal matrices:;; = 0 for any pairi, j such that;j —i| > 1. Notation:
A = tridiag (a;i—1, Gii, Qiit1) -

e Banded matricesu;; # 0 only if i —m; < j < ¢+ m,, wherem; andm,, are
two nonnegative integers. The number + m, + 1 is called the bandwidth
of A.

e Upper Hessenberg matrices;;; = 0 for any pairi, j such that > j + 1.
Lower Hessenberg matrices can be defined similarly.

e Outer product matricesA = uv™, where both, andv are vectors.

e Permutation matricesthe columns of4 are a permutation of the columns of
the identity matrix.

e Block diagonal matricesgeneralizes the diagonal matrix by replacing each
diagonal entry by a matrix. Notation:

A = diag (A11,A22,..., Ann) -

e Block tridiagonal matrices:generalizes the tridiagonal matrix by replacing
each nonzero entry by a square matrix. Notation:

A = tridiag (A;i—1, A, Aiiv1) -

The above properties emphasize structure, i.e., positibiiie nonzero elements
with respect to the zeros. Also, they assume that there any @exo elements or
that the matrix is of low rank. This is in contrast with thesddications listed earlier,
such as symmetry or normality.

6 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

1.4 Vector Inner Products and Norms

An inner product on a (complex) vector spa€és any mapping from X x X into
C,
reXy eX — s(zy) €C,

which satisfies the following conditions:

1. s(z,y) is linear with respect ta, i.e.,

s(A1z1 4+ Aewa,y) = Ais(x1,y) + Aes(w2,y), YVa,m € X,V el

2. s(x,y) is Hermitian i.e.,

s(y,r) = s(x,y), Vz,y €X

3. s(x,y) is positive definitgi.e.,

s(z,z) > 0, Va # 0.

Note that (2) implies that(x, z) is real and therefore, (3) adds the constraint that
s(z,x) must also be positive for any nonzeroFor anyz andy,

s(x,0) = s(z,0.y) = 0.s(x,y) = 0.

Similarly, s(0,y) = 0 for anyy. Hence,s(0,y) = s(x,0) = 0 for anyz andy. In
particular the condition (3) can be rewritten as

s(z,x) >0 and s(z,x)=0 iff =0,

as can be readily shown. A useful relation satisfied by angripnoduct is the so-
called Cauchy-Schwartz inequality:

s(z,y)|* < s(z,z) s(y,y). (1.2)

The proof of this inequality begins by expandisg: — \y, z — Ay) using the prop-
erties ofs,

sz — Ay, z — Ay) = s(z,2) — As(z,y) — As(y,) + [As(y, v).

If y = 0 then the inequality is trivially satisfied. Assume that# 0 and take
A = s(z,y)/s(y,y). Then, from the above equality(z — \y,z — \y) > 0 shows
that

s(z,y)[? s(z,y)[?
0<s(x—Ay,z—Ay) = 3($ax)_2|;(y’ylj))| +|s((g;z;))|
= s(x ;U)—M

’ s(y,y)

1.4. VECTOR INNER PRODUCTS AND NORMS 7

which yields the resul{{112).

In the particular case of the vector spae= C", a “canonical” inner product
is the Euclidean inner product The Euclidean inner product of two vectors=
(xi)izl,...,n andy = (yi)izl,mm of C" is defined by

(z,y) = ingia (1.3)
i=1

which is often rewritten in matrix notation as

(z,y) = y"x. (1.4)

It is easy to verify that this mapping does indeed satisfittinee conditions required
for inner products, listed above. A fundamental propertythef Euclidean inner
product in matrix computations is the simple relation

(Az,y) = (v, AMy), Ya,yeC" (1.5)

The proof of this is straightforward. Thedjoint of A with respect to an arbitrary
inner productis a matrix B such that(Az,y) = (x, By) for all pairs of vectorse
andy. A matrix is self-adjoint or Hermitian with respect to this inner product, if it
is equal to its adjoint. The following proposition is a coggence of the equality

@3).
Proposition 1.4 Unitary matrices preserve the Euclidean inner product, i.e
(Qz,Qy) = (z,y)

for any unitary matrixQ) and any vectors andy.

Proof. Indeed,(Qz, Qy) = (z, Q7 Qy) = (z,y). |

A vector norm on a vector spacgéis a real-valued function: — ||z|| on X,
which satisfies the following three conditions:

1 |z[>0, Vaz € X, and |[z|=0iff z =0.
2. |laz|| = lal||lz|], VzeX, VaeC.
3 Nz +yll <zl +lyll, vVayeX

For the particular case whet = C™, we can associate with the inner product
(3) theEuclidean nornof a complex vector defined by

Izl = (2, 2)"/.
It follows from Propositio_T}4 that a unitary matrix preges the Euclidean norm
metric, i.e.,

1Qzl2 = [|lz[l2, V2.

8 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

The linear transformation associated with a unitary majrig therefore aimsometry
The most commonly used vector norms in numerical linearbalgare special
cases of the Holder norms

n 1/p
lllp = (Z Ilep> : (1.6)
i=1

Note that the limit of|z||, whenp tends to infinity exists and is equal to the maxi-
mum modulus of the;;’s. This defines a norm denoted By|~,. The casep = 1,
p = 2, andp = oo lead to the most important norms in practice,

x|t = |o1] + 2] + - - + |z4],
1/2
lzlla = [J21]2 + |22l + - - + a2 2,

[#]loc = max |z.
=1

=1,...,

The Cauchy-Schwartz inequality ¢f{lL.2) becomes

(@, 9)] < llzll2llyll2-

1.5 Matrix Norms
For a general matrix in C"*™, we define the following special set of norms

[Az]l,

Allpg = '
| Allpg relm 50 (E2[P

(1.7)

The norm||.||,, is inducedby the two normg|.||, and||.||,. These norms satisfy the
usual properties of norms, i.e.,

|A] >0, YA eC™, and ||A| =0 iff A=0 (1.8)

|laAll = |af]| 4],V A e C™™, VaeC (1.9)
|A+ B| <||A]l +|B|l, VAB eC"™™. (1.10)
(1.11)

A norm which satisfies the above three properties is nothinigalvector normap-
plied to the matrix considered as a vector consisting oftimlumns stacked into a
vector of sizenm.

The most important cases are again those associatethwith- 1,2, 0c0. The
caseg = p is of particular interest and the associated ndrff, is simply denoted
by |.||, and called ap-norm.” A fundamental property of g-norm is that

[ABllp < [Allpll Bllp,

an immediate consequence of the definitlonl(1.7). Matrixrsthat satisfy the above
property are sometimes callebnsistent Often a norm satisfying the properties

1.5. MATRIX NORMS 9

(T 3-ELI0) and which is consistent is callechatrix norm A result of consistency is
that for any square matriA,
k k
A%l < 1Al

In particular the matrix4* converges to zero #nyof its p-norms is less than 1.
The Frobenius norm of a matrix is defined by

1/2

[AllF = ZZ |ai; | . (1.12)

j=1 i=1

This can be viewed as the 2-norm of the column (or row) veetar’ consisting
of all the columns (respectively rows) df listed from1 to m (respectivelyl to n.)
It can be shown that this norm is also consistent, in spiténeffact that it is not
induced by a pair of vector norms, i.e., it is not derived frarformula of the form
(L2); see Exercisel 5. However, it does not satisfy someebther properties of
the p-norms. For example, the Frobenius norm of the identity matrnot equal to
one. To avoid these difficultiesye will only use the term matrix norm for a norm
that is induced by two norms as in the definitienX1.Thus, we will not consider
the Frobenius norm to be a proper matrix norm, according ta@ooventions, even
though it is consistent.

The following equalities satisfied by the matrix norms dediabove lead to al-
ternative definitions that are often easier to work with:

1Al = jnax ; |aijl, (1.13)
|A]l0o = ifff‘.’fnzl Jasjl, (1.14)
J:
1/2 1/2
IAllz = [p(A" 4)]"% = [p(aa™)]"2, (1.15)

1/2

IA||F = [tr(A7 4)]"* = [tr(AA™)] (1.16)

As will be shown later, the eigenvalues 4f’ A are nonnegative. Their square
roots are callegingular valueof A and are denoted by;, = 1,...,m. Thus, the
relation [I.Ib) states th&t ||, is equal tasy, the largest singular value of.

Example 1.1. From the relation[[1.15), it is clear that the spectral ragi(y) is
equal to the 2-norm of a matrix when the matrix is Hermitiamowdéver, it is not
a matrix norm in general. For example, the first property afmwis not satisfied,

since for 0 1
1=(5 o)

we havep(A) = 0 while A # 0. Also, the triangle inequality is not satisfied for the
pair A, andB = AT whereA is defined above. Indeed,

p(A+B)=1 while p(A)+ p(B)=0.

10 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

d

1.6 Subspaces, Range, and Kernel

A subspace of2" is a subset of2” that is also a complex vector space. The set of
all linear combinations of a set of vectots = {a;,as,...,a,} of C" is a vector
subspace called the linear spanchf

span{G} = span{ai,as,...,aq}
q
= {z ceC"|z= Z a;aq; {oiti=1,..q € (Cq} .

i=1
If the a;'s are linearly independent, then each vectosein{G} admits a unique
expression as a linear combination of th&s. The set is then called &asisof the
subspacepan{G}.

Given two vector subspaceés and.S,, theirsum S is a subspace defined as the
set of all vectors that are equal to the sum of a vecta$;afind a vector of5,. The
intersection of two subspaces is also a subspace. If thes@uion ofS; and S is
reduced to{0}, then the sum of; and.S; is called their direct sum and is denoted
by S = S1 6 S;. WhenS is equal toC™, then every vectoz of C™ can be written
in a unique way as the sum of an elementof S; and an element, of S;. The
transformationP that mapsr into x; is a linear transformation that idempotent
i.e., such tha? = P. Itis called aprojectoronto S; alongSs.

Two important subspaces that are associated with a matox C™**™ are its
range defined by

Ran(A) = {Az |z € C™}, (1.17)

and itskernelor null space
Null(A) ={z € C" | Az =0 }.

The range ofA is clearly equal to the lineapanof its columns. Theank of a
matrix is equal to the dimension of the rangeAfi.e., to the number of linearly
independent columns. Thimlumn rankis equal to therow rank the number of
linearly independent rows ofl. A matrix in C"*™ is of full rank when its rank is
equal to the smallest ofi andn. A fundamental result of linear algebra is stated by
the following relation

C" = Ran(A) ® Null(4T) . (1.18)

The same result applied to the transposel gields: C™ = Ran(A”) @ Null(A).

A subspaceb is said to benvariant under a (square) matrid wheneverAS C
S. In particular for any eigenvalug of A the subspac&ull(A — AI) is invariant
underA. The subspac®ull(A — AI) is called the eigenspace associated witmd
consists of all the eigenvectors dfassociated with, in addition to the zero-vector.

1.7. ORTHOGONAL VECTORS AND SUBSPACES 11

1.7 Orthogonal Vectors and Subspaces

A set of vectorsy = {ay,as,...,a,} is said to beorthogonalif
(a;,a;) =0 when i # j.

It is orthonormalif, in addition, every vector ofy has a 2-norm equal to unity. A
vector that is orthogonal to all the vectors of a subspaesaid to be orthogonal to
this subspace. The set of all the vectors that are orthodortals a vector subspace
called theorthogonal complementf S and denoted bys-. The spaceC” is the
direct sum ofS and its orthogonal complement. Thus, any veatoan be written in
a unique fashion as the sum of a vectoSiand a vector irS+. The operator which
mapsz into its component in the subspa6as theorthogonal projectoronto S.

Every subspace admits an orthonormal basis which is oltdigeaking any
basis and “orthonormalizing” it. The orthonormalizatiomncbe achieved by an al-
gorithm known as the Gram-Schmidt process which we now descr

Given a set of linearly independent vectdus, , o, . . ., z,. }, first normalize the
vector 1, which means divide it by its 2-norm, to obtain the scaledtameg, of
norm unity. Thene, is orthogonalized against the vecigrby subtracting from,
a multiple ofg; to make the resulting vector orthogonalgg i.e.,

To < T2 — (952>Q1)Q1-

The resulting vector is again normalized to yield the seamworg,. Thei-th step
of the Gram-Schmidt process consists of orthogonalizirgviectorx; against all
previous vectorg;.

ALGORITHM 1.1 Gram-Schmidt

Compute1; := ||x1]]2. If 111 = 0 Stop, else computg := x1/r11.
Forj =2,...,r Do:
Computer;; := (xj,q;) ,fori=1,2,...,j—1

j—1
4=z — > Tijg;
i=1

Tjj = 1l
Ifr;; = 0 then Stop, else; := ¢/r;;
EndDo

NOO A WNR

It is easy to prove that the above algorithm will not break dpie., allr steps
will be completed if and only if the set of vectors, zo, . . . , z, is linearly indepen-
dent. From lines 4 and 5, it is clear that at every step of therdhm the following

relation holds: ,
J

Ty = g Tij4i-

i=1

=~

12 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

If X = [x1,29,...,2], Q@ = [q1,92,--.,¢], and if R denotes the: x r upper
triangular matrix whose nonzero elements arerthelefined in the algorithm, then
the above relation can be written as

X = QR. (1.19)

This is called the QR decomposition of the< » matrix X. From what was said
above, the QR decomposition of a matrix exists whenever aharmn vectors ofX
form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt procelssreTare alterna-
tive formulations of the algorithm which have better nuroakiproperties. The best
known of these is the Modified Gram-Schmidt (MGS) algorithm.

ALGORITHM 1.2 Modified Gram-Schmidt

1. Deﬁnerll = le”g Ifri7 =0 StOp, EIS@l = xl/rll.
2. Forj =2,...,r Do:

3. Defineg := x;

4. Fori=1,...,57—1, Do:

5. rij = (4, i)

6. q:=q—7ijq

7. EndDo

8. Compute;; == ||dl|2,

9. If?"jj = 0 then Stop, eISQj = (j/?"jj

0. EndDo

Yet another alternative for orthogonalizing a sequenceegfors is the House-
holder algorithm. This technique uses Householadlectors i.e., matrices of the
form

P=1—-2uwuw’, (1.20)

in which w is a vector of 2-norm unity. Geometrically, the vect®x represents a
mirror image ofz with respect to the hyperplangan{w}+.

To describe the Householder orthogonalization processpribblem can be for-
mulated as that of finding a QR factorization of a giverx m matrix X. For any
vectorz, the vectorw for the Householder transformatidn {11.20) is selected @hsu
a way that

Px = aeq,

wherea is a scalar. Writing I — 2ww™)z = ae; yields
2ul'z w=1x— ae. (1.22)

This shows that the desiredis a multiple of the vector — aey,
T — aeq
w = _—.
|z — aerll2

For (T.Z1) to be satisfied, we must impose the condition

T

2(r —aer) =z — aelﬂg

1.7. ORTHOGONAL VECTORS AND SUBSPACES 13

which gives2(||z||? — a&1) = |z]|2 — 2a&1 + o2, whereé; = el'x is the first
component of the vectar. Therefore, it is necessary that

a = =x||z||2.
In order to avoid that the resulting vectorbe small, it is customary to take

o = —sign(&1)|z|lz,

which yields
x + sign(&1) ||z 2€1

 lz + sign(&n)[|zll2en]l
Given ann x m matrix, its first column can be transformed to a multiple @& th
columney, by premultiplying it by a Householder matri®,

(1.22)

X1 EPlX, X161 = Qaeq.

Assume, inductively, that the matriX has been transformed in— 1 successive
steps into the partially upper triangular form

wll wlz wlg xlm
,:U22 ,:U23o oe. x2m
wgg DR xgm
XkEPk_l...Ple = Tk
LTl41,k Th4+1,m
T,k Tn,m

This matrix is upper triangular up to column number 1. To advance by one
step, it must be transformed into one which is upper triaaagup thek-th column,
leaving the previous columns in the same form. To leave tlse /i 1 columns
unchanged, selectw@ vector which has zeros in positionshroughk — 1. So the
next Householder reflector matrix is defined as

P, = I — 2wpw}, (1.23)

in which the vecton, is defined as

z

wp = ——, (1.24)
[EP
where the components of the vectoare given by
0 if 1<k
2 = ﬂ + x4 if i=k (125)

Tik if i>k

14 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

with
n 1/2
[= sign(xgg) x (Z xfk> . (1.26)
i=k

We note in passing that the premultiplication of a matkixoy a Householder
transform requires only a rank-one update since,

(I —20w)X =X —wv? where v=2XTw.

Therefore, the Householder matrices need not, and shotlé@explicitly formed.
In addition, the vectora) need not be explicitly scaled.

Assume now thatn — 1 Householder transforms have been applied to a certain
matrix X of dimensionn x m, to reduce it into the upper triangular form,

r1ir r12 T13 e T1im
€T22 X23 T2m
r33 - T3,
X, =Py Py PLX = ot @2
Tm,m
0

Recall that our initial goal was to obtain a QR factorizat@nX. We now wish to
recover the) and R matrices from theP;’s and the above matrix. If we denote by
P the product of the?; on the left-side offl(1.27), thef{1127) becomes

R
PX — (O) , (1.28)

in which R is anm x m upper triangular matrix, an@ is an(n — m) x m zero
block. SinceP is unitary, its inverse is equal to its transpose and, asudtyes

R R
X:PT<O> :P1P2...Pm_1<0>.

If £, isthe matrix of sizex x m which consists of the firsi: columns of the identity
matrix, then the above equality translates into

X = PTE,R.
The matrixQ) = PT E,, represents the: first columns ofP”. Since
QTQ=ELPPTE,, =1,
@ and R are the matrices sought. In summary,

X = QR,

1.8. CANONICAL FORMS OF MATRICES 15

in which R is the triangular matrix obtained from the Householder o#ida of X

(see[L.2I7) and{1.28)) and
er = P1P2 . Pm_lej.

ALGORITHM 1.3 Householder Orthogonalization

DefineX = [x1,...,Zn)

Fork =1,...,m Do:
Ifk > 1 computery :== P,_1Py_o... Pixy
Computew;, using [(I.24),[(1.35)[(1.26)
Computery, := Pyry with P, = I — 2wpw}l
Computey, = PP, ... Prey

EndDo

NOORAWNR

Note that line 6 can be omitted since there not needed in the execution of the
next steps. It must be executed only when the méprig needed at the completion of
the algorithm. Also, the operation in line 5 consists onlygefoing the components
k +1,...,n and updating thé-th component of-,. In practice, a work vector can
be used for, and its nonzero components after this step can be savednntpper
triangular matrix. Since the components 1 throdgbf the vectorw, are zero, the
upper triangular matrix can be saved in those zero locations which would otherwise
be unused.

1.8 Canonical Forms of Matrices

This section discusses the reduction of square matricesnatrices that have sim-
pler forms, such as diagonal, bidiagonal, or triangulardd®&on means a transfor-
mation that preserves the eigenvalues of a matrix.

Definition 1.5 Two matricesA and B are said to be similar if there is a nonsingular
matrix X such that
A=XBX L

The mappingB — A is called a similarity transformation.

It is clear thatsimilarity is an equivalence relation. Similarity transformations-pr
serve the eigenvalues of matrices. An eigenvegtgrof B is transformed into the
eigenvectoni4 = Xup of A. In effect, a similarity transformation amounts to rep-
resenting the matrix3 in a different basis.

We now introduce some terminology.

1. An eigenvalue\ of A hasalgebraic multiplicityy, if it is a root of multiplicity
1 of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it isiddo be simple A
nonsimple eigenvalue multiple

16 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

3. Thegeometric multiplicityy of an eigenvalue\ of A is the maximum number
of independent eigenvectors associated with it. In otheds;ache geometric
multiplicity ~ is the dimension of the eigenspataell (A — AI).

4. A matrix isderogatoryif the geometric multiplicity of at least one of its eigen-
values is larger than one.

5. An eigenvalue isemisimpléf its algebraic multiplicity is equal to its geomet-
ric multiplicity. An eigenvalue that is not semisimple idled defective

Often, A1, \2,..., A\, (p < n) are used to denote thaistinct eigenvalues of
A. Itis easy to show that the characteristic polynomials af sivnilar matrices are
identical; see Exerci§é 9. Therefore, the eigenvaluesmstmilar matrices are equal
and so are their algebraic multiplicities. Moreovery ifs an eigenvector o3, then
Xwv is an eigenvector oft and, conversely, if is an eigenvector ot then X 1y is
an eigenvector oB. As a result the number of independent eigenvectors assdcia
with a given eigenvalue is the same for two similar matriges, their geometric
multiplicity is also the same.

1.8.1 Reduction to the Diagonal Form

The simplest form in which a matrix can be reduced is undaliptthe diagonal
form. Unfortunately, this reduction is not always possibl matrix that can be
reduced to the diagonal form is calldéagonalizable The following theorem char-
acterizes such matrices.

Theorem 1.6 A matrix of dimensiom is diagonalizable if and only if it has line-
arly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingulatnix
X and a diagonal matri® such thatd = XDX ™!, or equivalentlyAX = XD,
whereD is a diagonal matrix. This is equivalent to saying théihearly independent
vectors exist — the, column-vectors ofX — such thatdx; = d;x;. Each of these
column-vectors is an eigenvector 4f O

A matrix that is diagonalizable has only semisimple eigeres Conversely, if all
the eigenvalues of a matrit are semisimple, thed hasn eigenvectors. It can be
easily shown that these eigenvectors are linearly independee Exercidd 2. As a
result, we have the following proposition.

Proposition 1.7 A matrix is diagonalizable if and only if all its eigenvaluase
semisimple.

Since every simple eigenvalue is semisimple, an immediatellary of the above
result is: When4 hasn distinct eigenvalues, then it is diagonalizable.

1.8. CANONICAL FORMS OF MATRICES 17

1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most importamorecal forms of ma-
trices is the well known Jordan form. A full development oé téteps leading to
the Jordan form is beyond the scope of this book. Only the niearem is stated.
Details, including the proof, can be found in standard baafknear algebra such
as [164]. In the following;mn; refers to the algebraic multiplicity of the individual
eigenvalue\; and/; is theindexof the eigenvalue, i.e., the smallest integer for which
Null(A — A5 = Null(A — N\ 1)k,

Theorem 1.8 Any matrix A can be reduced to a block diagonal matrix consisting
of p diagonal blocks, each associated with a distinct eigerealu Each of these
diagonal blocks has itself a block diagonal structure cetisg of~; sub-blocks,
where~; is the geometric multiplicity of the eigenvalug Each of the sub-blocks,
referred to as a Jordan block, is an upper bidiagonal matrixsize not exceeding

l; < my, with the constant\; on the diagonal and the constant one on the super
diagonal.

Thei-th diagonal block; = 1, ..., p, is known as thé-th Jordan submatrix (some-
times “Jordan Box”). The Jordan submatrix numbetarts in columry; = my +
mg + -+ +m;—1 + 1. Thus,

J1
Jo

X MAX = J = h ,

Jp

where eacly; is associated with; and is of sizen; the algebraic multiplicity of\;.
It has itself the following structure,

Ji A1
Ji = _ with Jj = e
Jir, Ai
Each of the blocksJ;, corresponds to a different eigenvector associated with the
eigenvalue);. Its sizel; is the index of);.

1.8.3 The Schur Canonical Form

Here, it will be shown that any matrix is unitarily similar sn upper triangular
matrix. The only result needed to prove the following theoiis that any vector of
2-norm one can be completed bhy— 1 additional vectors to form an orthonormal
basis ofC™.

18 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Theorem 1.9 For any square matrix4, there exists a unitary matrig such that
QTAQ =R

is upper triangular.

Proof. The proof is by induction over the dimensien The result is trivial for
n = 1. Assume that it is true fon — 1 and consider any matriX of sizen. The
matrix admits at least one eigenvectathat is associated with an eigenvalueAlso
assume without loss of generality tHat|» = 1. First, complete the vectar into
an orthonormal set, i.e., find anx (n — 1) matrix V' such that the: x n matrix
U = [u, V] is unitary. ThenAU = [A\u, AV] and hence,

H

UH AU = [;H] D, AV] = <A “HAV>.

0 VHAV (1.29)

Now use the induction hypothesis for the — 1) x (n — 1) matrix B = V7 AV:
There exists arin — 1) x (n — 1) unitary matrix@; such thatQ’ BQ, = Ry is
upper triangular. Define the x n matrix

R 1 0
and multiply both members dE{TR9) Isy!” from the left andy, from the right. The

resulting matrix is clearly upper triangular and this shaest the result is true for
A, with Q@ = QU which is a unitaryn x n matrix. |

A simpler proof that uses the Jordan canonical form and thel€Rmposition is the
subject of Exercisgl 7. Since the matfixis triangular and similar ta, its diagonal
elements are equal to the eigenvaluesiairdered in a certain manner. In fact, it is
easy to extend the proof of the theorem to show that thisfizetiion can be obtained
with any orderfor the eigenvalues. Despite its simplicity, the above tbeohas far-
reaching consequences, some of which will be examined ingkisection.

It is important to note that for any < n, the subspace spanned by the first
columns of(is invariant underA. Indeed, the relatiod@Q = QR implies that for
1 < j <k, we have

1=j
Agj = i
i=1
If we letQr = [q1, g2, - - ., qx] and if Ry, is the principal leading submatrix of dimen-
sionk of R, the above relation can be rewritten as
AQr = Qi Ry,

which is known as the partial Schur decompositiordofThe simplest case of this
decomposition is wheh = 1, in which casey; is an eigenvector. The vectogsare

1.8. CANONICAL FORMS OF MATRICES 19

usually called Schur vectors. Schur vectors are not uniqdedapend, in particular,
on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quadi8 form, also
called the real Schur form. Here, diagonal blocks of Size 2 are allowed in the
upper triangular matrix?. The reason for this is to avoid complex arithmetic when
the original matrix is real. &£ x 2 block is associated with each complex conjugate
pair of eigenvalues of the matrix.

Example 1.2. Consider the3 x 3 matrix

1 10 0
A= -1 3 1
-1 0 1

The matrixA has the pair of complex conjugate eigenvalues
2.4069... +14 x 3.2110...

and the real eigenvalu@1863. ... The standard (complex) Schur form is given by
the pair of matrices

0.3381 — 0.8462¢ 0.3572 — 0.1071: 0.1749
V=1 03193 —0.0105¢ —0.2263 —0.6786: —0.6214
0.1824 4 0.1852¢ —0.2659 — 0.5277: 0.7637

and
2.4069 + 3.2110¢ 4.6073 — 4.7030: —2.3418 — 5.2330:
S = 0 2.4069 — 3.2110¢ —2.0251 — 1.2016:
0 0 0.1863

It is possible to avoid complex arithmetic by using the giaur form which con-
sists of the pair of matrices

—0.9768 0.1236 0.1749
U= —0.0121 0.7834 —-0.6214
0.2138 0.6091 0.7637
and
1.3129 —7.7033 6.0407
R = 1.4938 3.5008 —1.3870
0 0 0.1863

d

We conclude this section by pointing out that the Schur arddgiasi-Schur
forms of a given matrix are in no way unique. In addition to dependence on the
ordering of the eigenvalues, any column(fcan be multiplied by a complex sign
¢ and a new corresponding can be found. For the quasi-Schur form, there are
infinitely many ways to select thz x 2 blocks, corresponding to applying arbitrary
rotations to the columns @ associated with these blocks.

20 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

1.8.4 Application to Powers of Matrices

The analysis of many numerical techniques is based on uadéiag the behavior of
the successive powert’ of a given matrixA. In this regard, the following theorem
plays a fundamental role in numerical linear algebra, margqularly in the analysis
of iterative methods.

Theorem 1.10 The sequenced®, k = 0,1,..., converges to zero if and only if
p(A) < 1.

Proof. To prove the necessary condition, assume ttfat— 0 and considen; a
unit eigenvector associated with an eigenvaly®f maximum modulus. We have

Akul = /\lful,
which implies, by taking the 2-norms of both sides,
M| = [[A%]ls — 0.

This shows thap(A) = |A1] < 1.
The Jordan canonical form must be used to show the sufficardiion. As-
sume thap(A) < 1. Start with the equality

AF = x g x—1

To prove thatA* converges to zero, it is sufficient to show th&t converges to
zero. An important observation is thaf preserves its block form. Therefore, it is
sufficient to prove that each of the Jordan blocks convemmesrio. Each block is of
the form

Ji= NI+ F;

whereL; is a nilpotent matrix of index;, i.e.,Efi = 0. Therefore, fork > [;,

l;i—1

k i
;]J!(k—ﬁ!

Using the triangle inequality for any norm and takibig> [; yields

l;—1

k! o
IJF]| < Z;) m\)\i\k NE-
‘]:

Since|\;| < 1, each of the terms in thinite sum converges to zero &s— oc.
Therefore, the matrixlf converges to zero. O

An equally important result is stated in the following thexor.

1.9. NORMAL AND HERMITIAN MATRICES 21

Theorem 1.11 The series -
> A"
k=0
converges if and only i#(A) < 1. Under this condition/ — A is nonsingular and

the limit of the series is equal {d — A)~.

Proof. The first part of the theorem is an immediate consequence efrehn_TID.
Indeed, if the series converges, thﬁAkH — 0. By the previous theorem, this
implies thatp(A) < 1. To show that the converse is also true, use the equality

I A = (T - AT+ A+ A% +.. + AF)
and exploit the fact that singg A) < 1, thenl — A is nonsingular, and therefore,
(I—A) YT —AY) =T+ A+ A2+ ..+ A%

This shows that the series converges since the left-haedvgitdconverge to(/ —
A)—l. In addition, it also shows the second part of the theorem. O

Another important consequence of the Jordan canonical imarresult that re-
lates the spectral radius of a matrix to its matrix norm.

Theorem 1.12 For any matrix norm|.||, we have

Tim A5V = p(A).

Proof. The proof is a direct application of the Jordan canonicaimf@nd is the
subject of ExercisEZ10. O

1.9 Normal and Hermitian Matrices

This section examines specific properties of normal matiécel Hermitian matrices,
including some optimality properties related to their $pec The most common
normal matrices that arise in practice are Hermitian or ski@smitian.

1.9.1 Normal Matrices

By definition, a matrix is said to be normal if it commutes wiithtranspose conju-
gate, i.e., if it satisfies the relation

AT A = A4, (1.30)
An immediate property of normal matrices is stated in thiofeihg lemma.

Lemma 1.13 If a normal matrix is triangular, then it is a diagonal matrix

22 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Proof. Assume, for example, that is upper triangular and normal. Compare the
first diagonal element of the left-hand side matrix[Qf{1.8@h the corresponding
element of the matrix on the right-hand side. We obtain that

n
lann]* = g%,
i=1

which shows that the elements of the first row are zeros exoefite diagonal one.
The same argument can now be used for the second row, thedhirénd so on to
the last row, to show that;; = 0 for i # j. O

A consequence of this lemma is the following important resul

Theorem 1.14 A matrix is normal if and only if it is unitarily similar to a dgonal
matrix.

Proof. It is straightforward to verify that a matrix which is uniilgrsimilar to a
diagonal matrix is normal. We now prove that any normal ma#iis unitarily
similar to a diagonal matrix. Let = QRQ" be the Schur canonical form of
where(is unitary andR is upper triangular. By the normality of,

QRYQ"QRQY = QRQ"QR" Q"

or,
QRTRQ™ = QRRY QM.
Upon multiplication byQ* on the left andy on the right, this leads to the equality

R" R = RRY which means thaR is normal, and according to the previous lemma
this is only possible if? is diagonal. |

Thus, any normal matrix is diagonalizable and admits arookthmal basis of eigen-
vectors, namely, the column vectors@f

The following result will be used in a later chapter. The diogsthat is asked
is: Assuming that any eigenvector of a matrixs also an eigenvector of | is A
normal? If A had a full set of eigenvectors, then the result is true ang &agrove.
Indeed, ifV is then x n matrix of common eigenvectors, thetl” = V' D; and
A"V = V Dy, with D; and D, diagonal. ThenAA”V = VDD, andA” AV =
V Dy Dy and, thereforeAA” = AH A. It turns out that the result is true in general,
i.e., independently of the number of eigenvectors thaidmits.

Lemma 1.15 A matrix A is normal if and only if each of its eigenvectors is also an
eigenvector oA

Proof. If A is normal, then its left and right eigenvectors are idehtisa the suffi-
cient condition is trivial. Assume now that a matedxis such that each of its eigen-
vectorsv;, i = 1,. .., k, with k < n is an eigenvector ofl”. For each eigenvectas

1.9. NORMAL AND HERMITIAN MATRICES 23

of A, Av; = \jv;, and sincey; is also an eigenvector of | then A% v; = pv;. Ob-
serve that A% v;, v;) = p(v;,v;) and becauseAv;, v;) = (vy, Avi) = \i(vg, vy), it

follows thaty =);. Next, it is proved by contradiction that there are no eletaign
divisors. Assume that the contrary is true fqr Then, the first principal vectat;

associated with\; is defined by

(A—Nl)u; = v;.
Taking the inner product of the above relation withwe obtain
(Aui,v;) = Ni(ug, v;) + (v5,0;). (1.31)
On the other hand, it is also true that
(Aui, v;) = (ui, A%vy) = (ug, Aivi) = N (ui, v;). (1.32)

A result of [1.31) and{1:32) is tha&t;, v;) = 0 which is a contradiction. Therefore,
A has a full set of eigenvectors. This leads to the situatisoudised just before the
lemma, from which it is concluded that must be normal. O

Clearly, Hermitian matrices are a particular case of normatrices. Since a
normal matrix satisfies the relatioh= QDQ*, with D diagonal and) unitary, the
eigenvalues ofd are the diagonal entries @. Therefore, if these entries are real it
is clear thatd” = A. This is restated in the following corollary.

Corollary 1.16 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly, the converse is also true, i.e., antitean matrix has real

eigenvalues.
An eigenvalue\ of any matrix satisfies the relation
_ (Au,u)
T (wu)

wherew is an associated eigenvector. Generally, one might cantiidecomplex

scalars (Az.)
p(x) = @)

defined for any nonzero vector {@". These ratios are known &ayleigh quotients
and are important both for theoretical and practical pugpod he set of all possible
Rayleigh quotients as runs overC” is called thefield of valuesof A. This set is
clearly bounded since ea¢h(z)| is bounded by the the 2-norm df, i.e., |u(x)| <

|| All2 for all z.
If a matrix is normal, then any vectarin C" can be expressed as

n
Zfi%ﬁ
=1

: (1.33)

24 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

where the vectorg; form an orthogonal basis of eigenvectors, and the expre$sio
u(x) becomes

,u(x) _ (Az,z) _ ZZ:I)‘k’fkyz = Zﬂk)‘ka (1.34)
k=1

(z,2) 2 k=1 €k

where
_ &2

2 k=1 16k
From a well known characterization of convex hulls estéigliisby Hausdorff (Haus-
dorff’s convex hull theorem), this means that the set of agible Rayleigh quo-
tients asr runs over all ofC™ is equal to the convex hull of thg;’s. This leads to
the following theorem which is stated without proof.

0< <1, and) Gi=1
1=1

Theorem 1.17 The field of values of a normal matrix is equal to the convekdful
its spectrum.

The next question is whether or not this is also true for nomab matrices and
the answer is no: The convex hull of the eigenvalues and tl dilevalues of a
nonnormal matrix are different in general. As a generic gXarone can take any
nonsymmetric real matrix which has real eigenvalues omthis case, the convex
hull of the spectrum is a real interval but its field of valueil wontain imaginary
values. See Exercide]l12 for another example. It has beemstidausdorff) that
the field of values of a matrix is a convex set. Since the eigles are members
of the field of values, their convex hull is contained in thddfief values. This is
summarized in the following proposition.

Proposition 1.18 The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to thevem hull of the spectrum
when the matrix is normal.

A useful definition based on field of values is that of thenerical radius The
numerical radius/(A) of an arbitrary matrixA is the radius of the smallest disk
containing the field of values, i.e.,

v(4) = max |u(z)].

It is easy to see that
p(A) <v(A) < [|A]2-

The spectral radius and numerical radius are identical domal matrices. It can
also be easily shown (see Exerdisé 21) ihat) > || A||2/2, which means that

A
12 <) < ja. (135)

The numerical radius is a vector norm, i.e., it satisfieS{IE0), but it is not consis-
tent, see Exercide R2. However, it satisfies the power ifigg(8ee [172, p333]):

v(AF) < v(A)F. (1.36)

1.9. NORMAL AND HERMITIAN MATRICES 25

1.9.2 Hermitian Matrices

A first result on Hermitian matrices is the following.

Theorem 1.19 The eigenvalues of a Hermitian matrix are real, i®(A) C R.

Proof. Let A be an eigenvalue od andu an associated eigenvector of 2-norm unity.
Then

A = (Au,u) = (u, Au) = (Au,u) = N,
which is the stated result. O

It is not difficult to see that if, in addition, the matrix isale then the eigenvectors
can be chosen to be real; see ExerEide 24. Since a Hermitittix isanormal, the
following is a consequence of Theorém1.14.

Theorem 1.20 Any Hermitian matrix is unitarily similar to a real diagonahatrix.

In particular a Hermitian matrix admits a set of orthonormiglenvectors that form
a basis ofC".

In the proof of TheorefiZI.17 we used the fact that the innedyrts(Aw, u) are
real. Generally, it is clear that any Hermitian matrix islsticat (Az, x) is real for
any vectorz € C”. It turns out that the converse is also true, i.e., it can logvslthat
if (Az, z) is real for all vectorg in C", then the matrix4 is Hermitian; see Exercise
3.

Eigenvalues of Hermitian matrices can be characterizedobynality properties
of the Rayleigh quotient§ {T.B3). The best known of theshdain-max principle.
We now label all the eigenvalues dfin descending order:

Al > A > 0 > A

Here, the eigenvalues are not necessarily distinct andaieesepeated, each accord-
ing to its multiplicity. In the following theorem, known ake Min-Max TheoremS
represents a generic subspac€of

Theorem 1.21 The eigenvalues of a Hermitian matrik are characterized by the

relation
. (Az,)
A = ~ min max .
s, dim (S)=n—k4+1 =€Sz#0 (l’, 33‘)

(1.37)

Proof. Let{q;}i=1... » be an orthonormal basis @f* consisting of eigenvectors of
associated withq, .. ., A,, respectively. Leb}, be the subspace spanned by the first
of these vectors and denote p{S) the maximum of Az, z) /(x, z) over all nonzero
vectors of a subspacg. Since the dimension df;, is k, a well known theorem of
linear algebra shows that its intersection with any subspaaf dimensionn — &+ 1

26 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

is not reduced td0}, i.e., there is vector in S Sy. For thisz = Zle &iqi, we

have 3)
(Ax,ﬂj) _ ZiZI)\2‘67/’ Z)\

(@, 2) Yy 6l

so thatu(S) > .
Consider, on the other hand, the particular subspgaaf dimensionn — k + 1
which is spanned by, . . ., ¢,. For each vector in this subspace, we have

(A:E7$) _ Z;L:k)‘i’fiP
(z,) 2 i &l
so thati.(Sp) < . In other words, a$ runs over all thén — k + 1)-dimensional

subspacesy(S) is always >), and there is at least one subspéafefor which
1(So) < Ag. This shows the desired result. O

< A

The above result is often called the Courant-Fisher min-prénciple or theorem.
As a patrticular case, the largest eigenvaluel alatisfies

_ (Az,)
A= I?jé((z,z)

(1.38)

Actually, there are four different ways of rewriting the &bacharacterization.
The second formulation is

A = max min (A2, 2)

1.39
S, dim (9)=k z€S5,z7#0 (1‘, x) ()

and the two other ones can be obtained frbm{1.37) landl(1y8Sintply relabeling
the eigenvalues increasingly instead of decreasingly.s;Twith our labeling of the
eigenvalues in descending ord€r,(1.39) tells us that tlelest eigenvalue satisfies

Ap, = min (A2, 2)

min < (1.40)

with \,, replaced by\, if the eigenvalues are relabeled increasingly.
In order for all the eigenvalues of a Hermitian matrix to beipee, it is necessary
and sufficient that
(Az,z) >0, VzeC", z#0.

Such a matrix is calledositive definite A matrix which satisfie$Ax, z) > 0 for any
x is said to bepositive semidefiniteln particular, the matrixd” A is semipositive
definite for any rectangular matrix, since

(A Az,) = (Ax, Az) > 0, V.

Similarly, AAY is also a Hermitian semipositive definite matrix. The squarss
of the eigenvalues oA A for a general rectangular matrikare called theingular
valuesof A and are denoted hy;. In Section 1.5, we have stated without proof that

1.10. NONNEGATIVE MATRICES, M-MATRICES 27

the 2-norm of any matrix is equal to the largest singular valageof A. This is now
an obvious fact, because

Azxl3 Az, A A A
”AHS — max H l'|2|2 _ (Z, :E) — (l’,ﬂj‘) _ 2
a0 ||z||3 20 (z,7) a£0 (z,7)
which results from[{1.38).
Another characterization of eigenvalues, known as the &uwharacterization,

is stated in the next theorem. In contrast with the min-mawotem, this property is
recursive in nature.

Theorem 1.22 The eigenvalue; and the corresponding eigenvectgrof a Hermi-
tian matrix are such that

)\1 — (AQ17 ql) _ max (A(L', (E)
(q1,91) zeCrz#0 (x,x)
and for k£ > 1,
(Qka k) 2£0,q a=..=qfl |z=0 (x,z)

In other words, the maximum of the Rayleigh quotient over laspace that is
orthogonal to the firsk — 1 eigenvectors is equal td; and is achieved for the
eigenvectorg, associated with\;. The proof follows easily from the expansion
(I32) of the Rayleigh quotient.

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory ofrroas. They are impor-
tant in the study of convergence of iterative methods arskan many applications
including economics, queuing theory, and chemical enginge

A nonnegative matrixs simply a matrix whose entries are nonnegative. More
generally, a partial order relation can be defined on thefsaatrices.

Definition 1.23 Let A and B be twon x m matrices. Then
A<B

if by definition,a;; < b;; forl <i <n,1 < j < m. If O denotes the: x m zero
matrix, thenA is nonnegative ifA > O, and positive ifA > O. Similar definitions
hold in which “positive” is replaced by “negative”.

The binary relation £” imposes only gpartial order onR™*™ since two arbitrary

matrices inR™*™ are not necessarily comparable by this relation. For theiem
der of this section, we now assume that only square matriecisnolved. The next

proposition lists a number of rather trivial propertiesating the partial order rela-
tion just defined.

28 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Proposition 1.24 The following properties hold.

1. The relation< for matrices is reflexive4 < A), antisymmetric (ifA < B and
B < A, thenA = B), and transitive (ifA < BandB < C, thenA < O).

2. If A and B are nonnegative, then so is their produtB and their sumA + B.
3. If Ais nonnegative, then so i*.

4. If A < B, thenAT < BT,

5. If O < A < B, then||A||; < ||BJj; and similarly||A||occ < ||B]|oc-

The proof of these properties is left as Exer€ise 26.

A matrix is said to bereducibleif there is a permutation matri® such that
PAPT is block upper triangular. Otherwise, it iseducible An important re-
sult concerning nonnegative matrices is the following teeoknown as the Perron-
Frobenius theorem.

Theorem 1.25Let A be a realn x n nonnegative irreducible matrix. Thex =
p(A), the spectral radius afl, is a simple eigenvalue of. Moreover, there exists an
eigenvectomn: with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be c#ole but the conclusion
is somewhat weakened in the sense that the elements of tevedors are only
guaranteed to beonnegative.

Next, a useful property is established.

Proposition 1.26 Let A, B, C' be nonnegative matrices, with < B. Then

AC < BC and CA<CB.

Proof. Consider the first inequality only, since the proof for them® is identical.
The result that is claimed translates into

n n
Zaikckj < Z@k%p 1<i4,5<n,
k=1 k=1
which is clearly true by the assumptions. O

A consequence of the proposition is the following corollary

Corollary 1.27 Let A and B be two nonnegative matrices, with< B. Then

AP < BF Vi >o0. (1.42)

1.10. NONNEGATIVE MATRICES, M-MATRICES 29

Proof. The proof is by induction. The inequality is clearly true fo= 0. Assume
that [T.42) is true fok. According to the previous proposition, multiplying_{1)42
from the left by A results in

AR < ABF. (1.43)

Now, it is clear that ifB > 0, then alsoB* > 0, by Propositiol_LJ4. We now
multiply both sides of the inequality < B by BF to the right, and obtain

ABF < BFH1, (1.44)

The inequalities[[1.23) an@{1144) show th#tt! < B**! which completes the
induction proof. |

A theorem which has important consequences on the analygesative meth-
ods will now be stated.

Theorem 1.28 Let A and B be two square matrices that satisfy the inequalities
O<A<B. (1.45)

Then
p(A) < p(B). (1.46)

Proof. The proof is based on the following equality stated in Thediel2
p(X) = lim [|X*|'/*

for any matrix norm. Choosing the—norm, for example, we have from the last
property in Propositioh .24
. 1/k . 1/k
p(4) = lim [|A*}* < lim | BH* = p(B)
which completes the proof. |

Theorem 1.29 Let B be a nonnegative matrix. ThefB) < 1 if and only if/ — B
is nonsingular andI — B)~! is nonnegative.

Proof. DefineC' = I — B. If itis assumed thap(B) < 1, then by TheoreriI11,
C = I — Bis nonsingular and

cCl=(1-B)"'= f: B (1.47)
=0

In addition, sinceB > 0, all the powers of3 as well as their sum il.{L}7) are also
nonnegative.

30 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

To prove the sufficient condition, assume tliats nonsingular and that its in-
verse is nonnegative. By the Perron-Frobenius theoreme i@ nonnegative eigen-
vectoru associated withp(B), which is an eigenvalue, i.e.,

Bu = p(B)u
or, equivalently,
Clu = 71 U
1—p(B)
Sincew and C~! are nonnegative, anfl — B is nonsingular, this shows that—
p(B) > 0, which is the desired result. O

Definition 1.30 A matrix is said to be ad/-matrix if it satisfies the following four
properties:

1. ;5 > Ofori=1,...,n.
2.a;;<0fori#j, i,j=1,...,n.
3. Ais nonsingular.

4. A~ >0.

In reality, the four conditions in the above definition arensevhat redundant and
equivalent conditions that are more rigorous will be givatet. LetA be any matrix
which satisfies properties (1) and (2) in the above defingiod letD be the diagonal
of A. SinceD > 0,

A=D—-(D-A)=D(I-(I-D1'4)).

Now define
B=I-D'A.

Using the previous theorend, — B = D~!A is nonsingular and/ — B)~! =
A~'D > 0ifand only if p(B) < 1. Itis now easy to see that conditions (3) and (4)
of Definition[I.3D can be replaced by the conditjgiiB) < 1.

Theorem 1.31 Let a matrixA be given such that
1l a;>0fori=1,...,n.
2.a;;<0fori#j, i,j=1,...,n.

ThenA is an M-matrix if and only if

3. p(B) < 1,whereB =1 — D7 1A,

1.10. NONNEGATIVE MATRICES, M-MATRICES 31

Proof. From the above argument, an immediate application of Thel&9 shows
that properties (3) and (4) of the above definition are edemteao p(B) < 1, where
B =1 - CandC = D 'A. In addition,C is nonsingular iffA is andC~! is
nonnegative iffA is. |

The next theorem shows that the condition (1) in Definifid8lis implied by
the other three.

Theorem 1.32 Let a matrixA be given such that
1 a;; <0fori#j,4,5=1,...,n

2. Ais nonsingular.

3. A7t >o0.
Then
4. a;;>0fori=1,...,n,ie.,Ais anM-matrix.

5. p(B) < 1whereB =1— D 'A.

Proof. DefineC = A~!. Writing that(AC);; = 1 yields

n
Z QikChi = 1
k=1
which gives

n
aicii = 1 — E Qi Chi -
k=1

k#i
Sincea;,ci; < 0 for all k, the right-hand side i 1 and since:; > 0, thena;; > 0.

The second part of the result now follows immediately fromaaplication of the
previous theorem. |

Finally, this useful result follows.

Theorem 1.33 Let A, B be two matrices which satisfy
1. A< B.
2. bj; < Oforalli#j.

Then ifA is an M -matrix, so is the matri3.

32 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Proof. Assume thatd is an M-matrix and letDx denote the diagonal of a matrix
X. The matrixDg is positive because

Dp > Dy > 0.
Consider now the matrix — D;B. SinceA < B, then
Dy—A>Dp—B>0
which, upon multiplying through byDgl, yields
I-D;'A>D (D —B)>Dz (Dp—B)=1-Dy'B>0.

Since the matrice$ — D' B andI — D ;" A are nonnegative, Theorefis1.28 and
L33 imply that
p(I = Dp'B) < p(I — D' A) < 1.

This establishes the result by using Theofeml1.31 once .again O

1.11 Positive-Definite Matrices

A real matrix is said to bgositive definiteor positive realif
(Au,u) >0, Yue R" u+#0. (1.48)

It must be emphasized that this definition is only useful wisemulated entirely for
real variables. Indeed, if were not restricted to be real, then assuming that, «)
is real for allu complex would imply thatd is Hermitian; see Exercidell5. If, in
addition to the definition stated iy T]48,is symmetric (real), thenl is said to be
Symmetric Positive DefinigPD). Similarly, if A is Hermitian, themA is said to be
Hermitian Positive DefinitédHPD). Some properties of HPD matrices were seen in
Section[LD, in particular with regards to their eigenvalublow the more general
case whered is non-Hermitian and positive definite is considered.

We begin with the observation that any square matrix (re&@loonplex) can be
decomposed as

A=H +iS, (1.49)
in which
H = %(A + A (1.50)
s - %(A ATy, (1.51)
1

Note that bothH and S are Hermitian while the matrixS in the decomposition
(@I29) is skew-Hermitian. The matri¥ in the decomposition is called th¢ermi-
tian part of A, while the matrixiS is the skew-Hermitian parbf A. The above

1.11. POSITIVE-DEFINITE MATRICES 33

decomposition is the analogue of the decomposition of a t@mpumberz into
z=x+ 1y,

x = Re(z) = %(z +2z), y=9m(z) = %(z —Z).
When A is real andu is a real vector thefiAu, w) is real and, as a result, the
decomposition[[I.49) immediately gives the equality
(Au,u) = (Hu,u). (1.52)
This results in the following theorem.

Theorem 1.34 Let A be a real positive definite matrix. Thehis nonsingular. In
addition, there exists a scalar > 0 such that

(Au,u) > aflul3, (1.53)

for any real vecton.

Proof. The first statement is an immediate consequence of the dmfitit positive
definiteness. Indeed, il were singular, then there would be a nonzero vector such
that Au = 0 and as a resultAu,«) = 0 for this vector, which would contradict
(@T48). We now prove the second part of the theorem. FEon¥ kbd the fact that

A is positive definite, we conclude that is HPD. Hence, from{{1.40) based on the
min-max theorem, we get

(Au,u) (Hu,u)

e R T 20
Takinga = A\, (H) yields the desired inequalit{ (1153). O

A simple yet important result which locates the eigenvalfed in terms of the
spectra off and.S can now be proved.

Theorem 1.35 Let A be any square (possibly complex) matrix andAet= %(A +
AfyandS = (A — Af). Then any eigenvalug; of A is such that

Amin(H) < Re(Xj) < Apaa(H) (1.54)
Amin(S) < Sm(N) < Aaz(S). (1.55)
Proof. When the decompositiod {T1}49) is applied to the Rayleightignb of the
eigenvecton,; associated with ;, we obtain
/\j = (A’LLj,Uj) = (HUj,Uj) + i(Suj,uj), (1.56)
assuming thafu;||» = 1. This leads to

Re(Aj) = (Huj,uy)

%m()\J) = (S’LLj, Uj).

The result follows using properties established in Seffi@n O

34 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Thus, the eigenvalues of a matrix are contained in a reaadegfined by the
eigenvalues of its Hermitian part and its non-Hermitiant.pér the particular case
where A is real, theniS is skew-Hermitian and its eigenvalues form a set that is
symmetric with respect to the real axis in the complex planéeed, in this caséS
is real and its eigenvalues come in conjugate pairs.

Note that all the arguments herein are based on the field oésalnd, therefore,
they provide ways to localize the eigenvaluesAofrom knowledge of the field of
values. However, this approximation can be inaccuratenmescases.

Example 1.3. Consider the matrix

11
A= (104 1>'

The eigenvalues aoft are—99 and 101. Those off arel + (10* + 1)/2 and those
of iS are+i(10* — 1) /2. O

When a matrixB is Symmetric Positive Definite, the mapping

from C" xC™ to C is a proper inner product df*, in the sense defined in Sectlonl1.4.
The associated norm is often referred to asahergy nornor A-norm. Sometimes,

it is possible to find an appropriate HPD matiikwhich makes a given matrid
Hermitian, i.e., such that

(Al‘,y)B = (vay)Bv Vac,y

although A is a non-Hermitian matrix with respect to the Euclidean inmeduct.
The simplest examples ark= B~'C andA = CB, whereC is Hermitian andB
is Hermitian Positive Definite.

1.12 Projection Operators

Projection operators @rojectorsplay an important role in numerical linear algebra,
particularly in iterative methods for solving various niagproblems. This section
introduces these operators from a purely algebraic pointest and gives a few of
their important properties.

1.12.1 Range and Null Space of a Projector

A projector P is any linear mapping fror@®” to itself which is idempotent, i.e., such
that
P2 =P

A few simple properties follow from this definition. First, ® is a projector, then so
is (I — P), and the following relation holds,

Null(P) = Ran(I — P). (1.58)

1.12. PROJECTION OPERATORS 35

In addition, the two subspacééull(P) andRan(P) intersect only at the element
zero. Indeed, if a vectar belongs toRan(P), then Pz = z, by the idempotence
property. If itis also inNull(P), thenPxz = 0. Hence,z = Px = 0 which proves
the result. Moreover, every element©@f can be written ag = Pz + (I — P)z.
Therefore, the spacé” can be decomposed as the direct sum

C"™ = Null(P) & Ran(P).

Conversely, every pair of subspadesand.S which forms a direct sum o™ defines

a unique projector such th&tan(P) = M andNull(P) = S. This associated

projector P maps an element of C" into the component, wherez; is the M-

component in the unique decompositior= x; + x5 associated with the direct sum.
In fact, this association is unique, that is, an arbitragjgutor P can be entirely

determined by two subspaces: (1) The rang®f P, and (2) its null spac& which

is also the range of — P. For anyz, the vectorPz satisfies the conditions,

Px ¢ M
z—Px € S.

The linear mapping® is said to project: onto M andalongor parallel to the sub-
spaceS. If Pis of rankm, then the range of — P is of dimensiom —m. Therefore,
it is natural to defineS through its orthogonal complement= S~ which has di-
mensionm. The above conditions that define= Pz for anyx become

ue M (1.59)
x—u L L. (1.60)

These equations define a project®ronto M and orthogonalto the subspacé..
The first statement[{1.59), establishes ithelegrees of freedom, while the second,
(I.80), gives then constraints that defin®x from these degrees of freedom. The
general definition of projectors is illustrated in Fig{rd.1.

Px ¢ M T
z—Px 1 L 7

Figure 1.1 Projection ofz onto M and orthogonal tal..

36 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

The question now is: Given two arbitrary subspadesand L both of dimension
m, is it always possible to define a projector ot orthogonal toL through the
conditions [T.5B) andI.60)? The following lemma answkis question.

Lemma 1.36 Given two subspace¥® and L of the same dimension, the following
two conditions are mathematically equivalent.

i. No nonzero vector a#/ is orthogonal toL;
ii. Foranyx in C™ there is a unique vectar which satisfies the conditions

(CR9) and[TED).

Proof. The first condition states that any vector which istihand also orthogonal
to L must be the zero vector. It is equivalent to the condition

M n L+ = {0}.

SinceL is of dimensionm, L+ is of dimensionn — m and the above condition is
equivalent to the condition that

C'=Ma L (1.61)

This in turn is equivalent to the statement that for anyhere exists a unique pair of
vectorsu, w such that

r=u-+w,
whereu belongs tal/, andw = = — u belongs tal, a statement which is identical
with ii. |

In summary, given two subspacas and L, satisfying the conditiod/ N L+ = {0},
there is a projectoP’ onto M orthogonal tol, which defines the projected vector
of any vectorz from equations[T.39) anf{1]60). This projector is such tha

Ran(P) =M, Null(P)=L".

In particular, the conditiorPz = 0 translates inta: € Null(P) which means that
x € L*. The converse is also true. Hence, the following useful @riyp

Pr=0 iff x L L. (1.62)

1.12.2 Matrix Representations

Two bases are required to obtain a matrix representationganaral projector: a
basisV = [vi,...,vy] for the subspacd/ = Ran(P) and a second ond/ =
[wy,...,wy,] for the subspac&. These two bases aborthogonalwhen

(v, wj) = dij. (1.63)

1.12. PROJECTION OPERATORS 37

In matrix form this meandV?V = I. Since Pz belongs tolM, let Vy be its
representation in th& basis. The constraint — Pz | L is equivalent to the
condition,

((x=Vy),w;) =0 forj=1,...,m.

In matrix form, this can be rewritten as
Wz —Vvy) =o. (1.64)

If the two bases are biorthogonal, then it follows that W z. Therefore, in this
case,Px = VW, which yields the matrix representation Bf

P=vwH, (1.65)

In case the base® and W are not biorthogonal, then it is easily seen from the
condition [T.6%#) that
P=VvWHy)"lwH, (1.66)

If we assume that no vector @ff is orthogonal tal, then it can be shown that the
m x m matrix WHV is nonsingular.
1.12.3 Orthogonal and Oblique Projectors

An important class of projectors is obtained in the case whersubspacé is equal
to M, i.e., when
Null(P) = Ran(P)=.

Then, the projectoP is said to be therthogonal projectoronto M. A projector that
is not orthogonal i®blique Thus, an orthogonal projector is defined through the
following requirements satisfied for any vectar

Pre M and (I-P)xz L1l M (1.67)
or equivalently,
Pr € M and ((I -P)zx,y)=0 YyeM.

xT

Px ¢ M
z—Px 1 M

38 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

Figure 1.2 Orthogonal projection ofr onto a subspace
M.

It is interesting to consider the mappi®f’ defined as the adjoint d?
(PMa,y) = (x,Py), Yz, Vy. (1.68)
First note thatP” is also a projector because for alandy,
(P™)a,y) = (PMa, Py) = (z, P*y) = (z, Py) = (P"z,y).
A consequence of the relatidn (1168) is
Null(P) = Ran(P)* (1.69)
Null(P) = Ran(PH)*. (1.70)
The above relations lead to the following proposition.
Proposition 1.37 A projector is orthogonal if and only if it is Hermitian.
Proof. By definition, an orthogonal projector is one for whishill(P) = Ran(P)*.
Therefore, by[[1.89), i is Hermitian, then it is orthogonal. ConverselyHfis or-
thogonal, ther{1.89) impli@sull(P) = Null(P) while (LZ0) impliesRan(P) =

Ran(P). SinceP! is a projector and since projectors are uniquely determiryed
their range and null spaces, this implies tiat P, O

Givenanyunitaryn x m matrix IV whose columns form an orthonormal basis of
M = Ran(P), we can represerit by the matrix? = V'V Thisis a particular case
of the matrix representation of projectois{1.65). In addito being idempotent, the
linear mapping associated with this matrix satisfies theatharization given above,
i.e.,
VVHz e M and (I-VVHz ¢ Mt

It is important to note that this representation of the agthwal projectorP is not
unique. In fact, any orthonormal badiswill give a different representation d@f in

the above form. As a consequence for any two orthogonal Bgsés of M, we
must havel; Vi = 1, V3#, an equality which can also be verified independently;
see Exercisgl5.

1.12.4 Properties of Orthogonal Projectors

When P is an orthogonal projector, then the two vectéts and (I — P)z in the
decompositiont = Pz + (I — P)x are orthogonal. The following relation results:

(13 = [1Pz[|3 + [I(— P)z]3.
A consequence of this is that for amy

[1Pzll2 < [z]l2-

1.13. BASIC CONCEPTS IN LINEAR SYSTEMS 39

Thus, the maximum of Pzx||2/||z||2, for all z in C™ does not exceed one. In addition
the value one is reached for any elemenRim(P). Therefore,

[1Pll2 =1

for any orthogonal projectaP.

An orthogonal projector has only two eigenvalues: zero @. ofiny vector of
the range ofP is an eigenvector associated with the eigenvalue one. Actprvef
the null-space is obviously an eigenvector associatedtileigenvalue zero.

Next, an important optimality property of orthogonal pidj@'s is established.

Theorem 1.38 Let P be the orthogonal projector onto a subspatke Then for any
given vectorr in C", the following is true:

in ||z — ylls = ||z — Pzll2. 171
min [lz = yllz = lz - Pzl (1.71)

Proof. Lety be any vector of\/ and consider the square of its distance fronsince
x — Pz is orthogonal taV/ to which Px — y belongs, then

lz = ylI3 = llz — Pz + (Pz — y)|3 = l|lz — Pz|3 + [[(Pz - y)II5.

Therefore,||z — y||2 > ||z — Pz||» for all y in M. This establishes the result by
noticing that the minimum is reached fpr= Pz. |

By expressing the conditions that defigie= P« for an orthogonal projectaP
onto a subspac#/, it is possible to reformulate the above result in the formex-
essary and sufficient conditions which enable us to deterthi@ best approximation
to a given vector in the least-squares sense.

Corollary 1.39 Let a subspacé/, and a vectorr: in C™ be given. Then
i — =|x—vy* 1.72
min [z = yll2 = llz = 3"l (1.72)

if and only if the following two conditions are satisfied,

y* e M
r—y* 1L M.

1.13 Basic Concepts in Linear Systems

Linear systems are among the most important and commongmnabdéncountered in
scientific computing. From the theoretical point of viewisitvell understood when
a solution exists, when it does not, and when there are iafynihany solutions. In

addition, explicit expressions of the solution using deieants exist. However, the
numerical viewpoint is far more complex. Approximationsyniee available but it

may be difficult to estimate how accurate they are. This tlaeaill depend on the

data at hand, i.e., primarily on the coefficient matrix. Tégstion gives a very brief
overview of the existence theory as well as the sensitiviithe solutions.

40 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

1.13.1 Existence of a Solution

Consider thdinear system
Ax =b. (2.73)

Here,z is termed thainknownandb the right-hand side.When solving the linear
system[[T.73), we distinguish three situations.

Case 1 The matrix4 is nonsingular. There is a unique solution giverdoy: A=1b.

Case 2 The matrixA is singular and € Ran(A). Sinceb € Ran(A), there is an
xo such thatdzy = b. Thenz(+ v is also a solution for any in Null(A). Since
Null(A) is at least one-dimensional, there are infinitely many smhst

Case 3 The matrixA is singular and ¢ Ran(A). There are no solutions.

Example 1.4. The simplest illustration of the above three cases is withllsdi-

agonal matrices. Let
2 0 1

Then A is nonsingular and there is a uniqueiven by
(05
xTr = 9 .
2 0 1
(3 3): =(3)

Then A is singular and, as is easily seénc Ran(A). For example, a particular
elementz, such thatdzy = biszo = (%’). The null space ofd consists of all
vectors whose first component is zero, i.e., all vectors efftim (°). Therefore,
there are infinitely many solution which are given by

0.5
z(a) = < N > Y a.
Finally, let A be the same as in the previous case, but define the right-dmds
1
- (1) |

In this case there are no solutions because the secondaquatinot be satisfied.
O

Now let

1.13. BASIC CONCEPTS IN LINEAR SYSTEMS 41

1.13.2 Perturbation Analysis

Consider the linear systerl (1173) whetds ann x n nonsingular matrix. Given
any matrixF, the matrixA(e) = A + eE is nonsingular foe small enough, i.e., for

e < a wherea is some small number; see Exerdi$e 6. Assume that we peherb t
data in the above system, i.e., that we perturb the matity ¢ £ and the right-hand
sideb by ee. The solutionz(e€) of the perturbed system satisfies the equation,

(A+eB)x(e) = b+ ee. (1.74)
Letd(e) = z(e) — z. Then,

(A+eE)o(e) = (b+ee)— (A+eE)x
e (e — Ex)
5(e) = e(A+eE) (e~ Ex).

As an immediate result, the functiarie) is differentiable at = 0 and its derivative
is given by
/ . 4(e) -1
z'(0) = hn% — =A""(e— Ex). (1.75)
€E—> €
The size of the derivative of(¢) is an indication of the size of the variation that
the solutionz(e) undergoes when the data, i.e., the palrd] is perturbed in the
direction[E, e]. In absolute terms, a small variati¢¢¥, ee] will cause the solution
to vary by roughlyez’(0) = eA~!(e — Ex). The relative variation is such that

10— < cam (1 + 121 + ot

]]

Using the fact thatjb|| < || A||||z|| in the above equation yields

[l z(€) — || g (el IE]

< el A[[[[A™]] + +o(e) (1.76)
] 1ol 1A

which relates the relative variation in the solution to thkative sizes of the pertur-

bations. The quantity
R(A) = [|A] AT

is called thecondition numbeiof the linear systen{1.¥3) with respect to the norm
||.|. The condition number is relative to a norm. When using taedsrd norm§. ||,
p = 1,...,00, it is customary to labek(A) with the same label as the associated
norm. Thus,

rp(A) = [Allp 1Al

For large matrices, the determinant of a matrix is almosenawgood indication
of “near” singularity or degree of sensitivity of the linesrstem. The reason is that
det(A) is the product of the eigenvalues which depends very muchsealang of a
matrix, whereas the condition number of a matrix is scaimgriant. For example,

42 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

for A = oI the determinant islet(A) = «™, which can be very small ifa| < 1,
whereas:(A) = 1 for any of the standard norms.

In addition, small eigenvalues do not always give a goodcetibhn of poor con-
ditioning. Indeed, a matrix can have all its eigenvaluesaktiu one yet be poorly
conditioned.

Example 1.5. The simplest example is provided by matrices of the form

T
n

A, =1+ aere

for largea. The inverse ofd,, is

T

At =1 — aeel

and for theco-norm we have
[Anlloo = 147 loo = 1+ |

so that
Koo (An) = (1 +)2

For a largen, this can give a very large condition number, whereas akifenvalues
of A,, are equal to unity. O

When an iterative procedure is used for solving a linearesystwe typically
face the problem of choosing a good stopping procedure @algorithm. Often a
residual norm,

7] = l[b — Az]]

is available for some current approximatigrand an estimate of the absolute error
||z — Z|| or the relative errofjz — z||/||z|| is desired. The following simple relation
is helpful in this regard, il

T

< k(A) B

[l —]|

]

It is necessary to have an estimate of the condition numbéy in order to exploit
the above relation.

PROBLEMS

P-1.1 Verify that the Euclidean inner product defined by11.4) dioeeed satisfy the gen-
eral definition of inner products on vector spaces.

P-1.2 Show that two eigenvectors associated with two distina@miglues are linearly inde-
pendent. In a more general sense, show that a family of eégéons associated with distinct
eigenvalues forms a linearly independent family.

1.13. BASIC CONCEPTS IN LINEAR SYSTEMS 43

P-1.3 Show that if\ is any nonzero eigenvalue of the matrbB, then it is also an eigen-
value of the matrixBA. Start with the particular case whereand B are square an@®
is nonsingular, then consider the more general case whefe may be singular or even
rectangular (but such thatB and BA are square).

P-1.4 Let A be ann xn orthogonal matrix, i.e., such that” A = D, whereD is a diagonal
matrix. Assuming thaD is nonsingular, what is the inverse @7 Assuming thaD > 0,
how canA be transformed into a unitary matrix (by operations on itggor columns)?

P-1.5 Show that the Frobenius normis consistent. Can this norredzecéated to two vector
norms vial[[(IJ7)? What is the Frobenius norm of a diagonalirtatWhat is thep-norm of a
diagonal matrix (for any)?

P-1.6 Find the Jordan canonical form of the matrix:

1 2 -4
A=10 1 2 |.
0 0 2

Same question for the matrix obtained by replacing the etémg by 1.

P-1.7 Give an alternative proof of Theore 1.9 on the Schur form tayting from the
Jordan canonical form. [Hint: Writd = X .JX ~! and use the QR decompositionsf]

P-1.8 Show from the definition of determinants used in Section ka2 the characteristic
polynomial is a polynomial of degreefor ann x n matrix.

P-1.9 Show that the characteristic polynomials of two similar neats are equal.
P-1.10 Show that

Tim [A5/ = p(4),
for any matrix norm. [Hint: Use the Jordan canonical form.]

P-1.11 LetX be a nonsingular matrix and, for any matrix nor, defing|| A|| x = ||AX].
Show that this is indeed a matrix norm. Is this matrix normsistent? Show the same for

| X Al and||]Y AX || whereY is also a nonsingular matrix. These norms are not, in general
associated with any vector norms, i.e., they can’'t be defiryea formula of the form[{117).
Why? What can you say about the particular case wihea X ~!? Is|| X ~1AX]| induced

by a vector norm in this particular case?

P-1.12 Find the field of values of the matrix

0 1
= (60)
and verify that it is not equal to the convex hull of its eigalues.

P-1.13 Show that for a skew-Hermitian matrk,
Re(Sz,x) =0 foranyz € C".

P-1.14 Given an arbitrary matrix, show that if(Sx,z) = 0 for all z in C", then itis true
that
(Sy,z)+ (Sz,y) =0 Vy,z € C". 1.77)

[Hint: Expand(S(y + z),y + 2).]

44 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

P-1.15 Using the results of the previous two problems, show thadit, x) is real for all
2 in C", then A must be Hermitian. Would this result be true if the assunmptiere to be
replaced by{ Az,) is real for all real 2? Explain.

P-1.16 Show that if(Sz,z) = 0 for all complex vectors;, thenS is zero. [Hint: Start by
doing Problenil4. Then selecting= ex, z = e’e; in (LZ1), for an arbitrary, establish
thatsy;e?’ = —s;; and conclude that;;, = s, = 0]. Is the result true i Sz, z) = 0 for
all real vectorsz?

P-1.17 The definition of a positive definite matrix is thgdz, z) be real and positive for all
real vectors:. Show that this is equivalent to requiring that the Hermifiart of A, namely,
(A + Af), be (Hermitian) positive definite.

P-1.18 LetA; = B~'C andA, = C B whereC is a Hermitian matrix and is a Hermitian
Positive Definite matrix. Ared; and A, Hermitianin genera? Show thatd; and A, are
Hermitian (self-adjoint) with respect to the-inner product.

P-1.19 Let a matrixA be such thatl! = p(A) wherep is a polynomial. Show that is
normal. Given a diagonal complex matiiX, show that there exists a polynomial of degree
< n such thatD = p(D). Use this to show that a normal matrix satisfié¥ = p(A) for

a certain polynomial op of degree< n. As an application, use this result to provide an
alternative proof of Lemmia_T1L3.

P-1.20 Show thatA is normal iff its Hermitian and skew-Hermitian parts, as dei in
Sectior TN, commute.

P-1.21 The goal of this exercise is to establish the relation{1.8%)nsider the numerical
radiusv(A) of an arbitrary matrixd. Show thatv(A) < ||Al|2. Show that for a normal
matrix v(A) = ||Al|2. Consider the decomposition of a matrix into its Hermtiad akew-

Hermitian parts as shown iR{T149L.1{1.50), dnd(l.51). Sthaw| A, < v(H)+v(S). Now,

using this inequality and the definition of the numericaliuadshow that| A||s < 2v(A).

P-1.22 Show that the numerical radius is a vector norm in the seraéttbatisfies the three
properties[[TI=T10) of norms. [Hint: FAC{L.8) solve eisa[IH first]. Find a counter-
example to show that the numerical radius is not a (congjstesirix norm, i.e., that(AB)
can be larger than(A) v(B).

P-1.23 Let A be a Hermitian matrix ané8 a Hermitian Positive Definite matrix defining a
B-inner product. Show that is Hermitian (self-adjoint) with respect to thiginner product
if and only if A and B commute. What condition must satisfy for the same condition to
hold in the more general case whetés not Hermitian?

P-1.24 Let A be a real symmetric matrix andan eigenvalue ofd. Show that ifu is an
eigenvector associated with) then so isu. As a result, prove that for any eigenvalue of a
real symmetric matrix, there is an associated eigenvedtaiws real.

P-1.25 Show that a Hessenberg matfiksuch that;1,; # 0,7 = 1,2,...,n— 1, cannot
be derogatory.

P-1.26 Prove all the properties listed in Propositlan1.24.

P-1.27 Let A be anM-matrix andu, v two nonnegative vectors such thatA='u < 1.
Show thatd — uvT is anM-matrix.

P-1.28 Show that ifO < A < B thenO < AT A < BT B. Conclude that under the same
assumption, we haved||2 < || B]a.

1.13. BASIC CONCEPTS IN LINEAR SYSTEMS 45

P-1.29 Consider the subspadé of R* spanned by the vectors
1 1
— O . J— _1
U1 = 1 ; U2 = 0
1 —1
Write down the matrix representing the orthogonal pttojeanto M .
What is the null space dP?
What is its range?
Find the vectorr in S which is the closest in the 2-norm sense to the vectes
,1,1,1)%

) 3)

oo o op

P-1.5 Show that for two orthonormal basg&s, V5 of the same subspadé of C" we have
V1V1H:c = VQ‘/QHI, Y .

P-1.6 What are the eigenvalues of a projector? What about its e@pors?

P-1.7 Show that if two projector$’, and P, commute, then their produét = P, P, is a
projector. What are the range and kerneRsf

P-1.8 TheorenZI.32 shows that the condition (2) in Definiflonll SAat needed, i.e., it is
implied by (4) (and the other conditions). One is temptedap that only one of (2) or (4)

is required. Is this true? In other words, does (2) also infg)® [Prove or show a counter
example]

P-1.9 Consider the matri¥l of sizen x n and the vector € R",

1 -1 -1 -1 ... -1 1
o 1 -1 -1 ... —1 1/2
000 1 -1 ... -1 1/4
o0 0 ... 0 1 1271

a. Computedz, ||Azll2, and|z||s.
b. Show that|Al|s > /n.
c. Give alower bound foks(A).

P-1.4 What is the inverse of the matriA of the previous exercise? Give an expression of
k1(A) andk (A) based on this.

P-1.5 Find a small rank-one perturbation which makes the matrin ExercisdD singular.
Derive a lower bound for the singular valuesAf

P-1.6 Consider a nonsingular matrix. Given any matrix¥, show that there exists such
that the matrixA(e¢) = A+¢F is nonsingular for alt < . What is the largest possible value
for « satisfying the condition? [Hint: Consider the eigenvaloithe generalized eigenvalue
problemAu = AFu.]

NOTES ANDREFERENCES For additional reading on the material presented in thégptdr, see Golub
and Van Loan[[149], Meyef1210], Demmé&L]99], Datfal[93], Béet [273], and Varga1293]. Volume
2 (“Eigensystems”) of the serieE[474], offers an up-tcedabverage of algorithms for eigenvalue

46 CHAPTER 1. BACKGROUND IN LINEAR ALGEBRA

problems. The excellent treatise of nonnegative matrice¢he book by Varga[293] remains a good
reference on this topic and on iterative methods four dexatter its first publication. State-of-the-art
coverage on iterative methods up to the very beginning of #¥®s can be found in the book by Young
[B22] which coversiM -matrices and related topics in great detail. For a goodviserof the linear
algebra aspects of matrix theory and a complete proof ofaftgctanonical form, Halmo$§ [154] is
recommended. |

Chapter 2

DISCRETIZATION OF PDES

Partial Differential Equations (PDEs) constitute by far the biggest source of sparse matrix
problems. The typical way to solve such equations is to discretize them, i.e., to approximate
them by equations that involve a finite number of unknowns. The matrix problems that arise
from these discretizations are generally large and sparse, i.e., they have very few nonzero entries.
There are several different ways to discretize a Partial Differential Equation. The simplest method
uses finite difference approximations for the partial differential operators. The Finite Element
Method replaces the original function by a function which has some degree of smoothness over
the global domain, but which is piecewise polynomial on simple cells, such as small triangles
or rectangles. This method is probably the most general and well understood discretization
technique available. In between these two methods, there are a few conservative schemes called
Finite Volume Methods, which attempt to emulate continuous conservation laws of physics. This
chapter introduces these three different discretization methods.

2.1 Partial Differential Equations

Physical phenomena are often modeled by equations theg sefeeral partial deriva-
tives of physical quantities, such as forces, momentuniscities, energy, tempera-
ture, etc. These equations rarely hawdased-form(explicit) solution. In this chap-
ter, a few types of Partial Differential Equations are iduroed, which will serve as
models throughout the book. Only one- or two-dimensionabjfgms are considered,
and the space variables are denoted lry the case of one-dimensional problems or
21 andx, for two-dimensional problems. In two dimensioasjenotes the “vector”
of componentgzy, x2).

2.1.1 Elliptic Operators

One of the most common Partial Differential Equations entened in various areas
of engineering is Poisson’s equation:

?u 9% 1\ .

where() is a bounded, open domainR?. Here,z1, =, are the two space variables.

a7

48 CHAPTER 2. DISCRETIZATION OF PDES
I

St

Z2

T

Figure 2.1: Domairf2 for Poisson’s equation.

The above equation is to be satisfied only for points thataatéd at the interior
of the domain). Equally important are the conditions that must be satisfiethe
boundaryI’ of). These are termebloundary conditionsand they come in three
common types:

Dirichlet condition u(z) = oé(x)
Neumann condition u(z) = 0
Cauchy condition %(x) +a(@)u(zr) = v(z)

The vectorri usually refers to a unit vector that is normal foand directed
outwards. Note that the Neumann boundary conditions areteylar case of the
Cauchy conditions withy = o« = 0. For a given unit vectory with components;
anduw,, the directional derivativéu /07 is defined by

ou o u(z 4) — ()
a7 = h
ou ou
= a—xl(m)vl + a—xz(l’)vg (22)
= Vud (2.3)

whereVu is the gradient of,

Ou
Vu = (fgg) : (2.4)

Oza

and the dot in[[Z13) indicates a dot product of two vectorRin

In reality, Poisson’s equation is often a limit case of a tidependent problem.
Its solution can, for example, represent the steady-staperature distribution in
a region{) when there is a heat sourgethat is constant with respect to time. The
boundary conditions should then model heat loss acrossotlvedaryl".

The particular case whepgz) = 0, i.e., the equation

Au =0,

2.1. PARTIAL DIFFERENTIAL EQUATIONS 49

to which boundary conditions must be added, is called_tq@ace equatiorand its
solutions are calletlarmonic functions

Many problems in physics have boundary conditionshmoked type e.g., of
Dirichlet type in one part of the boundary and of Cauchy typariother. Another ob-
servation is that the Neumann conditions do not define thdisaluniquely. Indeed,
if u is a solution, then so ig + ¢ for any constant.

The operator

0? 0?

A= Ox? * Ox3
is called theLaplacean operatoand appears in many models of physical and me-
chanical phenomena. These models often lead to more geallgrat operators of

the form
L 0 (0, 0 (0
N (91’1 aalL'l 81’2 aal?

= V. (aV) (2.5)

where the scalar functiom depends on the coordinate and may represent some spe-
cific parameter of the medium, such as density, porosity, Atcthis point it may

be useful to recall some notation which is widely used in psyand mechanics.
The V operator can be considered as a vector consisting of thea[rtmsntsa%1 and

8%2. When applied to a scalar functian this operator is nothing but thgradient
operator, since it yields a vector with the componeﬁg% and 85’—:32 as is shown in
@34). The dot notation allows dot products of vectorRito be defined. These
vectors can include partial differential operators. Faragle, the dot produc?.u

of V with u = (g;) yields the scalar quantity,

Our | Jup
81’1 81’2 ’
which is called thedivergenceof the vector functioni = (“*). Applying this

u2

divergence operatoto u = aV, wherea is a scalar function, yields the operator
in Z3). The divergence of the vector functions often denoted by div or V.v.

Thus, 3 3
. R V1 ()
d =Vi=—+4+—2=.
vv=V.u R + s

The closely related operator

Lo D (9N, o (0
N (91’1 alalﬂl 81’2 azalﬂg

= V (@.V) (2.6)

is a further generalization of the Laplacean operdtan the case where the medium
is anisotropicandinhomogeneousT he coefficients:,, ao depend on the space vari-
ablex and reflect the position as well as the directional deperelefithe material
properties, such as porosity in the case of fluid flow or digleconstants in electro-
statics. In fact, the above operator can be viewed as aplarticase of. = V.(AV),
whereA is a2 x 2 matrix which acts on the two components\af

50 CHAPTER 2. DISCRETIZATION OF PDES

2.1.2 The Convection Diffusion Equation

Many physical problems involve a combination of “diffusi@nd “convection” phe-
nomena. Such phenomena are modeled by the convectiosidiffequation
ou ou ou

or P
a—? +b.Vu=V.(aV)u+ f

the steady-state version of which can be written as
—V.(aV)u+b.Vu = f. 2.7)

Problems of this type are often used as model problems bedheyg represent the
simplest form of conservation of mass in fluid mechanics.eNbat the vectob is
sometimes quite large, which may cause some difficultié®etb the discretization
schemes or to the iterative solution techniques.

2.2 Finite Difference Methods

Thefinite differencemethod is based on local approximations of the partial deriv
tives in a Partial Differential Equation, which are deriM@dlow order Taylor series
expansions. The method is quite simple to define and rattsyr teaimplement.
Also, it is particularly appealing for simple regions, suehrectangles, and when
uniform meshes are used. The matrices that result from tthissectizations are
often well structured, which means that they typically ¢sihef a few nonzero di-
agonals. Another advantage is that there are a number afPtdsson solvers” for
constant coefficient problems, which can deliver the sotuin logarithmic time per
grid point. This means the total number of operations is efdrder ofnlog(n)
wheren is the total number of discretization points. This sectituweg an overview
of finite difference discretization techniques.

2.2.1 Basic Approximations

The simplest way to approximate the first derivative of a fiomcu at the pointr is

via the formula J (x4) (@)
U ulxr — ulr
Whenu is differentiable atz, then the limit of the above ratio whéntends to zero is
the derivative ofu at z. For a function that i€* in the neighborhood aof, we have
by Taylor’s formula

d h? d? h3 d? nt d*
u(x—l—h):u(x)+h—u+ 4 u Y

Mo hdu b du 2.9
der 2 da? + 6 dx3 + 24 dw4(£+)’ (2.9)

2.2. FINITE DIFFERENCE METHODS 51

for some&, in the interval(x, 2 + h). Therefore, the above approximatidn—{2.8)
satisfies

du _u(z+h)—u(z) @dQu(ac)

dr h 2 dx?
The formula[ZB) can be rewritten withreplaced by-/ to obtain
du | WP 0P)
de 2 dx? 6 dxd 24 dat
in which ¢_ belongs to the intervalz — h,z). Adding (Z39) and[(ZJ1), dividing
through byh?, and using the mean value theorem for the fourth order ders
results in the following approximation of the second deive

d*u(z) u(z+h) —2u(z) +u(z — h) B h_2d4u(£) (2.12)
dz? h2 12 dxt ' '

whereé_ < ¢ < ¢,. The above formula is calleda@entered difference approxima-
tion of the second derivative since the point at which the devieas being approx-
imated is the center of the points used for the approximatibne dependence of
this derivative on the values afat the points involved in the approximation is often
represented by a “stencil” or “molecule,” shown in Figli&.2.

O——a2—O

Figure 2.2: The three-point stencil for the centered difee approximation to the
second order derivative.

+ O(h?). (2.10)

u(x —h) =u(z) —h (2.11)

The approximation[{2]8) for the first derivativefward rather than centered.
Also, abackwardformula can be used which consists of repladingith —A in (Z38).
The two formulas can also be averaged to obtairctreered differencormula:

du(z) - u(z +h) —u(z—h)
dx 2h '

(2.13)

It is easy to show that the above centered difference fornsutd the second
order, while [ZB) is only first order accurate. Denotedsbyandd—, the forward
and backward difference operators are defined by

§Tu(z) = w(x+h)—u(z) (2.14)
0 u(z) = wu(x)—ulx—nh). (2.15)
All previous approximations can be rewritten using theserajors.

In addition to standard first order and second order devivgtiit is sometimes
necessary to approximate the second order operator

% {a(ac) %} .

52 CHAPTER 2. DISCRETIZATION OF PDES

A centered difference formula for this, which has seconeoetcuracy, is given by

%{a(:ﬁ) Z—Z] _ h25 (a12 67u) + O(?) (2.16)

@iy1/2(Wit1 — ui) — az—1/2(ui — 1)
h? '

2.2.2 Difference Schemes for the Laplacean Operator

If the approximation[[2Z12) is used for both t% and 2, 8 > terms in the Laplacean
operator, using a mesh size fof for the z; variable anchg for the 25 variable, the
following second order accurate approximation results:

u(xl + h1,$2) - 2U(£U1,:E2) + U(ac — hl,ﬂj‘g)
h2

(ml,wg + hg) — 2u(x1,x2) + u(ml,wg — hg)
h2

Au(z) +

In the particular case where the mesh sizgsnd h, are the same and equal to a
mesh size:, the approximation becomes

Au(z) =~ h2 [u(x1 + h,z2) + u(xy — h,x2) + u(z1, 22 + h)

+ u(xy, o — h) — 4du(x, x2)], (2.17)

which is called the five-point centered approximation tolthplacean. The stencil
of this finite difference approximation is illustrated ir) @& Figure[Z.B.

(@) (b)

Figure 2.3: Five-point stencils for the centered diffeeerapproximation to the
Laplacean operator: (a) the standard stencil, (b) the skavescil.

Another approximation may be obtained by exploiting ther fpaints u(z; +
h,x9 + h) located on the two diagonal lines froa{z;,xz2). These points can be

2.2. FINITE DIFFERENCE METHODS 53

used in the same manner as in the previous approximatiompiettad the mesh size
has changed. The corresponding stencil is illustrated)iof(Bigure[Z.3.
The approximation{Z.17) is second order accurate and tbetakes the form

R (0t O 3
5 (5 + 5) +009),

There are other schemes that utilize nine-point formulagpassed to five-point for-
mulas. Two such schemes obtained by combining the standardk@wed stencils
described above are shown in Figlirel 2.4. Both approximatfopand (d) are sec-
ond order accurate. However, (d) is sixth order for harméumctions, i.e., functions
whose Laplacean is zero.

() (d)

® ®

)
O,
®)
®

® ®

Figure 2.4: Two nine-point centered difference stencitdlie Laplacean operator.

2.2.3 Finite Differences for 1-D Problems

Consider the one-dimensional equation,
—u"(x) = f(x)forz € (0,1) (2.18)
u(0) =u(l) = 0. (2.19)
The interval [0,1] can be discretized uniformly by taking th+ 2 points
2 =ixh, i=0,...,n+1

whereh = 1/(n + 1). Because of the Dirichlet boundary conditions, the values
u(zg) andu(z,+1) are known. At every other point, an approximationis sought
for the exact solutiom(z;).

If the centered difference approximatidn_(d.12) is useénthy the equation
(Z18) expressed at the point, the unknowns.;, u; 1, u;11 satisfy the relation

2
—Ui—1 + 2u; — uip1 = h° fi,

54 CHAPTER 2. DISCRETIZATION OF PDES

in which f; = f(z;). Notice that fori = 1 andi = n, the equation will involve
ug andwu, 1 which are known quantities, both equal to zero in this cadeusTfor
n = 6, the linear system obtained is of the form

Ax = f
where
2 -1
-1 2 -1
-1 2 -1
A‘ﬁ -1 2 -1
-1 2 -1
-1 2

2.2.4 Upwind Schemes

Consider now the one-dimensional version of the conveditinsion equation[(Z]7)
in which the coefficients andb are constant, andl = 0, using Dirichlet boundary
conditions,
—au”" +bu =0, 0<z<L=1
u(0) =0, u(L) = 1
In this particular case, it is easy to verify that the exatitson to the above equation
is given by

(2.20)

1_6Rx
u(x) = TR

where R is the so-called Péclet number defined By= bL/a. Now consider the
approximate solution provided by using the centered diffee schemes seen above,
for both the first- and second order derivatives. The equdtounknown numbet

becomes
platl — W1 Wil — 2ui + Ui

2h h?

=0,
or, defininge = Rh/2,
— (1 =c)ujp1 +2u; — (1 + c)ui—1 = 0. (2.21)

This is a second order homogeneous linear difference equatid the usual way to
solve it is to seek a general solution in the form= 7. Substituting in[Z21)r
must satisfy

(1—c)r*=2r+(c+1)=0.

Therefore;; = 1 is aroot and the second rootris= (1 + ¢)/(1 — ¢). The general
solution of the above difference equation is now sought aseat combination of
the two solutions corresponding to these two roots,

, , 1 i
ui:ari—kﬂré:a—kﬂ(ltZ))

2.2. FINITE DIFFERENCE METHODS 55

Because of the boundary conditiag = 0, it is necessary that = —«. Likewise,
the boundary conditiom,,,; = 1 yields
1 , _1+e
o = m W|th g = 1_ C.
Thus, the solution is _
1—-o"
U; = 71 — Un—i-l .

Whenh > 2/R the factorc becomes negative and the above approximations will
oscillate around zero. In contrast, the exact solution stipe and monotone in
the rangel0, 1]. In this situation the solution is very inaccurate regasslef the
arithmetic. In other words, the scheme itself creates th@la$ons. To avoid this, a
small enough mesh can be taken to ensure thak 1. The resulting approximation
is in much better agreement with the exact solution. Unfately, this condition
can limit the mesh size too drastically for large values.of

Note that wherb < 0, the oscillations disappear sinee< 1. In fact, a linear
algebra interpretation of the oscillations comes from carimg the tridiagonal ma-
trices obtained from the discretization. Again, for theecas= 6, the tridiagonal
matrix resulting from discretizing the equatidn{2.7) takiee form

2 —1+4c
—-1-c 2 —1+c
1 —1—c¢ 2 —1+c
h? —1-—c 2 —1+4+c
—-1—-c 2 —1+4c
—1-c 2

The above matrix is no longer a diagonally dominant M-mat@bserve that if the
backward difference formula for the first order derivatisaised, we obtain

Ui = Uiy Uio1 — 2u; + Uiy
h h?

Then (weak) diagonal dominance is preservet i# 0. This is because the new

matrix obtained for the above backward scheme is

b =0.

24c¢ —1
—1—-¢c 2+4c -1
—1—c 2+c —1
h? —1—¢c 2+c¢ -1
—1—¢c 2+c —1
—1—-¢c 2+c¢

wherec is now defined by: = Rh. Each diagonal term;; gets reinforced by the
positive termc while each subdiagonal term ;_; increases by the same amount in
absolute value. In the case whére 0, the forward difference formula

platl — Wi Ui-1— 2u; + Uiqq

h h2 =0

56 CHAPTER 2. DISCRETIZATION OF PDES

can be used to achieve the same effect. Generally speakihgjepends on the
space variable;, the effect of weak-diagonal dominance can be achievedrbglgi
adopting the following discretization known as an “upwimtheme”:

0 u; Ui—1 — 2U; + Ui
b T a 12 =0
where _
5 — o, if b>0
L6 if b<o.

The above difference scheme can be rewritten by introdubiegign functiosign (b) =
|b|/b. The approximation ta’ atx; is then defined by

TN 1 o 5+Uz‘ 1 . 0"y
u'(x;) =~ 2(1 sign(b)) T 2(1 + sign(b)) P
Making use of the notation
+_ 1 -1
@F = 2+l (@) = g [, 222)

a slightly more elegant formula can be obtained by exprggsia approximation of
the producth(z;)u’(x;),

1 5+ui 1 5_ui
b (@)~ (b = [bil) == + 5 (b + bil) ==
1 —
~ g [0 i o (il + b wiga] (2.23)

whereb; stands forb(x;). The diagonal term in the resulting tridiagonal matrix is
nonnegative, the offdiagonal terms are nonpositive, aedliigonal term is the neg-
ative sum of the offdiagonal terms. This property chargmtsrupwind schemes.

A notable disadvantage of upwind schemes is the low ordeppfaximation
which they yield. An advantage is that upwind schemes yiakhlr systems that are
easier to solve by iterative methods.

2.2.5 Finite Differences for 2-D Problems

Similar to the previous case, consider this simple problem,
Pu 0%u .
—=+==) = in Q 2.24
<8ZL'% - 8:1:%) f ()
u = 0 onl (2.25)
where(2 is now the rectanglé0, ;) x (0,l2) andI its boundary. Both intervals can

be discretized uniformly by taking; + 2 points in ther; direction ancdhs + 2 points
in thexzo directions:

ml’i:iXhl,’iZO,...,n1+1 T2 j :thg,jZO,...,ng—l—l

2.2. FINITE DIFFERENCE METHODS 57

(L N N
" G/ \

\

N N N\ (D o\ (e
O &) U, 8 9 @ O
N M\ N\ D A o\ e
O &, 2 3 &) O O
N N\ N\ N\ N\ N\ e
O O O O—

Figure 2.5: Natural ordering of the unknowns for & 5 two-dimensional grid.

where
51 l2
hi = he = .
ni+1 ng + 1

Since the values at the boundaries are known, we numbertmnigterior points,
i.e., the pointgz; ;, 22 ;) With 0 < i < n; and0 < j < no. The points are labeled

from the bottom up, one horizontal line at a time. This laiglis callednatural

ordering and is shown in FigurE=2.5 for the very simple case when= 7 and
ny = 5. The pattern of the matrix corresponding to the above egstappears in

Figure[Z6.

Figure 2.6: Pattern of matrix associated with the 5 finite difference mesh of

Figure[Z5.

58 CHAPTER 2. DISCRETIZATION OF PDES

In the case wheh; = hy = h the matrix has the following block structure:

1 B - —41 _41 -1
A:ﬁ -I B -I with B = I
-I B

-1 4

2.2.6 Fast Poisson Solvers

A number of special techniques have been developed forgplviear systems aris-
ing from finite difference discretizations of the Poissonapn on rectangular grids.
These are termed Fast Poisson Solvers (FPS) because ofatfirehe low number
of arithmetic operations whuch they require, typically ke order ofO(N log(N))
whereN is the size of the matrix.

Consider first the linear systems seen in the previous stibsgewhich have the
form (after scaling by:?)

B -1 ul bl
-1 B -1 U2 ba
" : = : (2.26)
-1 B -I Um—1 bm_1
-1 B U, bm
in which
4 -1
-1 4 -1
B = (2.27)
-1 4 -1
-1 4

The notation has changed slightly in that we gaindm the mesh sizes in the,
andz, directions respectively. Therefore, eaghf of dimensionp and corresponds
to a block of solution components along one horizontal line.

Fourier methods exploit the knowledge of the eigenvaluekegenvectors of
the matrixB. The eigenvalues are known to be

JT N
A =4 —2cos | —— =1,...,
J <p+1>‘7 p

and, defining; = (jm)/(p + 1), the corresponding eigenvectors are given by:

qj = x [sin @}, sin(26;), . .. ,sin(pﬂj)]T .

p+1

Defining,
Q=lq1,---,q

2.2. FINITE DIFFERENCE METHODS 59

itis clear thatQ” BQ = A = diag ()\;). Thej-th (block)-row of the systenf{ZP6)
which can be written as

—Uj—1+ BUj —Ujq1 = bj,

will now be transformed by applying the similarity transfaation @ to the above
equation, leading to

—QTuj—1 + (QTBQ) QTu; — QT ujy1 = QTb;

If we denote by a bar quantities expressed in@hbasis, then the above equation
becomes
—Uj—1 + A’L_Lj —Ujp1 = bj.

Note that the transformation frony to u; can be performed with a (real) Fast Fourier
Transform and this will be exploited shortly. Together thewe equations yield the
large system,

A T Up l_)l
-1 A I U2 by
ST T B (2.28)
-I A -I U1 b—1
I A T b

As it turns out, the above system disguises a set dfdependent tridiagonal sys-
tems. Indeed, taking theth row of each block, yields

Ao —1 Us1 bi1
-1 N -1 U;2 Big
TR T S (2.29)
-1 N -1 Uip—1 Ez’p—l
-1 N Ujp bip

whereu;; andb;; represent thg-th components of the vectorg andb; respectively.
The procedure becomes clear and is described in the nexithigo

ALGORITHM 2.1 FFT-based Fast-Poisson Solver

1. Computé; = QTb;,j=1,...,m
2. Solve the tridiagonal systenfs (2.29)fet 1,...,p
3. Computeu; = Quj,j=1,...,m

The operations in Lines 1 and 3 are performed by FFT trandpand require a
total of O(p log, p) operations each, leading to a totakefm x p log, p) operations.
Solving them tridiagonal systems requires a total®# p x m operations. As a
result, the complexity of the algorithm {3(NlogN) whereN = p x m.

60 CHAPTER 2. DISCRETIZATION OF PDES

A second class of Fast Poisson Solvers utilize Block Cyckdurtion (BCR).
For simplicity, assume that = 2# — 1. Denoting2” by h, at ther-th step of BCR,
the system is of the following form:

B(T) s Up, bn
I BY -1 w2 P
. : = : (2.30)
-1 B T U(p,—1)h b(p.—1)n
7 B® Up,.h bp,.h

Equations whose block-indexis odd are now eliminated by multiplying each equa-
tion indexed2;jh by B(") and adding it to equation@;j — 1)k and(2j + 1)h. This
would yield a system with a size half that Bf{2.30), whichdlwes only the equations
with indices that are even multiples bf

—U(2j—2)h T [(B(T))Z - 21} uaih — Uezjrn = BMbajn + b 1yn + bajrin -

The process can then be repeated until we have only one sgéteraquations. This
could then be solved and the other unknowns recovered frioma iback-substitution.
The method based on this direct approach is not stable.

A stable modification due to Buneman_[69] consists of writthg right-hand
sides differently. Each;, is written as

o) = BOpl) + g (2.31)

Initially, whenr = 0, the vectorpgo) is zero andqz@ = b;. The elimination of
block-row jh proceeds in the same manner, as was described above, léading

—U@j-2)h T [(B(T))z - 21] Ugjh = U(2j+2)h = (B(T))zpé;)h +
) (") (r) (r) (r) (r)
Bl)(q2jh TP 1yn T Pjrnn) T 45— 1n T 4aj+1)(2-32)
It is clear that the diagonal block matrix for the next step is
B+ — (B2 _of (2.33)

It remains to recast Equation{2]132) in a such way that tHe-tignd side blocks are
again in the form[{Z331). The new right-hand side is rewmitis

r—+1 r r r)\ — r r r r r
béjh)= (BMY? p;j)h +(B%) l(qéj% +p523'—1)h +p52§'+1)h)] +q£2§'—1)h+quz'+1)h'

The term in the brackets is defineda§; "

r+1 r)\ — r r r
Pt = Py, + (BT a8, + bl + Pl (2.34)
so that,
(r+1) _ N2, (r+1) () (r)
bojn = (B) 2jh i T d2jr1n

r r+1 r+1 r r
= [(BM)? - QI]pgjh - 2p§jh ot quz'—nh + qEZ;’-i-l)h :

2.2. FINITE DIFFERENCE METHODS 61

Then it becomes clear thaf;; " should be defined as

(r+1) _ o (r+1) , (7) (r)
Djn = 2Pajn "+ di2j-1yn T A2j41)n - (2.35)

After 1 — 1 steps of the above transformation, the original sys{fenfjd<2re-
duced to a system with a single block which can be solved ttire€he other un-
known are then obtained by back-substitution, computieg:ti’s for odd values of
Jj from the theu,;’s with even values of:

r+1 r)\—=1rpr
ug'th b = (BM) MBS A+ u—1yn + g1

= (BB, + a4 ugonn + g
= i+ B gh, + ug_nyn + ugann] -

These substitutions are done for= 2" decreasing fronk, = 2#, to h = 2°. Bune-
man’s algorithm is described below.

ALGORITHM 2.2 Block Cyclic Reduction (Buneman’s version)

1. Initialize: p{” =0,¢\"” =b;,j=1,...,pandh =1, =0.
2. Forward solution: While (h = 2" < p) Do:
3. Form the matrix’, with columns
4, G+ P P G =1 (p+1)/2h—1
5. Solve the (multi)- linear systel@" X, =Y,
6. Update the vectons andq according tol(Z.34) an@{Z135)
7. r.=r-4+1
8. EndWhile
9. Solve foru: BMu = ¢{"”) and sety, = py, + u.
10. Backward substitution:while h > 1 do
11. h:=h/2
12. Form the matriX’,. with column vectors
13. qj(:z) +u(j_1)h+u(j+1)h ,j=1,3,5,... ,n/h
14. Solve the (multi)- linear syste®")W, =Y,
15. Update the solution vectongy,,j =1, 3, ..., by
16. U, = P. + W,, whereU,. (resp.P,) is the matrix with vector
17. columnsu;y, (resp.p;y).
18. EndWhile

The bulk of the work in the above algorithms lies in Lines 5 4ddwhere sys-
tems of equations with multiple right-hand sides are solvitd the same coefficient
matrix B("). For this purpose the matrig(") is not formed explicitly. Instead, it is
observed thaB(") is a known polynomial irB, specifically:

h
B = py(A) = 20,(B/2) = [[(B - A1)

i=1

62 CHAPTER 2. DISCRETIZATION OF PDES

whereC', denotes the Chebyshev polynomial of degtedthe first kind (See section
of Chapter 6 for a brief discussion of Chebyshev pmiyials). The roots\;
of the polynomialg;, are easily determined from those@j:

/\Z(T)z2cos <W> i=1,...,h

Thus, ifp = 2# — 1, the systems in Line 5 can be written as

i

[TA=N"Dlar| -+ fazersa] = -+ lypurs] (2:36)
i=1

An interesting, and more efficient technique, consists oflaiaing BCR with the
FFT approach[280,170]. In this technique a small numbeygdicreduction steps
are taken and the resulting system is then solved using thedrdased approach
described earlier. The cost of the algorithm is still of thenf O(mplog p) but the
constant in the cost is smaller.

Block cyclic reduction can also be applied for solving gahéseparable’ equa-
tions using the algorithm described by Swartzrauber|[2A®}vever, the roots of the
polynomial must be computed since they are not known in amban

2.3 The Finite Element Method

The finite element method is best illustrated with the solutdf a simple elliptic
Partial Differential Equation in a two-dimensional spa@ansider again Poisson’s
equation [Z24) with the Dirichlet boundary conditi@n @).2where? is a bounded
open domain iR? andI its boundary. The Laplacean operator

0? 0?
A= Ox? * O3
appears in many models of physical and mechanical phenonksnetions involv-
ing the more general elliptic operatofs{2.5) andl(2.6) atréated in the same way
as Poisson’s equatioh (Z2]24) ad (2.25), at least from #hepoint of the numerical
solutions techniques.

An essential ingredient for understanding the finite elenmeethod isGreen’s
formula The setting for this formula is an open $&iwhose boundary consists of a
closed and smooth cunigas illustrated in Figure2.1. A vector-valued functior-

Z; , which is continuously differentiable i, is given. Thedivergence theorerim
two-dimensional spaces states that

/ divis do = / 7. ds. (2.37)
Q r

The dot in the right-hand side represents a dot product ofvewetors inR2. In this
case it is between the vectéiand the unit vector; which is normal td" at the point

2.3. THE FINITE ELEMENT METHOD 63

of consideration and oriented outward. To derive Greenmisitda, consider a scalar
functionv and a vector function = (g;) By standard differentiation,

V.(vW) = (V)0 4+ vV .,
which expresse¥V .« as
Vol = —oV.ad 4+ V. (vid). (2.38)

Integrating the above equality ov@rand using the divergence theorem, we obtain

/VU.@U de = —/UV.ZU dm—l—/v.(mﬁ) dz
Q Q Q

= —/vv.w dw+/vu‘;’.ﬁds. (2.39)
Q r

The above equality can be viewed as a generalization of #melatd integration by
part formula in calculus. Green’s formula results frdm 8.8y simply taking a
vectorw which is itself a gradient of a scalar functiannamely,i = Vu,

/VU.VU dr = —/ vV.Vu daz—l—/vVu.ﬁ ds.
Q Q T

Observe thaV.Vu = Aw. Also the functionVw.7i is called thenormal derivative

and is denoted by 5
u

Vu.n=—

on’
With this, we obtain Green’s formula

/VU.VU dr = —/ vAu daH—/va—?i ds. (2.40)
Q QO T on

We now return to the initial probleni_(ZH4-2125). To solvésthroblem approxi-
mately, it is necessary to (1) take approximations to thexank functionu, and (2)
translate the equations into a system which can be solveniceily. The options
for approximatingu are numerous. However, the primary requirement is thaethes
approximations should be in a (small) finite dimensionatsepd here are also some
additional desirable numerical properties. For exampis,difficult to approximate
high degree polynomials numerically. To extract systemsaufations which yield
the solution, it is common to use tineak formulatiorof the problem. Let us define

- B Ju Ov Ju Ov
a(u,v) = /QVu.Vv dx-/g((axl R +(9x2 (93:2> dx,
(f,v) = /fvd:r.
Q

An immediate property of the functionalis that it isbilinear. That means that it is
linear with respect ta andv, namely,

a(piur + pouz,v) = pra(ug,v) + pealug,v), Yui,pe €R,
a(u, \jv1 + Aova) = Aa(u,v1) + Aea(u,v2), VA, A € R.

64 CHAPTER 2. DISCRETIZATION OF PDES

Notice that(u, v) denotes thd.-inner product ofu andv in Q, i.e.,

(u,v):/Qu(x)v(w)dw,

then, for functions satisfying the Dirichlet boundary citihs, which are at least
twice differentiable, Green’s formul&{Z140) shows that

a(u,v) = —(Au,v).

The weak formulation of the initial problerhi{Z184-2125) simts of selecting a sub-
space of referencl of L? and then defining the following problem:

Find v €V suchthat a(u,v) = (f,v), VveV. (2.41)

In order to understand the usual choices for the spaceote that the definition of
the weak problem only requires the dot products of the graslief« andv and the
functions f andwv to be Lo—integrable. The most generil under these conditions
is the space of all functions whose derivatives up to the dirder are inL,. This
is known asH ' (). However, this space does not take into account the boundary
conditions. The functions i must be restricted to have zero valueslanThe
resulting space is calleH} (€2).

The finite element method consists of approximating the wwaklem by a
finite-dimensional problem obtained by replaciiigwith a subspace of functions
that are defined as low-degree polynomials on small pieteséats) of the original
domain.

Figure 2.7: Finite element triangulation of a domain.

Consider a regiof2 in the plane which is triangulated as shown in Fiduré 2.7. In
this example, the domain is simply an ellipse but the extexnelosing curve is not
shown. The original domain is thus approximated by the ufilgrof m triangles
K;

2.3. THE FINITE ELEMENT METHOD 65

For the triangulation to be valid, these triangles must heveertex that lies on the
edge of any other triangle. Theesh sizé is defined by

h = max diam(K;)
where diantX’), the diameter of a triangl&’, is the length of its longest side.
Then the finite dimensional spadé is defined as the space of all functions
which are piecewise linear and continuous on the polygoegibn (2, and which
vanish on the boundary. More specifically,

Vi ={¢ | ¢jo,continuous¢r, =0, ¢ g, linearv j}.

Here, ¢ x represents the restriction of the functignto the subsefX. If z;,j =
1,...,n are the nodes of the triangulation, then a funciignn V;, can be associ-
ated with each node;, so that the family of functions;’s satisfies the following
conditions:

¢g($z) = 52J = { 0 If z; 7& l’j . (242)
These conditions defing;,7 = 1,...,n uniquely. In addition, the;’s form a basis

of the spacéd/,.
Each function oft, can be expressed as

d(x) =D &ioi(x).
i=1

The finite element approximation consists of writing the gsldh condition [Z411)
for functions inV},. This defines the approximate problem:

Find « €V, suchthat a(u,v) = (f,v), ¥V v &€ V. (2.43)

Sincew is in V},, there aren degrees of freedom. By the linearity efwith respect
to v, it is only necessary to impose the conditiofu, ¢;) = (f,¢;) fori =1,... n.
This results inm constraints.

Writing the desired solution in the basis{¢;} as

u=) &)
j=1
and substituting in(Z.43) gives the linear problem
3 i = 6 (2.44)
j=1

where

Qi = a(¢i7¢j)7 ﬁl = (f> qbl)

66 CHAPTER 2. DISCRETIZATION OF PDES

The above equations form a linear system of equations
Ax = b,

in which the coefficients ol are thea;;’s; those oft are theg;’s. In addition, A is
a Symmetric Positive Definitmatrix. Indeed, it is clear that

/qusi.w)j dxz/gwsj.wi da,

which means thaty;; = «j;. To see thatd is positive definite, first note that
a(u,w) > 0 for any functionu. If a(¢,¢$) = 0 for a function inV},, then it must

be true thatV¢ = 0 almost everywherén ;. Sinceg is linear in each triangle
and continuous, then it is clear that it must be constant lof2.aBince, in addition,

it vanishes on the boundary, then it must be equal to zeroloof &. The result

follows by exploiting the relation

n
i=1
which is valid for any vectof¢; }i—1... n.

Another important observation is that the matfixs also sparse. Indeed,; is
nonzero only when the two basis functionsand ¢; have common support trian-
gles, or equivalently when the nodeand; are the vertices of a common triangle.
Specifically, for a given nodég, the coefficiento;; will be nonzero only when the
nodej is one of the nodes of a triangle that is adjacent to node

In practice, the matrix is built by summing up the contribug of all triangles
by applying the formula

a(¢i, ¢;) = ax(i,¢))

K
in which the sum is over all the trianglés and

ak (¢i, ;) = /KW% Vo; dx.

Note thatax (¢;, ¢;) iS zero unless the nodésindj are both vertices oK. Thus, a
triangle contributes nonzero values to its three vertioes fthe above formula. The
3 x 3 matrix

S

k(i #i) ax(di, 0j) ar(di, dr)
A = | ax(9j,¢i) ax(d;,¢5) ax(oj, dr)

ax(Pr, i) ax(dr, ;) ax(dr, dr)
associated with the triangl& (i, j, k) with verticesi, j, k is called anelement stiff-
ness matrix In order to form the matrix4, it is necessary to sum up all the con-
tributions ak (¢,) to the positionk, m of the matrix. This process is called an
assembhprocess. In the assembly, the matrix is computed as

nel

A=Y Al (2.45)
e=1

2.3. THE FINITE ELEMENT METHOD 67

in whichnel is the number of elements. Each of the matridés is of the form
Al = p Ay PT

whereAg, is the element matrix for the elemeht as defined above. AlsB. is an
n x 3 Boolean connectivity matrix which maps the coordinateshef3t x 3 matrix
Ak, into the coordinates of the full matris.

Finite element mesh

Assembled matrix

Figure 2.8: A simple finite element mesh and the pattern ofctiteesponding as-
sembled matrix.

Example 2.1. The assembly process can be illustrated with a very sim@enex
ple. Consider the finite element mesh shown in Figurk 2.8. fdheelements are
numbered from bottom to top as indicated by the labels locattéheir centers. There
are six nodes in this mesh and their labeling is indicatetiércircled numbers. The
four matricesAl associated with these elements are shown in Figute 2.9, THeis
first element will contribute to the nodés2, 3, the second to nodes 3, 5, the third

to node<2, 4, 5, and the fourth to nodes 5, 6. O
Alll Al2] Al Al4
EEE
EEE EE = E EE
EEE EE =
E EE EEE
EE = E EE EEE
EEE
Figure 2.9: The element matrice8), e = 1,...,4 for the finite element mesh

shown in Figuré2]8.

68 CHAPTER 2. DISCRETIZATION OF PDES

In fact there are two different ways to represent and use themd. We can
form all the element matrices one by one and then we can dterg,te.g., in an
nel x 3 x 3 rectangular array. This representation is often calledutteessembled
form of A. Then the matrix4 may be assembled if it is needed. However, element
stiffness matrices can also be used in different ways withauing to assemble the
matrix. For example,frontal techniquesare direct solution methods that take the
linear system in unassembled form and compute the solutianform of Gaussian
elimination.

There are also iterative solution techniques which workally with unassem-
bled matrices. One of the main operations required in mamgtive methods is to
computey = Ax, the product of the matri¥ by an arbitrary vectog. In unassem-
bled form, this can be achieved as follows:

nel nel

y=Axr = Z Ay = Z P Ak, (Plz). (2.46)
e=1 e=1

Thus, the produc?z gathers ther data associated with theelement into a 3-
vector consistent with the ordering of the matrx. . After this is done, this vector
must be multiplied byAg,. Finally, the result is added to the currenwvector in
appropriate locations determined by tRearray. This sequence of operations must
be done for each of theel elements.

A more common, and somewhat more appealing, technique &rtorp the as-
sembly of the matrix. All the elements are scanned one by oddee nine associated
contributionsar (¢x, &m), k,m € {i,j, k} added to the corresponding positions in
the global “stiffness” matrix. The assembled matrix mustrme stored but the el-
ement matrices may be discarded. The structure of the atsgmmatrix depends
on the ordering of the nodes. To facilitate the computatiansidely used strategy
transforms all triangles into a reference triangle withtiees (0,0), (0,1), (1,0).
The area of the triangle is then simply the determinant ofJéeobian of the trans-
formation that allows passage from one set of axes to the&.othe

Simple boundary conditions such as Neumann or Dirichlet diocause any
difficulty. The simplest way to handle Dirichlet conditiorssto include boundary
values as unknowns and modify the assembled system to mredepthe boundary
values. Thus, each equation associated with the boundany ipcthe assembled
system is replaced by the equation= f;. This yields a small identity block hidden
within the linear system.

For Neumann conditions, Green’s formula will give rise te #guations

ou
/QVu.qubj dmz/ﬂfqﬁjdx%—/l“(bj% ds, (2.47)

which will involve the Neumann datg% over the boundary. Since the Neumann
data is typically given at some points only (the boundaryasddiinear interpolation
(trapezoidal rule) or the mid-line value (midpoint rulendse used to approximate
the integral. Note thaE{(Z-37) can be viewed asjtile equation of the linear system.

2.4. MESH GENERATION AND REFINEMENT 69

Another important point is that if the boundary conditions anly of Neumann type,
then the resulting system is singular. An equation must beved, or the linear
system must be solved by taking this singularity into actoun

2.4 Mesh Generation and Refinement

Generating a finite element triangulation can be done elgigxploiting some initial
grid and then refining the mesh a few times either uniformlin@pecific areas. The
simplest refinement technique consists of taking the threlpomts of a triangle,
thus creating four smaller triangles from a larger trianghel losing one triangle,
namely, the original one. A systematic use of one level & ¢iiategy is illustrated
for the mesh in FigurE22.8, and is shown in FigureP.10.

This approach has the advantage of preserving the angles ofiginal triangu-
lation. This is an important property since the angles of @dgguality triangulation
must satisfy certain bounds. On the other hand, the indiscaite use of the uniform
refinement strategy may lead to some inefficiencies. It isalgle to introduce more
triangles in areas where the solution is likely to have lasygations. In terms of ver-
tices, midpoints should be introduced only where neededobtain standard finite
element triangles, the points that have been created ordtfesef a triangle must
be linked to existing vertices in the triangle. This is bessno vertex of a triangle is
allowed to lie on the edge of another triangle.

FigurelZTl shows three possible cases that can arise. iffireabtriangle is (a).
In (b), only one new vertex (numbered) has appeared on one edge of the triangle
and it is joined to the vertex opposite to it. In (c), two newtises appear inside the
original triangle. There is no alternative but to join vees (4) and (5). However,
after this is done, either vertices (4) and (3) or verticasafid (5) must be joined.
If angles are desired that will not become too small withHartrefinements, the
second choice is clearly better in this case. In fact, vargtuategies for improving
the quality of the triangles have been devised. The final (dseorresponds to the
“uniform refinement” case where all edges have been splivin tThere are three
new vertices and four new elements, and the larger initexheht is removed.

2.5 Finite Volume Method

The finite volume method is geared toward the solution of eoraion laws of the
form:
ou

5 TVE=0Q. (2.48)

In the above equatiorF(u,t) is a certain vector function af and time, possibly
nonlinear. This is called the “flux vector.” Ttemurce termy) is a function of space
and time. We now apply the principle used in the weak fornmgidescribed before.
Multiply both sides by a test functiom, and take the integral

/w@dx—k/ wV.fdw:/dew.
o Ot Q Q

70 CHAPTER 2. DISCRETIZATION OF PDES

Finite element mesh

Assembled matrix

Figure 2.10: The simple finite element mesh of Fiduré 2.8 afite level of refine-
ment and the corresponding matrix.

Then integrate by part using formu[@a{2.39) for the seconu tn the left-hand side

to obtain
/w—dw—/Vw.ﬁdw+/wﬁ.ﬁds:/wQ dx.
Q r Q

Consider now aontrol volumeconsisting, for example, of an elementary triangle
K; in the two-dimensional case, such as those used in the fileitee@t method.
Take forw a functionw; whose value is one on the triangle and zero elsewhere. The
second term in the above equation vanishes and the follorglatjon results:

/ @dsﬁ—/ ﬁ.ﬁds:/ Q dz. (2.49)
K, Ot r; K

The above relation is at the basis of the finite volume appnakbn. To go a little
further, the assumptions will be simplified slightly by tagfia vector functiorf’ that
is linear with respect ta. Specifically, assume

— Alu —
F = = \u.
<>\2U> "

Note that, in this case, the terf.F in (Z48) becomes(u) = X.Vu. In addition,
the right-hand side and the first term in the left-hand sid@gf9) can be approxi-
mated as follows:

@ dr ~ 8u2

O / Q dz = q;| K.

2.5. FINITE VOLUME METHOD 71

(@)

Figure 2.11: Original triangle (a) and three possible refiaet scenarios.

Here,| K;| represents the volume &f;, andg; is some average value 6fin the cell
K; (Note that in two dimensions, “volume” is considered to maegn). These are
crude approximations but they serve the purpose of illtisggahe scheme.

The finite volume equatiol Z19) yields

%mui. / witds = qi| K. (2.50)
T

/ u T ds
r;

is the sum of the integrals over all edges of the control veuiet the value o,
on each edgg be approximated by some “average’. In addition,s; denotes the
length of each edge and a common notation is

The contour integral

—

Sj = Sj’l’Lj.

Then the contour integral is approximated by
X./ witds~ Y ajlijs; = Y ;N5 (2.51)
r;

The situation in the case where the control volume is a sirtmaegle is depicted in
FigureZIP. The unknowns are the approximatiansf the functionu associated
with each cell. These can be viewed as approximationsaifthe centers of gravity
of each celli. This type of model is calledell-centeredfinite volume approxima-
tions. Other techniques based on using approximations endtices of the cells
are known agell-vertexfinite volume techniques.

72 CHAPTER 2. DISCRETIZATION OF PDES

[N

]

Figure 2.12: Finite volume cell associated with nédand three neighboring cells.

The valuew; required in[Z5]1) can be taken simply as the average bettheen
approximationu; of « in cell 7 and the approximation; in the cellj on the other
side of the edge

1
uj = E(uj + u;). (2.52)
This gives
8u2-

1 7 o
E‘KZ’ + B Z(ul + u]'))\.Sj = ¢;|K;|.

J
One further simplification takes place by observing that

J

and therefore

J J

This yields

aui 1 N

E ’KZ’ + 5 ZUj)\.Sj = ql\KZ]

J
In the above equation, the summation is over all the neighparells j. One

problem with such simple approximations is that they do robant for large gradi-
ents ofu in the components. In finite volume approximations, it is¢gpto exploit
upwind schemes which are more suitable in such cases. Byarampwith one-
dimensional upwind schemes, it can be easily seen that ttakumodification to

(Z52) is as follows:

1 1 . >,
uj =5 (u) + us) — 5 Sign ()\-Sj) (uj —). (2.53)

2.5. FINITE VOLUME METHOD 73

This gives

Z?ui NN 1 1 N
J

Now write
Z?ui 1 AN 1 - -
5 Gl + > (5(%' +ui)A8j = SISl (uj — uz‘)) = ¢i| Ki
J
aui T - Y oo \—
E ‘KZ’ + Z <ui()\-3j)+ +’U,j()\.8j) > = ql\K,]
J
where L s
+_ % z
(Z) - 2 °
The equation for cell takes the form
8ul
| K| + Biu; + Za”uj = q;|Ki],
J
where
Bio= > (X&)t =0, (2.54)
J
a; = (N5)~ <0. (2.55)

Thus, the diagonal elements of the matrix are nonnegativelevits offdiagonal
elements are nonpositive. In addition, the row-sum of teenents, i.e., the sum of
all elements in the same row, is equal to zero. This is because

Bit Y aij=» (X5)7T +Z XE)T =) X5 =X>_5
J J J J
The matrices obtained have the same desirable propertyak diagonal dominance
seen in the one-dimensional case. A disadvantage of upwirahses, whether in the

context of irregular grids or in one-dimensional equatjeshe loss of accuracy due
to the low order of the schemes.

PROBLEMS

P-2.1 Derive Forward Difference formulas similar tb{P.8), i.&@yolving u(x), u(z +
h),u(z + 2h), ..., which are of second and third order. Write down the diszatiton er-
rors explicitly.

P-2.2 Derive a Centered Difference formula for the first derivatisimilar to [ZI), which
is at least of third order.

74 CHAPTER 2. DISCRETIZATION OF PDES

P-2.3 Show that the Upwind Difference scheme describddinP.2enu andb are con-
stant, is stable for the model problell{2.7).

P-2.4 Develop the two nine-point formulas illustrated in Figlird.2Find the corresponding
discretization errors. [Hint: Combin§ of the five-point formulal(Z7) pIu% of the same
formula based on the diagonal stendit, y), (x + h,y + h) + (x + h,y — h), (x — h,y +
h),(xz — h,y — h)} to get one formula. Use the reverse combinatior to get the other
formula.]

P-2.5 Consider a (two-dimensional) rectangular mesh which isrdiized as in the finite
difference approximation. Show that the finite volume agpration to X.Vu yields the
same matrix as an upwind scheme applied to the same probléat Would be the mesh of
the equivalent upwind finite difference approximation?

P-2.6 Show that the right-hand side of equatibn(2.16) can alsoriteew as

%5_ (aiJr% 5+u) .

P-2.7 Show that the formuld{Z.16) is indeed second order acctoafenctions that are in
c4.

P-2.8 Show that the functions;’s defined by[[Z42) form a basis bf,.
P-2.9 Develop the equivalent of Green’s formula for the elliptpeoatorL defined in[ZB).

P-2.10 Write a short FORTRAN or C program to perform a matrix-by+teeproduct when
the matrix is stored in unassembled form.

P-2.11 Consider the finite element mesh of Examipld 2.1. Compareuhger of opera-
tions required to perform a matrix-by-vector product whiee inatrix is in assembled and
in unassembled form. Compare also the storage requireccm@ese. For a general finite
element matrix, what can the ratio be between the two in thstease (consider only linear
approximations on triangular elements) for arithmeticpiess the number of operations in
terms of the number of nodes and edges of the mesh. You maythmakssumption that the
maximum number of elements that are adjacent to a given sqd@ig.,p = 8).

P-2.12 Let K be a polygonirR? with m edges, and let; = s;7i;, forj = 1,...,m, where
s; is the length of thg-th edge andi; is the unit outward normal at theth edge. Use the
divergence theorem to prove th@;”:1 §;=0.

NOTES AND REFERENCES The books by C. Johnsoh [179], P. Ciarletl[84], and G. Stiamd) G.
Fix [271] are recommended for a good coverage of the finitmel# method. Axelsson and Barker
[15] discuss solution techniques for finite element proldemmphasizing iterative methods. For finite
difference and finite volume methods, see C. Hirsch’s bb&&] which also discusses equations and
solution methods for fluid flow problems. A 1965 article by Koey [169] describes a one-level block
cyclic reduction method which seems to be the first “FastdeoiSolver”. Block cyclic reduction was
developed by Bunemah159] and HocknEy [l171] for Poissonimégns, and extended by Swartzrauber
[279] to separable elliptic equations. An efficient combima of block cyclic reduction and Fourier
analysis known as FACR(l), was developed by Hockiieyl[17d]later extended i [280] anf[1i70].
Parallel block cyclic reduction algorithms were consideire[138,[281]. [|

Chapter 3

SPARSE MATRICES

As described in the previous chapter, standard discretizations of Partial Differential Equations
typically lead to large and sparse matrices. A sparse matrix is defined, somewhat vaguely, as
a matrix which has very few nonzero elements. But, in fact, a matrix can be termed sparse
whenever special techniques can be utilized to take advantage of the large number of zero
elements and their locations. These sparse matrix techniques begin with the idea that the
zero elements need not be stored. One of the key issues is to define data structures for these
matrices that are well suited for efficient implementation of standard solution methods, whether
direct or iterative. This chapter gives an overview of sparse matrices, their properties, their
representations, and the data structures used to store them.

3.1 Introduction

The natural idea to take advantage of the zeros of a matrixteidiocation was ini-
tiated by engineers in various disciplines. In the simpbase involving banded ma-
trices, special techniques are straightforward to devetdgrctrical engineers dealing
with electrical networks in the 1960s were the first to exygparsity to solve general
sparse linear systems for matrices with irregular strectdihe main issue, and the
first addressed by sparse matrix technology, was to devieetdiolution methods
for linear systems. These had to be economical, both in tefst®rage and compu-
tational effort. Sparse direct solvers can handle veryelgmgpblems that cannot be
tackled by the usual “dense” solvers.

Essentially, there are two broad types of sparse matrgtescturedandunstruc-
tured A structured matrix is one whose nonzero entries form aleeguattern, often
along a small number of diagonals. Alternatively, the nonzdements may lie in
blocks (dense submatrices) of the same size, which formwdarepattern, typically
along a small number of (block) diagonals. A matrix with guéarly located entries
is said to be irregularly structured. The best example obalesly structured ma-
trix is a matrix that consists of only a few diagonals. Firdiference matrices on
rectangular grids, such as the ones seen in the previoutechaye typical examples
of matrices with regular structure. Most finite element oitdéirvolume techniques

75

76 CHAPTER 3. SPARSE MATRICES

applied to complex geometries lead to irregularly struedumatrices. FigurE—3.2
shows a small irregularly structured sparse matrix astetiwith the finite element
grid problem shown in Figurle=3.1.

Figure 3.1: A small finite element grid model.

The distinction between the two types of matrices may ndteably affect di-
rect solution techniques, and it has not received muchtaiteim the past. However,
this distinction can be important for iterative solutionthms. In these methods,
one of the essential operations is matrix-by-vector prtglud@he performance of
these operations can differ significantly on high perforoeacomputers, depending
on whether they are regularly structured or not. For exajglevector computers,
storing the matrix by diagonals is ideal, but the more gdrerhemes may suffer
because they require indirect addressing.

The next section discusses graph representations of gpatsiees. This is fol-
lowed by an overview of some of the storage schemes used dosespnatrices and
an explanation of how some of the simplest operations wittisspmatrices can be
performed. Then sparse linear system solution methodsbeiltovered. Finally,
Sectior33J discusses test matrices.

3.2 Graph Representations

Graph theory is an ideal tool for representing the struabfisgparse matrices and for
this reason it plays a major role in sparse matrix technigeesexample, graph the-
ory is the key ingredient used in unraveling parallelismparse Gaussian elimina-
tion or in preconditioning techniques. In the following 8en, graphs are discussed
in general terms and then their applications to finite eld@roefinite difference ma-
trices are discussed.

3.2. GRAPH REPRESENTATIONS 77

Figure 3.2: Sparse matrix associated with the finite elergedtof Figure[311.

3.2.1 Graphs and Adjacency Graphs

Remember that a graph is defined by two sets, a set of vertices

V = {Ul,vg,...,vn},

and a set of edges which consists of pairév;, v;), wherev;, v; are elements of’,
i.e.,
E CVxV.

This graphG = (V, E) is often represented by a set of points in the plane linked by
a directed line between the points that are connected by g& &8l graph is a way
of representing a binary relation between objects of a/’sefor example,V can
represent the major cities of the world. A line is drawn betwany two cities that
are linked by a nonstop airline connection. Such a graphrejfitesent the relation
“there is a nonstop flight from city (A) to city (B).” In this ptcular example, the
binary relation is likely to be symmetric, i.e., when thes@inonstop flight from (A)
to (B) there is also a nonstop flight from (B) to (A). In suchuaiions, the graph is
said to be undirected, as opposed to a general graph whidatedset!.

Going back to sparse matrices, tidjacency graplof a sparse matrix is a graph
G = (V, E), whosen vertices inV represent the: unknowns. Its edges represent
the binary relations established by the equations in tHeviihg manner: There is
an edge from nodéto nodej whena;; # 0. This edge will therefore represent the
binary relationequation: involves unknowr. Note that the adjacency graph is an
undirected graph when the matrix pattern is symmetrig,wkena;; # 0iff a;; # 0
foralll <i,57 <n).

When a matrix has a symmetric nonzero pattern, i.e., wheanda;; are al-
ways nonzero at the same time, then the grapimdirected Thus, for undirected

78 CHAPTER 3. SPARSE MATRICES

graphs, every edge points in both directions. As a resuttirected graphs can be
represented with nonoriented edges.

As an example of the use of graph models, parallelism in Gausdimination
can be extracted by finding unknowns that are independengata stage of the
elimination. These are unknowns which do not depend on eheln according to the
above binary relation. The rows corresponding to such uwksocan then be used
as pivots simultaneously. Thus, in one extreme, when thexmadiagonal, then all
unknowns are independent. Conversely, when a matrix isseash unknown will
depend on all other unknowns. Sparse matrices lie somevidetweeen these two

extremes.
1 2

Figure 3.3: Graphs of twad x 4 sparse matrices.

There are a few interesting simple properties of adjacemaplg. The graph
of A% can be interpreted as anvertex graph whose edges are the péirg) for
which there exists at least one path of length exactly twmfriode: to nodej in
the original graph ofd. Similarly, the graph of4* consists of edges which represent
the binary relation “there is at least one path of lengfrom node: to node;.” For
details, see Exercife 4.

3.2.2 Graphs of PDE Matrices

For Partial Differential Equations involving only one pigal unknown per mesh
point, the adjacency graph of the matrix arising from themiszation is often the
graph represented by the mesh itself. However, it is commdmate several un-
knowns per mesh point. For example, the equations modelirgyffow may involve
the two velocity components of the fluid (in two dimensionsweell as energy and
momentum at each mesh point.

In such situations, there are two choices when labeling tiieawns. They
can be labeled contiguously at each mesh point. Thus, foexhenple just men-

3.3. PERMUTATIONS AND REORDERINGS 79

tioned, we can label all four variables (two velocities dated by momentum and
then pressure) at a given mesh poinudg), ..., u(k + 3). Alternatively, all un-
knowns associated with one type of variable can be labelsd(érg., first velocity
components), followed by those associated with the secgpel df variables (e.qg.,
second velocity components), etc. In either case, it isrdhest there is redundant
information in the graph of the adjacency matrix.

Thequotientgraph corresponding to thmhysical meslecan be used instead. This
results in substantial savings in storage and computatiothe fluid flow example
mentioned above, the storage can be reduced by a factor ofalié for the integer
arrays needed to represent the graph. This is because theenofredges has been
reduced by this much, while the number of vertices, whichsisally much smaller,
remains the same.

3.3 Permutations and Reorderings

Permuting the rows or the columns, or both the rows and cadywfra sparse matrix
is a common operation. In facteorderingrrows and columns is one of the most
important ingredients used parallel implementations of both direct and iterative
solution techniques. This section introduces the ideagte®lto these reordering
techniques and their relations to the adjacency graphseofmtrices. Recall the
notation introduced in Chapter 1 that tji¢h column of a matrix is denoted hy,;
and thei-th row by a;,.

3.3.1 Basic Concepts

We begin with a definition and new notation.

Definition 3.1 Let A be a matrix andr = {i,i2,...,i,} a permutation of the set
{1,2,...,n}. Then the matrices

Ars = Aax(),jti=t,nii=1,.m;

A*Jr = {ai,w(j)}i:l,...,n;j:l,...,m

are called rowr-permutation and column-permutation ofA4, respectively.

It is well known that any permutation of the sft, 2,...,n} results from at most
n interchanges, i.e., elementary permutations in which onty entries have been
interchanged. Amnterchange matrixs the identity matrix with two of its rows in-
terchanged. Denote h¥;; such matrices, withi andj being the numbers of the
interchanged rows. Note that in order to interchange roarsd j of a matrix A, we
only need to premultiply it by the matriX;;. Letm = {i,42,...,%,} be an arbi-
trary permutation. This permutation is the product of a sege ofn consecutive
interchange® (i, ji), k = 1,...,n. Then the rows of a matrix can be permuted by
interchanging rows, , j1, then rowsis, j, of the resulting matrix, etc., and finally by
interchanging,,, j,, of the resulting matrix. Each of these operations can besaeti

80 CHAPTER 3. SPARSE MATRICES

by a premultiplication byX;, ;. The same observation can be made regarding the
columns of a matrix: In order to interchange colunird; of a matrix, postmulti-
ply it by X;;. The following proposition follows from these observason

Proposition 3.2 Let 7 be a permutation resulting from the product of the inter-
changess (i, jx), k =1,...,n. Then,

A7r,* = PnA7 A*,n = AQm
where

P = Xinvaninflyjnfl s Xi17j17 (31)
Qr = Xi17lei2,j2 .. Xin,jn' (3.2)

Products of interchange matrices are capfedmutation matricesClearly, a permu-
tation matrix is nothing but the identity matrix with its rewor columns) permuted.
Observe thaiX'2 = 1, i.e., the square of an interchange matrix is the identity, o
equivalently, the i mverse of an interchange matrix is etp#kelf, a property which
is intuitively clear. It is easy to see that the matrideslarid [3:2) satisfy
PWQT(= Xin,an'

In—1,Jn—1""

Xy X Xiy 1 Xig go - - Xig g = 1,

which shows that the two matricég, and P, are nonsingular and that they are the
inverse of one another. In other words, permuting the rowstla@ columns of a ma-
trix, using the same permutatipactually performs a similarity transformation. An-
other important consequence arises because the produchgeiah in the definitions
@) and [[3R) ofP, andQ,. occur in reverse order. Since each of the elementary

matricesX;, ;, is symmetric, the matrix), is the transpose df,. Therefore,

Q=PI =p 1t

Since the inverse of the matrik, is its own transpose, permutation matrices are
unitary.

Another way of deriving the above relationships is to exprise permutation
matrices P, and P! in terms of the identity matrix, whose columns or rows are
permuted. It can easily be seen (See Exefdise 3) that

P, = I7r,*> Pg = I*,w-
It is then possible to verify directly that
Apy =L A=P A, An= Al = APl

It is important to interpret permutation operations for timear systems to be
solved. When the rows of a matrix are permuted, the order iiclwtihe equations
are written is changed. On the other hand, when the colummpenmuted, the
unknowns are in effeaelabeled or reordered

3.3. PERMUTATIONS AND REORDERINGS 81

Example 3.1. Consider, for example, the linear systelm = b where

all 0 ais 0

A— 0 ax a3 ay
azy azy azz 0

0 a42 0 Qg4

andw = {1, 3,2,4}, then the (column-) permuted linear system is

aip a3 0 0 T by
0 a3 azx axy z3 | | b2
az1 azz agx 0O T2 b3
0 0 au au 74 by

Note that only the unknowns have been permuted, not theiegeaénd in particular,
the right-hand side has not changed. |

In the above example, only the columns_fhave been permuted. Such one-
sided permutations are not as common as two-sided perongaiti sparse matrix
techniques. In reality, this is often related to the fact tha diagonal elements in
linear systems play a distinct and important role. For imstadiagonal elements are
typically large in PDE applications and it may be desirablpreserve this important
property in the permuted matrix. In order to do so, it is tgbito apply the same
permutation to both the columns and the rowsAf Such operations are called
symmetric permutationgnd if denoted byd; -, then the result of such symmetric
permutations satisfies the relation

Apn = P APL.

The interpretation of the symmetric permutation is quitae. The resulting ma-
trix corresponds to renaming, or relabeling, or reordetimg unknowns and then
reordering the equations in the same manner.

Example 3.2. For the previous example, if the rows are permuted with tineesa
permutation as the columns, the linear system obtained is

aip a3 0 0 T by
a1 azz azz 0O z3 | | b3
0 a3 ax axy) bo
0 0 aw au T4 by

Observe that the diagonal elements are now diagonal elsrfrent the original ma-
trix, placed in a different order on the main diagonal. |
3.3.2 Relations with the Adjacency Graph

From the point of view of graph theory, another importangiptetation of a symmet-
ric permutation is thait is equivalent to relabeling the vertices of the grapithout

82 CHAPTER 3. SPARSE MATRICES

altering the edges. Indeed, Igtj) be an edge in the adjacency graph of the original
matrix A and letA’ be the permuted matrix. Thetj; = a.(;) »(;) and as a result
(i,7) is an edge in the adjacency graph of the permuted mattixf and only if
(w(i),7(j)) is an edge in the graph of the original matrx In essence, it is as if
we simply relabel each node with the “old” labeli) with the “new” labeli. This is
pictured in the following diagram:

) j — new labels

(i) 7(5) — old labels

Thus, the graph of the permuted matrix has not changed;rrdtteelabeling of the

vertices has. In contrast, nonsymmetric permutations d@raserve the graph. In
fact, they can transform an indirected graph into a direoteel Symmetric permuta-
tions change the order in which the nodes are considerediirea glgorithm (such

as Gaussian elimination) and this may have a tremendoustropdhe performance
of the algorithm.

)

&)
©
EEEEEEEER

Figure 3.4: Pattern of a 9 9 arrow matrix and its adjacency graph.

Example 3.3. Consider the matrix illustrated in FigureB.4 together viishadja-
cency graph. Such matrices are sometimes called “arrowficeatbecause of their
shape, but it would probably be more accurate to term thear™statrices because
of the structure of their graphs. If the equations are reedlesing the permutation
9,8,...,1, the matrix and graph shown in Figlrel3.5 are obtained.

Although the difference between the two graphs may seerhtsliie matrices
have a completely different structure, which may have aiigmt impact on the
algorithms. As an example, if Gaussian elimination is usethe reordered matrix,
no fill-in will occur, i.e., the L and U parts of the LU factoation will have the same
structure as the lower and upper partsdofrespectively.

3.3. PERMUTATIONS AND REORDERINGS 83

®) [|
EEEEEEER

G

®©

|
EEEEEEEEN

Figure 3.5: Adjacency graph and matrix obtained from abayar & after permuting
the nodes in reverse order.

On the other hand, Gaussian elimination on the original imegsults in disas-
trous fill-ins. Specifically, the L and U parts of the LU fadiation are now dense
matrices after the first step of Gaussian elimination. Withal sparse matrix tech-
niques, it is important to find permutations of the matrixtthél have the effect of
reducing fill-ins during the Gaussian elimination process. O

To conclude this section, it should be mentioned that twieginonsymmetric
permutations may also arise in practice. However, they aseermommon in the
context of direct methods.

3.3.3 Common Reorderings

The type of reordering, or permutations, used in applicatidepends on whether a
direct or an iterative method is being considered. ThewWalg is a sample of such
reorderings which are more useful for iterative methods.

Level-set orderings. This class of orderings contains a number of techniques that
are based on traversing the graphléyel sets A level set is defined recursively as
the set of all unmarked neighbors of all the nodes of a praviewel set. Initially, a
level set consists of one node, although strategies witkrakstarting nodes are also
important and will be considered later. As soon as a levelkseaversed, its nodes
are marked and numbered. They can, for example, be numbvetteel arder in which
they are traversed. In addition, the order in which eachl ligself is traversed gives
rise to different orderings. For instance, the nodes of tairetevel can be visited
in the natural order in which they are listed. The neighbdreach of these nodes
are then inspected. Each time, a neighbor of a visited vénggxis not numbered is
encountered, it is added to the list and labeled as the nemtezit of the next level
set. This simple strategy is calleBreadth First SearcBFS) traversal in graph
theory. The ordering will depend on the way in which the naatestraversed in each

84 CHAPTER 3. SPARSE MATRICES

level set. In BFS the elements of a level set are always saden the natural order
in which they are listed. In th€uthill-McKee orderinghe nodes adjacent a a visited
node are always traversed from lowest to highest degree.

ALGORITHM 3.1 BFSG,v)

Initialize S = {v}, seen = 1, w(seen) = v; Markv;
While seen < n Do
Snew - @,’
For each node in S do
For each unmarked in adjf) do
Addw to Syew;
Markw;
(+ + seen) = w;
EndDo
S = Shew
EndDo
EndWhile

=
ROOXXNDURAWNR

[
N

In the above algorithm, the notatior{+ + seen) = w in Line 8, uses a style bor-
rowed from the C/C++ language. It states thatn should be first incremented by
one, and them(seen) is assignedv. Two important modifications will be made to
this algorithm to obtain the Cuthill Mc Kee ordering. Thefficencerns the selection
of the first node to begin the traversal. The second, merdiabeve, is the orde in
which the nearest neighbors of a given node are traversed.

ALGORITHM 3.2 Cuthill-McKee (G)

0. Find an intial node for the traversal
1. Initialize S = {v}, seen = 1, w(seen) = v; Markv;
2. While seen < n Do
3. Snew = @,’
4. For each node Do:
5. 7(+ + seen) = v;
6. For each unmarked in adjv), going from lowest to highest degree Do:
7. Addw to Syew;
8. Markw;
9. EndDo
10. S = Shew
11. EndDo
12. EndWhile

The 7 array obtained from the procedure lists the nodes in theranderhich
they are visited and can, in a practical implementation,dszluo store the level sets
in succession. A pointer is needed to indicate where eacdtamts.

3.3. PERMUTATIONS AND REORDERINGS 85

The main property of level sets is that, at the exception effitst and the last
levels, they are argraph separators A graph separator is a set of vertices, the
removal of which separates the graph in two disjoint compteln fact if there
arel levels andl; = S1USs...S;1, Vo = S;11U ... S, then the nodes df; are
V5 are not coupled. This is easy to prove by contradiction. Aomepnsequence of
this property is that the matrix resulting from the CuthilcKee (or BFS) ordering
is block-tridiagonal, with the-th block being of siz¢s,|.

| order to explain the concept of level sets, the previous &lgorithms were
described with the explicit use of level sets. A more comnamal, somewhat simpler,
implementation relies oqueues The queue implementation is as follows.

ALGORITHM 3.3 Cuthill-McKee (G) — Queue implementation

Find an intial node for the traversal
Initialize @ = {v}, Markv;
While|Q| < n Do
head + + ;
For each unmarked in adj(h), going from lowest to highest degree Do:
Appendw to Q;
Markw;
EndDo
EndWhile

The final array@ will give the desired permutation. Clearly, this implementation
can also be applied to BFS. As an example, consider the firitesmt mesh problem
illustrated in Figurd—210 of Chapter 2, and assume that 3 is the initial node of
the traversal. The state of tiigarray after each step along with the head vehtexd
and its adjacency list are shown in the following table. Nib the adjacency lists
in the third column are listed by increasing degrees.

ONOOAAWNRO

Q head | adj(head)
3 3 7,10, 8
3,7,10,8 7 1,9
3,7,10,8,1,9 10 511
3,7,10,8,1,9,5,11 8 2
3,7,10,8,1,9,5,11, 2 1 -
3,7,10,8,1,9,5,11, 2 9 -
3,7,10,8,1,9,5,11, 2 5 14,12
3,7,10,8,1,9,5,11, 2, 14, 12 11 13
3,7,10,8,1,9,5,11, 2,14, 12,13 2 -
3,7,10,8,1,9,5,11, 2,14, 12,13 14 6, 15
3,7,10,8,1,9,5,11, 2,14, 12,13, 6,15/ 12 4
3,7,10,8,1,9,5,11, 2,14, 12,13, 6,15, 4

An implementation using explicit levels, would find the séts = {3}, Sy =
{7,8,10}, S3 = {1,9,5,11,2}, S, = {14,12,13}, and S5 = {6,15,4}. The

86 CHAPTER 3. SPARSE MATRICES

new labeling of the graph along with the corresponding matattern are shown in
Figure[3®. The partitionning of the matrix pattern cormsgs to the levels.

In 1971, George [142] observed tmaversingthe Cuthill-McKee ordering yields
a better scheme for sparse Gaussian elimination. The stnpky to understand
this is to look at the two graphs produced by these orderingse results of the
standard and reversed Cuthill-McKee orderings on the saffifuite element mesh
problem seen earlier are shown in Figdres 3.6[@and 3.7, wieenitral node is; = 3
(relative to the labeling of the original ordering of FiglZell). The case of the
figure, corresponds to a variant of CMK in which the travessalLine 6, is done
in a random order instead of according to the degree. A laggedgb the structure
of the two matrices consists of little “arrow” submatricesnilar to the ones seen in
Exampld3B. In the case of the regular CMK ordering, thesaar point upward,
as in Figurd_3M4, a consequence of the level set labelingseThocks are similar
the star matrices of Figufe_B.4. As a result, Gaussian edition will essentially fill
in the square blocks which they span. As was indicated in @83, a remedy
is to reorder the nodes backward, as is done globally in therse Cuthill-McKee
strategy. For the reverse CMK ordering, the arrows are pgjrdownward, as in
Figure[3p, and Gaussian elimination yields much lessrfill-i

Figure 3.6: Graph and matrix pattern for example pf Figui€l 2fter Cuthill-McKee
ordering.

Example 3.4. The choice of the initial node in the CMK and RCMK orderings
may be important. Referring to the original ordering of FegliZ. 10, the previous

illustration usedi; = 3. However, it is clearly a poor choice if matrices with small
bandwidth orprofile are desired. Ifiy; = 1 is selected instead, then the reverse

3.3. PERMUTATIONS AND REORDERINGS 87

i

I

I

I I I
e HE___H_
| HE N EEENE
I
I
I
4
1

Figure 3.7: Reverse Cuthill-McKee ordering.

Cuthill-McKee algorithm produces the matrix in Figlirel3:8ich is more suitable
for banded oskylinesolvers. |

Independent set orderings. The matrices that arise in the model finite element
problems seen in FigurésP[7, .10, 3.2 are all chaizaeby an upper-left
block that is diagonal, i.e., they have the structure

D E
A:(F C), (3.3)

in which D is diagonal and”, E/, and F' are sparse matrices. The upper-diagonal
block corresponds to unknowns from the previous levels fifiement and its pres-
ence is due to the ordering of the equations in use. As newcegerére created in
the refined grid, they are given new numbers and the initiadbmering of the vertices
is unchanged. Since the old connected vertices are “cut’day ones, they are no
longer related by equations. Sets such as these are gallegendent set$ndepen-
dent sets are especially useful in parallel computing, fgulementing both direct
and iterative methods.

Referring to the adjacency gragh = (V, E) of the matrix, and denoting by
(z,y) the edge from vertex to vertexy, anindependent sef is a subset of the
vertex sefl” such that

ifx €S, then {(z,y) e £ or (y,z) €e E} -y ¢&S.

To explain this in words: Elements &f are not allowed to be connected to
other elements of either by incoming or outgoing edges. An independent set is

88 CHAPTER 3. SPARSE MATRICES

CC N N I
EEEEE ! | | |
[} [} [} [} [} [}
nEm_ =W ___
IH 'HE 'H | |
jEmEEEEE | -
W EE Em o
=g i m~ im~™ =" ="r
| EE EE E
I EEEEmEE |
ly__y__ B _ER _Em __, |
| | IHE EE H
. | EEEEEEE
Ll Em_EE _E
T EE W
SN -1
1 1 1 1 I. .I.

Figure 3.8: Reverse Cuthill-McKee starting with= 1.

maximalif it cannot be augmented by elements in its complement tm fararger
independent set. Note that a maximal independent set is hmaans the largest
possible independent set that can be found. In fact, findiegridependent set of
maximum cardinal isVP-hard [183]. In the following, the ternmdependent set
always refers tonaximal independent set

There are a number of simple and inexpensive heuristicsrfdiny large maxi-
mal independent sets. A greedy heuristic traverses thesnodegiven order, and if
a node is not already marked, it selects the node as a hew memBe Then this
node is marked along with its nearest neighbors. Here, @&seaeighbor of a node
x means any node linked toby an incoming or an outgoing edge.

ALGORITHM 3.4 Greedy Algorithm for ISO

1. SetS = ().
2. Forj =1,2,...,n Do:
3. If nodej is not marked then
4, S=5SuU{j}
5. Mark j and all its nearest neighbors
6. Endif
7. EndDo
In the above algorithm, the nodes are traversed in the naitdar 1,2, ..., n,
but they can also be traversed in any permutafign. . . , i, } of {1,2,...,n}. Since

the size of the reduced systemris— |S], it is reasonable to try to maximize the
size of S in order to obtain a small reduced system. It is possible ¥e girough

3.3. PERMUTATIONS AND REORDERINGS 89

idea of the size of5. Assume that the maximum degree of each node does not
exceedv. Whenever the above algorithm accepts a node as a new membBeito
potentially puts all its nearest neighbors, i.e., at mosbdes, in the complement of
S. Therefore, ifs is the size ofS, the size of its complement, — s, is such that
n — s < vs, and as a result, n
s > .
“1+v

This lower bound can be improved slightly by replacingith the maximum degree
vg of all the vertices that constituté. This results in the inequality

s >
“1+vg’

which suggests that it may be a good idea to first visit the siodi smaller degrees.
In fact, this observation leads to a general heuristic iggra good order of traver-
sal. The algorithm can be viewed as follows: Each time a nedésited, remove it
and its nearest neighbors from the graph, and then visit a froth the remaining
graph. Continue in the same manner until all nodes are etd@usvery node that is
visited is a member of and its nearest neighbors are memberS.oAs result, ify;
is the degree of the node visited at stepdjusted for all the edge deletions resulting
from the previous visitation steps, then the numbgof nodes that are left at stép
satisfies the relation

ni=mn;—1—V; — 1.

The process adds a new element to theSsat each step and stops when= 0.

In order to maximizgS|, the number of steps in the procedure must be maximized.
The difficulty in the analysis arises from the fact that thgrdes are updated at each
stepi because of the removal of the edges associated with the eshmmdes. If the
process is to be lengthened, a rule of thumb would be to Yisinbdes that have the
smallest degrees first.

ALGORITHM 3.5 Increasing Degree Traversal for ISO

SetS = (). Find an ordering, . .. , i, of the nodes by increasing degree.
Forj =1,2,...n, Do:
If nodei; is not marked then
S =5SU{i;}
Marki; and all its nearest neighbors
EndIf
EndDo

NSO OAWNR

A refinement to the above algorithm would be to update theesEgof all nodes
involved in a removal, and dynamically select the one withdmallest degree as the
next node to be visited. This can be implemented efficiendipgia min-heap data
structure. A different heuristic is to attempt to maximiae humber of elements i$i
by a form of local optimization which determines the ordetraf’ersal dynamically.
In the following, removing a vertex from a graph means defethe vertex and all
edges incident to/from this vertex.

90 CHAPTER 3. SPARSE MATRICES

Example 3.5. The algorithms described in this section were tested ondhges
example used before, namely, the finite element mesh probiénigure[ZT0. Here,
all strategies used yield the initial independent set inntizrix itself, which corre-
sponds to the nodes of all the previous levels of refinemdrnis May well be optimal
in this case, i.e., a larger independent set may not exist. |

Multicolor orderings. Graph coloring is a familiar problem in computer science
which refers to the process of labeling (coloring) the nanfes graph in such a way
that no two adjacent nodes have the same label (color). Taeaj@raph color-
ing is to obtain a colored graph which uses the smallest plessumber of colors.
However, optimality in the context of numerical linear dge is a secondary issue
and simple heuristics do provide adequate colorings. Basitiods for obtaining a
multicoloring of an arbitrary grid are quite simple. Theyyren greedy techniques,
a simple version of which is as follows.

ALGORITHM 3.6 Greedy Multicoloring Algorithm

1. Fori=1,...,n Do: setColor(i) = 0.

2. Fori =1,2,...,n Do:

3. Set Colofi) = min {k > 0 | k # Color(j),V j € Adj(i))}
4. EndDo

Line 3 assigns the smalleatlowable color number to node. Allowable means a
positive number that is different from the colors of the hbigrs of nodei. The
procedure is illustrated in FiguEe~B.9. The node being ealan the figure is indi-
cated by an arrow. It will be assigned color number 3, the lestapositive integer
different from 1, 2, 4, 5.

In the above algorithm, the ordér2,...,n has been arbitrarily selected for
traversing the nodes and coloring them. Instead, the naatede traversed in any
order{iy, io, ..., i,}. If a graph isbipartite, i.e., if it can be colored with two

colors, then the algorithm will find the optimal two-colord&Black) ordering for

Breadth-Firsttraversals. In addition, if a graph is bipartite, it is easyshow that

the algorithm will find two colors for any traversal which, agiven step, visits an
unmarked node that is adjacent to at least one visited nodgeneral, the number
of colors needed does not exceed the maximum degree of eaeh+#io These
properties are the subject of Exercigks 7[@nd 6.

Example 3.6. Figure[37TD illustrates the algorithm for the same exampéalear-
lier, i.e., the finite element mesh problem of Figlre P.10e @lashed lines separate
the different color sets found. Four colors are found in &xample. O

Once the colors have been found, the matrix can be permutkdvi® a block
structure in which the diagonal blocks are diagonal. Abéuely, the color sets
S; = [z'gj), e z‘ﬁfj)] and the permutation array in the algorithms can be used.

3.3. PERMUTATIONS AND REORDERINGS 91

Figure 3.10: Graph and matrix corresponding to mesh of EGUED after multicolor
ordering.

3.3.4 Irreducibility

Remember that pathin a graph is a sequence of vertiagswvs, . . . , vx, wWhich are
such that(v;,v;41) is an edge fori = 1,...,k — 1. Also, a graph is said to be
connectedf there is a path between any pair of two vertice$inA connected com-
ponentin a graph is anaximal subsetf vertices which all can be connected to one
another by paths in the graph. Now consider matrices whagghgmmay bélirected

A matrix is reducibleif its graph is not connected, amdeducible otherwise. When

a matrix is reducible, then it can be permuted by mearsyofmetrigoermutations
into a block upper triangular matrix of the form

A A A
Agy Ass

APP

92 CHAPTER 3. SPARSE MATRICES

where each partition corresponds to a connected compolteistclear that linear
systems with the above matrix can be solved through a sequrstbsystems with
the matricesd;;,i = p,p—1,...,1.

3.4 Storage Schemes

In order to take advantage of the large number of zero elengmecial schemes are
required to store sparse matrices. The main goal is to repremsly the nonzero
elements, and to be able to perform the common matrix opesatin the following,
Nz denotes the total number of nonzero elements.

The simplest storage scheme for sparse matrices is thdled-caordinate for-
mat. The data structure consists of three arrays: (1) anegl eontaining all the real
(or complex) values of the nonzero elementsdoin any order; (2) an integer array
containing their row indices; and (3) a second integer acraytaining their column
indices. All three arrays are of lengftiz, the number of nonzero elements.

Example 3.7. The matrix

1. 0. 0. 2. O
3. 4. 0. 5 0.
A=1|6. 0. 7. 8 0O
0. 0. 10. 11. O.
0. 0. 0. 0. 12

will be represented (for example) by
AA [12.9. 7. 5. 1. 2. 11. 3. 6. 4
R[5 332 1142 3 2 3 4
|5 53 414 41 1 2

In the above example, the elements are listed in an arbitnakgr. In fact, they
are usually listed by row or columns. If the elements wetedidy row, the array C'
which contains redundant information might be replaced myamay which points
to the beginning of each row instead. This would involve regiigible savings in
storage. The new data structure has three arrays with tleevfog functions:

e Areal arrayAA contains the real values; stored row by row, from row 1 to
n. The length ofAA is N z.

e Aninteger array/ A contains the column indices of the elememtsas stored
in the arrayA A. The length of/ A is Nz.

e An integer arrayl A contains the pointers to the beginning of each row in the
arraysAA and JJA. Thus, the content of A(7) is the position in arrayst A
andJ A where thei-th row starts. The length ofA is n + 1 with TA(n + 1)

3.4. STORAGE SCHEMES 93

containing the numbefA(1) + Nz, i.e., the address ial and JA of the
beginning of a fictitious row number + 1.

Thus, the above matrix may be stored as follows:

AA | 1. 2. 3 4 5 6. 7. 8 9. 10 11 1P
JA |1 41 2 413 45 3 4 5
A |1 3 6 10 12 13|

This format is probably the most popular for storing genesgdrse matrices.
It is called theCompressed Sparse RG@SR) format. This scheme is preferred
over the coordinate scheme because it is often more usefpefforming typical
computations. On the other hand, the coordinate schemevantdeous for its
simplicity and its flexibility. It is often used as an “entryrmat in sparse matrix
software packages.

There are a number of variations for the Compressed SpamsedRmat. The
most obvious variation is storing the columns instead ofdiwes. The corresponding
scheme is known as tl@ompressed Sparse Coluf@®SC) scheme.

Another common variation exploits the fact that the diag@haments of many
matrices are all usually nonzero and/or that they are aedessre often than the rest
of the elements. As a result, they can be stored separatebMddified Sparse Row
(MSR) format has only two arrays: areal arrdyl and an integer arrayA. The first
n positions inAA contain the diagonal elements of the matrix in order. Thesadu
positionn + 1 of the arrayAA may sometimes carry some information concerning
the matrix.

Starting at positiom + 2, the nonzero entries ofl A, excluding its diagonal
elements, are stored by row. For each elemeAtk), the integet/ A(k) represents
its column index on the matrix. The+ 1 first positions ofJ A contain the pointer
to the beginning of each row iHA and JA. Thus, for the above example, the two
arrays will be as follows:

AA | 1 4 7.11.12. * 2. 3. 5 6. 8 9 10.
JA |7 810131414 4 1 4 1 4 5 3

The star denotes an unused location. Notice thétn) = JA(n + 1) = 14, indi-
cating that the last row is a zero row, once the diagonal el¢imes been removed.
Diagonally structured matrices are matrices whose norgleraents are located
along a small number of diagonals. These diagonals can bedsito a rectangular
arrayDIAG(1:n,1:Nd), whereNd is the number of diagonals. The offsets of each
of the diagonals with respect to the main diagonal must bevknorhese will be
stored in an arrayOFF (1:Nd). Thus, the element; ; . ;,z(;) Of the original matrix
is located in positior{i, j) of the arrayDIAG, i.e.,

DIAG(i,) < @i itiofi(j)-

94 CHAPTER 3. SPARSE MATRICES

The order in which the diagonals are stored in the columnBIaf: is generally
unimportant, though if several more operations are perormith the main diago-
nal, storing it in the first column may be slightly advantaggedNote also that all the
diagonals except the main diagonal have fewer thalements, so there are positions
in DIAG that will not be used.

Example 3.8. For example, the following matrix which has three diagonals

1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
A=1]0. 6. 7. 0. 8
0. 0. 9. 10. O.
0. 0. 0. 11. 12

will be represented by the two arrays

* 1 2.
3. 4. 5.
DIAG=| 6. 7. 8. IOFF = :
9. 10. *
11 12, *

|

A more general scheme which is popular on vector machineseisd-called
Ellpack-Itpack format. The assumption in this scheme i$ tthere are at mosvd
nonzero elements per row, whetéis small. Then two rectangular arrays of dimen-
sionn x Nd each are required (one real and one integer). The @0at, is similar
to DIAG and contains the nonzero elements4ofThe nonzero elements of each row
of the matrix can be stored in a row of the ar@gEF (1:n,1:Nd), completing the
row by zeros as necessary. Together WORF, an integer arrayCOEF (1:n,1:Nd)
must be stored which contains the column positions of eatily enCOEF.

Example 3.9. Thus, for the matrix of the previous example, the Ellpagatk
storage scheme is

1. 2. 0 1 3 1
3. 4. 5. 1 2 4
COEF=| 6. 7. 8. JCOEF=]2 3 5
9. 10. O 3 4 4
11 12. O 4 5 5

A certain column number must be chosen for each of the zenoegits that must
be added to pad the shorter rowsAfi.e., rows 1, 4, and 5. In this example, those
integers are selected to be equal to the row numbers, as ceeeben theJCOEF
array. This is somewhat arbitrary, and in fact, any integgwkenl andn would be

3.5. BASIC SPARSE MATRIX OPERATIONS 95

acceptable. However, there may be good reasons for notingséne same integers
too often, e.g. a constant number, for performance coratides. O

3.5 Basic Sparse Matrix Operations

The matrix-by-vector product is an important operationakhis required in most of
the iterative solution algorithms for solving sparse linggstems. This section shows
how these can be implemented for a small subset of the stecigenes considered
earlier.

The following FORTRAN 90 segment shows the main loop of therixdy-
vector operation for matrices stored in the Compresseds8fRow stored format.

DO I=1, N
K1 = IA(I)
K2 = TA(I+1)-1
Y(I) = DOTPRODUCT (A(K1:K2),X(JA(K1:K2)))
ENDDO

Notice that each iteration of the loop computes a differarhgonent of the
resulting vector. This is advantageous because each o twaponents can be
computed independently. If the matrix is stored by coluntimsn the following code
could be used instead:

DO J=1, N

K1 = TA(JD)

K2 = TA(J+1)-1

Y(JA(KL1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)
ENDDO

In each iteration of the loop, a multiple of thigh column is added to the result,
which is assumed to have been initially set to zero. Noticg that the outer loop
is no longer parallelizable. An alternative to improve flat&ation is to try to split
the vector operation in each inner loop. The inner loop hasdierations, in gen-
eral, so this is unlikely to be a sound approach. This corapardemonstrates that
data structures may have to change to improve performanea deéaling with high
performance computers.

Now consider the matrix-by-vector product in diagonal atyr.

DO J=1, NDIAG
JOFF = IOFF(J)
DO I=1, N
Y(I) = Y(I) +DIAG(I,J)*X(JOFF+I)
ENDDO
ENDDO

96 CHAPTER 3. SPARSE MATRICES

Here, each of the diagonals is multiplied by the veat@nd the result added to
the vectory. It is again assumed that the veciphas been filled with zeros at the
start of the loop. From the point of view of parallelizationd#or vectorization, the
above code is probably the better to use. On the other haigdydt general enough.

Solving a lower or upper triangular system is another ingodrt'kernel” in
sparse matrix computations. The following segment of cdd®vs a simple rou-
tine for solving a unit lower triangular systehw = y for the CSR storage format.

X(1) = YD
DOI =2, N
K1 = TAL(I)

K2 = TAL(I+1)-1
X(I)=Y(I)-DOTPRODUCT (AL(K1:K2) ,X(JAL(K1:K2)))
ENDDO

At each step, the inner product of the current solutiawmith thei-th row is computed
and subtracted from(:). This gives the value af(i). Thedotproduct function
computes the dot product of two arbitrary vectark1:k2) andv(k1:k2). The
vectorAL (K1:X2) is thei-th row of the matrixZ. in sparse format ank(JAL (K1:K2))
is the vector of the components Xfyatheredinto a short vector which is consistent
with the column indices of the elements in the rdi(K1:K2).

3.6 Sparse Direct Solution Methods

Most direct methods for sparse linear systems perform anddtbfization of the
original matrix and try to reduce cost by minimizing fill-inse., nonzero elements
introduced during the elimination process in positions alihivere initially zeros.
The data structures employed are rather complicated. Thecemles relied heavily
on linked listswhich are convenient for inserting new nonzero elementsiked-
list data structures were dropped in favor of other more dyoachemes that leave
some initial elbow room in each row for the insertions, arehthdjust the structure
as more fill-ins are introduced.

A typical sparse direct solution solver for positive defnihatrices consists of
four phases. First, preordering is applied to reduce fill-ivo popular methods
are used: minimum degree ordering and nested-dissecti@ring. Second, a sym-
bolic factorization is performed. This means that the faz&tion is processed only
symbolically, i.e., without numerical values. Third, thenmerical factorization, in
which the actual factoré& andU are formed, is processed. Finally, the forward and
backward triangular sweeps are executed for each diffeigdrtthand side. In a code
where numerical pivoting is necessary, the symbolic phaseat be separated from
the numerical factorization.

3.6. SPARSE DIRECT SOLUTION METHODS 97

3.6.1 Minimum degree ordering

The minimum degree (MD) algorithm is perhaps the most pomsitategy for min-
imizeing fill-in in sparse Gaussian elimination, specificdbr SPD matrices. At a
given step of Gaussian elimination, this strategy seldwsnbde with the smallest
degree as the next pivot row. This will tend to reduce fill-ifo be exact, it will
minimize (locally) an upper bound for the number of fill-ife&t will be introduced
at the corrresponding step of Gaussian Elimination.

In contrast with the Cuthill McKee ordering, minimum degmdering does not
have, nor does it attempt to have, a banded structure. Wigilalgorithm is excellent
for sparse direct solvers, it has been observed that it doeganform as the RCM
ordering when used in conjunction with preconditioning #Bte”ID).

The Multiple Minimum Degree algorithm is a variation due tw [204,[143]
which exploits independent sets of pivots at each step. d@sgof nodes adjacent
to any vertex in the independent set are updated only aftgedices in the set are
processed.

3.6.2 Nested Dissection ordering

Nested dissection is used primarily to reduce fill-in in spadirect solvers for Sym-
metric Positive Definite matrices. The technique is easdlgctibed with the help
of recursivity and by exploiting the concept of ‘separatofsset S of vertices in a
graph is called a separator if the removalSofesults in the graph being split in two
disjoint subgraphs. For example, each of the intermedéateld in the BFS algorithm
is in fact a separator. The nested dissection algorithm eaubcinctly described by
the following algorithm

ALGORITHM 3.7 ND(G, nmin)

1 If|V| < nmin

2 label nodes oV

3 Else

4. Find a separatas for V

5. Label the nodes of

6 SplitV into G, Gr by removingS
7 ND(Gr,, nmin)

8 ND(G r, nmin)

9 End

The labeling of the nodes in Lines 2 and 5, usually proceedgqguence, so for
example, in Line 5, the nodes 6fare labeled in a certain order, starting from the
last labeled node so far in the procedure. The main step diiih@rocedure is to
separate the graph in three parts, two of which have no aaypktween each other.
The third set has couplings with vertices from both of the Bets and is referred to
as a sepator. The key idea is to separate the graph in this meathan repeat the

98 CHAPTER 3. SPARSE MATRICES

process recursively in each subgraph. The nodes of theatepare numbered last.
An illustration is shown ifc3.71.

[i]

,,,

,,,

Figure 3.11: Nested dissection ordering and correspondioglered matrix

3.7 Test Problems

For comparison purposes it is important to use a common sitsbimatrices that
represent a wide spectrum of applications. There are twimdisvays of providing
such data sets. The first approach is to collect sparse emirica well-specified
standard format from various applications. This approachsied in the Harwell-
Boeing collection of test matrices. The second approaahgsherate these matrices
with a few sample programs such as those provided in the SRRR®rary [P45].
The coming chapters will use examples from these two sourdceparticular, five
test problems will be emphasized for their varying degrdekfficulty.

The SPARSKIT package can generate matrices arising fromlisieestization of
the two- or three-dimensional Partial Differential Eqoag

_0 (0u) _ 0 (ou) O (Ou
Ox \ Oz dy \ Oy 0z \ 0z

0(du) 9J(eu) O(fu)
+(9x 8y+8z+gu_h
on rectangular regions with general mixed-type boundarydimns. In the test
problems, the regions are the squére= (0,1)?, or the cube®2 = (0,1)3; the
Dirichlet conditionu = 0 is always used on the boundary. Only the discretized ma-
trix is of importance, since the right-hand side will be t¢esbartificially. Therefore,
the right-hand side,, is not relevant.

3.7. TEST PROBLEMS 99

a(x, y) -
b(wa y) -
10

N e T
I

Figure 3.12: Physical domain and coefficients for Problem 2.

Problem 1: F2DA. In the first test problem which will be labeled F2DA, the
domain is two-dimensional, with

a(z,y) = b(z,y) = 1.0

and

dz,y) =v(x+y), elxy) =v@-y), flr,y)=g(y =00, (3.4)

where the constant is equal to 10. If the number of points in each direction is 34,
then there are, = n, = 32 interior points in each direction and a matrix of size

n = ng x n, = 322 = 1024 is obtained. In this test example, as well as the other
ones described below, the right-hand side is generated as

b = Ae,

in whiche = (1,1,...,1)T. The initial guess is always taken to be a vector of
pseudo-random values.

Problem 2: F2DB. The second test problem is similar to the previous one but
involves discontinuous coefficient functionsandb. Here,n, = n, = 32 and the
functionsd, e, f, g are also defined by (3.4). However, the functienandb now
both take the value 1,000 inside the subsquare of widtentered at¥, 1), and one
elsewhere in the domain, i.e.,

100 if f<zy<?
a(r,y) = b(z,y) = { 1 otherwise

The domain and coefficients for this problem are shown isreigl2.

100 CHAPTER 3. SPARSE MATRICES

Problem 3: F3D. The third test problem is three-dimensional with = n, =
n, = 16 internal mesh points in each direction leading to a problémize n =
4096. In this case, we take

a(z,y,z) =b(z,y,2) = c(x,y,2) =1

d(ac,y, Z) = Vexy7 e(ac,y, Z) = Ve_myv
and
f(x,y,2) = g(x,y,2) = 0.0.

The constant is taken to be equal to 10.0 as before.

The Harwell-Boeing collection is a large data set congjstih test matrices
which have been contributed by researchers and engineansnfrany different dis-
ciplines. These have often been used for test purposes iitereture [I08]. The
collection provides a data structure which constitutes aeleent medium for ex-
changing matrices. The matrices are stored as ASCII filds avitery specific for-
mat consisting of a four- or five-line header. Then, the datsaining the matrix
is stored in CSC format together with any right-hand sideitial guesses, or exact
solutions when available. The SPARSKIT library also pregidoutines for reading
and generating matrices in this format.

Only one matrix from the collection was selected for testimg algorithms de-
scribed in the coming chapters. The matrices in the last ésbexamples are both
irregularly structured.

Problem 4: ORS The matrix selected from the Harwell-Boeing collection is
ORSIRR1. This matrix arises from a reservoir engineeringbl@m. Its size is

n = 1030 and it has a total ofVz =6,858 nonzero elements. The original prob-
lem is based on @l x 21 x 5 irregular grid. In this case and the next one, the
matrices are preprocessed by scaling their rows and columns

Problem 5: FID This test matrix is extracted from the well known fluid flow
simulation package FIDARTIR0]. Itis actually the test epd@mumber 36 from this
package and features a two-dimensional Chemical Vapor $tpoin a Horizontal
Reactor. The matrix has a sizerot= 3079 and hasVz = 53843 nonzero elements.
It has a symmetric pattern and few diagonally dominant romstumns. The rows
and columns are prescaled in the same way as in the previanspéx Figuré-3.13
shows the patterns of the matrices ORS and FID.

PROBLEMS

P-3.1 Consider the mesh of a discretized PDE. In which situatistise graph representing
this mesh the same as the adjacency graph of the matrix? &awepdes from both Finite
Difference and Finite Element discretizations.

3.7. TEST PROBLEMS 101

Figure 3.13: Patterns of the matrices ORS (left) and FICh{yig

P-3.2 Let A and B be two sparse (square) matrices of the same dimension. Hothea
graph ofC' = A + B be characterized with respect to the graphd @ind B?

P-3.3 Consider the matrix defined as
P =1I...

Show directly (without using Propositi@n 8.2 or interchamgatrices) that the following three
relations hold

ATI',* = Iﬂ,*A
I*,Tr - PT?
APY = A, ..
P-3.4 Consider the two matrices

*x * 0 = 0 0 ~ 0 0 0 0 O
0O ~ 0 0 0 «% * 0 x 0 % O
0O ~ ~ 0 0 O 0O~ 0 0 0 O
A= 0 « 00 « 0 B = * « 0 0 0 0
0 000 O 0 x 0 « = O
0 000 0 % 0 0 « 0 0 %

where ax represents an arbitrary nonzero element.

a. Show the adjacency graphs of the matrides3, AB, and BA. (Assume that there
are no numerical cancellations in computing the produldisand BA). Since there
are zero diagonal elements, represent explicitly the sycteresponding to the,)
edges when they are present.

b. Consider the matrix’ = AB. Give an interpretation of an edge in the graphCoin
terms of edges in the graph dfand B. Verify this answer using the above matrices.

c. Consider the particular case in whith= A. Give an interpretation of an edge in the
graph ofC' in terms of paths of length two in the graph.4f The paths must take into
account the cycles corresponding to nonzero diagonal elesnoéA.

102 CHAPTER 3. SPARSE MATRICES

d. Now consider the case wheBe= A2. Give an interpretation of an edge in the graph
of C' = A? in terms of paths of length three in the graph/bfGeneralize the result to
arbitrary powers of.

P-3.5 Consider two matriced andB of dimensiom x n, whose diagonal elements are all
nonzeros. LeFx denote the set of edges in the adjacency graph of a métiixe., the set
of pairs(4, j) suchX;; # 0), then show that

Eiap D EAUER.

Give extreme examples wheéR 45| = n? while E4 U Ep is of ordern. What practical
implications does this have on ways to store products ofsgpanatrices (Is it better so store
the productAB or the pairsA, B separately? Consider both the computational cost for
performing matrix-vector products and the cost of memory)

P-3.6 Consider & x 6 matrix which has the pattern

* % *
* kK *
A= *x X%
*x K
* * kK
* * K

a. Show the adjacency graph af

b. Consider the permutation = {1, 3,4,2,5,6}. Show the adjacency graph and new
pattern for the matrix obtained from a symmetric permutatib A based on the per-
mutation arrayr.

P-3.3 You are given a® matrix which has the following pattern:

r X T
r T X r X
r Tr X x
r Tr T
r Tr T
r X r Tr T
x r Tr X
x r X

a. Show the adjacency graph 4f;

b. Find the Cuthill Mc Kee ordering for the matrix (break ti@g giving priority to the
node with lowest index). Show the graph of the matrix permwecording to the
Cuthill-Mc Kee ordering.

c. Whatis the Reverse Cuthill Mc Kee ordering for this cask@vsthe matrix reordered
according to the reverse Cuthill Mc Kee ordering.

d. Find a multicoloring of the graph using the greedy multca@lgorithm. What is the
minimum number of colors required for multicoloring the gh®

e. Consider the variation of the Cuthill Mc-Kee ordering ihiah the first level consists
L several vertices instead on only one vertex. Find the GuittlKee ordering with
this variant with the starting levdl, = {1, 8}.

3.7. TEST PROBLEMS 103

P-3.6 Consider a matrix which has the pattern

* * *
*

X ot
> >t
*

*
*

* * kK
* R S ¢
* * * K

a. Show the adjacency graph.af (Place the 8 vertices on a circle.)

b. Consider the permutation = {1,3,5,7,2,4,6,8}. Show the adjacency graph and
new pattern for the matrix obtained from a symmetric permmneof A based on the
permutation arrayt.

c. Show the adjacency graph and new pattern for the matriairodd from a reverse
Cuthill-McKee ordering ofA starting with the node 1. (Assume the vertices adjacent
to a given vertex are always listed in increasing order irdtita structure that describes
the graph.)

d. Find a multicolor ordering forl (give the vertex labels color 1, followed by those for
color 2, etc.).

P-3.5 Given a five-point finite difference graph, show that the dyeglgorithm will always
find a coloring of the graph with two colors.

P-3.6 Prove that the total number of colors found by the greedy ioaltiring algorithm
does not exceed,, ... + 1, wherev,,,, is the maximum degree of all the vertices of a graph
(not counting the cycleg, i) associated with diagonal elements).

P-3.7 Consider a graph that is bipartite, i.e., 2-colorable. Assuhat the vertices of the
graph are colored by a variant of Algorithia{BB.6), in whick trodes are traversed in a certain
orderiq,is, ..., ip.

a. Isittrue that for any permutatian, . . . , i,, the number of colors found will be two?

b. Consider now a permutation satisfying the following pdp: for each; at least one
of the nodesi, is, ..., i;_1 is adjacent tai;. Show that the algorithm will find a

2-coloring of the graph.

¢. Among the following traversals indicate which ones $atise property of the previous
question: (1) Breadth-First Search, (2) random trave(8alraversal defined bi; =
any node adjacent g_;.

P-3.4 Given a matrix that is irreducible and with a symmetric patteshow that its struc-
tural inverse is dense. Structural inverse means the paifehe inverse, regardless of the
values, or otherwise stated, is the union of all pattern$efitverses for all possible val-
ues. [Hint: Use Cayley Hamilton’s theorem and a well knowsuteon powers of adjacency
matrices mentioned at the end of Secfion3.2.1.]

P-3.5 The most economical storage scheme in terms of memory usathe ifollowing
variation on the coordinate format: Store all nonzero vatyg in a real arrayA A[1 : Nz]
and the corresponding “linear array addregs”1)n-+j in aninteger array A[1 : Nz]. The
order in which these corresponding entries are stored ispmitant as long as they are both
in the same position in their respective arrays. What aradvantages and disadvantages of

104 CHAPTER 3. SPARSE MATRICES

this data structure? Write a short routine for performingarir-by-vector product in this
format.

P-3.6 Write a FORTRAN-90 or C code segment to perform the matrix#egtor product
for matrices stored in Ellpack-Itpack format.

P-3.7 Write a small subroutine to perform the following operaian a sparse matrix in
coordinate format, diagonal format, and CSR format:

a. Countthe number of nonzero elements in the main diagonal;
b. Extract the diagonal whose offsetkis

¢. Add a nonzero element in positidh ;) of the matrix (this position may initially con-
tain a zero or a nonzero element);

d. Add a given diagonal to the matrix. What is the most cormenstorage scheme for
each of these operations?

P-3.5 Linked lists is another popular scheme often used for sjosparse matrices. These
allow to link togetherk data items (e.g., elements of a given row) in a large lineayarA
starting position is given in the array which contains thet #lement of the set. Then, a link
to the next element in the array is provided from a LINK array.

a. Show how to implement this scheme. A linked list is to bedifee each row.
b. What are the main advantages and disadvantages of liists® |
¢. Write an algorithm to perform a matrix-by-vector produncthis format.

NOTES AND REFERENCES Two good references on sparse matrix computations aredble tyy
George and Liu[144] and the more recent volume by Duff, Eaispand Reid[107]. These are geared
toward direct solution methods and the first specializeyimrsetric positive definite problems. Also
of interest arel[221] and([227] and the early survey by CIUig]L

Sparse matrix techniques have traditionally been assatiaith direct solution methods. This
has changed in the last decade because of the increasedrsedektthree-dimensional problems. The
SPARSKIT library, a package for sparse matrix computatif4s]] is available from the author at:
http://www.cs.umn.edu/ saad/software .

Another available software package which emphasizes bbjeented design with the goal of hiding
complex data structures from users is PETSE [24].

The idea of the greedy multicoloring algorithm is known imiké Element techniques (to color
elements); see, e.g., Benantar and Flah&rfly [31]. [Wu [3djgmts the greedy algorithm for multicol-
oring vertices and uses it for SOR type iterations, see 288][The effect of multicoloring has been
extensively studied by AdamBl[2 3] and Poole and Ortegal[228eresting results regarding multi-
coloring in the context of finite elements based on quadgteetures have been obtained by Benantar
and Flahertyl[31] who show, in particular, that with thisustiure a maximum of six colors is required.
|

Chapter 4

BASIC ITERATIVE METHODS

The first iterative methods used for solving large linear systems were based on relaxation of the
coordinates. Beginning with a given approximate solution, these methods modify the compo-
nents of the approximation, one or a few at a time and in a certain order, until convergence is
reached. Each of these modifications, called relaxation steps, is aimed at annihilating one or a
few components of the residual vector. Now, these techniques are rarely used separately. How-
ever, when combined with the more efficient methods described in later chapters, they can be
quite successful. Moreover, there are a few application areas where variations of these methods
are still quite popular.

4.1 Jacobi, Gauss-Seidel, and SOR

This chapter begins by reviewing the basic iterative mettfod solving linear sys-
tems. Given am x n real matrixA and a reah-vectorbd, the problem considered is:
Find = belonging taR™ such that

Az = b (4.1)

Equation [Z11) is dinear system A is the coefficient matrix b is the right-hand
side vector, andz is the vector of unknowns Most of the methods covered in
this chapter involve passing from one iterate to the next bdifying one or a few
components of an approximate vector solution at a time. iBhigtural since there
are simple criteria when modifying a component in order tpriove an iterate. One
example is to annihilate some component(s) of the resideelovb — Az. The
convergence of these methods is rarely guaranteed for #ilbes, but a large body of
theory exists for the case where the coefficient matrix aifisen the finite difference
discretization of Elliptic Partial Differential Equatisen
We begin with the decomposition

A=D—-E—F, (4.2)

105

106 CHAPTER 4. BASIC ITERATIVE METHODS

in which D is the diagonal ofd, —F its strict lower part, and-F' its strict upper
part, as illustrated in Figufe4.1. It is always assumedtthatliagonal entries ol
are all nonzero.

Figure 4.1: Initial partitioning of matrix A.

The Jacobi iteration determines th¢h component of the next approximation
so as to annihilate theth component of the residual vector. In the foIIowinfgf)
denotes theé-th component of the iterate, andj; the i-th component of the right-
hand side». Thus, writing

(b — Axpi1), =0, (4.3)

in which (y); represents théth component of the vectay, yields

a€ Y = - > az‘jfj('k) + Bi,
=1

J#i
or

1 n
j=1

2
JF#i
This is a component-wise form of the Jacobi iteration. Alngmnents of the next
iterate can be grouped into the veciqr, ;. The above notation can be used to rewrite
the Jacobi iteratior{{4.4) in vector form as

Tpr1 = DY E + F)zy, + D™ 'b. (4.5)

Similarly, the Gauss-Seidel iteration corrects ikt component of the current
approximate solution, in the ordér= 1,2,...,n, again to annihilate théth com-
ponent of the residual. However, this time the approximateti®n is updated im-
mediately after the new component is determined. The newrtypzited components

4.1. JACOBI, GAUSS-SEIDEL, AND SOR 107

gfk), 1 =1,2,...,n can be changed within a working vector which is redefined at
each relaxation step. Thus, since the ordeér=sl, 2, .. ., the result at the-th step is
i—1 n
E+1 E+1 k
Bi — Zaijﬁj(- Ve - > az’jfj(' =0, (4.6)
j=1 j=i+1

which leads to the iteration,

i—1 n
1
= (Zamsﬁ»’”” =Y s)= @

@i \ i3 j=it1
The defining equatiori {4.6) can be written as
b+ Exgy1 — Doy + Foy = 0,
which leads immediately to the vector form of the Gauss-&eidration
Tpy1 = (D — BE) 'Fap + (D — E)~'b. (4.8)

Computing the new approximation ib_(#.5) requires muliipdyby the inverse
of the diagonal matrixD. In (£38) a triangular system must be solved with- E,
the lower triangular part oft. Thus, the new approximation in a Gauss-Seidel step
can be determined either by solving a triangular system thighmatrixD — E or
from the relation[(417).

A backwardGauss-Seidel iteration can also be defined as

(D — F)xpyq = B, + b, (4.9)
which is equivalent to making the coordinate correctionthéordem,n—1,...,1.
A Symmetric Gauss-Seidel Iteration consists of a forwardegwfollowed by a back-

ward sweep.
The Jacobi and the Gauss-Seidel iterations are both of the fo

Muzgy1 = Nz +b= (M — A)xyp + b, (4.10)
in which
A=M—-N (4.12)
is asplitting of A, with M = D for Jacobi,M = D — E for forward Gauss-Seidel,
and M = D — F for backward Gauss-Seidel. An iterative method of the form

#.10) can be defined for any splitting of the forin(4.11) veh&f is nonsingular.
Overrelaxationis based on the splitting

wA=(D—-wFE)— (wF+(1—-w)D),

and the correspondin§uccessive Over Relaxatig8OR) method is given by the
recursion
(D —wE)zpi1 = [wF + (1 —w)D]zy + wb. (4.12)

108 CHAPTER 4. BASIC ITERATIVE METHODS

The above iteration corresponds to the relaxation sequence
R = pefS L (1—w)e™ i=1,2,... n,

in which £9% is defined by the expression in the right-hand sid€al (4. Bagkward
SOR sweep can be defined analogously to the backward Gaides-Seeepl(419).

A Symmetric SOR (SSOR) step consists of the SOR §tepl(4.1ayvied by a
backward SOR step,

(D —wE)xpq1/0 = [WF+ (1 —w)Dl]xy, +wb
(D—wF)zpyr = WEA+ (1 —w)D]ag,/ +wb
This gives the recurrence
Th4+1 = wak + fwa

where

G, = (D—wF) Y wE+ (1 —-w)D) x

(D — wE) Y (wF + (1 —w)D), (4.13)

fo = wD—-wF) ' (I+WwE+(1-w)D](D—-wE)™") b (4.14)

Observing that
[WE+ (1 —w)D|(D —wE)™ = [-(D—-wE)+(2—w)D]|(D —wE)™!
= —I+(2-w)DD—-wE)™,

f. can be rewritten as

fo=w?2-w)(D—-wF)'D(D—wE)"'b.

4.1.1 Block Relaxation Schemes

Block relaxation schemes are generalizations of the “paogiaxation schemes de-
scribed above. They update a whole set of components at gaeh typically a
subvector of the solution vector, instead of only one conepbnThe matrix4 and
the right-hand side and solution vectors are partitioneilasvs:

A A Az - Ay &1 B
Agy A Axz - Ay, o 1))

A=A A2 Asg - A |, z=|&|,b=|0B|, (415
Apr App - e Apy &p Bp

in which the partitionings ob and x into subvectors3; and&; are identical and
compatible with the partitioning ofl. Thus, for any vector partitioned as in{4.15),

p
(Az); = Z Aij&j,

J=1

4.1. JACOBI, GAUSS-SEIDEL, AND SOR 109

in which (y); denotes the-th component of the vectar according to the above
partitioning. The diagonal blocks iA are square and assumed nonsingular.
Now define, similarly to the scalar case, the splitting

A=D—-F—-F
with
An
A
D= > : (4.16)
App
0] O Ap Ay
A (@) o .- A
B=— :21 : . , F=- . .217
Ap Ay - O o)

With these definitions, it is easy to generalize the previbuse iterative procedures
defined earlier, namely, Jacobi, Gauss-Seidel, and SOReXaonple, the block Ja-
cobi iteration is now defined as a technique in which the ndwem:torsffk) are all
replaced according to

At * Y = (B + F)ay), + 6;

or,
MY = AN (B + Plag), + A7 B, i=1,....p,

(2

which leads to the same equation as before,
Tpr1 = DY E + F)ay, + Db,

except that the meanings of, £, and £’ have changed to their block analogues.

With finite difference approximations of PDEs, it is stardiéw block the vari-
ables and the matrix by partitioning along whole lines ofriesh. For example, for
the two-dimensional mesh illustrated in Figlirel 2.5, thigipaning is

u11 U1 u31
u12 U2 u32
1= w3 |, S=|uas]|, §=|us
U4 (o u34
Uu1s U25 U35

This corresponds to the meBhl2.5 of Chapler 2, whose asswaistrix pattern is
shown in Figurd216. A relaxation can also be defined alongvérécal instead
of the horizontal lines. Techniques of this type are oftenvkm asline relaxation
techniques.

110 CHAPTER 4. BASIC ITERATIVE METHODS

In addition, a block can also correspond to the unknownscessal with a few
consecutive lines in the plane. One such blocking is ilatett in Figurd—Z12 for a
6 x 6 grid. The corresponding matrix with its block structurehewn in FigurdZ1.
An important difference between this partitioning and tine corresponding to the
single-line partitioning is that now the matricds; are block-tridiagonal instead of
tridiagonal. As a result, solving linear systems with may be much more expen-
sive. On the other hand, the number of iterations requireactoeve convergence
often decreases rapidly as the block-size increases.

G—6—063—6—C5—=G%
@5—@o—0)—08—09—=40

A A A AL\ AA A
A3——14—15——16——17—8
O—B—9—10——11—0@2
O—2—03—0—06—0®

Figure 4.3: Matrix associated with the mesh of Fiduré 4.2.

Finally, block techniques can be defined in more generalgeffirst, by using
blocks that allow us to update arbitrary groups of compaearnd second, by allow-
ing the blocks to overlap. Since this is a form of the domaeinposition method
which will be seen later, we define the approach carefullyfegoour partition has

4.1. JACOBI, GAUSS-SEIDEL, AND SOR 111

been based on an actust-partitionof the variable set = {1,2,...,n} into sub-
setsS, Se, ..., Sp, with the condition that two distinct subsets are disjoilnt.set
theory, this is called gartition of S. More generally, aset-decompositiof S
removes the constraint of disjointness. In other wordsri¢éégiired that the union of
the subsets$)’s be equal taS:

s;ics, | si=s
i=1,p

In the following, n; denotes the size df; and the subsef; is of the form,

Si = {m;(1),m;(2),...m;(n;)}.

A general block Jacobi iteration can be defined as follows.W.ée then x n;

matrix

Vi = [em;(1)> €mi(2)> - - - €mi(ns)]
and

Wi = [nmi(l)emi(l)’ T (2)€mi(2) - - - ’nmi(m)emi(m)]v

where eacle; is thej-th column of then x n identity matrix, andy,,,, ;) represents

a weight factor chosen so that
Wlv,=1.
When there is no overlap, i.e., when thgs form a partition of the whole set
{1,2,...,n}, then definey,,, ;) = 1.
Let A;; be then; x n; matrix

Aij = WAV,
and define similarly the partitioned vectors
&=Wla, Bi=w'b

Note thatViWiT is a projector fronR™ to the subspac&’; spanned by the columns
m;(1), ...,m;(n;). In addition, we have the relation

T = ZS: Vi&i-
=1

Then;-dimensional vectolV! z represents the projection W x of = with respect
to the basis spanned by the columnd/pfThe action ofl; performs the reverse op-
eration. That meang;y is an extension operation from a vectoin K; (represented
in the basis consisting of the columnsd) into a vectorV;y in R™. The operator
W is termed aestriction operatorandV; is anprolongation operatar

Each component of the Jacobi iteration can be obtained bgsmg the condi-
tion that the projection of the residual in the sparbpbe zero, i.e.,

Wi b= A VW zpa +) VW] | | =0.
J#i

112 CHAPTER 4. BASIC ITERATIVE METHODS

Remember thag; = Wj.Tx, which can be rewritten as

P — W AW (b — Awy). (4.17)

This leads to the following algorithm:

ALGORITHM 4.1 General Block Jacobi Iteration

1. Fork = 0,1,. .., until convergence Do:
2. Fori =1,2,...,p Do:

3. SolveA;;6; = WZT(b — Awk)

4. Setry 1 = x + Vid;

5. EndDo

6. EndDo

As was the case with the scalar algorithms, there is onlyghtstiifference be-
tween the Jacobi and Gauss-Seidel iterations. Gausst8ridediately updates the
component to be corrected at ste@and uses the updated approximate solution to
compute the residual vector needed to correct the next coempoHowever, the Ja-
cobi iteration uses the same previous approximatipifor this purpose. Therefore,
the block Gauss-Seidel iteration can be defined algoritalfyias follows:

ALGORITHM 4.2 General Block Gauss-Seidel Iteration

1 Until convergence Do:

2. Fori =1,2,...,p Do:

3. SolveA;;6; = WZT(b — Aw)
4 Setr .=z + V;9;

5 EndDo

6 EndDo

From the point of view of storage, Gauss-Seidel is more emiced because the new
approximation can be overwritten over the same vector. Aldgpically converges
faster. On the other hand, the Jacobi iteration has someabpp@arallel computers
since the seconBo loop, corresponding to thedifferent blocks, can be executed in
parallel. Although the point Jacobi algorithm by itselfasely a successful technique
for real-life problems, its block Jacobi variant, when gsiarge enough overlapping
blocks, can be quite attractive especially in a parallel poting environment.

4.1.2 Iteration Matrices and Preconditioning
The Jacobi and Gauss-Seidel iterations are of the form

Tpy1 = Grg + f, (4.18)
in which

Gya(A) = I—D A, (4.19)
Gas(A) I—(D-E)'A4, (4.20)

4.1. JACOBI, GAUSS-SEIDEL, AND SOR 113

for the Jacobi and Gauss-Seidel iterations, respectikbyeover, given the matrix
splitting
A=M — N, (4.21)

where A is associated with the linear systelm {4.1)near fixed-point iteratiorcan
be defined by the recurrence

Tpr1 = M INzy, + M0, (4.22)
which has the fornT{4.18) with
G=MIN=MYM-A)=I-M"TA f=M"'b (4.23)

For example, for the Jacobi iteratiohf = D, N = D — A, while for the Gauss-
Seidel iterationM = D —E.N=M —A=F.
The iterationzy; = Gz + f can be viewed as a technique for solving the
system
(I—-Gx=f.

SinceG has the formG = I — M ! A, this system can be rewritten as
M~YAz = M~ 'b.

The above system which has the same solution as the origisians is called pre-
conditioned systerand M is the preconditioning matribor preconditioner In other
words, a relaxation scheme is equivalent to a fixed-point iterattona precondi-
tioned system.

For example, for the Jacobi, Gauss-Seidel, SOR, and SSCaidies, these
preconditioning matrices are, respectively,

Mja = D, (4.24)
Mgs = D—E, (4.25)
1
Msor = ;(D —wk), (4.26)
1
Mssor) (D —wE)D YD — wF). (4.27)

Thus, the Jacobi preconditioner is simply the diagonal pivhile the Gauss-Seidel
preconditioner is the lower triangular part.4f The constant coefficients in front of
the matricesM sor and Mssor only have the effect of scaling the equations of the
preconditioned system uniformly. Therefore, they are yoartant in the precondi-
tioning context.

Note that the “preconditioned” system may be a full systemdekd, there is
no reason whyM —! should be a sparse matrix (even thoutthmay be sparse),
since the inverse of a sparse matrix is not necessarily espalss limits the number
of techniques that can be applied to solve the preconddi@ystem. Most of the
iterative techniques used only require matrix-by-vectmrdpicts. In this case, to

114 CHAPTER 4. BASIC ITERATIVE METHODS

computew = M~ Av for a given vectow, first computer = Av and then solve the
systemMw = r:

r = Av,

w = M'r

In some cases, it may be advantageous to exploit the sglitin= M — N and
computew = M~ Av asw = (I — M~'N)v by the procedure

The matrix N may be sparser thad and the matrix-by-vector productv may
be less expensive than the produtt. A number of similar but somewhat more
complex ideas have been exploited in the context of pretionéd iterative methods.
A few of these will be examined in Chapter 9.

4.2 Convergence

All the methods seen in the previous section define a sequdiitegates of the form
Tpy1 = G + f, (4.28)

in which GG is a certainiteration matrix The questions addressed in this section are:
(a) if the iteration converges, then is the limit indeed aigoh of the original system?
(b) under which conditions does the iteration converge?vf®n the iteration does
converge, how fast is it?

If the above iteration converges, its limitsatisfies

r=Ga+J. (4.29)

In the case where the above iteration arises from the sgliti= M — N, it is easy
to see that the solutianto the above system is identical to that of the original syste
Axz = b. Indeed, in this case the sequerlce {#.28) has the form

Tpp1 = M Nz, + M1

and its limit satisfies
Mzx=Nzx+b,

or Ax = b. This answers question (a). Next, we focus on the other tvestipns.

4.2. CONVERGENCE 115

4.2.1 General Convergence Result

If I — G is nonsingular then there is a solutiopto the equation{4.29). Subtracting
#.29) from [42B) yields

Ty — & = Gap —ay) = -+ = G (29 — 2,). (4.30)

Standard results seen in Chapter 1 imply that if the spedilis of the iteration
matrix G is less than unity, them; — x, converges to zero and the iterati@n{4.28)
converges toward the solution defined by (#.29). Convertiedyrelation

Tha1 — T = Gz — 1) = -+ = G*(f — (I — G)xo).

shows that if the iteration converges fmy z; and f thenG*v converges to zero for
any vectorv. As a resulty(G) must be less than unity and the following theorem is
proved:

Theorem 4.1 Let G be a square matrix such tha{G) < 1. Thenl — G is nonsin-
gular and the iteration[{4.28) converges for afiyandzy. Conversely, if the iteration
#@28) converges for for any andx, thenp(G) < 1.

Since it is expensive to compute the spectral radius of aixnatrfficient conditions
that guarantee convergence can be useful in practice. @hessificient condition
could be obtained by utilizing the inequaliG) < ||G||, for any matrix norm.

Corollary 4.2 LetG be a square matrix such thdt7|| < 1 for some matrix norm
|l.II. ThenI — G is nonsingular and the iteratiod(4P8) converges for anyiah
vectorz.

Apart from knowing that the sequende{4.28) converges, alde desirable to
know how fastit converges. The errat, = z — x, at stepk satisfies

dy, = GFd,.

The matrix G can be expressed in the Jordan canonical fornd7as X.JX 1.
Assume for simplicity that there is only one eigenvalu&-o6f largest modulus and
call it A. Then

k
dk:AhX<§> X 1d,.

A careful look at the powers of the matrik/\ shows that all its blocks, except the
block associated with the eigenvaltie converge to zero as tends to infinity. Let
this Jordan block be of sizeand of the form

J)\:/\I—I—E,

whereF is nilpotent of indexp, i.e., EP = 0. Then, fork > p,

p—1
Jf=u1+mk=ﬁu+A*mk=ﬁ(zlv%f>ﬁ>.
(3
=0

116 CHAPTER 4. BASIC ITERATIVE METHODS

If £ is large enough, then for anythe dominant term in the above sum is the last
term, i.e.,

k
k k—p+1 -1
~ NP EP~.
I3 (p—l)

Thus, the norm ofl;, = G*d,, has the asymptotical form
k—p+1 k
ldi|l = C > [A | :
p—1
whereC is some constant. Theonvergence factoof a sequence is the limit

. udku>”’f
= lim <— .
k—oo \ [|do|

It follows from the above analysis that= p(G). Theconvergence rate is the
(natural) logarithm of the inverse of the convergence facto

7=—Inp.

The above definition depends on the initial vecigr so it may be termed a
specificconvergence factor. eneralconvergence factor can also be defined by

¢ = lim <max HdkH>1/k.

ro \dock [[do]

1/k
L |G*dy|
¢ = Jlm <%§< o]
1/k
_ : k _
=t (IG*]) " = p(@).

Thus, the global asymptotic convergence factor is equaheospectral radius of
the iteration matrixz. The generalconvergence rate differs from tlspecificrate
only when the initial error does not have any components énirtliariant subspace
associated with the dominant eigenvalue. Since it is hakadav this information in
advance, thgeneralconvergence factor is more useful in practice.

This factor satisfies

Example 4.1. Consider the simple example Bichardson’s Iteration

Tpy1 =z +a(b— Axy), (4.31)
whereq is a nonnegative scalar. This iteration can be rewritten as

Tpr1 = (I — aA)xyg + ab. (4.32)

Thus, the iteration matrix i&, = I — aA and the convergence factordsl — aA).
Assume that the eigenvalugag i = 1, ..., n, are all real and such that,

/\min S /\2 S /\mam-

4.2. CONVERGENCE 117

Then, the eigenvalugs; of G, are such that
1- a)\max < i < 1- a)\min-

In particular, if \,;, < 0 and\,,.. > 0, at least one eigenvalue is 1, and so
p(Gy) > 1 for anya. In this case the method will always diverge for some initial
guess. Let us assume that all eigenvalues are positiveM ., > 0. Then, the
following conditions must be satisfied in order for the metho converge:

1—almin < 1,

1—admae > —1.

The first condition implies that > 0, while the second requires that< 2/X,4:-
In other words, the method converges for any scalaich satisfies

I<a< .

)\ma:c

The next question is: What is the best vatug, for the parameted, i.e., the value

of a which minimizesp(G,)? The spectral radius ¥, is

p(Go) = max{|1 — a\min|, |1 — Amaz!}-

This function of« is depicted in FigurE4l4. As the curve shows, the best pessib
is reached at the point where the cufve- \,,..«| with positive slope crosses the

curve|l — A\ina| With negative slope, i.e., when
—14+ Moz =1 — Aina.

11— ANnaz]
|1 —)\mmoz|

aopt)\min

)\maw

Figure 4.4: The curve(G,,) as a function ofx.

This gives)
Qopt = ———— .
ot)\mzn +)\max

(4.33)

118 CHAPTER 4. BASIC ITERATIVE METHODS

Replacing this in one of the two curves gives the correspandiptimal spectral
radius

_ /\mam - /\mzn
Popt by

maz + /\mzn '

This expression shows the difficulty with the presence oflsama large eigenvalues.
The convergence rate can be extremely small for realistblpms. In addition, to
achieve good convergence, eigenvalue estimates areeddniorder to obtain the
optimal or a near-optimak, and this may cause difficulties. Finally, sinkg,. can

be very large, the curve(G,) can be extremely sensitive near the optimal value
of a. These observations are common to many iterative methadsiépend on an
acceleration parameter. |

4.2.2 Regular Splittings

Definition 4.3 Let A, M, N be three given matrices satisfyily= M — N. The
pair of matricesM, N is a regular splitting ofA, if M is nonsingular and\/—! and
N are nonnegative.

With a regular splitting, we associate the iteration
Tpp1 = M Nz, + M1 (4.34)

The question asked is: Under which conditions does suctegatiith converge? The
following result, which generalizes Theorém-1.29, givesdhswer.

Theorem 4.4 Let M, N be a regular splitting of a matrixd. Thenp(M~'N) < 1 if
and only ifA is nonsingular andd—! is nonnegative.

Proof. DefineG = M~'N. From the fact thap(G) < 1, and the relation
A=M(I-Q) (4.35)

it follows that A is nonsingular. The assumptions of Theofem11.29 are satifsfie
the matrixG sinceG = M ! N is nonnegative and(G) < 1. Therefore (I — G)~!
is nonnegative asid ' = (1 — G) "' M~ 1.

To prove the sufficient condition, assume tHds nonsingular and that its inverse
is nonnegative. Sincd and M are nonsingular, the relatiof{4]135) shows again that
I — G is nonsingular and in addition,

AN = (M(I-MT'N)T'N

= I-M1'N)'MIN
(I-ao)'a. (4.36)
Clearly, G = M~'N is nonnegative by the assumptions, and as a result of the

Perron-Frobenius theorem, there is a nonnegative eigemveassociated with(G)
which is an eigenvalue, such that

Gz = p(G)x.

4.2. CONVERGENCE 119

From this and by virtue of{4.36), it follows that
p(G)

-1
A "Nz = 1—7p(G)w
Sincexz and A~ N are nonnegative, this shows that
rG) o,
1—p(G) ~
and this can be true only whén< p(G) < 1. Sincel — G is nonsingular, then
p(G) # 1, which implies thap(G) < 1. O

This theorem establishes that the iteration (4.34) alwaysearges, if\M, N is a
regular splitting and4 is an M-matrix.

4.2.3 Diagonally Dominant Matrices
We begin with a few standard definitions.
Definition 4.5 A matrix A is

e (weakly) diagonally dominant if

=n
]ajjlzzmij\,]:1,,TL
i=1
7]

e strictly diagonally dominant if

=N
|ajj| > Z‘aij‘7 j=1,...,n.
o

e irreducibly diagonally dominant i# is irreducible, and

=N
]ajjlzzmij\,]:1,,TL
oy
with strict inequality for at least ong.

Often the term diagonally dominant is used instead/@éklydiagonally dominant.

Diagonal dominance is related to an important result in NugakLinear Alge-
bra known as Gershgorin’s theorem. This theorem allowstrdogations for all the
eigenvalues ofd to be determined. In some situations, it is desirable tordete
these locations in the complex plane by directly exploithogne knowledge of the
entries of the matrix4. The simplest such result is the bound

Al < [A]l

for any matrix norm. Gershgorin’s theorem provides a moecige localization
result.

120 CHAPTER 4. BASIC ITERATIVE METHODS

Theorem 4.6 (Gershgorin) Any eigenvalue\ of a matrix A is located in one of the
closed discs of the complex plane centered;ahnd having the radius

j=n
pi = Z |aijl.
j=1

i
In other words,
j=n
VA €a(4), Ti suchthat [X—ai <> |agl. (4.37)
ys

Proof. Let 2 be an eigenvector associated with an eigenvaluand letm be the
index of the component of largest moduluszin Scalex so that|¢,,| = 1, and
|€i] < 1, fori # m. Sincez is an eigenvector, then

A = amm)em == D amjéj,

j#m
which gives
n n
IA = amm| < Z |am; || < Z |amj| = pm. (4.38)
Jom Jem
This completes the proof. |

Since the result also holds for the transposelpé version of the theorem can also
be formulated based on column sums instead of row sums.

Then discs defined in the theorem are called Gershgorin discs. tiidwmem
states that the union of thesediscs contains the spectrum df It can also be
shown that if there are» Gershgorin discs whose unidis disjoint from all other
discs, therS contains exactlyn eigenvalues (counted with their multiplicities). For
example, when one disc is disjoint from the others, then istncontain exactly one
eigenvalue.

An additional refinement which has important consequencasearns the partic-
ular case when is irreducible.

Theorem 4.7 Let A be an irreducible matrix, and assume that an eigenvalusf
A lies on the boundary of the union of theGershgorin discs. Theh lies on the
boundary of all Gershgorin discs.

Proof. As in the proof of Gershgorin’s theorem, letbe an eigenvector associated
with A\, with |¢,,,] = 1, and|¢;| < 1, for i # m. Start from equation{4.88) in the
proof of Gershgorin’s theorem which states that the paibélongs to then-th disc.
In addition, A belongs to the boundary of the union of all the discs. As altieisu

4.2. CONVERGENCE 121

cannot be an interior point to the digX(\, p,,). This implies that\ — a,m| = pm.
Therefore, the inequalities ib{4138) both become egealiti

n n
A = | = Z |am; ;] = Z |amj| = pm. (4.39)
]‘?:'}n]‘?:'}n

Let j be any integeil < j < n. SinceA is irreducible, its graph is connected and,
therefore, there exists a path from noddo nodej in the adjacency graph. Let this
path be

My My, M2,y .., M = J.

By definition of an edge in the adjacency graph,,,, # 0. Because of the equality
in @39), it is necessary th#;| = 1 for any nonzerd;. Therefore,¢,,, | must be
equal to one. Now repeating the argument withreplaced bym; shows that the
following equality holds:

n n

A= amymi | = Z |am, 511€5] = Z |m,y j| = Py - (4.40)

j=1 =1
j#my j#ma

The argument can be continued showing each time that

and this is valid fori = 1,..., k. In the end, it will be proved that belongs to the
boundary of thej-th disc for an arbitrary. |

An immediate corollary of the Gershgorin theorem and thevalibeorem fol-
lows.

Corollary 4.8 If a matrix A is strictly diagonally dominant or irreducibly diagonally
dominant, then it is nonsingular.

Proof. If a matrix is strictly diagonally dominant, then the uniohtlee Gershgorin
disks excludes the origin, So= 0 cannot be an eigenvalue. Assume now that it is
only irreducibly diagonal dominant. Then if it is singuléite zero eigenvalue lies on
the boundary of the union of the Gershgorin disks. In thisagibn, according to the
previous theorem, this eigenvalue should lie on the boyndgall the disks. This
would mean that

n
lajil = lag|l for j=1,....n,
%

which contradicts the assumption of irreducible diagomeahihance. |

The following theorem can now be stated.

Theorem 4.9 If A is a strictly diagonally dominant or an irreducibly diagadha
dominant matrix, then the associated Jacobi and GausseErétations converge
for any z.

122 CHAPTER 4. BASIC ITERATIVE METHODS

Proof. We first prove the results for strictly diagonally dominardtnices. Let\ be
the dominant eigenvalue of the iteration mathi; = D~'(E + F) for Jacobi and
Mg = (D — E)~'F for Gauss-Seidel. As in the proof of Gershgorin's theoren, |
x be an eigenvector associated wkhwith |¢,,| = 1, and|&;| < 1, fori # 1. Start
from equation[{4.38) in the proof of Gershgorin’s theoremoahistates that foi/,

n n
|am| |am|
A <> Iamml‘gj‘ <) <1.
j=1 j=1

|Gmm |
j#m i#m

This proves the result for Jacobi’s method.
For the Gauss-Seidel iteration, write theth row of the equatiorF’z = A\(D —
E)z in the form

Z amjéj = A | amm&m + Z amjéj ’

j<m ji>m
which yields the inequality
Siemlamillel _ jemlam

Al < < .
| @ | — Zj>m lam; [1§5] ~ lamm| — Zj>m |G

The last term in the above equation has the fersii(d — o1) with d,01, 09 all
nonnegative and — o1 — 0 > 0. Therefore,

02

< 1.
o9+ (d — o9 — 01)

Al <

In the case when the matrix is only irreducibly diagonallyrileant, the above
proofs only show thas(M ~'N) < 1, whereM ~' N is the iteration matrix for either
Jacobi or Gauss-Seidel. A proof by contradiction will bedus® show that in fact
p(M~'N) < 1. Assume that is an eigenvalue of/ ~' N with |\| = 1. Then the
matrix A/ ~' N — X\I would be singular and, as a resulf, = N — A\M/ would also be
singular. Since)| = 1, itis clear that4’ is also an irreducibly diagonally dominant
matrix. This would contradict Corollafy4.8. |

4.2.4 Symmetric Positive Definite Matrices

It is possible to show that wheA is Symmetric Positive Definite, then SOR will
converge for anw in the open interval0, 2) and for any initial guess,. In fact, the
reverse is also true under certain assumptions.

Theorem 4.10 If A is symmetric with positive diagonal elements andfat < 2,
SOR converges for any if and only if A is positive definite.

4.2. CONVERGENCE 123

4.2.5 Property A and Consistent Orderings

A number of properties which are related to the graph of egfiditference matrix are
now defined. The first of these properties is called Proper# éatrix has Property

A if its graph isbipartite. This means that the graph is two-colorable in the sense
defined in Chapter 3: Its vertices can be partitioned in twe sesuch a way that

no two vertices in the same set are connected by an edge. INgteats usual, the
self-connecting edges which correspond to the diagonaiesiés are ignored.

Definition 4.11 A matrix has Property A if the vertices of its adjacency gragh
be partitioned in two set§; and S», so that any edge in the graph links a vertex of
S to a vertex ofS,.

In other words, nodes from the first set are connected onlpdes from the second
set and vice versa. This definition is illustrated in Fidurg 4

Figure 4.5: Graph illustration of Property A.

An alternative definition is that a matrix has Property A gén be permuted into
a matrix with the following structure:

! _ Dl —F
v (P, 2)

where D, and D, are diagonal matrices. This structure can be obtained hy firs
labeling all the unknowns ir%; from 1 ton;, in whichn; = |S;| and the rest
from n; + 1 ton. Note that the Jacobi iteration matrix will have the samaddtire
except that thé, D, blocks will be replaced by zero blocks. These Jacobi itenati
matrices satisfy an important property stated in the falhgaproposition.

Proposition 4.12 Let B be a matrix with the following structure:

([O By
B= (5 O) , (4.43)

and let andU be the lower and upper triangular parts &f, respectively. Then

124 CHAPTER 4. BASIC ITERATIVE METHODS

1. If u is an eigenvalue oB, then so is—u.

2. The eigenvalues of the matrix
1
B(a) =aL+ -U
o

defined fora # 0 are independent af.

Proof. The first property is shown by simply observing tha(ﬁ) is an eigenvector
associated with, then (_“"v> is an eigenvector oB associated with the eigenvalue
_M-
Consider the second property. For amythe matrixB(«) is similar to B, i.e.,
B(a) = XBX~! with X defined by

(5 9)

This proves the desired result |

A definition which generalizes this important propertgasistently ordered matri-
ces Varga [2938] calls a consistently ordered matrix one forclhhe eigenvalues
of B(«) are independent af. Another definition given by Yound[322] considers
a specific class of matrices which generalize this propaftg. will use this defini-
tion here. Unlike Property A, the consistent ordering propdepends on the initial
ordering of the unknowns.

Definition 4.13 A matrix is said to be consistently ordered if the verticetisodhdja-
cency graph can be partitioned jmsetsS;, S, ..., S, with the property that any
two adjacent vertices and j in the graph belong to two consecutive partitiofis
andS,,withk’' =k —1,if j <¢,andk’ =k + 1,if j > 4.

It is easy to show that consistently ordered matrices gatisfperty A: the first color
is made up of all the partitionS; with odd: and the second with the partitiorts
with evens.

Example 4.2. Block tridiagonal matrices of the form

Dy Tis
To1 Do Th3
. Tp—l,p
Tp,p—l Dp

whose diagonal block®; are diagonal matrices are call@dmatrices. Clearly, such
matrices are consistently ordered. Note that matriceseofdim [£42) are a partic-
ular case withp = 2. |

4.2. CONVERGENCE 125

Consider now a general, consistently ordered matrix. Byndfn, there is per-
mutationr of {1,2,...,n} which is the union op disjoint subsets

7T:7T1U7T2...U7Tp (4.44)

with the property that ifi;; # 0, j # ¢ andi belongs tor,, then; belongs tor,+;
depending on whether< j ori > j. This permutationr can be used to permute
A symmetrically. IfP is the permutation matrix associated with the permutatipn
then clearly

A= PTAP

is aT-matrix.

Not every matrix that can be symmetrically permuted intd-anatrix is con-
sistently ordered. The important property here is that twitmn {r;} preserves
the order of the indices, j of nonzero elementdn terms of the adjacency graph,
there is a partition of the graph with the property that armed edge, ;7 from
i to j always points to a set with a larger indexjif> 4, or a smaller index oth-
erwise. In particular, a very important consequence is ¢dges corresponding to
the lower triangular part will remain so in the permuted nxatThe same is true
for the upper triangular part. Indeed, if a nonzero elemerthé permuted matrix
IS aj o = ar-133.-1() # 0 with i’ > j', then by definition of the permutation
7(i") > 7(5'), ori = w(771(3)) > j = n(7~1(j)). Because of the order preserva-
tion, it is necessary that> j. A similar observation holds for the upper triangular
part. Therefore, this results in the following proposition

Proposition 4.14 If a matrix A is consistently ordered, then there exists a permuta-
tion matrix P such thatP” AP is a T-matrix and

(PTAP), = PTA P, (PTAP)y =PTAyP (4.45)

in which X, represents the (strict) lower part &f and X the (strict) upper part of
X.

With the above property it can be shown that for consistenittiered matrices
the eigenvalues aB(«) as defined in Propositidn 412 are also invariant with retspec
to a.

Proposition 4.15 Let B be the Jacobi iteration matrix associated with a consigyent

ordered matrixA, and let. and U be the lower and upper triangular parts &f,
respectively. Then the eigenvalues of the matrix

B(a) = aL + lU
a

defined fora: # 0 do not depend on.

126 CHAPTER 4. BASIC ITERATIVE METHODS

Proof. First transformB(«) into aT-matrix using the permutation in (#.434) pro-
vided by the previous proposition

1
PTB(a)P = aPTLP + EPTUP.

From the previous proposition, the lower part®f BP is preciselyl.’ = PTLP.
Similarly, the upper part i/’ = PTU P, the lower and upper parts of the associated
T-matrix. Therefore, we only need to show that the propertyuis for a7-matrix.

In this case, for any, the matrixB(«) is similar to B. This means thaB(«) =
XBX~! with X being equal to

1

aP~1]
where the partitioning is associated with the subsets. . , m, respectively. |

Note that7-matrices and matrices with the structufe_(#.42) are twaéiquaar
cases of matrices which fulfill the assumptions of the abaweegsition. There are a
number of well known properties related to Property A andsesient orderings. For
example, it is possible to show that,

e Property A is invariant under symmetric permutations.

e A matrix has Property A if and only if there is a permutationtrixal” such
that A’ = P~ AP is consistently ordered.

Consistently ordered matrices satisfy an important ptgpehich relates the
eigenvalues of the corresponding SOR iteration matricélsdse of the Jacobi iter-
ation matrices. The main theorem regarding the theory fdR 8 consequence of
the following result proved by Youn@[322]. Remember that

Msor = (D—wE) Y (wF+ (1 -w)D)
= (I-wD'E) ' (wD'F+ (1 -w)I).
Theorem 4.16 Let A be a consistently ordered matrix such that # 0 for i =

1,...,n, and letw # 0. Then if\ is a nonzero eigenvalue of the SOR iteration
matrix Mgor, any scalaru such that

A4 w—1)2 =22 (4.46)

is an eigenvalue of the Jacobi iteration matrix Conversely, ifx is an eigenvalue
of the Jacobi matrixB and if a scalar) satisfies[[4.46), theh is an eigenvalue of

Msor.

4.3. ALTERNATING DIRECTION METHODS 127

Proof. DenoteD~'E by L andD~!'F by U, so that
Msor = (I —wL) ™ (wU + (1 — w)I)

and the Jacobi iteration matrix is merely+ U. Writing that) is an eigenvalue
yields
det (M — (I —wL) Y wU + (1 —w)I)) =0
which is equivalent to
det A\ —wL) — (WU +(1—w))=0

or
det (A +w—1) —w(AL+U)) =0.

Sincew # 0, this can be rewritten as

—1
det (”%I — (AL + U)) —0,
which means that\ +w — 1) /w is an eigenvalue ofL + U. SinceA is consistently
ordered, the eigenvalues af, 4+ U which are equal ta"/2(\'/2L + \~1/2U) are
the same as those af/(L + U), whereL + U is the Jacobi iteration matrix. The

proof follows immediately. |

This theorem allows us to compute an optimal value.fowhich can be shown
to be equal to

(4.47)

2
o /T p(BE
Atypical SOR procedure starts with somefor examplew = 1, then proceeds with
a number of SOR steps with this The convergence rate for the resulting iterates is
estimated providing an estimate fofB) using TheoreriZ.16. A betteris then ob-
tained from the formuld{4.37), and the iteration restarfadther refinements of the
optimalw are calculated and retrofitted in this manner as the algonitogresses.

4.3 Alternating Direction Methods

The Alternating Direction Implicit (ADI) method was intraded in the mid-1950s
by Peaceman and Rachfofd [226] specifically for solving &gna arising from fi-
nite difference discretizations of elliptic and parabdartial Differential Equations.
Consider a partial differential equation of elliptic type

o (e)+ 2 (e 25) — o) @9

on a rectangular domain with Dirichlet boundary conditiombe equations are dis-
cretized with centered finite differences using+ 2 points in thex direction and
m + 2 points in they direction, This results in the system of equations

Hu + Vu = b, (4.49)

128 CHAPTER 4. BASIC ITERATIVE METHODS

in which the matriceg? andV represent the three-point central difference approxi-
mations to the operators

0 0 0 0
9z <a($ay)%> and oy (b(w’y)8_y> ,

respectively. In what follows, the same notation is usecefesent the discretized
version of the unknown function.

The ADI algorithm consists of iterating by solving{4149)thre = andy direc-
tions alternatively as follows.

ALGORITHM 4.3 Peaceman-Rachford (PR) ADI

1. Fork = 0.,1,..., until convergence Do:

2. SOIVG.'(H + pkf)uk_,’_E = (ka — V)uk +b

3. Solve:(V + prl)ug+1 = (prd — H)uk+% +b

4, EndDo

Here,pr, k = 1,2, ..., is a sequence of positive acceleration parameters.

The specific case wheyg is chosen to be a constgmtleserves particular atten-
tion. In this case, we can formulate the above iteration éukual form of[[4£.28)
with

G = (V4pI)"YH—pl)(H + pI)~Y(V — pI), (4.50)
fo= (V+p) ' [I—(H-pI)(H+pl)]b (4.51)

or, whenp > 0, in the form [Z2R) with
1 1
M = 2—p(H—|—pI)(V+pI), N = 2—p(H—pI)(V—pI). (4.52)

Note that [4.5l) can be rewritten in a simpler form; see Bzeld.
The ADI algorithm is often formulated for solving the timegkndent Partial
Differential Equation

ou 0 ou 0 ou
e S R (e (4.59)

on the domain(z,y,t) € Q x [0,7] = (0,1) x (0,1) x [0,7]. The initial and
boundary conditions are:

u(z,y,0) = 0(

z,y), V(x,y) € Q, (4.54)
u(,g,t) = g(z,7,

Y),
t), Y(z,y) € 09, t >0, (4.55)

wheredf? is the boundary of the unit squafe The equations are discretized with
respect to the space variablesandy as before, resulting in a system of Ordinary

Differential Equations:

Cf;t‘ = Hu+ Vu, (4.56)

4.3. ALTERNATING DIRECTION METHODS 129

in which the matriceg? andV have been defined earlier. The Alternating Direction
Implicit algorithm advances the relation {4156) forwardtime alternately in the:
andy directions as follows:

1 1
(I — iAt H)uk+% =+ iAt V)ug ,

1 1

The acceleration parametersof Algorithm[43 are replaced by a natural time-step.

Horizontal ordering Vertical ordering

Figure 4.6: The horizontal and vertical orderings for thenowns in ADI.

Assuming that the mesh-points are ordered by lines inctd&ection, then the
first step of AlgorithnTZB constitutes a set:afindependent tridiagonal linear sys-
tems of sizen each. However, the second step constitutes a large trickhgystem
whose three diagonals are offset-byn, 0, andm, respectively. This second system
can also be rewritten as a setroindependent tridiagonal systems of sizeeach by
reordering the grid points by lines, this time in theirection. The natural (horizon-
tal) and vertical orderings are illustrated in Figlirel 4.6héNever moving from one
half step of ADI to the next, we must implicitly work with theahspose of the matrix
representing the solution on the x m grid points. This data operation may be an
expensive task on parallel machines and often it is citechasobthe drawbacks of
Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 19G0&hé& particular
case of positive definite systems. For such systdinandl” have real eigenvalues
and the following is a summary of the main results in thisatitin. First, whend
andV are Symmetric Positive Definite, then the stationary iterafp;, = p > 0, for
all k) converges. For the model problem, the asymptotic rate mfergence of the
stationary ADI iteration using the optimalis the same as that of SSOR using the
optimalw. However, each ADI step is more expensive than one SSOR Giap of
the more important results in the ADI theory is that the rdteamvergence of ADI
can be increased appreciably by using a cyclic sequenceaigtersp,. A theory
for selecting the best sequencemfs is well understood in the case whéh and
V commutel[38]. For the model problem, the parameters canlbetsd so that the
time complexity is reduced t0 (n? logn), for details sed[226].

130 CHAPTER 4. BASIC ITERATIVE METHODS

PROBLEMS

P-4.1 Consider am x n tridiagonal matrix of the form

a -1
-1 o -1
-1 a -1
T, = 1 o -1 , (4.57)
-1 o -1
-1 «

wherea is a real parameter.
a. Verify that the eigenvalues @f, are given by
Aj=a—2cos(jl) j=1,...,n,

where
™

n+1
and that an eigenvector associated with eagcls
q; = [sin(j6),sin(246), . . ., sin(nj6)]" .
Under what condition o does this matrix become positive definite?

b. Now takea = 2. How does this matrix relate to the matrices seen in Chéjpter 2
one-dimensional problems?

(i) Will the Jacobi iteration converge for this matrix? If,sghat will its conver-
gence factor be?

(i) Will the Gauss-Seidel iteration converge for this nine?r If so, what will its
convergence factor be?

(iif) For which values ofv will the SOR iteration converge?
P-4.3 Prove that the iteration matri%,, of SSOR, as defined bly{4113), can be expressed as
Go=1-w?2—-w)(D—-wF)'DD-wE) A
Deduce the expressidn{4127) for the preconditioning massociated with the SSOR itera-
tion.

P-4.4 Let A be a matrix with a positive diagonal.

a. Obtain an expression equivalent to thafQf (K. 13¥fgbut which involves the matrices
Sgp=D"Y2ED"'/? andSp = D~Y/2FD~1/2,

b. Show that
DY2G,D™V2 = (I —wSp) (I — wSE) HwSg + (1 — w))(WwSF + (1 —w)I)

c. Now assume that in addition to having a positive diagasas, symmetric. Prove that
the eigenvalues of the SSOR iteration matkix are real and nonnegative.

4.3. ALTERNATING DIRECTION METHODS 131

P-4.4 Let
D, —Fy
—FEs, Dy —Ij
A= —E3 Ds ;
. _F,
_Em Dm

where theD; blocks are nonsingular matrices which are not necessasagodal.
a. What are thélock Jacobandblock Gauss-Seidékration matrices?
b. Show a result similar to that in Proposition4.15 for theoka iteration matrix.

c. Show also that fop = 1 (1) the block Gauss-Seidel and block Jacobi iteration®geith
both converge or both diverge, and (2) when they both coryéngn the block Gauss-
Seidel iteration is (asymptotically) twice as fast as ttachlJacobi iteration.

P-4.4 According to formulallZ23), th¢ vector in iteration[[£22) should be equaltb—'b,
whereb is the right-hand side antl/ is given in [£5P). Yet, formuld{4$1) gives a different
expression forf. Reconcile the two results, i.e., show that the expresEidil} can also be
rewritten as

f=2p(V+pI)""(H + pI)~'b.

P-4.5 Show that a matrix has Property A if and only if there is a paation matrixP such
that A’ = P~' AP is consistently ordered.

P-4.6 Consider a matrixd which is consistently ordered. Show that the asymptotiweon
gence rate for Gauss-Seidel is double that of the Jacohtiter

P-4.7 A matrix of the form

o o

0
F
0

T oo

is called a three-cyclic matrix.

a. What are the eigenvalues Bf? (Express them in terms of eigenvalues of a certain
matrix which depends ok, I, andH .)

b. Assume that a matrid has the formA = D + B, whereD is a nonsingular diagonal
matrix, andB is three-cyclic. How can the eigenvalues of the Jacobititamanatrix
be related to those of the Gauss-Seidel iteration matrix® Hoes the asymptotic
convergence rate of the Gauss-Seidel iteration compahnelnat of the Jacobi iteration
matrix in this case?

c. Answer the same questions as in (b) for the case when SQdtesghe Gauss-Seidel
iteration.

d. Generalize the above resultgpt@yclic matrices, i.e., matrices of the form

0 B

0 By

B= 0o

0 E, .
E, 0

132 CHAPTER 4. BASIC ITERATIVE METHODS

NOTES AND REFERENCES Two good references for the material covered in this chisgrte Varga
[293] and and Young[322]. Although relaxation-type methadere very popular up to the 1960s,
they are now mostly used as preconditioners, a topic whi¢hbeiseen in detail in Chapters 9 and
10. One of the main difficulties with these methods is findingoptimal relaxation factor for general
matrices. Theorefn4.7 is due to Ostrowski. For details onskeeof Gershgorin’s theorem in eigenvalue
problems, seé[246]. The original idea of the ADI method isatided in[225] and those results on the
optimal parameters for ADI can be found In]38]. A comprelemext on this class of techniques can
be found in[[30D]. [|

Chapter 5

PROJECTION METHODS

Most of the existing practical iterative techniques for solving large linear systems of equations
utilize a projection process in one way or another. A projection process represents a canonical
way for extracting an approximation to the solution of a linear system from a subspace. This
chapter describes these techniques in a very general framework and presents some theory. The
one-dimensional case is covered in detail at the end of the chapter, as it provides a good preview
of the more complex projection processes to be seen in later chapters.

5.1 Basic Definitions and Algorithms

Consider the linear system
Ax = b, (5.1)

whereA is ann x n real matrix. In this chapter, the same symbois often used to
denote the matrix and the linear mappingkifi that it represents. The idea pfo-
jection techniquess to extract an approximate solution to the above problemnfa
subspace dR”. If K is this subspace alandidate approximant®r search subspace
and ifm is its dimension, then, in generah, constraints must be imposed to be able
to extract such an approximation. A typical way of descibthese constraints is
to imposem (independent) orthogonality conditions. Specificallg tesidual vec-
tor b — Az is constrained to be orthogonal e linearly independent vectors. This
defines another subspageof dimensionm which will be called thesubspace of
constraintsor left subspacdor reasons that will be explained below. This simple
framework is common to many different mathematical metretsis known as the
Petrov-Galerkin conditions.

There are two broad classes of projection methadogonalandoblique In
an orthogonal projection technique, the subspade the same ak’. In an oblique
projection method/ is different from/C and may be totally unrelated to it. This
distinction is rather important and gives rise to differgmtes of algorithms.

133

134 CHAPTER 5. PROJECTION METHODS

5.1.1 General Projection Methods

Let A be ann x n real matrix andC and £ be twom-dimensional subspaces &f-
A projection technique onto the subspaCend orthogonal td is a process which
finds an approximate solutionto (&) by imposing the conditions thatbelong to
K and that the new residual vector be orthogonal to

Findi € K, suchthat b— A% L L. (5.2)

If we wish to exploit the knowledge of an initial guesgto the solution, then the
approximation must be sought in the affine spage K instead of the homogeneous
vector space&C. This requires a slight modification to the above formulatidhe
approximate problem should be redefined as

Find 2 € xg+ XK, suchthat b— Az L L. (5.3)

Note that ifz is written in the formz = x¢ + J, and the initial residual vector, is
defined as
To = b— Awo, (54)

then the above equation becontes A(z¢ +4d) L Lor
ro—Ad L L.
In other words, the approximate solution can be defined as

T=x9+9d, € K, (5.5)
(ro — Ad,w) =0, Yw € L. (5.6)

The orthogonality conditior{{3.6) imposed on the new realidy.,, = ro — Ad is
illustrated in Figuré5l1.

Aé T0

Tnew

Figure 5.1: Interpretation of the orthogonality condition

This is a basic projection step, in its most general form. tvidandard tech-
nigues use a succession of such projections. Typicallywapmejection step uses a
new pair of subspack and £ and an initial guess, equal to the most recent ap-
proximation obtained from the previous projection stemj€ution methods form a

5.1. BASIC DEFINITIONS AND ALGORITHMS 135

unifying framework for many of the well known methods in sttiic computing. In
fact, virtually all of the basic iterative techniques seeithie previous chapter can be
considered projection techniques. Whenever an approximét defined vian de-
grees of freedom (subspakg andm constraints (Subspad®, a projection process
results.

Example 5.1. Inthe simplest case, an elementary Gauss-Seidel step asdibij
1) is nothing but a projection step with = £ = span{e;}. These projection
steps are cycled far= 1, ..., n until convergence. See Exerclde 1 for an alternative
way of selecting the sequence®k. |

Orthogonal projection methods correspond to the partiactdge when the two
subspaceg and K are identical. The distinction is particularly important the
Hermitian case since we are guaranteed that the projeaddtepn will be Hermitian
in this situation, as will be seen shortly. In addition, a m@mof helpful theoretical
results are true for the orthogonal case. Wheg K, the Petrov-Galerkin conditions
are often called the Galerkin conditions.

5.1.2 Matrix Representation

Let V = [v1,...,un), @nn x m matrix whose column-vectors form a basis/of
and, similarly, W = [wy,...,wy], ann x m matrix whose column-vectors form a
basis ofZ. If the approximate solution is written as

T =uz9+ Vy,

then the orthogonality condition leads immediately to thiéoving system of equa-
tions for the vectoy:
WTAVYy = WTr,.

If the assumption is made that thex m matrix W7 AV is nonsingular, the following
expression for the approximate soluti@mesults,

F=axo+ VIWTAV) 1w Ty, (5.7)

In many algorithms, the matri¥’” AV does not have to be formed since it is avail-
able as a by-product of the algorithm. A prototype projectiechnique is repre-
sented by the following algorithm.

ALGORITHM 5.1 Prototype Projection Method

1. Until convergence, Do:

2. Select a pair of subspacksand

3. Choose basés = [vy,...,vy,] andW = [wy, ..., wy,] for K andl
4. r:=5b— Ax

5. y = (WTAV)"twTy

6. r:=x+Vy

7. EndDo

136 CHAPTER 5. PROJECTION METHODS

The approximate solution is defined only when the mdiiX AV is nonsingu-
lar, a property that is not guaranteed to be true even whismonsingular.

Example 5.2. As an example, consider the matrix

o1
A=(7 1),

wherel is them x m identity matrix andO is them x m zero matrix, and leV =
W = le1,ea,...,en]. Although A is nonsingular, the matrid’” AV is precisely
the O block in the upper-left corner of and is therefore singular. |

It can be easily verified thdf’” AV is nonsingular if and only if no vector of
the subspacel L is orthogonal to the subspage We have encountered a similar
condition when defining projector operators in Chapter ler€hare two important
particular cases where the nonsingularitylf AV is guaranteed. These are dis-
cussed in the following proposition.

Proposition 5.1 Let A, £, and K satisfy either one of the two following conditions,
i. Ais positive definite and = K, or
ii. Aisnonsingular andC = AK.

Then the matrix3 = W7 AV is nonsingular for any base and W of K and £,
respectively.

Proof. Consider first the case (i). L&t be any basis of andW be any basis of.
In fact, sinceC andC are the saméd}/ can always be expressedi@s= V &, where
G is a nonsingularn x m matrix. Then

B=wTAv =GTvT AvV.

Since A is positive definite, so i¥ T AV, see Chapter 1, and this shows tifais
nonsingular.
Consider now case (ii). Lat be any basis ok andWW be any basis of. Since
L = AK, W can be expressed in this casdis= AV G, whereG is a nonsingular
m X m matrix. Then
B=wTav =GTAv)TAV. (5.8)

SinceA is nonsingular, the xm matrix AV is of full rank and as aresultAV)” AV
is nonsingular. This, along with(3.8), shows ttiats nonsingular. |

Now consider the particular case whetes symmetric (real) and an orthogonal
projection technique is used. In this situation, the sansiskizan be used fof and
IC, which are identical subspaces, and the projected mathighws B = VAV, is
symmetric. In addition, if the matrid is Symmetric Positive Definite, then solis

5.2. GENERAL THEORY 137

5.2 General Theory

This section gives some general theoretical results witheing specific about the
subspace&’ and £ which are used. The goal is to learn about the quality of the
approximation obtained from a general projection proc&as main tools are used
for this. The first is to exploit optimality properties of pection methods. These
properties are induced from those properties of projeceen in Section 1.14.4 of
Chapter 1. The second tool consists of interpreting theeptefl problem with the
help of projection operators in an attempt to extract reditbounds.

5.2.1 Two Optimality Results

In this section, two important optimality results will beta&slished that are satisfied
by the approximate solutions in some cases. Consider fastdbe wherl is SPD.

Proposition 5.2 Assume thatl is Symmetric Positive Definite atl= K. Then a
vectorz is the result of an (orthogonal) projection method oiiawith the starting
vectorz if and only if it minimizes thel-norm of the error over + K, i.e., if and
only if

E(z)= min E(z),

where
E(x) = (A(zy — x), 2 —)2

Proof. As was seen in Sectiqn 1.IP.4, foto be the minimizer of(x), it is neces-
sary and sufficient that, — Z be A-orthogonal to all the subspaéé This yields

(A(xzy —2),v) =0, Yv €K,
or, equivalently,
(b—Az,v) =0, Yv €K,

which is the Galerkin condition defining an orthogonal petin process for the
approximationz. |

We now take up the case whérnis defined by = AK.
Proposition 5.3 Let A be an arbitrary square matrix and assume that= AX.
Then a vectoft is the result of an (oblique) projection method oiarthogonally

to £ with the starting vector if and only if it minimizes the@-norm of the residual
vectorb — Ax overx € xg+ K, i.e., if and only if

R(#) = min R
(7) ,in (z),

whereR(z) = ||b — Ax||2.

138 CHAPTER 5. PROJECTION METHODS

Proof. As was seen in Sectidl_L.TIP.4, forto be the minimizer of?(x), it is nec-
essary and sufficient that— Az be orthogonal to all vectors of the form= Ay,
wherey belongs tac, i.e.,

(b— Az,v) =0, Yv € AK,

which is precisely the Petrov-Galerkin condition that desitthe approximate solu-
tion z. a

It is worthwhile to point out thatd need not be nonsingular in the above proposition.
When A is singular there may be infinitely many vectarsatisfying the optimality
condition.

5.2.2 Interpretation in Terms of Projectors

We now return to the two important particular cases singledrothe previous sec-
tion, namely, the case§ = K and £ = AK. In these cases, the result of the
projection process can be interpreted easily in terms abrastof orthogonal pro-
jectors on the initial residual or initial error. Consideetsecond case first, as it is
slightly simpler. Letry be the initial residuaty = b — Az, andr = b — AZ the
residual obtained after the projection process uith- AX. Then,

F=b— Az +) = rg — AS. (5.9)

In addition, § is obtained by enforcing the condition that— Ad be orthogonal to
AK. Therefore, the vectads is the orthogonal projection of the vectog onto the
subspaced K. This is illustrated in FigurE®Bl2. Hence, the following posfiion can
be stated.

Proposition 5.4 Let Z be the approximate solution obtained from a projection pro-
cess ontdC orthogonally to = AK, and letr = b— Az be the associated residual.
Then,

7= (I — P)ro, (5.10)

whereP denotes the orthogonal projector onto the subspaée

A result of the proposition is that the 2-norm of the residuedtor obtained after
one projection step will not exceed the initial 2-norm of theidual, i.e.,

[17]l2 < [lroll2,

a result which has been established already. This class tioae may be termed
residual projectiormethods.

Now consider the case whefe= K and A is Symmetric Positive Definite. Let
dy = x+ — xo be the initial error, where, denotes the exact solution to the system
and, similarly, leid = z, — & where# = z + d is the approximate solution resulting
from the projection step. Thef(5.9) yields the relation

Ad =7 = A(dy — 9),

5.2. GENERAL THEORY 139

7o

AK

%{l ,,,,,,,,,,,,,, [A(;ZPT‘O
O

Figure 5.2: Interpretation of the projection process fer¢hse whert = AK.

whered is now obtained by constraining the residual veetpr Ao to be orthogonal
to K:
(ro—Ad,w) =0, Yw € K.

The above condition is equivalent to
(A(dy —9),w) =0, Yw € K.

Since A is SPD, it defines an inner product (see Sediion]1.11) whicisuglly de-
noted by(.,.) 4 and the above condition becomes

(do— 0, w)a =0, Yw € K.

The above condition is now easy to interpréhe vector is the A-orthogonal pro-
jection of the initial errordy onto the subspack.

Proposition 5.5 Letz be the approximate solution obtained from an orthogonat pro
jection process ont&C and letd = x, — & be the associated error vector. Then,

d = (I — Pa)do,

where P4 denotes the projector onto the subspécewhich is orthogonal with re-
spect to thed-inner product.

A result of the proposition is that thé-norm of the error vector obtained after one
projection step does not exceed the initfgehorm of the error, i.e.,

|4 < [|do]| 4,

which is expected because it is known that th@orm of the error is minimized in
xg + K. This class of methods may be termesdor projection methods

140 CHAPTER 5. PROJECTION METHODS

5.2.3 General Error Bound

If no vector of the subspack comes close to the exact solution then it is im-
possible to find a good approximatianto x from K. Therefore, the approximation
obtained by any projection process basedkowill be poor. On the other hand, if
there is some vector i€ which is a small distanceaway fromz, then the question
is: How good can the approximate solution be? The purposei®ection is to try
to answer this question.

Px € K, —Pcx LK
Qﬁ:ﬂ e K, a:—Qé:UJ_E

L, s
Qicl;’ P.x

Figure 5.3: Orthogonal and oblique projectors.

Let P, be the orthogonal projector onto the subp&cand IetQﬁ be the (oblique)
projector ontd’C and orthogonally taC. These projectors are defined by

Pex € K, v —Pex LK,
Qz € K, 2 — Qfx L L,

and are illustrated in Figufe®.3. The symbb), is used to denote the operator
Ay = QEAP,

and it is assumed, without loss of generality, thgt= 0. Then according to the
property [.6R), the approximate problem definednl (58} &an be reformulated
as follows: findz € K such that

QL (b — Ax) =0,

or, equivalently,
ApZ=0Qfb, 1 € K.

5.2. GENERAL THEORY 141

Thus, am-dimensional linear system is approximated byraglimensional one.

The following proposition examines what happens in thei@aer case when the
subspacéC is invariant underd. This is a rare occurrence in practice, but the result
helps in understanding the breakdown behavior of the mettmthe considered in
later chapters.

Proposition 5.6 Assume thakC is invariant underA4, xo = 0, andb belongs tokC.
Then the approximate solution obtained from any (obliquerttogonal) projection
method ontdC is exact.

Proof. An approximate solutioi® is defined by
QL (b — Ai) =0,

wherez is a nonzero vector ifC. The right-hand sidéis in I, so we havegﬁb =b.
Similarly, Z belongs toC which is invariant under, and thereforeQéA:E = AZ.
Then the above equation becomes

b— Az =0,
showing thatz is an exact solution. |

The result can be extended trivially to the case whgre: 0. The required assump-
tion in this case is that the initial residua) = b — Az belongs to the invariant
subspaceC.

An important quantity for the convergence properties ofigotion methods is
the distance||(I — P,)z«||2 of the exact solution:, from the subspacé&. This
quantity plays a key role in the analysis of projection mdgid\ote that the solution
x, cannot be well approximated frofg, if ||({ — P,)z«||2 is not small because

17 = zull2 2 |(I = Py)2

The fundamental quantityy(/ — P,)x.||2/||z«|2 is thesineof the acute angle be-

tween the solutiorr, and the subspack. The following theorem establishes an
upper bound for the residual norm of teeactsolution with respect to the approxi-
mate operatoH,,,.

Theorem 5.7 Lety = | QZA(I — P,.)||2 and assume that is a member ok and
o = 0. Then the exact solutian, of the original problem is such that

16— A2 < AT = Pe)allo (5.11)

Proof. Sinceb € K, then

b—Apz, = Q5(b— AP x.)
= Of(Az. — AP 2.)
= QFA(z, — Pexy)
= QFA(I — P.)zs.

142 CHAPTER 5. PROJECTION METHODS

Noting that/ — P, is a projector, it follows that
b= Anadls = QEAUI =PI = Pe)ll2
1QF AL = P)ll2|(T = Pe)ll2,

which completes the proof. |

IN

It is useful to consider a matrix interpretation of the tresor We consider only
the particular case of orthogonal projection methofls= K). Assume thal/ is
unitary, i.e., that the basig, ..., v,,} is orthonormal, and thdd” = V. Observe
thatb = VV7b. Equation[[5111) can be represented in the bsis

16— VVTAV)V 2,2 < YT = Pe)all2-
However,

16— V(VTAV)VT 2, || IV(VTb = (VIAV)VT 1, ||

VIb — (VTAVIVT 2,5

Thus, the projection of the exact solution has a residuamnaith respect to the
matrix B = VT AV, which is of the order of (I — P,.)z.]|2.

5.3 One-Dimensional Projection Processes

This section examines simple examples provided by one+tiiopal projection pro-
cesses. In what follows, the vectodenotes the residual vector= b — Ax for the
current approximation. To avoid subscripts, arrow notation is used to denetor
updates Thus, ¢ «— = + ar” means “computer + ar and overwrite the result on
the currente.” (This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

K = span{v} and L = span{w},

wherev andw are two vectors. In this case, the new approximation takes$otm
x «— x + av and the Petrov-Galerkin condition— Ay 1 w yields

a= (Z;w;) . (5.12)

Following are three popular choices to be considered.

5.3.1 Steepest Descent

The steepest descent algorithm is defined for the case whematrix A is Sym-
metric Positive Definite. It consists of taking at each step » andw = r. This
yields the following iterative procedure:

r«—b— Az,
a — (r,r)/(Ar,T)

T <— T+ ar.

5.3. ONE-DIMENSIONAL PROJECTION PROCESSES 143

However, the above procedure requires two matrix-by-vgmiducts and this can be
reduced to only one by rearranging the computation sligfithe variation consists
of computingr differently as is shown next.

ALGORITHM 5.2 Steepest Descent Algorithm

Compute = b — Az andp = Ar
Until convergence, Do:

o (r,r)/(p,r)

T <— T+ ar

T T —Qp

computey := Ar
EndDo

NOOKAWN R

Each step of the above iteration minimizes

f@) = llz = zullh = (A(z - z.), (z = 2.)),

over all vectors of the form: + «d, whered is the negative of the gradient direc-
tion —V f. The negative of the gradient directionlagally the direction that yields
the fastest rate of decrease ffir Next, we prove that convergence is guaranteed
when A is SPD. The result is a consequence of the following lemmavknas the
Kantorovich inequality.

Lemma 5.8 (Kantorovich inequality) Let B be any Symmetric Positive Definite real
matrix and\, ..., A\min its largest and smallest eigenvalues. Then,

(Bﬂi‘,ﬂj‘)(B_llL',fE) < (Amax + /\mzn)z
(x,fL')2 -4)\max)\min '

Yo # 0. (5.13)

Proof. Clearly, it is equivalent to show that the result is true foy ainit vectorz.
SinceB is symmetric, it is unitarily similar to a diagonal matri®, = Q7 D@, and

(Ba,2)(B™'z,x) = (Q"DQu, 2)(Q" D™ Qx,) = (DQx, Qx)(D ™' Qa, Qx).

Settingy = Qz = (y1,...,y,)’, ands; = y2, note that

= (Dy,y) = Zﬂz ;

is a convex combination of the eigenvalugs: = 1,...,n. The following relation
holds,

(B, z)(B™'w,x) = Mp(y) with 9(y) = (D" 'y.y) Zﬁz

144 CHAPTER 5. PROJECTION METHODS

Noting that the functiory (\) = 1/\ is convex,)(y) is bounded from above by the
linear curve that joins the points\;, 1/A1) and(\,,, 1/\,,), i.e.,

1 1 A
< — 4+ — —)
YOS T
Therefore,
1 1 A
B B_l = < — —_ .
(BB 0 = 2o) <A (54 1 - 150)

The maximum of the right-hand side is reachedXot %(Al + \,) yielding,

Figure 5.4: The pointA, ¢ (y)) is a convex combination of points located on the
curve 1/X. It is located in the convex set limited by the curvg\ and the line
/A1 + 1/ — N (A1 An).

(A1 +)2

(B, 2)(B™) = Mily) < =5
which gives the desired result. |

This lemma helps to establish the following result regagdive convergence rate
of the method.

Theorem 5.9 Let A be a Symmetric Positive Definite matrix. Then, #r@orms of
the error vectorsi, = x, — ;. generated by Algorithii 3.2 satisfy the relation

)\ma:c -)\mzn
d < ——||d 5.14
ld+1lla < Amaer)\mmH kll 4 (5.14)

and AlgorithmT2.P converges for any initial guess

5.3. ONE-DIMENSIONAL PROJECTION PROCESSES 145

Proof. Start by expanding the square of thenorm ofd., = dy — a7y @s
Idis1]% = (dis1, di — agri) a = (djs1, di)a — (i1, k) 4 = (A,)
The last equality is due to the orthogonality betwegm@andry_ ;. Thus,

ldrs1lli = (d — arg,mr)
(A g, ri) — ag(rge, i)

=l (1 el LEn)),

Tk, Ark) (rg, A= try)

The result follows by applying the Kantorovich inequaliI3). O

5.3.2 Minimal Residual (MR) Iteration

We now assume that is not necessarily symmetric but only positive definite,, i.e
its symmetric partd + A7 is Symmetric Positive Definite. Taking at each step r
andw = Ar, gives the following procedure.

r«—b— Ax,
a «— (Ar,r)/(Ar, Ar)

T <— T+ ar.

This procedure can be slightly rearranged again to redueentimber of matrix-
vector products required to only one per step as was dondéosteepest descent
algorithm. This results in in the following algorithm.

ALGORITHM 5.3 Minimal Residual Iteration

Compute = b — Az andp = Ar
Until convergence, Do:

o« (p,r)/(p,p)

Tr<— T+ ar

T T —Qp

computey := Ar
EndDo

NOOAWN R

Here, each step minimize&z) = ||b — Az||3 in the directionr. The iteration con-
verges under the condition thdtis positive definite as is stated in the next theorem.

Theorem 5.10 Let A be a real positive definite matrix, and let
H =)\mzn(A+AT)/2a 0 = HA”2
Then the residual vectors generated by Algorifhnh 5.3 setief relation

2\ 1/2
%
17rt1ll2 < (1 — ;) 17 ||2 (5.15)

and Algorithm [RB) converges for any initial guess

146 CHAPTER 5. PROJECTION METHODS

Proof. We proceed similarly to the steepest descent method rgjavith the relation

Hrk—i-l”% = (Tk — akArk, T — akArk) (516)
= (Tk — akArk, Tk) — Oék(Tk — akArk, ATk) (517)

By construction, the new residual veciqr— oy, Ary, must be orthogonal to the search
direction Ar;, and, as a result, the second term in the right-hand sideechllove
equation vanishes and we obtain

Iresal3 = (e — arArg,)
(r,ri) — o (Arg, rg)

o, (Arg,ri) (Arg,my)
”Tk”Z <1 (Tkark) (ATk,ATk)) (518)

_ ”Tk”% <1 _ (Arkark)z HrkH% >)

(ks me)? || Argll3
From Theorenl_I.34, it can be stated that

(Azx,x)
(z,z)

> >0, (5.19)

wherep = A\in(A + AT)/2. The desired result follows immediately by using the
inequality || Arg|l2 < ||All2 |lrk]l2- O

There are alternative ways of obtaining inequalities tmav@ convergence. For
example, starting froni. {5118, (5]19) can be used agaimétarm(Ary, rx)/ (1, %)
and similarly, we can write

(Az,) (Az, A=1(Ax)) S A <A_1 +A_T> >0,

(Az, Az) - (Azx, Ax) 2

sinceA~! is also positive definite. This would yield the inequality

Irsall3 < (1= p(A)p(A™D) I3, (5.20)

in which p(B) = \pin(B + BT) /2.

Another interesting observation is that if we define
(Ark, Tk)
cos = —"-—"+,
[Argllz [I7xl2

then [R.IB) can be rewritten as

A A
lrisilld = |7ll2 (1_ (Arg,mi) (rk,rk)>
(A’I"k, A’rk) (T‘k, T‘k)

= |Irxl3 (1 — cos® Zy)

= ”Tk”% sin? /.

5.4. ADDITIVE AND MULTIPLICATIVE PROCESSES 147

At each step the reduction in the residual norm is equal tsitiesof the acute angle
between- and Ar. The convergence factor is therefore bounded by

= inZ(xz, A
p= erﬁaxm#o sin Z(x, Ax),
in which Z(z, Az) is the acute angle betweenand Az. The maximum angle
Z(z, Az) is guaranteed to be less thaji2 when A is positive definite as the above
results show.

5.3.3 Residual Norm Steepest Descent

In the residual norm steepest descent algorithm, the aggnmhat A is positive
definite is relaxed. In fact, the only requirement is tHais a (square) nonsingular
matrix. At each step the algorithm uses= A7 andw = Aw, giving the following
sequence of operations:

re—b—Ax,v=ATr,

o — [|v]|3/]| Av]3, (5.21)

T «— T+ av.

However, an algorithm based on the above sequence of apesatiould require
three matrix-by-vector products, which is three times asynae the other algorithms
seen in this section. The number of matrix-by-vector ofematcan be reduced to
two per step by computing the residual differently. Thisaatrris as follows.

ALGORITHM 5.4 Residual Norm Steepest Descent

Compute := b — Ax
Until convergence, Do:
v:=ATr
Computedv anda = ||v]|3/]|Av||3
T =T+ au
r:=r—cAv
EndDo

NOOAMWN R

Here, each step minimizef(z) = ||b — Az|% in the direction—Vf. As it
turns out, this is equivalent to the steepest descent gigoof Sectiod 5.311 applied
to the normal equationd” Az = ATb. SinceA™ A is positive definite when! is
nonsingular, then, according to Theorem 5.9, the methadcasiverge wheneved
is nonsingular.

5.4 Additive and Multiplicative Processes

We begin by considering again the block relaxation techeggseen in the previous
chapter. To define these techniquese&decompositionf S = {1,2,...,n} is

148 CHAPTER 5. PROJECTION METHODS

considered as the definition pfsubsetsS, ..., S, of S with

s;ics, | si=s

’i:17"'7p

Denote byn; the size ofS; and define the subsét as
SZ‘ = {mz(l), mi(2), . ,ml(nz)}
Let V; be then x n; matrix

Vi = [emi(l)a €m;(2)s - eml(nl)]a

where eacl; is the j-th column of then x n identity matrix.

If the block Jacobi and block Gauss-Seidel algorithms, Atgms[4] and412,
are examined carefully, it can be observed that each ingiistep in the main loop
(lines 2 to 5) represents an orthogonal projection processld; = span{V;}. In-
deed, the equatiofi{4117) is exacllyd5.7) with= V' = V. This individual projec-
tion step madifies only the components corresponding touhsmaces;. However,
the general block Jacobi iteration combines these modditst implicitly adding
them together, to obtain the next iteratg, ;. Borrowing from the terminology of
domain decomposition techniques, this will be calledadditive projection proce-
dure Generally, an additive projection procedure can be defioedny sequence
of subspaceds;, not just subspaces spanned by the columns of the identitgxma
The only requirement is that the subspaéésshould be distinct, although they are
allowed to overlap.

Let a sequence gb orthogonal system¥; be given, with the condition that
span{V;} # span{V;} for i # j, and define

A; = VT AV,
The additive projection procedure can be written as

Yi = AZ_IX/ZT(b_Axk’)v izl?"'7p7
p
Thr = zp+ Y Vit (5.22)
i=1

which leads to the following algorithm.
ALGORITHM 5.5 Additive Projection Procedure

Fork = 0,1,..., until convergence, Do:
Fori =1,2,...,p Do:
SOIVGAZ‘yZ’ = V;T(b — Al‘k)
EndDo
Setry1 = xk+ y by Viyi
EndDo

S A WNR

5.4. ADDITIVE AND MULTIPLICATIVE PROCESSES 149

Definingr, = b — Axy, the residual vector at stép then clearly
k1 = b— Axpyy
— b— Ay — zp: AV; (VT AV) T VT,
) i=1
= 1= AV (VT AV) T VT |
=1
Observe that each of theoperators
P = AV, (V7 Av,) T VT

represents the projector onto the subspace spanneti’hyand orthogonal td/;.
Often, the additive processes are used in conjunction withcaeleration parameter
w, thus [R2R) is replaced by

yi = A7VI0—Axg), i=1,...,p,

p
Thyr = TpFwy Vit
i=1

Even more generally, a different parametgican be used for each projection, i.e.,
yi = Ai_lviT(b—Axk), 1=1,...,p,
p
Thp = ap+ Y wiViyi
i=1

The residual norm in this situation is given by

p
Tkl = (I - sz‘ﬂ) Tk, (5.23)
i=1

considering the single parameter as a particular case. Exerglse 6 gives an example
of the choice ofw; which has the effect of producing a sequence with decreasing
residual norms.

We now return to the generic case, whete= 1, Vi. A least-squares option can
be defined by taking for each of the subproblels= AK;. In this situation,P;
becomes an orthogonal projector onté;, since

P, = AV; (AV)TAV)) ™ (A)T.

Itis interesting to note that the residual vector obtainiéel @ne outer loop is related
to the previous residual by

p
Tht1 = (I - ZB) Tk,
i=1

150 CHAPTER 5. PROJECTION METHODS

where theP;’'s are now orthogonal projectors. In particular, in the Idgtuation
when theAV;’s are orthogonal to each other, and the total rank offif®is n, then
the exact solution would be obtained in one outer step, smttes situation

Thus, the maximum reduction in the residual norm is achievbdn theV;'s are
A-orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, whéhdisishes the additive
and multiplicative iterations is that the latter updatess tbmponent to be corrected
at step immediately. Then this updated approximate solution islise€ompute the
residual vector needed to correct the next component. Té¢wblderation uses the
same previous approximatian, to update all the components of the solution. Thus,
the analogue of the block Gauss-Seidel iteration can beatkéin follows.

ALGORITHM 5.6 Multiplicative Projection Procedure

1. Until convergence, Do:

2. Fori =1,2,...,p Do:

3. SolveA;y = VI' (b — Ax)
4, Setr .=z + V;y

5. EndDo

6.

EndDo

5.4. ADDITIVE AND MULTIPLICATIVE PROCESSES 151

PROBLEMS

P-5.1 Consider the linear syster = b, whereA is a Symmetric Positive Definite matrix.

a. Consider the sequence of one-dimensional projectiarepees witliC = £ = span{e; },
where the sequence of indicéss selected in any fashion. Let,., be a new it-
erate after one projection step framand letr = b — Az, d = A~'b — z, and
dpew = A71b — 0. Show that

(Adnewa dnew) = (Ada d) - (7’, ei)2/aii-

Does this equality, as is, establish convergence of theithgu?

b. Assume now thatis selected at each projection step to be the index of a coemton
of largest absolute value in the current residual vecterb — Az. Show that

1 1/2
dnew S 1—— d ’
el < (1=)l

in which(A) is the spectral condition number éf [Hint: Use the inequalitye! r| >
n~1/2||r|2.] Does this prove that the algorithm converges?

P-5.3 Consider the linear systeru = b, whereA is a Symmetric Positive Definite matrix.
Consider a projection step with = £ = span{v} wherev is some nonzero vector. Let
ZTnew DE the new iterate after one projection step fromnd letd = A='b — =, andd,,c., =
A7 — Zpew.
a. Show that
(Adpew, dnew) = (Ad, d) — (r,v)?/(Av,v).
Does this equality establish convergence of the algorithm?
b. In Gastinel’s method, the vectoiis selected in such a way that,») = ||r||1, e.g., by
defining the components ofto bew; = sign(el'r), wherer = b — Az is the current
residual vector. Show that

1 1/2
< -
Hdnew”A >~ (1 nli(A)) ”dHA’

in which(A) is the spectral condition number df Does this prove that the algorithm
converges?
c. Compare the cost of one step of this method with that oficyghuss-Seidel (see Ex-

ampld&l) and that of “optimal” Gauss-Seidel where at egg/6 = £ = span{e; }
andi is a component of largest magnitude in the current residectbv.

P-5.4 In Section[5.31B, it was shown that taking a one-dimensipnajection technique
with K = span {ATr} and£ = span{AATr} is mathematically equivalent to using the
usual steepest descent algorithm applied to the normatieqsal” Az = A”b. Show that
anorthogonalprojection method ford” Az = A”b using a subspadk is mathematically
equivalent to applying a projection method oiiporthogonally tol = AK for solving the
systemAz = b.

P-5.5 Consider the matrix

152 CHAPTER 5. PROJECTION METHODS

a. Find a rectangle or square in the complex plane which gmédl the eigenvalues of
A, without computing the eigenvalues.

b. Is the Minimal Residual iteration guaranteed to convéoga linear system with the
matrix A?

P-5.3 Consider the linear system

D1 —-F I o bl
—-F —Dg €To o b2
in which D; and D, are both nonsingular matrices of sizeeach.

a. Define an orthogonal projection method using the set dbvee, ..., e, i.e., L =
K = span{ey, ..., e, }. Write down the corresponding projection step (s modified
into 71). Similarly, write the projection step for the second hdltlee vectors, i.e.,
whenl = K = span{e;,41, ..., en}.

b. Consider an iteration procedure which consists of psnifiog the two successive half-
steps described above until convergence. Show that thiide is equivalent to a
(standard) Gauss-Seidel iteration applied to the origipsiem.

c. Now consider a similar idea in whickl is taken to be the same as before for each
half-step andC = AK. Write down the iteration procedure based on this approach.
Name another technique to which it is mathematically edeiva

P-5.4 Consider the linear syster: = b, whereA is a Symmetric Positive Definite matrix.
We define a projection method which uses a two-dimensiorsalespt each step. At a given
step, takeC = K = span{r, Ar}, wherer = b — Az is the current residual.

a. For a basis oK use the vector and the vectop obtained by orthogonalizinglr
againstr with respect to thed-inner product. Give the formula for computipg(no
need to normalize the resulting vector).

b. Write the algorithm for performing the projection methdeiscribed above.

c. Will the algorithm converge for any initial guesg? Justify the answer. [Hint: Exploit
the convergence results for one-dimensional projectionrigues.]

P-5.4 Consider projection methods which update at each step tinentisolution with lin-
ear combinations from two directions: the current residumhd Ar-.

a. Consider an orthogonal projection method, i.e., at e@gh& = K = span{r, Ar}.
Assuming thatd is Symmetric Positive Definite, establish convergence efalyo-
rithm.

b. Consider aleast-squares projection method in whichclt &teplC = span{r, Ar} and
L = AK. Assuming thatd is positive definite (not necessarily symmetric), estéblis
convergence of the algorithm.

[Hint: The convergence results for any of the one-dimeraipnojection techniques can be
exploited.]

P-5.3 Assume that the (one-dimensional) Minimal Residual iterabf Sectiol 5312 is
applied to a symmetric positive matrix. Will the method converge? What will the result
(518) become in this case? Bofh(3.15) and(5.14) suggesearlconvergence with an
estimate for the linear convergence rate given by the foamow do these estimated rates
compare for matrices with large condition spectral conditiumbers?

P-5.4 The “least-squares” Gauss-Seidel relaxation method dedinelaxation step as,c., =
x + 6 e; (Same as Gauss-Seidel), but choastsminimize the residual norm af,,.,, .

5.4. ADDITIVE AND MULTIPLICATIVE PROCESSES 153

a. Write down the resulting algorithm.

b. Show that this iteration is mathematically equivalerat ®auss-Seidel iteration applied
to the normal equationd” Az = ATb.

P-5.3 Derive three types of one-dimensional projection algomghin the same manner as
was done in Sectidn 3.3, by replacing every occurrence ofebielual vector by a vector
e;, a column of the identity matrix.

P-5.4 Derive three types of one-dimensional projection algomghin the same manner as
was done in Sectidn 3.3, by replacing every occurrence ofebielual vector by a vector
Ae;, a column of the matrixd. What would be an “optimal” choice farat each projection
step? Show that the method is globally convergent in this.cas

P-5.5 A minimal residual iteration as defined in Sectlon3.3.2 ciso de defined for an
arbitrary search directiod, not necessarily related toin any way. In this case, we still
definee = Ad.
a. Write down the corresponding algorithm.
b. Under which condition are all iterates defined?
¢. Under which condition od does the new iterate make no progress, j|€.1|]2 =
lIll2?
. Write a general sufficient condition which must be satishg d at each step in order
to guarantee convergence.

o

P-5.5 Consider the following real-valued functions of the veatariablex, where A and
b are the coefficient matrix and right-hand system of a givaedr systemdz = b and
z, = A71h.

a(x) [— |3,
flx) = |b—Az3,
glz) = [ATb— AT Az|]3,
h(z) = 2(b,z)— (Az,z).

Calculate the gradients of all four functions above.
How is the gradient of related to that off ?
How is the gradient of related to that o, when A is symmetric?

How does the functioh relate to thed-norm of the error:, — x whenA is Symmetric
Positive Definite?

a o oo

P-5.5 The block Gauss-Seidel iteration can be expressed as a dngftlsaccessive projec-
tions. The subspad€é used for each projection is of the form

K = span{e;, €41, .., €itp}-

What is£? Not too commonly used an alternative is to take= AKX, which amounts to
solving a least-squares problem instead of a linear sydbmwelop algorithms for this case.
What are the advantages and disadvantages of the two appsoéignoring convergence
rates)?

P-5.6 Let the scalars); in the additive projection procedure satisfy the constrain

p
d wi=1. (5.24)
i=1

154 CHAPTER 5. PROJECTION METHODS

It is not assumed that each is positive but only thatw;| < 1 for all i. The residual vector
is given by the Formuld{5.23) or, equivalently,

p
Tk+1 = Zwi(f — Pi)T‘k.
i=1

a. Show that in the least-squares case, we laye: |2 < ||rk||2 for any choice ofv;’s
which satisfy the constraiff{524).

b. We wish to choose a set af’s such that the 2-norm of the residual vectgr ; is
minimal. Determine this set ab;’s, assuming that the vectofg — P;)r; are all
linearly independent.

c. The “optimal”’w;’s provided in the previous question require the solutiom pfx p
Symmetric Positive Definite linear system. Lgt= V,y; be the “search directions”
provided by each of the individual projection steps. To dubis difficulty, a simpler
strategy is used which consists of performinguccessive minimal residual iterations
along these search directions, as is described below.

ri=TE

Fori=1,...,p Do:
w; = (r,Az;)/(Az;, Az;)
T =T+ w;z;
ri=r—w;Az

EndDo

Show that|r,11]|2 < ||rk||2. Give a sufficient condition to ensure global convergence.

P-5.4 Consider the iterationt, 1 = = + axdy, Wheredy, is a vector called thdirection
of searchanday is a scalar. It is assumed throughout tligis a nonzero vector. Consider
a method which determines.; so that the residudl; 1 || is the smallest possible.

a. Determiney;, so that||r441 |2 is minimal.

b. Show that the residual vectay, ; obtained in this manner is orthogonalAa;, .

c. Show that the residual vectors satisfy the relation:

ksl < llrelle sin Z(ry, Ady).

d. Assume that at each stepwe have(ry, Ady) # 0. Will the method always converge?

e. Now assume that is positive definite and select at each siigp= r;. Prove that the
method will converge for any initial guess.

P-5.6 Consider the iterationty 1 = x) + axdi, Wheredy, is a vector called thdirection
of search andqy is a scalar. It is assumed throughout tligtis a vector which is selected
in the formd;,, = AT f;, where f;, is some nonzero vector. Let. = A~'b be the exact
solution. Now consider a method which at each stegeterminesc,; so that the error
norm||z. — xk+1||2 is the smallest possible.

a. Determiney;, so that||z. — zx1]]2 is minimal and show that the error vectar,; =
. — Tr41 IS orthogonal tad,. The expression ofy;, should not contain unknown
quantities (e.ga, oOr eg).

b. Show thatlest1|l2 < |lexll2 sin Z(eg, d).

c. Establish the convergence of the algorithm for apywhenf;, = r, for all k.

5.4. ADDITIVE AND MULTIPLICATIVE PROCESSES 155

NOTES AND REFERENCES Initially, the termprojection methodsvas used mainly to describe one--
dimensional technigues such as those presented in SECBoA® excellent account of what has been
done in the late 1950s and early 1960s can be found in Howdsteobook [178] as well as Gastinel
[T40]. For more general, including nonlinear, projectiongesses, a good reference is Kranoselskii
and co-authorg[192].

Projection techniques are present in different forms inyr@ther areas of scientific computing
and can be formulated in abstract Hilbert functional spadé® termsGalerkin and Petrov-Galerkin
techniques are used commonly in finite element methods wilesprojection methods on finite ele-
ment spaces. The principles are identical to those seefsiotihpter. |

156 CHAPTER 5. PROJECTION METHODS

Chapter 6

KRYLOV SUBSPACE METHODS PART I

The next two chapters explore a few methods which are considered currently to be among the
most important iterative techniques available for solving large linear systems. These techniques
are based on projection processes, both orthogonal and oblique, onto Krylov subspaces, which
are subspaces spanned by vectors of the form p(A)v where p is a polynomial. In short, these
techniques approximate A1y by p(A)b, where p is a “good” polynomial. This chapter covers
methods derived from, or related to, the Arnoldi orthogonalization. The next chapter covers
methods based on Lanczos biorthogonalization.

6.1 Introduction

Recall from the previous chapter that a gengnaljection methodor solving the
linear system
Az = b, (6.1)

extracts an approximate solutiay), from an affine subspaca, + KC,,, of dimension
m by imposing the Petrov-Galerkin condition

b— Ax,, L L.,

where L,,, is another subspace of dimension Here, zy represents an arbitrary
initial guess to the solution. A Krylov subspace method isethad for which the
subspacéC,, is the Krylov subspace

Km(A,19) = span{ry, Arg, A%rq, . .. ,Am_lro} ,

wherery = b — Axzo. When there is no ambiguity,, (A, o) will be denoted by
K. The different versions of Krylov subspace methods arismfdifferent choices
of the subspacg,,, and from the ways in which the systenpigconditioneda topic
that will be covered in detail in later chapters.

Viewed from the angle of approximation theory, it is cleaattthe approxima-
tions obtained from a Krylov subspace method are of the form

A_lb N Ty = g+ Qm—l(A)TO)

157

158 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

in which ¢,,,_1 is a certain polynomial of degree — 1. In the simplest case where
rog = 0, then
A7~ g1 (A)D.

In other words A~'b is approximated by, 1 (A)b.

Although all the techniques provide the same typgofynomial approxima-
tions, the choice of,,, i.e., the constraints used to build these approximatimiik,
have an important effect on the iterative technique. Twabrchoices folZ,, give
rise to the best-known techniques. The first is simply = KC,,, and the minimum-
residual variatiorC,,, = AK,,. A few of the numerous methods in this category will
be described in this chapter. The second class of methods<on defining’,,
to be a Krylov subspace method associated with namely,Z,, = K,,(A”,rg).
Methods of this class will be covered in the next chapter.ré&laee also block exten-
sions of each of these methods ternidaock Krylov subspace methqdshich will
be discussed only briefly. Note that a projection method nee lseveral differ-
ent implementations, giving rise to different algorithmisigh are all mathematically
equivalent.

6.2 Krylov Subspaces

In this section we consider projection methodskoglov subspaces.e., subspaces
of the form
Km(A,v) = span {v, Av, A%v,... A" 1y} (6.2)

which will be denoted simply byC,, if there is no ambiguity. The dimension of
the subspace of approximants increases by one at each stie@ approximation
process. A few elementary properties of Krylov subspacesbeaestablished. A
first property is thatC,, is the subspace of all vectors RI* which can be written
asz = p(A)v, wherep is a polynomial of degree not exceeding— 1. Recall that
the minimal polynomial of a vector is the nonzero monic polynomial of lowest
degree such that{ A)v = 0. The degree of the minimal polynomial ofvith respect
to A is often called thgrade ofv with respect ta4, or simply the grade of if there

is no ambiguity. A consequence of the Cayley-Hamilton teeors that the grade of
v does not exceed. The following proposition is easy to prove.

Proposition 6.1 Let . be the grade of. ThenC, is invariant under4 and C,,, =
K, forall m > p.

It was mentioned above that the dimensiorkgf is nondecreasing. In fact, the
following proposition determines the dimension/af, in general.

Proposition 6.2 The Krylov subspack,,, is of dimensionn if and only if the grade
1 of v with respect ta4 is not less thamn, i.e.,

dim(K,,) =m <« grade(v) > m. (6.3)

Therefore,
dim(/C,;,) = min {m, grade(v)}. (6.4)

6.2. KRYLOV SUBSPACES 159

Proof. The vectorsv, Av, ..., A" 'y form a basis ofiC,, if and only if for any
set of m scalarsa;,i = 0,...,m — 1, where at least one; is nonzero, the linear
combinationy 7", o; A%v is nonzero. This is equivalent to the condition that the
only polynomial of degree< m — 1 for which p(A)v = 0 is the zero polynomial.
The equality[[&}4) is a consequence of the previous praposit |

Given a certain subspacg, recall thatA‘X denotes the restriction of to X. If
Q is a projector ontaX, thesection of the operatod in X is the operator fromX
onto itself defined by) A x. The following proposition characterizes the product of
polynomials ofA by v in terms of the section ofl in KC,,,.

Proposition 6.3 Let @,,, be any projector ontdC,,, and letA,, be the section ofA
to ICy,, that is, A, = QmAjic,,,- Then for any polynomiaj of degree not exceeding
m— 1,

4(A)o = q(Am)

and for any polynomial of degre€ m,

Qmq(A)v = q(An)v .

Proof. First we prove thag(A)v = ¢(A,,)v for any polynomial; of degree< m—1.
It is sufficient to show the property for the monic polynorsial(t) = %, i =
0,...,m — 1. The proof is by induction. The property is true for the paymal
qo(t) = 1. Assume that it is true fay; (t) = -

qi(A)v = qi(Am)v .
Multiplying the above equation byl on both sides yields
gi+1(A)v = Agi(Am)v -

If 14+ 1 < m — 1 the vector on the left-hand side belongsig, and therefore if the
above equation is multiplied on both sides®y,, then

Gi+1(A)v = QmAgi(Am)v.
Looking at the right-hand side we observe thatd,,,)v belongs toC,,,. Hence,
Gir1(A)v = QmAik,, 6i(Am)v = qiv1(An)v,

which proves that the property is true for 1, provided: +1 < m — 1. For the case
i+ 1 = m, it only remains to show tha®,,,¢.(A)v = ¢m(Am)v, which follows
from ¢,—1(A)v = gm—1(As)v by simply multiplying both sides bg),,, A. |

160 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

6.3 Arnoldi’'s Method

Arnoldi’'s method [9] is an orthogonal projection method®#t,,, for general non-
Hermitian matrices. The procedure was first introduced Bil18s a means of reduc-
ing a dense matrix into Hessenberg form with a unitary tr@msétion. In his paper,
Arnoldi hinted that the eigenvalues of the Hessenberg ralriained from a number

of steps smaller than could provide accurate approximations to some eigenvalues
of the original matrix. It was later discovered that thisagtgy leads to an efficient
technique for approximating eigenvalues of large spardeicea and the technique
was then extended to the solution of large sparse lineaersgsof equations. The
method will first be described theoretically, i.e., assugremact arithmetic, then im-
plementation details will be addressed.

6.3.1 The Basic Algorithm

Arnoldi’s procedure is an algorithm for building an orthogd basis of the Krylov
subspacéC,,. In exact arithmetic, one variant of the algorithm is asdat:

ALGORITHM 6.1 Arnoldi

Choose a vectar;, such that|v ||, = 1
Forj =1,2,...,m Do:
Computéh;; = (Avj,v;) fori=1,2,...,j
Computauj = A’Uj — Zg=1 hijvi
hjr1g = llw;ll2
If hji1,; =0 then Stop
Vi1 = wj/hji
EndDo

N A WNR

At each step, the algorithm multiplies the previous Arnalelctorv; by A and
then orthonormalizes the resulting vectoy against all previous;’s by a standard
Gram-Schmidt procedure. It will stop if the vector computed in line 4 vanishes.
This case will be examined shortly. Now a few simple progsrtf the algorithm
are proved.

Proposition 6.4 Assume that Algorithin@.1 does not stop beforeithth step. Then
the vectora, vs, . . ., v, form an orthonormal basis of the Krylov subspace

Ky = span{vy, Avy, ..., A" o},

Proof. The vectorsy;, 5 = 1,2,...,m, are orthonormal by construction. That they
spaniC,, follows from the fact that each vectos is of the formg;_;(A)v; where
gj—1 is a polynomial of degreg— 1. This can be shown by induction gras follows.
The result is clearly true fof = 1, sincev; = go(A)v; with go(¢) = 1. Assume that
the result is true for all integers j and consider;,,. We have

J J
hj+1,jvj+1 = Avj — Z hij’l)i = qu_l(A)vl — Z hijqi_l(A)vl (65)
i=1 =1

6.3. ARNOLDI'S METHOD 161

which shows that;,; can be expressed as(A)v; whereg; is of degreej and
completes the proof. |

Proposition 6.5 Denote byV,,,, then x m matrix with column vectorsy, ..., v,
by H,,, the(m + 1) x m Hessenberg matrix whose nonzero entfigsare defined
by Algorithm[&.1, and by{,, the matrix obtained fronii,,, by deleting its last row.
Then the following relations hold:

AV = VinHy, + wpel (6.6)
= Vm+1gma (67)
vIiav, = H,. (6.8)

Proof. The relation[(&J7) follows from the following equality whids readily derived
from lines 4, 5, and 7 of Algorithfa 8.1,

J+1
Av; = Zhijvia J=12...,m (6.9)
1=1

Relation [&.6) is a matrix reformulation ¢f{$.9). Relati@8) follows by multiply-
ing both sides of{&16) by,. and making use of the orthonormality ff;, . . ., v, }.
O

The result of the proposition is illustrated in Figlirel 6.1.

Hp,

A Vo, | = Vi, + wmel

Figure 6.1: The action ofl onV,,, givesV,, H,, plus a rank-one matrix.

As was noted earlier, the algorithm may break down in casentdmen of w;
vanishes at a certain stgplin this case, the vectar;;; cannot be computed and the
algorithm stops. Still to be determined are the conditiomden which this situation
occurs.

Proposition 6.6 Arnoldi’s algorithm breaks down at stej(i.e., b1 ; = 0 in Line
5 of Algorithm&.1L), if and only if the minimal polynomial@fis of degreej. More-
over, in this case the subspak® is invariant underA.

162 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Proof. If the degree of the minimal polynomial js thenw; must be equal to zero.
Indeed, otherwise;,; can be defined and as a reskilt;; would be of dimension
j-+ 1. Then Propositiof 812 would imply that> j + 1, which is a contradiction. To
prove the converse, assume that= 0. Then the degreg of the minimal polyno-
mial of v; is such thaj, < j. Moreover, it is impossible that < j. Otherwise, by
the first part of this proof, the vectar, would be zero and the algorithm would have
stopped at the earlier step numberThe rest of the result follows from Proposition
0. 1. O

A corollary of the proposition is that a projection methodathe subspack;
will be exact when a breakdown occurs at stephis result follows from Proposition
seen in Chapt€l 5. It is for this reason that such breaksl@ne often calletlicky
breakdowns

6.3.2 Practical Implementations

In the previous description of the Arnoldi process, exatharetic was assumed,
mainly for simplicity. In practice, much can be gained byngsthe Modified Gram-
Schmidt or the Householder algorithm instead of the stah@am-Schmidt algo-
rithm. With the Modified Gram-Schmidt alternative the altfun takes the following
form:

ALGORITHM 6.2 Arnoldi-Modified Gram-Schmidt

1. Choose a vectar; of norm 1

2. Forj =1,2,...,m Do:

3. Computew; := Av;

4. Fori =1,...,5 Do:

5. hij = (wj,vi)

6. Wy 1= Wj — hij’UZ'

7. EndDo

8. hj+1,j = ||UJJH2 If hj+1,j =0 StOp
9. Vjt1 = wj/hjt1,

0. EndDo

=~

In exact arithmetic, this algorithm and AlgoritHmb.1 aretheamatically equivalent.
In the presence of round-off the above formulation is muchemeliable. However,
there are cases where cancellations are so severe in tlogantlization steps that
even the Modified Gram-Schmidt option is inadequate. In tlaise, two further
improvements can be utilized.

The first improvement resorts to double orthogonalizatid¢henever the final
vector w; obtained at the end of the main loop in the above algorithm bess
computed, a test is performed to compare its norm with thenrafrthe initial w;
(which is||Av;]|2). If the reduction falls below a certain threshold, indicgtsevere
cancellation might have occurred, a second orthogonaizas made. It is known

6.3. ARNOLDI'S METHOD 163

from a result by Kahan that additional orthogonalizatiors superfluous (see, for
example, Parletf[224]).

The second improvement is to use a different technique etlheg From the
numerical point of view, one of the most reliable orthogizalon techniques is the
Householder algorithm. Recall from Chapter 1 that the Hoakker orthogonaliza-
tion uses reflection matrices of the forly = I — 2wkw}f to transform a matrixxX’
into upper triangular form. In the Arnoldi algorithm, thel@mn vectors of the ma-
trix X to be orthonormalized are not available ahead of time. &astdhe next vector
is obtained asAv;, wherewv; is the current basis vector. In the Householder algo-
rithm an orthogonal colump; is obtained as” P ... P,e; wherePy, ..., P; are the
previous Householder matrices. This vector is then migitibby A and the previous
Householder transforms are applied to it. Then, the nextsHolder transform is
determined from the resulting vector. This procedure icidesd in the following
algorithm, which was originally proposed by Walker [303].

ALGORITHM 6.3 Householder Arnoldi

Select a nonzero vector Setzy = v
Forj =1,...,m,m+ 1 Do:
Compute the Householder unit vectoy such that
(wj)l- :0,i:1,...,j—1and
(Pjzj)i = 0,i=j+1,...,n, whereP; = I — 2wjw!
hj—l = Pij
’Uj = P1P2 e Pjﬁj
If j < m computez; 1 := P;Pj_1 ... P Av;
EndDo

© XN AWNR

For details regarding the determination of the Househol@etor w; in the third
to fifth lines and on its use in the sixth to eight lines, seep@édl. Recall that
the matricesP; need not be formed explicitly. To obtafy_; from z; in line 6,
zero out all the components from positignt- 1 throughn of the n-vector z; and
change itsj-th component, leaving all others unchanged. Thusjthem matrix
[ho, h1, - .., hy] Will have the same structure as the matiiy, of equation [1.27)
in ChapteilL. By comparison with the Householder algoritleansin Chapter 1,
we can infer that the above process computesQliefactorization of the matrix
v, Avy, Avg, Avs, . .., Avy,. Define

Qj=PjPj_y...Pr. (6.10)
The definition ofz; ;1 in line 8 of the algorithm yields the relation,
QjA’Uj = Zj+1-

After the next Householder transformatiéty, ; is applied in line 6, satisfies the
relation,
hj = Pjt1zj41 = PiaQjAv; = Qj1Av;. (6.11)

164 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Now observe that since the components 2, ..., n of h; are zero, thed’;h; = h;
forany: > j + 2. Hence,

hj :Pum_l...Pj+2hj :QmA’Uj, jzl,...,m.
This leads to the factorization,
Qm[v,Avl,Avg,...,Avm] = [ho,hl,...,hm] (612)

where the matriXho, ..., hy] isn x (m + 1) and is upper triangular an@,,, is
unitary.

Itis important to relate the vectors andh; defined in this algorithm with vectors
of the standard Arnoldi process. LA, be the(m + 1) x m matrix obtained from
the firstm + 1 rows of then x m matrix [h1, ..., hy]. SinceQ;,; is unitary we
haver‘j1 = Q]TH and hence, from the relation (6111)

j+1 j+1
Avj = Qf1 Y hijer =Y hijQf e
i=1 i=1
where eacle; is thei-th column of then x n identity matrix. SincePre; = e; for
1 < k, itis not difficult to see that

Qfi1ei=Pr... Pipye; =v;, fori <j+1. (6.13)

This yields the relatiomdv; = S>7*! h;jv;, for j = 1,...,m, which can be written
in matrix form as
AVm - m+1Hm'

This is identical with the relatiod {8.7) obtained with thea@-Schmidt or Modified
Gram-Schmidt implementation. Theg's form an orthonormal basis of the Krylov
subspaceC,,, and are identical with the;’s defined by the Arnoldi process, apart
from a possible sign difference.

Although the Householder algorithm is numerically moreblgathan the Gram-
Schmidt or Modified Gram-Schmidt versions, it is also morgemsive. The cost of
each of the outer loops, corresponding to tleentrol variable, is dominated by lines
7 and 8. These apply the reflection matriéédori = 1,...,j to a vector, perform
the matrix-vector productiv;, and then apply the matricés fori = j,7 —1,...,1
to a vector. The application of eaéh to a vector is performed as

(I — 2w;w! v =v —ow; With o = 2w!v.

This is essentially the result of a dot-product of length i + 1 followed by a vector
update of the same length, requiring a total of abfut — i + 1) operations for
each application of’;. Neglecting the last step, the number of operations dueeto th
Householder transformations alone approximately totals

Zzs(n—i+1)=8z_:<jn—j(j2_l)> %4m2n—§m3.

6.4. ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 165

The table below shows the costs of different orthogonatimgtrocedures. GS stands
for Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for §ified Gram-
Schmidt with reorthogonalization, and HO for Householder.

‘ GS ‘ MGS ‘ MGSR ‘ HO
Flops 2m2n 2m?n 4m®n 4m?n — %m‘?’
Storage | (m+1)n | (m+1)n | (m+1)n | (m+1)n — %mQ

The number of operations shown for MGSR corresponds to thstwase scenario
when a second orthogonalization is performed each time.rdotige, the number
of operations is usually closer to that of the standard MG&arding storage, the
vectorsv;,i = 1,...,m need not be saved. In the algorithms for solving linear
systems, these vectors are needed at the end of the probésisstie will be covered
with the Householder implementations of these algorithfasr now, assume that
only thew;’s are saved. The small gain in memory usage in the Househaddsion
can be explained by the diminishing lengths of the vectagsiired at each step of
the Householder transformation. However, this differeisceegligible relative to the
whole storage requirement of the algorithm, because n, typically.

The Householder orthogonalization may be a reasonable&hdien developing
general purpose, reliable software packages where rasssia a critical criterion.
This is especially true for solving eigenvalue problemssithe cost of orthogo-
nalization is then amortized over several eigenvalueysigeior calculations. When
solving linear systems, the Modified Gram-Schmidt orth@djaation, with a re-
orthogonalization strategy based on a measure of the Iérzellation, is more
than adequate in most cases.

6.4 Arnoldi’'s Method for Linear Systems (FOM)

Given an initial guess to the original linear systemx = b, we now consider an
orthogonalprojection methodas defined in the previous chapter, which takes-
K =K (A,ro), with

K (A, 19) = span{ry, Arg, A2T0, o ,Am_lro}, (6.14)

in whichryg = b — Axg. This method seeks an approximate solutign from the
affine subspaceg + C,,, of dimensionm by imposing the Galerkin condition

b— Az, L K. (6.15)
If v1 = ro/||roll2 In Arnoldi’s method, and we set = ||r||2, then
vIav, = H,

by &8) and
Vg’l“o = Vg(ﬁvl) = ﬁel.

166 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

As a result, the approximate solution using the abemdimensional subspaces is
given by

Tm = x0+mem7 (616)
ym = Hp,'(Ber). (6.17)

A method based on this approach and called the Full Orthdigatian Method
(FOM) is described next. Modified Gram-Schmidt is used inAheoldi procedure.

ALGORITHM 6.4 Full Orthogonalization Method (FOM)

Computey = b — Axg, B := ||roll2, @andvy :== 1o/
Define then x m matrix H,, = {h;;}i j=1,..m, S€tHp, =0
Forj =1,2,...,m Do:
Computew; := Av;
Fori=1,...,5 Do:
hij = (wj, vi)
wj = wWj — hijvi
EndDo
Computéhj 11 j = ||wjl2. If hj11; = 0 setm := j and Goto 12
Computej 1 = w;/hji1 ;.
EndDo
Computey,, = H,.'(Be1) andz,, = xo + Vinym

=
ROOXXNDUAWNR

[
N

The above algorithm depends on a paramsetewhich is the dimension of the
Krylov subspace. In practice it is desirable to sebecin a dynamic fashion. This
would be possible if the residual norm of the solutiop is available inexpensively
(without having to compute:,,, itself). Then the algorithm can be stopped at the
appropriate step using this information. The following gasition gives a result in
this direction.

Proposition 6.7 The residual vector of the approximate solutieyy computed by
the FOM Algorithm is such that

b— Axy, = _hm-i-l,mez—‘nymvm—l—l
and, therefore,
||b — A:L'mHQ = hm+1,m|€;€;ym|. (618)

Proof. We have the relations,
b— Az, = b— A(xo+ Vinym)
= To— Avmym

T
- 5”1 - VmHmym - hm—l—l,memymvm-‘rl-

By the definition ofy,,,, H.»y,» = Be1, and sobvy — V,, Hpym = 0 from which the
result follows. O

6.4. ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 167

A rough estimate of the cost of each step of the algorithm tierdened as fol-
lows. If Nz(A) is the number of nonzero elementsAfthenm steps of the Arnoldi
procedure will requiren matrix-vector products at the cost &f. x Nz(A). Each
of the Gram-Schmidt steps costs approximately j x n operations, which brings
the total over then steps to approximatel§m?n. Thus, on the average, a step of
FOM costs approximately

2Nz(A) + 2mn.

Regarding storagen vectors of lengthn are required to save the badis,. Addi-
tional vectors must be used to keep the current solution igidtnand side, and a
scratch vector for the matrix-vector product. In addititve Hessenberg matrii,,,
must be saved. The total is therefore roughly

2

(m +3)n + mT

In most situationsn is small relative to, so this cost is dominated by the first term.

6.4.1 Variation 1: Restarted FOM

Consider now the algorithm from a practical viewpoint. #sincreases, the com-
putational cost increases at least¥sn?n) because of the Gram-Schmidt orthogo-
nalization. The memory cost increasedsnn). For largen this limits the largest
value of m that can be used. There are two remedies. The first is to trekear
algorithm periodically and the second is to “truncate” tihogonalization in the
Arnoldi algorithm. In this section we consider the first oésle two options, which
is described below.

ALGORITHM 6.5 Restarted FOM (FOM(m))

Computey = b — Axg, B = ||rol|2, andvy = ro/ 0.

Generate the Arnoldi basis and the mafiix, using the Arnoldi algorithm
starting withv .

Computey,,, = H.'3e; andx,, = xo + Vy,ym. If satisfied then Stop.

Setry := x,, and go to 1.

O O R

There are many possible variations to this basic scheme.tl@nés generally
more economical in practice is based on the observatiorstdmetimes a smath is
sufficient for convergence and sometimes the largest dessilis necessary. Hence,
the idea of averaging over different values»of Start the algorithm withn = 1 and
incrementm by one in line 5 until a certaim,,,,.. is reached, after which is reset
to one, or kept the same. These variations will not be coreitere.

Example 6.1. Table[6 shows the results of applying FOM(10) with no preco
ditioning to three of the test problems described in Se@iah The column labeled
Iters shows the total actual number of matrix-vector multiplicas (matvecs) re-
quired to converge. The stopping criterion used is that ther2n of the residual be

168 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Matrix | Iters | Kflops | Residual Error

F2DA | 109| 4442 | 0.36E-03| 0.67E-04
F3D 66 | 11664 | 0.87E-03| 0.35E-03
ORS 300 | 13558 | 0.26E+00| 0.71E-04

Table 6.1: A test run of FOM with no preconditioning.

reduced by a factor of0” relative to the 2-norm of the initial residual. A maximum
of 300 matvecs are allowedflopsis the total number of floating point operations
performed, in thousandfesidualandError represent the two-norm of the residual
and error vectors, respectively. Note that the method dicsuncceed in solving the
third problem. |

6.4.2 Variation 2: IOM and DIOM

A second alternative to FOM is to truncate the Arnoldi reence. Specifically, an
integerk is selected and the following “incomplete” orthogonaliaatis performed.

ALGORITHM 6.6 Incomplete Orthogonalization Process

1. Forj =1,2,...,m Do:

2. Computew; := Av;

3. Fori = max{1,j —k+1},...,75 Do:

4, hiJ‘ = (wj,vi)

5. Wy 1= Wj — hij’UZ'

6. EndDo

7. Computehjﬂ,j = ||ij2 andvj+1 = wj/hj+1,j
8. EndDo

The number of directiong against which to orthogonalize may be dictated by
memory limitations. The Incomplete Orthogonalization Mt (IOM) consists of
performing the above incomplete orthogonalization praceénd computing an ap-
proximate solution using the same formulas{b.16) &nd1j6.17

ALGORITHM 6.7 IOM Algorithm

Run a maodification of Algorithri 84 in which the Arnoldi pra=ein lines
3to 11 is replaced by the Incomplete Orthogonalization @ge@nd every
other computation remains unchanged.

It is now necessary to keep only thepreviousv; vectors. The others are not
needed in the above process and may be discarded. Howegedifficulty re-
mains that when the solution is computed by form{[aT6.16}ha vectorsw; for

6.4. ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM) 169

i=1,2,...,m are required. One option is to recompute them at the end ssene
tially this doubles the cost of the algorithm. Fortunatelyprmula can be developed
whereby the current approximate solutioy can be updated from the previous ap-
proximationzx,, 1 and a small number of vectors that are also updated at egzh ste
Thisprogressivégormulation of the solution leads to an algorithm terniadect IOM
(DIOM) which we now derive.

The Hessenberg matri,,, obtained from the incomplete orthogonalization pro-
cess has a band structure with a bandwidtk ef 1. For example, whek = 3 and
m = 5, itis of the form

hir hia hig
hor haa haz hag
H,, = hsz h33s has hss | . (6.19)
has hag has

hss hss

The Direct version of IOM is derived from exploiting the special sturet of the
LU factorization, H,,, = L.,U,,, of the matrixH,,. Assuming no pivoting is used,
the matrix L, is unit lower bidiagonal and/,,, is banded upper triangular, with
diagonals. Thus, the above matrix has a factorization ofdtra

1 U] U2 U13
lor 1 Uga U3 U4
Hpy = sz 1 X u3z U4 U35
lig 1 Ugy Uds
ls4 1 Uss

The approximate solution is then given by
Tm = o+ VinUy, Ly (Bex).

Defining
Py = VUt
and
m = L;nl(ﬁel)v
the approximate solution is given by

T = 20 + Pozm. (6.20)

Because of the structure 6%,,, P, can be updated easily. Indeed, equating the
last columns of the matrix relatioR,,U,,, = V,,, yields

m

g UimPi = Um,

i=m—k+1
which allows the vectop,,, to be computed from the previowss andv,,:

1 m—1
Pm = —" [Um - Z UimPi] .

i=m—k+1

=~

170 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

In addition, because of the structurelof,, we have the relation
Zm—
e]
m

Cm = _lm,m—ICm—l-

in which

From [E20),

Zm—1

Cm

Noting thatry + P_12m—1 = xz.m_1, it follows that the approximation,,, can be
updated at each step by the relation,

Ty = X0 + [Pm—17pm] |: :| =x0+ Pm—lzm—l + Cmpm-

Tm = Tm—1 + Cmpm (621)

wherep,, is defined above. This gives the following algorithm, caltbd Direct
Incomplete Orthogonalization Method (DIOM).

ALGORITHM 6.8 DIOM

1. Choosexy and computey = b — Axg, (3 := ||roll2, v1 := 70/5.

2. Form = 1,2, ..., until convergence Do:

3. Computéh;,,, i = max{1l,m — k + 1},...,m andv,, 1 asin
4, lines 2-7 of Algorithm[{Gl6).

5. Update the LU factorization di,,, i.e., obtain the last column
6. ofU,, using the previoug pivots. Ifu,,,, = 0 Stop.

7. ¢m ={if m=1thenp, else —l m—1 (m-1}

8. Pm = UL (vm — Z;’l;%_kﬂ u,-mpi> (fori < 0 setunp; = 0)
9. Ty = Tm—1 + Cmpm

0. EndDo

The costs of the above algorithm as well as the IOM algoritmenthe subject of
Exercisdb.

Observe thaf{&l6) is still valid and as a consequence, Bitopu6.1, which is
based on it, still holds. That is because the orthogonafibpgrties were not used to
derive the two relations therein. A result of this is that Eipn [6I8) still holds and
it is then easy to show that

G
— ATm||]2 = m+1,m|CmYm| = Nm+1,m =
16 = Azinlls = sl =
Umm,

DIOM can also be derived by imposing the properties thatatisfied by the residual
vector and the conjugate directions, i.e., fhs. Note that the above algorithm is
based implicitly on Gaussian elimination without pivotifay the solution of the

Hessenberg systeifd,,y,, = fe1. This may cause a premature termination in line

6.5. GMRES 171

6. Fortunately, an implementation is available which seb@ Gaussian elimination
with partial pivoting. The details of this variant can beridun [240].

Since the residual vector is a scalar multiplevgf,; and since they;’s are no
longer orthogonal, IOM and DIOM are not orthogonal projeattechniques. They
can, however, be viewed as oblique projection techniqués /o, and orthogonal
to an artificially constructed subspace.

Proposition 6.8 IOM and DIOM are mathematically equivalent to a projectian{
cess ontdC,,, and orthogonally to

L, =span{z1,22,...,2m}

where
zi = Vi — (Ui, Umt1)Umt1, 1=1,...,m.

Proof. The proof is an immediate consequence of the factthais a multiple of
vm+1 @nd by constructiony,, . is orthogonal to alk;’'s defined in the proposition.

O
The following simple properties can be shown:
e The residual vectors;, i = 1,...,m, are “locally” orthogonal,
(rj,m) =0, for |i—j| <k, i#j. (6.22)
e Thep;’s are locally A-orthogonal to the Arnoldi vectors, i.e.,
(Apj,v;) =0 for j—k+1<i<j. (6.23)

e For the casé& = oo (full orthogonalization) the;'s are semi-conjugate, i.e.,

(Apj,p;) =0 for i <j. (6.24)

6.5 GMRES

The Generalized Minimum Residual Method (GMRES) is a ptigeanethod based
on takingk = K,,, and£L = AK,,, in which IC,,, is them-th Krylov subspace with
v1 =19/||70]|2. AS seen in Chapter 5, such a technique minimizes the rdsidua
over all vectors inzg + K,,,. The implementation of an algorithm based on this
approach is similar to that of the FOM algorithm. We first dixsethe basic idea
and then discuss practical details and a few variations.

172 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

6.5.1 The Basic GMRES Algorithm

There are two ways to derive the algorithm. The first way efpline optimality
property and the relatiofi . {8.7). Any vectein z + K,, can be written as

x =x0+ Viny, (6.25)
wherey is anm-vector. Defining
J(y) = b= Azll2 = [|b— A(z0 + Viny) [l2, (6.26)
the relation[(&]7) results in
b—Ax = b—A(zo+ Vpyy)

= To— Avmy
= ﬂvl - Vm—l—lﬁmy
= Vm+1 (661 — Hmy) . (627)
Since the column-vectors &f,, ., are orthonormal, then
J(y) = b= A(zo+ Viny) l2 = [|Ber — Hmyll2- (6.28)

The GMRES approximation is the unique vectorgf /C,,, which minimizes[[6.26).
By @23) and [[628), this approximation can be obtainedegsimply asxz,, =

xo + Vinym Wherey,,, minimizes the function/(y) = ||Be1 — Hiyll2, i.€.,
Tm = xo+ Vinym, Where (6.29)
Yym = argmin,|Ge; — Hpylla. (6.30)

The minimizery,, is inexpensive to compute since it requires the solutionrof a
(m + 1) x m least-squares problem whene is typically small. This gives the
following algorithm.

ALGORITHM 6.9 GMRES

Computey = b — Axg, 0 := H’r'()HQ, andvy := To/ﬁ
Forj =1,2,...,m Do:
Computew; := Av;
Fori=1,...,5 Do:
hz’j = (ZUj,Ui)
wj = wWj — hijvi
EndDo
hjt1,j = ||wjll2. If hjy1; =0 setm := j and go to 11
vjt1 = wj /it
EndDo
Define tth + 1) X m Hessenberg matrik,, = {hij}lgigm—i-l,lgjgm-
Computey,,, the minimizer of|Be; — H,,yll2 andz,, = zo + VinYm.

=
ROOXXNUTAWNR

[
N

The second way to derive the GMRES algorithm is to use thetemsal5.T)
with W,,, = AV,,,. This is the subject of Exerci§é 4.

6.5. GMRES 173

6.5.2 The Householder Version

The previous algorithm utilizes the Modified Gram-Schmidhogonalization in the
Arnoldi process. Sectidn 6.3.2 described a Householdéantanf the Arnoldi pro-
cess which is numerically more robust than Gram-SchmidtreHe&e focus on a
modification of GMRES which retrofits the Householder orthioglization. Section
explained how to get the and the columns off,,;; at each step, from the
Householder-Arnoldi algorithm. Sindg,, and H,,, are the only items needed to ex-
tract the approximate solution at the end of the GMRES psydé® modification
seems rather straightforward. However, this is only trubefy;’s are stored. In this
case, line 12 would remain the same and the modification t@lgeithm would
be in lines 3-11 which are to be replaced by the Household#ainteof the Arnoldi
process. It was mentioned in Sectlon @.3.2 that it is preferaot to store the;’s
because this would double the storage requirement. In &sis,@ formula must be
found to generate the approximate solution in line 12, usinly thew;’s, i.e., the
P;’s. Let

9

T
Ym = (77177727"' 777m)

so that the solution is of the formy,, = zg + mv1 + - - - + nmum. Recall that in the
Householder variant of the Arnoldi process, eaglis defined by

’Uj = P1P2 e Pjej.
Using a Horner-like scheme, we obtain

Ty = Xo+ 7’]1P161 + 772P1P2€2 + ...+ 77mP1P2 ...PLem
= xo+ Py (mer + Pa(mpe2 + ... + Pr—i (Mm—1€m—1 + Pmlimem))) -

Therefore, when Householder orthogonalization is usesh lime 12 of the GMRES
algorithm should be replaced by a step of the form

z = 0 (6.31)
z = Pj(mjej+z),j=mm—1,...,1 (6.32)
Tm = xo+ 2. (6.33)

The above step requires roughly as many operations as ciompi last Arnoldi
vectorv,,. Therefore, its cost is negligible relative to the cost & Arnoldi loop.

174 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

ALGORITHM 6.10 GMRES with Householder orthogonalization

1. Computey = b — Axg, z :== 1.
2. Forj =1,...,m,m+ 1 Do:
3. Compute the Householder unit vectoy such that
4. (wj)i:0,i:1,...,j—1and
5. (Pjz)i = 0,i=j+1,...,n whereP; = I — 2wjw] ;
6. hj_1 := Pjz; If j = 1 then letB := ¥ hy.
7. v i= P1P2...Pj€j.
8. If j < m computez :== P;P;_y ... P Av,
9. EndDo
10. DefineH,,, = the(m + 1) x m upper part of the matri., . .. , hy,).
11. Computey,,, = Argminy”ﬂel - HmyHQ Lety,, = (7717 n2;. .. 777m)T'
12. z:=0
13. Forj=m,m—1,...,1 Do:
14. z = Pj (nje; + z),
15. EndDo
16. Computex,, = xo + 2

Note that now only the set af; vectors needs to be saved. The scaldefined
in line 6 is equal tat||ry||2. This is becausé’ z = [e; wheref is defined by the
equations[(1.26) seen in Chapter 1, which define the first étmider transforma-
tion. As was observed earlier the Householder factorinagictually obtains the QR
factorization [&IR) withy = . We can also formulate GMRES directly from this
factorization. Indeed, it = z¢ + V,,ym, then according to this factorization, the
corresponding residual norm is equal to

|ho — mh1 —maha — ... — b |2

whose minimizer is the same as the one defined by the algorithm

The details of implementation of the solution of the leagteges problem as well
as the estimate of the residual norm are identical with tlidgee Gram-Schmidt
versions and are discussed next.

6.5.3 Practical Implementation Issues

A clear difficulty with Algorithm[&D3 is that it does not prale the approximate
solutionz,,, explicitly at each step. As a result, it is not easy to deteemhen to
stop. One remedy is to compute the approximation solutigrat regular intervals
and check for convergence by a test on the residual, for ebearHpwever, there is a
more elegant solution which is related to the way in whichl&ast-squares problem
&30) is solved.
A common technique to solve the least-squares prolbémi| 3e; — H,,y||2, is to

transform the Hessenberg matrix into upper triangular foyrmasing plane rotations.

6.5. GMRES

Define the rotation matrices
1

=S G

1

175

— row ¢

«—rowi+1 (6.34)

with ¢Z + s? = 1. If m steps of the GMRES iteration are performed then these
matrices have dimensigme + 1) x (m + 1).

Multiply the Hessenberg matrii,,, and the corresponding right-hand sigle=
(e by a sequence of such matrices from the left. The coefficignts are selected
to eliminateh; 1 ; at each time. Thus, if» = 5 we would have

hit hi2 his

hot hoo has

= h3a hg33
Hs = has3

Then premultiplyHs by

0

with
ha1

5] = ———,
Vhiy + by,

hiy hais
hoy has
h3s h3s
has has
hsy hss

to obtain the matrix and right-hand side

AV R 0 0

9
i i 1

)) A

g0 — hsa hss has
° haz haa
hs4

hes

QI

(=)

Il
OO oo oo™

g1 = 0 . (6.35)

We can now premultiply the above matrix and right-hand sigi@raby a rotation
matrix {25 to eliminatehs,. This is achieved by taking

B h32
S = —F/—,
V (hglz))z + h3

Cy =

1
hyy

176 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

This elimination process is continued until theth rotation is applied, which trans-
forms the problem into one involving the matrix and rightitisside,

(5) (5) (5) (5) (5)
h h h h h
R O AR b
B 5) 70 h5)
A - has h%x) h%g) Cas=| 7. (6.36)
b '
b ’
0 Y6

Generally, the scalars ands; of thei'” rotation(; are defined as

. (=)
S; = (}I;—FLZ s C; = (}i;Z . (637)
\/(hiﬁ_)2+ h22+1,z \/(hiﬁ_)2+ h22+1,z

Define@,,, the product of matriceg;,

Qm =V Q1 ... (6.38)
and

Rm = ﬁy(nm) = Qmﬁn"m (639)
Im = QmBer) = (.-, ymr1)" (6.40)

Since),, Is unitary,
min || Be; — HmyH2 = min ||gm — Rmy||2

The solution to the above least-squares problem is obtdigezsimply solving the
triangular system resulting from deleting the last row & thatrix ,,, and right-
hand sidej,,, in (€38). In addition, it is clear that for the solutign, the “residual”
| Be1 — H,,y.|| is nothing but the last element of the right-hand side, e termng
in the above illustration.

Proposition 6.9 Letm < n and;,7 = 1,...,m be the rotation matrices used to
transform,,, into an upper triangular form. Denote BY,.., G = (Y1, - -+ » Yms1)”
the resulting matrix and right-hand side, as definedby {5.@40). and byR,,,, g,»
them x m upper triangular matrix andn-dimensional vector obtained from,,, g,
by deleting their last row and component respectively. Then

1. Therank ofAV,, is equal to the rank oRz,,. In particular, if r,,,,, = 0 then A
must be singular.

2. The vectow,, which minimized|3e; — H,,y||2 is given by

Ym = R;qlgm'

6.5. GMRES 177

3. The residual vector at step satisfies

b— Az = Vi (ﬁel - Hmym) = Vm+1Q%(7m+lem+1) (6.41)

and, as a result,
b — Azl = [Ymr1]- (6.42)

Proof. To prove first part (1), us€(8.7), to obtain the relation

Avm = Vm—l—lﬁm
- Vm-i—lQ%QmFIm
- Vm-i—lQ%Rm

SinceV,,1QL is unitary, the rank ofdV,, is that of R,,, which equals the rank
of R,, since these two matrices differ only by a zero row (the last 06 R,,). If
rmm = 0 thenR,, is of rank< m — 1 and as a resultlV,,, is also of rank< m — 1.
SinceV,, is of full rank, this means thal must be singular.

The second part (2), was essentially proved before the prib@m. For any vec-
tor vy,

1Ber — Hpylls = [|Qm(Ber — Huy)|3
= Hgm - RmyH%
= ms1l> + llgm — Bmyll3 (6.43)

The minimum of the left-hand side is reached when the seamndih the right-hand
side of [64B) is zero. Sinck,, is nonsingular, this is achieved when= R, !g,,.

To prove the third part (3), we start with the definitions uBBdSMRES and the
relation [&2Y). For any = xq + Vi,y,

b— Az = Vpy (Ber — Hpy)
= Vm-i—lQ% Qm (561 - Hmy)
= Vm-i—lQ% (gm - Rmy) .
As was seen in the proof of the second part above, the 2-norg, of R,y is

minimized wheny annihilates all components of the right-hand sigeexcept the
last one, which is equal tg,, 1. As a result,

b— Az, = Vm+1Q7Tn(’Ym+1€m+1)

which is [&41). The resuli{&.}?2) follows from the orthomadity of the column-
vectors ofV,,, 11 QT . O

So far we have only described a process for computing thé-$e@sres solu-
tion y,, of €30). Note that this approach with plane rotations dan he used to
solve the linear systerti (6117) for the FOM method. The onffieidince is that the

178 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

last rotation(2,,, must be omitted. In particular, a single program can be &ritd
implement both algorithms using a switch for selecting td/For GMRES options.

Itis possible to implement the above process in a progressanner, i.e., at each
step of the GMRES algorithm. This approach will allow one tain the residual
norm at every step, with virtually no additional arithmedigerations. To illustrate
this, start with[6.36), i.e., assume that the firstotations have already been applied.
Now the residual norm is available fag and the stopping criterion can be applied.
Assume that the test dictates that further steps be takemnnre step of the Arnoldi
algorithm must be executed to géts and the6-th column of Hg. This column is
appended td?s which has been augmented by a zero row to match the dimension.
Then the previous rotatiorni3;, €2, ..., Q25 are applied to this last column. After this
is done the following matrix and right-hand side are obtdi(giperscripts are now
omitted from theh;; entries):

hii hi2 hiz hig his hig 7
hoo haz has hos hog V2
h3s h3s hzs hse 73
a? = hay has has |, 30 =] . |. (6.44)
hss hse .
0 hes Y6
0 g 0

The algorithm now continues in the same way as before. We togg@multiply the
matrix by a rotation matrix2g (now of size7 x 7) with

(5)
Y | S (6.45)

N2 5) 6
NN T

to get the matrix and right-hand side,

i1 T2 T3 T4 Tis Ti6 71
To2 123 T24 T25 T2 72
B 33 T34 T35 136 73
Rg = T4 T45 Ta6 | 5 G6 = (6.46)
55 156 .
766 C676
0 —S676

If the residual norm as given by, 1| is small enough, the process must be
stopped. The last rows d?,, andg,, are deleted and the resulting upper triangular
system is solved to obtaig,,. Then the approximate solutiat),, = zo + Vi, ym IS
computed.

Note from [E:45) that the following useful relation foy,; results

Vi+1 = 7857 (6.47)

In particular, ifs; = 0 then the residual norm must be equal to zero which means
that the solution is exact at stgp

6.5. GMRES 179

6.5.4 Breakdown of GMRES

If Algorithm B3 is examined carefully, we observe that thdyopossibilities of
breakdown in GMRES are in the Arnoldi loop, when = 0, i.e., whenh;; ; = 0
at a given step. In this situation, the algorithm stops because the nexblirvec-
tor cannot be generated. However, in this situation, thiglwesvector is zero, i.e.,
the algorithm will deliver the exact solution at this step.fact, the converse is also
true: If the algorithm stops at stgpwith b — Ax; = 0, thenh; ;1 ; = 0.

Proposition 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm
breaks down at step, i.e., h; 1 ; = 0, if and only if the approximate solutian;
is exact.

Proof. To show the necessary condition, observe that;if, ; = 0, thens; = 0.
Indeed, sinceA is nonsingular, them;; = h%_l) is nonzero by the first part of
Proposition[&P and{&.B7) implies = 0. Then, the relationd{&}#2) and (847)
imply thatr; = 0.

To show the sufficient condition, we u§e(8.47) again. Sihesesblution is exact
at stepj and not at step — 1, thens; = 0. From the formulal{&.37), this implies that
hj+1,j = 0. O

6.5.5 Variation 1: Restarting

Similar to the FOM algorithm of the previous section, the GERalgorithm be-
comes impractical whem is large because of the growth of memory and computa-
tional requirements as: increases. These requirements are identical with those of
FOM. As with FOM, there are two remedies. One is based onriegjand the other

on truncating the Arnoldi orthogonalization. The strafghtard restarting option is
described here.

ALGORITHM 6.11 Restarted GMRES

Computey = b — Axg, 8 = ||roll2, andvy = ¢/

Generate the Arnoldi basis and the matftix, using the Arnoldi algorithm
starting withv

Computey,,, which minimizes||fe1 — H,,y|2 andz,, = o + ViYm

If satisfied then Stop, else sgt:= x,, and GoTo 1

O ODN =

Note that the implementation tricks discussed in the pres/section can be applied,
providing the residual norm at each sub-sfepithout computing the approximation
x;. This enables the program to exit as soon as this norm is smailgh.

A well known difficulty with the restarted GMRES algorithmtisat it canstag-
natewhen the matrix is not positive definite. The full GMRES alitjun is guaran-
teed to converge in at moststeps, but this would be impractical if there were many

180 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Matrix | Iters | Kflops | Residual Error

F2DA 95| 3841| 0.32E-02| 0.11E-03
F3D 67| 11862| 0.37E-03| 0.28E-03
ORS 205| 9221 | 0.33E+00| 0.68E-04

Table 6.2: A test run of GMRES with no preconditioning.

steps required for convergence. A typical remedy is to preeonditioning tech-
nigues(see chapters 9 and 10) whose goal is to reduce the numbepsfraquired
to converge.

Example 6.2. Table[€2 shows the results of applying the GMRES algorithth w
no preconditioning to three of the test problems descrihegeictio3]7. See Exam-
ple[&] for the meaning of the column headers in the tabléhigrtést, the dimension
of the Krylov subspace is» = 10. Observe that the problem ORS, which could not
be solved by FOM(10), is now solved in 205 steps. |

6.5.6 Variation 2: Truncated GMRES Versions

It is possible to derive an Incomplete version of the GMREf@®&Athm. This algo-
rithm is called Quasi-GMRES (QGMRES) for the sake of notalainiformity with
other algorithms developed in the literature (some of whidhbe seen in the next
chapter). A direct version called DQGMRES using exactlysame arguments as
in Section 6.4P for DIOM can also be derived. We begin by dedira hypotheti-
cal QGMRES algorithm, in simple terms, by replacing the Adnélgorithm with
Algorithm[6.8, the Incomplete Orthogonalization procedur

ALGORITHM 6.12 Quasi-GMRES

Run a maodification of Algorithfi 819 in which the Arnoldi praein lines
2 to 10 is replaced by the Incomplete Orthogonalization @gecand all
other computations remain unchanged.

Similar to IOM, only thek previousw; vectors must be kept at any given step.
However, this version of GMRES will potentially save conmggidns but not storage.
This is because computing the solution by form{[a_(6.29ireg the vectors; for
i =1,...,mto be accessed. Fortunately, the approximate solution earptlated
in a progressive manner, as in DIOM.

The implementation of this progressive version is quiteilsinto DIOM. First,

6.5. GMRES 181

note that if,, is banded, as for example, when= 5, k = 2,

hii hi2 B
ha1 hay has 0
= h3a h33 has 0
s = g= 6.48
° haz has has g 0 ()
hsa hss 0
hes 0

then the premultiplications by the rotation matriéesas described in the previous
section will only introduce an additional diagonal. For #i®ve case, the resulting
least-squares systemigy = g5 with:

i1 T2 T3 il
22 T23 T24 V2
Rs _ r33 T34 T35 : s = V3 . (6.49)
T44 T45 .
T55 .
0 Y6

The approximate solution is given by
Tm = To + VmRr;ngm

whereR,, andg,, are obtained by removing the last row®f, andg,,,, respectively.
Defining P,,, as in DIOM,
P =V,R!

then,
Tm = 20 + Prgm.

Also note that similarly to DIOM,

_ 9m—1
g [Ym }
in which
Y = Cm VT,
wherefyﬁlm_l) is the last component of the vectgy,_1, i.e., the right-hand side

before them-th rotation is applied. Thus;,, can be updated at each step, via the
relation

Tm = Tm—1 + YmPm-

ALGORITHM 6.13 DOGMRES

1. Computey = b — Axy, Y1 = ||T‘0H2, andv, := 7'0/’71
2. Form = 1,2, ..., until convergence Do:
3. Computéh;,,, i = max{l,m — k + 1},...,m andv,, 11

182

CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

4, as in lines 2 to 6 of Algorithia 8.6
5. Update the QR factorization éf,,, i.e.,
6. ApplyQ;,i =m —k,...,m — 1 to them-th column ofH,,
7. Compute the rotation coefficients, s,, by (6.3T)
8. Apply Q,, to H,, andg,,, i.e., Compute:
9. TYm+1 = —SmTm
10. Tm = CmTm
11. B = Efimn + Smlmstn (= \/P20s 1+ W)
12. Pm = <'Um - Z:i:nl_k hzmpz) /hmm
13. Tm = Tm—1 T YmPm
14. If |Ym+1| is small enough then Stop
15. EndDo

The above algorithm does not minimize the norm of the resik@or overry+£i,,.
Rather, it attempts to perform an approximate minimizatisormula [6.411), which
is still valid since orthogonality was not used to deriveaiso yields the following
equaliy for DQGMRES:

16— Azpll2 = |[Vins1 (Ber — Hinyim) [|2

where as beforg,,, minimizes the norn3e; — H,,,y||2 over all vectorgy in R™. The
norm||Be; — H,,y||2 is called the quasi-residual norm of the vectgr- V;,,y, which

is a member of:y + C,,. If the v;’s were orthogonal to each other, then the quasi-
residual norm and the actual residual norm would be ideraicd QGMRES would
be equivalent to GMRES, i.e., the residual norm is minimiaeer all vectors of the
form zy + V,,,y. Since only an incomplete orthogonalization is used thewth are
only locally orthogonal and, as a result, only an approxamatnimization may be
obtained. Now,[[6.42) is no longer valid since its proof iieegh the orthogonality of
thewv;’s. However, the following relation will be helpful in undgand the behavior
of QGMRES

b— Az = Vi1 QL (Ym41€m41) = Yimt12me1 - (6.50)

The actual residual norm is equal to the quasi-residual rfoem|v,,,+1), multiplied
by the norm ofz,,, 1. The vectorz,,; is the last column of/,, . ;Q” , which is no
longer a unitary matrix. It turns out that in practide,,, 11| remains a reasonably
good estimate of the actual residual norm becausevtfbeare nearly orthogonal.
The following inequality provides an actual upper bound h# tesidual norm in
terms of computable quantities:

Ib — Az || < Vm —k+ 1 |ym1]- (6.51)

Here,k is to be replaced by, whenm < k. The proof of this inequality is a conse-
quence of[[6.50). If the unit vectgr= QL ¢,,. 1 has componentsy, 1o, ..., Nmi1,

6.5. GMRES 183

then
Hb—AZL'mH2 = |’7m+1| HVm—i—IQHQ
k+1 m~+1
< el (Do mv|| | D mivi
i=1 2 i=k+2 9

kvl Y2 men
< vl D20+ D0 Il il
Li=1 _ i=k+2
kel 7 L/2 m+1 1/2
< |yl 2773 +vm —k [Z 77,2]
Li=1 _ i=k+2

The orthogonality of the firgt + 1 vectorsy; was used and the last term comes from
using the Cauchy-Schwartz inequality. The desired indtyallows from using the
Cauchy-Schwartz inequality again in the form

l.a+vVm—Ek.b<vVm—k+1+va?+ b2

and from the fact that the vectgris of norm unity. Thus, usingy,,+1| as a residual
estimate, we would make an error of a factor\0f» — k + 1 at most. In general,
this is an overestimate and,, ;1| tends to give an adequate estimate for the residual
norm.

It is also interesting to observe that with a little bit moré&hametic, the exact
residual vector and norm can be obtained. This is based opnlkbervation that,
according to[[830), the residual vectoryis ., times the vectoe,,, 1 which is the
last column of the matrix

Zmt1 = Vi1 QL. (6.52)

It is an easy exercise to see that this last column can beegé@muv,,,, andz,,.
Indeed, assuming that all the matrices related to the ootatie of sizgm + 1) x
(m + 1), the last row ofQ,,— is the (m + 1) — st row of the identity, so we can
write

Zms1 = [Vin,Umi1]Q_1QF
[Zm,'l)m+1]Qﬁ .

The result is that
Zm4+1 = —Sm&m + CmUm+1- (6.53)

Thez;’s can be updated at the cost of one extra vector in memorytamgerations
at each step. The norm of,; can be computed at the cost i operations and
the exact residual norm for the current approximate saiutEn then be obtained by
multiplying this norm byly,,+1|.

Because this is a little expensive, it may be preferred td‘amsrect” the estimate
provided byy,,+1 by exploiting the above recurrence relation,

lzmi1ll2 < [smlllzmll2 + [eml-

184 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

If {m = ||zm||2 , then the following recurrence relation holds,

Cmt1 < |Sm|Cm + |eml]- (6.54)

The above relation is inexpensive to update, yet providespoer bound that is
sharper tharl{6.51); see Exerdide 7.

Equation [&5B) shows an interesting relation between twzessive residual
vectors:

"m = TYm+12m+1
7m+1[_3mzm + Cmvm—l—l]

= an?”m—1 + CmYm+1Vm+1 - (6.55)

This exploits the fact thaf,,+1 = —smYm andr; = vj412j41.

Relating the DQGMRES and FOM residuals may provide someuligefight.
We will denote by the superscrigt all quantities relared to IOM (or DIOM). For
example, then-th iterate in IOM is denoted by! and its residual vector will be
rl =b— Axl . Itis already known that the IOM residual is a scaled versibthe
vectorv,, 1 obtained by the incomplete Arnoldi process. To be more ateuthe
following equality holds,

I _ h T — _h Tm o hm—i—l,m
T"m = —Nm+1menYmUm+1 = — m+1,mmvm+1 = m%n—i-lvm—i-l .
mm Smmm

The next relation is then obtained by observing ﬁml,m/hfﬂ,{ = tan6,,. Hence,

TIm+1Vm+1 = Cmriw (656)

from which it follows that
p% = |em| pm (6.57)
wherep,, = ||rL | is the actual residual norm of the-th IOM iterate. As an

important consequence @f{6156), note thai(6.55) becomes,

T = 52 m_1 4 21k . (6.58)

Example 6.3. Table[6.B shows the results of applying the DQGMRES algarith
with no preconditioning to three of the test problems désctiin Sectiofi-3]17. See
Example[&]L for the meaning of the column headers in the .tallehis test the
numberk of directions in the recurrence is= 10. |

There exist several other ways to relate the quasi-miniesitiual norm to the
actual minimal residual norm provided by GMRES. The follog/result was proved
by Freund and NachtigdlTIB6] for the QMR algorithm to be se¢he next chapter.

6.5. GMRES 185

Matrix | Iters | Kflops | Residual Error

F2DA 98| 7216| 0.36E-02| 0.13E-03
F3D 75| 22798 | 0.64E-03| 0.32E-03
ORS 300 | 24138 0.13E+02| 0.25E-02

Table 6.3: A test run of DQGMRES with no preconditioning.

Theorem 6.11 Assume that/,,;1, the Arnoldi basis associated with DQGMRES,
is of full rank. Letr,% and r,f;; be the residual norms obtained after steps of the
DQGMRES and GMRES algorithms, respectively. Then

1781l2 < Ko (Vina)IrG 2. (6.59)

Proof. Consider the subset &f,, ., defined by

R=A{r:r="Vy,t; t =pPe; — Hyy; y € C"}.

Denote byy,, the minimizer ofi| 3e; — H,,y||2 overy andt,,, = Be1 — HyYm, T =
Vinaitm = rf;%. By assumptionV/,, 41 is of full rank and there is afm+1) x (m-+1)
nonsingular matrixS such that¥,,,.1 = V,,115 is unitary. Then, for any member
of R,

r=Wn1 S, t= SW£+1T

and, in particular,
lrmll2 < 157 Hlalltmll2- (6.60)

Now ||¢,, |2 is the minimum of the 2-norm ofe; — H,,,y over ally’s and therefore,

ltmllz = [1SWatiarmll < [SWaliarlle Vr €R
< ISllellrfl vr e R
< [IS]2)Ir 2. (6.61)
The result follows from[[&.80)[{6.61), and the fact thatV;,,11) = k2(5). O

6.5.7 Relations between FOM and GMRES

If the last row of the least-squares system[In (b.44) is ddlehstead of the one in
&48), i.e., before the last rotatidpy is applied, the same approximate solution as
FOM would result. Indeed, this would correspond to solvimg systent,,,y = (e;
using the QR factorization. As a practical consequence glessubroutine can be
written to handle both cases. This observation can also lpfuhén understanding
the relationships between the two algorithms.

186 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

In what follows the FOM and GMRES iterates are denoted by tipeiscripts
F and@, respectively. The residual norm achieved at steyll be denoted bypf
for FOM andp]G for GMRES. An important consequence bf{8.47) is that

pg, = |8m|p§1—1)
which leads to he following equality:

P8 =ls152 ... smlB. (6.62)

Note that formulas[{6.37) yield nonnegativgs, so the absolute values are not re-
quired. They are left only for generality.

Define FL%) to be the matrix resulting form applying the firktrotations to
H,, and, similarly, Ietgﬁ,’f) be the vector resulting from applying the firstrota-
tions to the right-hand sid8e;. As usualHﬁf) is the matrixHﬁ,ff) with its last row
deleted andy,(fi) the vector of sizen obtained by removing the last component of
g,(fbc). By formula [EI8), the residual obtained from the Arnoldogess is given
by ‘|TT€L||2 = Hb - A$7€1||2 = hm+1,m|e%ym|' In additi0n1ym = H777,1(/861) can
be obtained by back-solving"" Yy = ¢(m=1). Therefore, its last component is
efngﬁ,?l_l)/h%”njl). Hence,
chgm

pimL)

Pf; = hm"l‘lym‘ezT;LHT:Ll(ﬂel)‘ = hm+1,m

As before, lety,,, denote the last component@f,_1, or equivalently, then-th com-
ponent ofg(™ 1) j.e., before the last rotatiofl,,, is applied (Sed{6.36) and (6144)
for an illustration). Then,

’efng(m_l)‘ = ‘Sm—lf}/m‘ == ‘3132 <o Sm—lﬂy .
Therefore, the above expression ﬁ becomes,

hm—i—l,m

[a%

pf; = |5182 .« Sm—10|-

Now expressiong (6.87) show tHa,;L+1,m/|h£Zﬁ,{1)| is the tangent of the angle defin-
ing them-th rotation, and therefore,

p,l;; = ‘i—m|8182 e Sm—1P] -
A comparison with[(6.82), yields a revealing relation begawehe residuals of the
FOM and GMRES algorithms, namely,
Prn = ﬁpﬁ :
The trigonometric relation / cos? = 1 + tan? §, can now be invoked1/|c,,| =

[1 4 (hamsr.m/Bom V)22, These results are summarized in the following propo-
sition (Brown [66]).

6.5. GMRES 187

Proposition 6.12 Assume thatn steps of the Arnoldi process have been taken and
that H,,, is nonsingular. Let = (Qu—1Hm)mm andh = hy,+1.,. Then the residual
norms produced by the FOM and the GMRES algorithms are @layethe equality

1 h?
P = 0 = P A1+ 55 (6.63)

It is also possible to prove the above result by exploiting rtblation [6.7b); see
Exercisd}.

The term¢ in the expression{6.63) is not readily available and thaults in
an expression that is hard to interpret practically. Angteemewhat more explicit
expression, can be obtained from simply relatingwith two consecutive residual
norms of GMRES. The next result shown by Cullum and Greenbf@2j follows
immediatly from the above proposition and the relation| = % /pS _, whichis a

consequence of(6.52).

Proposition 6.13 Assume thatn steps of the Arnoldi process have been taken and
that H,, is nonsingular. Then the residual norms produced by the FOWM the
GMRES algorithms are related by the equality

G
pE = Pm - (6.64)
\/1 - (P%/Pg—l)

The above relation can be recast as

1 1 1
EE W)’ () (669
Consider now these equations fat m — 1, - - -, 1,
L1 1
(5 (09_,)° (05)?
o1 B 1
(P£—1)2 (pnGz—2)2 - (Pg—l)z
Lo, I
(eF)* (0§)’ (05)?

Note thatpg; is simply the initial residual norm and can as well be dendnyad{.
Summing the above equations yields,

1 1

(kF)? (05)*

(6.66)

m
=0

188 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Corollary 6.14 The residual norms produced by the FOM and the GMRES algo-
rithms are related by the equality

o = ! (6.67)

> ito (1//);)2

The above relation establishes rigorously the intuitivet that FOM and GM-
RES are never too far away from each other. It is clear gfiaK pX". On the other
hand, Iel;ofu by the smallest residual norms achieved the fitstteps of FOM. Then

1 U | m+1
= <
(S)? ; (bF)* ™ (oE,)"

An immediate consequence of this inequality is the follayyimoposition.

Proposition 6.15 Assume thai steps of GMRES and FOM are taken (steps in FOM
with a singularf,,, are skipped). Le/bf;* be the smallest residual norm achieved by
FOM in the firstm steps. Then, the following inequalities hold:

pS < ph < VmpS (6.68)

We now establish another interesting relation between & land GMRES
iterates, which will be exploited in the next chapter. A gahéemma is first shown
regarding the solutions of the triangular systems

Riyym = gm

obtained from applying successive rotations to the Hessgnbatricedd,,. As was
stated before, the only difference between ghevectors obtained in GMRES and
Arnoldi is that the last rotatiof2,,, is omitted in FOM. In other words, th&,,, matrix
for the two methods differs only in it8n, m) entry while the right-hand sides differ
only in their last components.

Lemma 6.16 Let R,, be them x m upper part of the matri>Q,,_1 H,, and, as
before, letR,,, be them x m upper part of the matrixQ,, H,,. Similarly, letg,, be
the vector of the firstn components of),,,—1(5e1) and letg,, be the vector of the
first m components of),,,(Ge;). Define

gm = R;qlgma Ym = R;qlgm

the y vectors obtained for am-dimensional FOM and GMRES methods, respec-

tively. Then
o= () = (i (") e

in whichc,, is the cosine used in the-th rotation(?,,, as defined by{6.87).

6.5. GMRES 189
Proof. The following relation holds:
o Rm—l Zm o Rm—l Z~m
(%) e (5)
Similarly, for the right-hand sides,
_ <gm—1> ~ <gm—1>
9m = y 9m -
Ym Tm
Ym = CmYm- (6.70)

Denoting by the scalar, /{?n + h%bﬂ,m, and using the definitions of,, andc,,,

we obtain

with

- 2 2 3
’ A A Cm
Now, R-! 1 p-1
_ — —z I, 1Zm Gm—
Ym = legm = < 0 ! Em 1 ! > < 1) (6.72)
&m m
which, upon observing thd%;f_lgm_l = Ym—1, Yields,
Ym— m _R;ALI_ Zm
ym — (01)=2—< - > 6.73)

Replacingyum, Ems Yim BY G, Ems Tm, respectively, in[[6.42), a relation similar to

®23) would result except that,, /&, is replaced byy,, /&, which, by [6.7D) and
©13), satisfies the relation)

M_C27m

The result follows immediately. |

If the FOM and GMRES iterates are denoted by the superscfipad G, respec-
tively, then the relation{&.%9) implies that

G G _ 2 F G
Ty = Typ—1 = Gy (xm - xm—l))
or,
28 =528 |+ 2l (6.74)

This leads to the following relation for the residual vestobtained by the two meth-
ods,

& =s2rC 2k (6.75)
which indicates that, in general, the two residual vectoisevolve hand in hand.
In particular, ifc,, = 0, then GMRES will not progress at step, a phenomenon
known as stagnation. However, in this situation, accordinthe definitions[(&.37)
of the rotationsh! ") = 0 which implies thatf,,, is singular and, therefore” is
not defined. In fact, the reverse of this is also true, a rekudtto Brown[[65], which
is stated without proof in the following proposition.

190 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Proposition 6.17 If at any given stepn, the GMRES iterates make no progress, i.e.,
if 26 = 2 | then H,, is singular andz!, is not defined. Conversely, iH,, is

singular at stepmn, i.e., if FOM breaks down at step, and A is nonsingular, then
oG =G .

Note also that the use of the above lemma is not restricteitet GMRES-FOM
pair. Some of the iterative methods defined in this chaptdrtha next involve a
least-squares problem of the forln{d.30). In such casesitahaes of the least-
squares method and those of the orthogonal residual (@aleriethod will be re-
lated by the same equation.

6.5.8 Residual smoothing

The previous section established strong relations betwleerGMRES and FOM
iterates. In fact it is possible to derive the GMRES iterdtem the FOM iterates,
by simply exploiting the relation§ (6I74=6175), which wewn@write as
G G F G G G F_ .G
T = Typ—1 + C?n(xm - xm—l)) Tm = Tm—1 + an(rm - 7ﬂm—l) :
The above relations are instances of a class of algorithmsedeby ‘residual smooth-
ing’, which define a new sequence of iterates, denoted hemftf;om an original
sequence, denoted by’. The residual vectors of the two sequences are denoted by
r? andr? respectively. The new sequences are as follows:
s s 0] s s s o_ .S
T = Tmp—1 + nm(xm - xm—l)) T"m = Tm—1 + nm(rm - 7ﬂm—l) :
The parameter,, is selected so as to make the residuyglbehave better than the
original one, in the sense that large variations in the tedidre dampened. Min-
imal Residual Smoothinthe n,,,’s are selected to minimize the new residual norm
|72 ||2. This is in essence a minimal residual projection methoch@ direction
9 — x5 | and it is achieved by selecting, so that the new residuaf) is orthog-

onal toA(z8 — 25) = —(rQ —r5). Thus,
A
Thm = — 52z

”T% - 74m—1”2
resulting in the following algorithm.

ALGORITHM 6.14 Minimal residual smoothing

s_ .0 ,.S_.,O.
Lo =g »Tog =T »
Form =1,..., Do:

Compute:® andr®

NO O WDNR

m = — (T;?m—lvrr?% - 7"51—1) Jr§ —re 1113
= Ty + (2, — x5,)
o =Tt + (T =75, 1)

EndDo

6.5. GMRES 191

In the situation when® is orthogonal ta-> |, then it is possible to show that the

m—17

same relation ad(6.64) (or equivalently (8.65)) is satisfi@his result is due to
Weiss [3071].

Lemma 6.18 If ¢ is orthogonal tor? , at each stepn > 1, then the residual
norms satisfy the relation

1 1 1
= + , (6.76)
(e R (e [A e |
and the coefficient,, is given by
”Tgv,—l”g
Nm = . (6.77)
e I3+ S
Proof. SincerS L r2 _ itfollows that(rs 79 —r5)= —(r> _,,r5 ;) and
17 — 5 113 = |rQ|I2 + [|r5 _,|13. This shows[[647). The orthogonality of,
with 5, — r2 |, implies that
s s o_ S
lrmll3 = lrmeil3 = mmllre — a2
||T‘S H2 ”Tnsv,—lug o “7”51—1”2“7”72”5
—1112 - .
" IS IE + i3 Q15 + N1 113
The result[[6.76) follows by inverting both sides of the abequality. O

The assumptions of the lemma are satisfied in particular \inenesidual vec-
tors of the original algorithm are orthogonal to each otheiis the case for the FOM
method. This can be shown by simple induction, using thetfedteach new,f is
ultimately a linear combination of th@o’s, for s < k. Since the relation established
by the lemma is identical with that of the GMRES algorithmfaliows that the
residual norms are identical, since they both sat[Sfy [6.Bécause the approximate
solutions belong to the same subspace and GMRES minimigegs$idual norm, it
is clear thathe resulting approximate solutions are identical

This result can also be shown in a different way. Inductioowshthat the vectors
pj = zf — a7 | areAT A - orthogonal, i.e.(Ap;, Ap;) = 0 for i #. Then a lemma
to be seen in Sectidn®.9 (Lemia8.21) can be expoited to gheveame result.
This is left as an exercise (Exerc[Se 8).

The computation of the scalay,, is likely to be subject to large errors when
the residuals become small because there may be a sulsthfféieence between
the actual residual and the one computed recursively bylgfogigom. One remedy
is to explicitly use the directions; mentioned above. The formulas and the actual
update will then follow closely those seen in Secfiod 5.3hwi replaced byp,,,
andw by Ap,,. Speficially, lines 5 and 6 of Algorithfi G114 are repaceddiy =
3 4 Npm andrd = rd NmApm, respectively, while the coefficient,,

m—1

is computed as,, = (21, Apm)/(Apm, Apn,). Details are omitted but may be

found in [324].

192 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Lemmal&.IB yields the following equality, in whighy denotes”r?HQ and;
denotes|r? |2,

2
S = Pim S Tm-1__ .0
" P T T " PR TR
1 1 1
= — - [T+ Trg] : (6.78)
= + 7z LTm-1 Pm

Summing up the relationE{8176), yields an expression aimml [6.66),

Combining this with[[6.718) and using induction immediatlglgs the following ex-
pression which holds under the assumptions of Lelnmad 6.18 :

S 1 m T'-O
§ J

T'm = Zm 1 2" (6.79)
Jj= p? 7j=1 p]

The smoothed residual is a convex combination of the relididained by the orig-
inal algorithm (e.g., FOM). The coefficient used for a givesidual is inversely
proportional to its norm squared. In other words, residmabathing will tend to
dampen wide variations in the original residuals. If thegimal residual moves up
very high then[[6.79) of{6.78) show that the next S-resikithtend to stagnate. If
the other hand, the original residual decreases very sapidh given step, then the
smoothed residual will be close to it. In other words, stéignaand fast convergence
of the S-residual goes hand in hand with poor convergencdashdonvergence, re-
spectively, of the original scheme.

Consider now the general situation when the residual vectornot satisfy the
conditions of Lemm&®&.18. In this case the above results aetr@alid. However,
one may ask whether or not it is possible to still selectiihés by an alternative
formula such that the nice relatidn{6l 79) remains valid.i# ht a possible answer
is provided by a look at EquationE(6176) ald (6.77). Thesetle only relations
used to establisfi{6.J79). This suggests computing)thg recursively as follows

e Tt L1 1
m —) -
7—31—1 + Pm 7_72n 7-7?1—1 p?n

It is only when the conditions of Lemnla©]18 are satisfied, thas the norm of the
residuaISr,f . What is important is that the relatiof {61 78) can be showbewalid
with ||r7||3 replaced byr?. As result, the same induction proof as before will show
that [&79) is also valid. Replacing thg, of Algorithm[&.12 by the one defined above
gives rise to an algorithm known gsiasi-minimal residual smoothingr QMRS.

It can easily be shown that when applied to the sequence ratete produced
by IOM/DIOM, then QMRS will, in exact arithmetic, yield themse sequence as

6.5. GMRES 193

QMRES/DQGMRES. The key relations afe{8.47), which is stlid, and [&.5F).
The quasi-residual norm which replaces the actual ngfnis now equal toy,,, 1.
By @X%1), the cosine used in the-th step of QGMRES/DQGMES satisfigs;,, | =
[Yma1l/p2,- By formula [64F)|s.| = |Ym1/Vm|- Writing ¢2, +s2, = 1 and using
the notationr,,, = v,,,+1, yields

Yl | Ymer _, ., L _ 1 1

Yo P Tho el P

This, along with the relatiorl{6&.58), shows that the redide&tors computed by
QGMRES-/DQGMRES obey the exact same recurrence as thosedely QMRS.
Quasi-minimal residual smoothing is related to severakotigorithms to be de-
scribed in the next sections.

6.5.9 GMRES for complex systems

Complex linear systems arise in many important applicatiofPerhaps the best
known of these is when solving Maxwell’'s equations in el@ctagnetics. The most
common method used in this context gives rise to large dendecamplex linear
systems.

Adapting GMRES to the complex case is fairly straightfordvaiThe guiding
principle is that the method should minimize the 2-norm eftbsidual on the affine
Krylov subspace. This is achieved by Algoritfiml6.9 in whikk tnner products are
now the complex inner produts ifi*, defined by[[TI13) of Chapter 1. The only part
requiring some attention is the solution of the least-sggigroblem in Line 12 of the
Algorithm or rather, the practical implementation using&is rotations outlined in
Sectio65RB.

Complex Givens rotations are defined in the following wayead of [6.3K):

1

Q; = G S - rowr (6.80)
—S; G «—rowz+1

1

with |c;|? + |s;|* = 1. The description of Sectidn 6.5.3 can be followed in the same
way. In particular the sine and cosine defineddn(6.37) fer@ivens rotation matrix
at stepi are given by
hit1,i ni Y
i = ;= ——1 . (6.81)
\/\hzf 2+ hz2+1,i \/\hzf 2+ hz2+1,i

A slight simplification takes place when applying the suscesrotations. Since
hj+1,; is the 2-norm of a vector, it is real (nonnegative), andssds also a real

194 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

(nonnegative) number while, in general,is complex. The rest of the development
is identical, though it is worth noting that the diagonalras® of the upper triangular
matrix R are (nonnegative) real and that the scalarare real.

6.6 The Symmetric Lanczos Algorithm

The symmetric Lanczos algorithm can be viewed as a simgiificaof Arnoldi's
method for the particular case when the matrix is symmeihen A is symmetric,
then the Hessenberg matrit,,, becomes symmetric tridiagonal. This leads to a
three-term recurrence in the Arnoldi process and shamt-tecurrences for solution
algorithms such as FOM and GMRES. On the theoretical sidgetls also much
more that can be said on the resulting approximation in thensgtric case.

6.6.1 The Algorithm

To introduce the Lanczos algorithm we begin by making thenlaion stated in the
following theorem.

Theorem 6.19 Assume that Arnoldi’'s method is applied to a real symmetatrion
A. Then the coefficients;; generated by the algorithm are such that
hij =0, for 1<i<j—1, (6.82)
hj7j+1 = hj+17j,] = 1, 2, cee,Mm. (683)

In other words, the matrix{,,, obtained from the Arnoldi process is tridiagonal and
symmetric.

Proof. The proof is an immediate consequence of the fact fhat= VL AV}, is
a symmetric matrix which is also a Hessenberg matrix by coogbn. Therefore,
H,, must be a symmetric tridiagonal matrix. |

The standard notation used to describe the Lanczos algoigtiobtained by setting
o =hi;, By =hjo1,
and if T;,, denotes the resultingf,,, matrix, it is of the form,

ar B

B2 az B
T, = S . . (6.84)
Bm—l Qm—1 Bm
Bm Qm,

This leads to the following form of the Modified Gram-Schmidtiant of Arnoldi’s
method, namely, Algorithia g.2.

ALGORITHM 6.15 The Lanczos Algorithm

o
o)

. THE SYMMETRIC LANCZOS ALGORITHM 195

Choose an initial vectan, of 2-norm unity. Sep; = 0,v9 =0
Forj =1,2,...,m Do:

wj = A’Uj - ijj—l

aj = (wj,v;)

’Ll)j = ’Ll)j — ajvj

ﬁj—i—l = H’UJJHQ If ﬁj—l—l = 0 then Stop

Vi1 1= w;/Bj+1
EndDo

ONDOOAWNR

It is rather surprising that the above simple algorithm gogees, at least in exact
arithmetic, that the vectors, i = 1,2, ..., are orthogonal. In reality, exact orthogo-
nality of these vectors is only observed at the beginning®firocess. At some point
thew;’s start losing their global orthogonality rapidly. Thergstbeen much research
devoted to finding ways to either recover the orthogonadityp at least diminish its
effects bypartial or selectiveorthogonalization; see Parleff[224].

The major practical differences with Arnoldi's method anattthe matrixt,,, is
tridiagonal and, more importantly, that only three vectorsst be saved, unless some
form of reorthogonalization is employed.

6.6.2 Relation with Orthogonal Polynomials

In exact arithmetic, the core of Algorithln 8115 is a relatafrthe form
Bi+1vj+1 = Av; — ajv; — Bjvj-1.

This three-term recurrence relation is reminiscent of thedard three-term recur-
rence relation of orthogonal polynomials. In fact, thenadeed a strong relationship
between the Lanczos algorithm and orthogonal polynomidsbegin, recall that if
the grade of), is > m, then the subspad€,, is of dimensionmn and consists of all
vectors of the forny(A)v;, whereg is a polynomial withdegree(q) < m— 1. In this
case there is even an isomorphism betwignandP,,,_1, the space of polynomials
of degree< m — 1, which is defined by

qEPy_1 —x=q(A)v € Kp.
Moreover, we can consider that the subsgage | is provided with the inner product
<P, q >u = (P(A)v1, q(A)v1). (6.85)

This is indeed a nondegenerate bilinear form under the gstsamthatm does not
exceedu, the grade ot;. Now observe that the vectors are of the form

v; = gi—1(A)n

and the orthogonality of the;’s translates into the orthogonality of the polynomials
with respect to the inner produ¢i{gl85).

=~

196 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

It is known that real orthogonal polynomials satisfy a thteen recurrence.
Moreover, the Lanczos procedure is nothing but the Steelilgorithm; (see, for
example, Gautschi [1#1]) for computing a sequence of oghabpolynomials with
respect to the inner produdi{6185). It is knovin[R46] tha dmaracteristic poly-
nomial of the tridiagonal matrix produced by the Lanczoatgm minimizes the
norm |||, over the monic polynomials. The recurrence relation betvwtbe char-
acteristic polynomials of tridiagonal matrices also shdvet the Lanczos recurrence
computes the sequence of vectpys, (A)vi, wherepr,, is the characteristic polyno-
mial of 7,,,.

6.7 The Conjugate Gradient Algorithm

The Conjugate Gradient algorithm is one of the best knownatitee techniques for

solving sparse Symmetric Positive Definite linear systemescribed in one sen-

tence, the method is a realization of an orthogonal praactechnique onto the

Krylov subspaceC,, (o, A) wherer is the initial residual. It is therefore mathemat-
ically equivalent to FOM. However, becaugeis symmetric, some simplifications
resulting from the three-term Lanczos recurrence will léadnore elegant algo-

rithms.

6.7.1 Derivation and Theory

We first derive the analogue of FOM, or Arnoldi’'s method, foe ttase wher is
symmetric. Given an initial guess to the linear systerlz = b and the Lanczos

vectorsv;,i = 1,...,m together with the tridiagonal matrix,,,, the approximate
solution obtained from an orthogonal projection methoadty,, is given by
Ty = 2o + mem; Ym = Tn_zl(ﬂel)- (686)

ALGORITHM 6.16 Lanczos Method for Linear Systems

1. Computey = b — Axg, B := ||roll2, @andvy := 1o/

2. Forj =1,2,...,m Do:

3. wWj = Avj - 5jvj_1 (If j =1 setBivg =0)

4. aj = (wj, v;)

5. ’Ll)j = ’Ll)j — ajvj

6. ﬁj—i—l = H’UJJHQ If ﬁj—l—l =0setm:=jandgoto9
. vjt1 = wi/Bjv1

8. EndDo

9. SetT,,, = tridiag (05;, a;, Bi+1), @andVy, = [v1, ..., U]
0. Computey,, = T} (Be1) andz,, = xo + Viuym

Many of the results obtained from Arnoldi's method for linegistems are still valid.
For example, the residual vector of the approximate salutig is such that

b— Az, = _ﬁm+1€?nymvm+1' (687)

6.7. THE CONJUGATE GRADIENT ALGORITHM 197

The Conjugate Gradient algorithm can be derived from thekas algorithm in
the same way DIOM was derived from IOM. In fact, the Conjugatadient algo-
rithm can be viewed as a variation of DIOM(2) for the case wHes symmetric. We
will follow the same steps as with DIOM, except that the notatvill be simplified
whenever possible.

First write the LU factorization of,,, as7,,, = L,,U,,. The matrixL,, is unit
lower bidiagonal and/,,, is upper bidiagonal. Thus, the factorizationiof is of the
form

1 n B2
Ao 1 n2 B3
Ty = Az 1 X ns B
Ay 1 na Bs
As 1 5

The approximate solution is then given by,

Tm = w0 + ViU L H(Ber).

Letting

Py, =V, U1
and

Zm = Ly, Beq,
then,

T = 20 + Pz,
As for DIOM, p,,, the last column of?,,,, can be computed from the previopss
anduv,,, by the simple update
Pm = 777;1 ['Um - ﬁmpm—l]'

Note thats,, is a scalar computed from the Lanczos algorithm, whjilaesults from
them-th Gaussian elimination step on the tridiagonal matré, i.

N, = Im (6.88)
NIm—1
NMm = Qm — AmBm.- (689)
In addition, following again what has been shown for DIOM,
o Zm—1 :|
m Cm 9

in which(,,, = —\.(n_1. As aresulty,, can be updated at each step as

Tm = Tm—1 + Cmpm

wherep,, is defined above.
This gives the following algorithm, which we call the diregrsion of the Lanc-
zos algorithm for linear systems.

198 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

ALGORITHM 6.17 D-Lanczos

1. Computey =b — Axg, (1 =0 := H’r'()HQ, andvy := T‘Q/ﬁ
2. Set)\lzﬂlzo,pozo
3. Form = 1,2, ..., until convergence Do:
4. Computaw := Avy, — Brnvm—1 anday, = (w, v,)
5. If m > 1 then compute\,,, = % and¢,, = —AmCm_1
6. Nm = Qm —)\mﬂm
7. Pm = 777;1 (Vm — BmPm—1)
8. Tm = Tm—1 + Cmpm
9. If z,,, has converged then Stop
10. W= W — QpUm
11. Bm+1 = w2, Vg1 = w/Bms1
12. EndDo

This algorithm computes the solution of the tridiagonaltsys?,,y,, = ey
progressively by using Gaussian elimination without pivgpt However, as was ex-
plained for DIOM, partial pivoting can also be implementédhe cost of having to
keep an extra vector. In fact, Gaussian elimination withiglpivoting is sufficient
to ensure stability for tridiagonal systems. The more caexplQ factorization has
also been exploited in this context and gave rise to an dlgorknown as SYMMLQ
[223].

The two algorithm$-6.16 arfld 6]17 are mathematically eqemtalthat is, they
deliver the same approximate solution if they are both eedxte. However, since
Gaussian elimination without pivoting is being used imifiiicto solve the tridiago-
nal systenil;,,y = [ey, the direct version may be more prone to breakdowns.

Observe that the residual vector for this algorithm is indimection ofv,,,; due
to equation[[6.87). Therefore, the residual vectors afeogdnal to each other as
in FOM. Likewise, the vectorp; are A-orthogonal, orconjugate These results are
established in the next proposition.

Proposition 6.20 Letr,, = b—Ax,,, m = 0,1, ..., be the residual vectors produced
by the Lanczos and the D-Lanczos algorithins{6.16dand 61idpa, m = 0,1,...,
the auxiliary vectors produced by Algoritim@8.17. Then,

1. Each residual vector,, is such thatr,, = o,,v,,.1 Whereo,, is a certain
scalar. As a result, the residual vectors are orthogonaldoteother.

2. The auxiliary vectorg; form anA-conjugate set, i.e(Ap;, p;) = 0, fori # j.

Proof. The first part of the proposition is an immediate consequentee relation
©3817). For the second part, it must be proved tR3tAP,, is a diagonal matrix,
whereP,, = V,,,U.!. This follows from
PrAP, = U,TVIAV,, U
U T,Ut
= UL,

6.7. THE CONJUGATE GRADIENT ALGORITHM 199

Now observe that/ -7 L,, is a lower triangular matrix which is also symmetric since
itis equal to the symmetric matriR” AP,,. Therefore, it must be a diagonal matrix.
O

A consequence of the above proposition is that a versioneddlgporithm can be
derived by imposing the orthogonality and conjugacy cdon#. This gives the Con-
jugate Gradient algorithm which we now derive. The veatpr; can be expressed
as

Tj+1 = X5 + @;py. (6.90)

In order to conform with standard notation used in the liign@to describe the algo-
rithm, the indexing of the vectors now begins at zero instead of one as was done so
far. This explains the difference between the above forraothformulal[&21) used

for DIOM. Now, the residual vectors must satisfy the recoce

Tijr1 =175 — OéjApj. (691)

If the r;’s are to be orthogonal, then it is necessary that- o; Ap;,r;) = 0 and as
aresult

o (rgemy)
% = ks (6.92)

Also, it is known that the next search directipp,; is a linear combination of;_;
andp;, and after rescaling thevectors appropriately, it follows that

pj+1 = rj+1 + Bip;. (6.93)
Thus, a first consequence of the above relation is that
(Apj,rj) = (Apj,pj — Bj—1pj-1) = (Ap;, p))

becausedp; is orthogonal t;_;. Then, [&9R) becomes; = (r;,7;)/(Ap;, p;)-
In addition, writing thaip;; as defined by[{6.93) is orthogonal #p; yields

8, = (141, Apy)
(pj, Apj)
Note that from[€.91) .
Apj = —— (41 = 13) (6.94)

J
and therefore,

g = L irn i —my)) _ (i)
7 (Apyp)) (r5,75)
Putting these relations together gives the following atgar.

ALGORITHM 6.18 Conjugate Gradient

200 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Computeq := b — Axg, po := 10.
Forj = 0,1,..., until convergence Do:
aj = (r,75)/(Apj, pj)
Tjt1 = Tj+ 0D;
Tj+1 =1 — ajAp;
Bj = (rj+1,7541)/(rj, 75)
Pj+1 = i1+ Bjp;
EndDo

ONODOOAWNR

Itis important to note that the scalars, 3; in this algorithm are different from those
of the Lanczos algorithm. The vectgrsare multiples of the,’s of Algorithm[E.17.
In terms of storage, in addition to the matex four vectors ¢, p, Ap, andr) must be
saved in Algorithn 6718, versus five vectors,(v.,,_1, w, p, andzx) for Algorithm
0. 14.

6.7.2 Alternative Formulations

Algorithm[EI8 is the best known formulation of the Conjug&radient algorithm.
There are, however, several alternative formulations.eHenly one such formula-
tion is shown, which can be derived once more from the Lanafgsrithm.

The residual polynomiat,, (t) associated with the:-th CG iterate must satisfy
a three-term recurrence, implied by the three-term renog®f the Lanczos vectors.
Indeed, these vectors are just the scaled versions of tliriagésectors. Therefore,
we must seek a three-term recurrence of the form

Tm+1(t) = pm(rm(t) = Ymtrm(t)) + dmrm—1(t).

In addition, the consistency conditio),(0) = 1 must be maintained for each,
leading to the recurrence,

Tm+1 () = pim (T (t) — Ymtrm(t)) + (1 — prm)rm—1(1). (6.95)

Observe that if-,,,(0) = 1 andr,,_1(0) = 1, thenr,,+;(0) = 1, as desired. Trans-
lating the above relation into the sequence of residuabvegtields

Tmt1 = Pm(Tm — YmArm) + (1 — pp)Tm—1. (6.96)

Recall that the vectors;’s are multiples of the Lanczos vectorgs. As a result,
~vm Should be the inverse of the scatgy, of the Lanczos algorithm. In terms of the

r-vectors this means
_ (Tmy Tm)
Ym (AT, Tm)

Equating the inner products of both sides[of (6.96) with 1, and using the orthog-
onality of ther-vectors, gives the following expression fay,, after some algebraic
calculations,

-1
1— Ym (Tma Tm) 1

Ym—1 (Tm—la Tm—l) Pm—1

Pm = (6.97)

6.7. THE CONJUGATE GRADIENT ALGORITHM 201

The recurrence relation for the approximate solution wsctan be extracted
from the recurrence relation for the residual vectors. Thieund by starting from
@338) and using the relation, (t) = 1 — ts,,—1(t) between the solution polynomial
sm—1(t) and the residual polynomial,,(¢). Thus,

1— "m+1 (t)
t

= o (S) £ (-)

t
= Pm (Sm—l(t) - ’Ymrm(t)) + (1 - pm)sm—Z(t)-

sm(t) =

1-— Tm—1 (t)
t

This gives the recurrence,

Tmt1 = Pm(Tm — YmTm) + (1 — pm)Tim—1- (6.98)

All that is left for the recurrence to be determined compjete to define the first
two iterates. The initial iterateg is given. The first vector should be of the form

ZT1 = o — Y070,

to ensure that, is orthogonal ta-y. This means that the two-term recurrence can be
started withpy = 1, and by setting:_; = 0. Putting these relations and definitions
together gives the following algorithm.

ALGORITHM 6.19 CG — Three-Term Recurrence Variant

Computeg = b — Axy. Setr_1 =0 andpy = 1.
Forj = 0,1,..., until convergence Do:

1

2
. (i)

3 ComputeAr; andy; = Ao 1

. o Y (rj,r5) 1 -

4. If (j > 0) computep; = |1 Vjil 7(%1’71;71) P

5 Compute Tjt+1 = Py (l’j — ’yj’l"j) + (1 — pj)l’j_l

6 Compute Tj41 = pj(rj — ’)/jAT‘j) + (1 — pj)rj_l

7 EndDo

This algorithm requires slightly more storage than thedsath formulation: in addi-

tion to A, the vectors-;, Ar;,r;_1,z; andx;_; must be kept. Itis possible to avoid

keepingr;_ by computing the residual;; directly asr;;; = b — Ax;y; inline 6

of the algorithm, but this would entail an additional matvixctor product.

6.7.3 Eigenvalue Estimates from the CG Coefficients

Sometimes, it is useful to be able to obtain the tridiagonalrix’T;,, related to the
underlying Lanczos iteration from the coefficients of thenfigate Gradient algo-
rithm[EI8. This tridiagonal matrix can provide valuablgegivalue information on
the matrix A. For example, the largest and smallest eigenvalues of idiagonal

matrix can approximate the smallest and largest eigenvadfiel. This could be

202 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

used to compute an estimate of the condition numbed @fhich in turn can help
provide estimates of the error norm from the residual norinceSthe Greek letters
«; andg; have been used in both algorithms, notations must be chabgsobte by

T, = tridiag [Uj, 5j, 7’}j+1],

the tridiagonal matri{6.84) associated with theth step of the Lanczos algorithm.
We must seek expressions of the coefficiepts; in terms of the coefficients;, 3;,
obtained from the CG algorithm. The key information regagdine correspondence
between the two pairs of coefficients resides in the cormdpace between the vec-
tors generated by the two algorithms.

From [&38T) it is known that

rj = scalar x wv;q1. (6.99)

As aresult,

(Avjr1,viv1) _ (Arj 1))

(vjt1,v541) (rjrg)

The denominatofr;,r;) is readily available from the coefficients of the CG algo-
rithm, but the numeratofAr;,r;) is not. The relation[{&.93) can be exploited to

obtain

Oj41 =

ri =pj — Bi—1pj-1 (6.100)
which is then substituted i0Ar;, ;) to get

(Arj,r;) = (A(p; — Bj—1pj-1),pj — Bj—1pj-1) -

Note that the termg;_1p;_; are defined to be zero whgn= 0. Because the
vectors ared-orthogonal,

(Arj, 1) = (Apj,p;) + 871 (Apj-1,pj-1),
from which we finally obtain forj > 0,

Ap. . Ap.i_ - 1 -
(5j+1 _ (pjapj) + 32_1(Pj—1,Pj 1) = — 4 6] 1.
(rj,7;) (rj.7j) ;g
The above expression is only valid fgr> 0. Forj = 0, the second term in the
right-hand side should be omitted as was observed aboverefbhe, the diagonal

elements off},, are given by

(6.101)

Siv1 = a for =0, (6.102)
T LB for j>o '

J Qj—1

Now an expression for the co-diagonal elemepts; is needed. From the defi-
nitions in the Lanczos algorithm,

|(Arj_1,75)]
= (Avs Vi) =)
M1 = (Ao i) = T

6.8. THE CONJUGATE RESIDUAL METHOD 203

Using [6.10D) again and the relatidn{d.94) as well as odhality properties of the
CG algorithm, the following sequence of equalities results
(Arj_1,m5) = (Alpj—1 — Bj—2pj-2),7;)
= (Apj-1,75) = Bj—2(Apj—2,7j)

-1 Bj—2
= ——(rj—rj-1,7j) +———(rj-1 —Tj—2,75
a1 (J Jj—1]) aj_2(j—1 J—2> J)
—1
= m(rjarj)-
Therefore,
v) 1 il VB
Nj+1 = = = .
aj-1 [[rj=allzllrille aj—1lrj—lle - @i

This finally gives the general form of the-dimensional Lanczos tridiagonal matrix
in terms of the CG coefficients,

1 VB
ag ap
NS T .y
ap a1 ag a1
T, — : - : . (6.103)
V ﬁ77L72
i QAm—2
V 5’"*2 1 6m72
QAm—2 QAm—1 QAm—2

6.8 The Conjugate Residual Method

In the previous section we derived the Conjugate Gradiegurdhm as a special
case of FOM for Symmetric Positive Definite matrices. Sinhilaa new algorithm
can be derived from GMRES for the particular case whtris Hermitian. In this
case, the residual vectors should Aerthogonal, i.e., conjugate. In addition, the
vectorsAp;'si = 0,1, ..., are orthogonal. When looking for an algorithm with the
same structure as CG, but satisfying these conditions, wétfenConjugate Residual
algorithm. Notice that the residual vectors are now cortgiga each other, hence,
the name of the algorithm.

ALGORITHM 6.20 Conjugate Residual Algorithm

Compute := b — Axg, po := 10
Forj =0,1,..., until convergence Do:
aj = (rj, Ar;)/(Ap;, Ap;)
Tjp1 2= Tj + ;p;
Tjr1 :=T5 — OéjApj
Bj = (rjt1, Arjy1)/(rj, Arj)
Pj+1 = rj+1+ Bp;
ComputeAp;i = Arji1 + B Ap;
EndDo

© XN AWNR

204 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Line 8 in the above algorithm computel ;. from Ar;,; without an additional
matrix-vector product. Five vectors of storage are neededldlition to the matrix:
x, p, Ap, r, Ar. The algorithm requires one more vector update, 2:2 more opera-
tions than the Conjugate Gradient method and one more vetstorage. Since the
two methods exhibit typically similar convergence, the fDgate Gradient method
is often preferred.

6.9 GCR, ORTHOMIN, and ORTHODIR

All algorithms developed in this chapter are strongly redato, as well as defined
by, the choice of a basis of the Krylov subspace. The GMRE&idgn uses an or-
thonormal basis. In the Conjugate Gradient algorithm pth@re A-orthogonal, i.e.,
conjugate. In the Conjugate Residual method just descriteddp;’s are orthog-
onal, i.e., thep;'s are AT A-orthogonal. A number of algorithms can be developed
using a basis of this form in the nonsymmetric case as wekk mhin result that is
exploited in all these algorithms is the following lemma.

Lemma 6.21 Letpg, p1, - - ., pm—1, D€ @ sequence of vectors such that eachsgetp, -
..,pj—1} for j < m is a basis of the Krylov subspadg; (A, o) which is AT A-
orthogonal, i.e., such that

(Api, Apg) =0, fori # k.

Then the approximate solutiar,, which has the smallest residual norm in the affine
spacerg + K., (A, o) is given by

Tm = T0 + Z Ap“ApZ : (6.104)

In addition, x,,, can be computed from,,,_; by

(Tm—lwApm—l))
(Apm—1, Apm—1)" "~

Ty, = Tim—1 + (6.105)

Proof. The approximate solution and the associated residual wveatobe written in
the form

m—1 m—1
T = X0 + Z ;pi, T =T — Z o; Ap;. (6.106)
i=0 i=0

According to the optimality result of Propositibnb.3, irder for||r,,||2 to be mini-
mum, the orthogonality relations

(Tm>Api):0, 1=0,....m—1

must be enforced. Usin§(6.706) and the orthogonality of4pgs gives immedi-
ately,

a; = (10, Ap;) /(Api, Ap;).

6.9. GCR, ORTHOMIN, AND ORTHODIR 205

This proves the first part of the lemma. Assume now ihat is known and that,,,
must be determined. According to formula{61104), and tietfaatpy, . . ., pm_2 IS
a basis of\,,,—1 (A,), we can writer,, = Z,,—1 + Qm—1Pm—1 With o, —1 defined
above. Note that from the second part[af (6]1106),

m—2
Tm—1 =170 — Z a;Ap;
=0
so that
m—2
(Tm—1, Apm—1) = (10, Apm—1) — Z a;j(Apj, Apm—1) = (r0, Apm—1)
=0

exploiting, once more, the orthogonality of the vectdys;, j = 0,...,m—1. Thus,

(Tm—17 Apm—l)
Apm—1, Apm—1)’

which proves the expressidn {6.105). O

This lemma opens up many different ways to obtain algorittimas are mathe-
matically equivalent to the full GMRES. The simplest optmmputes the next basis
vectorp,,+1 as a linear combination of the current residugland all previoug;’s.
The approximate solution is updated by using(61105). Ehislled the Generalized
Conjugate Residual (GCR) algorithm.

ALGORITHM 6.21 GCR

Computey = b — Axqg. Setpg = rg.
Forj =0,1,..., until convergence Do:

o = ATiAPj)
J 7 (Ap;,Apj)

Tjp1 = Tj + Q;p;
i+l = 1) — ajAp;

Computes;; = —%, fori =0,1,...,j

Pjt1 = Tj41 + 2 0o Bijpi
EndDo

©ON O A WDNR

To compute the scalars;; in the above algorithm, the vectelr; and the previous
Ap;'s are required. In order to limit the number of matrix-vagbooducts per step to
one, we can proceed as follows. Follow line 5 by a computatforr;; and then
computeAp; after line 7 from the relation

J
Apji1 = Arj+ Y By Ap;.
i=0

206 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Both the set op;’s and that of thedp;’s need to be saved. This doubles the storage
requirement compared with GMRES. The number of arithmgtierations per step
is also roughly 50% higher than GMRES.

The above version of GCR suffers from the same practicatditiohs as GM-
RES and FOM. A restarted version called GCR(m) can be tlyifined. Also,
a truncation of the orthogonalization of th;’s, similar to IOM, leads to an algo-
rithm known as ORTHOMIN(K). Specifically, lines 6 and 7 of Alithm[E&2Z1 are
replaced by

6a. Computeﬁij:—%, fori=j53—k+1,...,j

7a. Pjt1 = Tj1 + Dl e BigDi -

Another class of algorithms is defined by computing the nasidvectop;
as

J
pi+1=Ap; + > _ Bijpi (6.107)
=0
in which, as before, thg;;’s are selected to make thép;’s orthogonal, i.e.,
(A%, Apy)
Bij =~
(Api, Ap;)

The resulting algorithm is called ORTHODIR178]. Restdrnd truncated ver-
sions of ORTHODIR can also be defined.

6.10 The Faber-Manteuffel Theorem

As was seen in Sectidn ®.6 whehis symmetric, the Arnoldi algorithm simplifies
into the Lanczos procedure, which is defined through a ttees-recurrence. As
a consequence, FOM is mathematically equivalent to thegaig Gradient algo-
rithm in this case. Similarly, the full GMRES algorithm gs/eise to the Conjugate
Residual algorithm. It is clear that the CG-type algorithimes., algorithms defined
through short-term recurrences, are more desirable tle thlgorithms which re-
quire storing entire sequences of vectors as in the GMRE®pso These algorithms
require less memory and operations per step.

Therefore, the question ids it possible to define algorithms which are based
on optimal Krylov subspace projection and which give riseségquences involving
short-term recurrences?n optimal Krylov subspace projection means a technique
which minimizes a certain norm of the error, or residual, lo@ Krylov subspace.
Such methods can be defined from the Arnoldi process.

It is sufficient to consider the Arnoldi process. If Arnokl&lgorithm reduces
to the s-term Incomplete Orthogonalization Algoritm (AlgorithmBwith & = s),

i.e., if hj = 0fori < j — s+ 1, then an(s — 1)-term recurrence can be defined
for updating the iterates, as was done in Sedfionl6.4.2. &@saly, if the solution is
updated ag; 11 = x; + a;p; andp; satisfies a short recurrence, then the residual

6.10. THE FABER-MANTEUFFEL THEOREM 207

vectors will satisfy ars-term recurrence, i.eh;; = 0 fori < j — s+ 1. A similar
argument can be used for the the (full) GMRES algorithm whesiniplifies into
DQGMRES. For all purposes, it is therefore sufficient to gpalwhat happens to
the Arnoldi process (or FOM). We start by generalizing the @8&ult in a simple
way, by considering the DIOM algorithm.

Proposition 6.22 Let A be a matrix such that
ATy € Ky(A,v)

for any vector. Then, DIOM(s) is mathematically equivalent to the FOM aildpon.

Proof. The assumption is equivalent to the statement that, forathyere is a poly-
nomial ¢, of degree< s — 1, such thatA”v = ¢,(A)v. In the Arnoldi process, the
scalarsh;; are defined by:;; = (Av;, v;) and therefore

hij = (Avj,01) = (v, ATvi) = (v, qu; (A)vy). (6.108)

Sincegq,, is a polynomial of degreg s — 1, the vectorg,, (A)v; is a linear combina-
tion of the vectorsy;, vi11,...,v;4s—1. Asaresult, ifi < j — s+ 1, thenh;; = 0.
Therefore, DIOM§) will give the same approximate solution as FOM. |

In particular, if
AT =q(4)

wheregq is a polynomial of degreel s — 1, then the result holds. However, since
Aq(A) = q(A)A for any polynomialg, the above relation implies that is normal.
As it turns out, the reverse is also true. That is, wirs normal, then there is a
polynomial of degree< n — 1 such thatd” = ¢(A). Proving this is easy because
when A = QAQ™ where(is unitary andA diagonal, therny(A4) = Qq(A)Q".
Choosing the polynomiaj so that

q()\j):Aj,jzl,...,n

results ing(A) = QAQ = A as desired.

Let(A) be the smallest degree of all polynomialsuch thatd” = ¢(A). Then
the following lemma due to Faber and Manteuffel [121] stateteresting relation
betweens andv(A).

Lemma 6.23 A nonsingular matrix4 is such that
Ay € K (A,v)

for every vectow if and only if A is normal andv(A4) < s — 1.

208 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Proof. The sufficient condition is trivially true. To prove the nesary condition,
assume that, for any vector A”v = ¢,(A)v whereg, is a polynomial of degree
< s — 1. Then it is easily seen that any eigenvectorAfs also an eigenvector
of A”. Therefore, from LemmB_LI54 is normal. Lety be the degree of the
minimal polynomial forA. Then, sincedA hasp distinct eigenvalues, there is a
polynomialq of degreey — 1 such thaig(\;) = A; fori = 1,..., u. According to
the above argument, for thig it holds A = ¢(A) and therefore/(A) < u — 1.
Now it must be shown thgt < s. Letw be a (nonzero) vector whose grade is
p. By assumptionAfw € K, (A, w). On the other hand, we also havié w =
q(A)w. Since the vectors), Aw, ..., A*~lw are linearly independent; — 1 must
not exceeds — 1. Otherwise, two different expressions faf w with respect to the
basisw, Aw, ..., A*~tw would result and this would imply that”«w = 0. Since
A is nonsingular, themw = 0, which is a contradiction. O

Proposition[62R gives a sufficient condition for DIOM(s) ke equivalent to
FOM. According to LemmBR®&.23, this condition is equivalentitbeing normal and
v(A) < s — 1. Now consider the reverse result. Faber and Manteuffel el€iB(s)
to be the class of all matrices such that everyv, it is true that(Av;,v;) = 0 for
all 7,5 such thati + s < j < p(v;) — 1. The inner product can be different from
the canonical Euclidean dot product. With this definitioisipossible to show the
following theorem[[1211] which is stated without proof.

Theorem 6.24 A € CG(s), if and only if the minimal polynomial oA has degree
<s,or Aisnormal andv(A) < s — 1.

It is interesting to consider the particular case wheré) < 1, which is the case
of the Conjugate Gradient method. In fact, it is easy to shmawin this cased either
has a minimal degre€ 1, or is Hermitian, or is of the form

A=¢e"(pI +B)

wheref andp are real andB is skew-Hermitian, i.e.BH? = —B. Thus, the cases
in which DIOM simplifies into an (optimal) algorithm definedom a three-term
recurrence are already known. The first is the Conjugate i@radnethod. The
second is a version of the CG algorithm for skew-Hermitiartrioes which can be
derived from the Lanczos algorithm in the same way as CG. dlgisrithm will be
seen in Chapter 9.

6.11 Convergence Analysis

The convergence behavior of the different algorithms seethis chapter can be
analyzed by exploiting optimality properties whenevertspcoperties exist. This
is the case for the Conjugate Gradient and the GMRES algasithOn the other
hand, the non-optimal algorithms such as FOM, IOM, and QGERHI| be harder

to analyze.

6.11. CONVERGENCE ANALYSIS 209

One of the main tools used in the analysis of these methodeabyShev poly-
nomials. These polynomials are useful both in theory, whedysng convergence,
and in practice, as a means of accelerating single-veet@tibns or projection pro-
cesses. In the following, real and complex Chebyshev polyals are discussed
separately.

6.11.1 Real Chebyshev Polynomials
The Chebyshev polynomial of the first kind of degfeis defined by
Cy(t) = cos[k cos™L(t)] for —1<t<1. (6.109)

That this is a polynomial with respect t@an be shown easily by induction from the
trigonometric relation

cos[(k + 1)0] + cos[(k — 1)8] = 2 cos 6 cos kb,

and the fact that’, (t) = ¢, Cy(t) = 1. Incidentally, this also shows the important
three-term recurrence relation

Cr1(t) =2t Ck(t) — Cp—a(t).

The definition [EI09) can be extended to cases wliere 1 with the help of the
following formula:

C(t) = cosh [kcosh™ ()], [t| > 1. (6.110)

This is readily seen by passing to complex variables andyubim definitioncos =
(e + =) /2. As a result of [G10) the following expression can be dfiv

Cult) = % [(t Ve 1)k + (t N/ 1) _k} , (6.111)

which is valid for |t| > 1 but can also be extended to the casetpf< 1. The
following approximation, valid for large values 6f will be sometimes used:

k
Cr(t) 2 % (t + V2 — 1) for |t| > 1. (6.112)

In what follows we denote b¥, the set of all polynomials of degrée An
important result from approximation theory is the follogitheorem.

Theorem 6.25 Let [a, 3] be a non-empty interval iR and lety be any real scalar
outside the intervala, 4]. Then the minimum

min max |p(t

is reached by the polynomial

A B Ck (1 + 2%)
Cr(t) =) <1 N 2%‘%) (6.113)

210 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

For a proof, see Cheney [[77]. The maximumdf for ¢ in [-1,1] is 1 and a
corollary of the above result is

. 1 1
min max |p(t)| = = -
PEPy, p(7)=1 t€[a,f] p@®) |Cu(1 + 2%%5)| 1Ck(25=5)

in which u = (a + 3)/2 is the middle of the interval. The absolute values in the
denominator are needed only wheris to the left of the interval, i.e., when < a.
For this case, it may be more convenient to express the bistqooial as

C’k<1—|—2g;oté>
:Ck<1+2g%l>'

which is obtained by exchanging the rolescofnd 3 in @113).

Ci(t)

6.11.2 Complex Chebyshev Polynomials

The standard definition of real Chebyshev polynomials givgrequation [6.109)
extends without difficulty to complex variables. First, agsnseen before, whens
real and|t| > 1, the alternative definition(’},(¢) = cosh[k cosh™!(¢)], can be used.
These definitions can be unified by switching to complex s and writing

Ck(z) = cosh(k¢), where cosh(¢) =z .

Defining the variables = €¢, the above formula is equivalent to

Cu(2) = %[Fpw k] where 2= %[w T (6.114)
The above definition for Chebyshev polynomials will be usedi Note that the
equation%(w +w™!) = 2 has two solutionsy which are inverse of each other. As
a result, the value of’';(z) does not depend on which of these solutions is chosen.
It can be verified directly that thé’;'s defined by the above equations are indeed
polynomials in the: variable and that they satisfy the three-term recurrence

Cr+1(2) = 22Ck(2) — Cg-1(2), (6.115)
Co(z) =1, Ci(z) = =.

As is now explained, Chebyshev polynomials are intimatelgted to ellipses in
the complex plane. Le&f’, be the circle of radiug centered at the origin. Then the
so-called Joukowski mapping

J(w) = %[w +w

transformsC, into an ellipse centered at the origin, with feel, 1, major semi-axis
$lp + p~*] and minor semi-axig|p — p~!|. This is illustrated in FigurE&l2.

6.11. CONVERGENCE ANALYSIS 211

There are two circles which have the same image by the mapping, one
with the radiusp and the other with the radiys™'. So it is sufficient to consider
only those circles with radius > 1. Note that the case = 1 is a degenerate case in
which the ellipseF (0, 1, —1) reduces to the intervat-1, 1] traveled through twice.

An important question is whether or not a generalizatiornefrhin-max result of
Theorenf&.25 holds for the complex case. Here, the maximupi off is taken over
the ellipse boundary angis some point not enclosed by the ellipse. The answer to
the question is no; Chebyshev polynomials are only optimabme cases. However,
Chebyshev polynomials are asymptotically optimal, whigtali that is needed in
practice.

Figure 6.2: The Joukowski mapping transforms a circle imtelfipse in the complex
plane.

To prove the asymptotic optimality, we begin with a lemma tugarantonello,
which deals with the particular case where the ellipse resltic a circle. This par-
ticular case is important in itself.

Lemma 6.26 (Zarantonello) LetC(0, p) be a circle of center the origin and radius
p and lety be a point ofC not enclosed by’'(0, p). Then

k
: P
min max 2) = (- , 6.116
pePy, p(y)=1 z€ C(0,p) p(=)] (Ivl) ()
the minimum being achieved for the polynontialy).
Proof. See referencé [2382] for a proof. O

Note that by changing variables, shifting, and rescalirgpiblynomial, then for
any circle centered atand for any scalay such thaty| > p, the following min-max
result holds:

k
min max |p(z)| = (P > .
pEPL p(v)=1 z € C(c,p) |y — |
Now consider the case of an ellipse centered at the origith feci 1, —1 and

semi-major axis:, which can be considered as mapped/dyom the circleC'(0, p),
with the convention that > 1. Denote byF, such an ellipse.

212 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Theorem 6.27 Consider the ellipséZ, mapped fronC' (0, p) by the mapping/ and

let v be any point in the complex plane not enclosed by it. Then
k ko o —k

P < min max |p(z)| < Lﬂ_k

w5 | pEPy p(1)=1 =z € Ep [wk 4w |

(6.117)

in whichw, is the dominant root of the equatiof(w) = .

Proof. We start by showing the second inequality. Any polynomiaf degreek
satisfying the constraini(~) = 1 can be written as

& :

ijo §7
i -

ijo &7’

A point z on the ellipse is transformed by from a certainw in C'(0, p). Similarly,
let w., be one of the two inverse transforms-pby the mapping, namely, the one
with largest modulus. Themp,can be rewritten as

Z?:o &i(w? +w™7)
S &(wh + wy?)

Consider the particular polynomial obtained by setffpg= 1 and{; = 0 for j # &,

p(z) =

p(z) = (6.118)

B wk +w_k

oWk -k
Wy + Wy

p(2)

which is a scaled Chebyshev polynomial of the first kind ofrdeg in the variablez.
It is apparent that the maximum modulus of this polynomiakeched in particular
whenw = pe' is real, i.e., whenv = p. Thus,

k —k
. p"+p
max |p*(2)| = %
2€E, |w,y+wfy |

which proves the second inequality.
To prove the left inequality, we rewritE(6.118) as

(w"f) Y oh—0 & (Wt whd)

k k+j k—j
Ejzogj(w’y T+ wy)

and take the modulus of z),
|G+ wh)
=0 & (wy ™ +wi)

The polynomial inw of degre€k inside the large modulus bars in the right-hand side
is such that its value at., is one. By Lemm&&.26, the modulus of this polynomial

p
p(2)] = ——=
|w | k

6.11. CONVERGENCE ANALYSIS 213

over the circleC (0, p) is not less tharip/|w,|)?*, i.e., for any polynomial, satisfying
the constrainp(y) = 1,

k 2k k

P p p
max |p(z)| > — = .
z€ Ep [wy|=F Jwy P Jwy [k

This proves that the minimum over all such polynomials of rieeximum modulus
on the ellipser, is > (p/|w-|)¥. O

The difference between the left and right bound<In{8.1&@)$ to zero a%
increases to infinity. Thus, the important point made by teoitem is that for large
k, the Chebyshev polynomial

*(Z)—M where Z—Lu)_l
b wk + wy ke 2
is close to the optimal polynomial. More specifically, Chsfigv polynomials are
asymptoticallyoptimal.

For a more general ellipsé(c, d, a) centered at, and with focal distance and
semi-major axis:, a simple change of variables shows that the near-best qoiah
is given by

. O (2
Ci(z) = #ﬂ,)-
Cr (“7%)

In addition, by examining the expression”* + w=")/2 for w = pe® it is easily
seen that the maximum modulus@f(z), i.e., the infinity norm of this polynomial
over the ellipse, is reached at the paint « located on the real axis. From this we
get,

(6.119)

R Cr (&
max [Cy(z)] =)
z € E(e,d,a) |Ck (T’y) |
Here, we point out that anda both can be purely imaginary [for an example, see part
(B) of Figure[&3]. In this case/d is real and the numerator in the above expression
is always real. Using the definition far;, we obtain the following useful expression

and approximation:

73 = (6.120)

(6.121)

Finally, we note that an alternative and more detailed tdsgasg been proven by
Fischer and Freund ih[1R7].

214 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

6.11.3 Convergence of the CG Algorithm

As usual,

x| 4 denotes the norm defined by
2]l a = (Az,z)">.

The following lemma characterizes the approximation efgdifrom the Conjugate
Gradient algorithm.

Lemma 6.28 Letx,, be the approximate solution obtained from theth step of the
CG algorithm, and letl,,, = =, — x,,, wherex, is the exact solution. Then,, is of
the form

T = 20 + gm(A)ro

wheregq,, is a polynomial of degree: — 1 such that

(I — Agm(A))dolla = min |[[(I — Ag(A))do a-

qc]P)'mfl

Proof. This is a consequence of the fact thai minimizes theA-norm of the error
in the affine subspace, + K,,,, a result of Proposition 3.2, and the fact tha}, is
the set of all vectors of the form, + ¢(A)ry, whereq is a polynomial of degree
<m—1. O

From this, the following theorem can be proved.

Theorem 6.29 Let x,,, be the approximate solution obtained at theth step of the
Conjugate Gradient algorithm, and, the exact solution and define

>\min
= 6.122
g >\ma:v - >\mm ()
Then, ” H
Tx — T0o||A
e — |l < Lx —T0UA 6.123
|24 — Tl a Co(i T 2m) ()

in which C,, is the Chebyshev polynomial of degreeof the first kind.

Proof. From the previous lemma, it is known thiat, — z,,||4 minimizes A-norm
of the error over polynomials(¢) which take the value one @t i.e.,

- = i A)dp||a-
o =l = min [r(A)do]ls

If X\;,i =1,...,n are the eigenvalues of, and¢;,i = 1,...,n the components of
the initial errordy in the eigenbasis, then

Ir(A)dollh = D Ar(\)*(€)* < max(r(A:))?|ldo 1
i=1

(r(\)?lldol%-

max
A€ P\mzn 7>\macv]

6.11. CONVERGENCE ANALYSIS 215

Therefore,

lze —@mlla s omin o max |r(V)]ldofla
The result follows immediately by using the well known resilTheorenf 625 from
approximation theory. This gives the polynomialvhich minimizes the right-hand
side. a

A slightly different formulation of inequality({&.123) care derived. Using the
relation,

On(t) = %[(t—i—\/tz—l)m—l—(t—l—\/tz—l)_m]
> %(H\/ﬁ)m
then
Co(1+27) > %(1+2n+\/m)m
> (e eavatin)”

Now notice that

14204 2y/n(n+1)

(vir+ \/ﬁf (6.124)

2
/\min /\mam
_ . + o) (6.125)
V >\ma:v + V /\mzn (6126)
V >\ma:v Y, /\mzn
_ vEtl (6.127)
VE—1
in which « is the spectral condition number= \,.qz / Amin-
Substituting this in[[6123) yields,
o~ omla < 2| VL]l — sl (6.12)

This bound is similar to that of the steepest descent alguarixcept that the condi-
tion number ofA is now replaced by its square root.

6.11.4 Convergence of GMRES

We begin by stating @lobal convergence result. Recall that a matrixis called
positive definite if its symmetric paftd + A”)/2 is Symmetric Positive Definite.
This is equivalent to the property th@dx, =) > 0 for all nonzero real vectors.

216 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Theorem 6.30 If A is a positive definite matrix, then GMRES(m) converges fgr an
m > 1.

Proof. This is true because the subspdCg contains the initial residual vector at
each restart. Since the algorithm minimizes the residuahrin the subspacg,,,
at each outer iteration, the residual norm will be reducedsgnuch as the result of
one step of the Minimal Residual method seen in the previbapter. Therefore, the
inequality [5.Ib) is satisfied by residual vectors produafidr each outer iteration
and the method converges. |

Next we wish to establish a result similar to the one for th@jGgate Gradient
method, which would provide an upper bound on the converyeate of the GMRES
iterates. We begin with a lemma similar to Lemima®.28.

Lemma 6.31 Letx,, be the approximate solution obtained from theth step of the
GMRES algorithm, and let,, = b — Ax,,. Thenx,, is of the form

T = T + gm(A)T0
and

[rmll2 = [[(I = Agm(A))rollz = min [|(I — Agq(A))ro2-

qc]P)'mfl

Proof. This is true becausg,,, minimizes the2-norm of the residual in the affine
subspacery + K,,, a result of Proposition 3.3, and the fact that, is the set of all
vectors of the form:y + ¢(A)rg, whereg is a polynomial of degreg& m —1. O

Unfortunately, it not possible to prove a simple result sasiTheorer 6.29 unless
A'is normal.

Proposition 6.32 Assume thatd is a diagonalizable matrix and let = XAX !
whereA = diag {\1, A2, ..., A, } is the diagonal matrix of eigenvalues. Define,

(m) _ : N
€ - min max .
pEPm,p(0)=1 i=1,...,n ‘p(z)‘

Then, the residual norm achieved by theth step of GMRES satisfies the inequality
Irmll2 < K2 (X)e™ ro|l2.

wherery(X) = || X ||2]| X 2.

Proof. Let p be any polynomial of degre€ m which satisfies the constraipf0) =
1, andz the vector inC,,, to which it is associated via— Az = p(A)rg. Then,

1o — Azll2 = | Xp(A)X " rollz < X 12l X~ [l2llroll2llp(A) 12

6.11. CONVERGENCE ANALYSIS 217

SinceA is diagonal, observe that

Ip(A)ll2 = max [p(x)]

ey

Sincex,,, minimizes the residual norm ovey + K,,, then for any consistent poly-
nomialp,

b — Az || < [[b = Azfla < [X[X [l2]lroll2 max [p(Ai)].

Now the polynomialp which minimizes the right-hand side in the above inequality
can be used. This yields the desired result,

b — Azl < 1o = Azl < [X]|2 X" [l2llroll2c™.

(A (B)

Figure 6.3: Ellipses containing the spectrum4fCase (A): reall; case (B): purely
imaginaryd.

The results of Sectioh"6.11.2 on near-optimal Chebysheynpatials in the
complex plane can now be used to obtain an upper boundfor Assume that
the spectrum ofd in contained in an ellips&’(c, d, a) with centerc, focal distance
d, and major semi axig. In addition it is required that the origin lie outside this
ellipse. The two possible cases are shown in Figurk 6.3. (®)seorresponds to
the situation whem is purely imaginary, i.e., the major semi-axis is alignethviihe
imaginary axis.

Corollary 6.33 Let A be a diagonalizable matrix, i.e, let = XAX~! whereA =

diag {\1, \2,..., Ay} is the diagonal matrix of eigenvalues. Assume that all the

218 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

eigenvalues ofl are located in the ellips&(c, d, a) which excludes the origin. Then,
the residual norm achieved at the-th step of GMRES satisfies the inequality,

Cm (&
[7mll2 < K2(X) 0 ()] Egg‘ [I70ll2-
m g

Proof. All that is needed is an upper bound for the scal#? under the assumptions.
By definition,

(m) _ i \;
€ == min max
pEPm,P(O)Zl 7;:1,...777, |p(Z)|
< min max [p(\)].
PEPm,p(0)=1 A € E(c,d,a)
The second inequality is due to the fact that the maximum rtugdof a complex
analytical function is reached on the boundary of the dom@ila can now use as a

trial polynomial C,,, defined by[E19), with = 0:

(m) <« i A
s pmin) e P

< max [C,(\)| = CL(E).
A € E(c,d,a) |Cm (4

This completes the proof. |

An explicit expression for the coefficieit,, (%) / Cy, ($) and an approximation
are readily obtained fronl {6.TH0-6.121) by taking- 0:

(s+vV@ 1) +(s+ V@ -1)

O (3) _
Con () (5_1_ (5)2_1>m+<§+ (5)2_1>‘m
a—i—m "

Since the condition number, (X) of the matrix of eigenvectorX is typically
not known and can be very large, results of the nature of thallaoy are of limited
practical interest. They can be useful only when it is knohat the matrix is nearly
normal, in which case;s (X) ~ 1.

6.12 Block Krylov Methods

In many circumstances, it is desirable to work with a blockveé€tors instead of
a single vector. For example, out-of-core finite-elemerdesoare more efficient
when they are programmed to exploit the presence of a blottkeainatrix A in fast

memory, as much as possible. This can be achieved by usiokj ¢smeralizations of

6.12. BLOCK KRYLOV METHODS 219

Krylov subspace methods, for whichalways operates on a group of vectors instead
of a single vector. We begin by describing a block versiorhefArnoldi algorithm.

ALGORITHM 6.22 Block Arnoldi

Choose a unitary matri, of dimensiorn x p.
Forj =1,2,...,m Do:

ComputeH;; = VIAV;, i=1,2,...,j

ComputéV; = AV; — S)_ ViH;

Compute the Q-R factorization Wf;: W; = V; 1 Hj 1 ;
EndDo

A WNR

The above algorithm is a straightforward block analogue lgoAthm[G]. By
construction, the blocks generated by the algorithm ateogdnal blocks that are
also orthogonal to each other. In the following we denotdbthe k£ x k identity
matrix and use the following notation:

Um - [‘/17V27"'7Vm]7
H, = (Hij)lgi,j§m7 Hij =0, for > Jj+1,
E,, = matrix of the las}p columns ofI,,,,.

Then, the following analogue of the relatidn{6.6) is eapilgved:
AUpy = UpHyn + Vi1 Hy1 m . (6.129)

Here, the matrix,,, is no longer Hessenberg, but band-Hessenberg, meaninig that
hasp subdiagonals instead of only one. Note that the dimensigdheoubspace in
which the solution is sought is net but m.p.

A second version of the algorithm uses a modified block Gram$dt proce-
dure instead of the simple Gram-Schmidt procedure usedeaftis leads to a block
generalization of Algorithni_8l2, the Modified Gram-Schmigtsion of Arnoldi's
method.

ALGORITHM 6.23 Block Arnoldi with Block MGS

Choose a unitary matri, of sizen x p
Forj =1,2,...,m Do:
ComputdV; := AV}
Fori =1,2,...,j do:
Hij = ‘/Z-TW]'
Wj = Wj — V;Hw
EndDo
Compute the Q-R decompositiovi; = V; 1 H ;1 ;
EndDo

© XN AWNR

Again, in practice the above algorithm is more viable tharpiiedecessor. Fi-
nally, a third version, developed by A. RuHe[236] for the syetric case (block

220 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Lanczos), yields a variant that is quite similar to the arajiArnoldi algorithm. As-
sume that the initial block gf orthonormal vectorsy, ..., v, is available. The first
step of the algorithm is to multiply; by A and orthonormalize the resulting vector
w againstvy, ..., v,. The resulting vector is defined to bg, ;. In the second step
it is v that is multiplied byA and orthonormalized against all availabiés. Thus,
the algorithm works similarly to Algorithfi 8.2 except for aldy in the vector that
is multiplied by A at each step.

ALGORITHM 6.24 Block Arnoldi—Ruhe’s variant

1. Choose initial orthonormal vector§v; }i—1,.. p.

2. Forj=p,p+1,...,m+p—1Do:

3. Setk :=j—p+1;

4, Computeaw := Avy;

5. Fori=1,2,...,5 Do:

6. hi e = (w,v;)

7. w = w — h; v;

8. EndDo

9. Computehjﬂ,k = ||w||2 andvjﬂ = w/hj-i-l,lc-
10. EndDo

Observe that the particular cage= 1 coincides with the usual Arnoldi process.
Also, the dimensionn of the subspace of approximants, is no longer restricted to
being a multiple of the block-size as in the previous algorithms. The mathematical
equivalence of AlgorithmB_6.23 and 6124 whenis a multiple ofp is straightfor-
ward to show. The advantage of the above formulation is itphcity. A slight
disadvantage is that it gives up some potential parallelismthe original version,
the columns of the matriXV; can be computed in parallel whereas in the new algo-
rithm, they are computed in sequence. This can be remedeceMer, by performing
p matrix-by-vector products evepysteps.

At the end of the loop consisting of lines 5 through 8 of Algom [624, the
vectorw satisfies the relation

J
w = Avy, — Zhikvi,

i=1

wherek andj are related byt = j — p + 1. Line 9 givesw = hj 1 v 41 Which

results in
k+p

Avy, = Z hirv;.
i=1
As a consequence, the analogue of the relafion (6.7) forratgo[6.23 is
AVyy = Vi p Hpp. (6.130)

As before, for any the matrixV; represents the x j matrix with columnsyy, .. . v;.
The matrixH,, is now of size(m + p) x m.

6.12. BLOCK KRYLOV METHODS 221

Now the block generalizations of FOM and GMRES can be definedstraight-
forward way. These block algorithms can solve linear systerth multiple right-
hand sides,

Az = D =1, p, (6.131)

or, in matrix form
AX = B, (6.132)

where the columns of the x p matricesB and X are theb®’s andz(V’s, respec-
tively. Given an initial block of initial guesses” fori = 1,.. ., p, we defineR, the
block of initial residuals

Ry = [r(()l),r(()z), . ,r(()p)],
where each column ig = b® — Az{. Itis preferable to use the unified notation
derived from Algorithn&24. In this notation; is not restricted to being a multiple
of the block-sizep and the same notation is used for this as in the scalar Arnoldi
Algorithm. Thus, the first step of the block-FOM or block-GER algorithm is to
compute the QR factorization of the block of initial resitiua

Ro = [Ul,Ug,... ,’Up] R.

Here, the matriXvy, . .., v,] is unitary andR is p x p upper triangular. This factor-
ization provides the firgt vectors of the block-Arnoldi basis.
Each of the approximate solutions has the form

2® = 2 4 Vg0, (6.133)

and, grouping these approximation$) in a block X and they® in a blockY", we
can write
X = Xo + VY. (6.134)

It is now possible to imitate what was done for the standardFR&hd GMRES
algorithms. The only missing link is the vect8e; in (&21) which now becomes a
matrix. LetE; be the(m + p) x p matrix whose uppep x p principal block is an
identity matrix. Then, the relatiof {6.1130) results in

B—AX = B-A(Xo+Vp,Y)

= Rog-—AV,)Y
= [v1,. .,)R — Vinsp HpY
= Viip (B1R— H,Y) . (6.135)
The vector ‘
g(l) = ElRei

is a vector of lengthn +p whose components are zero except those from Wtach
are extracted from thith column of the upper triangular matriz. The matrixi,,

222 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

is an(m + p) x m matrix. The block-FOM approximation would consist of delgt
the lastp rows of (¥ and H,,, and solving the resulting system,

H,y) = g,

The approximate solution®) is then computed by {6.1B3). '

The block-GMRES approximation(® is the unique vector of the form(()’) +
Viy® which minimizes the 2-norm of the individual columns of tHedk-residual
@&I33). Since the column-vectors Bf,,, are orthonormal, then fronl {(.135) we
get, . 4 I

16® — 42D}y = 1§99 — Hyy @2 (6.136)

To minimize the residual norm, the function on the right haie must be min-
imized overy(®. The resulting least-squares problem is similar to the ooeen-
tered for GMRES. The only differences are in the right-haidé and the fact that
the matrix is no longer Hessenberg, but band-Hessenbeligti®ts can be used in a
way similar to the scalar case. Howeverptations are now needed at each new step
instead of only one. Thus, i = 6 andp = 2, the matrix and block right-hand
side would be as follows:

hi1 hi2 his hiy his hig g1 912
ho1 hao hag hoy hos hog 922
h31 hza hsz hss hgs hsg
= hao hyz has has hae

He = hss hss hss hse ¢=
hes hes hes
hzs hre
hse

For each new column generated in the block-Arnoldi processtations are
required to eliminate the elements ;, for k = j + p down tok = j + 1. This
backward order is important. In the above example, a ratasi@pplied to eliminate
hs,1 and then a second rotation is used to eliminate the resuitingand similarly
for the second, third step, etc. This complicates programgnslightly since two-
dimensional arrays must now be used to save the rotatioteathsf one-dimensional
arrays in the scalar case. After the first columiief is processed, the block of right-
hand sides will have a diagonal added under the diagonaleotifiper triangular
matrix. Specifically, the above two matrices will have theicture,

* *
*

b S S S
o X o
X X X o ot
b e D S S e
Q)
I
b e S o

X ok ok X X X Xt ot

6.12. BLOCK KRYLOV METHODS 223
where ax represents a nonzero element. After all columns are predetise follow-
ing least-squares system is obtained.

* %
*

* %
b D S S
b e S S
b D S S
Q)
I
b o D D S
X X X X ot

To obtain the least-squares solutions for each right-hate] gjnore anything below
the horizontal lines in the above matrices and solve thdtmeguriangular systems.
The residual norm of théth system for the original problem is the 2-norm of the
vector consisting of the components—+ 1, throughm + 7 in thei-th column of the
above block of right-hand sides.

Generally speaking, the block methods are of great practadae in applica-
tions involving linear systems with multiple right-handies. However, they are
not as well studied from the theoretical point of view. P@djeone of the reasons
is the lack of a convincing analogue for the relationshiphvatthogonal polyno-
mials, established in subsectibn616.2 for the singleerdcanczos algorithm. The
block version of the Lanczos algorithm has not been coveutdhe generalization
is straightforward.

PROBLEMS

P-6.1 In the Householder implementation of the Arnoldi algorithshow the following
points of detail:

a. ;41 is unitary and its inverse i@JTH.

b. QT,y =PiPy... Pjyy.

C. QJTHei =, fori < j.

d. Q;11AV,, = Vinyiler, e, .. .,ejH]Hm, wheree; is thei-th column of then x n
identity matrix.

e. Thew;’s are orthonormal.

f. The vectors, ..., v; are equal to the Arnoldi vectors produced by the Gram-Schmid
version, except possibly for a scaling factor.

P-6.7 Rewrite the Householder implementation of the Arnoldi aiidpon with more detail.
In particular, define precisely the Householder veatpused at step (lines 3-5).

P-6.8 Consider the Householder implementation of the Arnoldoegtgm. Give a detailed
operation count of the algorithm and compare it with the G@echmidt and Modified Gram-
Schmidt algorithm.

224 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

P-6.9 Consider a variant of the GMRES algorithm in which the Arngiecess starts with
vy = Avg/||Auvgll2 wherevy = ro. The Arnoldi process is performed the same way as
before to build an orthonormal system, vo, ..., v,,,—1. Now the approximate solution is
expressed in the basisg, v1, ..., Um-1}.
a. Show that the least squares problem that must be solvebtainadhe approximate
solution is now triangular instead of Hessemberg.

b. Show that the residual vectoy is orthogonal ta,, va, . .., vg_1.

c. Find a formula which computes the residual norm (withauputing the approximate
solution) and write the complete algorithm.

P-6.4 Derive the basic version of GMRES by using the standard féar@i) withV =V,
andW = AV,,.

P-6.5 Analyze the arithmic cost, i.e., the number of operatiohglgorithms[e.T and©l18.
Similarly analyse the memory requirement of both algorghm

P-6.6 Derive a version of the DIOM algorithm which includes pdrpaoting in the solu-
tion of the Hessenberg system.

P-6.7 Show how the GMRES and FOM methods will converge on the lingstemAx = b

when
1

b

I

—

>

Il
cooc o~

1
and withzg = 0.
P-6.8 Give a full proof of PropositioR 6.17.

P-6.9 Let a matrixA have the form

1Y
= (57)
Assume that (full) GMRES is used to solve a linear systemh it coefficient matrixA.

What is the maximum number of steps that GMRES would requio®hverge?

P-6.10 Leta matrixA have the form:

(2)

Assume that (full) GMRES is used to solve a linear system thighcoefficient matrixd. Let

(1)
r
o= ()
be the initial residual vector. It is assumed that the degfélee minimal polynomial of*((f)
with respect taS (i.e., its grade) i%. What is the maximum number of steps that GMRES

would require to converge for this matrix? [Hint: Evaludte BumeZO Bi(ATL — A%)rg
whereS " g;t' is the minimal polynomial of >’ with respect tof.]

6.12. BLOCK KRYLOV METHODS 225

P-6.11 Let
I Y,

I Y

a. Showthatl — A)* = 0.

b. Assume that (full) GMRES is used to solve a linear systeth thie coefficient matrix
A. What is the maximum number of steps that GMRES would redaionverge?

P-6.3 Show that ifH,,, is nonsingular, i.e., when the FOM iterartﬁ is defined, and if the
GMRES iterater$ is such that$ = zZ, thenr$ = rZ = 0, i.e., both the GMRES and
FOM solutions are exact. [Hint: use the relatibn{®.74) arapBsition[6.1I7 or Proposition
612

P-6.4 Derive the relation[883) fron[{6F5). [Hint: Use the falsat the vectors on the
right-hand side of{6.15) are orthogonal.]

P-6.5 Inthe Householder-GMRES algorithm the approximate sofutian be computed by
formulas [E3I=6.33). What is the exact cost of this altdvegcompare memory as well as
arithmetic requirements)? How does it compare with the cbkeeping they;'s?

P-6.6 An alternative to formulag{6.HI-6133) for accumulating tpproximate solution in
the Householder-GMRES algorithm without keeping ks is to computez,,, as

Tm =20+ P1Psy... Py

wherey is a certaim-dimensional vector to be determined. (1) What is the vegttor
the above formula in order to compute the correct approxé@realutionz,,? [Hint: Exploit
@&I3).] (2) Write down an alternative to formulds{8[3E3. derived from this approach.
(3) Compare the cost of this approach with the cost of uSIigIe.38B).

P-6.7 Obtain the formula{6.97) froniL{6.P6).
P-6.8 Show that the determinant of the matii¥, in (&2I03) is given by

1
I i
P-6.9 The Lanczos algorithm is more closely related to the implaaion of Algorithm
of the Conjugate Gradient algorithm. As a result theczas coefficients; ., andn;41
are easier to extract from this algorithm than from AlganfEI8. Obtain formulas for these

coefficients from the coefficients generated by Algorifhd@ as was done in Sectibn 617.3
for the standard CG algorithm.

det (T),) =

P-6.10 What can be said of the Hessenberg maifix when A is skew-symmetric? What
does this imply on the Arnoldi algorithm?

P-6.11 Consider a matrix of the form
A=I+aB (6.137)
whereB is skew-symmetric (real), i.e., such thaf = —B.

a. ShowthatAz, z)/(xz,z) = 1 for all nonzerar.

226 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

b. Consider the Arnoldi process far. Show that the resulting Hessenberg matrix will
have the following tridiagonal form

1 —n
21 =13

Tim—1 1 —Tm
m 1

c. Using the result of the previous question, explain whyGk@algorithm applied as is
to a linear system with the matrig, which is nonsymmetric, will still yield residual
vectors that are orthogonal to each other.

P-6.4 Establish the three relatiorlS {6121} (8.23), d0d016.24).

P-6.5 Show that if the rotations generated in the course of the GBIRiIhd DQGMRES)
algorithm are such that
lem| > ¢ >0,

then GMRES, DQGMRES, and FOM will all converge.

P-6.6 Show the exact expression of the residual vector in the hasis, ..., v, for
either GMRES or DQGMRES. [Hint: A starting point [ST6150).]

P-6.7 Prove that the inequalitf{6.b4) is sharper thBn{6.51) himm ¢ense that,,, 1 <
vm — k + 1 (form > k). [Hint: Use Cauchy-Schwarz inequality dn{d.54).]

P-6.8 Consider the minimal residual smoothing algorithm (Algfem[Z3) in the situation
when the residual vectov§j of the original sequence are orthogonal to each other. Show
that the vectors

rjo - ril = —A(x? - xfﬁl)
are orthogonal to each other [Hint: use induction]. ThenlesmmaB.2Zll to conclude that
the iterates of the algorithm are identical with those of ®IRMIN and GMRES.

P-6.9 Consider the complex GMRES algorithm in Secfion 8.5.9. Sholeast two other
ways of defining complex Givens rotations (the requiremsithat(2; be a unitary matrix,
i.e., thatQ”Q; = I). Which among the three possible choices give (s) a nonivegaal
diagonal for the resulting,,, matrix?

P-6.10 Work out the details of a Householder implementation of thRES algorithm for
complex linear systems (The Householder matrices are ntved6érm/ —2ww?; part of the
practical implementation details is already availabletfiercomplex case in Sectibn6.9.)

P-6.11 Denote bysS,, the unit upper triangular matri$ in the proof of Theoreni 611
which is obtained from the Gram-Schmidt process (exadtmetic assumed) applied to the
incomplete orthogonalization basi,. Show that the Hessenberg matfié? obtained in
the incomplete orthogonalization process is related tdHgsenberg matrix/ & obtained
from the (complete) Arnoldi process by

HS = S, HEZS,,.

NOTES AND REFERENCES The Conjugate Gradient method was developed indepegdand in
different forms by Lanczo$[197] and Hestenes and StiEA]1The method was essentially viewed
as a direct solution technique and was abandoned early @ubedt did not compare well with other
existing techniques. For example, in inexact arithmetlie, method does not terminatesinsteps as

6.12. BLOCK KRYLOV METHODS 227

is predicted by the theory. This is caused by the severe lost athogonality of vector quantities
generated by the algorithm. As a result, research on Kriype-methods remained dormant for over
two decades thereafter. This changed in the early 1970s sénaral researchers discovered that this
loss of orthogonality did not prevent convergence. The nlas®ns were made and explained for
eigenvalue problem§2PP.147] as well as linear syst€émg][23The early to the middle 1980s saw
the development of a new class of methods for solving nonsstmicriinear system$ 12, 13,178,238,
[239[251[298]. The works of Faber and Manteuffel]121] anevdalin [299] showed that one could
not find optimal methods which, like CG, are based on shent-tecurrences. Many of the methods
developed are mathematically equivalent, in the sensetliegtrealize the same projection process,
with different implementations.

LemmaE&.Ib was proved by Roland Freund]134] in a slightlfed#nt form. PropositiofR 612 is
due to Brown[[65] who proved a number of other theoreticalltssincluding PropositioR617. The
inequality [E.6H), which can be viewed as a reformulatioBadwn’s result, was proved by Cullum
and Greenbauni92]. This result is equivalent to Equafiofidpwhich was shown in a very different
way by Zhou and Walkef[324].

The Householder version of GMRES is due to Walker [303]. The<)}GMRES algorithm de-
scribed in Sectiohi 6.H.6 was initially described by Browid &tindmarsh([6l7], and the direct version
DQGMRES was discussed in[255]. The proof of Theofeml6.1 DIRGMRES is adapted from the
result shown in[[2113] for the QMR algorithm.

Schonauer[I280] seems to have been the originator or MinReaidual Smoothing methods,
but Weiss [3017] established much of the theory and connestigith other techniques. The Quasi-
minimization extension of these techniques (QMRS) wasldpeel by Zhou and Walke[[324].

The non-optimality of the Chebyshev polynomials on elljpgethe complex plane was estab-
lished by Fischer and Freund[128]. Prior to this, a 1963 pageClayton [86] was believed to have
established the optimality for the special case where tigselhas real foci and is real.

Various types of Block Krylov methods were considered. Iditidn to their attraction for solving
linear systems with several right-hand sides]?43] 26 8,afithe other motivations for these techniques
is that they can also help reduce the effect of the sequential products in parallel environments
and minimize 1/O costs in out-of-core implementations. Add Lanczos algorithm was developed
by Underwood [[287] for the symmetric eigenvalue problemjlevid’Leary discussed a block CG
algorithm [215]. The block-GMRES algorithm is analyzed bs8ncini and Gallopoulo$266] and in
[250]. Besides the straightforward extension presenteseictiof6.IPR, a variation was developed by
Jbilou et al., in which a ‘global’ inner product for the blackas considered instead of the usual scalar
inner product for each columh1i76].

Alternatives to GMRES which require fewer inner productsenbeen proposed by Saddk[256]
and Jbilou[[T75]. Sadok investigated a GMRES-like methazbdabn the Hessenberg algoritim317],
while Jbilou proposed a multi-dimensional generalizatbiGastinel’s method seen in Exerc[de 3 of
Chapter 5. |

228 CHAPTER 6. KRYLOV SUBSPACE METHODS PART |

Chapter 7

KRYLOV SUBSPACE METHODS PART II

The previous chapter considered a number of Krylov subspace methods which relied on some
form of orthogonalization of the Krylov vectors in order to compute an approximate solution.
This chapter will describe a class of Krylov subspace methods which are instead based on a bi-
orthogonalization algorithm due to Lanczos. These are projection methods that are intrinsically
non-orthogonal. They have some appealing properties, but are harder to analyze theoretically.

7.1 Lanczos Biorthogonalization

The Lanczos biorthogonalization algorithm is an extensmnonsymmetric matri-
ces of the symmetric Lanczos algorithm seen in the previdiapter. One such
extension, the Arnoldi procedure, has already been seenevés, the nonsymmet-
ric Lanczos algorithm is quite different in concept from Alui’'s method because it
relies on biorthogonal sequences instead of orthogonakesegs.

7.1.1 The Algorithm

The algorithm proposed by Lanczos for nonsymmetric matrimeélds a pair of bi-
orthogonal bases for the two subspaces

Km(A,v1) = span{vy, Avy,..., A" oy}
and
ICm(AT, wy) = span{wy, ATy, ..., (AT)m_lwl}.
The algorithm that achieves this is the following.

ALGORITHM 7.1 The Lanczos Biorthogonalization Procedure

Choose two vectors; , w, such thafv;,w;) = 1.
Setﬁl =01 =0, wy=v9=0
Forj =1,2,...,m Do:

a;j = (Avj, wj)

bjp1 = Avj — ajvj — Bjvj

’LZ)j.,.l = AT’LU]' — Q;wy; — 6jwj_1

O A WNR

229

230 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

7. §jr1 = |(Dj11,Wj51)["2. If 6,41 = 0 Stop
8. Bi+1 = (0j+1,Wj+1)/0j41
9. W1 = Wj+1/Bj+

10. Vj41 = ’[Jj+1/5j+1

11. EndDo

Note that there are numerous ways to choose the s@alars3;; inlines 7 and
8. These two parameters are scaling factors for the two r&ecfQ; andw,; and
can be selected in any manner to ensure that;, w;,1) = 1. As a result of lines
9 and 10 of the algorithm, it is only necessary to choose tvaasg3; 1,6, that
satisfy the equality

0i+18j41 = (Vjg1,Wj41)- (7.1)

The choice taken in the above algorithm scales the two vectoithat they are di-
vided by two scalars which have the same modulus. Both v&ctr also be scaled
by their 2-norms. In that case, the inner product of; andw; is no longer equal
to 1 and the algorithm must be modified accordingly; see Esel&.

Consider the case where the pair of scalgrs , 5,11 is any pair that satisfies
the relation[(Z11). Denote LY, the tridiagonal matrix

ar P

do s [
Ty = . . (7.2)
5m—1 Om—1 ﬁm

Om Qup

If the determinations of;,1,0,41 of lines 7-8 are used, then tlg's are positive
andﬁj = :|:5j.

Observe from the algorithm that the vectessbelong tokC,, (A, v1), while the
w;'s are inkC,, (AT, wy). In fact, the following proposition can be proved.

Proposition 7.1 If the algorithm does not break down before steghen the vectors
v, =1,...,m,andw;,j = 1,...,m, form a biorthogonal system, i.e.,

(vj,wi):éz-» 1§i,]gm

Moreover, {v; }i=12 . m is a basis oflC,, (A, v1) and {w;}i=1,2,..m IS a basis of
Km (AT, w1) and the following relations hold,

AV = Vi Ty + 5m+1vm+lez—‘n7 (73)
AW, = Wi IT + By 1wmsrel (7.4)
WTLAV,, =T,,. (7.5)

Proof. The biorthogonality of the vectors;, w; will be shown by induction. By
assumption(v, w;) = 1. Assume now that the vectots,...v; andwy, ... w;

7.1. LANCZOS BIORTHOGONALIZATION 231

are biorthogonal, and let us prove that the vectqrs..v; 1 andws, ... w;41 are
biorthogonal.
First, we show thatv; 1, w;) = 0 for ¢ < j. Wheni = j, then

(vj41,w;) = 67 [(Avy, wy) — aj(vg, wy) — By(vi1,w;)].

The last inner product in the above expression vanishes éynttuction hypothe-
sis. The two other terms cancel each other by the definitiom; &nd the fact that
(vj,w;) = 1. Consider now the inner produgt; 1, w;) with i < j,

(Wi, wi) = 855 [(Av,wi) — (v, w3) = B (051, w5)]
= 63__&1[(’0], AT'U)Z) - /8] (vj—la wl)]
53'_421[(223', Bit1wit1 + aw; + 0jwi—1) — B (vj—1, w;)].

Fori < j — 1, all of the inner products in the above expression vanishthiey
induction hypothesis. Far= j — 1, the inner product is

(v, wim1) = 8534 [(v), Bjwj + ajorwjy + §j-1wj) — Bj(vj—1, wj-1)]
= 07418(vj, wi) = Bj(vj—1,wj-1)]
— 0

It can be proved in an identical way that, w;1) = 0 for ¢ < j. Finally, by
construction(vj;1,w;4+1) = 1. This completes the induction proof. The proof of
the matrix relationd{Z1§=4.5) is similar to that of the tiglas [E.6E6.B) in Arnoldi's
method. |

The relations[[ZJ3=715) allow us to interpret the algorithithe matrixT;,, is
the projection ofA obtained from an oblique projection process ofig (A, v;)
and orthogonally toC,,(A”,w;). Similarly, " represents the projection of”
on K,,(AT,w;) and orthogonally tdC,,(A4,v;). Thus, an interesting new feature
here is that the operators and A” play a dual role because similar operations are
performed with them. In fact, two linear systems are solvedlicitly, one with A
and the other withd”. If there were two linear systems to solve, one wittand
the other withA”, then this algorithm is suitable. Otherwise, the operatinfith
AT are essentially wasted. Later a number of alternative tqaes developed in the
literature will be introduced that avoid the usef.

From a practical point of view, the Lanczos algorithm hasgaificant advan-
tage over Arnoldi's method because it requires only a fewtorscof storage, if no
reorthogonalization is performed. Specifically, six vestof lengthn are needed,
plus some storage for the tridiagonal matrix, no matter feogdm is.

On the other hand, there are potentially more opportunitiebreakdown with
the nonsymmetric Lanczos method. The algorithm will breakm whenevep;
as defined in line 7 vanishes. This is examined more cardfullye next section. In
practice, the difficulties are more likely to be caused byrtear occurrence of this
phenomenon. A look at the algorithm indicates that the Lasazctors may have

232 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

to be scaled by small quantities when this happens. Aftewasteps the cumulated
effect of these scalings may introduce excessive roundimgse

Since the subspace from which the approximations are takelemtical to that
of Arnoldi's method, the same bounds for the distafji¢é — P,,)ul|2 are valid.
However, this does not mean in any way that the approximsitidmained by the two
methods are likely to be similar in quality. The theoretisalinds shown in Chapter
indicate that the norm of the projector may play a significate.

7.1.2 Practical Implementations

There are various ways to improve the standard nonsymmatrniczos algorithm

which we now discuss briefly. A major concern here is the pga@kbreakdowns

or “near breakdowns” in the algorithm. There exist a numteapgproaches that

have been developed to avoid such breakdowns. Other apy@®do not attempt to

eliminate the breakdown, but rather try to deal with it. Thespand cons of these

strategies will be discussed after the various existingages are described.
Algorithm[Z3 will abort in line 7 whenever,

(’[Jj+1, UAJj+1) — 0 (76)

This can arise in two different ways. Either one of the twotees; ;1 or w;
vanishes, or they are both nonzero, but their inner prodguzéio. The first case is
the “lucky breakdown” scenario which has been seen for sytmeneatrices. Thus,
if ;41 = 0thenspan{V;} isinvariant and, as was seen in Chapler 5, the approximate
solution is exact. liv; 41 = 0 thenspan{WW;} is invariant. However, in this situation
nothing can be said about the approximate solution for tiesali system withA. If
the algorithm is being used to solve a pair of linear systeme,with A and adual
system withA”, then the approximate solution for the dual system will bacex
in this case. The second scenario in whichl(7.6) can occuheanweither of the
two vectors is zero, but their inner product is zero. Wilkingsee[[317], p. 389)
called this aserious breakdownFortunately, there are cures for this problem which
allow the algorithm to continue in most cases. The corredimgnmodifications of
the algorithm are often put under the denominatiook-Ahead Lanczaagorithms.
There are also rare casesiinurable breakdowng/hich will not be discussed here
(see referenceb [2R5] arld [284]).

The main idea of Look-Ahead variants of the Lanczos algorith that the pair
vj42, wj+2 can often be defined even though the pair;, w;4, is not defined. The
algorithm can be pursued from that iterate as before untéwa oreakdown is en-
countered. If the paiv; 2, w;,2 cannot be defined then the pair, 3, w;, 3 can be
tried, and so on. To better explain the idea, itis best ta tefthe connection with or-
thogonal polynomials mentioned earlier for the symmetaigec The relationship can
be extended to the nonsymmetric case by defining the biliioear on the subspace
IP>m—1

<p,q >= (p(A)vi, q(ATyw). (7.7)

7.1. LANCZOS BIORTHOGONALIZATION 233

Unfortunately, this is now an “indefinite inner product” iergeral since< p,p >
can be zero or even negative. Note that there is a polyngmifl degreej such that
vj4+1 = pj(A)v; and, in fact, the same polynomial intervenes in the equinade-
pression ofw;1. More precisely, there is a scalgy such thatd; 11 = v;p; (AT)v;.
Similar to the symmetric case, the nonsymmetric Lanczasridhgn attempts to com-
pute a sequence of polynomials that are orthogonal witregp the indefinite inner
product defined above. If we define the moment matrix

My ={<a "o/ >} ok
then this process is mathematically equivalent to the caatiom of the factorization
My, = LUy

of the moment matrix/;,, in which Uy, is upper triangular and, is lower triangular.
Note that)/;, is a Hankel matrix, i.e., its coefficients;; are constant along anti-
diagonals, i.e., foi + j = constant.
Because
< pjpj >=75(pi(A)vr, pi (AT)w),

we observe that there is a serious breakdown at giépnd only if the indefinite
norm of the polynomiap; at stepj vanishes. If this polynomial is skipped, it may
still be possible to computg;;; and continue to generate the sequence. To explain
this simply, consider

q;(t) = zp;_1(t) and gj41(t) = 2°p;1(t).

Both ¢; andg;41 are orthogonal to the polynomiajs, ...,p;—». We can define
(somewhat arbitrarilyp; = ¢;, and therp;,; can be obtained by orthogonalizing
¢j+1 againsip;_; andp;. Itis clear that the resulting polynomial will then be orgho
onal against all polynomials of degree;j; see Exercisgl7. Therefore, the algorithm
can be continued from step+ 1 in the same manner. Exerc[Se 7 generalizes this for
the case wheré polynomials are skipped rather than just one. This is a siieg!
description of the mechanism which underlies the variousionas of Look-Ahead
Lanczos algorithms proposed in the literature. The Pafkftor-Liu implementa-
tion [228] is based on the observation that the algorithnaksebecause the pivots
encountered during the LU factorization of the moment matd, vanish. Then,
divisions by zero are avoided by performiigplicitly a pivot with a2 x 2 matrix
rather than using a standatdx 1 pivot.

The drawback of Look-Ahead implementations is the nongégé added com-
plexity. Besides the difficulty of identifying these neaeskdown situations, the
matrix 7, ceases to be tridiagonal. Indeed, whenever a step is skigbatents
are introduced above the superdiagonal positions, in saigeguent step. In the
context of linear systems, near breakdowns are rare ancetifeit generally benign.
Therefore, a simpler remedy, such as restarting the Larmzagdure, may well be
adequate. For eigenvalue problems, Look-Ahead strategigsbe more justified.

234 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

7.2 The Lanczos Algorithm for Linear Systems

We present in this section a brief description of the Lananashod for solving
nonsymmetric linear systems. Consider the (single) lisgatem:

Az =b (7.8)

where A is n x n.and nhonsymmetric. Suppose that a guegdo the solution is
available and let its residual vector bg = b — Axy. Then the Lanczos algorithm
for solving [Z.8) can be described as follows.

ALGORITHM 7.2 Two-sided Lanczos Algorithm for Linear Systems

Computey = b — Axg andp := ||ro||2

Runm steps of the nonsymmetric Lanczos Algorithm, i.e.,
Start withv, := ro /3, and anyw; such thafv,,w;) =1
Generate the Lanczos vectors. . . , vy, w1, . . ., Wy,
and the tridiagonal matrik,,, from Algorithm[Z1.

Computey,, = T, (Be1) andz,, := xo + ViuYm.

O AWNR

Note that it is possible to incorporate a convergence tesgihvwgenerating the
Lanczos vectors in the second step without computing theoappate solution ex-
plicitly. This is due to the following formula, which is sitar to Equation[[6.87) for
the symmetric case,

16— Azjll2 = [6;41€] y5] g1l (7.9)

and which can be proved in the same way, by uding (7.3). Thisdta gives us the
residual norm inexpensively without generating the apipnate solution itself.

7.3 The BCG and QMR Algorithms

The Biconjugate Gradient (BCG) algorithm can be derivechfidgorithm[Z] in ex-
actly the same way as the Conjugate Gradient method wasddriom Algorithm
ET3. The algorithm was first proposed by Lanczos[197] ir2l@ad then in a differ-
ent form (Conjugate Gradient-like version) by FletcherdJLi& 1974. Implicitly, the
algorithm solves not only the original systedx = b but also a dual linear system
ATz* = b* with AT, This dual system is often ignored in the formulations of the
algorithm.

7.3.1 The Biconjugate Gradient Algorithm
The Biconjugate Gradient (BCG) algorithm is a projectiongass onto
Kom = span{vy, Avy, - -, A" Lo}

orthogonally to
Ly = span{fwy, ATwy, -, (A1) L }

7.3. THE BCG AND QMR ALGORITHMS 235

taking, as usualy; = ro/||ro||2. The vectorw, is arbitrary, provided v, w;) # 0,
but it is often chosen to be equal#g. If there is a dual system” 2* = b* to solve
with AT, thenw; is obtained by scaling the initial residual — A z.

Proceeding in the same manner as for the derivation of thguGate Gradient
algorithm from the symmetric Lanczos algorithm, we write ttDU decomposition
of T,,, as

T, = LinUpn (7.10)

and define
Py, =V, UL (7.11)

The solution is then expressed as
Ty = x0+ VT (Ber)
= x9+ ViU, L Y(Bey)
= 20+ PnL,,' (Ber).

Notice that the solutiom,,, is updatable fromx,,, 1 in a similar way to the Conjugate
Gradient algorithm. Like the Conjugate Gradient algorithine vectors:; andr’ are

in the same direction as;; andw;, respectively. Hence, they form a biortho-
gonal sequence. Define similarly the matrix

L (7.12)
Clearly, the column-vectors’ of P, and thosey; of P, are A-conjugate, since,
(P)T AP, = LYWL AV, U = LT, U = 1.

Utilizing this information, a Conjugate Gradient—like afghm can be easily derived
from the Lanczos procedure.

ALGORITHM 7.3 Biconjugate Gradient (BCG)

1. Computeo := b — Azy. Chooser such thalr, ;) # 0.
2. Setpg :=ro, pj =17
3. Forj = 0,1,..., until convergence Do:
4. Q= (Tj,rj)/(Apj,pj-)
5. Tjt1 = Ty + Q5P
6. Tjr1 :=T5 — OéjApj
7. ri == ajAij»
8. Bj = (rjt1,7541)/(rj,r5)
9. Pj+1 = Tj+1 + 0jp;
10. Piy1 = Tjp1 + 0iD)
11. EndDo

If a dual system withA” is being solved, then in line t; should be defined as
re = b* — ATz} and the update;ﬁrl =1} +a;p; o the dual approximate solution
must beinserted after line 5. The vectors produced by tigsrihm satisfy a few
biorthogonality properties stated in the following projios.

236 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

Proposition 7.2 The vectors produced by the Biconjugate Gradient algorisiairsfy
the following orthogonality properties:

(rj,ri) = 0, fori#j, (7.13)
(Apj,p;) = 0, fori#j. (7.14)

Proof. The proof is either by induction or by simply exploiting tredations between
the vectors;, r;, Dj» pj, and the vector columns of the matricgs, W,,, Py, P,.
This is left as an exercise. |

Example 7.1. Table[Z1 shows the results of applying the BCG algorithnin it
preconditioning to three of the test problems describedectiBn[Z.Y. See Exam-
ple[61 for the meaning of the column headers in the table alRéat Iters really
represents the number of matrix-by-vector multiplicasioather the number of Bi-
conjugate Gradient steps.

Matrix | Iters | Kflops | Residual | Error

F2DA | 163 | 2974 0.17E-03| 0.86E-04
F3D 123 | 10768 | 0.34E-04| 0.17E-03
ORS 301 | 6622 | 0.50E-01| 0.37E-02

Table 7.1: A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps &,B@dich require
81 x 2 matrix-by-vector products in the iteration, and an extra tmcompute the
initial residual. a

7.3.2 Quasi-Minimal Residual Algorithm
The result of the Lanczos algorithm is a relation of the form
AV = Viii T, (7.15)

in which T,,, is the(m + 1) x m tridiagonal matrix

_— T,
T = <5m+le%> .

Now (ZI3) can be exploited in the same way as was done toae@GVIRES. Ifv,
is defined as a multiple ofy, i.e., if vy = (rg, then the residual vector associated
with an approximate solution of the form

=20+ Viny

7.3. THE BCG AND QMR ALGORITHMS 237

is given by

b—Ax = b—A(zo+ Viny)
= To— Avmy
= 5”1 - Vm-i-ley
= Vint1 (ﬂel — Tmy) . (7.16)

The norm of the residual vector is therefore

b — Az = [|[Ving1 (Ber — Ty) |2 (7.17)

If the column-vectors o¥,,, 1 were orthonormal, then we would hajjge — Az|| =
|Be1r — Trnyll2, as in GMRES. Therefore, a least-squares solution couldtzned
from the Krylov subspace by minimizing3e; — T,,y||2 overy. In the Lanczos
algorithm, thev;’s are not orthonormal. However, it is still a reasonableaide
minimize the function

J(y) = |Ber — Tryll2

overy and compute the corresponding approximate solutigh V,,,y. The resulting
solution is called th&uasi-Minimal Residual approximatiofhe norm||.J(y)||2 is
called the quasi-residual norm for the approximatigr+ V. y.

Thus, the Quasi-Minimal Residual (QMR) approximation frimam-th Krylov
subspace is obtained as, = zo + V;ym, Which minimizes the quasi residual norm
J(y) = ||Ber — Timyll2, i-€., just as in GMRES, except that the Arnoldi process is
replaced by the Lanczos process. Because of the structtire ofatrix7),,, it is easy
to adapt the DQGMRES algorithm (AlgoritHm 8l 13), and obtairefficient version
of the QMR method. The algorithm is presented next.

ALGORITHM 7.4 QMR

Computey = b — Axg andy; = [|roll2, w1 := v1 :=ro/m
Form = 1,2, ..., until convergence Do:
Compute,,, 6,11 andu,, 1, w11 as in AlgorithnZ1L
Update the QR factorization @F,, i.e.,
ApplyQ;,i =m — 2,m — 1 to them-th column ofT,,
Compute the rotation coefficients,, s,, by (6.3T)
Apply rotation2,,, to last column off;,, and tog,,, i.e., compute:
Ym+1 ‘= —SmYm,
Ym = CmYm, and,

Q= CnQm + SmOmat (: \/572n+1 + oz?n)
Pm = (Um - Z;l;nl_g timpi> /tmm
Tm = Tm—1 T YmPm
If |vm+1| is small enough then Stop
EndDo

© XN A WNR

[
o

~
~

[
AWWDN

238 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

Itis clear that the matri{’},, is not actually saved. Only the two most recent rotations
need to be saved. For the remainder of this subsection,gsigaed (without loss of
generality) that the;’s are normalized to have unit two norms. Then, the situason
similar with that of DQGMRES, in that the “quasi-residualrm defined by

P = l18er = Toymllz = min 18er = Tyl

is usually a fairly good estimate of the actual residual noffollowing the same
arguments as in Secti@n 6.b.3 in Chapter 6, it is easily desn t

P2 = |s152... sml [rolla = [smlo%_, (7.18)

If the same notation as in Sectidns 615.3 Bnd 6.5.7 is emg)alien the actual resid-
valr,, = b — Az, obtained at then-th step of BCG satisfies

— T _ Tm o hm—i—l,m
Tm = _hm+1,memymvm+1 = _hm+1,mmvm+1 = m’ym—i-lvm—i-l .
mm Sm/lmm

For convenience, we have kept the notatighused in Chapter 6, for the entries of
the matrixT},,. The next relation is then obtained by noticing, as in Sedfdb.]
th'c’ttfL,nJrl,,n/fLsgf,)1 = tan0,,

Ym+1Umt1 = CmTm, (7.19)
from which it follows that
Py = leml pm (7.20)

wherep,,, = || |2 is the actual residual norm of the-th BCG iterate.
The following proposition, which is similar to Propositi@d, establishes a re-
sult on the actual residual norm of the solution.

Proposition 7.3 The residual norm of the approximate solutiop satisfies the re-
lation
16 — Az || < [[Vintall2 [s152- - - sm]| [I7ol|2. (7.21)

Proof. According to [ZIb) the residual norm is given by

b— Az, = Vm—l—l[ﬂel - Tmym] (7.22)
and using the same notation as in Proposifioh 6.9, refetoif{§.43)

1Ber — Huyll3 = ms1l* + lgm — Rmyl3

in which g,,, — R,y = 0 by the minimization procedure. In addition, By (8.47) we
have
Yma1 = (=1)"s1...8mm1, =0

The result follows immediately using{7]22). O

7.3. THE BCG AND QMR ALGORITHMS 239

A simple upper bound fof{V;,,+1]|2 can be derived from the Cauchy Schwarz in-

equality:
WVinsilla < vm +1.

A comparison theorem which is similar to that of Theofemlcafh also be stated
for QMR.

Theorem 7.4 Assume that the Lanczos algorithm does not break down onforebe
stepm and letV,,.; be the Lanczos basis obtained at step Let r% and r&

be the residual norms obtained after steps of the QMR and GMRES algorithms,
respectively. Then,

172112 < K2 (Vas) IS -

The proof of this theorem is essentially identical with th&fTheoren&111. Note
thatV,,, 11 is now known to be of full rank, so we need not make this assiomats
in Theoren 6.111.

Itis not easy to analyze the QMR algorithm in terms of the exasidual norms,
but the quasi residual norms yield interesting properfi@s.example, an expression
similar to [E6b) relates the actual BCG residual ngrpwith the “quasi-residual”
norm p? obtained by QMR:

Lo ! + ! (7.23)

(p?>2 (P?—l)z (s)”

The proof of this result is identical with that §f{6]165): stan immediate consequence
of (ZI8) and[[Z.20). An argument similar to the one used tvel6.61) leads to a
similar conclusion:

Q= 1 (7.24)
Z?io (I/Pz’)z
The above equality underlines the smoothing property ofdMR algorithm since
it shows that the quasi residual norm is akin to an (harmaeeyage of the BCG
residual norms.
It is clear from [Z.2D) tha,b;% < pm. An argument similar to that used to derive

Proposition[6.15 can be be made. plf,, is the smallest residual norms achieved
among those of the first steps of BCG, then,

This proves the following result.

Proposition 7.5 Assume thatn steps of QMR and BCG are taken and fgt, be
the smallest residual norm achieved by BCG in the fitstteps. Then, the following
inequalities hold:

P2 < pm. S VM1 pY (7.25)

240 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

The above results deal with quasi residuals instead of thelaesiduals. However,
it is possible to proceed as for DQGMRES, see Equalioni&B0J6.5B), to express
the actual residual as

b— Am?Qn = Tm+12m+1 (7.26)

where, as beforey,, 1 is the last component of the right-hand sidle, after the
m Givens rotations have been applied to it. Therefgye satisfies the recurrence
@&41) starting withy; = 3. The vectorz,,, 1 can be updated by the same relation,
namely

Zm+l = —SmZm + CmUm—1- (7.27)

The sequence,, 1 can be updated and the norm of.; computed to yield the
exact residual norm, but this entails nonnegligible addai operationsi in total)
and the compromise based on updating an upper bound see@BMRES can be
used here as well.

It is interesting to explord(Z.27) further. Denotekﬁ/the actual residual vector
b — Az% obtained from QMR. Then froni{ZR6[17]27), abid(®.47)pltdws that

rQ = S22 + CmYimt1Vmt1 (7.28)

When combined with[{Z19), the above equality leads to thHeviing relation be-
tween the actual residual§ produced at then-th step of QMR and the residuals
., Obtained from BCG,

rQ =200+ A, (7.29)
from which follows the same relation on the iterates:
29 = sfnwg_l + . (7.30)

Whens,, is close to zero, which corresponds to fast convergence & Biden QMR
will be close to the BCG iterate. On the other hand whgnis close to one, then
QMR will tend to make little progress — just as was shown byvard6ed] for the
FOM/GMRES pair. A more pictural way of stating this is thatke of the BCG
residual norms will correspond to plateaus of the QMR quesiduals. The above
relations can be rewritten as follows:

28 =22 |+ (wm — 1) r =1+ (rm 1) (7.31)
Schemes of the above general form, where nfvean be considered a parameter, are
known as residual smoothing methods, and were also cossidieiChapter 6. The
minimal residual smoothing seen in Chapter 6, is now repldgeaquasi-minimal
residual smoothing Indeed, what the above relation shows is tihd possible to
implement QMR as a quasi-minimal residual smoothing athoti The only miss-
ing ingredient for completing the description of the altfum is an expression of
the smoothing parametef, in terms of quantities that do not refer to the Givens
rotatioms. This expression can be derived fr@m_{7.20) winiates the cosine;
with the ratio of the quasi-residual norm and the actualdredi norm of BCG and
from (ZZ3) which allows to comput;e;2 recursively. The quasi-minimal residual
smoothing algorithm, developed by Zhou and Walker]324j, maw be sketched.

7.4. TRANSPOSE-FREE VARIANTS 241

ALGORITHM 7.5 Quasi Minimal Residual Smoothing

1 Setrg = b — Axy, xgg = xq; Setpy = pgg = ||roll2

2 Forj =1,2,..., Do:

3. Computex;, and the associated residuta/ and residual norm;
4

5

6

Q Q. \?
Computep; from {Z23) and sef; = <pj /pj)

Compute x]Q = x?_l + () — x?—l)

EndDo

7.4 Transpose-Free Variants

Each step of the Biconjugate Gradient algorithm and QMR iregua matrix-by-
vector product with bottd and A”. However, observe that the Vectqss or w;
generated wittd” do not contribute directly to the solution. Instead, they ased
only to obtain the scalars needed in the algorithm, e.g.stadarso; and g; for
BCG.

The question arises as to whether or not it is possible todsytze use of the
transpose ofd and still generate iterates that are related to those of @@ Blgo-
rithm. One of the motivations for this question is that, im®oapplications A is
available only through some approximations and not explicin such situations,
the transpose ofl is usually not available. A simple example is when a CG-like
algorithm is used in the context of Newton’s iteration folvetg F'(u) = 0.

The linear system that arises at each Newton step can bedseitlgout hav-
ing to compute the Jacobiaf(uy) at the current iterate; explicitly, by using the

difference formula
F(ug + ev) — F(ug)

€
This allows the action of this Jacobian to be computed on hitrary vectorv. Un-
fortunately, there is no similar formula for performing ogigons with the transpose

J(ug)v =

7.4.1 Conjugate Gradient Squared

The Conjugate Gradient Squared algorithm was developedobyeyeld in 1984
[272], mainly to avoid using the transpose 4fin the BCG and to gain faster con-
vergence for roughly the same computational cost. The na&ia is based on the
following simple observation. In the BCG algorithm, theidesl vector at step
can be expressed as

ry = ¢j(A)T‘0 (732)

where¢; is a certain polynomial of degregsatisfying the constrainp;(0) = 1.
Similarly, the conjugate-direction polynomiaj(¢) is given by

pj = Wj(A)To, (733)

242 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

in which 7; is a polynomial of degreg¢. From the algorithm, observe that the direc-
tionSr; andp? are defined through the same recurrences; asdp; in which A is
replaced byél’} and, as a result,

r = oA, pf = m(AT)rg.
Also, note that the scalar; in BCG is given by

(9 (A)ro, ¢;(AT)rg) (¢3(A)ro, r5)

T (Amp(A)rg, mi(AT)rg) (Aﬂ'jz(A)rO,rS)

which indicates that if it is possible to get a recursion fog Vector&bi(A)ro and
wf(A)ro, then computingy; and, similarly,3; causes no problem. Hence, the idea of
seeking an algorithm which would give a sequence of itenatesse residual norms
7} satisfy
1l = ¢ (A)ro. (7.34)
The derivation of the method relies on simple algebra onlg. eS$tablish the

desired recurrences for the squared polynomials, stantthatrecurrences that define
¢; and~;, which are,

Pi+1(t) = ¢;(t) — aytm;(t), (7.35)
Tit1(t) = ¢jpa(t) + Bim;(t). (7.36)
If the above relations are squared we get
Fat) = @3 (t) — 2a,tm;(t);(t) + ajti (1),
) = G5 (t) + 280501 () (1) + Bimi (1),

If it were not for the cross terms;(t)¢;(t) ande;,1(t)m;(t) on the right-hand sides,
these equations would form an updatable recurrence sySteensolution is to intro-
duce one of these two cross terms, namely,: (t)7;(t), as a third member of the
recurrence. For the other term, i.e;(t);(t), we can exploit the relation

¢ ()m;(t) = ¢ (1) (65 (t) + Bj—1mj—1(t)) = ¢5(t) + Bj—1¢;(t)mj—1(t).

By putting these relations together the following recucesncan be derived, in which
the variable(t) is omitted where there is no ambiguity:

o= 05 — oyt (207 4+ 285-10m-1 — ot) (7.37)
G = ¢F+ Bi—1dmi1 — oyt (7.38)
T = Gi1 +26i05m + B (7.39)

These recurrences are at the basis of the algorithm. If wealefi
ri = ¢5(A)ro, (7.40)
pj = 7T]2-(A)’I"0, (7.41)
g = ¢jr1(A)mi(A)ro, (7.42)

~ =

7.4. TRANSPOSE-FREE VARIANTS 243

then the above recurrences for the polynomials translé&be in

Tit1 = T — OéjA (27“j + 2ﬂj_1q]'_1 — ajA pj) s (7.43)
q = 715+ B8j-1qj-1 — ajApj, (7.44)
pir1 = ris1+ 28505 + Bip). (7.45)

It is convenient to define the auxiliary vector
dj = 27’]' + 2ﬂj_1qj_1 — OéjApj.

With this we obtain the following sequence of operationsaimpute the approximate
solution, starting withrg := b — Axq, pg := 70, qo := 0, G := 0.

® a; = (ij’rS)/(ApjvTS)

dj = 2T‘j + 2ﬁj_1q]'_1 — OéjApj

qj =1+ Bj-1gj-1 — o Ap;

® i1 =x;+a;dj

o rjp1 =1j—a;Ad;

o 3= (rj+1,75)/(rj,75)

e pjt1 =rjr1+ 5(2q; + Bpj).

A slight simplification to the algorithm can be made by usimg &uxiliary vector
uj = r; + 3;_1q;—1. This definition leads to the relations

dj = uj+gj,
4 = uj—a;Ap;,
pir1 = ujr1+ Bilg; + Bips),

and as a result the vectds is no longer needed. The resulting algorithm is given
below.

ALGORITHM 7.6 Conjugate Gradient Squared

Computery := b — Axg, r; arbitrary.
Setpy := ug :=ryp.
Forj =0,1,2..., until convergence Do:

aj = (rj,75)/(Ap;,7()

q; = uj — a;jApj

zip1 =+ oj(uj + q5)

i1 =715 — oAy + g5)

Bj = (rj+1,75)/(r5,75)

uj41 = 141 + Big;

pj+1 = uj+1 + B(q; + B;p5)
EndDo

ROOXXNDURAWNR

244 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

Observe that there are no matrix-by-vector products wihridinspose ofl. Instead,
two matrix-by-vector products with the matrik are now performed at each step. In
general, one should expect the resulting algorithm to ageviwice as fast as BCG.
Therefore, what has essentially been accomplished is laaeethe matrix-by-vector
products withA” by more useful work.

The Conjugate Gradient Squared algorithm works quite welniany cases.
However, one difficulty is that, since the polynomials araasgd, rounding errors
tend to be more damaging than in the standard BCG algoritimnpaiticular, very
high variations of the residual vectors often cause thelvasinorms computed from
the result of line 7 of the above algorithm to become inadeura

7.4.2 BICGSTAB

The CGS algorithm is based on squaring the residual polyalomind, in cases of
irregular convergence, this may lead to substantial bugldsf rounding errors, or
possibly even overflow. The Biconjugate Gradient StakiliZBICGSTAB) algo-

rithm is a variation of CGS which was developed to remedydHfgulty. Instead of

seeking a method which delivers a residual vector of the fdratefined by [Z.34),
BICGSTAB produces iterates whose residual vectors areeofioim

i =1 (A)o;(A)ro, (7.46)

in which, as beforeg;(t) is the residual polynomial associated with the BCG algo-
rithm andz);(t) is a new polynomial which is defined recursively at each stigp w
the goal of “stabilizing” or “smoothing” the convergencehbgior of the original
algorithm. Specifically;);(t) is defined by the simple recurrence,

Vit (t) = (1 — wjt);(t) (7.47)
in which the scalaw; is to be determined. The derivation of the appropriate recur
rence relations is similar to that of CGS. Ignoring the sceteefficients at first, we
start with a relation for the residual polynomia) 1¢;1. We immediately obtain
VYir19j1 = (1 —wit);(t)gj (7.48)
= (1—wjt) (¢j0; — ajtyym)) (7.49)
which is updatable provided a recurrence relation is fowndfe products); ;. For
this, write
Yimp = Y5+ Bi-1mj-1) (7.50)
- ¢j¢j + ﬂj_l(l — wj_lt)¢j_1ﬂj_1. (751)

Define,

ri = ¥i(A)g;(A)ro,
pj = ¥i(A)m;(A)ro.

7.4. TRANSPOSE-FREE VARIANTS 245

According to the above formulas, these vectors can be ugdiadm a double recur-
rence provided the scalasg and3; were computable. This recurrence is

Ti+1 = (I — ij)(rj — ajApj) (752)
piv1 = i1+ B —wjA)p;.
Consider now the computation of the scalars needed in therssce. Accord-
ing to the original BCG algorithm3; = p;1/p; with
pj = (6§ (A)ro, ;(AT)rg) = (¢5(A)*ro, 1)

Unfortunately,p; is not computable from these formulas because none of thergec
¢ (A)ro, ¢(AT)ry or ¢;(A)%rg is available. Howevep; can be related to the scalar

pi = (85 (A)ro, 1 (AT)rp)

which is computable via

p = (05 (A)ro, 05 (AT)rg) = (5 (A5 (A)ro,75) = (1. 75).

To relate the two scalars; and j;, expandy; (AT)rg explicitly in the power basis,
to obtain . ' ' '
5 = (05(Ayro,) (ATYirg + (AT M 4).

Since¢;(A)rq is orthogonal to all vector$AT)krg, with k < j, only the leading
power is relevant in the expansion on the right side of thev@toner product. In
particular, iffyy) is the leading coefficient for the polynomigj(¢), then

~ n&j) T U%j)
p; = | ¢i(A)ro, @‘ﬁj(l‘l)ro | = 5y Pi-
M M

When examining the recurrence relationsdor; andy; 1, leading coefficients for
these polynomials are found to satisfy the relations

n§j+1) _ —wjngj), ’Y£j+1) _ _aﬂ%j)’

and as a result _
Pi+1l _ Wi P+l

Pj Q5 Pj
which yields the following relation fog;:

gy =Pt o % (7.53)
Pj Wi
Similarly, a simple recurrence formula fat; can be derived. By definition,

o, — (85(A)ro, 6;(AT)r5)
7 (Amj(A)ro, mi(AT)rg)

246 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

and as in the previous case, the polynomials in the righssidi¢he inner products
in both the numerator and denominator can be replaced hyl¢agiing terms. How-
ever, in this case the leading coefficients fof AT)ry; andr;(AT)ry are identical,

and therefore,

I (¢5(A)ro, 95 (AT)rg)

J (Aﬂ'j (A)’r'o, qu (AT)T'S)
(¢ (A)ro, 1 (AT)ry)
(Aﬂj(A)To,ZZ)j(AT)T‘S)
(¥ (A)p;(A)ro, 5)
(A (A)mj(A)ro,15)”

Sincep; = ¥;(A)m;(A)ro, this yields,

Pj
a; (p;,77)" (7.54)
Next, the parametes; must be defined. This can be thought of as an additional
free parameter. One of the simplest choices, and perhapsdise natural, is to
selectw; to achieve a steepest descent step in the residual diresdttamed before
multiplying the residual vector byl — w;A) in (Z53). In other wordsy; is chosen
to minimize the 2-norm of the vectd? — w;A)vy;(A)¢;11(A)ro. Equation [ZER)
can be rewritten as
ripn = (I —wjd)s;

in which

Sj = T‘j — OéjApj.

Then the optimal value fap; is given by

(Asj, s5)

7(%13]-, As))’ (7.55)

Wi =

Finally, a formula is needed to update the approximate igolut;; from x;.
Equation [Z5R) can be rewritten as

T‘j+1 = Sj — ijsj = rj — OéjApj — ijSj
which yields
Tj1 = Tj + O5pj + w;js;.

After putting these relations together, we obtain the fineifof the BICGSTAB
algorithm, due to van der Vorst[2R0].

ALGORITHM 7.7 BICGSTAB

1. Computery := b — Axy, r; arbitrary;

2. Po ‘= T10-
3. Forj = 0,1,..., until convergence Do:

=

7.4. TRANSPOSE-FREE VARIANTS 247

Qj = (TjaTS)/(ApjaTS)

Sj = rj — OéjApj

wj = (Asj, 55)/(Asj, As;)

Tj41 = Xj + Q;pj + W;S;

Tjtl = 8j — w]As]

By o= R <

pjs1 = i1+ Bj(p; — wjApj)
EndDo

RO © NGO

Example 7.2. Table[Z2 shows the results of applying the BICGSTAB algonit
with no preconditioning to three of the test problems désctiin Sectiofi3]17. See

Matrix | Iters | Kflops | Residual Error

F2DA 96| 2048| 0.14E-02| 0.77E-04
F3D 64 | 6407| 0.49E-03| 0.17E-03
ORS 208 | 5222 | 0.22E+00| 0.68E-04

Table 7.2: A test run of BICGSTAB with no preconditioning.

Exampld&ll for the meaning of the column headers in the .tétslén Exampld—ZI1,
‘lters’ is the number of matrix-by-vector multiplicationsquired to converge. As can
be seenitis less than with BCG. Thus, using the number ofxdayrvector products
as a criterion, BCG is more expensive than BICGSTAB in ak¢hexamples. For
problem 3, the number matvecs exceeds the 300 limit with BE€tBe number of
actual iterations is used as a criterion, then the two matbothe close for the second
problem [61 steps for BCG versus 64 for BICGSTAB] while BCGlightly faster
for Problem 1. Observe also that the total number of oparatiavors BICGSTAB.
This illustrates the main weakness of BCG as well as QMR, hartiee matrix-by-
vector products with the transpose are essentially wasik$sia dual system with
AT must be solved simultaneously. |

7.4.3 Transpose-Free QMR (TFQMR)

The Transpose-Free QMR algorithm of Freund[134] is derfvech the CGS algo-
rithm. Observe that; can be updated in two half-steps in line 6 of Algorithml 7.6,
namely,z;, 1 = x; + ajuj andwjy = x;, 1 + ajq;. This is only natural since
the actual update from one iterate to the next involves twtrirahy-vector multi-
plications, i.e., the degree of the residual polynomiahigeased by two. In order
to avoid indices that are multiples ét it is convenient when describing TFQMR to
double all subscripts in the CGS algorithm. With this chaafjeotation, the main
steps of the Algorithri 716 (CGS) become

248 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

agj = (r25,7)/(Ap2j, o) (7.56)
q2j = ugj — a2 Apa; (7.57)
Tojto = Taj + aj(ug; + q2;5) (7.58)
roj2 = T2j — a2jA(u; + q25) (7.59)
Baj = (raj42,79)/(r2;,70) (7.60)
Ugj42 = 12542 + [2;q2; (7.61)
P2j+2 = ujiy2 + B2;(q2j + Bp2j). (7.62)

The initialization is identical with that of Algorithfa_4.6The update of the ap-
proximate solution in[{Z.38) can now be split into the follog/two half-steps:

Toj+1 = T + Qojugj (7.63)

Tojr2 = Toj+1 + a2iq2;. (7.64)

This can be simplified by defining the vectars for oddm asus;+1 = go;. Simi-
larly, the sequence af,, is defined for odd values @f asa;1 = as;. In summary,

Gm-1 (7.65)

Qm—1

for m odd define: { Um

Qo

With these definitions, the relatiofiS {7 63=1.64) are teded into the single equation
T = Tm—1+ Qm—1Um—1,

which is valid whethermn is even or odd. The intermediate iteratges, with m odd,
which are now defined do not exist in the original CGS algamiti-or even values

of m the sequence,, represents the original sequence or iterates from the CGS
algorithm. It is convenient to introduce thé x m matrix,

Un = [uo, .. ., Um—1]

and them-dimensional vector
T
Zm = (ap, a1, .., m_1)" .

The general iterate,,, satisfies the relation

T, = xo+ Unzm (7.66)
= Tm—1+ Qm—1Um—1- (767)

From the above equation, it is clear that the residual veatgrare related to the
u-vectors by the relations
Tm = 10— AUnzm (7.68)
= Tm—-1— am_lAum_l. (769)

7.4. TRANSPOSE-FREE VARIANTS 249

Next, a relation similar to the relatiob($.7) seen for FOMI &MRES will be

extracted using the matriAU,,,. As a result of[[Z.89), the following relation holds:
1
Aui = — (T‘Z' — ’r’i+1) .

QG

Translated in matrix form, this relation becomes
AU, = Ry 1B (7.70)

where
Rk = [To,”r’l,... ,Tk_l] (771)

and whereB3,,, is the(m + 1) x m matrix,

1 0 0
-1 1 :
By, = o -t b x diag {i,i,... L } (7.72)
. . . . apg a4 Qm—1
: -1 1
0 —1

The columns ofR,,11 can be rescaled, for example, to make each of them have a
2-norm equal to one, by multiplying,,, 1 to the right by a diagonal matrix. Let this
diagonal matrix be the inverse of the matrix

Apyq1 = diag [00,601,...,0m]-

Then,
AU = Rins18, 1 A1 B (7.73)

With this, equation[{Z.88) becomes

rm =70 — AUnzm = Rmt1 [el — Bmzm} (7.74)
= Rm-l—lA;lh_l [5061 - Am-l-lezm] . (775)

By analogy with the GMRES algorithm, define
ﬁm = Am-i-le-

Similarly, defineH,,, to be the matrix obtained frof,,, by deleting its last row. It is
easy to verify that the CGS iterates, (now defined for all integers: = 0,1,2,...)
satisfy the same definition as FOM, i.e.,

T = T0 + Un H, (0€1). (7.76)

It is also possible to extract a GMRES-like solution from taktions [Z7B) and
(Z13), similar to DQGMRES. In order to minimize the resikduarm over the Krylov
subspace, the 2-norm of the right-hand side[of {|7.75) woaldktio be minimized,

250 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

but this is not practical since the cqumns]ﬁ,anA;erl are not orthonormal as in
GMRES. However, the 2-norm @fe; — A, 1B,z can be minimized ovet, as
was done for the QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. Howevers indw necessary to
find a formula for expressing the iterates in a progressive Waere are two ways
to proceed. The first follows DQGMRES closely, defining thestesquares solution
progressively and exploiting the structure of the mafix to obtain a formula for
x.m from z,,,_1. Because of the special structurefof,, this is equivalent to using the
DQGMRES algorithm withk = 1. The second way to proceed exploits Lenimals.16
seen in the previous chapter. This lemma, which was showth&oFOM/GMRES
pair, is also valid for the CGS/TFQMR pair. There is no funéatal difference
between the two situations. Thus, the TFQMR iterates yatisf relation

T, — Tne1 = c?n (Zm — Tm—1) (7.77)

where the tildes are now used to denote the CGS iteratenetti

(@m = m-1) = 57— (Tm — Tm—1) (7.78)

Nim = c%am_l,
the above expression faf,, becomes
T = Tim—1 + NDmdm.- (7.79)
Now observe from[{Z.87) that the CGS iterafgs satisfy the relation
Fm = Zme1 + Cm—1Um_1. (7.80)

From the above equations, a recurrence relation figmcan be extracted. The
definition ofd,,, and the above relations yield
I

dym = (xm — Tm—1 + Tm—1 — xm—l)
Qm—1

= Up—1+ (jm—l — Tm—2 — (mm—l - xm—2))

Qm—1
-y .
= Ump-1+ (l'm_l — l‘m_g) .
m—1

Therefore,

(1- C%n—l)nm—l
Crnm1 Om—1
Theterm(1—c2, ,)/c?,_; isthe squared tangent of the angle used ir{the-1) — st

rotation. This tangent will be denoted By, 1, and we have

= Upp—1 + dp—1.

_ Sm 2 1 _ 93n77m
Hm—a7 Cm—m7 dm+1 = Um + a, -

7.4. TRANSPOSE-FREE VARIANTS 251

The angle used in thex-th rotation, or equivalently,,,, can be obtained by examin-
ing the matrixH,,,:

A 0
—& & :
_ 0 -0 & 1
H, = 2™ x diag {—} . (7.81)
. : Qi) j=0,...m—1
by Om
0 ... -

The diagonal matrix in the right-hand side scales the cokiaiithe matrix. Itis easy
to see that it has no effect on the determination of the iwtatilgnoring this scaling,
the above matrix becomes, afterotations,

* X

* *

Tj 0
=041 Oj41

—6m Om
—OUm+1

The next rotation is then determined by,

—9j+1 7 —0j41

Gigq — ot i g
j+1) J+1) j+1
2 2 2 2 T;
VT 95 VT 95 J

In addition, after this rotation is applied to the above matthe diagonal element
d;+1 which is in position(j + 1, j + 1) is transformed into

Ti0j+1

T+l = 0kl X Gkl = T = TS S —Ti0j41¢41-
VT T 05

The above relations enable us to update the directipmand the required quantities
cm andn,,. Since only the squares of these scalars are invoked in theteipf the
directiond,, 1, a recurrence for their absolute values is sufficient. Thisgthe
following recurrences which will be used in the algorithm:

(7.82)

dpy1 = Up + (%/Oém)ﬁmdm
Omsi1 = Oms1/Tm

emp1 = (1+ 931+1)_%

Tmt+1 = TmOm+1Cmt1

2
Tm+1 = Cpy1Qm-

252 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

Before writing down the algorithm, a few relations must beleied. Since the
vectorsr,, are no longer the actual residuals in the algorithm, we oh#mg notation
to w,,. These residual vectors can be updated by the formula

Wy, = Win—1 — Op—1AlUm—_1.
The vectorsAu,; can be used to update the vectors
V2 = Apa;
which are needed in the CGS algorithm. Multiplyihg{d.62)Abyesults in

Apoj = Augj + Baj2(Aqaj—2 + BjApaj—2)

which, upon substituting the relation

q2; = U2j+1

translates into
Vo = Augj + [aj—2(Augj_1 + Baj_2v2j—2).

Also, observe that the recurrencedIn{¥.57) &nd{7.6kpfcandus; 2, respectively,
become

U2j+1 = U5 — (25V2;5

Ugjp2 = Wojy2 + Bojuzjyl.

The first equation should be used to compute ; whenm is even, and the second
whenm is odd. In the following algorithm, the normalizatiap, = ||w,]|2, which
normalize each column @k, to have 2-norm unity, is used.

ALGORITHM 7.8 Transpose-Free QMR (TFOMR)

Computauo =ug =19 =0b— Axg, v9g = Aug, dg = 0;
70 = [[roll2, 0o = 10 = 0.
Choose; such thapg = (rg,ro) # 0.
Form =0,1,2,..., until convergence Do:
If m is even then
Ut = m = P/ (U, 75)
Um+1 = Um — AmUnm
Endif
Wint1 = Wy — QA
dm-‘rl = Um + (9%/04m)77mdm

9m+1 = me-l-l”Z/Tm; Cm+1 = (1 + 972n+1)_
Tm+1 = TmOm+1Cmt1 ; Dmt1 = Cn+1%m
Tm+1 = T + nm—l—ldm—i-l

If m is odd then

SOLOXNO>OAMWNR

R e
Wik
=

[
A

7.4. TRANSPOSE-FREE VARIANTS 253

15. Pm+1 = (wm+17 TS); 5m—1 = pm-l—l/pm—l
16. U1 = Wint1 + Bm—1Um

17. Um+1 = Aum—l—l + Bm—l(Aum + Bm—lvm—l)
18. Endif

19. EndDo

Notice that the quantities in the odd loop are only defined for even values of
m. The residual norm of the approximate solutioy is not available from the
above algorithm as it is described. However, good estimezdasbe obtained using
similar strategies to those used for DQGMRES. Referring®MRES, an interesting
observation is that the recurrenEe(6.47) is identical téhrecurrence of the scalars
7;'s. In addition, these two sequences start with the samesalyifor ther's and 3
for the~’s. Therefore,

Ym+1 = Tm-

Recall thaty,,+; is the residual for thém + 1) x m least-squares problem
mzin |6oer — Honzl|2.
Hence, a relation similar to that for DQGMRES holds, namely,
16— Az || < Vim + 17, (7.83)

This provides a readily computable estimate of the residaah. Another point that
should be made is that it is possible to use the scalgrs,, in the recurrence instead
of the paire,,, 0,,,, as was done above. In this case, the proper recurrences are

2

dm—i—l = UuUm+ (Sm/am)am—ldm

— 2
Smil = Omy1/\/TE + 0y

— 2
Cm+1 = Tm/ Tg@ + 6m+1
Tm+1 = TmSm+1

2

Tm+1 = Cpy1Qm-

Table[ZB shows the results when TFQMR algorithm without@nelitioning is ap-

plied to three of the test problems described in Se¢fioh 3.7.
Matrix | Iters | Kflops | Residual| Error

F2DA | 112| 2736 | 0.46E-04| 0.68E-04
F3D 78| 8772| 0.52E-04| 0.61E-03
ORS 252 | 7107 | 0.38E-01| 0.19E-03

Example 7.3.

Table 7.3: A test run of TFQMR with no preconditioning.

254 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

See Exampl€@l1 for the meaning of the column headers in the. tés with
previous examples, 'lters’ represents the number of mdtyivector multiplications
rather the number of Biconjugate Gradient steps. This nuiststightly higher than
that of BICGSTAB.

Using the number of matrix-by-vector products as a criteribFQMR is more
expensive that BICGSTAB in all three cases, and it is alse éepensive than BCG
for all cases. If the number of actual iterations is used asterion, then BCG is
just slightly better for Problems 1 and 2. A comparison ispagsible for Problem
3, since the number of matrix-by-vector products requidcbnvergence exceeds
the limit of 300. In general, the number of steps requiredctmivergence is similar
for BICGSTAB and TFQMR. A comparison with the methods seethaprevious
chapter indicates that in many cases, GMRES will be fasttreifproblem is well
conditioned, resulting in a moderate number of steps redun converge. If many
steps (say, in the hundreds) are required, then BICGSTAR &Q@MR may perform
better. If memory is not an issue, GMRES or DQGMRES, with gdanumber
of directions, is often the most reliable choice. The isquentis one of trading
robustness for memory usage. In general, a sound strateégyfasus on finding a
good preconditioner rather than the best accelerator. O

PROBLEMS

P-7.1 Consider the following modification of the Lanczos algamithAlgorithm[Z1. We
replace line 6 by

J

~ T E :

Wi41 = A wj; — hijwi
i=1

where the scalark;; are arbitrary. Lines 5 and 7 through 10 remain the same beitlim
which «; is computed must be changed.

a. Show how to modify line 4 to ensure that the vedipr; is orthogonal against the
vectorsw;, fori =1,..., 7.
b. Prove that the vectois’s and the matrixl’,, do not depend on the choice of thg’s.

c. Consider the simplest possible choice, namgly, = 0 for all 4, j. What are the
advantages and potential difficulties with this choice?

P-7.4 Assume that the Lanczos algorithm does not break down bsfepen, i.e., that it is
possible to generatg, . . . v,,,+1. Show thatV,,, ., andW,,,., are both of full rank.

P-7.5 Develop a modified version of the non-Hermitian Lanczos @ilgm that produces
a sequence of vectors, w; such that each; is orthogonal to everyy; with j # ¢ and
|vill2 = |lw;ll2 = 1 for all i. What does the projected problem become?

P-7.6 Develop a version of the non-Hermitian Lanczos algorithat iroduces a sequence
of vectorsu;, w; which satisfy

(’Ui, wj) = :|:6ij,
but such that the matrif,,, is Hermitian tridiagonal. What does the projected problem
become in this situation?

7.4. TRANSPOSE-FREE VARIANTS 255

P-7.7 Using the notation of Sectidi 7.1.2 prove that,(t) = t*p;(¢) is orthogonal to
the polynomial®, ps, . .., pj_k, assuming that < j. Show that ifg; is orthogonalized
againsps, p2, . .., pj—k, the result would be orthogonal to all polynomials of degreg+ k.
Derive a general Look-Ahead non-Hermitian Lanczos prooedased on this observation.

P-7.8 Consider the matriceg,, = [v1,...,v,] andW,, = [wi,...,w,,] obtained from
the Lanczos biorthogonalization algorithm. (a) What aee rtmatrix representations of the
(oblique) projector ontdC,, (A, v;) orthogonal to the subspadg,, (A, w;), and the pro-
jector onto/C,,,(A”, w;) orthogonally to the subspadé,,(A4,v,)? (b) Express a general
condition for the existence of an oblique projector oAtporthogonal tal.. (¢) How can this
condition be interpreted using the Lanczos vectors and &metos algorithm?

P-7.9 Show a three-term recurrence satisfied by the residual rectaf the BCG algo-
rithm. Include the first two iterates to start the recurrer8inilarly, establish a three-term
recurrence for the conjugate direction vectpysn BCG.

P-7.10 Let¢,(t) andm;(t) be the residual polynomial and the conjugate direction paly
mial, respectively, for the BCG algorithm, as defined in ®ed.Z]. Let);(t) be any other
polynomial sequence which is defined from the recurrence

Yo(t) =1, ¥ui(t) = (1 —&ot)vo(t)

Vit1(t) = (L+n; — &) () — mjhj—1(t)
a. Show that the polynomials; are consistent, i.ey;;(0) = 1 for all 5 > 0.
b. Show the following relations

Yiv1Pi401 = idj1 — (-1 — Vi)dj11 — Eitbidiaa
Yigjt1 = Pjd; — ajth;m;
(Vj—1 = V)i = Vj—10; — VP11 — ajtj_aT;
Vi1 = Yip10511 — Bimjvjamy + Bi(1 +nyhbymy — Bi&tm;
Yy = Yjdi1 + By
c. Defining,
t; = j(A)djt1(A)ro, v = (Yj—1(A4) = ¥;(A))dj+1(A)ro,
pj = Vi (A)mi(A)ro, 85 = -1 (A)m;(A)ro
show how the recurrence relations of the previous questiorstate for these vectors.

d. Find a formula that allows one to update the approximaiipn from the vectors
xj—1,x; andt;, p;,y;, s; defined above.

e. Proceeding as in BICGSTAB, find formulas for generatirg BCG coefficientsy;
andg; from the vectors defined in the previous question.

P-7.6 Prove the expressiofi{7]76) for the CGS approximation define{Z66EZG7). Is
the relation valid for any choice of scaliny,,,1?

P-7.7 Prove that the vectors; andr; produced by the BCG algorithm are orthogonal to
each other when+# j, while the vectorg; andp; are A-orthogonal, i.e.(Ap;, p;) = 0 for
1# 7.

P-7.8 The purpose of this exercise is to develop block varianthieflianczos algorithm.
Consider a two-sided analogue of the Block-Arnoldi aldorit in its variant of Algorithm
E24. Formally, the general step that defines the biorthaligation process, fof > p, is as
follows:

256 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

1. Orthogonalizedv;_,+;1 versusw;, ws, ..., w; (by subtracting a linear combination
of vy,...,v; from Av;_,11). Callv the resulting vector.

2. OrthogonalizedTw;_, 11 versusv, vs, . . ., v; (by subtracting a linear combination
of wy,...,w; from ATw;_,1). Callw the resulting vector.

3. Normalize the two vectorsandw so that(v, w) = 1 to getv; 1 andw;1.

Here,p is the block size and it is assumed that the initial blocksdéwethogonal:(v;, w;) =
5ij for ’L,_] <p.
a. Show thatdv;_,.1 needs only to be orthogonalized against 2pepreviousw;’s in-

stead of all of them. Similarlyd”w;_, 1 must be orthogonalized only against the
previousuv;’s.

b. Write down the algorithm completely. Show the orthogdpaklations satisfied by
the vectors); andw,. Show also relations similar tb{T.3) afid {7.4).

c. We now assume that the two sets of vectgrandw, have different block sizes. Call
q the block-size for thev's. Line 2 of the above formal algorithm is changed into:

2a. OrthogonalizelTw;_ 41 versusvy, vs, ..., v; (---). Callw the resulting vector.

and the rest remains unchanged. The initial vectors are &gaithogonali(v;, w;) =
0;; fori < pandj < ¢g. Show that nowAv;_,,: needs only to be orthogonalized
against they + p previousw;’s instead of all of them. Show a simlar result for thgs.

d. Show how a block version of BCG and QMR can be developedbaséhe algorithm
resulting from question (c).

NOTES AND REFERENCES The pioneering paper by Lancz@s 197], on what is now reteto as
Bi-CG, did not receive the attention it deserved. Fletcfi8&fl] who developed the modern version of
the algorithm mentions the 1950 Lanczos paber][195] whideimted mostly to eigenvalue problems,
but seemed unaware of the second [197] which is devoted ¢arigystems. Likewise, the paper by
Sonneveld[[272] which proved for the first time that thé operations were not necessary, received
little attention for several years (the first reference ® tinethod[[31R] dates back to 1980). TFQMR
(Freund and Nachtigal [186]) and BICGSTAB (van der VofstJp9were later developed to cure
some of the numerical problems that plague CGS. Many additamd variations to the basic BCG,
BICGSTAB, and TFQMR techniques appeared, see, €.al [T6E6IIT61[260], among others. Some
variations were developed to cope with the breakdown of tigertlying Lanczos or BCG algorithm;
see, for example[I62. PRI 1135.260. B21]. Finally, blockhmods of these algorithms have also been
developed, see, e.gl]1[5].

The Lanczos-type algorithms developed for solving lingatesms are rooted in the theory of
orthogonal polynomials and Padé approximation. Lancaosélf certainly used this viewpoint when
he wrote his breakthrough papefs[lLB5.1197] in the early 495the monograph by BrezinsKi[59]
gives an excellent coverage of the intimate relations betwapproximation theory and the Lanczos-
type algorithms. Freund[1B3] establishes these relafionguasi-minimal residual methods. A few
optimality properties for the class of methods presentdtlisichapter can be proved using a variable
metric, i.e., an inner product which is different at eaclp4BJ]. A survey by Weisd[308] presents a
framework for Krylov subspace methods explaining some e$¢hoptimality properties and the inter-
relationships between Krylov subspace methods. Sevettab@udiscuss a class of techniques known
as residual smoothing; see for example |259. 824] 308, 6hgsd techniques can be applied to any
iterative sequence;, to build a new sequence of iteratgs by combiningy,_, with the difference
i — yr_1. A remarkable result shown by Zhou and WalKer[324] is thatithrates of the QMR
algorithm can be obtained from those of the BCG as a particalse of residual smoothing.

7.4. TRANSPOSE-FREE VARIANTS 257

A number of projection-type methods on Krylov subspacédsemthan those seen in this chapter
and the previous one are described[ih [1]. The group of fankdate methods discussed by Eirola
and Nevanlinnal[113] and Deuflhard et al._IL00] is closehated to Krylov subspace methods. In
fact, GMRES can be viewed as a particular example of thesbaudst Also of interest and not
covered in this book are theector extrapolatiortechniques which are discussed, for example, in the
books Brezinski[[59], Brezinski and Radivo Zaglial[60] ahe frticles[[270] and[177]. Connections
between these methods and Krylov subspace methods, hameubeevered, and are discussed by
Brezinski [59] and Sidil[263]. [|

258 CHAPTER 7. KRYLOV SUBSPACE METHODS PART Il

Chapter 8

METHODS RELATED TO THE NORMAL
EQUATIONS

There are a number of techniques for converting a non-symmetric linear system into a symmetric
one. One such technique solves the equivalent linear system AT Az = AT'b, called the normal
equations. Often, this approach is avoided in practice because the coefficient matrix AT A s
much worse conditioned than A. However, the normal equations approach may be adequate in
some situations. Indeed, there are even applications in which it is preferred to the usual Krylov
subspace techniques. This chapter covers iterative methods which are either directly or implicitly
related to the normal equations.

8.1 The Normal Equations

In order to solve the linear systedr = b when A is nonsymmetric, we can solve
the equivalent system
ATAz = AT (8.1)

which is Symmetric Positive Definite. This system is knowrttss system of the
normal equationgssociated with the least-squares problem,

minimize ||b — Az||2. (8.2)

Note that [811) is typically used to solve the least-squareblem [8R) forover-
determinedsystems, i.e., whed is a rectangular matrix of size x m, m < n.
A similar well known alternative sets = A7« and solves the following equation
for u:
AATy =b. (8.3)

Once the solutiom is computed, the original unknowncould be obtained by mul-
tiplying « by A”. However, most of the algorithms we will see do not invoke dhe
variable explicitly and work with the original variableinstead. The above system
of equations can be used to solveder-determinesgystems, i.e., those systems in-
volving rectangular matrices of sizex m, with n < m. Itis related to[(811) in the
following way. Assume that < m and that4 has full rank. Letz, beanysolution

to the underdetermined syste#r = b. Then [BB) represents the normal equations
for the least-squares problem,

minimize ||z, — AT ulf. (8.4)

259

260 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Since by definitionA”u = z, then [83) will find the solution vectar that is closest
to x, in the 2-norm sense. What is interesting is that when m there are infinitely
many solutionsr, to the systemAxz = b, but the minimizeru of (8.4) does not
depend on the particular, used.

The system[(8]1) and methods derived from it are often labelith NR (N
for “Normal” and R for “Residual”) while[[813) and relatedcteniques are labeled
with NE (N for “Normal” and E for “Error”). If A is square and nonsingular, the
coefficient matrices of these systems are both SymmetritioBefinite, and the
simpler methods for symmetric problems, such as the Cotgugeadient algorithm,
can be applied. Thus, CGNE denotes the Conjugate Gradighbrthapplied to the
system[[81) and CGNR the Conjugate Gradient method apiali@&1l).

There are several alternative ways to formulate symmeitwat systems having
the same solution as the original system. For instance ythengtric linear system

() (2)= () e

with r = b — Az, arises from the standard necessary conditions satisfigtieby
solution of the constrained optimization problem,

T 1
minimize Sl = b||3 (8.6)
subjectto ATr = 0. (8.7)

The solutionz to (1) is the vector of Lagrange multipliers for the abovelgtem.
Another equivalent symmetric system is of the form

(7) (%)= ()

The eigenvalues of the coefficient matrix for this system-are, whereo; is an
arbitrary singular value ofl. Indefinite systems of this sort are not easier to solve
than the original nonsymmetric system in general. Althonghobvious immedi-
ately, this approach is similar in nature to the appro&ch) @nd the corresponding
Conjugate Gradient iterations applied to them should bekanilarly.

A general consensus is that solving the normal equationdeamn inefficient
approach in the case whehis poorly conditioned. Indeed, the 2-norm condition
number ofAT A is given by

Condy (AT A) = | AT Al [|(ATA)7!,.

Now observe thaf A" A||y = 02,,,.(A) whereo, ... (A) is the largest singular value

of A which, incidentally, is also equal to the 2-norm 4Af Thus, using a similar
argument for the inversgd” A)~! yields

Condz (A" A) = A3 [|A™"]3 = Cond3(A). (8.8)

The 2-norm condition number fot” A is exactly the square of the condition number
of A, which could cause difficulties. For example, if originallpnd,(A) = 108,

8.2. ROW PROJECTION METHODS 261

then an iterative method may be able to perform reasonablly tewever, a con-
dition number of10'® can be much more difficult to handle by a standard iterative
method. That is because any progress made in one step oeth@vie procedure
may be annihilated by the noise due to numerical errors.

On the other hand, if the original matrix has a good 2-normdd@mn number,
then the normal equation approach should not cause anwsadiifficulties. In the
extreme case wheH is unitary, i.e., whenrd”” A = I, then the normal equations
are clearly the best approach (the Conjugate Gradient metiibconverge in zero
step!).

8.2 Row Projection Methods

When implementing a basic relaxation scheme, such as Jac8®R, to solve the
linear system
AT Az = AT, (8.9)

or
AATu =0, (8.10)

it is possible to exploit the fact that the matricé$§ A or AA” need not be formed
explicitly. As will be seen, only a row or a column dfat a time is needed at a given
relaxation step. These methods are knowroasprojection methodsince they are
indeed projection methods on rows 4for A”. Block row projection methods can
also be defined similarly.

8.2.1 Gauss-Seidel on the Normal Equations

It was stated above that in order to use relaxation schem#éseamrmal equations,
only access to one column df at a time is needed fof{8.9) and one row at a time
for 8J0). This is now explained foE{8110) first. Startingrh an approximation
to the solution of [BI0), a basic relaxation-based iteeafirocedure modifies its
components in a certain order using a succession of retexateps of the simple
form

Upew = U+ 52‘62‘ (811)

wheree; is thei-th column of the identity matrix. The scaléris chosen so that the
i-th component of the residual vector for{d.10) becomes. ZEmnerefore,

(b— AAT (u + 6;¢;),e;) = 0 (8.12)
which, setting: = b — AATu, yields,
(T7 ei)
5 = o f) (8.13)
AT e; |3

Denote byg; thei-th component ob. Then a basic relaxation step consists of taking
ﬁi — (AT’LL, ATGZ')

5; =
' AT e;]13

(8.14)

262 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Also, (8:11) can be rewritten in terms ofvariables as follows:
Tnew = ¢ + 0;ATe;. (8.15)

The auxiliary variablex has now been removed from the scene and is replaced by
the original variabler = AT w.

Consider the implementation of a forward Gauss-Seidel pvased on{8.15)
and [BIB) for a general sparse matrix. The evaluatioh) sbm (813) requires the
inner product of the current approximatian= A”w with ATe;, thei-th row of A.

This inner product is inexpensive to compute becadiSe; is usually sparse. If an
acceleration parameteris used, we only need to changginto wé;. Therefore, a
forward SOR sweep would be as follows.

ALGORITHM 8.1 Forward NE-SOR Sweep

1 Choose an initiat.

2 Fori =1,2,...,n Do:
o, Bim(ATeix)

3. 0i = w ST

4 xi=x+06;ATe;

5 EndDo

Note thatA”e; is a vector equal to the transpose of ki row of A. All that is
needed is the row data structure férto implement the above algorithm. Denoting
by nz; the number of nonzero elements in thth row of A, then each step of the
above sweep requirésiz; + 2 operations in line 3, and anoth2nz; operations in
line 4, bringing the total tdnz; + 2. The total for a whole sweep becomgs: + 2n
operations, wherez represents the total number of nonzero elements. Giwice as
many operations are required for the Symmetric Gauss-Samidee SSOR iteration.
Storage consists of the right-hand side, the vectand possibly an additional vector
to store the 2-norms of the rows df A better alternative would be to rescale each
row by its 2-norm at the start.

Similarly, Gauss-Seidel fof{8.9) would consist of a seqeaenf steps of the form

Tnew = T + 0;€;. (8.16)

Again, the scalad; is to be selected so that thith component of the residual vector
for (89) becomes zero, which yields

(ATb — AT A(x + b;e5),e;) = 0. (8.17)
With » = b — Az, this becomes$A” (r — §; Ae;), e;) = 0, which yields

(T‘, Ael)
0 = ———=. (8.18)
| Aeil3

Then the following algorithm is obtained.

8.2. ROW PROJECTION METHODS 263

ALGORITHM 8.2 Forward NR-SOR Sweep

1 Choose an initial, computer := b — Ax.
2 Fori =1,2,...,n Do:
r,Ae;
3. 0i =w |(\f7\8i|\3
4 T = x + d;e;
5. ri=r —§;Ae;
6. EndDo

In contrast with AlgorithnT8]1, the column data structure4ofs now needed for
the implementation instead of its row data structure. Hieright-hand sidé can
be overwritten by the residual vectoy so the storage requirement is essentially the
same as in the previous case. In the NE version, the séalalz, a;) is just thei-th
component of the current residual vectoe= b — Ax. As a result, stopping criteria
can be built for both algorithms based on either the residaelor or the variation
in the solution. Note that the matricesA” and A” A can be dense or generally
much less sparse that, yet the cost of the above implementations depends only
on the nonzero structure of. This is a significant advantage of relaxation-type
preconditioners over incomplete factorization precaadérs when using Conjugate
Gradient methods to solve the normal equations.

One question remains concerning the acceleration of thesaletaxation schemes
by under- or over-relaxation. If the usual acceleratiorap@aterw is introduced, then
we only have to multiply the scalads in the previous algorithms hy. One serious
difficulty here is to determine the optimal relaxation factdf nothing in particu-
lar is known about the matrid A”, then the method will converge for anylying
strictly betweerd and2, as was seen in Chapfér 4, because the matrix is positive def-
inite. Moreover, another unanswered question is how cgevere can be affected
by various reorderings of the rows. For general sparse cesfrihe answer is not
known.

8.2.2 Cimmino’s Method

In a Jacobi iteration for the systefn (B.9), the componenti®hew iterate satisfy
the following condition:

(ATb — AT A(x + d;ei),e;) = 0. (8.19)
This yields
(b — A(l’ + 52‘62‘),1462‘) =0 or (’I" — 9;Ae;, Aei) =0

in whichr is the old residuab — Ax. As a result, thé-component of the new iterate
Tnew IS given by

LTnew,i = x; + 0;¢€;, (820)

(Tv Ael)
5 = . (8.21)
| Aeil3

264 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Here, be aware that these equations do not result in the sapnexamation as that
produced by Algorithni 812, even though the modifications given by the same
formula. Indeed, the vectaris not updated after each step and therefore the scalars
0; are different for the two algorithms. This algorithm is ulbpaescribed with an
acceleration parameter, i.e., alld;’s are multiplied uniformly by a certaiw. If d
denotes the vector with coordinat&s: = 1,. .., n, the following algorithm results.

ALGORITHM 8.3 Cimmino-NR

Choose initial guessy. Setx = xg,r = b — Axg
Until convergence Do:

Fori =1,...,n Do:
(r,Ae;)
[[Aeill3

(51' = w
EndDo
z:=z+dwhered =73, d;e;
r:=r—Ad

EndDo

©ONOOOO A WNR

Notice that all the coordinates will use the same residuatore: to compute
the updates;. Whenw = 1, each instance of the above formulas is mathematically
equivalent to performing a projection step for solvilg = b with L = span{e; },
and L = AK. Itis also mathematically equivalent to performing an ogbnal
projection step for solving” Az = ATb with KC = span{e; }.

It is interesting to note that when each colume; is normalized by its 2-norm,
i.e., if|Ae;lla = 1,4 = 1,...,n,thens; = w(r, Ae;) = w(ATr, e;). Inthis situation,

d=wATr = wAT (b — Ax)

and the main loop of the algorithm takes the vector form

d = wATr
Tz = x+d
r = r— Ad.

Each iteration is therefore equivalent to a step of the form
Tnew = ¢ +w (ATb— AT Ax)

which is nothing but the Richardson iteration applied tortbemal equationd(8.1).
In particular, as was seen in Examplel4.1, convergence iagteed for anyw which
satisfies,

I<w<

(8.22)

)\max

where \,q. IS the largest eigenvalue of " A. In addition, the best acceleration

parameter is given by)
W, =
ot >\mm + >\ma:v

8.2. ROW PROJECTION METHODS 265

in which, similarly, \,.;, is the smallest eigenvalue df” A. If the columns are not
normalized by their 2-norms, then the procedure is equitdle a preconditioned
Richardson iteration with diagonal preconditioning. Thedry regarding conver-
gence is similar but involves the preconditioned matrixempivalently, the matrix
A’ obtained fromA by normalizing its columns.

The algorithm can be expressed in terms of projectors. ®@bdbat the new
residual satisfies

" (T‘, Ael)
Thew =T — w Ae;. (8.23)
; [Ae; 13
Each of the operators
(T7 Ael)
P r— 12 Ae;, = Pir (8.24)
| Aeil3

is an orthogonal projector ontde;, thei-th column ofA. Hence, we can write

Tnew = (I —w ZB) T. (8.25)
i=1

There are two important variations to the above schemet, Besause the point
Jacobi iteration can be very slow, it may be preferable tokwath sets of vectors
instead. Letr, 7o, ..., , be a partition of the sefl,2,...,n} and, for eachr;,
let E; be the matrix obtained by extracting the columns of the itkematrix whose
indices belong tor;. Going back to the projection framework, defidg = AE;. If
an orthogonal projection method is used oftoto solve [8L), then the new iterate
is given by

p
Tnew = THwY Eid; (8.26)

di = (EFATAE)'ElATr = (AT A;)) 1 ATy, (8.27)

Each individual block-componewf can be obtained by solving a least-squares prob-
lem
mdin |lr — Aid||2.

An interpretation of this indicates that each individuabstep attempts to reduce the
residual as much as possible by taking linear combinatimm §pecific columns of
A;. Similar to the scalar iteration, we also have

Thew = (I—wiﬂ-) r
i=1

whereP; now represents an orthogonal projector onto the spaty .of

Note thatA;, As, ..., A, is a partition of the column-setAe; };—1, .., and this
partition can be arbitrary. Another remark is that the a@diCimmino method was
formulated for rows instead of columns, i.e., it was based@il) instead of[(813).
The alternative algorithm based on columns rather than i@easy to derive.

266 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

8.3 Conjugate Gradient and Normal Equations

A popular combination to solve nonsymmetric linear systapglies the Conjugate
Gradient algorithm to solve eithdr (8.1) Br(8.3). As is shavext, the resulting algo-
rithms can be rearranged because of the particular natuhe abefficient matrices.

8.3.1 CGNR

We begin with the Conjugate Gradient algorithm appliedddlx8 Applying CG
directly to the system and denoting bythe residual vector at step(instead ofr;)
results in the following sequence of operations:

o a; = (zj,2) /(AT Apj,p;) = (25, z) / (Apj, Ap;)
® Ty =x; + Q;pj

o zj1 =2 — a; AT Ap;

o Bj = (2j+1,241)/ (25, %)

® pjt1 = zj4+1+ Bip; -

If the original residual; = b— Az; must be available at every step, we may compute
the residuak; . in two parts:r;, := r; — ojAp; and therz; 1 = ATr; 1 which

is the residual for the normal equatiofis18.1). It is alsovearent to introduce the
vectorw; = Ap;. With these definitions, the algorithm can be cast in theofaithg
form.

ALGORITHM 8.4 CGNR

1. Computey = b — Axg, 2o = ATT‘(], Po = 20-
2. Fori =0, ..., until convergence Do:
3. w; = Apl'
4. ai = ||zi?/will3
5. Tip1 = T; + ayp;
6. Titl = Ty — QW;
7. zig1 = Alri
8. Bi = llzi1ll3/ 11213,
9. Pi+1 = Zit1 + Bipi
10. EndDo

In Chapter 6, the approximatiotry,, produced at then-th step of the Conjugate
Gradient algorithm was shown to minimize the energy normhef érror over an
affine Krylov subspace. In this case,, minimizes the function

f(@) = (AT A(z, — @), (24 — 1))
over all vectorse in the affine Krylov subspace

20+ Km (AT A, ATrg) = 2o + span{ATrg, ATAAT g, ..., (AT A)™ 1 AT},

8.3. CONJUGATE GRADIENT AND NORMAL EQUATIONS 267

in whichrg = b — Axg is the initial residual with respect to the original equaso
Az = b, and ATr(is the residual with respect to the normal equatigisdz =
ATb. However, observe that

f(@) = (Ale — @), Az, — 7)) = |b— Az|3.

Therefore, CGNR produces the approximate solution in tlewvelsubspace which
has the smallest residual norm with respect to the originaht systemiz = b. The
difference with the GMRES algorithm seen in Chapter 6, isshiespace in which
the residual norm is minimized.

Example 8.1. Table[B81 shows the results of applying the CGNR algorithrf wi
no preconditioning to three of the test problems describegieictior 37 .

Matrix | Iters | Kflops | Residual Error

F2DA | 300| 4847| 0.23E+02| 0.62E+00
F3D 300 | 23704 | 0.42E+00| 0.15E+00
ORS 300 | 5981 | 0.30E+02| 0.60E-02

Table 8.1: A test run of CGNR with no preconditioning.

See ExamplE®&l 1 for the meaning of the column headers inlhe fBhe method
failed to converge in less than 300 steps for all three proble Failures of this
type, characterized by very slow convergence, are rath@mum for CGNE and
CGNR applied to problems arising from partial differentgluations. Precondition-
ing should improve performance somewhat but, as will be se€hapter 10, normal
equations are also difficult to precondition. |

8.3.2 CGNE

A similar reorganization of the CG algorithm is possiblettoe system[{813) as well.
Applying the CG algorithm directly td{8.3) and denoting dgythe conjugate direc-
tions, the actual CG iteration for thevariable would be as follows:

o aj = (rj,r5)/(AAT g5, q5) = (rj,r5)/ (AT q5, AT q;)
® Ujtl = Uj + Qg

o rjy1:=r; —ajAATq;

o Bj = (rj41,7541)/(rj,75)

® gj+1 =741+ g -

268 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Notice that an iteration can be written with the originalighte z; = xo + AT(uZ- -
ug) by introducing the vectop; = A”¢;. Then, the residual vectors for the vectors
x; andu; are the same. No longer are thevectors needed because ihés can
be obtained ap;;; := ATer + Bjpj. The resulting algorithm described below,
the Conjugate Gradient for the normal equations (CGNE)Isis lenown as Craig’s
method.

ALGORITHM 8.5 CGNE (Craig’s Method)

Computeg = b — Axg, po = ATry.
Fori = 0,1, ..., until convergence Do:
a; = (r4,73)/(pi, Pi)
Tiyl = Ti + aip;
Tit1 =1 — 0 Ap;
Bi = (rix1,mip1)/(risri)
piv1 = ATrigy + Bipi
EndDo

ONDOAWNR

We now explore the optimality properties of this algorithas was done for
CGNR. The approximation,,, related to the variable,,, by z,, = ATu,, is the
actualm-th CG approximation for the linear system{8.3). Therefareninimizes
the energy norm of the error on the Krylov subsp#ge. In this caseyu,, minimizes
the function

f(u) = (AAT (us — u), (us — u))

over all vectors: in the affine Krylov subspace,
uo + Ko (AAT rg) = ug + span{rg, AATr, ..., (AAT)™ Lrol.
Notice thatrg = b — AATuy = b — Axg. Also, observe that
flu) = (AT (e = w), AT (uy — w)) = [lx — 2|3,

wherex = ATu. Therefore, CGNE produces the approximate solution in tie s
space
zo 4+ AT (AAT rg) = g + K (AT A, ATrg)

which has the smallest 2-norm of the error. In addition, rio& the subspace, +
Ko (AT A, ATrg) is identical with the subspace found for CGNR. Therefdhe
two methods find approximations from the same subspace \ablikve different
optimality properties: minimal residual for CGNR and mimiherror for CGNE.

8.4 Saddle-Point Problems

Now consider the equivalent system

(e 0)(2)=()

8.4. SADDLE-POINT PROBLEMS 269

with » = b — Ax. This system can be derived from the necessary conditigplgedp
to the constrained least-squares problem [(B6-8.7). The®-norm ofh — r = Ax
is minimized implicitly under the constraist” » = 0. Note thatA does not have to
be a square matrix.

This can be extended into a more general constrained qiadtmization
problem as follows:

minimize f(z) = %(Aw,x)—(x,b) (8.28)
subjecttoB”z = . (8.29)

The necessary conditions for optimality yield the lineasteyn

(i 0)(3)= () e)

in which the names of the variablesx are changed inta;, y for notational con-
venience. It is assumed that the column dimensioBafoes not exceed its row
dimension. The Lagrangian for the above optimization probis

L(a,y) = 5(Az,2) ~ (2,5) + (3, (BT — 0)

and the solution of{8.30) is the saddle point of the abovedmgjan. Optimization
problems of the form{828=8P9) and the correspondingalirsystems[{8.30) are
important and arise in many applications. Because theyndéireately related to the
normal equations, we discuss them briefly here.

In the context of fluid dynamics, a well known iteration teicfuge for solving
the linear systenf{8.80) is Uzawa’s method, which resembledaxed block SOR
iteration.

ALGORITHM 8.6 Uzawa’s Method

Choosex, yo

Fork = 0,1,. .., until convergence Do:
Tpp1 = A7H(b— Byg)
Yrt1 = Yk + w(BT2pq1 —)

EndDo

o~ N R

The algorithm requires the solution of the linear system
Aka =b— Byk (831)

at each iteration. By substituting the result of line 3 intel4, thez,, iterates can be
eliminated to obtain the following relation for thg'’s,

Y1 =y +w (BTAT (b — Byy) — ¢)

270 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

which is nothing but a Richardson iteration for solving timear system
BTA'By=BTA ' —c. (8.32)

Apart from a sign, this system is the reduced system regultom eliminating the
x variable from [B:3D). Convergence results can be derivaa the analysis of the
Richardson iteration.

Corollary 8.1 Let A be a Symmetric Positive Definite matrix aftla matrix of
full rank. ThenS = BTA!'B is also Symmetric Positive Definite and Uzawa’s
algorithm converges, if and only if

2
I<w< m. (833)

In addition, the optimal convergence parameteis given by

2
wopt N Amzn(s) + /\mam(s) ’

Proof. The proof of this result is straightforward and is based @r#sults seen in
Exampld4lL. O

It is interesting to observe that when= 0 and A is Symmetric Positive Defi-
nite, then the systerl (8132) can be regarded as the normati@asi for minimizing
the A='-norm of b — By. Indeed, the optimality conditions are equivalent to the
orthogonality conditions

(b— By,Bw),-1 =0, VYuw,

which translate into the linear systeBY A~'By = BT A~'b. As a consequence,
the problem will tend to be easier to solve if the columng3are almost orthogonal
with respect to thel~! inner product. This is true when solving tBéokes problem
where B represents the discretization of the gradient operatolew®i discretizes
the divergence operator, antlis the discretization of a Laplacian. In this case, if
it were not for the boundary conditions, the mati¥ A~ B would be the identity.
This feature can be exploited in developing preconditisrfer solving problems
of the form [B83D). Another particular case is whdnis the identity matrix and
¢ = 0. Then, the linear systefi{8132) becomes the system of theatequations for
minimizing the 2-norm ob — By. These relations provide insight in understanding
that the block form[[8.30) is actually a form of normal eqaas for solvingBy = b
in the least-squares sense. However, a different innewptasl used.

In Uzawa’s method, a linear system at each step must be saolaettly, the sys-
tem [8:31). Solving this system is equivalent to finding theimum of the quadratic
function

minimize fi(z) = -(Az,z) — (z,b — Byy). (8.34)

N —

8.4. SADDLE-POINT PROBLEMS 271

Apart from constantsf;(z) is the Lagrangian evaluated at the previguierate.
The solution of [B.:31), or the equivalent optimization pgesb (8:33), is expensive.
A common alternative replaces thevariable updatd{8.81) by taking one step in the
gradient direction for the quadratic functidn{8.34), usuaith fixed step-lengthe.
The gradient off;(z) at the current iterate idxy, — (b — Byy). This results in the
Arrow-Hurwicz Algorithm.

ALGORITHM 8.7 The Arrow-Hurwicz algorithm

Select an initial guess), yo to the systeni{8.30)
Fork = 0,1,..., until convergence Do:
COmpUtEEk+1 =T+ E(b — Az — Byk)
Computeyy1 = yx + w(BTzp41 —c)
EndDo

OO =

The above algorithm is a block-iteration of the form

1 @) Tpt1) (1 —€A —eB Tk €b
(oo 7)) = (o)G+ ()

Uzawa’s method, and many similar techniques for soMng{Jg.are based on
solving the reduced systei (8132). An important obsematiere is that the Schur
complement matrix¥d = BT A~! B need not be formed explicitly. This can be useful
if this reduced system is to be solved by an iterative methbe.matrixA is typically
factored by a Cholesky-type factorization. The linear eyst with the coefficient
matrix A can also be solved by a preconditioned Conjugate Gradiettiaie Of
course these systems must then be solved accurately.

Sometimes it is useful to “regularize” the least-squareblem [8:2B) by solving
the following problem in its place:

minimize f(z) = %(Aw,ac) — (z,b) + p(Cy,)
subject toBTz =

in which p is a scalar parameter. For examplécan be the identity matrix or the
matrix BT B. The matrix resulting from the Lagrange multipliers apmtodhen

becomes
A B
BT pC)

The new Schur complement matrix is

S =pC —BTA™!B.

Example 8.2. Inthe case wher€ = B” B, the above matrix takes the form

S =BT (pI - A™HB.

272 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

Assuming thatd is SPD,S is also positive definite when

1
>
=)\mzn(A)

However, it is alsanegative definitéor

p < (A4),

)\ma:c

a condition which may be easier to satisfy on practice. |

PROBLEMS

P-8.1 Derive the linear systeri{8.5) by expressing the standaréssary conditions for the
problem [B.BES]7).

P-8.2 It was stated in SectidiB.2.2 that whgA”e;||, = 1 fori = 1,...,n, the vectord
defined in Algorithn 81 is equal to AT r.

a. What does this become in the general situation whehe; ||, # 1?
b. Is Cimmino’s method still equivalent to a Richardsonateam?
c. Show convergence results similar to those of the scalkeel ca

P-8.4 In Section8.2P, Cimmino’s algorithm was derived basedheNormal Residual
formulation, i.e., on[[8]1). Derive an “NE” formulationei, an algorithm based on Jacobi’s
method for [8B).

P-8.5 What are the eigenvalues of the matfix8.5)? Derive a systhmse coefficient
matrix has the form
2ad A)

s = (% &

and which is also equivalent to the original systelm = b. What are the eigenvalues of
B(«)? Plot the spectral norm @ («) as a function ofv.

P-8.6 It was argued in Sectidn 8.4 that when= 0 the system[{8.32) is nothing but the
normal equations for minimizing thé—'-norm of the residuat = b — By.

a. Write the associated CGNR approach for solving this gmbl Find a variant that
requires only one linear system solution with the matfixat each CG step [Hint:
Write the CG algorithm for the associated normal equationsse how the resulting
procedure can be reorganized to save operations]. Findaalsoiant that is suitable
for the case where the Cholesky factorizatiordok available.

b. Derive a method for solving the equivalent systEm {|8.80}te case when = 0 and
then for the general case wjen# 0. How does this technique compare with Uzawa’s
method?

P-8.3 Consider the linear systefi{8130) in which= 0 and B is of full rank. Define the
matrix
P=1-B(B'B)'BT.

8.4. SADDLE-POINT PROBLEMS 273

a. Show thatP is a projector. Is it an orthogonal projector? What are timgeaand null
spaces of°?

b. Show that the unknown can be found by solving the linear system
PAPzx = Pb, (8.35)

in which the coefficient matrix is singular but the systemasgistent, i.e., there is a
nontrivial solution because the right-hand side is in tigyesof the matrix (see Chapter
1).

c. What must be done toadapt the Conjugate Gradient Algoritr solving the above
linear system (which is symmetric, but not positive def)fitén which subspace are
the iterates generated from the CG algorithm appliefid8.3

d. Assume that the QR factorization of the matixis computed. Write an algorithm
based on the approach of the previous questions for solkmtirtear systenf{8.80).

P-8.5 Show that Uzawa’s iteration can be formulated as a fixedtpt@ration associated
with the splittingC = M — N with

A 0 0 -B
vl 7). ¥=(0 7)

Derive the convergence result of Coroll@ryl8.1 .

P-8.6 Show that each new vector iterate in Cimmino’s method is shiah

Tnew =T +wA™L Z P,
i

whereP; is defined by[[8.24).

P-8.7 In Uzawa’s method a linear system with the matdxmust be solved at each step.
Assume that these systems are solved inaccurately by ativeeprocess. For each linear
system the iterative process is applied until the norm ofrés&dualry; = (b — Byx) —
Az is less than a certain threshelg, ; .

a. Assume thab is chosen so thal{81B3) is satisfied and thatonverges to zero ds
tends to infinity. Show that the resulting algorithm coner¢p the solution.

b. Give an explicit upper bound of the error gpin the case whea; is chosen of the
forme = of, wherea < 1.

P-8.3 Assume||b — Ax||2 is to be minimized, in whictd is n x m with n > m. Letz, be
the minimizer and- = b — Az,.. What is the minimizer of|(b 4+ ar) — Axz||2, wherea is an
arbitrary scalar?

P-8.4

P-8.5 Consider a saddle-point linear system of the fotm= b, where

(8 5) () ()

in which B is symmetric positive definite. It is assumed thhis nonsingular (which is
equivalent to assuming thétis of full rank).

1. Prove thatA has both negative and positive eigenvalues by showing hoselect
vectorse = (Z) so that(Ax, «) > 0 and vectors: so that(Az, z) < 0.

274 CHAPTER 8. METHODS RELATED TO THE NORMAL EQUATIONS

2. Show how to select an initial guess of the farg= (“00) if we want its corresponding

residual vectory = b— Ax to be of the formry = 500 . What happens if we attempt
to use the steepest descent algorithm with this initial gaes

3. What happens if the Minimal Residual iteration is applisthg the same initial guess
as in the previous question?

4. By eliminating the unknownm find a linear systentp = ¢ that must be satisfied by
the variablep Is the coefficient matrix of this system Symmetric PositivefiDite (or
Symmetric Negative Definite)?

5. We now want to solve the linear system by the followingatiem:

upr = BTN(f—Cpr)
Pot1 = pr+aClugpq

Show thatpy, 1 is of the formpy,1 = pr + axsk Wheresy, is the residual relative

to p; for the reduced linear system found in the previous questidow shoulda,

be selected if we wang;; to correspond to the iterate of steepest descent for this
reduced system.

NOTES AND REFERENCES Methods based on the normal equations have been amongshtfir
be used for solving nonsymmetric linear systems by itezatiethods[[I81.85]. The work by Bjork
and Elfing [39], and Sameh et al_T1§2] 53] 52] revived theskrtigues by showing that they have
some advantages from the implementation point of view, hatlthey can offer good performance for
a broad class of problems. In addition, they are also aiteafr parallel computers. 1([240], a few
preconditioning ideas for normal equations were descréretithese will be covered in Chapter 10. It
would be helpful to be able to determine whether or not it &efgnable to use the normal equations ap-
proach rather than the “direct equations” for a given systarnthis may require an eigenvalue/singular
value analysis.

It is sometimes argued that the normal equations approaelwisys better than the standard
approach, because it has a quality of robustness which @hwthe additional cost due to the slowness
of the method in the generic elliptic case. Unfortunatetys s not true. Although variants of the
Kaczmarz and Cimmino algorithms deserve a place in any taewuative solution package, they cannot
be viewed as a panacea. hmostrealistic examples arising from Partial Differential Etjoas, the
normal equations route gives rise to much slower convergyéman the Krylov subspace approach for
the direct equations. For ill-conditioned problems, thesthods will simply fail to converge, unless a
good preconditioner is available. |

Chapter 9

PRECONDITIONED ITERATIONS

Although the methods seen in previous chapters are well founded theoretically, they are all likely
to suffer from slow convergence for problems which arise from typical applications such as fluid
dynamics or electronic device simulation. Preconditioning is a key ingredient for the success
of Krylov subspace methods in these applications. This chapter discusses the preconditioned
versions of the iterative methods already seen, but without being specific about the particu-
lar preconditioners used. The standard preconditioning techniques will be covered in the next
chapter.

0.1 Introduction

Lack of robustness is a widely recognized weakness of ierablvers, relative to
direct solvers. This drawback hampers the acceptancerafiite methods in indus-
trial applications despite their intrinsic appeal for véayge linear systems. Both
the efficiency and robustness of iterative techniques campeoved by usingre-
conditioning A term introduced in Chaptél 4, preconditioning is simplyneaans
of transforming the original linear system into one whicls ttae same solution, but
which is likely to be easier to solve with an iterative solvém general, the relia-
bility of iterative techniques, when dealing with varioygpécations, depends much
more on the quality of the preconditioner than on the paedickrylov subspace ac-
celerators used. We will cover some of these precondittoimedetail in the next
chapter. This chapter discusses the preconditioned warsibthe Krylov subspace
algorithms already seen, using a generic preconditioner.

To begin with, it is worthwhile to consider the options asale for precondi-
tioning a system. The first step in preconditioning is to fingeconditioning matrix
M. The matrixM can be defined in many different ways but it must satisfy a few
minimal requirements. From a practical point of view, thestmequirement fon/ is
that it is inexpensive to solve linear systems: = b. This is because the precondi-
tioned algorithms will all require a linear system solutieith the matrix) at each
step. AlsoM should close t4 in some sense and it should clearly be nonsingular.
Chapter 10 explores in detail the problem of finding prectowiers M for a given
matrix .S, while this chapter considers only the ways in which the pnélttioner is
applied to solve the original system.

Once a preconditioning matrix/ is available there are three known ways of ap-

275

276 CHAPTER 9. PRECONDITIONED ITERATIONS

plying the preconditioner. The precondiotioner can beiaddrom the left, leading
to the preconditioned system

M YAz =M1 (9.1)
Alternatively, it can also be applied to the right:
AM'u=b, z=M'u. (9.2)

Note that the above formulation amounts to making the chahgariablesu = Mz,
and solving the system with respect to the unknawrfrinally, a common situation
is when the preconditioner is available in the factored form

M = MrMp

where, typicallyM;, and My are triangular matrices. In this situation, the precondi-
tioning can be split:

ML_IAMEIu:ML_lb, $EM§IU. (9.3)

It is imperative to preserve symmetry when the original iRagr symmetric, so the
split preconditioner seems mandatory this case. Howévexe fare other ways of pre-
serving symmetry, or rather to take advantage of symmatey) &)/ is not available
in a factored form. This is discussed next for the Conjugata@nt method.

9.2 Preconditioned Conjugate Gradient

Consider a matrix4 that is symmetric and positive definite and assume that a pre-
conditionerM is available. The preconditioné/ is a matrix which approximates

A in some yet-undefined sense. It is assumed Mais also Symmetric Positive
Definite. Then, one can precondition the system in the thieswshown in the pre-
vious section, i.e., as ifiL(9.1[(9.2), €r(9.3). Note thm first two systems are no
longer symmetric in general. The next section consideetegjies for preserving
symmetry. Then, efficient implementations will be desdalilber particular forms of

the preconditioners.

9.2.1 Preserving Symmetry

When) is available in the form of an incomplete Cholesky factdita, i.e., when
M=1LL",

then a simple way to preserve symmetry is to use the “spl#” gfheconditioning
option [@.B) which yields the Symmetric Positive Definitetrna

L'ALTu=L""%, z=L"Tu (9.4)

9.2. PRECONDITIONED CONJUGATE GRADIENT 277

However, it is not necessary to split the preconditionerhis thanner in order to
preserve symmetry. Observe thidt' A is self-adjoint for thel/ -inner product,

(‘Tﬂy)M = (Mx7y) = (x7My)
since
(M_lAa:,y)M = (Az,y) = (z, Ay) = (ac,M(M_lA)y) = (;U,M_lAy)M.

Therefore, an alternative is to replace the usual Euclideaer product in the Con-
jugate Gradient algorithm by th& -inner product.

If the CG algorithm is rewritten for this new inner producgniting byr; =
b— Az the original residual and by; = M ~!r; the residual for the preconditioned
system, the following sequence of operations is obtairgguhring the initial step:

1. aj = (zj,z)m/(M ' Ap;,pj)m

2. xj1 =T+ jp;

3. 141 =1 — ajAp;andzjiy == M 'rj
4. Bj = (2j+1, 2j+1)Mm/ (25, 25) m

5. pjs1 = zj+1 + Bjp;

Since(zj, zj)m = (rj,2;) and(M~Ap;,p;)m = (Apj, p;), the M-inner products
do not have to be computed explicitly. With this observatite following algorithm
is obtained.

ALGORITHM 9.1 Preconditioned Conjugate Gradient

Computerg := b — Axg, 290 = M~ 'ry, andpg := 2
Forj = 0,1,..., until convergence Do:

aj = (rj,2;)/(Apj, pj)

Tjp1 2= Tj + ;D;

Tjr1 :=T5 — OéjApj

Zip1 = M"rj

Bj = (rj41,2j+1)/ (15, 25)

Pj+1 1= zjr1 + B
EndDo

©XONOUTRAWNR

It is interesting to observe that/ ' A is also self-adjoint with respect to thé
inner-product. Indeed,

(M~ Az, y)a = (AM ' Az, y) = (x, AM ™' Ay) = (2, M~ Ay) 2

and a similar algorithm can be written for this dot produete(&xercisgl2).
In the case whera/ is a Cholesky produdt/ = LL”, two options are available,
namely, the split preconditioning optidn_(P.4), or the abalgorithm. Animmediate

278 CHAPTER 9. PRECONDITIONED ITERATIONS

guestion arises about the iterates produced by these twanepts one better than
the other? Surprisingly, the answer is ttizd iterates are identicalTo see this, start
from Algorithm[@.1 and define the following auxiliary vecsomnd matrix from it:

pj = L'p;

u; = Lij

fj = LTZj = L_lrj
i = AL’

Observe that
(rj,z;) = (rj, LTTL7) = (L7 ey, L 1ry) = (75, 75).
Similarly,
(Apj,pj) = (AL™"p;, L™ p;) (L AL py, ;) = (Apj, py).

All the steps of the algorithm can be rewritten with the newialales, yielding the
following sequence of operations:

1. a; = (f5,7;)/(Ap;, by)
2. uji1 = uj + ap;

3. P =7 — ajAp;

4. B; = (Pj1,7541)/ (75, 7))
5. Pjy1 = Tj41+ Bjp; .

This is precisely the Conjugate Gradient algorithm apptedhe preconditioned
system

Au=L"'b
whereu = LTz Itis common when implementing algorithms which involvegit
preconditioner to avoid the use of thevariable, since the iteration can be written

with the originalz variable. If the above steps are rewritten with the originahdp
variables, the following algorithm results.

ALGORITHM 9.2 Split Preconditioner Conjugate Gradient

Computeq := b — Axg; 7o = L_l’r'o,' andpg := L_T’f'o.
Forj = 0,1,..., until convergence Do:

aj = (F,7)/(Ap;, p;)

Tjt1 = Tj + 05D;

fj—i—l = fj — ajL_lApj

Bj = (Fj41,7j41)/ (75, 75)

pj+1 = L7 71+ Bip;
EndDo

PONDOAWNR

9.2. PRECONDITIONED CONJUGATE GRADIENT 279

The iteratesr; produced by the above algorithm and Algorithml 9.1 are idanti
provided the same initial guess is used.

Consider now the right preconditioned systdml(9.2). Theimat)M ~! is not
Hermitian with either the Standard inner product or ideinner product. However,
it is Hermitian with respect to th&/ ~!-inner product. If the CG-algorithm is written
with respect to the-variable and for this new inner product, the following seqce
of operations would be obtained, ignoring again the ingtap:

1 aj = (rj,ri) a1/ (AM ™ pj,pj)
2. Ujp1 = uj + jp;

3. rjp1 =1 — a; AM " 1p;

4. Bj = (rj41,mj+1)m-1/ (T4, m5)
5. pj+1:="j+1+ Bipj .

Recall that theu vectors and the: vectors are related by = M ~'u. Since the

u vectors are not actually needed, the updateufor; in the second step can be
replaced byr; 1 := x; + a; M ~'p;. Then observe that the whole algorithm can be
recast in terms of; = M ~!p; andz; = M~ 1r;.

1 aj = (2,75)/(Ag5, 45)

2. Tj11 =T+ agj

3. rjy1 =) —ajAgjandzi = M~y
4. Bj = (zj+1,1541)/ (25, 75)

5. gjt+1 = zj41 + Bjq;.

Notice that the same sequence of computations is obtainedtlag\lgorithm
B, the left preconditioned Conjugate Gradient. The iogtion is thathe left pre-
conditioned CG algorithm with th&/-inner product is mathematically equivalent to
the right preconditioned CG algorithm with thel ~!-inner product.

9.2.2 Efficient Implementations

When applying a Krylov subspace procedure to a preconditidimear system, an
operation of the form
v—w=M'Av

or some similar operation is performed at each step. The madgtal way to perform
this operation is to multiply the vectar by A and then applyl/ —! to the result.
However, sinced and M are related, it is sometimes possible to devise procedures
that are more economical than this straightforward apgroBor example, it is often
the case that

M=A-R

280 CHAPTER 9. PRECONDITIONED ITERATIONS

in which the number of nonzero elements/inis much smaller than inl. In this
case, the simplest scheme would be to compute M/ ! Av as

w=M"'Av=M"1M+ R)v=v+ M 'Ruv.

This requires thatR be stored explicitly. In approximatéU factorization tech-
nigues, R is the matrix of the elements that are dropped during thenpdete fac-
torization. An even more efficient variation of the precdintied Conjugate Gradient
algorithm can be derived for some common forms of the pretiondr in the special
situation whered is symmetric. Writed in the form

A=Dy—E—E" (9.5)

in which —E is the strict lower triangular part of and Dy its diagonal. In many
cases, the precondition@f can be written in the form

M= (D - E)D (D - ET) (9.6)

in which E is the same as above antis some diagonal, not necessarily equalp
For example, in the SSOR preconditioner with= 1, D = Dgy. Also, for certain
types of matrices, the IC(0) preconditioner can be exptess¢his manner, where
D can be obtained by a recurrence formula.
Eisenstat’s implementatiooonsists of applying the Conjugate Gradient algo-
rithm to the linear system
Au=(D-E)"" (9.7)

with
A=D-E)"AD-ET"Y, z=DO-E" (9.8)

This does not quite correspond to a preconditioning withnitagrix (2.6). In order
to produce the same iterates as Algorithnd 9.1, the matrixust be further pre-
conditioned with the diagonal matri®—'. Thus, the preconditioned CG algorithm,
Algorithm @1, is actually applied to the system{9.7) in @hihe preconditioning
operation isM ~! = D. Alternatively, we can initially scale the rows and colunufs
the linear system and preconditioning to transform theahagto the identity. See
Exercisdl .
Now note that

A = (D—E)y'AD - E")!
= (D-E)YDy—-E—-E"(D-E"!
= (D-E)'(Dy-2D+(D-E)+(D-E"))(D-E")™"
= D-E)'Di(D-EN '+ D-E)'+(D-E"),

in which D1 = Dy — 2D. As a result,
Av=(D - E) [v+Di(D - E") W] + (D - ET) 0.

Thus, the vectorw = Av can be computed by the following procedure:

9.2. PRECONDITIONED CONJUGATE GRADIENT 281

z:=(D—-ET)"ly
w:= (D — E)"Y(v+ Dy2)
wi=w+ 2.

One product with the diagon} can be saved if the matricés ' E andD~'ET
are stored. Indeed, by settidgy = D~'D; ando = D~'v, the above procedure
can be reformulated as follows.

ALGORITHM 9.3 Computation ofv = Av

1. b:=D

2. z:=(I—D'ET)1p

3. w:= (I —DE)Y" (6 + D;z)
4. wi=w+ 2.

Note that the matrice® ' E and D~'E” are not the transpose of one another, so
we actually need to increase the storage requirement ferfohinulation if these
matrices are stored. However, there is a more economicantawrhich works with
the matrixD~1/2ED~1/2 and its transpose. This is left as Exerdike 4.

Denoting by, (X) the number of nonzero elements of a sparse mafrithe
total number of operations (additions and multiplicatjoosthis procedure is for
(1), 2N, (ET) for (2), 2N.(E) + 2n for (3), andn for (4). The cost of the precondi-
tioning operation byD !, i.e.,n operations, must be added to this, yielding the total
number of operations:

Nop = n+2N,(E)+2N,(ET) +2n+n+n
= 3n+2(N.(E)+ N.(ET) +n)
= 3n+2N.(A).

For the straightforward approactiy, (A) operations are needed for the product with
A, 2N, (E) for the forward solve, and + 2N, (E™) for the backward solve giving
a total of

2N (A) + 2N, (E) +n + 2N.(ET) = 4N.(A) — n.

Thus, Eisenstat’'s scheme is always more economical, wheis large enough, al-
though the relative gains depend on the total number of moredements ild. One
disadvantage of this scheme is that itis limited to a spéaiai of the preconditioner.

Example 9.1. For a 5-point finite difference matrixy, (A) is roughly5n, so that
with the standard implementatia®n operations are performed, while with Eisen-
stat’s implementation only3n operations would be performed, a savings of a@out
However, if the other operations of the Conjugate Gradidgaraghm are included,

for a total of aboutlOn operations, the relative savings become smaller. Now the
original scheme will requir@9n operations, versud3n operations for Eisenstat’s
implementation. O

282 CHAPTER 9. PRECONDITIONED ITERATIONS

9.3 Preconditioned GMRES

In the case of GMRES, or other nonsymmetric iterative sslvéine same three
options for applying the preconditioning operation as foe Conjugate Gradient
(namely, left, split, and right preconditioning) are agble. However, there will be
one fundamental difference — the right preconditioningigers will give rise to what

is called aflexible variant i.e., a variant in which the preconditioner can change at
each step. This capability can be very useful in some apjita

9.3.1 Left-Preconditioned GMRES

As before, define the left preconditioned GMRES algoritheile GMRES algo-
rithm applied to the system,

M~ Az = M~ 'b. (9.9)

The straightforward application of GMRES to the above Imggstem yields the
following preconditioned version of GMRES.

ALGORITHM 9.4 GMRES with Left Preconditioning

1. Computerg = M_l(b — Al‘o), 6= H’r'()Hg andv; = T‘Q/ﬁ
2. Forj =1,...,m Do:

3. Computay := M~ Av;

4. Fori=1,...,7, Do:

5. hij = (w,v;)

6. w = w — hi,jvi

7. EndDo

8. Computeth,j = |lw]2 andvj+1 = w/hj-i-l,j

9. EndDo
10. DefineV,,, := [’Ul, L ,Um], H,, = {hi,j}1§i§j+1;1§j§m
11. Computey,, = argmin,||Be; — Hpyll2, andz, = zo + Vinym
12. If satisfied Stop, else se§ := x.,,, and GoTo 1

The Arnoldi loop constructs an orthogonal basis of the leftpnditioned Krylov
subspace
Span{rg, M1 Arg, ..., (M~tA)™ o).

It uses a modified Gram-Schmidt process, in which the newovéatbe orthogonal-
ized is obtained from the previous vector in the processresildual vectors and their
norms that are computed by the algorithm correspond to #mopditioned residuals,
namely,z,, = M~!(b — Ax,,), instead of the original (unpreconditioned) residuals
b — Ax,,. In addition, there is no easy access to these unprecomgliticesiduals,
unless they are computed explicitly, e.g., by multiplyihg preconditioned residu-
als by M .This can cause some difficulties if a stopping criterionelasn the actual
residuals, instead of the preconditioned ones, is desired.

9.3. PRECONDITIONED GMRES 283

Sometimes a Symmetric Positive Definite preconditionivigfor the nonsym-
metric matrix A may be available. For example, if is almost SPD, ther{{3.9)
would not take advantage of this. It would be wiser to compute@pproximate fac-
torization to the symmetric part and use GMRES with splitcpralitioning. This
raises the question as to whether or not a version of the pd&cmed GMRES can
be developed, which is similar to Algorithim ®.1, for the C@aithm. This version
would consist of using GMRES with th& -inner product for the systeri(9.9).

At step; of the preconditioned GMRES algorithm, the previeyss multiplied
by A to get a vector

w; = A’Uj. (910)

Then this vector is preconditioned to get
zj = M w;. (9.11)

This vector must bel/-orthogonalized against all previous's. If the standard
Gram-Schmidt process is used, we first compute the inneuptsd

hij = (Zj,’UZ')M = (sz7vi) = (UJj,Ui), 1= 17 s 7ja (912)

and then modify the vectar; into the new vector

J
éj = Zj_zhijvi- (913)
=1

To complete the orthonormalization step, the filamust be normalized. Because
of the orthogonality of; versus all previous;’s, observe that

(%5 2)m = (25, 25)m = (M~ wy, 25w = (wy,). (9.14)
Thus, the desired/-norm could be obtained frorir{3]14), and then we would set
hj+1,j = (2j7 Ujj)l/z and Vjy1 = éj/hj+1,j- (9.15)

One serious difficulty with the above procedure is that tneirproduct 2, 2;) v
as computed by{9.14) may be negative in the presence of toffind@here are two
remedies. First, thidZ-norm can be computed explicitly at the expense of an addi-
tional matrix-vector multiplication with\/. Second, the set of vectofdv; can be
saved in order to accumulate inexpensively both the vegtand the vectoi/ 2,
via the relation

J
MZ]' = wj; — E h,-jMvi.
i=1

A modified Gram-Schmidt version of this second approach @addrived easily.
The details of the algorithm are left as Exerdibe 8.

284 CHAPTER 9. PRECONDITIONED ITERATIONS

9.3.2 Right-Preconditioned GMRES
The right preconditioned GMRES algorithm is based on sglvin
AM 'y =b, uw=Mz. (9.16)

As we now show, the new variabtenever needs to be invoked explicitly. Indeed,
once the initial residudl — Azy = b— AM ~'ug is computed, all subsequent vectors
of the Krylov subspace can be obtained without any refereéadée u-variables.
Note thatug is not needed at all. The initial residual for the precondiéd system
can be computed fromy = b— Axg, which is the same ds— AM ~'v. In practice,

it is usually ¢ that is available, not,y. At the end, theu-variable approximate
solution to [Q.IB) is given by,

m
U, = Ug + § Vi
i=1

with ug = Mxg. Multiplying through byM —! yields the desired approximation in
terms of thez-variable,

m
T =30+ M™! [Z Uﬂ?z'] .
i—1

Thus, one preconditioning operation is needed at the enldeobiter loop, instead
of at the beginning in the case of the left preconditionedioer.

ALGORITHM 9.5 GMRES with Right Preconditioning

1. Computey = b — Axg, 8 = ||roll2, andvy = ¢/

2. Forj =1,...,m Do:

3. Computev := AM ',

4. Fori =1,...,5, Do:

5. h@j = (’LU,Q}Z‘)

6. wi=w — hi,j’UZ'

7. EndDo

8. Computeth,j = ||w||2 aanj_H = w/hj+17j

9. DefineV,, = [1)1, C ,Um], H,, = {hi,j}lgigj—l—l;lgjgm
10. EndDo
11. Computey,, = argminyHﬂel — Hpyllo, andz,, = xo + M=V, ym,.
12. If satisfied Stop, else se§ := x.,, and GoTo 1.

This time, the Arnoldi loop builds an orthogonal basis ofitigét preconditioned
Krylov subspace

Span{rg, AM rg,...,(AM ™1™ gl

Note that the residual norm is now relative to the initialteys, i.e.,b — Ax,,, Since
the algorithm obtains the residual- Az, = b — AM ~'u,,, implicitly. This is an
essential difference with the left preconditioned GMREgathm.

9.3. PRECONDITIONED GMRES 285

9.3.3 Split Preconditioning

In many cases)/ is the result of a factorization of the form
M = LU.
Then, there is the option of using GMRES on the split-pre@tmrkd system
LPAU Y=L, z=U 1w

In this situation, it is clear that we need to operate on tftelresidual byL ! at
the start of the algorithm and By —! on the linear combinatio;,y,,, in forming
the approximate solution. The residual norm availableas tfi L= (b — Ax,,).

A question arises on the differences between the right, defd split precondi-
tioning options. The fact that different versions of theidaals are available in each
case may affect the stopping criterion and may cause theithligoto stop either
prematurely or with delay. This can be particularly damggim caseM is very
ill-conditioned. The degree of symmetry, and thereforeqgrerance, can also be
affected by the way in which the preconditioner is appliecbr Example, a split
preconditioner may be much betterAfis nearly symmetric. Other than these two
situations, there is little difference generally betweka three options. The next
section establishes a theoretical connection betweeraheftright preconditioned
GMRES.

9.3.4 Comparison of Right and Left Preconditioning

When comparing the left, right, and split preconditioningtions, a first observa-
tion to make is that the spectra of the three associated topefd ~' A, AM !, and
L='AU! are identical. Therefore, in principle one should expecivecgence to
be similar, although, as is known, eigenvalues do not alwgaysrn convergence. In
this section, we compare the optimality properties aclidmeleft- and right precon-
ditioned GMRES.

For the left preconditioning option, GMRES minimizes thsideial norm

Mo — M~ Az,
among all vectors from the affine subspace
xo + KL = 2 + Span {20, M1 Az, ..., (MTA)™ 1z} (9.17)

in which z is the initial preconditioned residual = M ~'ry. Thus, the approxi-
mate solution can be expressed as

T = Tg + M_lsm_l(M_lA)zO
wheres,,,_1 is the polynomial of degree: — 1 which minimizes the norm

70 — M~ A s(M~"4)z0]l2

286 CHAPTER 9. PRECONDITIONED ITERATIONS

among all polynomialss of degree< m — 1. It is also possible to express this
optimality condition with respect to the original residwalctorry. Indeed,

20— M TTAS(M T A)zg =M [rg — As(MTA)YM o]
A simple algebraic manipulation shows that for any polyrelmj
s(MTAYM~Yr = M~ ts(AM ™), (9.18)
from which we obtain the relation
20— M P As(M ™Y A)zg = M~ [rg — AM's(AM ™)] . (9.19)

Consider now the situation with the right preconditioned RIES. Here, it is
necessary to distinguish between the originaériable and the transformed variable
u related tox by z = M ~'u. For theu variable, the right preconditioned GMRES
process minimizes the 2-norm of= b — AM ~'« whereu belongs to

uo + KB = ug + Span {ro, AM " trg, ..., (AM~1)" 1rg} (9.20)

in which g is the residualy = b — AM ~'wg. This residual is identical to the resid-
ual associated with the original variable sinceM ~'ug = zo. Multiplying @&20)
through to the left byl —! and exploiting agaif{3.18), observe that the generic vari-
ablex associated with a vector of the subspdce9.20) belonge taffime subspace

M~ ug + MUKE = 20 + Span {zo, M1 Azy ..., (M~EA)™ 120}

This is identical to the affine subspa€e(9.17) invoked ineftgoreconditioned vari-
ant. In other words, for the right preconditioned GMRES g@hproximater-solution
can also be expressed as

Ty = 20 + Sm_1(AM ™ 1)rg.
However, nows,,, 1 is a polynomial of degree: — 1 which minimizes the norm
|ro — AM ™Y s(AM ™)ro)| (9.21)

among all polynomials; of degree< m — 1. What is surprising is that the two
guantities which are minimized, namelfz_(9.19) abhd (P.2iffer only by a multi-
plication by M ~!. Specifically, the left preconditioned GMRES minimizks ' r,
whereas the right preconditioned variant minimizewherer is taken over the same
subspace in both cases.

Proposition 9.1 The approximate solution obtained by left or right precaiodied
GMRES is of the form

Tm = T + Sm_l(M_lA)ZO = X9+ M_lsm_l(AM_l)ro

wherezy = M~'ry and s,,,—; is a polynomial of degree» — 1. The polynomial
Sm—1 Minimizes the residual norigfb — Az,,||2 in the right preconditioning case,
and the preconditioned residual nordd/ —! (b — Ax,,)||2 in the left preconditioning
case.

9.4. FLEXIBLE VARIANTS 287

In most practical situations, the difference in the coneag behavior of the
two approaches is not significant. The only exception is whers ill-conditioned
which could lead to substantial differences.

9.4 Flexible Variants

In the discussion of preconditioning techniques so fass itmplicitly assumed that
the preconditioning matrix\/ is fixed, i.e., it does not change from step to step.
However, in some cases, no matfX is available. Instead, the operatidi—'z is
the result of some unspecified computation, possibly andtbeative process. In
such cases, it may well happen thdt~! is not a constant operator. The previous
preconditioned iterative procedures will not convergd/fis not constant. There
are a number of variants of iterative procedures developdle literature that can
accommodate variations in the preconditioner, i.e., thatvathe preconditioner to
vary from step to step. Such iterative procedures are cdldble” iterations. One

of these iterations, a flexible variant of the GMRES algaonitfis described next.

9.4.1 Flexible GMRES

We begin by examining the right preconditioned GMRES atgari In line 11 of
Algorithm the approximate solution,, is expressed as a linear combination
of the preconditioned vectorg = M ~'v;,i = 1,...,m. These vectors are also
computed in line 3, prior to their multiplication by to obtain the vectotv. They
are all obtained by applying the same preconditioning maltfi ' to thewv,’s. As a
result it is not necessary to save them. Instead, we only teadply M/ ~! to the
linear combination of the;’s, i.e., toV,,y,, in line 11.

Suppose now that the preconditioner could change at evepy sé., that; is
given by

AL
zJ—Mj vj.

Then it would be natural to compute the approximate solui®n
Tm = To + ZmYm

in which Z,,, = [z1,..., 2], andy,, is computed as before, as the solution to the
least-squares problem in line 11. These are the only chahgekead from the right
preconditioned algorithm to the flexible variant, desatilbbelow.

ALGORITHM 9.6 Flexible GMRES (FGMRES)

Computey = b — Axg, 3 = ||ro
Forj=1,...,m Do:
Computez; := M v
Computev := Az;
Fori=1,...,7, Do:
hij = (w,v;)
w =W — hi,jvi

2 andv1 = To/ﬂ

NO O WNR

288 CHAPTER 9. PRECONDITIONED ITERATIONS

8. EndDo
9. Computeth,j = ||w||2 anqij = w/hj—i-l,j
10. DefineZ,,, := [2’1, . ,Zm], H,, = {hi,j}lgigj-i-l;lgjgm
11. EndDo
12. Computey,, = argminyHﬂel — Hpyllo, andz,, = xo + Zmym.
13. If satisfied Stop, else se — x,, and GoTo 1.

As can be seen, the main difference with the right precamtiti version, Al-
gorithm[@3, is that the preconditioned vectofs= Mj‘lvj must be saved and the
solution updated using these vectors. Itis clear thatwiler= M forj = 1,...,m,
then this method is equivalent mathematically to Algoriff. It is important to ob-
serve that; can be defined in line 3 without reference to any precondtioithat
is, any given new vector; can be chosen. This added flexibility may cause the algo-
rithm some problems. Indeed; may be so poorly selected that a breakdown could
occur, as in the worst-case scenario whers zero.

One difference between FGMRES and the usual GMRES algoiighimt the
action ofAJ\/[j‘l on a vectorv of the Krylov subspace is no longer in the span of
Vina1. Instead, it is easy to show that

AZy = Vi1 Hy (9.22)

in replacement of the simpler relatiq@i M —1)V;,, = V,,+1 H,, which holds for
the standard preconditioned GMRES; de€l(6.7). As befdredenotes then x m
matrix obtained fron¥,,, by deleting its last row and;_; is the vectorw which is
normalized in line 9 of Algorithni. 816 to obtai ;. Then, the following alternative
formulation of [32P) is valid, even whéh,, ;1 ,,, = 0:

AZy = Vi Hpp + Oyl (9.23)

An optimality property similar to the one which defines GMRE& be proved.
Consider the residual vector for an arbitrary vectet zq + Z,,,y in the affine space
xo + span{Z,,}. This optimality property is based on the relations

b—Az = b— Alxo+ Zny)

= Bvl - Vm—i—lﬁmy
= VitilBer — Hpyl. (9.25)

If J,,(y) denotes the function
Im(y) = [1b— Alzo + Zmylll2,
observe that by[{9.25) and the fact thgt, ; is unitary,
Im(y) = [|Ber — Hmylla- (9.26)

Since the algorithm minimizes this norm over all vectarm R™ to yield y,,, it is
clear that the approximate solutiep, = xo + Z,,y,, has the smallest residual norm
in xog + Span{Z,, }. Thus, the following result is proved.

9.4. FLEXIBLE VARIANTS 289

Proposition 9.2 The approximate solution,,, obtained at stepn of FGMRES min-
imizes the residual norip — Az, ||2 overxzo + Span{Z,, }.

Next, consider the possibility of breakdown in FGMRES. Adkdown oc-
curs when the vector;; cannot be computed in line 9 of AlgorithinP.6 because
hjy1,; = 0. For the standard GMRES algorithm, this is not a problem ieeavhen
this happens then the approximate solutigris exact. The situation for FGMRES
is slightly different.

Proposition 9.3 Assume thatl = ||rg||2 # 0 and thatj — 1 steps of FGMRES have
been successfully performed, i.e., that, ; # 0 for 7 < j. In addition, assume that
the matrixf; is nonsingular. Them; is exact, if and only ifi;;1 ; = 0.

Proof. If hj1,; = 0,thenAZ; = V;H;, and as a result
Ji(y) = Bv1 — AZ;y;ll2 = [|Bvr — ViHjyjll2 = [|Ber — Hjyjlla.

If H; is nonsingular, then the above function is minimizedifpr= Hj‘l(ﬂel) and
the corresponding minimum norm reached is zero, i.gis exact.
Conversely, ifr; is exact, then from{3.23) and {2]24),

0=0b—Ax; = Vj[ﬁel — ijj] + @j+1e?yj. (9.27)

We must show, by contraction, that,; = 0. Assume that;;; # 0. Sinced;q,
vy, V9, ..., Uy, form an orthogonal system, then it follows from(9.27) that —
Hjy; =0 andefyj = 0. The last component gf; is equal to zero. A simple back-
substitution for the system;y; = (Bey, starting from the last equation, will show
that all components af; are zero. BecausH,, is nonsingular, this would imply that
£ = 0 and contradict the assumption. |

The only difference between this result and that of Projordf. T for the GM-
RES algorithm is that the additional assumption must be rtfeaté]; is nonsingular
since it is no longer implied by the nonsingularity 4f However,H,,, is guaranteed
to be nonsingular when all thg’s are linearly independent andl is nonsingular.
This is a consequence of a modification of the first part of Bsijpn[6.9. That same
proof shows that the rank of~7,,, is equal to the rank of the matrik,, therein. If
R,, is nonsingular and,,, 1 ,, = 0, thenH,, is also nonsingular.

A consequence of the above proposition is thatif = v;, at a certain step, i.e.,
if the preconditioning is “exact,” then the approximation will be exact provided
that /; is nonsingular. This is because = Az; would depend linearly on the
previousw;’s (it is equal tov;), and as a result the orthogonalization process would
y|6|d @j—i-l =0.

A difficulty with the theory of the new algorithm is that geakiconvergence
results, such as those seen in earlier chapters, cannobbedprThat is because the
subspace of approximants is no longer a standard Krylovpsules However, the

290 CHAPTER 9. PRECONDITIONED ITERATIONS

optimality property of Proposition 9.2 can be exploited am® specific situations.
For example, if within each outer iterati@t least oneof the vectors; is chosen to
be a steepest descent direction vector, e.g., for the amétiz) = ||b — Ax||3, then
FGMRES is guaranteed to converge independently. of

The additional cost of the flexible variant over the standdgerithm is only in
the extra memory required to save the set of vectarg,—i, . .,. Yet, the added
advantage ofiexibility may be worth this extra cost. A few applications can benefit
from this flexibility, especially in developing robust itgive methods or precondi-
tioners on parallel computers. Thuy iterative technique can be used as a pre-
conditioner: block-SOR, SSOR, ADI, Multi-grid, etc. Monetérestingly, iterative
procedures such as GMRES, CGNR, or CGS can also be used asditiemers.
Also, it may be useful to mix two or more preconditioners ttve@ given problem.
For example, two types of preconditioners can be appliedratively at each FGM-
RES step to mix the effects of “local” and “global” couplingsthe PDE context.

9.4.2 DQGMRES

Recall that the DQGMRES algorithm presented in Chajpter 8 aseincomplete
orthogonalization process instead of the full Arnoldi ogbnalization. At each step,

the current vector is orthogonalized only against khgrevious ones. The vectors
thus generated are “locally” orthogonal to each other, @i th;, v;) = 0;; for |i —

j| < k. The matrix H,, becomes banded and upper Hessenberg. Therefore, the
approximate solution can be updated at gtémm the approximate solution at step

j — 1 via the recurrence

-1
1 j

pi= v > rpi| s m =21+ D, (9.28)
77 i=j—k+1

in which the scalars; andr;; are obtained recursively from the Hessenberg matrix
H;.
An advantage of DQGMRES is that it is alfexible The principle is the same
as in FGMRES. In both cases the vectofs= Mj‘lvj must be computed. In the
case of FGMRES, these vectors must be saved and this reguirasstorage. For
DQGMRES, it can be observed that the preconditioned vectpmnly affect the
update of the vectop; in the preconditioned version of the update form{a{p.28),
yielding

j—1
1 -1
pj=— |M; v — TijDi
e
i=j—k+1

As a result,Mj‘lvj can be discarded immediately after it is used to upgaterhe
same memory locations can store this vector and the vegtoFhis contrasts with
FGMRES which requires additional vectors of storage.

9.5. PRECONDITIONED CG FOR THE NORMAL EQUATIONS 291

9.5 Preconditioned CG for the Normal Equations

There are several versions of the preconditioned Conjugeddient method applied
to the normal equations. Two versions come from the NR/NBopt and three other
variations from the right, left, or split preconditioningpteons. Here, we consider
only the left preconditioned variants.

The left preconditioned CGNR algorithm is easily deriveahfr Algorithm[3.]..
Denote byr; the residual for the original system, i.e;, = b — Ax;, and byr; =
ATrj the residual for the normal equations system. The predonei residuak;
is z; = M~'7;. The scalary; in Algorithm[@1 is now given by

o= z) ()
T (AT Apj,pj) (Apj, Ap;)
This suggests employing the auxiliary vector = Ap; in the algorithm which takes
the following form.

ALGORITHM 9.7 Left-Preconditioned CGNR

1. Computey = b — Axg, 79 = ATT‘(], 20 = M_lfo,po = 20.
2. Forj = 0, ..., until convergence Do:
3. wj; = Apj

4. aj = (25,75)/ llw;ll3

5. Tjt1 = X4 + a;p;g

6. Tjr1 =715 — oWy

7. 'Fj—i-l = ATT'j_H

8. Zj+1 = M_lfj_i_l

9. B = (zj+1,7j3+1)/ (25, 75)

0. Pj+1 = Zj+1 + Bp;

1. EndDo

~ =

Similarly, the linear systerd ATu = b, with z = ATw, can also be precondi-
tioned from the left, and solved with the preconditioned j0gate Gradient algo-
rithm. Here, it is observed that the update of theariable, the associatedvariable,
and two residuals take the form

w = z) o (%)
T (AATpp) (ATps, ATpj)

T
Uj41 = Uj + Qjpj < Tjp1 =T+ OéjA Dj

= — s AAT .,
rip1 =1 — ojAA p;
-1
Zjiyr =M "rjp

Thus, if the algorithm for the unknown is to be written, then the vector’ p; can

be used instead of the vectqgrg which are not needed. To update these vectors at
the end of the algorithm the relatign) ;1 = z; 1 + B;41p; in line 8 of Algorithm
must be multiplied through by”". This leads to the left preconditioned version
of CGNE, in which the notation has been changed to denote; ltiye vectorA” p;
invoked in the above derivation.

292 CHAPTER 9. PRECONDITIONED ITERATIONS

ALGORITHM 9.8 Left-Preconditioned CGNE

1. Computey = b — Axg, 29 = M_l’r'o, Po = ATZO.
2. Forj = 0,1,..., until convergence Do:
3. wj == Apj
4. aj = (2,75)/(pj: pj)
5. Tj+1 = Xj + ;pj
6. T’j+1 = T‘j — ozjwj
7. Zj+1 = M_ITJ'_H
8. Bj = (zj+1,7541)/ (%5, 75)
9. pj+1 = ATzj1 + Bjp;
10. EndDo

Not shown here are the right and split preconditioned vassishich are considered
in Exercisd®.

9.6 The Concus, Golub, and Widlund Algorithm

When the matrix is nearly symmetric, we can think of prectiading the system
with the symmetric part ofA. This gives rise to a few variants of a method known as
the CGW method, from the names of the three authors Concu&aluth [88], and
Widlund [313] who proposed this technique in the middle & 1970s. Originally,
the algorithm was not viewed from the angle of preconditigniWriting A = M —

N, with M = %(A + Af), the authors observed that the preconditioned matrix

M 'A=T-M'N

is equal to the identity matrix, plus a matrix which is skewrhitian with respect
to the M-inner product. It is not too difficult to show that the trig@nal matrix
corresponding to the Lanczos algorithm, appliediteith the M -inner product, has
the form
L —mn
ne 1 —ns
Ty = (9.29)
Tim—1 1 —Tim
m 1
As a result, a three-term recurrence in the Arnoldi procesbiained, which results
in a solution algorithm that resembles the standard prettondd CG algorithm
(Algorithm[@]).
A version of the algorithm can be derived easily. The develepts in Section
relating the Lanczos algorithm to the Conjugate Gradagorithm, show that
the vectorz;,; can be expressed as

Tj+1 = X5 + ;py.
The preconditioned residual vectors must then satisfydberrence

— -1
Zi+l = 25 — OéjM Apj

9.6. THE CONCUS, GOLUB, AND WIDLUND ALGORITHM 293

and if thez;’s are to beM-orthogonal, then we must have; —a; M~ Ap;, zj)y =
0. As aresult,
= Gz (15,2)
;= =

(M~1Apj, zj)m— (Apjs25)°
Also, the next search directiqn} is a linear combination of;; andp;,

pj+1 = zj+1 + Bp;-
SinceM ~! Ap; is orthogonal to all vectors itl;_1, a first consequence is that
(Apj,) = (M~ Apj,pj = Bimpj—1)n = (M~ Apj,pj)ar = (Ap;, pj)-
In addition, M~ Ap;,; must beM-orthogonal tg;, so that
Bj = —(M~" Azjr, pj)n /(M Apj, pi) -

The relationV/ ~1 A = I — M !N, the fact thatvV# = — N, and that(z 11, p;)m =
0 yield,

(M~ Azj1,pj)iw = —(M7'Nzjp1,pi)u = (241, M Npj)u
= —(zj41, M~ Apj)ar.
Finally, note thatV ~!Ap; = —-L(z;11 — z;) and therefore we have (note the sign
difference with the standard PCG algorithm)
g, = _Grnzivdu (i)
’ (2> 25)m (5, 75)

PROBLEMS

P-9.1 Show that the preconditioned matrix has the same eigersvéduall three precondi-
tioning options (left, right, and split) described in Seal@.1

P-9.2 Let a matrixA and its preconditionef! be SPD. Observing tha/ —' A is self-
adjoint with respect to thel inner-product, write an algorithm similar to AlgoritHm Pfdr
solving the preconditioned linear systevfi—' Az = M ~'b, using thed-inner product. The
algorithm should employ only one matrix-by-vector prodpet CG step.

P-9.3 In Sectior 3. 211, the split-preconditioned Conjugate @natdalgorithm, Algorithm
B4, was derived from the Preconditioned Conjugate Gradikgorithm[@]. The opposite
can also be done. Derive AlgoritHmP.1 starting from Algomi{3.2, providing a different
proof of the equivalence of the two algorithms.

P-9.4 Six versions of the CG algorithm applied to the normal equratican be defined. Two
versions come from the NR/NE options, each of which can beguditioned from left, right,
or on two sides. The left preconditioned variants have baéamngn SectiofL3l5. Describe the
four other versions: Right P-CGNR, Right P-CGNE, Split PNFG Split P-CGNE. Suitable
inner products may be used to preserve symmetry.

294 CHAPTER 9. PRECONDITIONED ITERATIONS

P-9.5 When preconditioning the normal equations, whether the N¥fFoform, two options
are available in addition to the left, right and split preditioners. These are “centered”
versions:

AM ATy =b, z=M"1ATu

for the NE form, and
ATM Az = ATM 1

for the NR form. The coefficient matrices in the above systamesall symmetric. Write
down the adapted versions of the CG algorithm for these ngtio

P-9.6 Let a matrixA and its preconditione#/ be SPD. The standard result about the rate
of convergence of the CG algorithm is not valid for the Prefitoned Conjugate Gradient
algorithm, AlgorithnT@JL. Show how to adapt this result bpleiting the M/-inner product.
Show how to derive the same result by using the equivalentecea Algorithm 3l and
Algorithm[@.2.

P-9.7 In Eisenstat's implementation of the PCG algorithm, therafien with the diagonal
D causes some difficulties when describing the algorithms Tan be avoided.

a. Assume that the diagonal of the preconditioning{316) is equal to the identity ma-
trix. How many operations are needed to perform one stepedPt®G algorithm with
Eisenstat’s implementation? Formulate the PCG schemaifocase carefully.

b. The rows and columns of the preconditioning madri>can be scaled so that the matrix
D of the transformed preconditioner, written in the fofm1j9i6 equal to the identity
matrix. What scaling should be used (the resultidgshould also be SPD)?

c. Assume that the same scaling of question b is also apgi¢tuet original matrixA.
Is the resulting iteration mathematically equivalent timgsAlgorithm[@.1 to solve the
system[[@lI7) preconditioned with the diagohx

P-9.4 Inorderto save operations, the two matriégs' E andD~' E” must be stored when
computingAv by Algorithm[@3. This exercise considers alternatives.

a. Consider the matri8 = DAD. Show how to implement an algorithm similaffal9.3
for multiplying a vectomw by B. The requirement is that onlg D~! must be stored.

b. The matrixB in the previous question is not the proper preconditionesioa of A by
the preconditionind{316). CG is used on an equivalent systgolving B but a further
preconditioning by a diagonal must be applied. Which oneW koes the resulting
algorithm compare in terms of cost and storage with an Atboribased o 813?

c. Itwas mentioned in Secti@@IP.2 thaneeded to be further preconditioned by *.
Consider the split-preconditioning option: CG is to be &upto the preconditioned
system associated with = D'/2AD'/?, Defining E = D~Y/2ED~1/2 show that,

C=(I-E)'Dy(I-B)yT+(I-FE)'+(U-E)T

where D5 is a certain matrix to be determined. Then write an analogulgo-
rithm using this formulation. How does the operationrtotompare with that
of Algorithm[@.3?

P-9.4 Assume that the number of nonzero elements of a matris parameterized by
Nz(Z) = an. How small shouldy be before it does not pay to use Eisenstat’s imple-
mentation for the PCG algorithm? What if the matrxis initially scaled so thaD is the
identity matrix?

9.6. THE CONCUS, GOLUB, AND WIDLUND ALGORITHM 295

P-9.5 Let M = LU be a preconditioner for a matriA. Show that the left, right, and
split preconditioned matrices all have the same eigengalDees this mean that the corre-
sponding preconditioned iterations will converge in (aa&ky the same number of steps?
(b) roughly the same number of steps for any matrix? (c) rbutie same number of steps,
except for ill-conditioned matrices?

P-9.6 Show that the relatiod.{3.1L8) holds for any polynonsiaind any vector-.
P-9.7 Write the equivalent of Algorithri@ 1 for the Conjugate Riesil method.

P-9.8 Assume that a Symmetric Positive Definite matixis used to precondition GMRES
for solving a nonsymmetric linear system. The main featofélse P-GMRES algorithm ex-
ploiting this were given in Section 8.2.1. Give a formal dgsteon of the algorithm. In
particular give a Modified Gram-Schimdt implementation.iftd The vectorsM v;’s must

be saved in addition to the’s.] What optimality property does the approximate solniat-
isfy? What happens if the original matrikis also symmetric? What is a potential advantage
of the resulting algorithm?

NOTES AND REFERENCES The preconditioned version of CG described in Algorifa i8.due to
Meijerink and van der Vors{{[208]. Eisenstat's implemeistatwas developed i [114] and is often
referred to ag€isenstat’s trick A number of other similar ideas are described1n]217].

Several flexible variants of nonsymmetric Krylov subspa&thods have been developed by sev-
eral authors simultaneously; see, elgo.] [22].1247], a&dl[2 There does not seem to exist a similar
technique for left preconditioned variants of the Krylovbospace methods. This is because the right-
hand sideM]flb of the preconditioned system now changes at each step. Potigdlexible variant
of the BCG methods cannot be developed because the shomtereoes of these algorithms rely on the
preconditioned operator being constant. However, it isipis to develop an analogue of DQGMRES
for QMR (or other quasi-minimization methods) using ideatiarguments, see e.d.[282], though,
as is expected, the global biorthogonality of the Lanczagsbeectors is sacrificed. Similarly, flex-
ible variants of the CG method have been developed by sacgfilobal optimality properties but
by tightening the flexibilty of the preconditioner, in aneattpt to preserve good, possibly superlinear,
convergence; seE[214] arfid [153].

The CGW algorithm can be useful in some instances, such as thleesymmetric part ofi can
be inverted easily, e.g., using fast Poisson solvers. @iker its weakness is that linear systems with
the symmetric part must be solved exactly. Inner-outerati@ans that do not require exact solutions
have been described by Golub and Overfon][150]. [|

296 CHAPTER 9. PRECONDITIONED ITERATIONS

Chapter 10

PRECONDITIONING TECHNIQUES

Finding a good preconditioner to solve a given sparse linear system is often viewed as a com-
bination of art and science. Theoretical results are rare and some methods work surprisingly
well, often despite expectations. A preconditioner can be defined as any subsidiary approximate
solver which is combined with an outer iteration technique, typically one of the Krylov subspace
iterations seen in previous chapters. This chapter covers some of the most successful techniques
used to precondition a general sparse linear system. Note at the outset that there are virtually
no limits to available options for obtaining good preconditioners. For example, preconditioners
can be derived from knowledge of the original physical problems from which the linear system
arises. However, a common feature of the preconditioners discussed in this chapter is that they
are built from the original coefficient matrix.

10.1 Introduction

Roughly speaking, a preconditioner is any form of impliciegplicit modification of
an original linear system which makes it “easier” to solvalgven iterative method.
For example, scaling all rows of a linear system to make thgatial elements equal
to one is an explicit form of preconditioning. The resultsygstem can be solved by
a Krylov subspace method and may require fewer steps to mmntban with the
original system (although this is not guaranteed). As arotixample, solving the
linear system
M~ Az = M

where M ~! is some complicated mapping that may involve FFT transfoiints-
gral calculations, and subsidiary linear system solutionay be another form of
preconditioning. Here, it is unlikely that the matr{ and)/ —' A can be computed
explicitly. Instead, the iterative processes operate witand with A/~ whenever
needed. In practice, the preconditioning operatidm® should be inexpensive to
apply to an arbitrary vector.

One of the simplest ways of defining a preconditioner is tégoer anincomplete
factorization of the original matrixA. This entails a decomposition of the form
A = LU — R where L andU have the same nonzero structure as the lower and
upper parts ofd respectively, andr is theresidualor error of the factorization. This
incomplete factorization known as ILU(O) is rather easy meatpensive to compute.
On the other hand, it often leads to a crude approximatiorchvimay result in the

297

298 CHAPTER 10. PRECONDITIONING TECHNIQUES

Krylov subspace accelerator requiring

many iterations to converge. To remedy this, several atemmincomplete fac-
torizations have been developed by allowing more fill-illiandU. In general, the
more accurate ILU factorizations require fewer iteratitm&onverge, but the pre-
processing cost to compute the factors is higher. Howelvenly because of the
improved robustness, these trade-offs generally favomibee accurate factoriza-
tions. This is especially true when several systems withsdmae matrix must be
solved because the preprocessing cost can be amortized.

This chapter considers the most common preconditioneid fosesolving large
sparse matrices and compares their performance. It begfimshe simplest precon-
ditioners (SOR and SSOR) and then discusses the more azsan@nts such as
ILUT.

10.2 Jacobi, SOR, and SSOR Preconditioners

As was seen in ChaptEr 4, a fixed-point iteration for solvirigear system
Arx =b

takes the general form
Tpyr = M N+ M1 (10.1)

whereM andN realize the splitting ofd into
A=M - N. (10.2)
The above iteration is of the form
Tpy1 = Grp + f (10.3)
wheref = M~'band

G = M'N=MYM-A)
= - M A (10.4)

Thus, for Jacobi and Gauss Seidel it has been shown that

Gja(A) = I-D'A (10.5)
Gas(A) = I—(D—-E)'A, (10.6)

whereA = D — E — F is the splitting defined in ChaptE} 4.
The iteration[TOR) is attempting to solve

(I-Grx=f (10.7)
which, because of the expressi@n(10.4)@rcan be rewritten as

M~YAz = M~ 1b. (10.8)

10.2. JACOBI, SOR, AND SSOR PRECONDITIONERS 299

The above system is thareconditioned systerassociated with the splittingl =
M — N, and the iteratior{T0L3) is nothing bufiged-point iteration on this precon-
ditioned system.

Similarly, a Krylov subspace method, e.g., GMRES, can bd tssolve [10B),
leading to a preconditioned version of the Krylov subspae&thod, e.g., precon-
ditioned GMRES. The preconditioned versions of some Kndabaspace methods
have been discussed in the previous chapter with a genertompditionerM. In
theory, any general splitting in which/ is nonsingular can be used. IdealR/
should be close td in some sense. However, note that a linear system with the ma-
trix M must be solved at each step of the iterative procedure. fidnierex practical
and admittedly somewhat vague requirement is that thes#iemd steps should be
inexpensive.

As was seen in ChaptEl 4, the SSOR preconditioner is defined by

Mssor = (D —wE)D YD — wF).

Typically, when this matrix is used as a preconditioners idt necessary to choose
w as carefully as for the underlying fixed-point iterationkifg «w = 1 leads to the
Symmetric Gauss-Seidel (SGS) iteration,

Msgs = (D — E)D™ (D — F). (10.9)

An interesting observation is that— £ is the lower part of4, including the diagonal,
andD — F'is, similarly, the upper part ofl.. Thus,

Msags = LU,
with
L=D-ED'=1-ED™', U=D-F.

The matrix L is unit lower triangular and/ is upper triangular. One question that
may arise concerns the implementation of the precondit@operation. To compute
w = Mg} g, proceed as follows:

solve (I —ED ')z =z,
solve (D — F)w = z.
A FORTRAN implementation of this preconditioning operatis illustrated in the

following code, for matrices stored in the MSR format ddsed in Chaptell3.
| FORTRAN CODE |

subroutine lusol (n,rhs,sol,luval,lucol,luptr,uptr)
real*8 sol(n), rhs(n), luval (%)
integer n, luptr(*), uptr(n)

Performs a forward and a backward solve for an ILU or
SSOR factorization, i.e., solves (LU) sol = rhs where LU
is the ILU or the SSOR factorization. For SSOR, L and U
should contain the matrices L = I - omega E inv(D), and U

o000

300

e e e lNe]

OO0 000000

O

[elelNe]

(e}

(e}

=D

CHAPTER 10. PRECONDITIONING TECHNIQUES

- omega F, respectively with -E = strict lower

triangular part of A, -F = strict upper triangular part

of

A, and D = diagonal of A.

PARAMETERS:

n
rhs
sol

luval

lucol
luptr

Dimension of problem

Right hand side; rhs is unchanged on return
Solution of (LU) sol = rhs.

Values of the LU matrix. L and U are stored
together in CSR format. The diagonal elements of
U are inverted. In each row, the L values are
followed by the diagonal element (inverted) and
then the other U values.

Column indices of corresponding elements in luval
Contains pointers to the beginning of each row in
the LU matrix.

uptr = pointer to the diagonal elements in luval, lucol

integer i,k
FORWARD SOLVE. Solve L . sol = rhs
doi=1,n
compute s0l(i) := rhs(i) - sum L(i,j) x sol(j)
sol(i) = rhs(i)
do k=luptr(i),uptr(i)-1
s0l1(i) = sol(i) - luval(k)* sol(lucol(k))

enddo
enddo

BACKWARD SOLVE. Compute sol := inv(U) sol
doi=mn, 1, -1
compute s0l(i) := sol(i) - sum U(i,j) x sol(j)
do k=uptr(i)+1, luptr(i+1)-1
sol(i) = sol(i) - luval(k)#*sol(lucol(k))
enddo
compute s0l(i) := sol(i)/ U(i,i)
s0l(i) = luval(uptr(i))*sol(i)
enddo

return
end

As was seen above, the SSOR or SGS preconditioning matrik tisecform
M = LU whereL andU have the same pattern as theart and the/-part of A4,
respectively. Herel-part means lower triangular part and, similarly, epart is
the upper triangular part. If the error matiik— LU is computed, then for SGS, for
example, we would find

A-LU=D—-FE-F—-(I-ED")YD-F)=-ED'F.

If L is restricted to have the same structure aslthgart of A andU is to have the

same structure as thié-part of A, the question is whether or not it is possible to find

10.3. ILU FACTORIZATION PRECONDITIONERS 301

L andU that yield an error that is smaller in some sense than the lomeea\We can,
for example, try to find such an incomplete factorization ek the residual matrix
A — LU has zero elements in locations wherdias nonzero entries.

This turns out to be possible in general and yields the ILEH6Yorization to be
discussed later. Generally, a pattern foandU can be specified and andU may
be sought so that they satisfy certain conditions. Thisddeadhe general class of
incomplete factorization techniques which are discussela next section.

Example 10.1. Table[IO1 shows the results of applying the GMRES algorithm
with SGS (SSOR withw = 1) preconditioning to the five test problems described
in Sectio). See Examgleb.1 for the meaning of the colueadérs in the table.

Matrix | Iters | Kflops | Residual Error

F2DA 38| 1986| 0.76E-03| 0.82E-04
F3D 20| 4870| 0.14E-02| 0.30E-03
ORS 110| 6755| 0.31E+00| 0.68E-04
F2DB | 300 | 15907 | 0.23E+02| 0.66E+00
FID 300 | 99070| 0.26E+02| 0.51E-01

Table 10.1: A test run of GMRES with SGS preconditioning.

Notice here that the method did not converge in 300 stepholaist two problems.
The number of iterations for the first three problems is redusubstantially from

those required by GMRES without preconditioning shown ibl&&.2. The total

number of operations required is also reduced, but not ptiopally because each
step now costs more due to the preconditioning operation. |

10.3

Consider a general sparse matdxwhose elements are;;,i,7 = 1,...,n. A
general Incomplete LU (ILU) factorization process computesparse lower trian-
gular matrix L and a sparse upper triangular mattixso that the residual matrix
R = LU — A satisfies certain constraints, such as having zero entrissme lo-
cations. We first describe a general ILU preconditioner gg:éoward) -matrices.
Then we discuss the ILU(0) factorization, the simplest foifrthe ILU precondition-
ers. Finally, we will show how to obtain more accurate faetions.

ILU Factorization Preconditioners

10.3.1

A general algorithm for building Incomplete LU factorizatis can be derived by per-
forming Gaussian elimination and dropping some elemenpsadetermined nondi-

Incomplete LU Factorizations

302 CHAPTER 10. PRECONDITIONING TECHNIQUES

agonal positions. To analyze this process and establisteexie forl/-matrices, the
following result of Ky Fan[[12R] is needed.

Theorem 10.1 Let A be anM-matrix and let4; be the matrix obtained from the
first step of Gaussian elimination. Theh is an A -matrix.

Proof. TheorenZI.32 will be used to establish that properties 1n@ 3atherein are
satisfied. First, consider the off-diagonal elementsl af

a1 Q15

1
A = aij —
aii

J
Sinceayj, a;1,a1; are nonpositive and;; is positive, it follows thatailj < 0 for
1.
Second, the fact that; is nonsingular is a trivial consequence of the following
standard relation of Gaussian elimination

Ay
A=11A4, where [;= —J,eg,eg,...en . (10.10)
ail

Finally, we establish thatéll‘1 iS nonnegative by examiningtl‘lej for j =

1,...,n. Forj = 1, itis clear thatAl‘lel = ﬁel because of the structure of
A;. For the casg # 1, (I0I0) can be exploited to yield

A1_1€j = A_lLl_lej = A_lej 2 0.

Therefore, all the columns 041‘1 are nonnegative by assumption and this completes
the proof. |

Clearly, the(n — 1) x (n — 1) matrix obtained fromd; by removing its first row and
first column is also aid/-matrix.

Assume now that some elements are dropped from the resubiagstan Elim-
ination outside of the main diagonal. Any element that ipdesd is a nonpositive
entry which is transformed into a zero. Therefore, the tgspimatrix A; is such
that

1211 = A1 + R,

where the elements dt are such that;; = 0,7;; > 0. Thus,
A < Ay

and the off-diagonal elements of; are nonpositive. Sincel; is an M-matrix,
theoren .33 shows that; is also an}/-matrix. The process can now be repeated
on the matrixA(2 : n,2 : n), and then continued until the incomplete factorization
of A is obtained. The above arguments shows that at each stes abtistruction,
we obtain anV/-matrix and that the process does not break down.

The elements to drop at each step have not yet been specifiesican be done
statically, by choosing some non-zero pattern in advanhe.onhly restriction on the

10.3. ILU FACTORIZATION PRECONDITIONERS 303

zero pattern is that it should exclude diagonal elementausexthis assumption was
used in the above proof. Therefore, for any zero pattersstich that

Pc{(i,j)]i#4;1<4,j< n}, (10.11)
an Incomplete LU factorization!,LUp, can be computed as follows.

ALGORITHM 10.1 General Static Pattern ILU

0. For eachi, j) € P seta;; =0

1. Fork=1,...,n—1 Do:

2. Fori =k + 1,n and if(i, k) ¢ P Do:

3. Qik = Qi) Ok

4, Forj =k+1,...,nandfor(i,j) ¢ P Do:
5. Q5 = Qg5 — A} * QA

6. EndDo

7. EndDo

8. EndDo

The initial step (step 0) is necessary for the case, raredntipe, when the zero
pattern ofA does not include the zero pattern definedfhyThe For loop in line 4
should be interpreted as followgorj = k + 1,...,n and only for those indicep
that are not inP execute the next lindn practice, it is wasteful to scginfrom k& + 1

to n because there is an inexpensive mechanism for identifyiogetindiceg that

are in the complement d@?. Using the above arguments, the following result can be
proved.

Theorem 10.2 Let A be an M-matrix and P a given zero pattern defined as in
(ITO.11). Then Algorithri—Id.1 does not break down and prosl@reincomplete
factorization,

A=LU-R

which is a regular splitting of4.

Proof. At each step of the process, we have
A=A+ Ry, Ap= LAy

where, usingD;, to denote a zero vector of dimensiénand A,,., ; to denote the
vector of components; j,i = m,...,n,

B 1 O T
Lk_[_ﬁ<,4(k+1:n,k)>ek'
kk

From this follow the relations

lekz = A+ R, = Lk;lk—l + Ry.

304 CHAPTER 10. PRECONDITIONING TECHNIQUES
Applying this relation recursively, starting frofn=n — 1 up tok = 1, itis found
that

Ap1=Lp ... 1A+ Ly 1...LoR1 + ...+ Ly 1Rn_2+ R,_1. (10.12)

Now define
L= (Ln_l...Ll)_l, U=A,_1.

Then,U = L™t A + S with
S=L, 1...LoR+ ...+ L, 1Ry, o+ Ry_1.

Observe that at stage elements are dropped only in the — k) x (n — k) lower
part of A;,. Hence, the firsk rows and columns oR;, are zero and as a result

Ln_1...Lys1Ry = Ln_1... LRy,
so thatS can be rewritten as
S=Lnp1...La(Ri+Ro+ ...+ Rp_1).
If R denotes the matrix
R=Ri+Ry+ ...+ Ry_1,

then we obtain the factorizatiod = LU — R, where(LU)™! = UL tis a

nonnegative matrixRk is nonnegative. This completes the proof. |
Accessed but not
=TT modified
: ~' Accessed and
=77 modified

B Not accessed

Figure 10.1: IKJvariant of the LU factorization.

Now consider a few practical aspects. An ILU factorizaticasdd on Algo-
rithm [IO1 is difficult to implement because at each dtepll rowsk + 1 to n are
being maodified. However, ILU factorizations depend on thplementation of Gaus-
sian elimination which is used. Several variants of Gauassianination are known

10.3. ILU FACTORIZATION PRECONDITIONERS 305

which depend on the order of the three loops associated methdntrol variables,
7, andk in the algorithm. Thus, AlgorithiaiI0.1 is derived from whakhown as the
k,i, 7 variant. In the context of Incomplete LU factorization, treiant that is most
commonly used for a row-contiguous data structure isittke;j variant, described
next for dense matrices.

ALGORITHM 10.2 Gaussian Elimination — IKJ Variant

1. Fori =2,...,n Do:

2. Fork=1,...,i—1 Do:

3. ik 2= Ak / Ok

4. Forj=k+1,...,n Do:
5. Qjj = Qjj — Qif * Qfj
6. EndDo

7. EndDo

8. EndDo

The above algorithm is in place in the sense thatittiferow of A can be over-
written by thei-th rows of theL. andU matrices of the factorization (sindeis unit
lower triangular, its diagonal entries need not be stor&thpi of the algorithm gen-
erates the-th row of L and thei-th row of U at the same time. The previous rows
1,2,...,i— 1 of L andU are accessed at stejput they are not modified. This is
illustrated in Figuré_T0l1.

Adapting this version for sparse matrices is easy becawseotirs of . andU
are generated in succession. These rows can be computed arniena and accu-
mulated in a row-oriented data structure such as the CSRatorfihis constitutes an
important advantage. Based on this, the general ILU fazatan takes the following
form.

ALGORITHM 10.3 General ILU Factorization, |KJVersion

1. Fori =2,...,n Do:

2. Fork =1,...,i—1andif(i,k) ¢ P Do:

3. ik = Qi Ok

4, Forj =k +1,...,nandfor(i,j) ¢ P, Do:
5. Q5 = Ajj — Qif Ay

6. EndDo

7. EndDo

8.

EndDo

It is not difficult to see that this more practical IKJvariaitiLU is equivalent to the
KIJversion which can be defined from AlgoritHm~10.1.

Proposition 10.3 Let P be a zero pattern satisfying the conditifn_(10.11). Then the
ILU factors produced by the KlJ-based Algorithm 10.1 and kK& -based Algo-
rithm[I0.3 are identical if they can both be computed.

306 CHAPTER 10. PRECONDITIONING TECHNIQUES

Proof. Algorithm[I0.3 is obtained from AlgorithinI0.1 by switchittge order of the
loopsk andi. To see that this gives indeed the same result, reformuiatérst two
loops of AlgorithmZION as

Fork = 1,n Do:
Fori = 1,n Do:
if k < and for(i,k) ¢ P Do:
ope(row(i),row(k))

in which ope(row(i),row(k))is the operation represented by lines 3 through 6 of both
Algorithm [I0.] and AlgorithniZI0I3. In this form, it is cledrat thek andi loops
can be safely permuted. Then the resulting algorithm carefeemulated to yield
exactly AlgorithmZIO.B. O

Note that this is only true for a static pattern ILU. If the teah is dynamically de-
termined as the Gaussian elimination algorithm procedds), the patterns obtained
with different versions of GE may be different.

It is helpful to interpret the result of one incomplete elation step. Denoting
by ., u;x, @nda;, thei-th rows of L, U, and A, respectively, then the-loop starting
at line 2 of AlgorithnTIO.B can be interpreted as followstisdly, we haveu;, = a;..
Then, each elimination step is an operation of the form

Ujs 1= Ui — Lk U

However, this operation is performed only on the nonzertepati.e., the comple-
ment of P. This means that, in reality, the elimination step takes

k
Uis 7= Ujse — ligUps + 7“1(*),

in which rgl.“) is zero when(i, j) ¢ P and equalsg;,ui; when(i,j) € P. Thus,

the rOWri(i65 cancels out the termig,«,;; that would otherwise be introduced in the
zero pattern. In the end the following relation is obtained:

i—1

Wjs = Qjx — Z (likuk* - Tgf)) :

k=1

Note thatl;;, = 0 for (i,k) € P. We now sum up all thegf)‘s and define

i—1
Tix = Z rlgf). (10.13)
k=1

The rowr;, contains the elements that fall inside tRepattern at the completion of
the k-loop. Using the fact that; = 1, we obtain the relation,

i
Qjs = Z Lik Wi — T (10.14)
k=1

Therefore, the following simple property can be stated.

10.3. ILU FACTORIZATION PRECONDITIONERS 307

Proposition 10.4 Algorithm[I0:3B produces factos andU such that
A=LU - R

in which — R is the matrix of the elements that are dropped during the rimgete
elimination process. Whefi,j) € P, an entryr;; of R is equal to the value of
—a;; obtained at the completion of theloop in AlgorithmIOB. Otherwise;; is
zero.

10.3.2 Zero Fill-in ILU (ILU(0))

Thelncomplete LUfactorization technique with no fill-in, denoted by ILU(@&kes
the zero patterd® to be precisely the zero pattern 4f In the following, we denote
by b; . thei-th row of a given matrixB, and by N Z(B), the set of pairg:, j),1 <
i,7 < nsuch thab; ; # 0. The ILU(0) factorization is best illustrated by the case fo
which it was discovered originally, namely, for 5-point aigboint matrices related
to finite difference discretization of elliptic PDEs. Cotesi one such matrid as
illustrated in the bottom left corner of Figure_1DD.2.

The A matrix represented in this figure is a 5-point matrix of size- 32 corre-
sponding to am, x n, = 8 x 4 mesh. Consider now any lower triangular matkix
which has the same structure as the lower par,aind any matrixU which has the
same structure as that of the upper parfioffwo such matrices are shown at the top
of Figure[IO.P. If the produckU were performed, the resulting matrix would have
the pattern shown in the bottom right part of the figure. Itnipossible in general
to matchA with this product for any. andU. This is due to the extra diagonals in
the product, namely, the diagonals with offseis— 1 and—n, + 1. The entries in
these extra diagonals are calfdin elements However, if these fill-in elements are
ignored, then it is possible to finll andU so that their product is equal tin the
other diagonals.

The ILU(0) factorization has just been defined in generahger Any pair of
matricesL (unit lower triangular) and/ (upper triangular) so that the elements of
A — LU are zero in the locations dVZ(A). These constraints do not define the
ILU(O) factors uniquely since there are, in general, inilyitmany pairs of matrices
L andU which satisfy these requirements. However, the standadgd)is defined
constructively using AlgorithriI0.3 with the pattefhequal to the zero pattern of
A.

ALGORITHM 10.4 ILU(0)

Fori =2,...,n Do:
Fork =1,...,i—1andfor(i,k) € NZ(A) Do:
Computen;, = a;x/agk
Forj =k+1,...,nandfor(i,j) € NZ(A), Do:
Computezij = Q5 — Qg Q-
EndDo
EndDo

NOOKAWN R

308 CHAPTER 10. PRECONDITIONING TECHNIQUES

Figure 10.2: The ILU(0) factorization for a five-point matri

8. EndDo

In some cases, it is possible to write the ILU(0) factorizatin the form
M= (D - E)D YD - F), (10.15)

where— E and—F are the strict lower and strict upper triangular partsiofnd D
is a certain diagonal matrix, different from the diagonal&fin general. In these
cases it is sufficient to find a recursive formula for deteingrthe elements iD.
A clear advantage is that only an extra diagonal of storagegsired. This form of
the ILU(O) factorization is equivalent to the incompletettaizations obtained from
Algorithm[I0.4 when the product of thetrict-lower partand thestrict-upper partof
A consists only of diagonal elements and fill-in elementssTéirue, for example,
for standard 5-point difference approximations to secorttopartial differential
operators; see Exercie 3. In these instances, both the $8&Bnditioner with
w = 1 and the ILU(0) preconditioner can be cast in the fofm (110. &) they differ
in the way the diagonal matrik is defined. For SSOR(= 1), D is the diagonal of
the matrixA itself. For ILU(0), it is defined by a recursion so that thegttinal of the
product of matriced{10.15) equals the diagonalofBy definition, together thé
andU matrices in ILU(0) have the same number of nonzero elemeriisesoriginal
matrix A.

10.3. ILU FACTORIZATION PRECONDITIONERS 309

Example 10.2. Table[IO.P shows the results of applying the GMRES algorithm
with ILU(0) preconditioning to the five test problems debed in Sectiof 317. See
Exampld&lL for the meaning of the column headers in the.table

Matrix | Iters | Kflops | Residual Error

F2DA 28| 1456| 0.12E-02| 0.12E-03
F3D 17| 4004 | 0.52E-03| 0.30E-03
ORS 20| 1228 0.18E+00| 0.67E-04
F2DB | 300| 15907| 0.23E+02| 0.67E+00
FID 206 | 67970| 0.19E+00| 0.11E-03

Table 10.2: A test run of GMRES with ILU(0) preconditioning.

Observe that for the first two problems, the gains relativihéoperformance of
the SSOR preconditioner in TalpleTl0.1 are rather small. Héoother three problems,
which are a little harder, the gains are more substantial. th&last problem, the
algorithm achieves convergence in 205 steps whereas SSD#tconvergence in
the 300 steps allowed. The fourth problem (F2DB) is still solvable by 1LU(0)
within the maximum number of steps allowed. |

For the purpose of illustration, below is a sample FORTRANefor computing
the incompletel, andU factors for general sparse matrices stored in the usual CSR
format. The real values of the resulting U factors are stored in the arrdyval,
except that entries of ones of the main diagonal of the umiefdriangular matrix
L are not stored. Thus, one matrix is needed to store theserdacigether. This
matrix is denoted by./U. Note that since the pattern @f/U is identical with that
of A, the other integer arrays of the CSR representation for thdactors are not
needed. Thusja(k), which is the column position of the elemeritt) in the input
matrix, is also the column position of the elemémtal(k) in the L/U matrix. The
code below assumes that the nonzero elements in the inptikmaare sorted by
increasing column numbers in each row.

| FORTRAN CODE

subroutine ilu0 (n, a, ja, ia, luval, uptr, iw, icode)
integer n, ja(x), ia(n+1l), uptr(n), iw(n)
real*8 a(x), luval(x)

Set-up routine for ILU(0) preconditioner. This routine
computes the L and U factors of the ILU(0) factorization
of a general sparse matrix A stored in CSR format. Since
L is unit triangular, the L and U factors can be stored
as a single matrix which occupies the same storage as A.
The ja and ia arrays are not needed for the LU matrix
since the pattern of the LU matrix is identical with
that of A.

O0O00000O0

310 CHAPTER 10. PRECONDITIONING TECHNIQUES
c INPUT
C —————o
cn = dimension of matrix
c a, ja, ia = sparse matrix in general sparse storage format
c iw = integer work array of length n
c OUTPUT:
C ——————
¢ luval = L/U matrices stored together. On return luval,
[ja, ia is the combined CSR data structure for
c the LU factors
c uptr = pointer to the diagonal elements in the CSR
[data structure luval, ja, ia
c icode = integer indicating error code on return
C icode = 0: normal return
¢ icode = k: encountered a zero pivot at step k
c
e
¢ initialize work array iw to zero and luval array to a
do 30 i =1, ia(n+1)-1
luval(i) = a(i)
30 continue
do 31 i=1, n
iw(i) =0
31 continue
Cm———————m— oo Main loop
do 500 k = 1, n
j1 = ia(k)
j2 = ia(k+1)-1
do 100 j=j1, j2
iw(ja(j)) = j
100 continue
=
150 jrow = ja(j)
Cm———mm———m——— oo Exit if diagonal element is reached
if (jrow .ge. k) goto 200
Cm————mmmo— oo Compute the multiplier for jrow.
tl = luval(j)*luval (uptr(jrow))
luval(j) = tl
Cm——————————————————— Perform linear combination
do 140 jj = uptr(jrow)+1l, ia(jrow+1)-1
jw = iw(ja(jj)g
if (jw .ne. 0) luval(jw)=luval(jw)-tlxluval(jj)
140 continue
j=j+t
if (j .le. j2) goto 150
Cm————mmmo—mo— oo Store pointer to diagonal element
200 uptr(k) = j
if (jrow .ne. k .or. luval(j) .eq. 0.0d0) goto 600
luval(j) = 1.0d0/luval(j)
Cm——————— Refresh all entries of iw to zero.
do 201 i = j1, j2
(a2 3
201 continue
500 continue
Cm—————————————————— oo Normal return
icode = 0
return
C————————m—— oo Error: zero pivot
600 icode = k

return
end

10.3. ILU FACTORIZATION PRECONDITIONERS 311

10.3.3 Level of Fill and ILU(p)

The accuracy of the ILU(0) incomplete factorization may me&uificient to yield an
adequate rate of convergence as shown in Examplé 10.2. Moueage Incomplete
LU factorizations are often more efficient as well as morabd¢. These more ac-
curate factorizations will differ from ILU(0) by allowingasne fill-in. Thus, ILU(1)
keeps the “first order fill-ins,” a term which will be explaohshortly.

To illustrate ILU{p) with the same example as before, the ILU(1) factorization
results from takingP to be the zero pattern of the product/ of the factorsL, U
obtained from ILU(0). This pattern is shown at the bottonhtigf Figure[TO.P. Pre-
tend that the original matrix has this “augmented” patt&i#,; (A). In other words,
the fill-in positions created in this product belong to thgraented pattertv Z; (A),
but their actual values are zero. The new pattern of the radtris shown at the
bottom left part of FigurEZI0 3. The factaks andU; of the ILU(1) factorization are
obtained by performing an ILU(Q) factorization on this “augnted pattern” matrix.
The patterns ofL; andU; are illustrated at the top of Figuke~ID.3. The new LU
matrix shown at the bottom right of the figure has now two add#l diagonals in
the lower and upper parts.

One problem with the construction defined in this illustratis that it does not
extend to general sparse matrices. It can be generalizedrbgucing the concept of
level of fill. A level of fill is attributed to each element that is procekbg Gaussian
elimination, and dropping will be based on the value of thellef fill. Algorithm
I0.2 will be used as a model, although any other form of GE eamsed.

The rationale is that the level of fill should be indicativetloé size: the higher
the level, the smaller the elements. A very simple model ipleyed to justify the
definition: A size ofe* is attributed to any element whose level of fillks where
e < 1. Initially, a nonzero element has a level of fill of one (thiglwe changed
later) and a zero element has a level of fillof An elementa;; is updated in line 5
of Algorithm[I0.2 by the formula

Aijj = Qjj — Qif X Qfj- (1016)
If lev;; is the current level of the elemeny;, then our model tells us that the size of
the updated element should be
Sizdaij) - Elevij o Elevik « elevkj — elevij - elevik—i—levkj.

Therefore, roughly speaking, the size @f will be the maximum of the two
sizese/®vs andelevitleve; and it is natural to define the new level of fill as,

levyj := min{lev;j, levy, + levy;}.

In the common definition used in the literature, all the le\dlfill are actually shifted
by —1 from the definition used above. This is purely for convengatnotation and
to conform with the definition used for ILU(0). Thus, initiallev;; = 0if a;; # 0,
andlev;; = oo otherwise. Thereafter, define recursively

levij = min{lev;j, leviy + levy; + 1}.

312 CHAPTER 10. PRECONDITIONING TECHNIQUES

Ly Uy
L "I
iz, ™. Fez. I
I== I=Ej I=E IEj
AugmentedA LUy

Figure 10.3: The ILU(1) factorization for a five-point matri

Definition 10.5 The initial level of fill of an element;; of a sparse matrix4 is
defined by
o 0 ifaij;«éo,ori:j
levij = { oo otherwise.
Each time this element is modified in line 5 of AlgorifamIL@s2evel of fill must be
updated by
levij = min{lev;j, levyy, + levy; + 1}. (10.17)

Observe that the level of fill of an element will never incredsiring the elimination.
Thus, ifa;; # 0 in the original matrixA, then the element in locatian; will have a
level of fill equal to zero throughout the elimination prages

An alternative way of interpreting the above definition ofli#vel can be drawn
from the graph model of Gaussian elimination, which is addat tool used in sparse
direct solvers. Consider the adjacency graptl) = (V, E) of the matrix A. At
the completion of steg — 1 of Gaussian elimination, nodds2, ...,k — 1 have
been eliminated. Let},_; the set of theé: — 1 vertices that are eliminated so far and
let v;, v; two vertices not inV;, i.e., such that,; > k. The vertexy; is said to be
reachable from the vertex; throughV;._; if there is a path in the (original) graph
G(A) which connects; to v;, in which all intermediate vertices are¥f}_;. The set
of all nodesv that are reachable fromthroughV),_; is denoted byReach(u, Vi—1).

10.3. ILU FACTORIZATION PRECONDITIONERS 313

Figure 10.4: Shortest path frojrto j whenk is added td/;,_;.

The fill-level of (i, j) at stepk — 1 is simply the length of the shortest path through
Vi—1 betweenv; andv;, minus 1. The initial fill-levels are defined as before, to be
zero when(i, j) € Vp and infinity otherwise. At the next steg)(nodek will be
added tol;,_; to getV,.. Now more paths are available and so the path lengths may
be shortened by taking paths that go through the new npde

If we use the shifted levels (all levels are increased by sa¢hat thdewv(i, j) is
the actual minimum path length) then, the shortest pathwsthe shortest of the old
shortest path and new possible paths throughA path throughvy is a path from
1 1o v, continued by a path fromy,, to j. Therefore, the new pathlength is indeed
min{lev;;, levyy, + levy; }. This is illustrated in FigurEZ10.4.

Another useful concept in sparse direct solution method$as of fill-path,
which is a path between two verticésind j, such that all the vertices in the path,
except the end pointsand;j, are numbered less thamand;. The following result is
well-known in sparse direct solution methods.

Theorem 10.6 There is a fill-in in entry(:, j) at the completion of the Gaussian
elimination process if and only if, there exists a fill-pattieen and ;.

For a proof sed [144,283]. As it turns out, a fill-in entry whittas level-of-fill value
p corresponds to fill-paths whose lengthpis- 1.

Theorem 10.7 At the completion of the ILU process, a fill-in entry in pasiti(s, ;)
has level-of-fill value if and only if there exists a fill-path of length+- 1 between
andj.

Proof. If there is a fill-path of lengthy, then from what said above on reachable sets,
itis clear thatev(a;;) < p. However/ev(a;;) cannot be< p, otherwise at some step
k we would have a path betweémnd; that is of length< p. Since path lengths do
not increase, this would lead to a contradiction. The cawes also true. Ifev(a;;)

is equal top then at the last step whenlev(a;;) was modified there was a path of
lengthp betweeni andj. |

The above systematic definition gives rise to a naturalegjyafor discarding ele-
ments. In ILUp), all fill-in elements whose level of fill does not exceedre kept.

314 CHAPTER 10. PRECONDITIONING TECHNIQUES

So using the definition of zero patterns introduced eatlierzero pattern for ILUK)
is the set
PP - {(17]) ‘ levij > p}’

wherelev;; is the level of fill value after all updateE{I0117) have beerfggmed.
The casep = 0 coincides with the ILU(O) factorization and is consisterithathe
earlier definition.

Since fill levels are is essentially path-lengths in the brapey are bounded
from above by (G) + 1 where the diameted(G) of a graphG is maximum possible
distanced(z, y) between two vertices andy of the graph

(G) = max{d(z,y) |z € V,y € V}.

Recall that the distancé(z, y) between vertices andy in the graph is the length of
the shortest path betweerandy.

Definition[IOD of fill levels is not the only one used in praeti An alternative
definition replaces the updating formula{10.17) by

levij = min{levj, max{levy, levy;} + 1}. (10.18)

In practical implementations of the ILW)factorization it is common to separate
the symbolic phase (where the structure of thendU factors are determined) from
the numerical factorization, when the numerical valuesaraputed. Here, a variant
is described which does not separate these two phases. fiolldveing description,
a;« denotes theé-th row of the matrixA, anda;; the (¢, j)-th entry of A.

ALGORITHM 10.5 ILU(p)

1 For all nonzero elements; definelev(a;;) = 0

2. Fori =2,...,n Do:

3. Foreactk =1,...,i — 1 and forlev(a;;) < p Do:

4. Computen;y, == a;/akk

5. Computai;, = Gy — Qg Qs -

6. Update the levels of fill of the nonzedg;’s using (10.117)
7. EndDo

8. Replace any element in rawvith lev(a;;) > p by zero

9. EndDo

There are a number of drawbacks to the above algorithm., Biestamount of fill-in
and computational work for obtaining the ILR)(factorization is not predictable for
p > 0. Second, the cost of updating the levels can be high. Mosbitaptly, the
level of fill-in for indefinite matrices may not be a good inalior of the size of the
elements that are being dropped. Thus, the algorithm magy ldrge elements and
result in an inaccurate incomplete factorization, in tRat LU — A is not small.
Experience reveals thah the averagehis will lead to a larger number of iterations
to achieve convergence. The techniques which will be desdiin Sectiof 1014 have
been developed to remedy these difficulties by producingnviete factorizations
with small errorR and controlled fill-in.

10.3. ILU FACTORIZATION PRECONDITIONERS 315

10.3.4 Matrices with Regular Structure

Often, the original matrix has a regular structure which barexploited to formu-
late the ILU preconditioners in a simpler way. Historicallycomplete factorization
preconditioners were developed first for such matriceberghan for general sparse
matrices. Here, we call a regularly structured matrix a ma&insisting of a small
number of diagonals. As an example, consider the diffusmmsection equation,
with Dirichlet boundary conditions

~Au+bVu = finQ
uw = 0ondf2

where() is simply a rectangle. As seen in Chagdier 2, if the above prokik dis-
cretized using centered differences, a linear system igirwdl whose coefficient
matrix has the structure shown in Figlire10.5. In terms ofthacils seen in Chap-
ter 4, the representation of this matrix is rather simple.crEew expresses the
coupling between unknowiand unknownsg + 1, i — 1 which are in the horizontal,
or z direction, and the unknownss+ m andi — m which are in the vertical, oy
direction. This stencil is represented in Figre 10.7. TésirddZ andU matrices
in the ILU(0) factorization are shown in Figure_T0.6. Now tlespective stencils of
theselL andU matrices can be represented at a mesh p@atshown in Figure1d.8.
The stencil of the produckU can be obtained easily by manipulating stencils

directly rather than working with the matrices they reprise

0172 Pm+1
B 02 V3

B3 03
AN

i Bi 0; Yi+1 Pitm

N

Pn)

Tn
U Bn 5n

Figure 10.5: Matrix resulting from the discretization of altiptic problem on a
rectangle.

Indeed, the-th row of LU is obtained by performing the following operation:
row;(LU) =1 x row;(U) + b; X row;—1(U) + e; X row;_,,(U).
This translates into a combination of the stencils assediafith the rows:

stencil;(LU) = 1 x stencil;(U) + b; x stencili_1(U) + e; x stencil;_n, (U)

316 CHAPTER 10. PRECONDITIONING TECHNIQUES

L U
1 di 92 fmt1
by
€m+1
In
9n
€n by 1 dy

Figure 10.6:L andU factors of the ILU(O) factorization for the 5-point matrik@vn
in Figure[I0.b.

in which stencil;(X) represents the stencil of the matikbased at the mesh point
labeledj.
This gives the stencil for theU rrgbatlix represented in FiguEeID.9.

®
Bi 5; Vit1
o ® ®
L d
Yo

Figure 10.7: Stencil associated with the 5-point matrixwahon Figure[I0.b.

In the figure, the fill-in elements are represented by squardsll other nonzero
elements of the stencil are filled circles. The ILU(0) pracesnsists of identifying
LU with A'in locations where the original;;'s are nonzero. In the Gaussian elimina-
tion process, this is done froin= 1 to ¢ = n. This provides the following equations
obtained directly from comparing the stencils of LU aAdgoing from lowest to
highest indices)

eidi—m = 1

bidi-1 = [

di+bigi+efi = 6
gi+1 = i+l

fi—l—m = Pi+m-

10.3. ILU FACTORIZATION PRECONDITIONERS 317

fz'+m
®
b; 1 d; gi+1
[| | @

Figure 10.8: Stencils associated with thendU factors shown in FigurieZI.6.

bi fixm—1 fitm

/di +bigi +eifi
® Gi+1

bid;—1

eidi_m €ifi—m+1

Figure 10.9: Stencil associated with the product of theand U factors shown in
Figure[1IO.b.

Observe that the elemengs, ; and f;,, are identical with the corresponding ele-
ments of thed matrix. The other values are obtained from the followingureence:

o —
’ di—m
Bi
b, =
di—1

di = 0; —bigi —eifi.

The above recurrence can be simplified further by making beemwvation that the
quantitiesn; /d;—,, andf;/d;—1 need not be saved since they are scaled versions of
the corresponding elements ih With this observationpnly a recurrence for the
diagonal elementd; is neededThis recurrence is:

Bivi M =1
di-1 di—m

with the convention that any; with a non-positive index is replaced byl, the
entriesg;,i < 1, v,i < 1, ¢4, < m, andn;,i < m, are zero. The factorization

o, (10.19)

318 CHAPTER 10. PRECONDITIONING TECHNIQUES

obtained takes the form
M= (D—-E)D™Y(D-F) (10.20)

in which — E is the strict lower diagonal ofl, — F' is the strict upper triangular part
of A, andD is the diagonal obtained with the above recurrence. Noteatiné_U(0)
based on the IKJversion of Gaussian elimination would dreesame result.

For a general sparse matrik with irregular structure, one can also determine
a preconditioner in the fornr_-{TIO.R0) by requiring only thia¢ diagonal elements
of M match those ofA (see ExercisEl8). However, this will not give the same ILU
factorization as the one based on the |KJvariant of Gausdiiamation seen earlier.
Why the ILU(0) factorization gives rise to the same factatian as that of[{10.20)
is simple to understand: The product bfand U does not change the values of
the existing elements in the upper part, except for the dialgoThis also can be
interpreted on the adjacency graph of the matrix.

This approach can now be extended to determine the ILU(19rization as well
as factorizations with higher levels of fill. The stencilstbé L. andU matrices in
the ILU(1) factorization are the stencils of the lower partl aipper parts of the LU
matrix obtained from ILU(0). These are shown in Figlite ID.lk0the illustration,
the meaning of a given stencil is not in the usual graph theense. Instead, all
the marked nodes at a stencil based at notepresent those nodes coupled with
unknown: by an equation. Thus, all the filled circles in the picture adgcent to
the central node. Proceeding as before and combining ktendorm the stencil
associated with the LU matrix, we obtain the stencil showRigure[IO.TIL.

Pitm—1 fitm
b; 1 d; gi+1
o] o @

€ &

Figure 10.10: Stencils of thel. and U factors for the ILU(O) factorization of the
matrix represented by the stencil of Figlire 10.9.

As before, the fill-in elements are represented by squamslanther elements
are filled circles. A typical row of the matrix associatedwibhe above stencil has
nine nonzero elements. Two of these are fill-ins, i.e., efegmthat fall outside the
original structure of the, andU matrices. It is now possible to determine a recur-
rence relation for obtaining the entries bfandU. There are seven equations in all
which, starting from the bottom, are

eidi—m = 1

10.3. ILU FACTORIZATION PRECONDITIONERS 319

Pitm—1 4 bi fixm—1

biliym—2 itm

di +bigi + eifi + cih;
gi+1 + cifira

bidi—1 + e;hi—1

[
eidi—m I Cigi—m+1
€iJi—m+1 T+ Cidi—my1

Figure 10.11:Stencil associated with the product of theand U matrices whose
stencils are shown in Figute_T0110.

€igi—m+1 + Cidi—m+1 = 0
bidi—1 +eihi-1 = [
di +bigi +eifi +cihy = 6
gir1t+cifin = vin
hivm—1+bifizm—1 = 0
fi4m = Pitm-

This immediately yields the following recurrence relatfionthe entries of the. and
U factors:

ei = Ni/di—m
ci = —€Gi-m+1/di—mi1
bi = (Bi —eihi1)/dia
di = 0;—bigi—eifi—cihi
git1 = Yit1 — Cifit1
hiym—1 = —bifirm-
fi4m = Pitm-

In proceeding from the nodes of smallest index to those gektrindex, we are in
effect performing implicitly the 1KJversion of Gaussianngination. The result of
the ILU(1) obtained in this manner is therefore identicalhwhat obtained by using
Algorithms[I0.1 an@Z1013.

10.3.5 Modified ILU (MILU)

In all the techniques thus far, the elements that were dibppéduring the incom-
plete elimination process are simply discarded. There lacetachniques which at-

320 CHAPTER 10. PRECONDITIONING TECHNIQUES

tempt to reduce the effect of dropping bgmpensatindor the discarded entries. For
example, a popular strategy is to add up all the elementshthag been dropped at
the completion of thé-loop of Algorithm[I0.B. Then this sum is subtracted from the
diagonal entry irlJ. Thisdiagonal compensatiostrategy gives rise to the Modified
ILU (MILU) factorization.

Thus, in equation[{10.13), the final raw, obtained after completion of thie
loop of Algorithm[IO.B undergoes one more modification, ngme

Uy; 1= Uy — (Tixe)

inwhiche = (1,1,...,1)”. Note that;, is a row and-;.e is the sum of the elements
in this row, i.e., itsrow sum The above equation can be rewritten in row form as
uix = uix — (rixe)el and equation{10.14) becomes

Qjx = Z LikUps + (T’i*e)GZT — Tix- (10.21)
k=1

Observe that

i i-1
e = g Lirugse + (ri*e)eiTe — 1€ = g lirupse = LU e.
k=1 k=1

This establishes thate = LUe. As a result, this strategy guarantees that the row
sums ofA are equal to those akU. For PDEs, the vector of all ones represents
the discretization of a constant function. This additiooahstraint forces the ILU
factorization to be exact for constant functions in somesserT herefore, it is not
surprising that often the algorithm does well for such peaid. For other problems
or problems with discontinuous coefficients, MILU algonith usually are not better
than their ILU counterparts, in general.

Example 10.3. For regularly structured matrices there are two elemerdpird
at thei-th step of ILU(0). These arg f;1,,_1 ande;g; 11 located on the north-
west and south-east corners of the stencil, respectivelws,Tthe row sum; ..e
associated with stejis

_ Bibitm—1 4 m—ig
di—1 di—m

and the MILU variant of the recurrende{10.19) is

Si

Bibitm—1 . NiVYm—i+1

s, = +

! di—1 di—m
Bivi M

4 = &L e

' "dicr diem K

10.4. THRESHOLD STRATEGIES AND ILUT 321

The new ILU factorization is now such that = LU — R in which according to
(I021) thei-th row of the new remainder matri® is given by

rgfkew) = (rise)el — 1y
whose row sum is zero.

This generic idea of lumping together all the elements dedgp the elimination
process and adding them to the diagonallotan be used foany form of ILU
factorization. In addition, there are variants of diagar@hpensation in which only
a fraction of the dropped elements are added to the diagdimals, the terns; in
the above example would be replaceddy; before being added te;;, wherew
is typically between 0 and 1. Other strategies distribugesiiims; among nonzero
elements ofl andU, other than the diagonal.

10.4 Threshold Strategies and ILUT

Incomplete factorizations which rely on the levels of fikdnlind to numerical values
because elements that are dropped depend only on the stro€td. This can cause
some difficulties for realistic problems that arise in mapplaations. A few alter-
native methods are available which are based on droppimgesis in the Gaussian
elimination process according to their magnitude rathanttieir locations. With
these techniques, the zero pattétris determined dynamically. The simplest way
to obtain an incomplete factorization of this type is to takeparse direct solver
and modify it by adding lines of code which will ignore “sniaflements. How-
ever, most direct solvers have a complex implementatiool\invg several layers of
data structures that may make this approach ineffectivis. désirable to develop a
strategy which is more akin to the ILU(0) approach. Thisisectiescribes one such
technique.

10.4.1 The ILUT Approach

A generic ILU algorithm with threshold can be derived frora K Jversion of Gaus-
sian elimination, AlgorithniZI012, by including a set of miltor dropping small el-
ements. In what followsapplying a dropping rule to an elemenmnill only mean
replacing the element by zero if it satisfies a set of criteAadropping rule can be
applied to a whole row by applying the same rule to all the eleis of the row. In
the following algorithmuw is a full-length working row which is used to accumulate
linear combinations of sparse rows in the elimination ands thek-th entry of this
row. As usualga;,. denotes thé-th row of A.

ALGORITHM 10.6 ILUT

Fori =1,...,n Do:
W = A%
Fork =1,...,i — 1 and whenw; # 0 Do:
wy, := wy/agg

ARWOWNR

322 CHAPTER 10. PRECONDITIONING TECHNIQUES

5. Apply a dropping rule tavy,
6. If wy, 75 0 then
7 W= W — Wk * U
8. EndIf
9. EndDo
10. Apply a dropping rule to row
11. li7j2:wjf0rj:1,...,i—1
12. wiji=wjforj=i,....,n
13. w:=10
14. EndDo

Now consider the operations involved in the above algoritiome 7 is a sparse
update operation. A common implementation of this is to uieél &ector forw and
a companion pointer which points to the positions of its mvazlements. Similarly,
lines 11 and 12 are sparse-vector copy operations. Thervedtfilled with a few
nonzero elements after the

completion of each outer loo and therefore it is necessary to zero out those
elements at the end of the Gaussian elimination loop as is ololne 13. This is a
sparseset-to-zermperation.

ILU(0) can be viewed as a particular case of the above algurifThe dropping
rule for ILU(O) is to drop elements that are in positions neliomging to the original
structure of the matrix.

In the factorization ILUTY, 1), the following rule is used.

1. Inline 5, an elemeniy, is dropped (i.e., replaced by zero) if it is less than the
relative tolerance; obtained by multiplyingr by the original norm of the-th
row (e.g., the 2-norm).

2. In line 10, a dropping rule of a different type is appliedirsE drop again
any element in the row with a magnitude that is below the ikgablerance
7;. Then, keep only the largest elements in the part of the row and the
largest elements in th&€ part of the row in addition to the diagonal element,
which is always kept.

The goal of the second dropping step is to control the numbelements per row.
Roughly speakingy can be viewed as a parameter that helps control memory usage,
while 7 helps to reduce computational cost. There are severalbp@ssiriations
on the implementation of dropping step 2. For example we &plka number of
elements equal tou(i) + p in the upper part andi (i) + p in the lower part of the
row, wherenl(i) andnu(i) are the number of nonzero elements in theart and the

U part of thei-th row of A, respectively. This variant is adopted in the ILUT code
used in the examples.

Note that no pivoting is performed. Partial (column) pingtimay be incor-
porated at little extra cost and will be discussed laters HIso possible to combine
ILUT with one of the many standard reorderings, such as tetedalissection order-
ing or the reverse Cuthill-McKee ordering. Reordering ia tontext of incomplete

10.4. THRESHOLD STRATEGIES AND ILUT 323

factorizations can also be helpful for improving robustesovided enough accu-
racy is used For example, when a red-black ordering is used, ILU(O) nesg Ito
poor performance compared with the natural ordering ILU@©h the other hand,
if ILUT is used by allowing gradually more fill-in, then the ff@rmance starts im-
proving again. In fact, in some examples, the performandeldt for the red-black
orderingeventually outperformthat of ILUT for the natural ordering using the same
parameterp andr.

10.4.2 Analysis

Existence theorems for the ILUT factorization are simitathose of other incom-
plete factorizations. If the diagonal elements of the oadjmatrix are positive while
the off-diagonal elements are negative, then under cedaditions of diagonal
dominance the matrices generated during the eliminatidnhave the same prop-
erty. If the original matrix is diagonally dominant, theretttransformed matrices will
also have the property of being diagonally dominant undeaieconditions. These
properties are analyzed in detail in this section.

The row vectorw resulting from line 4 of Algorithn_I016 will be denoted by
1. Note thatu’“;rl = 0 for j < k. Lines 3 to 10 in the algorithm involve a

%

sequence of operations of the form

lig == ufk/ukk (10.22)
if |l;x] small enough set [;; =0
else:
uf T =l — L — 1l j=k+1,...,n (10.23)
for k = 1,...,¢ — 1, in which initially u}* = a; and Whererl’?j is an element

subtracted from a fill-in element which is being droppedhtildd be equal either to
zero (no dropping) or t@L — lirur; when the elememz’“rl is being dropped. At
the end of the-th step of Gaussmn elimination (outer Ioop in Algorithma)0 we
obtain thei-th row of U,

Ujs = uﬁ_L* (10.24)

and the following relation is satisfied:

[
k
Qg = 5 lk,jui,* + 7%
k=1

wherer; , is the row containing all the fill-ins.

The existence result which will be proved is valid only fortaegn modifications
of the basic ILUTp, 7) strategy. We consider an ILUT strategy which uses the fol-
lowing modification:

e Drop Strategy Modification. For any: < n, leta; ;, be the element of largest
modulus among the elemenig;, j = i + 1,...n, in the original matrix.

324 CHAPTER 10. PRECONDITIONING TECHNIQUES

Then elements generated in positiany;) during the ILUT procedure are not
subject to the dropping rule.

This modification prevents elements generated in positio) from ever being
dropped. Of course, there are many alternative stratelgggscan lead to the same
effect.

A matrix H whose entrieg;; satisfy the following three conditions:

hi; >0 for 1<i<n and h,, >0 (10.25)
hij <0 for 4,5=1,...,n and i# j; (10.26)
> hy<0, for 1<i<n (10.27)
J=i+1

will be referred to as ai/ matrix. The third condition is a requirement that there be
at least one nonzero element to the right of the diagonaleérm each row except
the last. The row sum for theth row is defined by

TS(hi7*) = hi7*€ = Z h@j.
j=1

A given row of an} matrix H is diagonally dominantif its row sum is nonnegative.
An M matrix H is said to be diagonally dominant if all its rows are diaggnal
dominant. The following theorem is an existence result EadT. The underlying

assumption is that an ILUT strategy is used with the modificatnentioned above.

Theorem 10.8 If the matrix A is a diagonally dominanf\/ matrix, then the rows
uf, k = 0,1,2,... i defined by[I023) starting with?, = 0 andu}, = a;.

Ty

satisfy the following relations fak = 1,... 1
ui; <0 j A (10.28)
rs(uf,) > rs(uf ;) >0, (10.29)
uf, >0 when i<n and uf, >o0. (10.30)

Proof. The result can be proved by induction bnlt is trivially true for k = 0. To
prove that the relatiod (I0.P8) is satisfied, start from tiation

k+1 .k k
ik T ui,* - lik’uk,* — Tx

in which l;; < 0,uy; < 0. Eitherr¥, is zero which yieldsu);™ < uf < 0, or

rfj is nonzero which means thealfjrl is being dropped, i.e., replaced by zero, and

therefore agaimfjrl < 0. This established{I0.P8). Note that by this argument
rfj = (0 except when thg-th element in the row is dropped, in which caéﬁl =0

10.4. THRESHOLD STRATEGIES AND ILUT 325

andr ufj lLigug,; < 0. Thereforerfj < 0, always. Moreover, when an element

in posmon(z j) is not dropped, then

k+1 .
i = z, —llkukjgu

and in particular by the rule in the modification of the basicesme described above,
for i < n, we will always have foy = j;,

uF <k (10.31)

JL — Ji

in which j; is defined in the statement of the modification.
Consider the row sum af¥!. We have

rs(ug) rs(uf,) =l rs(up.) —rs(rf)
> rs(uﬁ*) — L rs(upx) (10.32)
> rs(uﬁ*) (10.33)

which establishe§ {10.P9) far+ 1.
It remains to prove{10.30). Frofa{10129) we have,ifer n,

A D D D Dl [(10.34)
Jj=k+1,n j=k+1n

> |ul Y > fuly] > (10.35)

> ui | = laig,|- (10.36)

Note that the inequalities if.(I0I35) are true becaufse is never dropped by as-
sumptlon and, as a resulE{10.31) applies. By the cond(ﬂEﬁZ]) which defines
;| 1s positive fori < n. Clearly, wheni = n, we have by[(10.34)
Uuny > 0. This completes the proof. |

The theorem does not mean that the factorization is efiectily when its condi-
tions are satisfied. In practice, the preconditioner is iefficunder fairly general
conditions.

10.4.3 Implementation Details

A poor implementation of ILUT may well lead to an expensivet@aization phase,
and possibly an impractical algorithm. The following is st bf the potential diffi-
culties that may cause inefficiencies in the implementabiolh. UT.

1. Generation of the linear combination of rows4fLine 7 in Algorithm[I0.®).
2. Selection of the largest elements in andU..

3. Need to access the elementsioin increasing order of columns (in line 3 of
Algorithm [I0.8).

326 CHAPTER 10. PRECONDITIONING TECHNIQUES

For (1), the usual technique is to generate a full row andractaie the linear com-
bination of the previous rows in it. The row is zeroed agaierathe whole loop is
finished using a sparse set-to-zero operation. A variatiothis technique uses only

a full integer arrayjr(1 : n), the values of which are zero except when there is a
nonzero element. With this full row, a short real vecidn : mazw) must be main-
tained which contains the real values of the row, as well asreesponding short
integer arrayjw(1 : mazw) which points to the column position of the real values
in the row. When a nonzero element resides in positiohthe row, thenjr(j) is set

to the addres$ in w, jw where the nonzero element is stored. Thias(k) points

to jr(j), andjr(y) points tojw(k) andw(k). This is illustrated in FigurEZ10.12.

/7. NONZEero
ol1lo/2|0|0|3|of4|l0|0| 0| 0|indicator

2|1 41| 7| 9 | jw: pointer to nonzero elements

x | x| x| x | w: real values

Figure 10.12: lllustration of data structure used for thekig row in ILUT.

Note thatjr holds the information on the row consisting of both theart and
the U part of the LU factorization. When the linear combinatiorighe rows are
performed, first determine the pivot. Then, unless it is smr@bugh to be dropped
according to the dropping rule being used, proceed with lingretion. If a new
element in the linear combination is not a fill-in, i.e.;jif(j) = k& # 0, then update
the real valuev (k). Ifitis afill-in (jr(j) = 0), then append an element to the arrays
w, jw and updatgr accordingly.

For (2), the natural technique is to employ a heap-sortegiyatThe cost of this
implementation would b&(m + p x log, m), i.e.,O(m) for the heap construction
and O(log, m) for each extraction. Another implementation is to use a fiexi
quick-sort strategy based on the fact that sorting the asragt necessary.

Only the largesp elements must be extracted. This iguack-splittechnique to
distinguish it from the full quick-sort. The method consist choosing an element,
e.g.,.x = w(1), inthe arrayw(1 : m), then permuting the data so that(k)| < |z| if
k < midand|w(k)| > |z| if kK > mid, wheremid is some split point. linid = p,
then exit. Otherwise, splitne of the left or right sub-arrayecursively, depending
on whethemid is smaller or larger thap. The cost of this strateggn the average
is O(m). The savings relative to the simpler bubble sort or insertiort schemes
are small for small values gf, but they become rather significant for laggandm.

The next implementation difficulty is that the elements ia thpart of the row
being built are not in an increasing order of columns. Sihesé elements must be
accessed from left to right in the elimination process, Eirents in the row after
those already eliminated must be scanned. The one witheshalblumn number

10.4. THRESHOLD STRATEGIES AND ILUT 327

is then picked as the next element to eliminate. This operatan be efficiently
organized as a binary search tree which allows easy inaeriad searches. This
improvement can bring substantial gains in the case wheuraiecfactorizations are
computed.

Example 10.4. Tables[TOB anf1d.4 show the results of applying GMRES(10)
preconditioned with ILUT(110~%) and ILUT(5 10~%), respectively, to the five test
problems described in SectibnB.7. See Exafple 6.1 for ttanimg of the column
headers in the table. As shown, all linear systems are novedoh a relatively
small number of iterations, with the exception of F2DB whétii takes 130 steps

to converge witHfil = 1 (but only 10 withlfil = 5.) In addition, observe a marked
improvement in the operation count and error norms. Notetklieaoperation counts
shown in the column Kflops do not account for the operatiogsired in the set-up
phase to build the preconditioners. For large valud§ilafthis may be large. O

Matrix | Iters | Kflops | Residual Error
F2DA 18 964 | 0.47E-03| 0.41E-04
F3D 14| 3414| 0.11E-02| 0.39E-03

ORS 6 341 | 0.13E+00| 0.60E-04
F2DB | 130| 7167 | 0.45E-02| 0.51E-03
FID 59| 19112 0.19E+00| 0.11E-03

Table 10.3: A test run of GMRES(10)-ILUT(10~*) preconditioning.

If the total time to solve one linear system withis considered, a typical curve
of the total time required to solve a linear system wherfthparameter varies would
look like the plot shown in FigureZIOL3. Afd increases, a critical value is reached
where the preprocessing time and the iteration time arele@®&yond this critical
point, the preprocessing time dominates the total time.hdfe¢ are several linear
systems to solve with the same matrixthen it is advantageous to use a more accu-
rate factorization, since the cost of the factorization & amortized. Otherwise, a
smaller value offil will result in a more efficient, albeit also less reliablenru

10.4.4 The ILUTP Approach

The ILUT approach may fail for many of the matrices that afisen real applica-
tions, for one of the following reasons.

1. The ILUT procedure encounters a zero pivot;

2. The ILUT procedure encounters an overflow or underflow ttimmg because
of an exponential growth of the entries of the factors;

328 CHAPTER 10. PRECONDITIONING TECHNIQUES

Matrix | Iters | Kflops | Residual Error
F2DA 7 478 | 0.13E-02| 0.90E-04

F3D 9| 2855| 0.58E-03| 0.35E-03
ORS 4 270 | 0.92E-01| 0.43E-04
F2DB 10 724 | 0.62E-03| 0.26E-03
FID 40| 14862| 0.11E+00| 0.11E-03

Table 10.4: A test run of GMRES(10)-ILUT(50~*) preconditioning.
12.

10. ':,\

8.0]:

6.0] : ——

o3—— CUTO

40] .-
2.0] /

0.

30 50 7.0 90 11. 13. 15.
level of fill-in

Figure 10.13: Typical CPU time as a function of Ifil. DashexkliILUT. Dotted line:
GMRES. Solid line: total.

3. The ILUT preconditioner terminates normally but the imgbete factorization
preconditioner which is computedisistable

An unstable ILU factorization is one for which/ =! = U~'L~! has a very large
norm leading to poor convergence or divergence of the otgration. The case (1)
can be overcome to a certain degree by assigning an arhitoagero value to a zero
diagonal element that is

encountered. Clearly, this is not a satisfactory remedyise of the loss in
accuracy in the preconditioner. The ideal solution in trasecis to use pivoting.
However, a form of pivoting is desired which leads to an dthor with similar cost
and complexity to ILUT. Because of the data structure useéduiT, row pivoting is
not practical. Instead, column pivoting can be implememgtder easily.

Here are a few of the features that characterize the newitigowhich is termed
ILUTP (“P” stands for pivoting). ILUTP uses a permutatiomagrperm to hold the
new orderings of the variables, along with the reverse pttion array. At step
of the elimination process the largest entry in a row is $etband is defined to be

10.4. THRESHOLD STRATEGIES AND ILUT 329

the newi-th variable. The two permutation arrays are then updatedreingly. The
matrix elements of. andU are kept in their original numbering. However, when
expanding the.-U row which corresponds to theth outer step of Gaussian elim-
ination, the elements are loaded with respect to the newitaheaising the array
perm for the translation. At the end of the process, there are fptmos. The first
is to leave all elements labeled with respect to the origimaéling. No additional
work is required since the variables are already in this forthe algorithm, but the
variables must then be permuted at each preconditioniqg Jtiee second solution
is to apply the permutation to all elements_#fas well asL/U. This does not re-
quire applying a permutation at each step, but rather peslacpermuted solution
which must be permuted back at the end of the iteration phBise.complexity of
the ILUTP procedure is virtually identical to that of ILUT. #&w additional options
can be provided. A tolerance parameter cafbedmtol may be included to help
determine whether or not to permute variables: A nondiageleanenta;; is candi-
date for a permutation only whenl x |a;;| > |a;|. Furthermore, pivoting may be
restricted to take place only within diagonal blocks of adisize. The sizenbloc
of these blocks must be provided. A valuerebloc > n indicates that there are no
restrictions on the pivoting.

For difficult matrices, the following strategy seems to waorl:

1. Apply a scaling to all the rows (or columns) e.g., so thatrth-norms are all
equal to 1; then apply a scaling of the columns (or rows).

2. Use a small drop tolerance (e.g= 10~% ore = 10~°) and take a large fill-in
parameter (e.glfil = 20).

3. Do not take a small value fgermtol. Reasonable values are betw@&ehand
0.01, with 0.5 being the best in many cases.

Matrix | Iters | Kflops | Residual Error
F2DA 18 964 | 0.47E-03| 0.41E-04
F3D 14| 3414| 0.11E-02| 0.39E-03

ORS 6 341 | 0.13E+00| 0.61E-04
F2DB | 130| 7167 | 0.45E-02| 0.51E-03
FID 50 | 16224 | 0.17E+00| 0.18E-03

Table 10.5: A test run of GMRES with ILUTP preconditioning.

Example 10.5. Table[I0.b shows the results of applying the GMRES algorithm
with ILUTP(1,10~*) preconditioning to the five test problems described in Sec-
tion 3. Thepermtol parameter is set to 1.0 in this case. See Example 6.1 for

330 CHAPTER 10. PRECONDITIONING TECHNIQUES

the meaning of the column headers in the table. The resdtglantical with those
of ILUT(1,10~%) shown in Tabld_IOI3, for the first four problems, but theraris
improvement for the fifth problem. |

10.4.5 The ILUS Approach

The ILU preconditioners discussed so far are based maintherhe |KJvariant
of Gaussian elimination. Different types of ILUs can be dedli using other forms
of Gaussian elimination. The main motivation for the vemsio be described next
is that ILUT does not take advantage of symmetry. Alfis symmetric, then the
resultingM = LU is nonsymmetric in general. Another motivation is that innmna
applications including computational fluid dynamics amdural engineering, the
resulting matrices are stored irsparse skylinSSK) format rather than the standard
Compressed Sparse Row format.

O
j:‘ < sparse column

[
sparse row— | B
[

Figure 10.14: lllustration of the sparse skyline format.
In this format, the matrix4 is decomposed as
A=D+L;+Lf

in which D is a diagonal ofA and L1, L are strictly lower triangular matrices. Then
a sparse representationfof and L, is used in which, typically[; andL, are stored
in the CSR format and is stored separately.

Incomplete Factorization techniques may be developed firices in this for-
mat without having to convert them into the CSR format. Twtabte advantages of
this approach are (1) the savings in storage for strucyusginmetric matrices, and
(2) the fact that the algorithm gives a symmetric precoad#r when the original
matrix is symmetric.

10.4. THRESHOLD STRATEGIES AND ILUT 331

Consider the sequence of matrices
A vk >
A = ,
b <wk Ok+1
whereA,, = A. If A is nonsingular and its LDU factorization

Ak = L. DU,

is already available, then the LDU factorization4j_ ; is

A _(Lg O Dy 0 Uk 2k
T\ 1)\ 0 d)\ 01

in which
z = DLty (10.37)
ye = wU, 'D;? (10.38)
dgt1 = apg1 — YpDr2k. (10.39)

Hence, the last row/column pairs of the factorization carob&ined by solving
two unit lower triangular systems and computing a scaledodaduct. This can be
exploited for sparse matrices provided an appropriate statature is used to take
advantage of the sparsity of the matrideg U, as well as the vectorsy, wg, yi,
andz;. A convenient data structure for this is to store the rowsfoos pairswy, v,{
as a single row in sparse mode. All these pairs are storedjiresee. The diagonal
elements are stored separately. This is called the UnsynenSgtarse Skyline (USS)
format. Each step of the ILU factorization based on this apghn will consist of two
approximate sparse linear system solutions and a sparggathict. The question
that arises is: How can a sparse triangular system be sotesgeénsively? It would
seem natural to solve the triangular systems (10.37) @n@q1@xactly and then
drop small terms at the end, using a numerical droppingegtyatHowever, the total
cost of computing the ILU factorization with this strategguid beO(n?) operations
at least, which is not acceptable for very large problemsce&only an approximate
solution is required, the firstidea that comes to mind isiinedated Neumann series,

2, =D Litop = DI+ Ep + ER 4 ...+ ED)uy, (10.40)

in which E,, = I — L. In fact, by analogy with ILUf), it is interesting to note that
the powers off;, will also tend to become smaller asncreases. A close look at the
structure ofE} v, shows that there is indeed a strong relation between thimapp

and ILU({p) in the symmetric case. Now we make another important obteny
namely, that the vectoEivk can be computed isparse-sparse mogdee., in terms

of operations involving products @parse matrices by sparse vectoW/ithout ex-
ploiting this, the total cost would still b€ (n?). When multiplying a sparse matrix

A by a sparse vectar, the operation can best be done by accumulating the linear
combinations of the columns of. A sketch of the resulting ILUS algorithm is as
follows.

332 CHAPTER 10. PRECONDITIONING TECHNIQUES

ALGORITHM 10.7 ILUS(e, p)

SetA1 =Dy =a11, L1 =U1 =1

Fori =1,...,n—1 Do:
Computez;, by {I0.40) in sparse-sparse mode
Computeyy, in a similar way
Apply numerical dropping tg;, andz,

Computely. via (10.39)
7. EndDo

If there are only; nonzero components in the vectoand an average of nonzero
elements per column, then the total cost per step wil2 bei x v on the average.
Note that the computation af, via (I0.39) involves the inner product of two sparse
vectors which is often implemented by expanding one of tlotors into a full vector
and computing the inner product of a sparse vector by thiségator. As mentioned
before, in the symmetric case ILUS yields the Incomplete|&€ky factorization.
Here, the work can be halved since the generatioy), @ not necessary.

Also note that a simple iterative procedure such as MR or GBI[RE can be
used to solve the triangular systems in sparse-sparse risoadar techniques will
be seen in Sectidn 10.5. Experience shows that these diteshare not much better
than the Neumann series approdch [79].

O A WNR

10.4.6 The Crout ILU Approach

A notable disadvantage of the standard delayed-upflaig factorization is that
it requires access to the entries in theh row of L in sorted order of columns.
This is further complicated by the fact that the working raerfoted byw in Algo-
rithm[IQO.B), is dynamically modified by fill-in as the elimii@n proceeds. Searching
for the leftmost entry in thé-th row of L is usually not a problem when the fill-in
allowed is small. Otherwise, when an accurate factorimassought, it can become
a significant burden and may ultimately even dominate theafabe factorization.
Sparse direct solution methods that are based on the IKJdbBaussian elimina-
tion obviate this difficulty by a technique known as the Gitbeeierls method[146].
Because of dropping, this technique cannot, however, tases. Another possible
option is to reduce the cost of the searches through the udewar data structures
and algorithms, such as binary search trees or héaps [90].

The Crout formulation provides the most elegant solutiotihé&problem. In fact
the Crout version of Gaussian elimination has other adgastavhich make it one of
the most appealing ways of implementing incomplete LU faz#tions.

The Crout form of Gaussian elimination consists of commytiat stepk, the
entriesay 1., & (in the unit lower triangular factor,) anday, 1., (in the upper trian-
gular factor,UV). This is done by post-poning the rank-one update in a wayjlaim
to the IKJ variant. In Figur€ZI0.15 the parts of the factormé@peomputed at the
k-th step are shown in black and those being accessed areshdbded areas. At the
k-th step, all the updates of the previous steps are applidetentriesiy 1., ; and
ay, 1. and it is therefore convenient to stakeby columns and/ by rows.

~ =

10.4. THRESHOLD STRATEGIES AND ILUT 333

N "

Figure 10.15: Computational pattern of the Crout algorithm

ALGORITHM 10.8 Crout LU Factorization

1. Fork =1:nDo:

2. Fori=1:k—1andifag; # 0Do:
3. Ak kin = Ak ki — Qki * QG ki

4. EndDo

5. Fori=1:k—1andifa; #0Do:
6. Ak+1:n.k = Ak41:nk — Qik * Ok41:n
7. EndDo

8. aik:aik/akk fori=k+1,...n

9. EndDo

The k-th step of the algorithm generates th¢h row of U and thek-th column of
L. This step is schematically represented in Figure 10.16.akove Algorithm will
now be adapted to the sparse case. Sparsity is taken intardcaond a dropping
strategy is included, resulting in the following Crout versof ILU (termed ILUC).

ALGORITHM 10.9 ILUC - Crout version of ILU

Fork =1:nDo:

Initialize rowz: z1.,—1 =0, Zj:p = A ken

For{i|1<i<k—1landly #0} Do:
Zkin = Rkin — lk:z * Ug k:n

EndDo

Initialize colummw: wy., =0, Wkgt1:n = Qg1

For{i|1<i<k—1andu; # 0} Do:
Wr+1:n = WEH1:n — Uik * lk—i—l:n,i

EndDo

Apply a dropping rule to row

Apply a dropping rule to colurmm

ROOXXNSDUAWNR

334 CHAPTER 10. PRECONDITIONING TECHNIQUES

12. Up,: = 2
13. Lgy=w/ugg, =1
14. Enddo

Two potential sources of difficulty will require a carefuldaeomewhat complex
implementation. First, looking at Lines 4 and 8, only thetisec(k : n) of thei-th
row of U is required, and similarly, only the sectioh+ 1 : n) of thei-th column of
L is needed. Second, Line 3 requires access té-tierow of L which is stored by
columns while Line 7 requires access to thth column ofUU which is accessed by
rows.

The first issue can be easily handled by keeping pointersritiziate where the
relevant part of each row d@f (resp. column of..) starts. An arrayfirst is used
to store for each row of U the index of the first column that will used next. dfis
the current step number, this means thatrst(z) holds the first column index &
of all nonzero entries in the thieth row of U. These pointers are easily updated after
each elimination step, assuming that column indices (redpmn indices for) are
in increasing order.

1

|

|

|

|

|

|

I
7

Figure 10.16: Computing thie-th row of U (left side) and thé:-column of L (right
side).

For the second issue, consider the situation with{fhfactor. The problem is
that thek-th column ofU is required for the update df, butU is stored row-wise.
An elegant solution to this problem is known since the pioimgedays of sparse di-
rect methods[[11%, 144]. Before discussing this idea, cenghe simpler solution
of including a linked list for each column @f. These linked lists would be easy
to update because the rowsldfare computed one at a time. Each time a new row
is computed, the nonzero entries of this row are queued ttirtked lists of their
corresponding columns. However, this scheme would entaihagligible additional
storage. A clever alternative is to exploit the arteyi rst mentioned above to form
incomplete linked lists of each column. Every tirhds incremented th&@first

10.4. THRESHOLD STRATEGIES AND ILUT 335

array is updated. Whanfirst(i) is updated to point to a new nonzero with column
indexj, then the row index is added to the linked list for columin What is interest-
ing is that though the columns structures constructed srttanner are incomplete,
they become complete as soon as they are needesimilar technique is used for
the rows of thel factor.

In addition to avoiding searches, the Crout version of ILd haother important
advantage. It enables some new dropping strategies whighomaiewed as more
rigorous than the standard ones seen so far. The straighifddropping rules used
in ILUT can be easily adapted for ILUC. In addition, the dataigture of ILUC
allows options which are based on estimating the norms ahtlezses ofl. andU .

For ILU preconditioners, the error made in the inverses effdttors is more
important to control than the errors in the factors thenes T his is because when
A= LU, and

Ll'=L7'+x U '=U"14+y,

then the preconditioned matrix is given by
LTAU = (L' 4+ X)AU ™ +Y) =T+ AY + XA + XY,

If the errorsX andY in the inverses of. andU are small, then the preconditioned
matrix will be close to the identity matrix. On the other hasdall errors in the
factors themselves may yield arbitrarily large errors im pineconditioned matrix.

Let L, denote the matrix composed of the fikstows of L. and the last, — &
rows of the identity matrix. Consider a terty, with j > k that is dropped at step
k. Then, the resulting perturbed matiiy, differs from L, by ljkeje}f. Noticing that
Lkej =¢€j then, ~

Lk == Lk — ljkeje;‘g == Lk(I — ljkeje;‘g)

from which this relation between the inverses follows:
Lt = (I —lejef) 'Lt = Lt + Ljgejet Lt

Therefore, the inverse dfj will be perturbed by times thek-th row of ;.. This
perturbation will affect thg-th row ofL,;l. Hence, using the infinity norm for exam-
ple, it is important to limit the norm of this perturbing rowheh is||Z;xe el L' || o

It follows that it is a good strategy to drop a termilirwhen

Tr-1
il llex Ly lloo < e

A similar criterion can be used for the upper triangular daéf.

This strategy is not complete because the mdirix is not available. However,
standard techniques used for estimating condition nunitd€y can be adapted for
estimating the norm of thé-th row of L=! (resp. k-th column ofU~1!). The idea
is to construct a vectds one component at a time, by following a greedy strategy
to makeL~'b large at each step. This is possible because thekfirstl columns
of L are available at thé-th step. The simplest method constructs a veatof
componentsl, = £1 at each step, in such a way as to maximize the norm of the

336 CHAPTER 10. PRECONDITIONING TECHNIQUES

k-th component of.~'b. Since the firsk: — 1 columns ofL are available at step,
the k-th component of the solution is given by

T
& = Br — ep Lg—17p—1 .

This makes the choice clear:gf is to be large in modulus, then the signdfshould
be opposite that oékoLk_lxk_l. If bis the current right-hand side at stépthen
lef' L1l can be estimated by tHeth component of the solution of the system

Lx =b: | Ty 1b[
T~

Jef L oo ¢ FE

g 10l

Details, along with other strategies for dynamically biungdb, may be found in

[202].

10.5 Approximate Inverse Preconditioners

The Incomplete LU factorization techniques were develagéeginally for A/-matrices
which arise from the discretization of Partial Differehtfisquations of elliptic type,

usually in one variable. For the common situation whéis indefinite, standard ILU

factorizations may face several difficulties, and the bastn is the fatal breakdown
due to the encounter of a zero pivot. However, there are gitedrlems that are just
as serious. Consider an incomplete factorization of the for

A=LU+E (10.41)

whereF is the error. The preconditioned matrices associated Wwithlifferent forms
of preconditioning are similar to

LtAUu—t =14+ L 'FUL (10.42)

What is sometimes missed is the fact that the error mdirixa (I0.41) is not as
important as the “preconditioned” error matiix ! EU ~! shown in [I0.2R) above.
When the matrixA is diagonally dominant, theh andU are well conditioned, and
the size of L' EU ! remains confined within reasonable limits, typically with a
nice clustering of its eigenvalues around the origin. Ondtieer hand, when the
original matrix is not diagonally dominank,~! or U~! may have very large norms,
causing the errof. "' EU ! to be very large and thus adding large perturbations to
the identity matrix. It can be observed experimentally th&t preconditioners can
be very poor in these situations which often arise when theicea are indefinite, or
have large nonsymmetric parts.

One possible remedy is to try to find a preconditioner thasaus require solv-
ing a linear system. For example, the original system canrbeopditioned by a
matrix M which is a direct approximation to the inverseAf

10.5. APPROXIMATE INVERSE PRECONDITIONERS 337

10.5.1 Approximating the Inverse of a Sparse Matrix

A simple technique for finding approximate inverses of aalbjt sparse matrices is
to attempt to find a sparse matri¥ which minimizes the Frobenius norm of the
residual matrixk — AM,

F(M)=|I—-AM|%. (10.43)

A matrix M whose valugF'(M) is small would be a right-approximate inverseAf
Similarly, a left-approximate inverse can be defined by gisire objective function

|1 — MA|%. (10.44)
Finally, a left-right pair, U can be sought to minimize
|I — LAU|%. (10.45)

In the following, only [I0.4B) anB{I0.}5) are considereche Tase[(10.44) is
very similar to the right preconditioner cage (10.43). Thgctive function [10.43)
decouples into the sum of the squares of the 2-norms of theidinél columns of
the residual matri¥ — AM,

F(M) = ||T — AM|3 =) |le; — Amy|l3 (10.46)
7j=1

in whiche; andm; are thej-th columns of the identity matrix and of the matriX,
respectively. There are two different ways to proceed ireotd minimize [10.46).
The function [I0.413) can be minimized globally as a functidrihe sparse matrix
M, e.g., by a gradient-type method. Alternatively, the imtlixal functions

fitm) = llej — Aml[3, j=1,2,....n (10.47)

can be minimized. The second approach is appealing forlpacamputers, al-
though there is also parallelism to be exploited in the figiraach. These two
approaches will be discussed in turn.

10.5.2 Global lteration

The global iterationapproach consists of treating as an unknown sparse matrix
and using a descent-type method to minimize the objectimetion [I0.4B). This
function is a quadratic function on the spacewct n matrices, viewed as objects in
R™. The proper inner product on the space of matrices, to whietsguared norm
(I0.29) is associated, is

(X,Y) =tr(YTX). (10.48)

In the following, anarray representatiorof ann? vector X means the:, x n matrix
whose column vectors are the successimeectors ofX.
In a descent algorithm, a new iteraté,.,, is defined by taking a step along a
selected directiodr, i.e.,
Mpew = M + aG

338 CHAPTER 10. PRECONDITIONING TECHNIQUES

in which « is selected to minimize the objective functidt(M,,..,). From results
seen in Chaptdd 5, minimizing the residual norm is equivaierimposing the con-
dition that R — aAG be orthogonal toAG with respect to the-,) inner product.
Thus, the optimak is given by

(R, AG) tr(RTAG)

YT TAG,AG) T w ((AG)TAG) (10.49)

The denominator may be computed|ag=||%.. The resulting matrix\/ will tend to
become denser after each descent step and it is therefergiakto apply a numer-
ical dropping strategy to the resulting. However, the descent property of the step
is now lost, i.e., it is no longer guaranteed tH&t\/,,..,) < F(M). An alternative
would be to apply numerical dropping to the direction of shak before taking the
descent step. In this case, the amount of fill-in in the mdlficannot be controlled.

The simplest choice for the descent directi@ris to take it to be equal to the
residual matrixR = I — AM, whereM is the new iterate. Except for the nu-
merical dropping step, the corresponding descent algorighnothing but the Min-
imal Residual (MR) algorithm, seen in Section 5l3.2, onsifiex n? linear system
AM = I. The global Minimal Residual algorithm will have the followg form.

ALGORITHM 10.10 Global Minimal Residual Descent Algorithm

Select an initiall
Until convergence Do:
Computel := AM andG :=1—-C
Computey = tr(GT AG) /|| AG||%
ComputeM := M + oG
Apply numerical dropping té1
EndDo

NOOKAWN R

A second choice is to také to be equal to the direction of steepest descent, i.e.,

the direction opposite to the gradient of the functibn_CBY with respect taV/. If
all vectors as represented as 2-dimensional n arrays, then the gradient can be
viewed as a matrixs, which satisfies the following relation for small pertuibas
E,

F(M+E)=F(M)+ (G,E)+o(]|E|)- (10.50)
This provides a way of expressing the gradient as an opevatarrays, rather than
n? vectors.

Proposition 10.9 The array representation of the gradient®fwith respect taV/ is
the matrix
G=—2A"R

in which R is the residual matrix® = I — AM.

10.5. APPROXIMATE INVERSE PRECONDITIONERS 339

Proof. For any matrixty we have

F(M+E)-F(M) = tr[(I—-AM+E)"(I—-AM +E))]
—tr [(I — AM)T(I — AM))]
= tr[(R—- AE)"(R— AE) — RTR]
= —tr[(AE)"R+ RTAE — (AE)" (AE)]
= —2t1(RTAE) + tr [(AE)" (AE)]
= —2(A"R,E) + (AE,AE).

Comparing this with[[T0.30) yields the desired result. O

Thus, the steepest descent algorithm will consist of répdaé in line 3 of
Algorithm IOI0 byG = ATR = AT(I — AM). As is expected with steepest
descent techniques, the algorithm can be slow.

ALGORITHM 10.11 Global Steepest Descent Algorithm

Select an initialV{

Until convergence Do:
ComputeR = I — AM, andG := AR ;
Computer = ||G|3./| AG|%
ComputeM := M + oG
Apply numerical dropping td/

EndDo

NOORAWNR

In either steepest descent or minimal residual,Gheatrix must be stored ex-
plicitly. The scalarg| AG||% andtr(GT AG) needed to obtain in these algorithms
can be computed from the successive columnd@f which can be generated, used,
and discarded. As a result, the matriXs need not be stored.

10.5.3 Column-Oriented Algorithms

Column-oriented algorithms consist of minimizing the indual objective functions
(I0.41) separately. Each minimization can be performedaking a sparse initial
guess and solving approximately theparallel linear subproblems

Amj=ej, j=1,2,...,n (10.51)

with a few steps of a nonsymmetric descent-type method, asithR or GMRES. If
these linear systems were solved (approximately) withaking advantage of spar-
sity, the cost of constructing the preconditioner would berdern?. That is because
each of then columns would requir€ (n) operations. Such a cost would become
unacceptable for large linear systems. To avoid this, #ratibns must be performed

in sparse-sparse mogda term which was already introduced in Secfion 10.4.5. The
columnm; and the subsequent iterates in the MR algorithm must becstore op-
erated on as sparse vectors. The Arnoldi basis in the GMRE®itdm are now to

340 CHAPTER 10. PRECONDITIONING TECHNIQUES

be kept in sparse format. Inner products and vector updates/e pairs of sparse
vectors.

In the following MR algorithm,n; iterations are used to solMe{10.51) approxi-
mately for each column, giving an approximation to fhth column of the inverse
of A. Each initialm; is taken from the columns of an initial gue3d.

ALGORITHM 10.12 Approximate Inverse via MR Iteration

1. Start: seb = M,
2. For each columnp=1,...,n Do:
3. Definem; = Me;
4. Fori =1,...,n; Do:
5. ryi=¢€; — Amj
ri,Ar;
6. Qj = ((Af%Afn])-)
7. mj = mj + a;r;
8. Apply numerical dropping ten;
9. EndDo
10. EndDo

The algorithm computes the current residuaénd then minimizes the residual
norm|le; — A(m; + ar;j)||2, with respect tax. The resulting column is then pruned
by applying the numerical dropping step in line 8.

In the sparse implementation of MR and GMRES, the matrixereproduct,
SAXPY, and dot product kernels now all involve sparse vextdie matrix-vector
product is much more efficient if the sparse matrix is storgddiumns, since all
the entries do not need to be traversed. Efficient codes Ifthhede kernels may be
constructed which utilize a fuli-length work vector.

Columns from an initial guess/, for the approximate inverse are used as the
initial guesses for the iterative solution of the linear ablems. There are two ob-
vious choicesMy = al andMy = aA”. The scale factot: is chosen to minimize
the norm ofl — AMj. Thus, the initial guess is of the forfdly = aG whereG is
either the identity ord”. The optimalx can be computed using the formUl@a{10.49),
in which R is to be replaced by the identity, s0= tr(AG)/tr(AG(AG)T). The
identity initial guess is less expensive to use bfif = A" is sometimes a much
better initial guess. For this choice, the initial precaiotied systemA M is SPD.

The linear systems needed to solve when generating eaanrcalithe approx-
imate inverse may themselves be preconditioned with the& reosnt version of the
preconditioning matrix\/. Thus, each systeri (10151) for approximating coluimn
may be preconditioned with// where the firsj — 1 columns of)M, are them, that
already have been computed< k < j, and the remaining columns are the initial
guesses for thew,, j < k& < n. Thus,outeriterations can be defined which sweep
over the matrix, as well amner iterations which compute each column. At each
outer iteration, the initial guess for each column is takehd the previous result for
that column.

10.5. APPROXIMATE INVERSE PRECONDITIONERS 341

10.5.4 Theoretical Considerations

The first theoretical question which arises is whether otm®&approximate inverses
obtained by the approximations described earlier can lgrikin It cannot be proved
that M is nonsingular unless the approximation is accurate endligis requirement

may be in conflict with the requirement of keeping the appration sparse.

Proposition 10.10 Assume thatd is nonsingular and that the residual of the ap-
proximate inversé\/ satisfies the relation

11— AM| < 1 (10.52)

where||.|| is any consistent matrix norm. Théu is nonsingular.

Proof. The result follows immediately from the equality
AM =1— (I — AM)=1—- N. (10.53)

Since||N|| < 1, TheoreniZI1l1 seen in Chapter 1 implies that IV is nonsingular.
a

The resultis true in particular for the Frobenius norm whsotonsistent (see Chapter
1).

It may sometimes be the case th&d/ is poorly balanced and as a result
can be large. Then balancingM can yield a smaller norm and possibly a less
restrictive condition for the nonsingularity @ff. It is easy to extend the previous
result as follows. IfA is nonsingular and two nonsingular diagonal matri€gs D,
exist such that

I — DiAMD,| < 1 (10.54)

where||.|| is any consistent matrix norm, théd is nonsingular.
Each column is obtained independently by requiring a candibn the residual
norm of the form
Hej — Am]” S T, (1055)

for some vector nornfl.||. From a practical point of view the 2-norm is preferable
since it is related to the objective function which is useamnely, the Frobenius norm
of the residual — AM. However, the 1-norm is of particular interest since it et
a number of simple theoretical results. In the followings iissumed that a condition
of the form

Hej - A’I’)’LjHl < Tj (10.56)

is required for each column.

The above proposition does not reveal anything about theedeaf sparsity of
the resulting approximate inverdé. It may well be the case that in order to guaran-
tee nonsingularityM must be dense, or nearly dense. In fact, in the particula cas
where the norm in the proposition is the 1-norm, it is knowat tthe approximate

342 CHAPTER 10. PRECONDITIONING TECHNIQUES

inverse may batructurally densgin that it is always possible to find a sparse matrix
A for which M will be dense if||[I — AM]||; < 1.

Next, we examine the sparsity &1 and prove a simple result for the case where
an assumption of the forfi(10156) is made.

Proposition 10.11 Assume thafi/ is an approximate inverse of computed by en-
forcing the condition[I0.86). Les = A~! and assume that a given eleméptof
B satisfies the inequality

[bi| > 7; max |, (10.57)

then the element;; is nonzero.

Proof. From the equalityAM = I — R we haveM = A~! — A~'R, and hence

n
mij = bij — g bikTk;-

k=1
Therefore,
n
magl = [bigl =Y bk
k=1

> |biy| — g??ﬂbiﬂ (IR

> |bij| = ,gg&f;\bikhj-
Now the condition[(T0.57) implies that:; ;| > 0. O

The proposition implies that ik is small enough, then the nonzero elementd/of
are located in positions corresponding to the larger elésnarihe inverse ofl. The
following negative result is an immediate corollary.

Corollary 10.12 Assume thail/ is an approximate inverse of computed by en-
forcing the condition[[I0.36) and let= max;—;,_, 7;. If the nonzero elements of
B = A~! are r-equimodular in that

bij| > T kzl{ggglmlbml,
then the nonzero sparsity pattern/af includes the nonzero sparsity patternf!.
In particular, if A~! is dense and its elements areequimodular, thenV/ is also
dense.

The smaller the value af, the more likely the condition of the corollary will be sat-
isfied. Another way of stating the corollary is thatcurateandsparseapproximate
inverses may be computed only if the elements of the actual$e have variations
in size. Unfortunately, this is difficult to verify in adva@m@nd it is known to be true
only for certain types of matrices.

10.5. APPROXIMATE INVERSE PRECONDITIONERS 343

10.5.5 Convergence of Self Preconditioned MR

We now examine the convergence of the MR algorithm in the wésee self precon-
ditioning is used, but no numerical dropping is applied. Tbkimn-oriented algo-
rithm is considered first. Let/ be the current approximate inverse at a given sub-
step. The self preconditioned MR iteration for computing#th column of the next
approximate inverse is obtained by the following sequeriagerations:

1. 7"]' = ej—Amj:ej—AMej

2. tj = Mrj
o (T'vAt')
3. a.? T (AZj,Agj)
4 mj = my + Oéjtj .

Note thato; can be written as
(rj, AMr;) (rj, Crj)

aj - (AMT’j,AMT‘j) (CT’j,CTj)

where
C=AM
is the preconditioned matrix at the given substep. The sigbscis now dropped to
simplify the notation. The new residual associated withdheent column is given
by
r" =pr — At =r — aAMr =r — aC'r.
The orthogonality of the new residual agaidst/r can be used to obtain

lrmel3 = 17113 = o[O3

Replacinga by its value defined above we get

Cr,r) 2
prew 2 _ r 2 1 — < (’ >)
|| H2 H ||2 [HCTHQHTHQ

Thus, at each inner iteration, the residual norm for g column is reduced ac-
cording to the formula

[lr™“|l2 = ||r]|esin Z(r,Cr) (10.58)

in which Z(u,v) denotes the acute angle between the veet@sdv. Assume that

each column converges. Then, the preconditioned m@tagnverges to the identity.

As aresult of this, the anglé(r, C'r) will tend to Z(r, r) = 0, and therefore the con-

vergence ratigin Z(r, C'r) will also tend to zero, showing superlinear convergence.
Now consider equatiofi{I058) more carefully. Denotdiine residual matrix

R =1 — AM and observe that

—aC
sin Z(r,Cr) = minw
(e} 'S 2
[r— Crll2 _ [|Brll
- vl [17{l2
< [[R]2-

344 CHAPTER 10. PRECONDITIONING TECHNIQUES

This results in the following statement.

Proposition 10.13 Assume that the self preconditioned MR algorithm is employe
with one inner step per iteration and no numerical droppiligen the 2-norm of each
residuale; — Am; of thej-th column is reduced by a factor of at ledgt— AM |2,
whereM is the approximate inverse before the current step, i.e.,

175 N2 < 1T — AM]|2 [|r]l2. (10.59)

In addition, the residual matriceB;, = I — AMj, obtained after each outer iteration
satisfy
IRks1lle < [[Ri|E (10.60)

As a result, when the algorithm converges, it does so quiditht

Proof. Inequality [T0.5P) was proved above. To prove quadrativemence, first
use the inequality X || < || X||r and [I0.5P) to obtain

75Nz < 1B jlle lIrjlle-

Here, thek index corresponds to the outer iteration and thiadex to the column.
Note that the Frobenius norm is reduced for each of the ineps<orresponding to
the columns, and therefore,

| RejllF < | Rl .

This yields
17513 < 1Rl [1r513

which, upon summation ovet gives

| RkallF < ||Ri|%-
This completes the proof. |

Note that the above theorem does not prove convergence.lylstates that when
the algorithm converges, it does so quadratically at thé.lim addition, the result
ceases to be valid in the presence of dropping.

Consider now the case of the global iteration. When selfqrditioning is in-
corporated into the global MR algorithm (Algorithii_I0.1@e search direction
becomes/, = My Ry, whereR,, is the current residual matrix. Then, the main steps
of the algorithm (without dropping) are as follows.

1. Ry:=1— AM,
2. Zp:= MRy
. (Rk,AZy)
3. Qf = 7<AZkk,AZkk>
4, Mk+1 = Mk + Oéka

10.5. APPROXIMATE INVERSE PRECONDITIONERS 345

At each step the new residual matiy, ., satisfies the relation
Ryy1=1-— AMk-H =1- A(Mk + aka) = R, — o, AZ.

An important observation is th&,, is a polynomial inRy. This is because, from the
above relation,

Ryi1 = Ry — apAML R, = Ry, — Oék(f — Rk)Rk = (1 — ak)Rk + akRi. (10.61)

Therefore, induction shows th&Y, 1 = p,« (Ro) wherep; is a polynomial of degree
4. Now define the preconditioned matrices,

By = AM;, = I — Ry, (10.62)
Then, the following recurrence follows frofa (10161),
Bk+1 = Bk + akBk(I — Bk) (1063)

and shows thaf3;,; is also a polynomial of degre2® in By. In particular,if the
initial By is symmetric, then so are all subsequéhts. This is achieved when the
initial A/ is a multiple ofA”, namely if My = agA”.

Similar to the column oriented case, when the algorithm eayes it does so
quadratically.

Proposition 10.14 Assume that the self preconditioned global MR algorithnmséesdu
without dropping. Then, the residual matrices obtainedaatreiteration satisfy

|Res1llr < || RE| - (10.64)

As a result, when the algorithm converges, then it does sdrgtiaally.

Proof. Define for anya,
R(a) = (1 — a)Ry + aR?

Recall thatw, achieves the minimum dfR(«)|| » over alla’s. In particular,

[Brparllr = min||R(a)|r
< |RW)llF = |REllr (10.65)
< |Ril%-
This proves quadratic convergence at the limit. |

For further properties see Exercide 4.

346 CHAPTER 10. PRECONDITIONING TECHNIQUES

10.5.6 Approximate Inverses via bordering

A notable disadvantage of the right or left preconditionamproach method is that it
is difficult to assess in advance whether or not the resudtppyoximate inversa/ is
nonsingular. An alternative would be to seek a two-sided@pmation, i.e., a pair
L, U, with L lower triangular and/ upper triangular, which attempts to minimize
the objective function[{10.45). The techniques developethé previous sections
can be exploited for this purpose.

In the factored approach, two matricesandU which areunit lower and upper
triangular matrices are sought such that

LAU ~ D

whereD is some unknown diagonal matrix. Whéhis nonsingular and. AU = D,
then L, U are calledinverse LU factorsof A since in this casel™! = UD™'L.
Once more, the matrices are built one column or row at a tinssuie as in Section
M0.Z3% that we have the sequence of matrices

A g >
A =
P (wk Af+1
in which A4,, = A. If the inverse factord.;,, U, are available for4, i.e.,
Ly AUy = Dy,
then the inverse factotsy ., 1, U1 for A;,, are easily obtained by writing
Ly O Ay Vg > <Uk —Zk> <Dk 0 >
= 10.66
<—yk 1> <wk (677NN} 0 1 0 5k+1 ()

in which z, yx, anddy; are such that

Akzk = Vg (1067)
YA = wg (10.68)
Ok41 = Qpgl — Wr2gp = Qgg1 — YUk (10.69)

Note that the formuld{I0.69) exploits the fact that eithersgystem{10.67) is solved
exactly (middle expression) or the systdm (1D.68) is sobsaattly (second expres-
sion) or both systems are solved exactly (either expreksiothe realistic situation
where neither of these two systems is solved exactly, thsnféhmula should be
replaced by

Okt1 = Qpy1 — Wr2k — YkVk + YA 2i. (10.70)

The last row/column pairs of the approximate factored isgezan be obtained by
solving two sparse systems and computing a few dot produtis.interesting to
note that the only difference with the ILUS factorizatioresan Sectiof_10.415 is
thatthe coefficient matrices for these systems are not the wiandactors of A,
but the matrix4,, itself.

10.5. APPROXIMATE INVERSE PRECONDITIONERS 347

To obtain an approximate factorization, simply exploit taet that the4; ma-
trices are sparse and then employ iterative solvers in sfgarse mode. In this
situation, formula[{I0.40) should be used #gr ;. The algorithm would be as fol-
lows.

ALGORITHM 10.13 Approximate Inverse Factors Algorithm

1 Fork =1,...,n Do:

2. Solvel(10.87) approximately;

3. Solve[(10.88) approximately;

4. Computely. 1 = g1 — Wr2k — YeUk + YAk 2k
5. EndDo

A linear system must be solved withy, in line 2 and a linear system Withfkr in
line 3. This is a good scenario for the Biconjugate Gradiggar&ghm or its equiva-
lent two-sided Lanczos algorithm. In addition, the mostent approximate inverse
factors can be used to precondition the linear systems tolledsin steps 2 and 3.
This was termed “self preconditioning” earlier. All the éar systems in the above
algorithm can be solved in parallel since they are indepeindeone another. The
diagonalD can then be obtained at the end of the process.

This approach is particularly suitable in the symmetricecaSince there is only
one factor, the amount of work is halved. In addition, thaerad problem with the
existence in the positive definite case as is shown in theviatlg lemma which states
that oy, is always> 0 when A is SPD, independently of the accuracy with which
the system[{10.67) is solved.

Lemma 10.15 Let A be SPD. Then, the scaldf,; as computed by {I0.J70) is posi-
tive.

Proof. In the symmetric casay;, = ug. Note thaté;; as computed by formula
(IO.70) is the(k + 1,k + 1) element of the matrix.; ;1 Ay LL, . Itis positive
becaused;, ;1 is SPD. This is independent of the accuracy for solving tretesy to
obtainz. O

In the general nonsymmetric case, there is no guaranteé& thavill be nonzero,
unless the systemB{10167) ahd {10.68) are solved acgueateligh. There is no
practical problem here, sineg,; is computable. The only question remaining is
a theoretical one: Caidy; be guaranteed to be nonzero if the systems are solved
with enough accuracy? Intuitively, if the system is solvedatly, then theD matrix
must be nonzero since it is equal to thematrix of the exact inverse factors in this
case. The minimal assumption to make is that edghs nonsingular. Leb; , be
the value that would be obtained if at least one of the sys{E@&1) or [(10.68) is
solved exactly. According to equatidn(10.69), in this &iton this value is given by

Stiq = gy — wi AL Moy (10.71)

348 CHAPTER 10. PRECONDITIONING TECHNIQUES

If Ay1 is nonsingular, thed; , # 0. To see this refer to the defining equation
(I068) and compute the produkt . Ay 1Uk+1 in the general case. Lef, andsy,
be the residuals obtained for these linear systems, i.e.,

Ty = UV — Akzk, S = WE — ykAk (10.72)

Then a little calculation yields

10.73
sUp Opt1 ()

L1 Ag1Ug11 = (LkAkUk Lkrk) .
If one of i, or sy, is zero, then it is clear that the terdn, ; in the above relation be-
comesy; ; and it must be nonzero since the matrix on the left-hand sidernsingu-
lar. Incidentally, this relation shows the structure ofldmt matrixL,, A,,U,, = LAU.
The components$ to j — 1 of columnj consist of the vectoL ;r;, the components
1toj — 1 of row i make up the vectos, Uy, and the diagonal elements are this.

Consider now the expression &, ; from (TO.70).

Okt1 = Qgi1— Wr2k — YUk + YpArzp
= Qpy1— kalzl(Uk — 1) — (w — Sk)Alzlvk + (vg — Tk)Alzl(wk — Sk)
= Q1 — ’UkAlzl'wk + TkA/;:lSk
= Ojp1 +TeAL sk

This perturbation formula is of a second order in the senae|d,, — 07| =

O(||rx|l lIskl)- 1t guarantees thak, . ; is nonzero WheneVQr*kA,;lsk\ < |67 41 1-

10.5.7 Factored inverses via orthogonalization: AINV

The approximate inverse technique (AINV) described’d &), computes an ap-
proximate factorization of the forf’" AZ = D, whereW, Z are unit upper trian-
gular matrices, and is a diagonal. The matricd® andZ can be directly computed
by performing an approximate bi-orthogonalization of the@-Schmidt type. In-
deed, wherd = LDU is the exact LDU factorization ofl, thenl¥” should be equal
to the inverse of. and we should have the equality

WTA=DU

which means thatV’” A is upper triangular. This translates into the result thgt an
columngi of W is orthogonal to the first— 1 columns ofA. A procedure to compute
W is therefore to make thieth column ofi¥ orthogonal to the columnk ... ;i —1

of A by subtracting multiples of the first- 1 columns oflV. Alternatively, columns
i+ 1,...,n of W can be made orthogonal to the fiisstolumns of A. This will
produce columns that are orthogonal to each of the columnks @uring this pro-
cedure one can drop small entries, or entries outside arceparsity pattern. A
similar process can be applied to obtain the columng ofThe resulting incom-
plete biorthogonalization process, which is sketched,xiduces an approximate
factored inverse.

~ =

10.5. APPROXIMATE INVERSE PRECONDITIONERS 349

ALGORITHM 10.14 Right—looking factored AINV

1. Letp=q=1(0,...,0) € R", Z =[21,...,20) = L, W = w1, ...,wy] = I.
2. Fork=1,...,n

3. Pr = w%Aek, Q. = ezAzk

4. Fori=k+1,...,n

5. pi = (wl Aey) /pe, @i = (e} Az) Jqi

6. Apply a dropping rule t@;, g;

7. Wi = Wi — WgPi, 2 = Zi — 24

8. Apply a dropping rule tav; ; andz;;, forj =1,... 1.
9. EndDo

0. EndDo

1. Choose diagonal entries Dfas the components gfor q.

The above algorithm constitutes one of two options for caimguactored approxi-
mate inverses via approximate orthogonalization. An mdtive is based on the fact
thatW” AZ should become approximately diagonal. Instead of orthaliging W
(resp. Z) with respect to the columns of, a bi-orthogonalization process can be
applied to force the columns &V and Z to be conjugate with respect th For this
we must require that! W1 AZe; = 0forall k # j, 1 < k, j < i. The result will be

a simple change to Algorithini T0J14. Specifically, the seamptibn, which we label
with a (b), replaces lines (3) and (5) into the following kne

3a. Di = w%Azk, qr = w%Azk

Sb. pi = (Wl Az) [o, @ = (wl Az) Jax
If no entries are dropped and if an LDU factorizationdéxists, theV = LT, Z =
U1, Alittle induction proof would then show that after stggolumnsi +1,...,n
of W are orthogonal to columi, ..., 7 of A and likewise columns+ 1,...,n of

Z are orthogonal to rows, . . . ,i of A. Remarkably, the computations gfandW
can be performed independently of each other for the oligipion represented by
Algorithm[I0.13.

In the original version of AINVI[34,-36], dropping is perfoed on the vectors);
andz; only. Dropping entries fromp;, g; seems to not yield as good approximations,

see [34].

10.5.8 Improving a Preconditioner

After a computed ILU factorization results in an unsatisfag convergence, it is
difficult to improve it by modifying thel. andU factors. One solution would be to
discard this factorization and attempt to recompute a foeshpossibly with more
fill-in. Clearly, this may be a wasteful process. A betteemlative is to use approx-
imate inverse techniques. Assume a (sparse) matriis a preconditioner to the
original matrix A, so the preconditioned matrix is

C=M"A.

350 CHAPTER 10. PRECONDITIONING TECHNIQUES

A sparse matrixS is sought to approximate the inverse f~' A. This matrix is
then to be used as a preconditionefio ! A. Unfortunately, the matrix’ is usually
dense. However, observe that all that is needed is a masixch that

AS ~ M.

Recall that the columns afl and M are sparse. One approach is to compute
least-squares approximation in the Frobenius norm senisis. approach was used
already in SectioRI0.3.1 whé¥ is the identity matrix. Then the columns 8fwere
obtained by approximately solving the linear syste#ss ~ ¢;. The same idea can
be applied here. Now, the systems

ASZ‘ =m;

must be solved instead, whetg is thei-th column of M which is sparse. Thus, the
coefficient matrix and the right-hand side are sparse, agdef

10.6 Reordering for ILU

The primary goal of reordering techniques (see Chaptert8)risduce fill-in during
Gaussian elimination. A difficulty with such methods, whetin the context of di-
rect or iterative solvers, is that a good ordering for redgdill-in may lead to factors
of poor numerical quality. For example, very small diagogwatries may be encoun-
tered during the process. Two types of permutations are oféed to enhance ILU
factorizations. First, fill-reducing symmetric permuteis of the type seen in Chap-
ter 3 have been advocated. The argument here is that siree fpeemutations are
likely to produce fewer fill-ins, it is likely that the ILU fdorizations resulting from
dropping small terms will be more accurate. A second categbreorderings con-
sists of only permuting the rows of the matrix (or its columnBhese unsymmetric
permutations address the other issue mentioned above|ynaw@ing poor pivots
in Gaussian elimination.

10.6.1 Symmetric permutations

The Reverse Cuthill McKee ordering seen in Seckion B.3.3nsrgy the most com-
mon techniques used to enhance the effectiveness of ILOrfaations. Recall that
this reordering is designed to reduce the envelope of a xna@®ther reorderings
that are geared specifically toward reducing fill-in, suctih&sminimum degree or
multiple minimum degree orderings, have also been advdc#ét@ugh results re-
ported in the literature are mixed. What is clear is that dwilts will depend on the
accuracy of the ILU being computed. If ILU(0), or some low;fihcomplete fac-

torization is being used, then it is often reported that geserally not a good idea
to reorder the matrix. Among candidate permutations thatbeaapplied, the RCM
is the most likely to yield an improvement. As the accuracyhef preconditioner

increases, i.e. as more fill-ins are allowed, then the beak&fect of reordering

10.6. REORDERING FOR ILU 351

becomes compelling. In many test, see for exaniple [35], eopiditioner built on
an RCM or Minimum Degree reordered matrix will work while th@me precondi-
tioner built from the original ordering fails. In additiosuccess is often achieved
with less memory than is required for the original orderifpis general observation
is illustrated in the following tests.

Example 10.6. The following experiments shows the performance of GMRBS(2
preconditioned with ILUT for the five test problems descdlreSectiod 317 of Chap-
ter 3. The first experiment usé€.UT'(5,0.25). Prior to performing the ILUT fac-
torization the coefficient matrix is reordered by three pmestechniques: Reverse
Cuthill Mc Kee ordering (RCM), Minimum degree ordering (QY®r Nested Dis-
section ordering (ND). The FORTRAN codes for these threartiegies are those
available in the book[124]. It is now important to show thecamt of memory
used by the factorization, which is measured here byfillhiactor, i.e., the ratio of
the number of nonzero elements required to store the LU facteer the original
number of nonzero elements. This is referred td-#lsin the tables. Along with
this measure, Tab[e“T0.6 shows the number of iterationsreetjto reduce the initial
residual by a factor of0~7 with GMRES(20). Notice that reordering does not help.
The RCM ordering is the best among the three orderings, wigrtormance that is
close to that of the original ordering, but it fails on the RIP matrix. In many other
instances we have tested, RCM does often help or its perfarens close to that
achieved by the original ordering. The other reorderingsjmal degree and nested
dissection, rarely help when the factorization is inacties is the case here.

None RCM QMD ND
Martix | Iters Fill || Iters Fill || Iters Fill || Iters Fill
F2DA 15| 1471 16 | 1.448 19| 1.588 20| 1.592
F3D 12| 1.583 13| 1.391 16 | 1.522 15| 1.527
ORS 20| 0.391 20| 0.391 20| 0477 20 | 0.480
F2DB 21| 1.430 21| 1.402 41 | 1.546 55| 1.541
FID 66| 1.138| 300 | 1.131| 300| 0.978| 300| 1.032

Table 10.6: Iteration count and fill-factor for GMRES(20)-UIT(5,0.25) with three
different reordering techniques.

We now turn to a more accurate preconditioner, namely I[1070.01). The
results of Tabl¢_I0l7 show a different picture from the onevab All reorderings
are now basically helpful. A slight exception is the minimdegree ordering which
fails on the FIDAP matrix. However, notice that this faillm@n be explained by the
low fill-factor, which is the smallest achieved by all the iéerings. What is more,
good convergence of GMRES is now achieved at a lesser costmiony.

352 CHAPTER 10. PRECONDITIONING TECHNIQUES

None RCM QMD ND
Martix | Iters Fill | Iters Fill | Iters Fill | Iters Fill
F2DA 7| 3.382 6 | 3.085 8 | 2.456 9| 2.555
F3D 8| 3.438 713641 11| 2.383| 10| 2.669
ORS 9| 0.708 9 | 0.699 91 0.779 9| 0.807
F2DB 10| 3.203 82962 12| 2.389| 12| 2.463
FID 197 | 1.798| 38| 1.747| 300 | 1.388| 36| 1.485

Table 10.7: Iteration count and fill-factor for GMRES(20) EUIT(10,0.01) with
three different reordering techniques.

If one ignores the fill-factor it may appear that RCM is besMseems to be
good at reducing fill-in but results in a poor factorizatidhen memory cost is taken
into account the more sophisticated nested dissectiomingdis the overall winner
in all cases except for the ORSIR matrix. This conclusiomelg that reordering is
most beneficial when relatively accurate factorizatiomscamputed, is borne out by
other experiments in the literature, see, for exaniple [35]. |

10.6.2 Nonsymmetric reorderings

Nonsymmetric permutations can be applied to enhance tlerpemnce of precondi-
tioners for matrices with extremely poor structure. Sudhtggques do not perform
too well in other situations, such as for example, for linggstems arising from the
discretization of elliptic PDEs.

The original idea on which nonsymmetric reorderings aretasto find a per-
mutation matrix@., so that the matrix

B=Q,A (10.74)

has large entries in its diagonal. Herds a permutation array an@,. the corre-

sponding permutation matrix as defined in Secfiod 3.3. Irtreashwith standard
fill-reducing techniques, this is a one sided permutatioiciwviheorders the rows of
the matrix.

The first algorithm considered in this class attempts to fimeering of the
form (I0.73) which guarantees that the diagonal entrie® @ire nonzero. In this
case, the permutation matri},, can be viewed from a new angle, that of bipartite
transverals.

A transversal or bipartite matching is a a deftof ordered pairgi, j) such that
a;; # 0 and the column indiceg and row indices appear only once. This corre-
sponds to selecting one nonzero diagonal element per rmwico The usual repre-

10.6. REORDERING FOR ILU 353

Rows Columns Rows Columns

Bipartite graph Reordered matrix Maximum transversal

Figure 10.17: Example of a maximum transversal. Left sideartite representation
of matrix. Right side: maximum transversal. Middle: matbefore and after row
reordering.

sentation uses a graph whose vertices are the rowgsduares in FiguleZIO.117) and
columns ofA (circle in FigureIOJl7). There is an outgoing edge betwesmwe:
and a columry whena;; # 0. A transversal is simply a subgraph@fthat isbipar-
tite. The transversal imaximumwhen it has maximum cardinality. For example, in

Figure[IO.IV the set
M ={(1,2),(2,1),(3,3),(4,5),(5,6),(6,4)}

is a maximum transversal. The corresponding row permutéio = {2,1,3,6,4,5}
and the reordered matrix is shown in the bottom middle patt@figure.

When A is structurally nonsingular, it can be shown that the maxmttansver-
sal has cardinalityM| = n. Finding the maximum transversal is a well-known
problem in management sciences and has received muchaitbgtresearchers in
graph theory. In particular, graph-traversal algorithrasdd on depth-first search
and breadth-first searches, have been developed to find maxiransversals.

These maximum transversal algorithms are the simplest graatass of tech-
niques. The criterion of just finding nonzero diagonal eleta¢o put on the diagonal
is not sufficient and can be changed into one of finding a (rewnptations so at
to

maximize [[la;)| - (10.75)

=1
A heuristic for achieving a large product of the diagonatiestis the so-calletottle-
neckstrategy whose goal is to maximize the smallest diagonay.ehhe algorithm
removes enough small elements and finds a maximum trankeétka graph. If the

354 CHAPTER 10. PRECONDITIONING TECHNIQUES

transversal is not of cardinality then the algorithm backtracks by removing fewer
of the small entries and repeating the process.

Another class of algorithms solve the optimization probi@f.7%) more accu-
rately. This problem can be translated into

n .
n Y _ [log[llajllec / las|] if ai; #0
R lci’”(i) where ¢ _{ +00 otherwise -
1=

It is known that solving this problem is equivalent to sotyiits dual, which can be
formulated as follows:

n n
max u; + U; subjectto: ¢;; —u; —u; > 0.

The algorithms used to solve the above dual problem are basegtaph theory
techniques - in fact they can be viewed as traversal algostfsuch as depth first
search) to which a cost measure is added. Details can be fiofh@d].

Experiments reported by Duff and Koster[110] and Benzi ef@] show that
nonsymmetric reorderings based on the methods discusstiisisection can be
quite beneficial for those problems which are irregulariyctured and have many
zero diagonal entries. On the other hand, they do not perésrmell for PDE matri-
ces for which symmetric orderings are often superior.

10.7 Block Preconditioners

Block preconditioning is a popular technique for blocldiaigonal matrices arising
from the discretization of elliptic problems. It can alsogeneralized to other sparse
matrices. We begin with a discussion of the block-tridicajarase.

10.7.1 Block-Tridiagonal Matrices
Consider a block-tridiagonal matrix blocked in the form

Dy Es
F, Dy Ej
A= . (10.76)
Fm—l Dm—l Em
F,, D,,

One of the most popular block preconditioners used in theesbwof PDES is based
on this block-tridiagonal form of the coefficient matrix. Let D be the block-
diagonal matrix consisting of the diagonal blodRs L the block strictly-lower trian-
gular matrix consisting of the sub-diagonal blodksandU the block strictly-upper
triangular matrix consisting of the super-diagonal blogks Then, the above matrix
has the form

A=L+D+U.

10.7. BLOCK PRECONDITIONERS 355

A block ILU preconditioner is defined by
M= (L+A)AYA+TU), (10.77)

whereL andU are the same as above, avds a block-diagonal matrix whose blocks
A, are defined by the recurrence:

A; = D; — FQ; 1 E;, (10.78)

in which €2; is some sparse approximation Ag.‘l. Thus, to obtain a block factor-
ization, approximations to the inverses of the blogksmust be found. This clearly
will lead to difficulties if explicit inverses are used.

An important particular case is when the diagonal blabkof the original ma-
trix are tridiagonal, while the co-diagonal blocks and F; are diagonal. Then, a
simple recurrence formula for computing the inverse of dgidgonal matrix can be
exploited. Only the tridiagonal part of the inverse must ketkin the recurrence

(@I0.73). Thus,

A, = Dy, (10.79)
A = Di-FOYE, i=1,...m, (10.80)

WhereQ](f) is the tridiagonal part oA,;l.

)iy =AYy for [i—jl<1.
The following theorem can be shown.
Theorem 10.16 Let A be Symmetric Positive Definite and such that
e a;>0,i=1,...,n,anda;; <O0forall j #i.
e The matricesD; are all (strict) diagonally dominant.

Then each block\; computed by the recurrende{10.79), (10.80) is a symméafric
matrix. In particular, M is also a positive definite matrix.

We now show how the inverse of a tridiagonal matrix can beiobth Let a
tridiagonal matrixA of dimension/ be given in the form

ar [

B2 a3
-1 o1 =B
-6 o

and let its Cholesky factorization be

A=LDL",

356 CHAPTER 10. PRECONDITIONING TECHNIQUES

with
D = diag {52}

and
1

-1 1
- 1
The inverse ofA is L~ D~1L~!. Start by observing that the inverse®f is a unit
upper triangular matrix whose coefficientg are given by

Uij = Yit1Vit2 - V-1 for 1< <j <l

As a result, theg-th columnc; of L= is related to thé;j — 1)-st columnc;_; by the
very simple recurrence,

cj = €; +75¢j—1, for j>2

starting with the first columm; = e;. The inverse ofA becomes
: L
At =L Tp Lt =) = 10.81

See ExercisEl5 for a proof of the above equality. As notedraberrence formulas
for computingA—! can be unstable and lead to numerical difficulties for lamjaes
of I.

10.7.2 General Matrices

A general sparse matrix can often be put in the fdim (10.76&ra/ithe blocking is
either natural as provided by the physical problem, or aiifivhen obtained as a
result of RCMK ordering and some block partitioning. In swetses, a recurrence
such as[{10.18) can still be used to obtain a block factaoizatefined by[(1I0.47).

A 2-level preconditioner can be defined by using sparse sevapproximate tech-
niques to approximat&;. These are sometimes termed implicit-explicit precondi-
tioners, the implicit part referring to the block-facta@ion and the explicit part to
the approximate inverses used to explicitly approxinm;é.

10.8 Preconditioners for the Normal Equations

When the original matrix is strongly indefinite, i.e., wheiias eigenvalues spread
on both sides of the imaginary axis, the usual Krylov subspaethods may fail.

The Conjugate Gradient approach applied to the normal emsatay then become
a good alternative. Choosing to use this alternative owestandard methods may

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 357

involve inspecting the spectrum of a Hessenberg matriximédsfrom a small run of
an unpreconditioned GMRES algorithm.

If the normal equations approach is chosen, the questioontes how to pre-
condition the resulting iteration. An ILU preconditionearcbe computed fod and
the preconditioned normal equations,

ATy "T(LU) Az = AT(LU)"T(LU) 1o,

can be solved. However, whetis not diagonally dominant the ILU factorization
process may encounter a zero pivot. Even when this does ppehathe result-
ing preconditioner may be of poor quality. An incompletetéasization routine with
pivoting, such as ILUTP, may constitute a good choice. ILLEBR be used to pre-
condition either the original equations or the normal eiguat shown above. This
section explores a few other options available for predmrdng the normal equa-
tions.

10.8.1 Jacobi, SOR, and Variants

There are several ways to exploit the relaxation schemethéoNormal Equations
seen in Chaptdi 8 as preconditioners for the CG method apmieither [8]1) or
@3). Consider{813), for example, which requires a pracedielivering an approx-
imation to(AA”)~!v for any vectorv. One such procedure is to perform one step
of SSOR to solve the systef A”)w = v. Denote byM ~! the linear operator that
transformsv into the vector resulting from this procedure, then the L€gajugate
Gradient method applied tE{8.3) can be recast in the same disrAlgorithm8b.
This algorithm is known as CGNE/SSOR. Similarly, it is pb#sito incorporate the
SSOR preconditioning in Algorithin 8.4, which is associateth the Normal Equa-
tions [B1), by definingl/~! to be the linear transformation that maps a veator
into a vectorw resulting from the forward sweep of Algorithiln™B.2 followeg a
backward sweep. We will refer to this algorithm as CGNR/SSOR

The CGNE/SSOR and CGNR/SSOR algorithms will not break ddwhis non-
singular, since then the matricdsA” and A” A are Symmetric Positive Definite, as
are the preconditioning matricdg. There are several variations to these algorithms.
The standard alternatives based on the same formuldfidih 48 either to use the
preconditioner on the right, solving the systeth AM ~1'y = b, or to split the pre-
conditioner into a forward SOR sweep on the left and a badkvDR sweep on
the right of the matrixA” A. Similar options can also be written for the Normal
Equations[(813) again with three different ways of prectiading. Thus, at least six
different algorithms can be defined.

10.8.2 1C(0) for the Normal Equations

The Incomplete Cholesky IC(0) factorization can be used@ogndition the Normal
Equations[(811) of{813). This approach may seem attrabtoause of the success
of incomplete factorization preconditioners. However, ajan problem is that the

358 CHAPTER 10. PRECONDITIONING TECHNIQUES

Incomplete Cholesky factorization is not guaranteed tatefir an arbitrary Sym-
metric Positive Definite matriX3. All the results that guarantee existence rely on
some form of diagonal dominance. One of the first ideas stigges handle this
difficulty was to use an Incomplete Cholesky factorizationtbe “shifted” matrix

B + al. We refer to IC(0) applied t&3 = A” A as ICNR(0), and likewise 1C(0)
applied toB = AAT as ICNE(0). Shifted variants correspond to applying IC¢0) t
the shiftedB matrix.

I
©
o

iterations

,_.
©
?

e
15}
o

I
Q
o]

alpha '

Figure 10.18: Iteration count as a function of the shift

One issue often debated is how to find good values for the ghifthere is no
easy and well-founded solution to this problem for irregylatructured symmetric
sparse matrices. One idea is to select the smallest possihigt makes the shifted
matrix diagonally dominant. However, this shift tends totbe large in general
because IC(0) may exist for much smaller valuestofAnother approach is to de-
termine the smallest for which the IC(0) factorization exists. Unfortunateliig
is not a viable alternative. As is often observed, the nundbesteps required for
convergence starts decreasinghascreases, and then increases again. The illustra-
tion shown in Figuré_I0.18 is from a real example using a stglacean matrix.
This plot suggests that there is an optimal valuedfavhich is far from the smallest
admissible one.

For smalla, the diagonal dominance @ + «f is weak and, as a result, the
computed IC factorization is a poor approximation to thermaB(«) = B + al.
In other words,B(«) is close to the original matrix3, but the IC(0) factorization
is far from B(«). For largec, the opposite is true. The matri®(a) has a large
deviation fromB(0), but its IC(0) factorization may be quite good. Therefotes t
general shape of the curve shown in the figure is not too sumpri

To implement the algorithm, the matr® = AA” need not be formed explicitly.
All that is required is to be able to access one rowBoéit a time. This row can be
computed, used, and then discarded. In the following,ittierow e;fA of Ais
denoted byu;. The algorithm is row-oriented and all vectors denote rostees. It

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 359

is adapted from the ILU(O) factorization of a sparse matre, AlgorithmIO%, but
it actually computes thé D L7 factorization instead of ahU or LL" factorization.

The main difference with Algorithri—I{.4 is that the loop indi7 is now restricted
to j < i because of symmetry. If only thg elements are stored row-wise, then the
rows of U = LT which are needed in this loop are not directly available. den

the j-th row of U = L” by uj. These rows are accessible by adding a column data

structure for the, matrix which is updated dynamically. A linked list data sfiwre
can be used for this purpose. With this in mind, the IC(0) atgm will have the
following structure.

ALGORITHM 10.15 Shifted ICNE(0)

1. Initial step: Setly :=a1,l;1 =1
2. Fori =2,3,...,n Do:
3. Obtain all thenonzeroinner products
4. lij = (aj,ai),j =1,2,...,i—1,andl; := Ha2|]2 + «
6. Fork =1,...,i—1andifk € NZ(i) Do:
7. Extract rowu, = (Leg)”
8. Computd;;, = lzk:/dk
9. Forj =k+1,...,iandif(i,j) € NZ(i) Do:
10. Computé;y, :== l;. — lijukj
11. EndDo
12. EndDo
13. Setd; .= l;;,1l; =1
14. EndDo

Note that initially the rowu, in the algorithm is defined as the first row df All
vectors in the algorithm are row vectors.

The step represented by lines 3 and 4, which computes thepnogucts of row
numberi with all previous rows, needs particular attention. If theear products

T T T
a1 gy A Qgy vy Q5104

are computed separately, the total cost of the incompleteriaation would be of
the order ofn? steps and the algorithm would be of little practical valueawiéver,
most of these inner products are equal to zero because sftgpdihis indicates that
it may be

possible to compute only those nonzero inner products at @ rfawer cost.
Indeed, ifc is the column of thé — 1 inner products:;;, thenc is the product of the
rectangularni — 1) x n matrix A;_; whose rows are’ ... 7aiT_1 by the vector;,
ie.,

Cc = Ai_lai. (1082)

This is a sparse matrix-by-sparse vector product which wssigsed in Section
[[O3. It is best performed as a linear combination of theroolsiof A;_; which are

360 CHAPTER 10. PRECONDITIONING TECHNIQUES

sparse. The only difficulty with this implementation is tlitatequires both the row
data structure ofd and of its transpose. A standard way to handle this problem is
by building a linked-list data structure for the transpoSkere is a similar problem

for accessing the transpose bf as mentioned earlier. Therefore, two linked lists
are needed: one for the matrix and the other for thel matrix. These linked lists
avoid the storage of an additional real array for the matriogolved and simplify

the process of updating the matrixwhen new rows are obtained. It is important to
note that these linked lists are used only in the preprocgssiase and are discarded
once the incomplete factorization terminates.

10.8.3 Incomplete Gram-Schmidt and ILQ

Consider a general sparse matrdxand denote its rows byy,as,...,a, . The
(complete) LQ factorization ofl is defined by

A=LQ,

whereL is a lower triangular matrix an@ is unitary, i.e.Q”Q = I. TheL factor in
the above factorization is identical with the Cholesky dacif the matrixB = AA™.
Indeed, ifA = LQ whereL is a lower triangular matrix having positive diagonal
elements, then

B=AAT = LQQTLT = LL".

The uniqueness of the Cholesky factorization with a faétbaving positive diagonal
elements shows thdt is equal to the Cholesky factor &f. This relationship can be
exploited to obtain preconditioners for the Normal Equagio

Thus, there are two ways to obtain the maikixThe first is to form the matrix
B explicitly and use a sparse Cholesky factorization. Thipires forming the data
structure of the matrixd A”, which may be much denser than However, reorder-
ing techniques can be used to reduce the amount of work ezhjtor computel.
This approach is known aymmetric squaring.

A second approach is to use the Gram-Schmidt process. Téasnhy seem
undesirable at first because of its poor numerical propertieen orthogonalizing
a large number of vectors. However, because the rows renemjnsparse in the
incomplete LQ factorization (to be described shortly), aiwen row of A will be
orthogonal typically to most of the previous rows @f As a result, the Gram-
Schmidt process is much less prone to numerical difficuliesm the data structure
point of view, Gram-Schmidt is optimal because it does nquie allocating more
space than is necessary, as is the case with approachesobasgdmetric squaring.
Another advantage over symmetric squaring is the simplafithe orthogonalization
process and its strong similarity with the LU factorizatié every step, a given row
is combined with previous rows and then normalized. Thermuete Gram-Schmidt
procedure is modeled after the following algorithm.

ALGORITHM 10.16 LQ Factorization ofA

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 361

1. Fori =1,...,n Do:

2. Computd;; := (a;,q;) , forj=1,2,...,i—1,
3. COmpUtQ]i =a; — 23;11 liij ,andl;; = ||QZ||2
4. Ifl;; := 0 then Stop; else Computg := q;/l;;.
5. EndDo

If the algorithm completes, then it will result in the fadiation A = L) where
the rows of() and L are the rows defined in the algorithm. To definer@omplete
factorization, adroppingstrategy similar to those defined for Incomplete LU factor-
izations must be incorporated. This can be done in very géteems as follows. Let
Pr, and Py be the chosen zero patterns for the matribeand@, respectively. The
only restriction onPy, is that

P C {(,7) |1 # 7}
As for Py, for each row there must be at least one nonzero element, i.e.
{71G,j) e Po} #{1,2,...,n}, fori=1,...,n.

These two sets can be selected in various ways. For exanmpirgo ILUT, they
can be determined dynamically by using a drop strategy basede magnitude of
the elements generated. As beforgdenotes the-th row of a matrixX andz;; its
(i,7)-th entry.

ALGORITHM 10.17 Incomplete Gram-Schmidt

1. Fori =1,...,n Do:

2. Computé;; := (a;,q;) , forj=1,2,...,i—1,

3. Replacé;; by zero if(i, j) € Pp

4. Computey; == a; — 23;11 liij ,

5. Replace eaclyj,j = 1,...,n by zeroif(i,j) € Py
6. Li == llqill2

7. If1;; = 0 then Stop; else computg := q;/l;;.

8. EndDo

We recognize in line 2 the same practical problem encoutieréhe previous
section for IC(0) for the Normal Equations. It can be handfethe same manner.
Thus, the row structures of, L, and() are needed, as well as a linked list for the
column structure of).

After thei-th step is performed, the following relation holds:

-1
g = lyqi +7i =a; — Zliij
=1
or

J
a; = Z lz-jqj + 7 (1083)
j=1

362 CHAPTER 10. PRECONDITIONING TECHNIQUES

wherer; is the row of elements that have been dropped from thegromwline 5. The
above equation translates into
A=LQ+ R (10.84)

whereR is the matrix whoseé-th row isr;, and the notation fof. and(@ is as before.

The case where the elementsj)rare not dropped, i.e., the case whemn is the
empty set, is of particular interest. Indeed, in this sinrgtR = 0 and we have
the exact relatiomd = LQ. However,(is not unitary in general because elements
are dropped fronl.. If at a given steg;; = 0, then [I0.8B) implies that; is a
linear combination of the rows, ..., ¢;—i;. Each of thesey, is, inductively, a
linear combination ofiy, ... a;. Thereforea; would be a linear combination of the
previous rowsgq, . .., a;—1 Which cannot be true ifl is nonsingular. As a result, the
following proposition can be stated.

Proposition 10.17 If A is nonsingular and?y = 0, then the AlgorithniZI0.17 com-
pletes and computes an incomplete LQ factorizatiog LQ, in which(is nonsin-
gular and L is a lower triangular matrix with positive elements.

A major problem with the decomposition {10184) is that therira) is not orthogo-
nal in general. In fact, nothing guarantees that it is eversimgular unless) is not
dropped or the dropping strategy is made tight enough.

Because the matrik of thecompletelQ factorization ofA is identical with the
Cholesky factor ofB, one might wonder why the IC(0) factorization Bfdoes not
always exist while the ILQ factorization seems to alwaysexn fact, the relation-
ship between ILQ and ICNE, i.e., the Incomplete CholeskyBor AA”, can lead
to a more rigorous way of choosing a good pattern for ICNEs &xplained next.

We turn our attention to Modified Gram-Schmidt. The onlyeli#nce is that the
row g; is updated immediately after an inner product is computduk digorithm is
described without dropping fap for simplicity.

ALGORITHM 10.18 Incomplete Modified Gram-Schmidt

1. Fori =1,...,n Do:
2. qi = a;
3. Forj =1,...,:—1, Do:
0 if (i,7) € P
4. Computd;; ::{ (i, ;) otherwise
5. Computey; := q; — liij-
6. EndDo
7. Li == llqill2
8. Ifl;; = 0 then Stop; else Compute := q;/l;;.
9. EndDo

When A is nonsingular, the same result as before is obtained if nppiing
is used on@, namely, that the factorization will exist and be exact iattA =
LQ. Regarding the implementation, if the zero pattéin is known in advance,
the computation of the inner products in line 4 does not pogargécular problem.

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 363

Without any dropping inQ, this algorithm may be too costly in terms of storage. It
is interesting to see that this algorithm has a connectidgh WWNE, the incomplete
Cholesky applied to the matrit A”. The following result is stated without proof.

Theorem 10.18 Let A be ann x m matrix and letB = AA”. Consider a zero-
pattern setP;, which is such that for any < i, j, k < n, withi < j andi < k, the
following holds:

(17]) GPL&Dd(i,k‘) ¢PL —>(j>k) GPL'

Then the matrix obtained from AlgorithniZI0.18 with the zero-pattern >is
identical with theL factor that would be obtained from the Incomplete Cholesky
factorization applied taB with the zero-pattern se?;,.

For a proof, see [304]. This result shows how a zero-pattambe defined which
guarantees the existence of an Incomplete Cholesky faatammn onAA” .

PROBLEMS

P-10.1 Assume thatd is the Symmetric Positive Definite matrix arising from the@d&int
finite difference discretization of the Laplacean on a givash. We reorder the matrix using
the red-black ordering and obtain the reordered matrix

(D, E
B_(ET D2>.

We then form the Incomplete Cholesky factorization on thanm.

a. Show the fill-in pattern for the IC(0) factorization for atrix of sizen = 12 associated
with a4 x 3 mesh.

b. Show the nodes associated with these fill-ins on the 5tgténcil in the finite differ-
ence mesh.

c. Give an approximate count of the total number of fill-insewlthe original mesh is
square, with the same number of mesh points in each diredtiow does this compare
with the natural ordering? Any conclusions?

P-10.4 Consider & x 6 tridiagonal nonsingular matrix.

a. What can be said about its ILU(0) factorization (when is&s}?

b. Suppose that the matrix is permuted (symmetrically,b@h rows and columns) using
the permutation
7 =1[1,3,5,2,4,6].

(i) Show the pattern of the permuted matrix.

(i) Show the locations of the fill-in elements in the ILU(@Jdtorization.

(iii) Show the pattern of the ILU(1) factorization as wellth fill-ins generated.
(iv) Show the level of fill of each element at the end of the ILYprocess (in-

cluding the fill-ins).
(v) What can be said of the ILU(2) factorization for this pered matrix?

364 CHAPTER 10. PRECONDITIONING TECHNIQUES

P-10.3 Assume thatd is the matrix arising from the 5-point finite difference distization
of an elliptic operator on a given mesh. We reorder the oaigiimear system using the
red-black ordering and obtain the reordered linear system

D1 E X o bl
F D2 i) o b2 '
a. Show how to obtain a system (called thduced systepwhich involves the variable

o only.

b. Show that this reduced system is also a sparse matrix. #howstencil associated
with the reduced system matrix on the original finite diffeze mesh and give a graph-
theory interpretation of the reduction process. What istagimum number of nonzero
elements in each row of the reduced system.

P-10.3 It was stated in Sectidn_10.8.2 that for some specific mattice ILU(0) factoriza-
tion of A can be putin the form

M= (D—-E)DY(D-F)

in which — F and—F' are the strict-lower and -upper parts4frespectively.

a. Characterize these matrices carefully and give an irgtion with respect to their
adjacency graphs.
b. Verify that this is true for standard 5-point matricesoasated with any domaifo.
c. Isittrue for 9-point matrices?
d. Isittrue for the higher level ILU factorizations?
P-10.5 Let A be a pentadiagonal matrix having diagonals in offset pmssti-m, —1,0, 1, m.
The coefficients in these diagonals are all constamfr the main diagonal and -1 for all

others. It is assumed that> /8. Consider the ILU(0) factorization od as given in the
form (I0.2D). The elements of the diagonalD are determined by a recurrence of the form

(I0.19).
a. Showthat <d; <afori=1,... n.
b. Show thati; is a decreasing sequence. [Hint: Use induction].
c. Prove that the formal (infinite) sequence defined by therreace converges. What is
its limit?
P-10.4 Consider a matrix4 which is split in the formA = Dy — E — F, whereDy is a
block diagonal matrix whose block-diagonal entries areséime as those of, and where

—E is strictly lower triangular and- F' is strictly upper triangular. In some cases the block
form of the ILU(0) factorization can be put in the form (SedlI0.3.P):

M = (D—-E)D (D - F).
The block entries oD can be defined by a simple matrix recurrence. Find this reaas
relation. The algorithm may be expressed in terms of thelkabmdries the matrixd.

P-10.5 Generalize the formulas developed at the end of SeEfionTl @7 the inverses of
symmetric tridiagonal matrices, to the nonsymmetric case.

P-10.6 Develop recurrence relations for Incomplete Cholesky withfill-in (1C(0)), for
5-point matrices, similar to those seen in Sediion ID.3.41d(0). Same question for IC(1).

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 365

P-10.7 What becomes of the formulas seen in Sediion1D.3.4 in the afas 7-point ma-
trix (for three-dimensional problems)? In particular, ¢aa ILU(O) factorization be cast in
the form [IQ.2D) in which-E is the strict-lower diagonal ofl and —F is the strict upper
triangular part ofd, andD is a certain diagonal?

P-10.8 Consider an arbitrary matri which is split in the usual manner as= Dy — E —
F, in which—F and—F are the strict-lower and -upper parts4frespectively, and define,
for any diagonal matrixD, the approximate factorization of given by

M =(D—-E)D YD - F).

Show how a diagonaD can be determined such thdtand M have the same diagonal
elements. Find a recurrence relation for the element®.ofConsider now the symmetric
case and assume that the maftixvhich is positive can be found. Write/ in the form

M = (DY? — ED~'2)(D'Y? - ED V2T = L, LT.

What is the relation between this matrix and the matrix of$Rw) preconditioning, in
the particular case wheR~'/2 = wI? Conclude that this form of ILU factorization is in
effect an SSOR preconditioning with a different relaxafiactorw for each equation.

P-10.9 Consider a general sparse mattiXirregularly structured). We seek an approximate
LU factorization of the form

M= (D—-E)DY(D-F)

in which —E and—F' are the strict-lower and -upper parts4f respectively. It is assumed
that A is such that

Qi > O, aijaﬁzO for i,j:l,...,n.
a. By identifying the diagonal elements dfwith those of M, derive an algorithm for
generating the elements of the diagonal mafvixecursively.

b. Establish thatitl; > 0 for j<i thend; < a;;. Is it true in general that; >0 for all j?

c. Assumethatfoi=1,...,7—1we havel; > «>0. Show a sufficient condition under
whichd; > a. Are there cases in which this condition cannot be satisbedryc?

d. Assume now that all diagonal elements/bfire equal to a constant, i.e.;; = a for
j=1,...,n. Definea = 5 and let

j—1
SjE E Ai5Qji, 0 = max Sj.
i=1

Show a condition o under whichd; > «, j =1,2,...,n.

P-10.5 Show the second part di{I0I81). [Hint: Exploit the formulB™ = >~ a;b]
wherea;, b; are thej-th columns ofA and B, respectively].
P-10.6 Let a preconditioning matri®/ be related to the original matriA by M = A+ E,
in which E is a matrix of rankk.
a. Assume that botd and M are Symmetric Positive Definite. How many steps at most
are required for the preconditioned Conjugate Gradienhotkto converge whei/
is used as a preconditioner?

366 CHAPTER 10. PRECONDITIONING TECHNIQUES

b. Answer the same question for the case wHesnd M are nonsymmetric and the full
GMRES is used on the preconditioned system.

P-10.3 Formulate the problem for finding an approximate invei$eo a matrix A as a
largen? x n? linear system. What is the Frobenius norm in the space inlwjoa formulate
this problem?

P-10.4 The concept ofmaskis useful in the global iteration technique. For a sparsiitygyn
S, i.e., asetof pairé, j) and a matrixB, we define the product = B ® S to be the matrix
whose elements;; are zeroif(i, j) does not belong t&, andb;; otherwise. This is called a
mask operation since its effect is to ignore every valuemtieé patterrs. Consider a global
minimization of the functiorFs (M) = ||S® (I — AM)|| .

a. What does the result of Proposit[on10.9 become for thisaigective function?
b. Formulate an algorithm based on a global masked iterdtiamhich the mask is fixed
and equal to the pattern of.

¢. Formulate an algorithm in which the mask is adapted at eatdr step. What criteria
would you use to select the mask?

P-10.4 Considerthe global self preconditioned MR iteration aidpon seen in Sectidn 10.%.5.

Define the acute angle between two matrices as

(X,Y)

cosZ(X,)Y)= ——1——.
I X FI1Y 7

a. Following what was done for the (standard) Minimal Real@lgorithm seen in Chap-
ter 5, establish that the matricés, = AM; andR, = I — By, produced by global
MR without dropping are such that

[Ris1llr < [|Re|lF sin Z(Ry, BrRy).

b. Let nowM, = aA” so thatB;, is symmetric for allk (see SectiobiI0.3.5). Assume
that, at a given step the matrixBy, is positive definite. Show that
)\mam (Bk)

in which \,,.i, (Byg) and ... (By) are, respectively, the smallest and largest eigenval-
ues ofBy,.

cos Z(Ry, BxRy) >

P-10.3 In the two-sided version of approximate inverse precoodérs, the option of min-
imizing
f(LU) = I - LAU| %
was mentioned, wherg is unit lower triangular and/ is upper triangular.
a. What s the gradient of(L,U)?
b. Formulate an algorithm based on minimizing this functitobally.

P-10.3 Consider the two-sided version of approximate inversegréitioners, in which a
unit lower triangulat. and an upper triangulér are sought so thdtAU ~ I. Oneideaisto
use an alternating procedure in which the first half-stepmaes a right approximate inverse
U to LA, which is restricted to be upper triangular, and the secadfdstep computes a left
approximate inversé to AU, which is restricted to be lower triangular.

10.8. PRECONDITIONERS FOR THE NORMAL EQUATIONS 367

a. Consider the first half-step. Since the candidate mairis restricted to be upper
triangular, special care must be exercised when writinduneo-oriented approximate
inverse algorithm. What are the differences with the stesht#R approach described
by AlgorithmITIP?

b. Now consider seeking an upper triangular matfisuch that the matrixLA)U is
close to the identity only in its upper triangular part. A ganapproach is to be taken
for the second half-step. Formulate an algorithm basedisratiproach.

P-10.3 Write all six variants of the preconditioned Conjugate Geatlalgorithm applied to
the Normal Equations, mentioned at the end of Se€fion 10.8.1

P-10.4 With the standard splittingl = D — FE — F, in which D is the diagonal ofA
and —FE, —F' its lower- and upper triangular parts, respectively, weeisge the factored
approximate inverse factorization,

(I+ED YA(I+D 'F)=D+R. (10.85)

a. DetermineR and show that it consists of second order terms, i.e., tenvdviing
products of at least two matrices from the p&irF'.

b. Now use the previous approximationfor+ R = D, — Fy — F,
(I + E;D{Y)(D+R)(I+ D;'F) = Dy + Ry.

Show how the approximate inverse factorizatibn {110.85) lmammproved using this
new approximation. What is the order of the resulting appnation?

NOTES ANDREFERENCES The idea of transforming a linear system into one that ie&s solve by
iterations was known quite early on. In a 1937 paper, C€gj proposed what is now known as poly-
nomial preconditioning (see aldo 143, p.156] where thisssukssed). Other forms of preconditioning
were also exploited in some earlier papers. For exampl&IhAxelsson discusses SSOR iteration,
“accelerated” by either the Conjugate Gradient or Chebysloeeleration. Incomplete factorizations
were also discussed quite early, for example, by Vdrgd [288]Buleevi[6B]. The breakthrough article
by Meijerink and van der Vors{[208] established existent¢he incomplete factorization foi/-
matrices and showed that preconditioning the Conjugatdi€maby using an incomplete factorization
can result in an extremely efficient combination. This étjgayed an essential role in directing the
attention of researchers and practitioners to a ratheriirapotopic and marked a turning point. Many
of the early techniques were developed for regularly stinect matrices. The generalization, using the
definition of level of fill for high-order Incomplete LU faatizations for unstructured matrices, was
introduced by Watt{[306] for petroleum engineering proige

Recent research on iterative techniques has focussed congligoning methods while the impor-
tance of accelerators has diminished. Preconditioneresaential to the success of iterative methods
in real-life applications. A general preconditioning apgech based on modifying a given direct solver
by including dropping was one of the first “general-purpoeit was proposed 2P 241,325, 137].

More economical alternatives, akin to 1LL)(were developed latef [2UB.197.196. 81[4.1323.1245].
ILUT and ILUTP are relatively robust and efficient but theynazonetheless fail. Instances can also
encountered when a more accurate ILUT factorization leadslarger number of steps to converge.
One source of failure is the instability of the preconditi@noperation. These phenomena of instability
have been studied by EImgh116] who proposed a detailegsigaif ILU and MILU precondition-
ers for model problems. The theoretical analysis on ILUTestaas Theorefi_10.8 is modeled after
Theorem 1.14 in Axelsson and Bark&r][15] for ILU(0).

Some theory for block preconditioners is discussed in thekdry O. Axelsson[[14]. Different
forms of block preconditioners were developed indepergént Axelsson, Brinkkemper, and II'in
[16] and by Concus, Golub, and Meurant][89], initially foobk matrices arising from PDESs in two di-
mensions. Later, some generalizations were proposed fiKaland Yeremir{[191]. Thus, the 2-level

368 CHAPTER 10. PRECONDITIONING TECHNIQUES

implicit-explicit preconditioning introduced il [191] osists of using sparse inverse approximations to
A;* for obtaining€2;.

The rebirth of approximate inverse precondition&rs 1561971 [150[34 157,88, B0.178] has
been spurred both by considerations related to parall&gssing and the relative ineffectiveness of
standard ILU preconditioners in dealing with highly ind@@mmatrices. Other preconditioners which
are not covered here are those based on domain decompdasitturiques. Some of these techniques
will be reviewed in Chapter 14.

The primary motivation for the Crout version of ILU is the olread in ILUT due to the search
for the leftmost pivot. The idea of exploiting condition nber estimators in this context has been
motivated by compelling results in Bollhoefer's woFk[44]

The effect of reordering on incomplete factorizations hasrba subject of debate among re-
searchers but the problem is still not well understood. Vékperience shows is that some of the better
reordering techniques used for sparse direct solutionkadstdo not necessarily perform well for ILU
[B5,[62 [T 117, 96. 97, 2b5]. As could be expected wheinfi-increased to high levels, then the
effect of reordering starts resembling that of direct savé rule of thumb is that the reversed Cuthill-
McKee ordering does quite well on average. It appears thisriorgs that take into account the values
of the matrix can perform better, but these may be expenBié¢d6 [97]. The use of nonsymmetric
orderings as a means of enhancing robustness of ILU has beposed in recent articles by Duff and
Koster [TO9[T10]. The algorithms developed in this congegtrather complex but lead to remarkable
improvements, especially for matrices with very irregydatterns.

The saddle-point point problem is a classic example of whathe achieved by a preconditioner
developed by exploiting the physics versus a general parposconditioner. An ILUT factorization
for the saddle point problem may work if a high level of fill isad. However, this usually results in
poor performance. A better performance can be obtained jbipiéxg information about the original
problem, see for examplé. [192. 305, P64.1118] 119].

On another front, there is also some interest in methodsutiiee normal equations in one way
or another. Earlier, ideas revolved around shifting therina® = A7 A before applying the 1C(0) fac-
torization as was suggested by KershBw [187] in 1978. MdiielZ06] also made some suggestions
on how to select a good in the context of the CGW algorithm. Currently, new ways gbleiting the
relationship with the QR (or LQ) factorization to define I¢(ore rigorously are being explored; see
the work in [304]. Preconditioning normal equations rersardifficult problem. [|

Chapter 11

PARALLEL IMPLEMENTATIONS

Parallel computing has recently gained widespread acceptance as a means of handling very large

computational tasks. Since iterative methods are appealing for large linear systems of equations,
it is no surprise that they are the prime candidates for implementations on parallel architectures.
There have been two traditional approaches for developing parallel iterative techniques thus far.
The first extracts parallelism whenever possible from standard algorithms. The advantage of
this viewpoint is that it is easier to understand in general since the underlying method has not
changed from its sequential equivalent. The second approach is to develop alternative algorithms
which have enhanced parallelism. This chapter will give an overview of implementations and will
emphasize methods in the first category. The later chapters will consider alternative algorithms
that have been developed specifically for parallel computing environments.

11.1 Introduction

Because of the increased importance of three-dimensioodels and the high cost
associated with sparse direct methods for solving theddqrs, iterative techniques
play a major role in application areas. The main appeal cdiitee methods is their
low storage requirement. Another advantage is that thejaamasier to implement
on parallel computers than sparse direct methods becagg@niy require a rather
small set of computational kernels. Increasingly, diredtvers are being used in
conjunction with iterative solvers to develop robust pretitoners.

The first considerations for high-performance impleméniist of iterative meth-
ods involved implementations on vector computers. Thesetefstarted in the mid
1970s when the first vector computers appeared. Currehtyetis a larger effort
to develop new practical iterative methods that are not efflgient in a parallel en-
vironment, but also robust. Often, however, these two requeénts seem to be in
conflict.

This chapter begins with a short overview of the various wayshich paral-
lelism has been exploited in the past and a description ottinent architectural
models for existing commercial parallel computers. Théme, lhasic computations
required in Krylov subspace methods will be discussed alwitly their implemen-

369

370 CHAPTER 11. PARALLEL IMPLEMENTATIONS

tations.

11.2 Forms of Parallelism

Parallelism has been exploited in a number of different ®gimce the first com-
puters were built. The six major forms of parallelism are) rflultiple functional

units; (2) pipelining; (3) vector processing; (4) multiplector pipelines; (5) mul-
tiprocessing; and (6) distributed computing. Next is afodiescription of each of
these approaches.

11.2.1 Multiple Functional Units

This is one of the earliest forms of parallelism. It cons@dteultiplying the number
of functional units such as adders and multipliers. Thus,dbntrol units and the
registers are shared by the functional units. The detectfgmarallelism is done
at compilation time with a “Dependence Analysis Graph,” aample of which is
shown in FiguréZITI1.

Figure 11.1: Dependence analysis for arithmetic expras$iot+ b) + (cxd+dx*e).

In the example of FigufeT1.1, the two multiplications campbgormed simulta-
neously, then the two additions in the middle are perfornmiediisaneously. Finally,
the addition at the root is performed.

11.2.2 Pipelining

The pipelining concept is essentially the same as that ofsaambly line used in
car manufacturing. Assume that an operation takstages to complete. Then the
operands can be passed through dlstages instead of waiting for all stages to be
completed for the first two operands.

—_—
Ti—3 Ti—2 Ti—1 T
Yi—3 Yi—2 Yi—1 Yi

stage 1 stage 2 stage 3 stage 4

11.3. TYPES OF PARALLEL ARCHITECTURES 371

If each stage takes a timeto complete, then an operation withnumbers will
take the timest + (n — 1)7 = (n + s — 1)7. The speed-up would be the ratio of the
time to complete the stages in a non-pipelined unit versus, isex n x 7, over the

above obtained time,
ns

n+s—1

For largen, this would be close te.

11.2.3 Vector Processors

Vector computers appeared in the beginning of the 1970s thééhCDC Star 100
and then the CRAY-1 and Cyber 205. These are computers wreohcaipped with
vector pipelines, i.e., pipelined functional units, suchaapipelined floating-point
adder, or a pipelined floating-point multiplier. In additicthey incorporate vector
instructions explicitly as part of their instruction setgpical vector instructions are,
for example:

VLOAD To load a vector from memory to a vector register
VADD To add the content of two vector registers
VMUL To multiply the content of two vector registers.

Similar to the case of multiple functional units for scalachines, vector pipelines
can be duplicated to take advantage of any fine grain pasatielvailable in loops.
For example, the Fujitsu and NEC computers tend to obtairbstantial portion of
their performance in this fashion. There are many vectoraijmms that can take
advantage omultiple vector pipelines

11.2.4 Multiprocessing and Distributed Computing

A multiprocessor system is a computer, or a set of severapaters, consisting
of several processing elements (PES), each consisting &fly & memory, an I/O
subsystem, etc. These PEs are connected to one anothelowithcommunication
medium, either a bus or some multistage network. There ameraus possible
configurations, some of which will be covered in the nextisaect

Distributed computing is a more general form of multipraieg, in which the
processors are actually computers linked by some Local Negwork. Currently,
there are a number of libraries that offer communicationlmatsms for exchanging
messages between Unix-based systems. The best known efdteshe Parallel
Virtual Machine (PVM) and the Message Passing Interfacel{M® heterogeneous
networks of computers, the processors are separated lyebldarge distances and
that has a negative impact on the performance of distribapgdications. In fact,
this approach is cost-effective only for large applicasiom which a high volume of
computation can be performed before more data is to be egeldan

11.3 Types of Parallel Architectures

There are currently three leading architecture modelssd laee:

372 CHAPTER 11. PARALLEL IMPLEMENTATIONS

e The shared memory model.
e SIMD or data parallel models.
e The distributed memory message passing model.

A brief overview of the characteristics of each of the threaugs follows. Empha-
sis is on the possible effects these characteristics hawbeoimplementations of
iterative methods.

11.3.1 Shared Memory Computers

A shared memory computer has the processors connectedrigeaglabal memory
with the same global view, meaning the address space is e fea all processors.
One of the main benefits of shared memory models is that atocetsta depends
very little on its location in memory. In a shared memory esniment, transparent
data access facilitates programming to a great extent. Ereraser’s point of view,
data are stored in a large global memory that is readily adaesto any processor.
However, memory conflicts as well as the necessity to mairdata coherence can
lead to degraded performance. In addition, shared memanpaters cannot easily
take advantage of data locality in problems which have amsitally local nature,
as is the case with most discretized PDEs. Some current mexchave a physically
distributed memory but they are logically shared, i.e. hgamcessor has the same
view of the global address space.

P P = = P

|

| HIGH SPEED BUS |

N R R

SHARED MEMORY

Figure 11.2: A bus-based shared memory computer.

ARARE AL

SWITCHING NETWORK

I

Figure 11.3: A switch-based shared memory computer.

There are two possible implementations of shared memonhimes: (1) bus-
based architectures, and (2) switch-based architectuhesertwo model architec-

11.3. TYPES OF PARALLEL ARCHITECTURES 373

tures are illustrated in FigufeT1.2 and Figure1L1.3, resmdy. So far, shared mem-
ory computers have been implemented more often with buseswiith switching
networks.

Buses are the backbone for communication between the diffemits of most
computers. Physically, a bus is nothing but a bundle of winesde of either fiber
or copper. These wires carry information consisting of datmtrol signals, and
error correction bits. The speed of a bus, often measuredeigalytes per second
and called thdandwidthof the bus, is determined by the number of lines in the bus
and the clock rate. Often, the limiting factor for parallentputers based on bus
architectures is the bus bandwidth rather than the CPU speed

The primary reason why bus-based multiprocessors are raoreon than switch-
based ones is that the hardware involved in such implenmensais simple. On the
other hand, the difficulty with bus-based machines is thathmber of processors
which can be connected to the memory will be small in gendsglically, the bus is
timeshared, meaning slices of time are allocated to thereéifit clients (processors,
10 processors, etc.) that request its use.

In a multiprocessor environment, the bus can easily beatatlr Several reme-
dies are possible. The first, and most common, remedy isd¢mpttto reduce traffic
by addinglocal memoriesor cachesattached to each processor. Since a data item
used by a given processor is likely to be reused by the santegsor in the next
instructions, storing the data item in local memory willjhe¢duce traffic in general.
However, this strategy causes some difficulties due to theirement to maintain
data coherencelf Processor (A) reads some data from the shared memorRemd
cessor (B) modifies the same data in shared memory, immbdaiter, the result is
two copies of the same data that have different values. A arésim should be put in
place to ensure that the most recent update of the data igsalvsad. The additional
overhead incurred by such memory coherence operations elagfiget the savings
involving memory traffic.

The main features here are the switching network and thetata global mem-
ory is shared by all processors through the switch. Therdearprocessors on one
side connected tp memory units or banks on the other side. Alternative designs
based on switches connegiprocessors to each other insteadpanemory banks.
The switching network can be a crossbar switch when the nuwefygrocessors is
small. A crossbar switch is analogous to a telephone swit@rdoand allows
inputs to be connected ta outputs without conflict. Since crossbar switches for
large numbers of processors are typically expensive theyeglaced by multistage
networks. Signals travel across a small number of stagesistmy of an array of
elementary switches, e.@.,x 2 or 4 x 4 switches.

There have been two ways of exploiting multistage netwolkircuit switch-
ing networks, the elementary switches are set up by sending@iécsignals across
all of the switches. The circuit is set up once in much the sesage that telephone
circuits are switched in a switchboard. Once the switch estset up, communi-

374 CHAPTER 11. PARALLEL IMPLEMENTATIONS

cation between processafs, . .., P, is open to the memories
My My, ..., My,

in which 7 represents the desired permutation. This communicatidinrevain

functional for as long as it is not reset. Setting up the swti@n be costly, but once it
is done, communication can be quite fastphtket switchingnetworks, a packet of
data will be given an address token and the switching withendifferent stages will
be determined based on this address token. The elementiécheasvhave to provide
for buffering capabilities, since messages may have to baepiat different stages.

11.3.2 Distributed Memory Architectures

Thedistributed memorynodel refers to the distributed memanessage passiray-
chitectures as well as to distributed memory SIMD comput&rtypical distributed
memory system consists of a large number of identical peamrssvhich have their
own memories and which are interconnected in a regular égyoExamples are de-
picted in FigureETT14 ahid11.5. In these diagrams, eaclegsoc unit can be viewed
actually as a complete processor with its own memory, CRUsubsystem, control
unit, etc. These processors are linked to a number of “neigindy’ processors which
in turn are linked to other neighboring processors, etc.Message Passing” mod-
els there is no global synchronization of the parallel taskstead, computations
aredata drivenbecause a processor performs a given task only when thenojsera
it requires become available. The programmer must progibtineadata exchanges
explicitly between processors.

O
p
\
p
\
O

()
N
R
N
)
N
E

NN

()
-/
Y
-/
Y
-/
R

O—0O—~C——0

Figure 11.4: An eight-processor ring (left) and & 4 multiprocessor mesh (right).

In SIMD designs, a different approach is used. A host prarestores the pro-
gram and each slave processor holds different data. Thetlinerstbroadcasts in-
structions to processors which execute them simultango@sie advantage of this
approach is that there is no need for large memories in eadd toostore large pro-
grams since the instructions are broadcast one by one tooakgsors.

Distributed memory computers can exploit locality of dai@tider to keep com-
munication costs to a minimum. Thus, a two-dimensional g@ssor grid such as

11.3. TYPES OF PARALLEL ARCHITECTURES 375

the one depicted in Figufe—T1.4 is perfectly suitable fovisgl discretized elliptic
Partial Differential Equations (e.g., by assigning eadd goint to a corresponding
processor) because some iterative methods for solvingethdting linear systems
will require only interchange of data between adjacent gaohts. A good general
purpose multiprocessor must have powerfipping capabilitiedbecause it should
be capable of easily emulating many of the common topolaglied as 2-D and 3-D
grids or linear arrays, FFT-butterflies, finite element nessletc.
Three-dimensional configurations have also been popular.

111

011

0 1 00 01 000 001

Figure 11.5: Thew-cubes of dimensions = 1, 2, 3.

Hypercubes are highly concurrent multiprocessors basédeoinaryn-cube topol-
ogy which is well known for its rich interconnection capdisls. A parallel processor
based on the-cube topology, called hypercubenhereafter, consists @ identical
processors, interconnected witmeighbors. A3-cube can be represented as an ordi-
nary cube in three dimensions where the vertices aré th&?* nodes of the 3-cube;
see Figuré&ITIl5. More generally, one can construet-anbe as follows: First, the
2" nodes are labeled by tl2& binary numbers fron to 2" — 1. Then a link between
two nodes is drawn if and only if their binary numbers diffgrdne (and only one)
bit.

An n-cube graph can be constructed recursively from lower dgiogal cubes.
More precisely, consider two identical — 1)-cubes whose vertices are labeled like-
wise from 0 to2"~!. By joining every vertex of the firstn — 1)-cube to the vertex
of the second having the same number, one obtains@ibe. Indeed, it suffices to
renumber the nodes of the first cubelas a; and those of the second asA «a;
wherea; is a binary number representing the two similar nodes ofithe 1)-cubes
and where\ denotes the concatenation of binary numbers.

Distributed memory computers come in two different desigreamely, SIMD
and MIMD. Many of the early projects have adopted the SIMDaorgation. For
example, the historical ILLIAC IV Project of the Universitf lllinois was a machine
based on a mesh topology where all processors execute tleeiisstnuctions.

SIMD distributed processors are sometimes called arrayegsors because of
the regular arrays that they constitute. In this categorstadic arrays can be clas-
sified as an example of distributed computing. Systolicya;revhich popular in the

376 CHAPTER 11. PARALLEL IMPLEMENTATIONS

1980s, are organized in connected cells, which are progempossibly micro-
coded) to perform only one of a few operations. All the cetls synchronized and
perform the same task. Systolic arrays are designed in V&&inology and are
meant to be used for special purpose applications, priynargignal processing.

In the last few years, parallel computing technologies ls@en a healthy matu-
ration. Currently, the architecture of choice is the digtted memory machine using
message passing. There is no doubt that this is due to thialaiigi of excellent
communication software, such the Message Passing Inte(fdPl), seel[156]. In
addition, the topology

is often hidden from the user, so there is no need to code caneation on
specific configurations such as hypercubes. Since this mioclengputing has pen-
etrated the applications areas, and industrial applieatibis likely to remain for
some time.

11.4 Types of Operations

Now consider two prototype Krylov subspace techniques, etgnihe precondi-
tioned Conjugate Gradient method for the symmetric casetlamgreconditioned
GMRES algorithm for the nonsymmetric case. It should be exnigled that all
Krylov subspace techniques require the same basic opesatio

Consider Algorithn@]J1. The first step when implementing thigorithm on a
high-performance computer is identifying the main operaithat it requires. We
distinguish five types of operations, which are: (1) Predtomkr setup; (2) Matrix
vector multiplications; (3) Vector updates; (4) Dot proty@nd (5) Preconditioning
operations. In this list the potential bottlenecks are ¢&jting up the preconditioner
and (5), solving linear systems wifl1, i.e., the preconditioning operation. Section
[[T8 discusses the implementation of traditional predairs, and the last two
chapters are devoted to preconditioners that are spexidlizparallel environments.
Next come the matrix-by-vector products which deservei@ddr attention. The
rest of the algorithm consists essentially of dot produais wector updates which
do not cause significant difficulties in parallel machindthaugh inner products can
lead to some loss of efficiency on certain types of computédlts large numbers of
processors.

If we now consider the GMRES algorithm, the only new operati@re with
respect to the Conjugate Gradient method is the orthogmimlin of the vectorv;
against the previouss. The usual way to accomplish this is via the modified Gram-
Schmidt process, which is basically a sequence of submeses the form:

e Computex = (y,v).
e Computey :=y — awv.

This orthogonalizes a vectgragainst another vectarof norm one. Thus, the outer
loop of the modified Gram-Schmidt is sequential, but the iinoep, i.e., each sub-
process, can be parallelized by dividing the inner prodact SAXPY operations

11.4. TYPES OF OPERATIONS 377

among processors. Although this constitutes a perfectg@table approach for a
small number of processors, the elementary subtasks maylsetall to be efficient
on a large number of processors. An alternative for this as$e use a standard
Gram-Schmidt process with reorthogonalization. Thisaeg$ the previous sequen-
tial orthogonalization process by a matrix operation offtven g =y — VV7y, i.e.,
BLAS-1 kernels are replaced by BLAS-2 kernels.

Recall that the next level of BLAS, i.e., level 3 BLAS, expiblocking in
dense matrix operations in order to obtain performance orhinas with hierarchi-
cal memories. Unfortunately, level 3 BLAS kernels cannogkgloited here because
at every step, there is only one vector to orthogonalizenasgail previous ones. This
may be remedied by using block Krylov methods.

Vector operations, such as linear combinations of vectodsdt-products are
usually the simplest to implement on any computer. In shamethory computers,
compilers are capable of recognizing these operationsradting the appropriate
machine instructions, possibly vector instructions. Wesider now these operations
in turn.

Vector Updates Operations of the form
y(1:n) = y(1:n) + a * x(1:n),

whereq is a scalar ang andz two vectors, are known agector update®r SAXPY
operations. They are typically straightforward to impleta all three machine
models discussed earlier. For example, the above FORTRABB8e segment can
be used on most shared memory ('symmetric multiprocessargl the compiler will
translate it into the proper parallel version.

On distributed memory computers, some assumptions mustaoe sbout the
way in which the vectors are distributed. The main assumptdhat the vectors
andy are distributed in the same manner among the processorsjngdhe indices
of the components of any vector that are mapped to a giverepsoc are the same.
In this case, the vector-update operation will be trandlate p independent vector
updates, requiring no communication. Specificallylibc is the number of variables
local to a given processor, this processor will simply exeewector loop of the form

y(1:nloc) = y(1:nloc) + a * x(1:nloc)

and all processors will execute a similar operation sinmeicasly.

Dot products A number of operations use all the components of a given vézto
compute a single floating-point result which is then neededllprocessors. These
are termedReduction Operationand the dot product is the prototype example. A
distributed version of the dot-product is needed to comthaenner product of two
vectorsx andy that are distributed the same way across the processorsactn f
to be more specific, this distributed dot-product operasibould compute the inner
productt = 2Ty of these two vectors and then make the resuaivailable in each

378 CHAPTER 11. PARALLEL IMPLEMENTATIONS

processor. Typically, this result is needed to performaeapdates or other opera-
tions in each node. For a large number of processors, thisskoperation can be
demanding in terms of communication costs. On the other,haaugllel computer
designers have become aware of their importance and atmgter provide hard-
ware and software support for performiggpbal reduction operationgfficiently.
Reduction operations that can be useful include global sgiobal max/min cal-
culations, etc. A commonly adopted convention providesiglsisubroutine for all
these operations, and passes the type of operation to emped (add, max, min,
multiply,...) as one of the arguments. With this in mind, stidbuted dot-product
function can be programmed roughly as follows (using C sg)nta

tloc = DDOT(nrow, x, incx, y, incy);
MPI_Allreduce(\&t, \&tsum, 1, MPI_DOUBLE, MPI_SUM, comm);

The function DDOT performs the usual BLAS-1 dot producka@indy with strides
incx and incy, respectively. The MPAllreduce operation, which is called with
“MPI_SUM” as the operation-type parameter, sums all the vaigdiilec” from each
processor and put the resulting global sum in the varighlen in each processor.

11.5 Matrix-by-Vector Products

Matrix-by-vector multiplications (sometimes called “Mats” for short) are rela-
tively easy to implement efficiently on high performance pomers. For a descrip-
tion of storage formats for sparse matrices, see Chapter 8 will/ first discuss
matrix-by-vector algorithms without consideration of spty. Then we will cover
sparse Matvec operations for a few different storage fasmat

The computational kernels for performing sparse matrixagiens such as matrix-
by-vector products are intimately associated with the d#atactures used. How-
ever, there are a few general approaches that are commdifeteni algorithms for
matrix-by-vector products which can be described for denagrices. Two popu-
lar ways of performing these operations are the inner proidun and the SAXPY
form. In the inner product form for computing= Az, the componeny; is obtained
as a dot-product of theth row of ¢ and the vector:. The SAXPY form computes
y as a linear combination of the columns 4f specifically as the sum af; A. ; for
i =1,...,n. Athird option consists of performing the product by diagtsn This
option bears no interest in the dense case, but it is at tHe basany important
matrix-by-vector algorithms in the sparse case as will les shortly.

11.5.1 The CSR and CSC Formats

Recall that the CSR data-structure seen in Chapter 3 cemditiree arrays: a real
arrayA(1:nnz)to store the nonzero elements of the matrix row-wise, aigértarray
JA(1:nnz)to store the column positions of the elements in the realyafyaand,
finally, a pointer arrayA(1:n+1), thei-th entry of which points to the beginning of
thei-th row in the array#\ andJA. To perform the matrix-by-vector produgt= Ax

11.5. MATRIX-BY-VECTOR PRODUCTS 379

in parallel using this format, note that each component efrésulting vectoy can
be computed independently as the dot product ofittherow of the matrix with the
vectorz.

ALGORITHM 11.1 CSR Format — Dot Product Form

1. Doi=1,n

2. =ia(i)

3. =ia(i+1)-1

4. y(i) = dotproduct(a(k1:k2),x(ja(k1:k2)))
5. EndDo

Line 4 computes the dot product of the vector with compona(ks), a(k1+1), -,
a(k2) with the vector with componentgja(kl)), x(ja(k1+1)), - -, x(ja(k2))

The fact that the outer loop can be performed in parallel Gam®iploited on
any parallel platform. On some shared-memory machinessyhehronization of
this outer loop is inexpensive and the performance of thevalpwogram can be
excellent. On distributed memory machines, the outer l@phke split in a number
of steps to be executed on each processor. Thus, each moeeldandle a few
rows that are assigned to it. It is common to assign a certaimoer of rows (often
contiguous) to each processor and to also assign the comipafresach of the vectors
similarly. The part of the matrix that is needed is loaded&anheprocessor initially.
When performing a matrix-by-vector product, interprooessommunication will be
necessary to get the needed components of the vedtat do not reside in a given
processor. This important case will return in Secfion H.5.

Ao Gther

+ DotProduct

N i D% y(i)
T x(*) ai*)

x?l:n)

Figure 11.6: lllustration of the row-oriented matrix-bgetor multiplication.

The indirect addressing involved in the second vector irdthtgoroduct is called
a gather operation. The vectox(ja(kl:k2))is first “gathered” from memory into
a vector of contiguous elements. The dot product is thenechout as a standard
dot-product operation between two dense vectors. Thikistihted in Figur€ZT116.

Now assume that the matrix is stored by columns (CSC forri&ig. matrix-by-
vector product can be performed by the following algorithm.

ALGORITHM 11.2 CSC Format — SAXPY Form

380 CHAPTER 11. PARALLEL IMPLEMENTATIONS

1. y(1:n) =0.0

2. Doi=1,n

3. k1 =ia(i)

4. k2 =ia(i+1)-1

5. y(alkl:k2)) = y(ja(k1:k2)) + x(j) * a(k1:k2)
6. EndDo

The above code initializeg to zero and then adds the vectar§j) x a(1 : n,j)
forj = 1,...,ntoit. It can also be used to compute the product oftthaspose

of a matrix by a vector, when the matrix is stored (row-wise}he CSR format.
Normally, the vectoy(ja(k1:k2))is gathered and the SAXPY operation is performed
in vector mode. Then the resulting vector is “scattered’kbato the positionga(*),

by what is called &catteroperation. This is illustrated in FiguteTIL.7.

A major difficulty with the above FORTRAN program is that itirgrinsically
sequential. First, the outer loop is not parallelizablet &s but this may be remedied
as will be seen shortly. Second, the inner loop involvesingiback results of the
right-hand side into memory positions that are determingdhlk indirect address
functionja. To be correcty(ja(1)) must be copied first, followed by(ja(2)), etc.
However, if it is known that the mappin@(i) is one-to-one, then the order of the
assignments no longer matters. Since compilers are nobleapideciding whether
this is the case, a compiler directive from the user is necgdsr the Scatter to be
invoked.

Going back to the outer loop, subsums can be computed (independently) into
p separate temporary vectors. Once all preeparate subsums are completed, these
thesep temporary vectors can be added to obtain the final resulte it the final
sum incurs some additional work but it is highly vectorizabhd parallelizable.

. Gather Scatter 4]

| I ﬂ +x()* D = H ,,,,,,,,,,,,, i
yo) oAty oy

y(L:n) y(I:n)

Figure 11.7: lllustration of the column-oriented matrix~zector multiplication.

11.5.2 Matvecs in the Diagonal Format

Thediagonal storage formatvas one of the first data structures used in the context
of high performance computing to take advantage of spegaks structures. Often,
sparse matrices consist of a small number of diagonals inhwtase the matrix-by-

11.5. MATRIX-BY-VECTOR PRODUCTS 381

vector product can be performed by diagonals. There ar@ aférent variants of
Matvec algorithms for the diagonal format, related to défe orderings of the loops

in the basic FORTRAN program. Recall that the matrix is starea rectangular
array diag(1:n,1:ndiag)and the offsets of these diagonals from the main diagonal
may be stored in a small integer arraffset(1:ndiag) Consider a “dot-product”
variant first.

ALGORITHM 11.3 DIA Format — Dot Product Form

Doi=1,n
tmp = 0.0d0
Doj =1, ndiag
tmp = tmp + diag(i,j)*x(i+offset(j))
EndDo
y(i) =tmp
EndDo

NOOAWN R

In a second variant, the vectgris initialized to zero, and them is multiplied by
each of the diagonals and the separate results are adged b innermost loop in
this computation is sometimes calleddad operation.

ALGORITHM 11.4 Matvec in Triad Form

y =0.0d0
Doj =1, ndiag

joff = offset(j)

i1 =max(1, 1-offset(j))

i2 = min(n, n-offset(j))

y(i1:i2) = y(i1:i2) + diag(i1:i2,j)*x(i1+joff:i2+joff)
EndDo

NOOAWN R

Good speeds can be reached on vector machines for largerenmaigces. A
drawback with diagonal schemes is that it are not general.gEoeral sparse ma-
trices, we can either generalize the diagonal storage sloemeorder the matrix in
order to obtain a diagonal structure. The simplest germatiin is the Ellpack-Itpack
Format.

11.5.3 The Ellpack-Itpack Format

The Ellpack-Itpack (or Ellpack) format is of interest ontyr fmatrices whose maxi-
mum number of nonzeros per ropmax, is small. The nonzero entries are stored in
a real arrayae(1:n,1:;jmax) Along with this is integer arrayae(1:n,1:jmax)which
stores the column indices of each corresponding entagirsimilar to the diagonal
scheme, there are also two basic ways of implementing axyatrvector product
when using the Ellpack format. We begin with an analogue gb#Athm[TT3B.

382 CHAPTER 11. PARALLEL IMPLEMENTATIONS

ALGORITHM 11.5 Ellpack Format — Dot-Product Form

1. Doi=1,n

2. yi=0

3. Doj =1, ncol

4, yi = yi + ae(i,j) * x(jae(i,j))
5. EndDo

6. y(i) =yi

7. EndDo

If the number of nonzero elements per row varies substéntiabny zero ele-
ments must be stored unnecessarily. Then the scheme begueffesent. As an
extreme example, if all rows are very sparse except for orteeyh which is full,
then the arrayse, jae must be fulln x n arrays, containing mostly zeros. This is
remedied by a variant of the format which is called jdigged diagonal format

11.5.4 The Jagged Diagonal Format

The Jagged Diagonal (JAD) format can be viewed as a genaializof the Ellpack-
Itpack format which removes the assumption on the fixed lengivs. To build the
jagged diagonal structure, start from the CSR data strei@nd sort the rows of the
matrix by decreasing number of nonzero elements. To buéditkt “j-diagonal”
extract the first element from each row of the CSR data strecithe second jagged
diagonal consists of the second elements of each row in the &Ba structure.
The third, fourth,. .., jagged diagonals can then be extracted in the same fashion.
The lengths of the successive j-diagonals decreases. Theanwof j-diagonals that
can be extracted is equal to the number of nonzero elemeitit® dirst row of the
permuted matrix, i.e., to the largest number of nonzero etgsper row. To store
this data structure, three arrays are needed: a real BxJap store the values of
the jagged diagonals, the associated adfahAG which stores the column positions
of these values, and a pointer ari®AG which points to the beginning of each
j-diagonal in theDJ, JDIAGarrays.

Example 11.1. Consider the following matrix and its sorted versiBul:

1. 0. 2. 0. 0 3. 4. 0. 5 0.
3. 4. 0. 5. 0. 0. 6. 7. 0. 8.
A=1 0. 6. 7. 0. & — PA=1| 1. 0. 2. 0. O
0. 0. 9. 10. 0. 0. 0. 9. 10. O.
0. 0. 0. 11. 12. 0. 0. 0. 11. 12

The rows of PA have been obtained from those .4fby sorting them by number
of nonzero elements, from the largest to the smallest numbleen the JAD data
structure forA is as follows:

11.5. MATRIX-BY-VECTOR PRODUCTS 383

DJ 3. 6. 1. 9 11)4. 7. 2. 10. 12,5 8.

JDIAG |2 2 1 3 4 2 3 3 4 5 |4 5

IDIAG |1 6 11 13

Thus, there are two j-diagonals of full length (five) and ohkngth two. |

A matrix-by-vector product with this storage scheme can &dgomed by the
following code segment.

Do j=1, ndiag

k1 = idiag(j)

k2 =idiag(j+1) — 1

len = idiag(j+1) — k1

y(1:len) = y(1:len) + dj(k1:k2)*x(jdiag(k1:k2))
EndDo

A WNR

Since the rows of the matrix have been permuted, the above code will compute
PAz, a permutation of the vectodz, rather than the desiredxz. It is possible
to permute the result back to the original ordering afterekecution of the above
program. This operation can also be performed until the fodltion has been
computed, so that only two permutations on the solutionorexre needed, one at the
beginning and one at the end. For preconditioning opergtibmay be necessary to
perform a permutation before or within each call to the pnelittoning subroutines.
There are many possible variants of the jagged diagonaldbr@ne variant which
does not require permuting the rows is described in Exeltise

11.5.5 The Case of Distributed Sparse Matrices

Given a sparse linear system to be solved on a distributedanyegnvironment, it is
natural to map pairs of equations-unknowns to the same gsocén a certain prede-
termined way. This mapping can be determined automatibgllg graph partitioner
or it can be assigned ad hoc from knowledge of the problemhduitany loss of
generality, the matrix under consideration can be vieweatigiating from the dis-
cretization of a Partial Differential Equation on a certdomain. This is illustrated
in Figure[TI.B. Assume that each subgraph (or subdomairneifPDE literature)
is assigned to a different processor, although this réistnican be relaxed, i.e., a
processor can hold several subgraphs to increase pamaileli

A local data structure must be set up in each processor (aosuhin, or sub-
graph) which will allow the basic operations such as (glpb@trix-by-vector prod-
ucts and preconditioning operations to be performed effilyieThe only assumption
to make regarding the mapping is that if row numbé mapped into processer
then so is the unknowh i.e., the matrix is distributed row-wise across the preces
according to the distribution of the variables. The grapdssumed to be undirected,
i.e., the matrix has a symmetric pattern.

384 CHAPTER 11. PARALLEL IMPLEMENTATIONS

r,/—“\

|
Internal O e
points l\f\ Ll

[N External Interface
Internal vl ik points
interface Ly o
points N iR

Figure 11.8: Decomposition of physical domain or adjacegi@ph and the local
data structure.

It is important to “preprocess the data” in order to faciétshe implementation
of the communication tasks and to gain efficiency during theative process. The
preprocessing requires setting up the following: infoiprain each processor

1. List of processors with which communication will takeg#a These are called
“neighboring processors” although they may not be physicaarest neigh-
bors.

2. List of local nodes that are coupled with external noddsesE are théocal
interface nodes

3. Local representation of the distributed matrix in eaacpssor.

To perform a matrix-by-vector product with the global matd, the matrix con-
sisting of rows that are local to a given processor must béiptiatd by some global
vectorv. Some components of this vector will be local, and some corapts must
be brought from external processors. These external Vesiamrrespond to inter-
face points belonging to adjacent subdomains. When peitfigranmatrix-by-vector
product, neighboring processors must exchange valueseof ddjacent interface
nodes.

Let A,,. be the local part of the matrix, i.e., the (rectangular) matonsisting of
all the rows that are mapped toyproc Call 4,,. the “diagonal block” ofA located
in A, i.€., the submatrix of;,. whose nonzero elements; are such thay is
a local variable. Similarly, calB.,; the “offdiagonal” block, i.e., the submatrix of

11.5. MATRIX-BY-VECTOR PRODUCTS 385

Ao Whose nonzero elements; are such thaj is not a local variable. To perform
a matrix-by-vector product, start multiplying the diagbb#ock A;,. by the local
variables. Then, multiply the external variables by therspanatrixB..;. Notice
that since the external interface points are not couplel lvital internal points, only
the rowsn;,; + 1 to n,;. in the matrixB,.,; will have nonzero elements.

Thus, the matrix-by-vector product can be separated intbsuch operations,
one involving only the local variables and the other inviotyexternal variables. Itis
necessary to construct these two matrices and define a loaddaring of the local
variables in order to perform the two matrix-by-vector prot efficiently each time.

To perform a global matrix-by-vector product, with the diaited data structure
described above, each processor must perform the folloapegations. First, multi-
ply the local variables by the matri;,.. Second, obtain the external variables from
the neighboring processors in a certain order. Third, iplyltihese by the matrix
B+ and add the resulting vector to the one obtained from thenfiudtiplication by
Ay Note that the first and second steps can be done in parallel.

A
Internal
points |
! Aloc
y
g oA
Local ! !
interface ! i + Baxt
points W i

Figure 11.9: The local matrices and data structure assaciwith each subdomain.

With this decomposition, the global matrix-by-vector puot can be imple-
mented as indicated in Algorithin—I1.6 below. In what follows,. is a vector of
variables that are local to a given processor. The compsramtesponding to the
local interface points (ordered to be the last componentsg,jrfor convenience) are
calledzy, . The external interface points, listed in a certain ordemnstitute a vector
which is calledz..;. The matrix4;,. is a sparseiloc x nloc matrix representing the
restriction ofA to the local variables;,.. The matrixB.,; operates on the external
variableszx.,; to give the correction which must be added to the vedgrz;,. In
order to obtain the desired res@ix);,..

ALGORITHM 11.6 Distributed Sparse Matrix Product Kernel

1 Exchange interface data, i.e.,

2. Scattery,,q to neighbors and

3. Gatherx.,; from neighbors

4 Do Local Matvecy = Ajoeioe

5 Do External Matvecy = y + BegtText

386 CHAPTER 11. PARALLEL IMPLEMENTATIONS

An important observation is that the matrix-by-vector prois in lines 4 and 5 can
use any convenient data structure that will improve efficyelny exploiting knowl-

edge on the local architecture. An example of the implentiemtaf this operation

is illustrated next:

call bdxchg(nloc,x,y,nproc,proc,ix,ipr,type,xlen,tpu
y(1:nloc) = 0.0

call amux1 (nloc,x,y,aloc,jaloc,ialoc)

nrow = nloc —nbnd + 1

call amuxZ1(nrow,x,y(nbnd),aloc,jaloc,ialoc(nloc+1))

The only routine requiring communication lglxchgwhose purpose is to ex-
change interface values between nearest neighbor prose3s$e first call taamux1
performs the operation := y + Aj,.Ti0, Wherey has been initialized to zero prior
to the call. The second call mmuxlperformsy := y + BeuZer. NoOtice that the
data for the matrixB..; is simply appended to that A;,., a standard technique
used for storing a succession of sparse matrices. Bhematrix acts only on the
subvector ofz which starts at locatiombnd of x. The size of theB,,; matrix is
nrow = nloc — nbnd + 1.

11.6 Standard Preconditioning Operations

Each preconditioned step requires the solution of a lingstem of equations o the
form Mz = y. This section only considers those traditional precoadérs, such

as ILU or SOR or SSOR, in which the solution willi is the result of solving tri-

angular systems. Since these are commonly used, it is iamgdd explore ways to
implement them efficiently in a parallel environment. It Isaimportant to stress
that the techniques to be described in this section are ynagséiful on shared mem-
ory computers. Distributed memory computers utilize dédfe strategies. We only
consider lower triangular systems of the form

Lz =b. (11.1)

Without loss of generality, it is assumed tHats unit lower triangular.

11.6.1 Parallelism in Forward Sweeps

Typically in solving a lower triangular system, the solatiis overwritten onto the
right-hand side on return. In other words, there is one atréyr both the solution
and the right-hand side. Therefore, the forward sweep foirgpa lower triangular
system with coefficientsl(, j) and right-hand-side is as follows.

ALGORITHM 11.7 Sparse Forward Elimination

1. Doi=2, n
2. For (all j such that al(i,j) is nonzero) Do:

11.6. STANDARD PRECONDITIONING OPERATIONS 387

3. x(i) := x(i) — al(i,j) * x(j)
4. EndDo
5. EndDo

Assume that the matrix is stored row wise in the general Cesgad Sparse Row
(CSR) format, except that the diagonal elements (ones) etrstared. Then the
above algorithm translates into the following code segment

1 Doi=2, n

2. Do j=ial(i), ial(i+1) — 1

3. x(D)=x(i) — al(j) * x@jal(j))
4. EndDo

5 EndDo

The outer loop corresponding to the variablesequential. The¢loop is a sparse
dot product of theé*® row of L and the (dense) vectar This dot product may be split
among the processors and the partial results may be addeel emd. However, the
length of the vector involved in the dot product is typicallyort. So, this approach
is quite inefficient in general. We examine next a few altéveaapproaches. The
regularly structured and the irregularly structured casedreated separately.

11.6.2 Level Scheduling: the Case of 5-Point Matrices

First, consider an example which consists of a 5-point massociated with & x 3
mesh as represented in Figlre_T1.10. The lower triangulénxressociated with
this mesh is represented in the left side of Fidure11.10. Stéecil represented in
the right side of FigurEZIT.10 establishes the data depeadsatween the unknowns
in the lower triangular system solution when consideredftbe point of view of a
grid of unknowns. It tells us that in order to compute the wwn in position(s, 5),
only the two unknowns in positiors—1, j) and(i, j— 1) are needed . The unknown
x11 does not depend on any other variable and can be computed fiest the value
of 211 can be used to get; » andx, ; simultaneously. Then these two values will
in turn enablers 1, 22 2 andx; 3 to be obtained simultaneously, and so on. Thus, the
computation can proceed in wavefronts.

The steps for this wavefront algorithm are shown with dadivesbs in Figure
[II.I0. Observe that the maximum degree of parallelism (@ovéength, in the case
of vector processing) that can be reached is the minimum,pf,,, the number of
mesh points in the andy directions, respectively, for 2-D problems.

For 3-D problems, the parallelism is of the order of the maxmsize of the sets
of domain pointse; ; i, wherei + j + k = lev, a constant leveko. It is important to
note that there is little parallelism or vectorization a tieginning and at the end of
the sweep. The degree of parallelism is equal to one initiaid then increases by
one for each wave reaching its maximum, and then decreasicigdown to one at
the end of the sweep. For example, fot & 3 grid, the levels (sets of equations that
can be solved in parallel) afd }, {2,5}, {3,6,9}, {4,7,10}, {8,11}, and finally
{12}. The first and last few steps may take a heavy toll on achie\gt®ed-ups.

388 CHAPTER 11. PARALLEL IMPLEMENTATIONS

\\\ \\\ \\\ \\\ (,L?] - 1) (273)
\\\\ \\\\ \\\\ 6
& ® @ ®)
N\ N\ N\ \
\\\\ \\\\ \\\\ \5
@ \>/2\ \@ \@ (Z - 17])
Stencil
\1 N 2 \3 \4

Figure 11.10: Level scheduling fordax 3 grid problem.

The idea of proceeding bgvelsor wavefrontss a natural one for finite differ-
ence matrices on rectangles. Discussed next is the moreaj@ase of irregular
matrices, a textbook example of schedulingtapological sorting it is well known
in different forms to computer scientists.

11.6.3 Level Scheduling for Irregular Graphs

The simple scheme described above can be generalizeddgular grids. The ob-
jective of the technique, callddvel schedulingis to group the unknowns in subsets
so that they can be determined simultaneously. To expla&ndia, consider again
Algorithm[TT.T for solving a unit lower triangular systemhéli-th unknown can be
determined once all the other ones that participate in equatbecome available.
In the i-th step, all unknowng that al(7,j) # 0 must be known. To use graph
terminology, these unknowns aaejacentto unknown numbet. SincelL is lower
triangular, the adjacency graph is a directed acyclic grafte edgej — i in the
graph simply indicates that; must be known before; can be determined. It is
possible and quite easy to find a labeling of the nodes thaffy\sdiie property that
if label(j) < label(i), then taskj must be executed before taskThis is called a
topological sorting of the unknowns.

The first step computes, and any other unknowns for which there are no prede-
cessors in the graph, i.e., all those unknowp$or which the offdiagonal elements
of row i are zero. These unknowns will constitute the elements dirsidevel. The
next step computes in parallel all those unknowns that &ilehthe nodes of the first
level as their (only) predecessors in the graph. The foligvdteps can be defined
similarly: The unknowns that can be determined at stege all those that have as
predecessors equations that have been determined inlsigps. , [— 1. This leads
naturally to the definition of depthfor each unknown. Thdepthof a vertex is de-
fined by performing the following loop foe 1,2, ..., n, after initializing depth(j)
to zero for allj.

depth(i) = 1+ max{depth(j), for all j such thatal(i,j) # 0}.
J

=~

11.6. STANDARD PRECONDITIONING OPERATIONS 389

By definition, alevel of the graph is the set of nodes with the same depth. A data
structure for the levels can be defined: A permutaidh : n) defines the new

ordering andevel(i),i = 1,---,nlev + 1 points to the beginning of thieth level in
that array.
Natural ordering Wavefront ordering
u]
EN [][]
[] H u
[K C N]
[[EE =
[| [] [| [|
[| EN []
| Nl [] [|
[[] EN []
I W 1 N I I 1 B Bl B
| m | mm Ll |_mm_ m
I m == L1 I LI

Figure 11.11: Lower triangular matrix associated with mesRigureTT.ID.

Once these level sets are found, there are two different wapsoceed. The
permutation vectoyg can be used to permute the matrix according to the new order.
In the4 x 3 example mentioned in the previous subsection, this meansmeering
the variables(1}, {2,5}, {3,6,9}, ..., consecutively, i.e., al,2,3,...}. The re-
sulting matrix after the permutation is shown in the rightesof Figurd TTI1. An
alternative is simply to keep the permutation array and tuseidentify unknowns
that correspond to a given level in the solution. Then therélyn for solving the
triangular systems can be written as follows, assumingthigamatrix is stored in the
usual row sparse matrix format.

ALGORITHM 11.8 Forward Elimination with Level Scheduling

Do lev=1, nlev
j1 = level(lev)
j2 = level(lev+1) — 1
Dok=j1,j2
i=q(k)
Do j=ial(i), ial(i+1) — 1
x() = x(i) — alj) * x@al())
EndDo
EndDo
EndDo

LN AMWNR

An important observation here is that the outer loop, whiolresponds to a
level, performs an operation of the form

r:=x— Bz

390 CHAPTER 11. PARALLEL IMPLEMENTATIONS

where B is a submatrix consisting only of the rows of level, and excluding the
diagonal elements. This operation can in turn be optimizedding a proper data
structure for these submatrices.

For example, the JAD data structure can be used. The regpkiriormance can
be quite good. On the other hand, implementation can be owitdved since two
embedded data structures are required.

Example 11.2. Consider a finite element matrix obtained from the exampbevsh

in Figure[311. After an additional level of refinement, donghe same way as was
described in Chapter 3, the resulting matrix, shown in tifteplert of Figure 1112,

is of sizen = 145. In this caseg levels are obtained. If the matrix is reordered by
levels, the matrix shown in the right side of the figure resulthe last level consists

of only one element. |
Natural ordering Level-Scheduling ordering

M v

]]]]] [

]]]]] [

]]]]] [

]]]]] [

]] [}] [} [

b L N R

ﬂ#, L _ - -.-.l ! __l____l__l___!
I‘Ii':l qb"‘*"":N :
|]

1
|
D
' oo
'3\" MR | o 1
Pl el SRS T
R [\ ", ' [
T s R ' ' [
. A . T . ~ ~,] | 1
L L . ERL YL ., I o)
e " o] . .)
5 '

=
w_--"f
- P
-
o
e
-
-
-
b
/]
-
) T
e 4,
[¥
A=
| |
1=
LI LA
i l__
1.0
- - .
ST
s
[
]
’-r--
" [}
17
N [
i
1
-) - -
== =

Figure 11.12: Lower-triangular matrix associated with &dielement matrix and its
level-ordered version.

PROBLEMS

P-11.1 Give a short answer to each of the following questions:

a. What is the main disadvantage of shared memory compusesiton a bus architec-
ture?

b. What is the main factor in yielding the speed-up in pipstiprocessors?
c. Related to the previous question: What is the main linoitadbf pipelined processors
in regards to their potential for providing high speed-ups?
P-11.4 Show that the number of edges in a binargube isn2" 1.
P-11.5 Show that a binaryl-cube is identical with @orus which is a4 x 4 mesh with

wrap-around connections. Are there hypercubes of any dihensions that are equivalent
topologically to toruses?

11.6. STANDARD PRECONDITIONING OPERATIONS 391

P-11.6 A Gray code of lengthk = 2" is a sequencey, . . ., a1 of n-bit binary numbers
such that (a) any two successive numbers in the sequeneelayjfone and only one bit; (b)
all n-bit binary numbers are represented in the sequence; ang é)da;_; differ by one
bit.
a. Find a Gray code sequence of length- 8 and show the (closed) path defined by
the sequence of nodes of a 3-cube, whose labels are the ¢teafahe Gray code
sequence. What type of paths does a Gray code define in a ljpeérc

b. To build a “binary reflected” Gray code, start with the @vGray code sequence con-
sisting of the two one-bit numbers 0 and 1. To build a two-laiy=code, take the same
sequence and insert a zero in front of each number, thenhaksejuence ireverse
order and insert a one in front of each number. This gitgs = {00,01, 11, 10}.

The process is repeated until arbit sequence is generated. Show the binary reflected
Gray code sequences of length 2, 4, 8, and 16. Prove (by iiod)ithat this process
does indeed produce a valid Gray code sequence.

c. Let ann-bit Gray code be given and consider the sub-sequence déatkeaits whose
first bit is constant (e.g., zero). Is this an- 1 bit Gray code sequence? Generalize
this to any of then-bit positions. Generalize further to any setkok n bit positions.

d. Use the previous question to find a strategy to m2{p ax 22 mesh into arin; +ns)-
cube.

P-11.5 Consider a ring of processors which are characterized by the following commun
cation performance characteristics. Each processor camemicate with its two neighbors
simultaneouslyi.e., it can send or receive a message while sending oviegeinother mes-
sage. The time for a message of lengtho be transmitted between two nearest neighbors is
of the form

8+ mr.

a. Amessage of length is “broadcast” to all processors by sending it fréinto P, and
then fromP; to P, etc., until it reaches all destinations, i.e., until itabasP,.. How
much time does it take for the message to complete this psBces

b. Now split the message into packets of equal size and pgo#iie data transfer. Typi-
cally, each processor will receive packet numb&om the previous processor, while
sending packet — 1 it has already received to the next processor. The packdts wi
travel in chain fromP; to P, ..., to Px. In other words, each processor executes a
program that is described roughly as follows:

Do i=1, Num_packets
Receive Packet number i from Previous Processor
Send Packet number i to Next Processor

EndDo

There are a few additional conditionals. Assume that thebmrraf packets is equal to
k — 1. How much time does it take for all packets to reactkgltocessors? How does
this compare with the simple method in (a)?

P-11.3 (a) Write a short FORTRAN routine (or C function) which segsthe level number
of each unknown of an upper triangular matrix. The input imasrin CSR format and the
output should be an array of lengthcontaining the level number of each node. (b) What
data structure should be used to represent levels? Withotimgvthe code, show how to
determine this data structure from the output of your raut{c) Assuming the data structure

392 CHAPTER 11. PARALLEL IMPLEMENTATIONS

of the levels has been determined, write a short FORTRANme(br C function) to solve
an upper triangular system using the data structure regutiithe previous question. Show
clearly which loop should be executed in parallel.

P-11.4 In the jagged diagonal format described in Secfion IIL.5.i, mecessary to pre-
process the matrix by sorting its rows by decreasing numbmves. What type of sorting
should be used for this purpose?

P-11.5 In the jagged diagonal format described in Secfion TIL.5id,natrix had to be
preprocessed by sorting it by rows of decreasing numbeeofhehts.

a. What is the main reason it is necessary to reorder the rows?

b. Assume that the same process of extracting one elemervpé used. At some point
the extraction process will come to a stop and the remainfdereamatrix can be put
into a CSR data structure. Write down a good data structustote the two pieces of
data and a corresponding algorithm for matrix-by-vectodpicts.

c. This scheme is efficient in many situations but can leadablpms if the first row is
very short. Suggest how to remedy the situation by paddinly zéro elements, as is
done for the Ellpack format.

P-11.4 Many matrices that arise in PDE applications have a strac¢hat consists of a few
diagonals and a small number of nonzero elements scatteegpliliarly in the matrix. In
such cases, it is advantageous to extract the diagonalqxhpid the rest in a general sparse
(e.g., CSR) format. Write a pseudo-code to extract the miaigoshals and the sparse part.
As input parameter, the number of diagonals desired mugtéxfied.

NOTES AND REFERENCES General recommended reading on parallel computing arddbk&s

by Kumar et al. [[T94]. FostefI1B1], and Wilkinson and All&LH]. Trends in high-performance
architectures seem to come and go rapidly. In the 80s, itsdehat the paradigm of shared memory
computers with massive parallelism and coarse grain géisaii was sure to win in the long run. Then,
a decade ago massive parallelism of the SIMD type domindieddtene for while, with hypercube
topologies at the forefront. Thereafter, computer vendtaisted mixing message-passing paradigms
with “global address space”. Currently, it appears thatrithisted heteregenous computing will be
dominating the high-performance computing scene for sameto come. Another recent development
is the advent of network computing or grid-computing.

Until the advent of supercomputing in the mid 1970s, storsd®mes for sparse matrices were
chosen mostly for convenience as performance was not ag issgeneral. The first paper showing the
advantage of diagonal storage schemes in sparse matrixutatigns is probablyi[184]. The discovery
by supercomputer manufacturers of the specificity of spaateix computations was the painful real-
ization that without hardware support, vector computerddbe inefficient. Indeed, the early vector
machines (CRAY) did not have hardware instructions for gatmd scatter operations but this was
soon remedied in the second-generation machines. For iedegacount of the beneficial impact of
hardware for “scatter” and “gather” on vector machines,[B68].

Level scheduling is a textbook example of topological sgrin graph theory and was discussed
from this viewpoint in, e.g.[16,.258.31L8]. For the speciase of finite difference matrices on rectan-
gular domains, the idea was suggested by several auth@pendently,[[28€. 289, 155, 252110]. In
fact, the level scheduling approach described in this @rdpta “greedy” approach and is unlikely to
be optimal. It may be preferable to useackward schedulinfif] which define the levels from bottom
up in the graph. Thus, the last level consists of the leavékeofraph, the previous level consists of
their predecessors, etc. Instead of static schedulingalsb possible to perform a dynamic scheduling
whereby the order of the computation is determined at nme-ti The advantage over pre-scheduled
triangular solutions is that it allows processors to alwexecute a task as soon as its predecessors have
been completed, which reduces idle time. Some of the eaelierences on implementations and tests

wih level-scheduling aré 30, 257,165 80] Bii.11.8.1294] 296 [|

Chapter 12

PARALLEL PRECONDITIONERS

This chapter covers a few alternative methods for preconditioning a linear system. These
methods are suitable when the desired goal is to maximize parallelism. The simplest approach is
the diagonal (or Jacobi) preconditioning. Often, this preconditioner is not very useful, since the
number of iterations of the resulting iteration tends to be much larger than the more standard
variants, such as ILU or SSOR. When developing parallel preconditioners, one should beware that
the benefits of increased parallelism are not outweighed by the increased amount of computations.
The main question to ask is whether or not it is possible to find preconditioning techniques that
have a high degree of parallelism, as well as good intrinsic qualities.

12.1 Introduction

As seen in the previous chapter, a limited amount of parstletan be extracted
from the standard preconditioners such as ILU and SSORufkately, a number
of alternative techniques can be developed that are sphiftargeted at parallel
environments. These are preconditioning techniques tbakdwormally not be used
on a standard machine, but only for parallel computers. & het at least three such
types of techniques discussed in this chapter. The simgygsbach is to use a Jacobi
or, even better, a block Jacobi approach. In the simplest ea¥acobi preconditioner
may consist of the diagonal or a block-diagonaldofTo enhance performance, these
preconditioners can themselves be accelerated by polahderations, i.e., a second
level of preconditioning calledolynomial preconditioning

A different strategy altogether is to enhance parallelismusing graph theory
algorithms, such as graph-coloring techniques. Thesastarisoloring nodes such
that two adjacent nodes have different colors. The gist isfdbproach is that all
unknowns associated with the same color can be determinadtaneously in the
forward and backward sweeps of the ILU preconditioning apen.

Finally, a third strategy uses generalizations of “pantiing” techniques, which
can be put in the general framework of “domain decompositamproaches. These
will be covered in detail in the next chapter.

Algorithms are emphasized rather than implementationserd hre essentially
two types of algorithms, namely, those which can be terowdse-grainand those
which can be termeéine-grain In coarse-grain algorithms, the parallel tasks are
relatively big and may, for example, involve the solutionsofiall linear systems.

393

394 CHAPTER 12. PARALLEL PRECONDITIONERS

In fine-grain parallelism, the subtasks can be elementagifig-point operations
or consist of a few such operations. As always, the dividing between the two
classes of algorithms is somewhat blurred.

12.2 Block-Jacobi Preconditioners

Overlapping block-Jacobi preconditioning consists of aggal block-Jacobi ap-
proach as described in Chapter 4, in which the sgteverlap. Thus, we define
the index sets

Si={jlli<j<ry}

with

L =1
T, = n

r, > li+17 1§2§p—1

wherep is the number of blocks. Now use the block-Jacobi method thithpartic-
ular partitioning, or employ the general framework of aiditprojection processes
of Chapter 5, and use an additive projection method ontogfjeence of subspaces

Ki - Span{‘/;}7 ‘/’L - [eliaeli+17"'7e7“i]'
Each of the blocks will give rise to a correction of the form
P — B L ATV (b — AP, (12.1)

One problem with the above formula is related to the oveitapportions of thex
variables. The overlapping sections will receive two défg corrections in general.
According to the definition of “additive projection process seen in Chaptél 5, the
next iterate can be defined as

p
—1y,T
Thyl = Tf + ZVZAZ Viirg
i=1

wherer, = b — Ax;, is the residual vector at the previous iteration. Thus, the
corrections for the overlapping regions simply are addegetteer. It is also possible
to weigh these contributions before adding them up. Thigjisvalent to redefining
(@Z1) into

&0 =gV + DAV (b - Any)

in which D; is a honnegative diagonal matrix of weights. It is typicamteigh a
nonoverlapping contribution by one and an overlapping rdaution by1/k wherek
is the number of times the unknown is represented in thetjoauitig.

12.3. POLYNOMIAL PRECONDITIONERS 395

Ay

Ao

As

Asg

Figure 12.1: The block-Jacobi matrix with overlapping lec

The block-Jacobi iteration is often over- or under-relaxading a relaxation
parametetw. The iteration can be defined in the form

Tht1 = Tf + Zp:wz“/%Ai_lVéTTk-
i=1
Recall that the residual at stép+ 1 is then related to that at stégby
repr = | I — Zp:wiAVi (VIAV) VT | e
i=1
The solution of a sparse linear system is required at eagbqpian step. These sys-
tems can be solved by direct methods if the subblocks ard emalgh. Otherwise,

iterative methods may be used. The outer loop accelerataicsithen be a flexible
variant, such as FGMRES, which can accommodate variatictheipreconditioners.

12.3 Polynomial Preconditioners
In polynomial preconditioning the matrix/ is defined by
M~ = 5(A)

wheres is a polynomial, typically of low degree. Thus, the origirsgistem is re-
placed by the preconditioned system

s(A)Az = s(A)b (12.2)

396 CHAPTER 12. PARALLEL PRECONDITIONERS

which is then solved by a conjugate gradient-type techniduete thats(A) and
A commute and, as a result, the preconditioned matrix is the gar right or left
preconditioning. In addition, the matri A) or As(A) does not need to be formed
explicitly sinceAs(A)v can be computed for any vectofrom a sequence of matrix-
by-vector products.

Initially, this approach was motivated by the good perfonoeof matrix-vector
operations on vector computers for long vectors, e.g., yie€205. However, the
idea itself is an old one and has been suggested by Sfief@] f@7eigenvalue cal-
culations in the mid 1950s. Next, some of the popular chdicethe polynomials
are described.

12.3.1 Neumann Polynomials

The simplest polynomia$ which has been used is the polynomial of the Neumann
series expansion
I+N+N?*+.. 4 N*
in which
N=1-wA

andw is a scaling parameter. The above series comes from expgatiginnverse of
wA using the splitting
wA=1- (I —-wA).

This approach can also be generalized by using a splittitigeoform
wA=D— (D —wA)

where D can be the diagonal oft or, more appropriately, a block diagonal df
Then,

(wA)™' = [D(I—(I—wD A"
— [I-(-wD'4)] "D
Thus, setting

N=I-wD'A
results in the approximateterm expansion
(WA '~ M =T+ N+---+N DL (12.3)
SinceD~'A = w™![I — N], note that
M1'A = [I+N+---+N|D'A
- 5[I+N+-~+NS](I—N)
1
= —(I- N,

The matrix operation with the preconditioned matrix can ifigcdlt numerically for
large s. If the original matrix is Symmetric Positive Definite, théd—'A is not
symmetric, but it is self-adjoint with respect to theinner product; see Exercige 1.

12.3. POLYNOMIAL PRECONDITIONERS 397

12.3.2 Chebyshev Polynomials

The polynomials can be selected to be optimal in some sense, and this ledas to t
use of Chebyshev polynomials. The criterion that is usedesigike preconditioned
matrix s(A) A as close as possible to the identity matrix in some senseexamn-
ple, the spectrum of the preconditioned matrix can be mad#oas as possible to
that of the identity. Denoting by (A) the spectrum of4, and byP, the space of
polynomials of degree not exceedihgthe following may be solved.

Find s € P, which minimizes:
1—As(A)|. 12.4
na | s(A)] (12.4)

Unfortunately, this problem involves all the eigenvaluésdcand is harder to solve
than the original problem. Usually, problem(112.4) is repld by the problem

Find s € P, which minimizes:
max 1 — As(A)], (12.5)

which is obtained from replacing the sgtA) by some continuous sétthat encloses
it. Thus, a rough idea of the spectrum of the mattixs needed. Consider first the
particular case wherg is Symmetric Positive Definite, in which cagecan be taken
to be an intervala, 3] containing the eigenvalues df.

A variation of Theorenl. 625 is that for any real scajasuch withy < «, the
minimum

min max |p(t)]

is reached for the shifted and scaled Chebyshev polynorhiakdirst kind,
Cr (1+287%)

Ck <1—|—2g%g>.

Ci(t)

Of interest is the case whefie= 0 which gives the polynomial

Ti(t) = ick <M> with o, = Cy, <ﬁ+ O‘) .

Ok 80—« 0 — «
Denote the center and mid-width of the inter{a@l 3], respectively, by
_ PB+a B«
0= 5 d= 5

Using these parameters insteachofs, the above expressions then become

Te(t) = —C, (%) with op = C; (g) .

Ok

398 CHAPTER 12. PARALLEL PRECONDITIONERS

The three-term recurrence for the Chebyshev polynomiaiglteein the following
three-term recurrences:

Ok41 =2 <0 —0p_1, k=1,2 ...,

0
with 9
g1 = ga 0o = 17
and
- 1 0—t
Tk—i—l(t) = — |2 TO'ka(t) _Uk—lTk—l(t)
Ok+1
S [2 uTk(t) . Uk_lTk_l(t)] . k>1,
Okl 0 o
with y
Tit)=1-5, Tot)=1
Define
o = 2 k=192, (12.6)
Ok+1

Note that the above recurrences can be put together as

1
Pr = g (12.7)
01 — Pk—-1

Tea(t) = p {2 <01 — %) Ti(t) — pr—1Tka(t)|, k=>1. (12.8)
Observe that formula§ {12 [7=TP.8) can be startdd-at0 provided we sef’_; = 0
andp_1 =0,so thatpo = 1/(20’1).

The goal is to obtain an iteration that produces a residuetoveof the form
rrr1 = Trpr1(A)ro whereTy is the polynomial defined by the above recurrence.
The difference between two successive residual vectoiigés @y

Tht1 — Tk = (Try1(A) — Ti(A))ro.

The identityl = (207 — pr_1)pr and the relationd{12.8) yield

Tera1(t) = T(t) = Trsa(t) — (201 — pr—1)peTi(t)
= Pk [—%Tk(t) + pr—1(Ti(t) — Tk—l(t))} :

As aresult,

Ti41(t) — Ti(t)

t (12.9)

Ty (t) — Th—1(t) 2]

— e [pk_l Tt 2y).

12.3. POLYNOMIAL PRECONDITIONERS 399

Define

di = Tpy1 — Tk,
and note thaty,; — rp = —Adj.. As a result, the relatioi {12.9) translates into the
recurrence,

2
di = pr [pk—ldk—l + g?‘k] .

Finally, the following algorithm is obtained.

ALGORITHM 12.1 Chebyshev Acceleration

ro = b— A(ﬂo,’o‘l = 9/5,
po =1/01; do = §ro;
Fork = 0, ..., until convergence Do:
Tyl = T + dg
Th41 = 1) — Ady,
Pr+1 = (201 — Pk)_lzf
A1 = Prot1prdr + 2140
EndDo

NGO WNR

Note that the algorithm requires no inner products, and dbisstitutes one of its
attractions in a parallel computing environment. Lines d 4ican also be recast into
one single update of the form

2

Th1 = T + P | Pe—1(xk — Tp—1) + =(b— Axy) | .

(=9

It can be shown that when = \; and3 = Ay, the resulting preconditioned
matrix minimizes the condition number of the preconditibmeatrices of the form
As(A) over all polynomialss of degree< k — 1. However, when used in conjunc-
tion with the Conjugate Gradient method, it is observed thatpolynomial which
minimizes the total number of Conjugate Gradient iteratimnfar from being the
one which minimizes the condition numbémstead of takingyx = A\ andg = Ay,
the interval [y, 5] is chosen to be slightly inside the intervah [An], @ much faster
convergence might be achieved. The true optimal parametersthose that mini-
mize the number of iterations of the polynomial precondiid Conjugate Gradient
method, are difficult to determine in practice.

There is a slight disadvantage to the approaches descililoee.al he parameters
« and g, which approximate the smallest and largest eigenvalue$, aire usually
not available beforehand and must be obtained in some dgnaay. This may be
a problem mainly because a software code based on Chebysteleration could
become quite complex.

To remedy this, one may ask whether the values provided bygpiication of
Gershgorin's theorem can be used toand 5. Thus, in the symmetric case, the
parametery, which estimateshe smallest eigenvalue df, may be nonpositive even
whenA is a positive definite matrix. However, when< 0, the problem of minimiz-
ing (IZ3) is not well defined, since it does not have a uniqlietion due to the non

400 CHAPTER 12. PARALLEL PRECONDITIONERS

strict-convexity of the uniform norm. An alternative ushe L,-norm on [, 5] with
respect to some weight functian(\). This “least-squares” polynomials approach is
considered next.

12.3.3 Least-Squares Polynomials
Consider the inner product on the spdge

B
p.q) = / p(A)g(A)w(A)dA (12.10)
wherew(\) is some non-negative weight function am, (3). Denote by||p|,, and
call w-norm, the 2-norm induced by this inner product.

We seek the polynomial,_; which minimizes

11— As(V]l, (12.11)

over all polynomialss of degree< k — 1. Call s_; theleast-squares iteration poly-
nomial or simply the least-squares polynomial, and refeRto\) = 1 — Asp_1(A)
as the least-squares residual polynomial. A crucial olagienv is that the least
squares polynomial is well defined for arbitrary valuesvadnd 3. Computing the
polynomial sx_1(A) is not a difficult task when the weight functian is suitably
chosen.

Computation of the least-squares polynomials There are three ways to com-
pute the least-squares polynomigl defined in the previous section. The first ap-
proach is to use an explicit formula fdt;, known as the kernel polynomials for-
mula,

k
Zi:o Qi(0)2
in which theg;’s represent a sequence of polynomials orthogonal witheesp the
weight functionw(\). The second approach generates a three-term recurrence sat
isfied by the residual polynomialB;(\). These polynomials are orthogonal with
respect to the weight functiokw(\). From this three-term recurrence, we can pro-
ceed exactly as for the Chebyshev iteration to obtain a recce formula for the
sequence of approximate solutiops. Finally, a third approach solves the Normal
Equations associated with the minimization[of (12.11), elym

(1= Ase_1(\), AQ;(N) = 0,5 =0,1,2,... k1

whereQ;,j = 1,...,k — 1is any basis of the spad®,_; of polynomials of degree
<k-1.

These three approaches can all be useful in different gihsatFor example, the
first approach can be useful for computing least-squarggpuoiials of low degree
explicitly. For high-degree polynomials, the last two agarhes are preferable for

12.3. POLYNOMIAL PRECONDITIONERS 401

their better numerical behavior. The second approach isatesl to the case where
a > 0, while the third is more general.

Since the degrees of the polynomial preconditioners aendfiw, e.g., not ex-
ceeding 5 or 10, we will give some details on the first formafat Letg;()\),7 =
0,1,...,n,..., be theorthonormalpolynomials with respect ta()). It is known
that the least-squares residual polynonfial(\) of degreek is determined by the
kernel polynomials formuld{IZ112). To obtaip_;(\), simply notice that

1= Ri(N)

sp—1(A) = T
- ol e e

=0 1%
hoy = #0—ay) (12.14)

A

This allowssj_; to be computed as a linear combination of the polynomigls).
Thus, we can obtain the desired least-squares polynonnaisthe sequence of or-
thogonal polynomialg; which satisfy a three-term recurrence of the form:

Bitv1gir1(A) = (A — ai)qi(N) — Bigi—1(N),i =1,2,....

From this, the following recurrence for thigs can be derived:
Bititiv1(A) = (A — ai)ti(A) = Bitim1(A) +¢i(0),i = 1,2,....

The weight functionw is chosen so that the three-term recurrence of the orthog-
onal polynomialsg; is known explicitly and/or is easy to generate. An interegti
class of weight functions that satisfy this requirementissidered next.

Choice of the weight functions This section assumes that= 0 andj = 1.
Consider the Jacobi weights

w(X\) = M7 1(1 = \)”, wherey > 0 andv > —%. (12.15)

For these weight functions, the recurrence relations avevkrexplicitly for the poly-
nomials that are orthogonal with respecttt\), Aw(\), or A2w(A). This allows the
use of any of the three methods described in the previousoseitr computing
sk—1(A). Moreover, it has been shown[180] that the preconditionattimAs;(A)
is Symmetric Positive Definite whe#i is Symmetric Positive Definite, provided that
p—1>v> —%.

The following explicit formula forRy(\) can be derived easily from the explicit
expression of the Jacobi polynomials and the fact {tiat} is orthogonal with re-
spect to the weighkw(\):

k
Ri(\) =3 w1 = NI (=a) (12.16)

Jj=0

402 CHAPTER 12. PARALLEL PRECONDITIONERS

j—1 .
*) _ (& k—i+v
") _<011¢+1+n
Using [IZIB), the polynomial;_1(\) = (1 — Rk()\))/A can be derived easily “by
hand” for small degrees; see Exerdibe 4.

Example 12.1. Asanillustration, we list the least-squares polynomsgl$or k =

1, ..., 8, obtained for the Jacobi weights with= 1 andv = —%. The polynomials
listed are for the interval0, 4] as this leads to integer coefficients. For a general
interval [0, 3], the best polynomial of degréeis s (4\/3). Also, each polynomial

sy is rescaled by3 + 2k) /4 to simplify the expressions. However, this scaling factor
is unimportant if these polynomials are used for precooditig.

1 A A2 A3 A4 A5 | S AT |28
S1 5 -1
so | 14 -7 1
s3 | 30 - 27 9 -1
s4 | 55 - 77 44 -11 1
s5 | 91| —182| 156 — 65 13 -1

s¢ | 140 | —378| 450| —275 90| -15 1
s7 | 204 | —714| 1122 —-935| 442| —-119| 17| -1
sg | 285 | — 1254 | 2508 | —2717| 1729| —665| 152 | —19| 1

We selectedy = £ andv = —3 only because these choices lead to a very simple
recurrence for the polynomialg, which are the Chebyshev polynomials of the first
kind. O

Theoretical considerations An interesting theoretical question is whether the
least-squares residual polynomial becomes small in somsesas its degree in-
creases. Consider first the case< o < . Since the residual polynomiaky
minimizes the norm| R||,, associated with the weight, over all polynomialsR of
degree< k such thatR(0) = 1, the polynomial(1 — (A/6))* with 6 = (a + 3)/2

satisfies

A\ F b—al® B—alk

1—-- =K

c b+a B+ a
wherek is thew-norm of the function unity on the intervé, 5]. The norm ofRy,
will tend to zero geometrically astends to infinity, providedv > 0.

Consider now the case = 0, 5 = 1 and the Jacobi weighE{IZ]15). For this

choice of the weight function, the least-squares residabinomial is known to be

pr(N\)/pr(0) wherepy, is thek!” degree Jacobi polynomial associated with the weight
functionw’(\) = M(1 — \)”. It can be shown that the 2-norm of such a residual

[Bl <

w

12.3. POLYNOMIAL PRECONDITIONERS 403

polynomial with respect to this weight is given by

2+ D0k +v+1) L(k+1)
k+p+v+1)T(k+p+v+1)T(k+p+1)

lpx/pr(0) 15 =

in which I is the Gamma function. For the cgse= § andv = —1, this becomes

[T(3)]? B 7r
k+1)(k+1) 202k+1)%

lpe/pr (0) 5 =

Therefore, thew’-norm of the least-squares residual polynomial converge=eto
like 1/k as the degreg increases (a much slower rate than when 0). However,
note that the conditiop(0) = 1 implies that the polynomial must be large in some
interval around the origin.

12.3.4 The Nonsymmetric Case

Given a set of approximate eigenvalues of a nonsymmetricxmaf a simple region

E can be constructed in the complex plane, e.g., a disk, gusellior a polygon,
which encloses the spectrum of the matdix There are several choices tat The
firstidea uses an ellipsg that encloses an approximate convex hull of the spectrum.
Consider an ellipse centeredéatand with focal distancé. Then as seen in Chapter
B, the shifted and scaled Chebyshev polynomials defined by

Cr (%52)
Cx (§)

are nearly optimal. The use of these polynomials leads dgaan attractive three-
term recurrence and to an algorithm similar to AlgorifbmIll 2n fact, the recurrence
is identical, except that the scalars involved can now beptexnto accommodate
cases where the ellipse has foci not necessarily locatetieoretll axis. However,
when A is real, then the symmetry of the foci with respect to the eed@ can be
exploited. The algorithm can still be written in real aritbtic.

An alternative to Chebyshev polynomials over ellipses eygla polygonH
that containsr(A). Polygonal regions may better represent the shape of atneaybi
spectrum. The best polynomial for the infinity norm is not wmnoexplicitly but it
may be computed by an algorithm known in approximation thexs the Remez
algorithm. It may be simpler to use dp-norm instead of the infinity norm, i.e.,
to solve [(IZ.11) wherev is some weight function defined on the boundary of the
polygonH.

Now here is a sketch of an algorithm based on this approach.-Amorm asso-
ciated with Chebyshev weights on the edges of the polygosdd.ulf the contour of
H consists of edges each with centéy and half-lengthy;, then the weight on each
edge is defined by

Tk(AN) =

wi(\) = ; 16— (= 0272, i =1, k. (12.17)

404 CHAPTER 12. PARALLEL PRECONDITIONERS

Using the power basis to express the best polynomial is mdtievi It is preferable
to use the Chebyshev polynomials associated with the ellypsmallest area con-
taining H. With the above weights or any other Jacobi weights on thegdfere is
a finite procedurevhich does not require numerical integratiom compute the best
polynomial. To do this, each of the polynomials of the bases,(the Chebyshev
polynomials associated with the ellipse of smallest aredaining H) must be ex-
pressed as a linear combination of the Chebyshev polynsragdociated with the
different intervalgé; — ¢;, 6; + d;]. This redundancy allows exact expressions for the
integrals involved in computing the least-squares sautio{TZ.11).

Next, the main lines of a preconditioned GMRES algorithmadescribed based
on least-squares polynomials. Eigenvalue estimates #amed from a GMRES step
at the beginning of the outer loop. This GMRES adaptive absréhe current solution
and the eigenvalue estimates are used to update the cualggbp H. Correcting
the solution at this stage is particularly important siriedten results in a few orders
of magnitude improvement. This is because the polyffomay be inaccurate and
the residual vector is dominated by components in one or fgengectors. The
GMRES step willimmediately annihilate those dominatingyponents. In addition,
the eigenvalues associated with these components will eaeturately represented
by eigenvalues of the Hessenberg matrix.

ALGORITHM 12.2 Polynomial Preconditioned GMRES

1. Start or Restart:
2. Compute current residual vector= b — Ax.
3. Adaptive GMRES step:
4. Runm; steps of GMRES for solvingld = r.
5. Updater by x := = + d.
6. Get eigenvalue estimates from the eigenvalues of the
7. Hessenberg matrix.
8. Compute new polynomial:
9. RefineH from previous hullH and new eigenvalue estimates.
10. Get new best polynomial..
11. Polynomial Iteration:
12. Compute the current residual vectoe b — Ax.
13. Runmy, steps of GMRES applied &,(A)Ad = si(A)r.
14. Update: by z := x + d.
15. Test for convergence.
16. If solution converged then Stop; else GoTo 1.

Example 12.2. Table[TZ]l shows the results of applying GMRES(20) with poly
nomial preconditioning to the first four test problems dimsat in Sectiof3]7. See
Exampld&.l for the meaning of the column headers in the.tabfact, the system is
preconditioned by ILU(0) before polynomial preconditiogiis applied to it. Degree
10 polynomials (maximum) are used. The tolerance for stapjs 10~7. Recall

12.3. POLYNOMIAL PRECONDITIONERS 405

Matrix | Iters | Kflops | Residual| Error

F2DA 56 | 2774 0.22E-05| 0.51E-06
F3D 22| 7203| 0.18E-05| 0.22E-05
ORS 78| 4454 | 0.16E-05| 0.32E-08
F2DB | 100 | 4432| 0.47E-05| 0.19E-05

Table 12.1: Atest run of ILU(0)-GMRES accelerated with paynial precondition-
ing.

thatltersis the number of matrix-by-vector products rather than thmlmer of GM-
RES iterations. Notice that, for most cases, the method doesompare well with
the simpler ILU(0) example seen in Chadfet 10. The notabtegmtion is example
F2DB for which the method converges fairly fast in contraghwhe simple ILU(0)-
GMRES; see Example_10.2. An attempt to use the method forfthenfatrix in the
test set, namely, the FIDAP matrix FID, failed because th&irlas eigenvalues on
both sides of the imaginary axis and the code tested doesandtéthis situation.

It is interesting to follow the progress of the algorithm hetabove examples.
For the first example, the coordinates of the vertices of {hygeu part of the first
polygon H are

Re(c;) Sm(e)

0.06492 0.00000
0.17641 0.02035
0.29340 0.03545
0.62858 0.04977
1.18052 0.00000

This hull is computed from the 20 eigenvalues of fitex 20 Hessenberg matrix
resulting from the first run of GMRES(20). In the ensuing GMRIBop, the outer
iteration converges in three steps, each using a polynahadgree 10, i.e., there is
no further adaptation required. For the second problenmigtod converges in the
20 first steps of GMRES, so polynomial acceleration was rnieveked. For the third
example, the initial convex hull found is the intery&l06319, 1.67243] of the real
line. The polynomial preconditioned GMRES then convergsnio five iterations.
Finally, the initial convex hull found for the last exampée i

Re(c;) Sm(e)

0.17131 0.00000
0.39337 0.10758
1.43826 0.00000

406 CHAPTER 12. PARALLEL PRECONDITIONERS

and the outer loop converges again without another adaptstiep, this time in seven
steps. O

12.4 Multicoloring

The general idea of multicoloring, or graph coloring, hasrbased for a long time
by numerical analysts. It was exploited, in particular, hie tontext of relaxation
techniques both for understanding their theory and fowvdegiefficient algorithms.

More recently, these techniques were found to be useful praming parallelism

in iterative solution techniques. This discussion begiith the 2-color case, called
red-blackordering.

12.4.1 Red-Black Ordering

The problem addressed by multicoloring is to determine argaj of the nodes of the
adjacency graph of a matrix such that any two adjacent noales different colors.
For a 2-dimensional finite difference grid (5-point opergtohis can be achieved
with two colors, typically referred to as “red” and “blackThis red-black coloring
is illustrated in FiguréI2]2 for & x 4 mesh where the black nodes are represented
by filled circles.

19 20 21

22 23 24
® O o O

13 14 15 16 17 18

@O @U@

7 8 9 10 11 12

® O

O

s

/
o
()
/

2 3 4 5 6

1
@U@ 0U—@

Figure 12.2: Red-black coloring oftax 4 grid. Natural labeling of the nodes.

Assume that the unknowns are labeled by listing the red umkadirst together,
followed by the black ones. The new labeling of the unknowenshiown in Figure
[[Z3. Since the red nodes are not coupled with other red rantissimilarly, the
black nodes are not coupled with other black nodes, thersyitat results from this
reordering will have the structure

D F x b
(% 5)()=0)

in which D, and D, are diagonal matrices. The reordered matrix associated wit
this new labeling is shown in Figuke_TP.4.

12.4. MULTICOLORING 407
.22 <>10 .23 O 11 . 24 O 12
<>7 .19 <>8 .20 <>9 ' 21
.16 <>4 ‘17 <>5 . 18 <>6
Ql .13 <>2 .14 <>3 . 15

Figure 12.3: Red-black coloring oftax 4 grid. Red-black labeling of the nodes.

Figure 12.4: Matrix associated with the red-black reompof Figurd 1Z13.

Two issues will be explored regarding red-black orderindne Tirst is how to
exploit this structure for solving linear systems. The setis how to generalize this
approach for systems whose graphs are not necessarilypgzbld.

12.4.2 Solution of Red-Black Systems

The easiest way to exploit the red-black ordering is to usestandard SSOR or

ILU(O) preconditioners for solving the block system (12.¥ich is derived from

the original system. The resulting preconditioning ofderet are highly parallel. For

example, the linear system that arises from the forwardesoNsSOR will have the
Dl @) bl

(% 5.)(2)-()

This system can be solved by performing the following seqeef operations:

1
T2

1. SolveDyx1 = by.
2. Computé)g = by — Ex;.
3. SolveDyxy = 62.

408 CHAPTER 12. PARALLEL PRECONDITIONERS

This consists of two diagonal scalings (operations 1 andh@)aasparse matrix-
by-vector product. Therefore, the degree of parallelismtileast:/2 if an atomic
task is considered to be any arithmetic operation. The tgituas identical with
the ILU(0) preconditioning. However, since the matrix hasib reordered before
ILU(O) is applied to it, the resulting LU factors are not iteld in any simple way
to those associated with the original matrix. In fact, a daripok at the structure
of the ILU factors reveals that many more elements are dbppth the red-black
ordering than with the natural ordering. The result is that mumber of iterations
to achieve convergence can be much higher with red-blackrioigl than with the
natural ordering.

A second method that has been used in connection with thblae#t-ordering
solves the reduced system which involves only the black owkis. Eliminating the
red unknowns from{12.18) results in the reduced system:

(Dy — ED;'F)ay = by — ED;'by.

Note that this new system is again a sparse linear systemabitht half as many
unknowns. In addition, it has been observed that for “easplpms,” the reduced
system can often be solved efficiently with only diagonatprelitioning. The com-
putation of the reduced system is a highly parallel and iragjve process. Note
that it is not necessary to form the reduced system. Thitegiyas more often em-
ployed whenD; is not diagonal, such as in domain decomposition methodst bu
can also have some uses in other situations. For examplljrapfphe matrix to a
given vectorr can be performed using nearest-neighbor communicatiahthésican
be more efficient than the standard approach of multiplyirggvector by the Schur
complement matrixD, — EDl‘lF. In addition, this can save storage, which may be
more critical in some cases.

12.4.3 Multicoloring for General Sparse Matrices

ChaptelB discussed a general greedy approach for muliicgla graph. Given a
general sparse matrid, this inexpensive technique allows us to reorder it into a
block form where the diagonal blocks are diagonal matridése number of blocks

is the number of colors. For example, for six colors, a matrould result with the
structure shown in Figule_12.5 where the’s are diagonal andZ, F' are general
sparse. This structure is obviously a generalization ofdkeblack ordering.

Just as for the red-black ordering, ILU(0), SOR, or SSOR@rditioning can
be used on this reordered system. The parallelism of SORRSSApw of ordem /p
wherep is the number of colors. A loss in efficiency may occur sin@rthmber of
iterations is likely to increase.

A Gauss-Seidel sweep will essentially consispatalings angh — 1 matrix-by-
vector products, whergis the number of colors. Specifically, assume that the matrix
is stored in the well known Ellpack-Itpack format and thag btock structure of the
permuted matrix is defined by a pointer ariayr. The indexiptr(j) is the index of
the first row in thej-th block.

~ =

12.5. MULTI-ELIMINATION ILU 409

Dq

Do

Dy

Dg

Figure 12.5: A six-color ordering of a general sparse matrix

Thus, the paitA(nl : n2,x), JA(nl : n2,) represents the sparse matrix con-
sisting of the rows:1 to n2 in the Ellpack-Itpack format. The main diagonal .4f
is assumed to be stored separately in inverted form in a onersional arrayliag.
One single step of the multicolor SOR iteration will thenddke following form.

ALGORITHM 12.3 Multicolor SOR Sweep in the Ellpack Format

Do col = 1, ncol
nl = iptr(col)
n2 = iptr(col+1) — 1
y(n1:n2) =rhs(nl:n2)
Doj =1, ndiag
Doi=n1, n2
y(i) = y(i) — a(i.j)*y(a(ij))
EndDo
EndDo
y(nl:n2) =diag(nl:n2) *y(nl:n2)
EndDo

ROOXOXNSDUAWNR

In the above algorithmp.col is the number of colors. The integei$ andn2 set in
lines 2 and 3 represent the beginning and the end of hlaickn line 10,y(nl : n2)
is multiplied by the diagonaD~! which is kept in inverted form in the arraiag.
The outer loop, i.e., the loop starting in line 1, is sequ#ntiThe loop starting in
line 6 is vectorizable/parallelizable. There is additioparallelism which can be
extracted in the combination of the two loops starting iedirs and 6.

12.5 Multi-Elimination ILU

The discussion in this section begins with the Gaussianimdition algorithm for a
general sparse linear system. Parallelism in sparse Gauskénination can be ob-
tained by finding unknowns that are independent at a givegesifithe elimination,

410 CHAPTER 12. PARALLEL PRECONDITIONERS

i.e., unknowns that do not depend on each other accordirtgetbibary relation de-
fined by the graph of the matrix. A set of unknowns of a lineatey which are
independent is called an independent set. Thus, indepesderderings can be
viewed as permutations to put the original matrix in the form

D E
<F C) (12.19)

in which D is diagonal, butC”' can be arbitrary. This amounts to a less restrictive
form of multicoloring, in which a set of vertices in the adgacy graph is found so
that no equation in the set involves unknowns from the sarmefstew algorithms

for finding independent set orderings of a general spargghgnegere discussed in
ChapteiB.

The rows associated with an independent set can be usedas gimultane-
ously. When such rows are eliminated, a smaller linear sysésults, which is again
sparse. Then we can find an independent set for this reduseehsyand repeat the
process of reduction. The resulting second reduced systeaileéd the second-level
reduced system.

The process can be repeated recursively a few times. Aswhedethe reduc-
tion increases, the reduced systems gradually lose thaisigp A direct solution
method would continue the reduction until the reduced systesmall enough or
dense enough to switch to a dense Gaussian eliminationye &olThis process is
illustrated in Figuré_IZ]6. There exists a number of spaireeidsolution techniques

based on this approach.
%i “

Figure 12.6: lllustration of two levels of multi-eliminati for sparse linear systems.

After a brief review of the direct solution method based oteipendent set or-
derings, we will explain how to exploit this approach for igerg incomplete LU
factorizations by incorporating drop tolerance strategie

12.5.1 Multi-Elimination

We start by a discussion of axactreduction step. Letl; be the matrix obtained
at the j-th step of the reductionj = 0,...,nlev with Ay = A. Assume that an
independent set ordering is applied4pand that the matrix is permuted accordingly

12.5. MULTI-ELIMINATION ILU 411

as follows: D
A pl _ (i L
PjA;P; (Ej Cj> (12.20)
whereD; is a diagonal matrix. Now eliminate the unknowns of the irefefent set
to get the next reduced matrix,

Aji1=Cj— E;D;'F;. (12.21)

This results, implicitly, in a block LU factorization

r _ (D; Fj\ _ 1 O D; Fj
i (Ej Cj) B (Eijl I) : (O Aa’+1)
with A, defined above. Thus, in order to solve a system with the matyjboth
a forward and a backward substitution need to be performédtheé block matrices
on the right-hand side of the above system. The backwardi@olinvolves solving
a system with the matrid, ;.

This block factorization approach can be used recursivetif a system results
that is small enough to be solved with a standard method. ransformations used
in the elimination process, i.e., the matric§§D;1 and the matriced”; must be
saved. The permutation matricé% can also be saved. Alternatively, the matrices
involved in the factorization at each new reordering staplmpermuted explicitly.

Hed M
o \'" Y
l}l L,
RIS
IR
'R
N el wid
-:-.1.'-1:'::'“ .. v tdmt N, ™
i W
T L T
My, " 1 .
A i

Figure 12.7: lllustration of the processed matrices oleiftom three steps of in-
dependent set ordering and reductions.

412 CHAPTER 12. PARALLEL PRECONDITIONERS

12.5.2 ILUM

The successive reduction steps described above will gieetd matrices that be-
come more and more dense due to the fill-ins introduced bylitménation process.
In iterative methods, a common cure for this is to neglectesoifthe fill-ins intro-
duced by using a simple dropping strategy as the reducedmsgsire formed. For
example, any fill-in element introduced is dropped, whenésgesize is less than a
given tolerance times the 2-norm of the original row. Thus,'@proximate” ver-
sion of the successive reduction steps can be used to prawidpproximate solution
M~y to A~'v for any givenv. This can be used to precondition the original lin-
ear system. Conceptually, the modification leading to aodinplete” factorization
replaces[(1Z.21) by

Aj1 = (Cj — B;DT'Fy) — R; (12.22)

in which R; is the matrix of the elements that are dropped in this redncsiep.
Globally, the algorithm can be viewed as a form of incompldtek LU with per-
mutations.

Thus, there is a succession of block ILU factorizations efftrm

D, F;
sl = (2)

_ (1 0\ (D BY, (0O
o Eij_l I O Aj+1 O Rj

with A;, defined by[IZ22). An independent set ordering for the newixn4d;

will then be found and this matrix is reduced again in the sama@ner. It is not
necessary to save the successivematrices, but only the last one that is generated.
We need also to save the sequence of sparse matrices

P N o
BJ+1—<Eij—1 O> (12.23)

which contain the transformation needed at leyaif the reduction. The succes-
sive permutation matrice®; can be discarded if they are applied to the previous
B; matrices as soon as these permutation matrices are knovem. ortty the global
permutation is needed, which is the product of all theseessize permutations.

An illustration of the matrices obtained after three redurcisteps is shown in
FigureIZY. The original matrix is a 5-point matrix asstailawith al5 x 15 grid and
is therefore of sizeV = 225. Here, the successive matricBs (with permutations
applied) are shown together with the last matrix which occupies the location of
the O block in (TZZB).

We refer to this incomplete factorization as ILUM (ILU withuMi-Elimination).
The preprocessing phase consists of a successioleofpplications of the follow-
ing three steps: (1) finding the independent set orderingpéPmuting the matrix,
and (3) reducing it.

ALGORITHM 12.4 ILUM: Preprocessing Phase

12.5. MULTI-ELIMINATION ILU 413

SetAy = A.
Forj =0,1,...,nlev — 1 Do:

Find an independent set ordering permutatprior A;;

Apply P; to A; to permute it into the fornL.{IZP0);

Apply P; to By, ..., Bj;

AppIyPJ toFy,... 7Pj—1;

Compute the matrice$; ., andB; defined byl[(12.22) anf{12]23).
EndDo

ONDOOAWNR

In the backward and forward solution phases, the last retisgstem must be solved
but not necessarily with high accuracy. For example, we obre st according to the
level of tolerance allowed in the dropping strategy durimg preprocessing phase.

Observe that if the linear system is solved inaccuratelly an accelerator that
allows variations in the preconditioning should be usecchSalgorithms have been
discussed in ChaptEl 9. Alternatively, we can use a fixed mumbmulticolor SOR
or SSOR steps or a fixed polynomial iteration. The implent@ariaf the ILUM pre-
conditioner corresponding to this strategy is rather cacapgd and involves several
parameters.

In order to describe the forward and backward solution, w®duce some no-
tation. We start by applying the “global permutation,” ife product

Pnlev—17PnleU—2 “.e ,PO

to the right-hand side. We overwrite the result on the cursmtution vector, an
N-vector calledry. Now partition this vector into

according to the partitioning_(IZP0). The forward stepsists of transforming the
second component of the right-hand side as

Tl ‘= T1 — E()Do_ly(].

Now x; is partitioned in the same mannerasand the forward elimination is con-
tinued the same way. Thus, at each step, egdh partitioned as

(o
E <$j+1>'

A forward elimination step defines the new.,; using the oldr;,; andy; for j =
0,...,nlev — 1 while a backward step defineg using the oldy; andx;, for
j =mnlev—1,...,0. Algorithm[IZ® describes the general structure of the &wdwv
and backward solution sweeps. Because the global peromtatis applied at the
beginning, the successive permutations need not be applmdever, the final result
obtained must be permuted back into the original ordering.

414 CHAPTER 12. PARALLEL PRECONDITIONERS

ALGORITHM 12.5 ILUM: Forward and Backward Solutions

Apply global permutation to right-hand-sii@nd copy intar.
Forj =0,1,...,nlev — 1 Do: [Forward sweep]
i1 = w1 — BjD}ly;
EndDo
Solve with a relative toleranee
AnlevTnley = Tnlev-
Forj = nlev —1,...,1,0 Do: [Backward sweep]
yj = D (y; — Fjzj).
EndDo
Permute the resulting solution vector back to the oaigin
ordering to obtain the solutian

~
ROO®XNURAWNER

=~

Computer implementations of ILUM can be rather tedious. helementa-
tion issues are similar to those of parallel direct-solutinethods for sparse linear
systems.

12.6 Distributed ILU and SSOR

This section describes parallel variants of the block Sssige Over-Relaxation
(BSOR) and ILU(0) preconditioners which are suitable fatdbuted memory en-
vironments. Chaptdr11 briefly discussdidtributed sparse matricesA distributed
matrix is a matrix whose entries are located in the memofiefferent processors
in a multiprocessor system. These types of data structuesgeay convenient for
distributed memory computers and it is useful to discusdempntations of precon-
ditioners that are specifically developed for them. RefeBéation[IT.515 for the
terminology used here. In particular, the tesabdomairis used in the very general
sense of subgraph. For both ILU and SOR, multicoloring oelleeheduling can be
used at the macro level, to extract parallelism. Here, mise means the level of
parallelism corresponding to the processors, or blocksubdomains.

In the ILU(O) factorization, the LU factors have the same zesn patterns as
the original matrixA4, so that the references of the entries belonging to the readter
subdomains in the ILU(Q) factorization are identical witlo$e of the matrix-by-
vector product operation with the matrik This is not the case for the more accurate
ILU(p) factorization, withp > 0. If an attempt is made to implement a wavefront
ILU preconditioner on a distributed memory computer, acliffiy arises because the
natural ordering for the original sparse problem may putramegessary limit on the
amount of parallelism available. Instead, a two-level drdgis used. First, define a
“global” ordering which is a wavefront ordering for the swinaains. This is based on
the graph which describes the coupling between the subdsma@wo subdomains
are coupled if and only if they contain at least a pair of cedpinknowns, one from
each subdomain. Then, within each subdomain, define a lodating.

12.6. DISTRIBUTED ILU AND SSOR 415

Proc. 13

"~ Internal interface points

"~ External interface points

Figure 12.8: A local view of the distributed ILU(0).

To describe the possible parallel implementations of thiels€0) precondition-
ers, it is sufficient to consider a local view of the distriisparse matrix, illustrated
in Figure[IZB. The problem is partitioned intosubdomains or subgraphs using
some graph partitioning technique. This results in a mappirthe matrix into pro-
cessors where it is assumed that ikt equation (row) and théth unknown are
mapped to the same processor. We distinguish betimeerior points andnterface
points. The interior points are those nodes that are notledwpith nodes belonging
to other processors. Interface nodes are those local nbdesre coupled with at
least one node which belongs to another processor. Thusegsor number 10 in
the figure holds a certain number of rows that are local rows.

Consider the rows associated with the interior nodes. Theawns associated
with these nodes are not coupled with variables from othecgmsors. As a result,
the rows associated with these nodes can be eliminatedéndeptly in the ILU(0)
process. The rows associated with the nodes on the intesfabe subdomain will
require more attention. Recall that an ILU(0O) factorizatie determined entirely by
the order in which the rows are processed.

The interior nodes can be eliminated first. Once this is ddrejnterface rows
can be eliminatedn a certain order There are two natural choices for this order.
The first would be to impose a global order based on the laldelseoprocessors.
Thus, in the illustration, the interface rows belonging todessors 2, 4, and 6 are
processed before those in Processor 10. The interface noR®cessor 10 must in
turn be processed before those of Processors 13 and 14.

The local order, i.e., the order in which we process the faterrows in the same
processor (e.g. Processor 10), may not be as important.gldbal order based on
PE-number defines a natural priority graph and paralleliambz exploited easily in
a data-driven implementation.

It is somewhat unnatural to base the ordering just on theessmr labeling.

416 CHAPTER 12. PARALLEL PRECONDITIONERS

Observe that a proper order can also be defined for perforthmglimination by
replacing the PE-numbers with any labels, provided that tamy neighboring pro-
cessors have a different label'he most natural way to do this is by performing a
multicoloring of the subdomains, and using the colors incyahe same way as
before to define an order of the tasks. The algorithms will b&em in this general
form, i.e., with a label associated with each processorsTtne simplest valid labels
are the PE numbers, which lead to the PE-label-based onde¢helfollowing, we
defineLab; as the label of Processor number

ALGORITHM 12.6 Distributed ILU(0) factorization

In each processdr;, i = 1,...,p Do:
Perform the ILU(O) factorization for interior local rows
Receive the factored rows from the adjacent procegserth
Lab; < Lab;.
Perform the ILU(O) factorization for the interface rowgtw
pivots received from the external processors in step 3.
Perform the ILU(0) factorization for the boundary nodeih
pivots from the interior rows completed in step 2.
Send the completed interface rows to adjacent processaith
10. Lab; > Lab;.
11. EndDo

©ONSOT A WNR

Step 2 of the above algorithm can be performed in parallehlrse it does not de-
pend on data from other subdomains. Once this distribut&t{Q)_factorization is

completed, the preconditioned Krylov subspace algorithlirequire a forward and

backward sweep at each step. The distributed forward/backesolution based on
this factorization can be implemented as follows.

ALGORITHM 12.7 Distributed Forward and Backward Sweep

1. In each processdr;, i = 1,...,p Do:
2. Forward solve:
3. Perform the forward solve for the interior nodes.
4, Receive the updated values from the adjacent procegsors
5. with Lab; < Lab;.
6. Perform the forward solve for the interface nodes.
7. Send the updated values of boundary nodes to the adjacent
8. processorg with Lab; > Lab;.
9. Backward solve:
10. Receive the updated values from the adjacent processors
11. with Lab; > Lab;.
12. Perform the backward solve for the boundary nodes.
13. Send the updated values of boundary nodes to the adjacent
14. processorg, with Lab; < Lab;.
15. Perform the backward solve for the interior nodes.

16. EndDo

12.7. OTHER TECHNIQUES 417

As in the ILU(O) factorization, the interior nodes do not ded on the nodes from
the external processors and can be computed in parallehés B and 15. In the
forward solve, the solution of the interior nodes is follaiey an exchange of data
and the solution on the interface. The backward solve warkgverse in that the
boundary nodes are first computed, then they are sent toeadjaimcessors. Finally,
interior nodes are updated.

12.7 Other Techniques

This section gives a brief account of other parallel pre@mring techniques which
are sometimes used. The next chapter also examines anmopmtant class of meth-
ods, which were briefly mentioned before, namely, the cl&é&omain Decomposi-
tion methods.

12.7.1 Approximate Inverses

Another class of preconditioners that require only malgxvector products, is the
class of approximate inverse preconditioners. Discuss&haptefI0, these can be
used in many different ways. Besides being simple to implept®th their prepro-
cessing phase and iteration phase allow a large degreeabligtiam. Their disadvan-
tage is similar to polynomial preconditioners, namely, iuenber of steps required
for convergence may be large, possibly substantially tatigen with the standard
techniques. On the positive side, they are fairly robudtriggpies which can work
well where standard methods may fail.

12.7.2 Element-by-Element Techniques

A somewhat specialized set of techniques is the class of&fleBy-Element (EBE)
preconditioners which are geared toward finite elementlpnog and are motivated
by the desire to avoid assembling finite element matricesiyMiaite element codes
keep the data related to the linear system in unassembled fidre element matrices
associated with each element are stored and never adddldeondehis is convenient
when using direct methods since there are techniques, kas\rontal methods, that
allow Gaussian elimination to be performed by using a feunelets at a time.

It was seen in Chapt€t 2 that the global stiffness matriz the sum of matrices
Al associated with each element, i.e.,

A= Z:IAH

Here, the matrix4!¢ is ann x n matrix defined as
Al = p Ay PT

in which Ak is the element matrix ané. is a Boolean connectivity matrix which
maps the coordinates of the smalk, matrix into those of the full matrixl. Chapter

418 CHAPTER 12. PARALLEL PRECONDITIONERS

2 showed how matrix-by-vector products can be performeaassembled form. To
perform this product in parallel, note that the only potaintibstacle to performing
the matrix-by-vector product in parallel, i.e., acrossediments, is in the last phase,
i.e., when the contributions are summed to the resultingpovec In order to add the
contributionsAl¢lz in parallel, group elements that do not have nodes in common.
Referring to Equatior{Z.46), the contributions

ye = AKe (ng)
can all be computed in parallel and do not depend on one andthe operations

y:=y+ Peye

can be processed in parallel for any group of elements thabtishare any vertices.
This grouping can be found by performing a multicoloringlod £lements. Any two
elements which have a node in common receive a different.ctdsing this idea,

good performance can be achieved on vector computers.

EBE preconditioners are based on similar principles andyrdédferent variants
have been developed. They are defined by first normalizing efthe element
matrices. In the sequel, assume this a Symmetric Positive Definite matrix.
Typically, a diagonal, or block diagonal, scaling is firspplgd to A to obtain a
scaled matrixA,

A=D'?AD /2, (12.24)

This results in each matriAl®! and element matrixi ., being transformed similarly:

Al — p-1/24ldp-1/2

= D YV2P, Ak, D7

= P(P'D7V2P) A (P.D72PT)
= P Ak PT.

The second step in defining an EBE preconditioner isetiularize each of these
transformed matrices. Indeed, each of the matrité€sis of rankp, at most, where
pe IS the size of the element matrikx, , i.e., the number of nodes which constitute
thee-th element. In the so-calladiinget regularizationthe diagonal of each ! is
forced to be the identity matrix. In other words, the regukedl matrix is defined as

A Z 4 A€ diag(A), (12.25)

These matrices are positive definite; see Exeldise 4.

The third and final step in defining an EBE preconditioner ishoose the fac-
torization itself. In the EBE Cholesky factorization, thadlesky (or Crout) factor-
ization of each regularized matrix' is performed,

A€ = r.D.LT. (12.26)

12.7. OTHER TECHNIQUES 419

The preconditioner from it is defined as

nel nel 1
M=]] Lex [[De x [] LT (12.27)
e=1 e=1 e=nel

Note that to ensure symmetry, the last product is in reverderf the first one.
The factorization[[IZ26) consists of a factorization @ gmallp, x p. matrix A, .
Performing the preconditioning operations will therefamnsist of a sequence of
smallp. x p. backward or forward solves. The gather and scatter matficedefined
in Chapte’2 must also be applied for each element. Thesessale applied to
the right-hand side in sequence. In addition, the same eoldting idea as for the
matrix-by-vector product can be exploited to perform th@seeps in parallel.

One of the drawbacks of the EBE Cholesky preconditioneras déin additional
set of element matrices must be stored. That is because dtwgifations [12.26)
must be stored for each element. In EBE/SSOR, this is avoittexdiead of factor-
ing eachAld, the usual splitting of eactil® is exploited. Assuming the Winget
regularization, we have

Al =1-F,—ET (12.28)

in which —E, is the strict-lower part ofile). By analogy with the SSOR precondi-
tioner, the EBE-SSOR preconditioner is defined by

nel nel 1

M =]JU -wE) x [[De x [] I —wED). (12.29)
e=1 e=1

e=nel

12.7.3 Parallel Row Projection Preconditioners

One of the attractions of row-projection methods seen inp@hBB is their high de-
gree of parallelism. In Cimmino’s method, the scal@ras well as the new residual
vector can be computed in parallel. In the Gauss-Seidel+ffggpéctively Gauss-
Seidel-NR), it is also possible to group the unknowns in sachay that any pair
of rows (respectively columns) have disjointed nonzerdepas. Updates of com-
ponents in the same group can then be performed in paraltés$. approach essen-
tially requires finding a multicolor ordering for the matrx = AA” (respectively
B=ATA).

It is necessary to first identify a partition of the 4ét2,..., N} into subsets
S1, ..., Sk such that the rows (respectively columns) whose indicegnigeto the
same sef,; arestructurally orthogonal to each other, i.e., have no nonzero elements
in the same column locations. When implementing a block S€&Rme where the
blocking is identical with that defined by the partition, @flithe unknowns belonging
to the same sef; can be updated in parallel. To be more specific, the rows are
reordered by scanning those $ followed by those inS,, etc.. Denote by, the
matrix consisting of the rows belonging to ti#h block. We assume that all rows
of the same set are orthogonal to each other and that theylw®mre normalized

420 CHAPTER 12. PARALLEL PRECONDITIONERS

so that their 2-norm is unity. Then a block Gauss-Seidel pywesich generalizes
Algorithm[8], follows.

ALGORITHM 12.8 Forward Block NE-Gauss-Seidel Sweep

1. Select an initiak.

2. Fori =1,2,...,k Do:
3. dl == bl — All’

4. r:=x+ Ald,

5. EndDo

Here,z; andb; are subvectors corresponding to the blocking dné a vector of
length the size of the block, which replaces the scalaf Algorithm[B. There is
parallelism in each of the steps 3 and 4.

The question that arises is how to find good partitiGaisin simple cases, such
as block-tridiagonal matrices, this can easily be done;EsescisdB. For general
sparse matrices, a multicoloring algorithm on the grapH af’ (respectivelyA” A)
can be employed. However, these matrices are never stopidityx Their rows
can be generated, used, and then discarded.

PROBLEMS

P-12.1 Let A be a Symmetric Positive Definite matrix and considfer= I — D~' A where
D is a block diagonal ofd.

a. Show thaD is a Symmetric Positive Definite matrix. Denote py.) p the associated
inner product.

b. Show thatV is self-adjoint with respectto tQ, .) p.
c. Show thatV* is self-adjoint with respect to to, .) p for any integetk.

d. Show thatthe Neumann series expansion preconditiofiaedéy the right-hand side
of (IZ3) leads to a preconditioned matrix that is self-adjwith respect to thé-inner
product.

e. Describe an implementation of the preconditioned CGrélguo using this precondi-
tioner.

P-12.6 The development of the Chebyshev iteration algorithm see®eictiol 12312 can
be exploited to derive yet another formulation of the coapegalgorithm from the Lanczos
algorithm. Observe that the recurrence relatlon {12.8ptsestricted to scaled Chebyshev
polynomials.

a. The scaled Lanczos polynomials, i.e., the polynomia(s)/pi (0), in which py(t) is
the polynomial such that, 1 = px(A)v; in the Lanczos algorithm, satisfy a relation
of the form [IZB). What are the coefficiemtsands in this case?

b. Proceed in the same manner as in Se¢fion 12.3.2 to deriesn of the Conjugate
Gradient algorithm.

12.7. OTHER TECHNIQUES 421

P-12.3 Show thatp;, as defined by[{I217) has a limit What is this limit? Assume that
Algorithm[IZ1 is to be executed with the's all replaced by this limip. Will the method
converge? What is the asymptotic rate of convergence ofrtbidified method?

P-12.4 Derive the least-squares polynomials for= —%, = % for the intervall0, 1] for
k = 1,2,3,4. Check that these results agree with those of the table slaowre end of

Sectiol12.313.

P-12.5 Consider the mesh shown below. Assume that the objectivesslve the Poisson
equation with Dirichlet boundary conditions.

a. Consider the resulting matrix obtained (before boundangditions are applied) from
ordering the nodes from bottom up, and left to right (thus, blottom left vertex is
labeled 1 and the top right vertex is labeled 13). What is #edividth of the linear
system? How many memory locations would be needed to stemaétrix in Skyline
format? (Assume that the matrix is nonsymmetric so both uppd lower triangular
parts must be stored).

b. Isit possible to find a 2-color ordering of the mesh points®, show the ordering, or
otherwise prove that it is not possible.

c. Find an independent set of size 5. Show the pattern of thiexaasociated with this
independent set ordering.

d. Find a multicolor ordering of the mesh by using the greediticolor algorithm. Can
you find a better coloring (i.e., a coloring with fewer col@sf so, show the coloring
[use letters to represent each color].

P-12.5 A linear systemAdx = b whereA is a 5-point matrix, is reordered using red-black

ordering as
D1 F T\ f
(2 5)G)-(0)

a. Write the block Gauss-Seidel iteration associated wighabove partitioned system
(where the blocking in block Gauss-Seidel is the same asiibveeeblocking).

b. Express the iterates, independently of the iterates, i.e., find an iteration which
involves onlyy-iterates. What type of iteration is the resulting scheme?

P-12.3 Consider a tridiagonal matrik = tridiag (a;, b;, ¢;). Find a grouping of the rows
such that rows in each group astructurally orthogonal, i.e., orthogonal regardless of the
values of the entry. Find a set of three groups at most. Howvildarbe generalized to block
tridiagonal matrices such as those arising from 2-D and &Mered difference matrices?

P-12.4 Why are the Winget regularized matricd$’! defined by [I2.25) positive definite
when the matrix4 is obtained fromA by adiagonalscaling fromA?

422 CHAPTER 12. PARALLEL PRECONDITIONERS

NOTES AND REFERENCES When vector processing appeared in the middle to late 1@70smber
of efforts were made to change algorithms, or implememtatiof standard methods, to exploit the
new architectures. One of the first ideas in this context wagsetform matrix-by-vector products by
diagonals[[184]. Matrix-by-vector products using thismat can yield excellent performance. Hence,
came the idea of using polynomial preconditioning.

Polynomial preconditioning was exploited independenflgupercomputing, as early as 1937 in
a paper by Cesarli [71], and then in a 1952 paper by Lan€zod.[T9@ same idea was later applied
for eigenvalue problems by Stiefel who employed least-sepipolynomials[[2746], and Rutishauser
[2317] who combined the QD algorithm with Chebyshev accéiena Dubois et al. [[105] suggested
using polynomial preconditioning, specifically, the Neumaeries expansion, for solving Symmetric
Positive Definite linear systems on vector computers. Juhes al. [18D] later extended the idea by
exploiting Chebyshev polynomials, and other orthogondymamials. It was observed il [180] that
least-squares polynomials tend to perform better tharetbased on the uniform norm, in that they lead
to a better overall clustering of the spectrum. Moreovewas already observed by Rutishau§er|237],
in the symmetric case there is no need for accurate eigenesiimates: It suffices to use the simple
bounds that are provided by Gershgorin's theorem_Inl[244%5 also observed that in some cases the
least-squares polynomial approach which requires lessirdtion than the Chebyshev approach tends
to perform better.

The use of least-squares polynomials over polygons wasfirgicated by Smolarski and Saylor
[277] and later by Saad [242]. The application to the ind&ficase was examined in detail in.[240].
Still in the context of using polygons instead of ellipsest gnother attractive possibility proposed
by Fischer and Reichel[1R9] avoids the problem of best appration altogether. The polygon can
be conformally transformed into a circle and the theory dféfgolynomials yields a simple way of
deriving good polynomials from exploiting specific pointsthe circle.

Although only approaches based on the formulatfon {12.8) @&.11) have been discussed in
this book, there are other lesser known possibilities basedinimizing |[1/\ — s(\)|le. There
has been very little work on polynomial preconditioning aykv subspace methods for highly non-
normal matrices; see, however, the recent analysis i [28%ther important point is that polynomial
preconditioning can be combined with a subsidiary relaxatype preconditioning such as SSOR [2,
[214]. Finally, polynomial preconditionings can be usefulsome special situations such as that of
complex linear systems arising from the Helmholtz equafficiz].

Multicoloring has been known for a long time in the numeriaahlysis literature and was used
in particular for understanding the theory of relaxatiochteiques[[322-293] as well as for deriving
efficient alternative formulations of some relaxation aithons [293[1511]. With the advent of parallel
processing, it became an essential ingredient in pawteliiterative algorithms, see for examplé [4,
2,117 [ZIP[274, 228]. i [98] anl[248] it was observed thatep SOR preconditioning was very
competitive relative to the standard ILU precondition€@embined with multicolor ordering, multiple-
step SOR can perform quite well on vector computers. Muliidog is also useful in finite element
methods, where elements instead of nodes are coloréd 131, BOElement-By-Element techniques,
multicoloring is used when forming the residual, i.e., wimenltiplying an unassembled matrix by a
vector [174[1266/-262]. The contributions of the elementthefsame color can all be evaluated and
applied simultaneously to the resulting vector.

Independent set orderings have been used in the contextalfgbalirect solution techniques for
sparse matricef[95. 1199, 200] and multifrontal technidfiég] can be viewed as a particular case. The
gist of all these techniques is that it is possible to reotidesystem in groups of equations which can be
solved simultaneously. A parallel direct solution spaxdees based on performing several successive
levels of independent set orderings and reduction was stegye [199] and in a more general form in

[©4]. n

Chapter 13

MULTIGRID METHODS

The convergence of preconditioned Krylov subspace methods for solving linear systems arising
from discretized Partial Differential Equations tends to slow down considerably as these systems
become larger. This deterioration in the convergence rate, compounded with the increased
operation count per step due to the sheer problem size, results in a severe loss of efficiency. In
contrast, the class of methods to be described in this chapter are capable of achieving convergence
rates which are, in theory, independent of the mesh size. One significant difference with the
preconditioned Krylov subspace approach is that Multigrid methods have been initially designed
specifically for the solution of discretized elliptic Partial Differential Equations. The method
was later extended in different ways to handle other PDE problems, including nonlinear ones,
as well as problems not modeled by PDEs. Because these methods exploit more information on
the problem than do standard preconditioned Krylov subspace methods, their performance can
be vastly superior. On the other hand, they may require implementations that are specific to
the physical problem at hand, in contrast with preconditioned Krylov subspace methods which
attempt to be ‘general-purpose’.

13.1 Introduction

Multigrid techniques exploit discretizations with difeart mesh sizes of a given prob-
lem to obtain optimal convergence from relaxation techegjuAt the foundation of
these techniques is the basic and powerful principle ofldidnd conquer. Though
most relaxation-type iterative processes, such as GaidglSmay converge slowly
for typical problems, it can be noticed that the componefth® errors (or resid-
uals) in the directions of the eigenvectors of the iteratioatrix corresponding to
the large eigenvalues are damped very rapidly. These ezgerg are known as the
oscillatory modes or high-frequency modes. The other corapts, associated with
low-frequency or smooth modes, are difficult to damp witmdtad relaxation. This
causes the observed slow down of all basic iterative methétisvever, many of
these modes (say half) are mapped naturally into high-&ecgmodes on a coarser
mesh. Hence the idea of moving to a coarser mesh to elimihatedrresponding
error components. The process can obviously be repeatbhdheihelp of recursion,
using a hierarchy of meshes.

423

424 CHAPTER 13. MULTIGRID METHODS

The methods described in this chapter will differ in one egakway from those
seen so far. They will require to take a special look at thgial physical problem
and in particular at the modes associated with differenthegsThe availability of
a hierarchy of meshes and the corresponding linear probigrss up possibilities
which were not available with the methods seen so far whicte leealy access to
the coefficient matrix and the right-hand side. There areidver, generalizations of
multigrid methods, termed Algebraic Multigrid (AMG), whiattempt to reproduce
the outstanding performance enjoyed by multigrid in theuledy structured ellip-
tic case. This is done by extending in a purely algebraic raaitime fundamental
principles just described to general sparse linear systems

This chapter will begin with a description of the model perhk and the spectra
of the associated matrices. This is required for undersignthe motivation and
theory behind multigrid.

13.2 Matrices and spectra of model problems

Consider first the one-dimensional model problem seen ipteh2:

—u"(x) = f(x)forz € (0,1) (13.1)
u(0) =u(l) = 0. (13.2)

The interval [0,1] is discretized with centered differeraggroximations, using the
equally spacead + 2 points

xi=1xh,1=0,...,n+1,
whereh = 1/(n+1). Acommon notation is to call the original (continuous) dama

Q2 and its discrete versiofe,. SoQ = (0, 1) and;, = {z;}i=0,.. n+1. The
discretization results in the system

Az =b (13.3)
where
2 -1 f (o)
-1 2 -1 f(x1)
A= : b= h? ; . (13.4)
-1 2 -1 f(#n—2)
-1 2 f(l'n—l)

The above system is of sizex n.

Next, the eigenvalues and eigenvectors of the matnxill be determined. The
following trigonometric relation will be useful:

sin((j + 1)8) + sin((j — 1)8) = 2sin(j#) cos 6 . (13.5)

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 425

Consider the vector whose components akgn ¢, sin 26, -- -, sinnf. Using the
relation [T3.b) we find that

(A—2(1—=cos®))u=sin((n+1)0) e,
wheree,, is then-th column of the identity. The right-hand side in the abalation
is equal to zero for the following values 6f

km
0, = —— 13.6

For any integer valug. Therefore, the eigenvalues dfare
A = 2(1 — cos b) :4sin292—k k=1,...,n, (13.7)

and the associated eigenvectors are given by:
sin 0y,

sin(260y) (13.8)

Wy =
sin(nfy,)
Thei-th component ofv,, can be rewritten in the form

ikm

. ~ sin(lras
sin sin(kmx;)
and represents the value of the function(k7z) at the discretization point;. This

component of the eigenvector may therefore be written
wy(x;) = sin(kma;) . (13.9)

Note that these eigenfunctions satisfy the boundary comdity, (z9) = wi(xn+1) =
0. These eigenfunctions are illustrated in Figure11 3.1 ferdhsen = 7.
Now consider the 2-D Poisson equation

0*u O%*u .
_<W+a_y2> — f inQ (13.10)
w = 0 onT (13.11)

where(is the rectangl€0,/;) x (0,l2) andI its boundary. Both intervals can be
discretized uniformly by taking + 2 points in thex direction andn + 2 points in
they directions:

i =1xXhy,i=0,...,n+1; yj=7xhy,j=0,...,m+1

where
l1 Iy

— h2 = .

n—+1 m+1

For simplicity we now assume thag = h,.

hq

426 CHAPTER 13. MULTIGRID METHODS

Figure 13.1:The seven eigenfunctions of the discretized one-dimeakicaplacean
whenn = 7.

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 427

In this case the linear system has the fofm{[13.3) whehas the form

B -1 4 -1
-1 B -1 -1 4 -1
T T with B = T T
-1 B -1 -1 4 -1
-1 B -1 4

A=

The right-hand side is again the discrete version of thetiong’ scaled byh?.
The above matrix can be represented in a succinct way usisgrt@roduct notation.
Given anm x p matrix X and ann x ¢ matrix Y, the matrix

X®Y

can be viewed as a block matrix which has in (block) locatiori) the matrixz; ;Y.
In other words X ®Y is of size(nm) x (pq) and is obtained by expanding each entry
x;; of X into the blockz;;Y". This definition is also valid for vectors by considering
them as matricep(= ¢ = 1).

With this notation, the matrixd given above, can be written as

A=I@T, +T,®1, (13.12)

in which 7', abd 7}, are tridiagonal matrices of the same form as the matrix
(I3:2) and of dimension andm respectively. Often, the right-hand side RI(13.12)
is called thetensor sunof 7, and T, and is denoted by’ © 7,. A few simple
properties are easy to show (see ExerElse 1) for tensor gio@nd tensor sums.
One that is important for determining the spectrunias

(TroTy)(vew) =ve (Tw)+ (Tyw) @w. (13.13)

In particular ifwy, is an eigenvector df,, associated witlr, andv, is an eigenvector
of T} associated withy, it is clear that

(Ty ®Ty) (v @ wg) = v @ (Tpwy) + (Tyvr) @ wy = (0 +) v @ Wy, .

So, \x; = o) + 1 is an eigenvalue ofl for each pair of eigenvalues, € A(T),)
andp, € A(T,). The associated eigenvectoris® wy. These eigenvalues and
associated eigenvectors are best labeled with two indices:

km lm
= 21— 211—
Akl (cosn+1>—|- < cosm+1>
km lm
4 (sin®? ——— in2—— | . 13.14
(58 3y + 5 3) (13149

Their associated eigenvectors; are

2kl = U] & Wy

428 CHAPTER 13. MULTIGRID METHODS

and they are best expressed by their values at the paintg;) on the grid:
2k1(xi, y5) = sin(kma;) sin(lmy;) .

When all the sums, + p; are distinct this gives all the eigenvalues and eigenvec-
tors of A. Otherwise, we must show that the multiple eigenvaluesespond to
independent eigenvectors. In fact it can be shown that thie sy

{v ®w =1, n:i=1...m

is an orthonormal system if both the system oftfie and thew;’s are orthonormal.

13.2.1 Richardson’s iteration

Multigrid can be easily motivated by taking an in-depth loaksimple iterative
schemes such as the Richardson iteration and Jacobi's dndtlate that these two
methods are essentially identical for the model problendeuiconsideration, be-
cause the diagonal of the matrix is a multiple of the identitgtrix. Richardson’s
iteration is considered here for the one-dimensional aaseg a fixed parameter.
In the next section, the weighted Jacobi iteration is fuliplsized with an emphasis
on studying the effect of varying the parameter

Richardson’s iteration takes the form:

ujr1 = uj +w(b— Auj) = (I —wA)u; +wb .

Thus, the iteration matrix is
M,=1—-wA. (13.15)

Recall from Exampl€Z]1 from Chapter 4, that convergencestgkace fof < w <
2/p(A). In realistic situations, the optimal given by [43B) is difficult to use.
Instead, an upper bound A) < ~ is often available from, e.g., Gershgorin’s the-
orem, and we can simply take = 1/~. This yields a converging iteration since
1/v <1/p(A) <2/p(A).

By the relation[[T3.115), the eigenvalues of the iteratiotrinare1 —w\, where
A, is given by [I37). The eigenvectors are the same as thadelbfu, is the exact
solution, it was seen in Chapter 4 that the error vedior= u, — u;, obeys the
relation,

dj = Mdy . (13.16)

It is useful to expand the error vectdy in the eigenbasis af/,,, as

do = kawk .
k=1

From [IT3.1I6) and(1315) this implies that at sjep

n J
dj:Z<1—%> fkwk.

k=1

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 429

Each component is reduced Ky — A\/v)?. The slowest converging component
corresponds to the smallest eigenvalyewhich could yield a very slow convergence
rate when\; /v| < 1.

For the model problem seen above, in the one-dimensional &ershgorin’s
theorem yieldsy = 4 and the corresponding reduction coefficient is

7'('
1—sin?——— ~1—(rh/2)>=1-0(h?) .

As a result, convergence can be quite slow for fine mesheswiteenh is small.
However, the basic observation on which multigrid methagsfeunded is that con-
vergence is not similar for all components. Half of the em@amponents see actually
a very good decrease. This is the case forhigd frequencycomponents, that is,
all those components correspondingkto- n/2. This part of the error is often re-
ferred to as thescillatory part for obvious reasons. The reduction factors for these
components are

o kT 9 kT

—1—gin2—" — <
Mk sin n+1) cos 1) =

Figure 13.2: Reduction coefficients for Richardson’s meétapplied to the 1-D
model problem

These coefficients are illustrated in Figlire13.2. Two ingurobservations can
be made. The first is that the oscillatory components, i®sé corresponding to
0r/241, - - -, On, Undergo excellent reduction, better thef2, at each step of the
iteration. It is also important to note that this factor ideépendent of the step-size
h. The next observation will give a hint as to what might be dmneduce the other
components. In order to see this we now introduce, for thetfiree, a coarse grid
problem. Assume that is odd and consider the problem issued from discretizing
the original PDE[(I3]1) on a meshy;, with the mesh-siz&h. The superscripté

430 CHAPTER 13. MULTIGRID METHODS

and2h will now be used to distinguish between quantities relatedeach grid. The
grid points on the coarser mesh af# = i = (2h). The second observation is based
on the simple fact that?" = 2%, from which it follows that, fork < n/2,

wi (2 = sin(krah) = sin(krz?h) = wh (22t |

In other words, taking a smooth mode on the fine gz'ug fvith £ < n/2) and
canonically injecting it into the coarse grid, i.e., defmiits values on the coarse
points to be the same as those on the fine points, yields-thenode on the coarse
grid. This is illustrated in Figure—13.3 fdr = 2 and grids ofd points z = 7) and5
points ¢ = 3).

Some of the modes which were smooth on the fine grid, beconiltatmy. For
example, whem is odd, the modeu?nﬂ)/? becomes precisely the highest mode on
Q9. At the same time the oscillatory modes on the fine mesh aremgel rep-
resented on the coarse mesh. The iteration fails to makege®@n the fine grid
when the only components left are those associated withnttoeth modes. Multi-
grid strategies do not attempt to eliminate these compsranthe fine grid. Instead,
they first move down to a coarser grid where smooth modesamslated into oscil-
latory ones. Practically, this requires going back andhftwetween different grids.
The necessaryrid-transfer operations will be discussed in detail later.

Fine mesh

Coarse mesh

Figure 13.3: The mode,, on a fine grid(n = 7) and a coarse grith = 3).

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 431

13.2.2 Weighted Jacobi iteration

In this section a weighted Jacobi iteration is considereati @aralyzed for both 1-D
and 2-D model problems. The standard Jacobi iteration iseofdrm

uj41 =D (E+ F)u; + D7'f.

The weighted version of this iteration uses a parametand combines the above
iterate with the current;:

ujs1 = w(DHE+F)u;+ D7 f) + (1 —w)uy
= [1-w)I+wD HE+F)|uj+wD 'f (13.17)
= Jouj+ fo . (13.18)

Using the relation’ + F' = D — A it follows that
J,=1—-wD'A. (13.19)

In particular note that whed is SPD, the weighted Jacobi iteration will converge
when0 < w < 2/p(D~1A). In the case of our 1-D model problem the diagonal is
D = 21, so the following expression fof, is obtained,

Jo=(1—w)+ g(zf A =T- gA. (13.20)

For the 2-D case, a similar result can be obtained in whichdgmominator 2 is
replaced by 4. The eigenvalues of the iteration matrix follmmediately from the

expression[(1317),

km . 9 km
uk(w)—l—w<1—cosn+1> =1-2w <sm m) . (13.21)

In the 2-D case, these become,

km I
-1 2 Mt 2 vh)
P (w) = w <sm T D + sin 2m 1)>

Consider the 1-D case first. The sine tersng (km/2(n + 1)) lie in between
1—s2 ands?, in whichs = sin(7/2(n+1)). Therefore, the eigenvalues are bounded
as follows:

(1 —2w) + 2ws? < pp(w) < 1 —2ws?. (13.22)

The spectral radius af, is
p(Jo) = max{|(1 — 2w) + 2ws?|, |1 — 2ws?|} .

Whenw is < 0 or > 1, it can be shown thgt(J,) > 1 for h small enough (See
Problenfl). Whew is between 0 and 1, then the spectral radius is simplgws? ~
1 — wr?h?)2.

432 CHAPTER 13. MULTIGRID METHODS

It is interesting to note that the bestin the interval[0,1] isw = 1, so no
acceleration of the original Jacobi iteration can be agdevOn the other hand, if
the weighted Jacobi iteration is regarded as a smoothesjttragion is different. For
those modes associated with> n/2, the termsin? 6, is > 1/2 so

1—2w < (1 —2w) 4 2ws? < pp(w) <1 — %w . (13.23)

For example whew = 1/2, then all reduction coefficients for the oscillatory modes
will be in between 0 and 3/4, thus guaranteeing again a remfuof 4. Forw = 2/3
the eigenvalues are between -1/3 and 1/3, leading to a singd#ctor of 1/3. This
is the best that can achievedlependently of.
For 2-D problems, the situation is qualitatively the saméwe Bound [[T3.32)
becomes,
(1 —2w) +w(s2 + sz) < ppa(w) <1 —w(s+ sz) (13.24)

in which s, is the same as ands, = sin(7/(2(m + 1))). The conclusion for the
spectral radius and rate of convergence of the iteratiommgas, in thatp(J,) ~
1 — O(h?) and the besb is one. In addition, the high-frequency modes are damped
with coefficients which satisfy:
1

1—2w < (1 —2w) +w(ss+s,) < ppg(w) <1 - 3¢ (13.25)
As beforew = 1/2 yields a smoothing factor of 3/4, and= 3/5 yields, a smooth-
ing factor of4/5. Here the best that can be done, is to take 4/5.

13.2.3 Gauss-Seidel iteration

In pratice, Gauss-Seidel and red-black Gauss-Seidelatbexare more common
smoothers than Jacobi or Richardson’s iterations. AlsdR 8@th w # 1) is rarely
used as it is known that overrelaxation adds no benefit inrgen@auss-Seidel and
SOR schemes are somewhat more difficult to analyze.

Consider the iteration matrix

G=(D-E)'F (13.26)

in the one-dimensional case. The eigenvalues and eigemsexftz satisfy the rela-
tion
[F— XD —E)jlu=0

the j-th row of which is
§j+1 — 20 + A1 =0, (23.27)

where¢; is the j-component of the vectar. The boundary condition§ = &,+1 =
0, should be added to the above equations. Note that be¢ause= 0, equation
(@I3271) is valid when = n (despite the fact that ent(y., n+ 1) of F' is not defined).

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 433

This is a difference equation, similar to Equati@n_(2.21¢a@mtered in Chapter 2
and and it can be solved similarly by seeking a general swliti the form¢; = r7.
Substituting in[[(I3:27); must satisfy the quadratic equation

r* —2Ar + A =0,
whose roots are
rT=A+ VA2 =X, rm=XA—VA -\

This leads to the general solutigh = ar + #r}. The first boundary condition
& = 0, implies that? = —«. The boundary conditiofi,+; = 0 yields the equation
in A

(Vi) V) T o <<A+m>2>

A

n+1
:17

in which it is assumed that # 0. With the change of variables = cos? 4, this
becomegcos § + isin §)2" Y = 1, where the signt is positive whencos § and
sin 6 are of the same sign and negative otherwise. Hence,

km

k=1,...,n (13.28)
Therefore the eigenvalues are of the fokp= cos? 6;,, wheref;, was defined above,
ie.,
2

+1°
In fact this result could have been obtained in a simpler wagording to Theorem
T8 seen in Chapter 4, when= 1, the eigenvalues of SOR iteration matrix are the
squares of those of the corresponding Jacobi iterationxmaith the samev, which
according to[(13.21) (left side) ayg, = cos[kn/(n + 1)].

Some care must be exercised when computing the eigenvedtoes-th com-
ponent of the eigenvector is given By = r{ — rg. Proceeding as before, we have

A, = Cos

r{ = (cos2 0 + \/cos4 0 — cos? Hk)] = (cos By)’ (cos B, & isin Hk)j ,

where thet sign was defined before. Similarlyg = (cos 0;,)7 (cos 0y, T isin 0;,)’
where= is the opposite sign from:. Therefore,

& = (cos 05,) [(cos 0 Fisinby) — (cos by £ isinby)’ | = 2i (cos Oy [+ sin(j6;)] .

434 CHAPTER 13. MULTIGRID METHODS

6 7 89 101112

4 56 7 89 101112 4 567 89 101112

Figure 13.4:The eigenfunctions of 13-point one-dimensional mesh=11). The
casek = 6 is omitted.

13.2. MATRICES AND SPECTRA OF MODEL PROBLEMS 435

Sinced),, is defined by[[I3:28)in 6, is nonnegative, and therefore thesign
is simply the sign otos #,. In addition the constant fact@i can be deleted since
eigenvectors are defined up to a scalar constant. Thereferean set

uy, = [| cos Ok’ sin(j6y)] (13.29)

jzlv“'vn ’

The above formula would yield an incorrect answer (a zeraorgfor the situation
when)\, = 0. This special case can be handled by going backdo {1 3.27hwhi
yields the vectoe; as an eigenvector. In addition, it is left to show that indéesl
above set of vectors constitutes a basis. This is the sullj&otercisdb.

Ae(G)
A

—_— e
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 13.5: Eigenvalues of the Gauss-Seidel iteration dod3-point one-
dimensional meshi(= 11).

The smallest eigenvalues are those for whidls close ton/2, as is illustrated
in Figure[I3b. Components in the directions of the corredpm eigenvectors, i.e.,
those associated with the eigenvalues;dah the middle of the spectrum, are damped
rapidly by the process. The others are harder to eliminakgs i in contrast with
the situation for the Jacobi iteration where the modes spoeding to the largest
eigenvalues are damped first.

Interestingly, the eigenvectors corresponding to the miéijenvalues are not
the most oscillatory in the proper sense of the word. Spedifia look at the eigen-
functions ofG illustrated in Figuré_L3]l4, reveals that the modes with high

oscillations are those corresponding to eigenvalues \ughdrger values of,
and these are not damped rapidly. The figure shows the eiggtigos ofG, for a 13-
point discretization of the 1-D Laplacean. It omits the dase 6, which corresponds
to the special case of a zero eigenvalue mentioned above.

The eigenvectors of the Gauss-Seidel iteration matrix atealated in a simple
way to those of the original matriXd. As it turns out, the low frequency eigenfunc-
tions of the original matrixd are damped slowly while the high frequency modes are
damped rapidly, just as is the case for the Jacobi and Risbantieration. This can
be readily verified experimentally, see Exerdibe 7

436 CHAPTER 13. MULTIGRID METHODS

13.3 Inter-grid operations

Multigrid algorithms require going back and forth betweavesal grid problems
related to the solution of the same original equations. sui§icient to present these
grid transfer operations for the simple case of two medhg¢fine) and(2; (coarse),
and to only consider the situation whéh = 2h. In particular, the problem size of
the fine mesh problem will be abo@f times as large as that of the coarse mesh
problem, wherel is the space dimension. In the previous section, the 1-Dwase
already considered and the subscriptorresponding to the mesh problem under
consideration was introduced.

13.3.1 Prolongation

A prolongation operation takes a vector frébp; and defines the analogue vector in
;. A common notation in use is:

I Qy — Q.

The simplest way to define a prolongation operator is thrdiggar interpolation,
which is now presented for the 1-D case first. The generiatitn is that ofn + 2
points, zg, x1, ..., z,+1 Wherexy andx, 1 are boundary points. The number of
internal pointsn is assumed to be odd, so that halving the size of each sulahter
amounts to introducing the middle points. Given a ve¢t§ﬁ)i:0,___7(n+1)/2, the
vectorv” = % v?" of Q, is defined as follows

{vgj =" n+1
= (

J for 7=0,...,)
ijH vjz-h +vj2»_fﬁ1)/2 2

In matrix form, the above defined prolongation can be wriden

1
2
11
2
11
ot = : v2h (13.30)

1

In 2-D, the linear interpolation can be defined in a straighitbrd manner from
the 1-D case. Thinking in terms of a matrix; representing the coordinate of a
function v at the pointsz;,y;, it is possible to define the interpolation in 2-D in
two stages. In the foIIowing;”?h denotes the interpolation in thedirection only

13.3. INTER-GRID OPERATIONS 437

and Ig% the interpolation fory variables only. First, interpolate all values in the
z-direction only:

o v2h
h,z h 2z = . m—+ 1
v = I 9v where A for i=0,...,——.
’ Uoiyr. = (v 2 b o)/2 2
Then interpolate this semi-interpolated result, with extpto they variable:
h T 2h
V. 9; = 'U . n+1
o =1/, where P Mh R
U:,2j+1 - (U:,]]+1)/

This gives the following formulas for the 2-D interpolatiohan element® in Qp,
into the corresponding elemewtt = 17, in O,

Ugmj = U2h

U§i+1,2j = (U% + “z+1 /2 f i =0,..., 2
Ugi,Zj-i-l (”% + ’Uzg+1)/2 or { i =0,...,2H
"ng‘+1,2j+1 = (v o + v g T vt g1 T v r1)/4

From the above derivation, it is useful to observe that th2 iBterpolation can be
expressed as the tensor product of the two one-dimensioteapolations, i.e.,

I =1l @10 g, (13.31)

This is the subject of Exercigé 8.

It is common to represent the prolongation operators usingriation of the
stencil notation employed in Chapter 4 and Chapter 10. Tdr#tnow operates on
a grid to give values on a different grid. The one-dimendistencil is denoted by

1 1
== 1 .
=l

The open brackets notation only means that the stencil neusttérpreted as a fan-
out rather than fan-in operation as in the cases we have sezarlier chapters. In
other words it is a column instead of a row operation, as cemla¢ understood by a
look at the matrix in[[I3:30). Each stencil is associatedh aitoarse grid point. The
result of the stencil operat|on are the valugs/2, v, v /2, contributed to the three
fine mesh-points},_,, 2%, anda?, ., by the valuev/’. Another, possibly clearer,
interpretation is that the function with value one at thersearid pointx?h, and zero
elsewhere, will be interpolated to a function in the fine mesich has the values
0.5,1,0.5 at the pointse?;,_,,z%;, 2%, .|, respectively, and zero elsewhere. Under
this interpretation, the stencil for the 2-D linear intdgimn is

1 21
1 2 4 2
1 2 1
It is also interesting to note that the 2-D stencil can be e@was a tensor product of

the one dimensional stengiland its transposg’ . The stencip” acts on the vertical
coordinates in exactly the same way tpatcts on the horizontal coordinates.

438 CHAPTER 13. MULTIGRID METHODS

Example 13.1. This example illustrates the use of the tensor product iootdb
determine the 2-D stencil. The stencil can also be undedstoterms of the action
of the interpolation operation on a unit vector. Using thenstl notation, this unit
vector is of the forme; ® e; and we have (see ExerciSe 1)

Ih(ei ®ej) = (I gy, @ Il o) (e @ €5) = (I} gpe:) @ (11 ppej) -

When written in coordinate (or matrix) form this is a vectohieh corresponds to
the outer producpp” with p” = [% 1 %], centered at the point with coordinate
i, yj . O

13.3.2 Restriction

The restriction operation is the reverse of prolongatioive@ a functionv” on the
fine mesh, a corresponding function; must be defined from”. In the earlier
analysis one such operation was encountered. It was singglgdbon defining the
function v from the functionv” as follows

vl = .. (13.32)

2

Because this is simply a canonical injection fr@nto 244, it is termed thenjection
operator This injection has an obvious 2-D analogug? = v}, .

A more common restriction operator, called full weightifigy\(), definesy?" as
follows in the 1-D case:

1
o = 5 (o + 208+ o) - (13.33)

This averages the neighboring values using the wei@B&s 0.5, 0.25. An important
property can be seen by considering the matrix associatidis definition ofl}%h:

1 2 1
1
IQhZZ 1 2 1 . (13.34)

1 2 1

Apart from a scaling factor, this matrix is the transposehefinterpolation operator
seen earlier. Specifically,
I, =2 (M7, (13.35)
The stencil for the above operator is
1
-1 2 1
;L2

where the closed brackets are now used to indicate the sthfadain (row) opera-
tion.

13.4. STANDARD MULTIGRID TECHNIQUES 439

In the 2-D case, the stencil for the full-weighting averagisigiven by

1 1 2 1
— 12 4 2
16 1 2 1

This takes forugmj the result of a weighted average of the 9 poimﬁq’jﬂ, with
Ip,lq] < 1 with the associated weightsPI=19-2, Note that because the Full
Weighting stencil is a scaled row (fan-in) version of theshn interpolation sten-
cil, the matrix associated with the operatl;jh is essentially a transpose of the
prolongation (interpolation) operator:

I =4t . (13.36)
The statement§ (I3.1B5) alld (13.36), can be summarized by
I =24(rihHT (13.37)

whered is the space dimension.
The following relation can be shown

nh=rnh e (13.38)
which is analogous t&{13:B1) (see Exerfike 9).

13.4 Standard multigrid techniques

One of the most natural ways to exploit a hierarchy of gridemvéolving PDESs, is to
obtain an initial guess from interpolating a solution comeguon a coarser grid. The
process can be recursively repeated until a given grid ishiexh This interpolation
from a coarser grid can be followed by a few steps of a smogthération. This
is known as nested iteration. General multigrid cycles atensically recursive
processes which use essentially two main ingredients. Téieidi a hierarchy of
grid problems along with restrictions and prolongationsntwve between grids. The
second is a smoother, i.e., any scheme which has the smgqituperty of damping
quickly the high frequency components of the error. A fewhsschemes, such as
the Richardson and weighted Jacobi iterations, have bemmisecarlier sections.
Other smoothers which are often used in practice are the 5=3eislel and Red-
Black Gauss-Seidel iterations seen in Chapter 4.

13.4.1 Coarse problems and smoothers

At the highest level (finest grid) a mesh-sizehois used and the resulting problem
to solve is of the form:

Apul = .
One of the requirements of multigrid techniques is that desgssimilar to the one
above must be solved at the coarser levels. It is naturalfioedthis problem at the

440 CHAPTER 13. MULTIGRID METHODS

next level where a mesh of size, sd&, is used, as simply the system arising from
discretizing the same problem on the coarser megh In other cases, it may be
more useful to define the linear system Gwlerkin projection where the coarse
grid problem is defined by

Ay = I A, IE =i (13.39)

This formulation is more common in finite element methodsaldb has some ad-
vantages from a theoretical point of view.

Example 13.2. Consider the model problem in 1-D, and the situation wHgn

is defined from the Galerkin projection, i.e., via, formUlEB39), where the pro-
longation and restriction operators are related[by (13(34)) or (I3:36) (2-D). In
1-D, Ay can be easily defined for the model problem when full-weighis used.
Indeed,

H H h H
AH€j = Ih AhIHej

1 1
= I}Il{Ah {56%—1 + ESJ + §€3j+1:|
1 1

= I [—563]'—2 + ey — §€gj+2]

= —ef_1+2e?—eﬁ1.
This defines thg-th column of Az, which has a 2 in the diagonal, -1 in the super
and sub-diagonal and zero elsewhere. This means that thetopéy defined by
the Galerkin property is identical with the operator thatuldobe defined from a
coarse discretization. This property is not true in 2-D whdhweighting is used.
see Exercise10. O

The notation
h

ull = smooth”(Ah,Uga fn)

means that” is the result of> smoothing steps for solving the above system, starting
with the initial guesmg. Smoothing iterations are of the form

ul'y) = Spul + g (13.40)

whereS}, is the iteration matrix associated with one smoothing séepwas seen in
earlier chapters, the above iteration can always be renritt the ‘preconditioning’
form:

wl = ul + Bu(f" — Apul) (13.41)

where

S, =1 — BpAy, By=(I-S)At ¢"=Buf". (13.42)

13.4. STANDARD MULTIGRID TECHNIQUES 441

The errord” and residuat” resulting fromv smoothing steps satisfy
dh = (Sp)Vdlh = (I — BpAp)vdl; r¥ = (I — AuBp)'rl.

It will be useful later to make use of the following obsereati Whenf" = 0 then
g™ is also zero and as a result, one step of the iterafion (11 8:iQ)rovide the result
of one product with the operatd,.

Example 13.3. For example, setting = 0 in (I3:11), yields the Jacobi iteration
matrix,

B=(I-DYE+F)A'=D ' (D-E-F)A"'=D"".

In a similar way one finds that for the Gauss-Seidel iterati®n= (D — E)~!F and
for Richardson iteratiol3 = wl. O

Nested iteration was mentioned earlier as a means of obgpigood initial
guesses from coarser meshes in a recursive way. The algoptiesented here to il-
lustrate the notation just introduced is described beldwe dssumption is that there
arep + 1 grids, with mesh sizek, 2h, ... ,2Pn = hyg.

ALGORITHM 13.1 Nested Iteration

1. Seth := hg. Given an initial guess!, setu" = smooth?» (A, ull, f)
2. Forl=p—1,...,0 Do

3. uh/2 = [P h

4. h:=h/2;

5. ul := smooth™ (A, u", f)

6. End

In practice, nested iteration is not much used in this formoweler, it provides
the foundation for one of the most effective multigrid altfoms, namely the Full
Multi-Grid (FMG) which will be described in a later section.

13.4.2 Two-grid cycles

When a smoother is applied to a linear system at a fine leveteidual
Pt = fh — AuM

obtained at the end of the smoothing step will typicallyl @ large. However, it
will have small components in the space associated withitiefrequency modes.
If these components are removed by solving the above systeaat(y) at the lower
level, then a better approximation should result. Two-gnethods are rarely prac-
tical because the coarse-mesh problem may still be too tar@pe solved exactly.
However, they are useful from a theoretical point of viewthe following algorithm
H = 2h.

442 CHAPTER 13. MULTIGRID METHODS

ALGORITHM 13.2 Two-Grid cycle

1. Pre-smooth: u" := smooth”! (A, ul, f*)
2. Get residual: " = fh — Apu”

3. Coarsen: rf = [Hyh

4. Solve: ApdH = pH

5. Correct: ul = uh + I%éH

6.

Post-smooth:u" := smooth”2 (A, u", f*)

It is clear that the result of one iteration of the above dthor corresponds to
some iteration process of the form

h h
Upew = Mhuo + 9gm;, -

In order to determine the operatdf;, we exploit the observation made above that
taking f* = 0 provides the produch/,u?. When f* = 0, then in line 1 of the
algorithm, u" becomesS; uf. In line 3, we haver = I/(f, — A,S;") =
I,{{(—Ahsgl). Following this process, the vecta” resulting from one cycle of
the algorithm becomes

ey = SIS}l + I AT (— A S)
Therefore, the 2-grid iteration operator is given by
My = S - Ty AG T A)SY
The matrix inside the brackets,
TH =1 - 15A T A, (13.43)

acts as another iteration by itself known as tarse grid correctionyhich can be
viewed as a particular case of the two-grid operator with moathing, i.e., with
v, = vy = 0. Note that theB preconditioning matrix associated with this iteration
is, according to[(T322)3), = I1, A T].

An important property of the coarse grid correction oper&aliscussed in the
following lemma. It is assumed thalt;, is symmetric positive definite.

Lemma 13.1 When the coarse grid matrix is defined ia_(138.39), then trerss
grid correction operator[[I3:43) is a projector which is bagonal with respect to
the Ap-inner product. In addition, the range GT}{{ is Ap-orthogonal to the range of
I,

Proof. It suffices to show that — T} = 1}, A T} A,, is a projector:

(IRAFTE A< (IR A TE AY) = THAG (IF ATl A T Ay, = THAG T A,
N———

Ap

=

13.4. STANDARD MULTIGRID TECHNIQUES 443

That I}}A;I,{{ Ay, is an A-orthogonal projector follows from its self-adjoiess
with respect to thed; -inner product (see Chapter 1):

(T{I:U,y)Ah = (AhI;’IA;I,‘?Ahx,y) = (m,AhI;’IA;III,{{Ahy) = (m,T,{{y)Ah .

Finally, the statement thdtan(7}?) is orthogonal tdRan(I7) is equivalent to stat-
ing that for allz of the formz = Ty, we havel/’ A,z = 0 which is readily
verified. O

13.4.3 V-cycles and W-cycles

Anyone familiar with recursivity will immediately think athe following practical
version of the 2-grid iteration: apply the 2-grid cycle ressvely until a coarse
enough level is reached and then solve exactly (typicallygua direct solver). This
gives the algorithm described below, called the V-cycletigud. In the algorithm,
H stands foRh andh for the coarsest mesh-size.

ALGORITHM 13.3 u” = Vecycle(Ay, ul, f7)

1. Pre-smooth: u" := smooth”! (Ah,ug,fh)
2. Get residual: " = fh — Apu”

3. Coarsen: rfl = [Hyh

4, If (H == hy)

5. Solve: ApgdH = pH

6. Else

7. Recursion: 5% = V-cycle(Ay, 0,rH)
8. EndIf

9. Correct: ul =l 4 I 6H

0. Post-smooth:u" := smooth?? (A, u”, f*)
1. Returnu”

Consider the cost of one cycle, i.e., one iteration of thevatagorithm. A few
simple assumptions are needed along with new notation. Thear of nonzero
elements of4,, is denoted byinz,. Itis assumed thainz;, < anj, wherea does
not depend ork. The cost of each smoothing step is equabia; while the cost of
the transfer operations (interpolation and restricti@mfithe formsn;, where again
(6 does not depend din The cost at the level where the grid sizéijss given by

C(np) = (a(v1 + v2) + 20)np, + C(nap) -

Noting thatns;, = np/2 in the one-dimensional case, This gives the recurrence
relation
C(n)=nn+C(n/2) (13.44)

in whichn = (a(v1 + 12) + 203). The solution of this recurrence relations yields
C(n) < 2nn. For 2-dimensional problemsy, = 4ny, and in this case the cost
becomes< 7/3nn.

=

444 CHAPTER 13. MULTIGRID METHODS

We now introduce the general multigrid cycle which genegslithe V-cycle seen
above. Once more, the implementation of the multigrid cigta a recursive nature.

ALGORITHM 13.4 u" = MG (Ap, ult, f,v1,12,7)

1. Pre-smooth: u" := smooth”! (A, ul, f")
2. Get residual: " = " — Ayu”

3. Coarsen: rf = [lyh

4, If (H == ho)

5. Solve: ApdH = pH

6. Else

7. Recursion: 5% = MGY(Ag, 0,7 vy, 1,7)
8. EndIf

9. Correct: ul = ul 4 I 6H

0. Post-smooth:u" := smooth?? (A, u”,)
1. Returnu”

Notice now that there is a new parametgrwhich determines how many times MG
is iterated in Line 7. Each of the MG iterations in Line 7 takes form

S, = MG(Ap, 6" vy, v1,v0,7) (13.45)

and this is iterated times. The initial guess for the iterationdg = 0 the second
argument to the MG call in line 7 shows. The case 1 yields the V-cycle multigrid.
The casey = 2 is known as th&V-cycle multigrid. The resulting inter-grid up and
down moves can be complex as is illustrated by the diagrantsgure[I3.65. The
casey = 3israrely used.

Now consider the cost of the general multigrid cycle. They@ignificant dif-
ference with the V-cycle algorithm is that the recursivd taMG is iteratedy times
instead of only once for the V-cycle. Therefore, the costfaa [I3.4¥%) becomes

C(n) =nn+~C(n/2), (1-Dcase) C(n)=nn+~yC(n/4), (2-D case)

(13.46)
It can easily be shown that the cost of each loop is still lingé@en~y < 2 in 1-D and
~v < 4 inthe 2-D case, see Exerc[sd 16. In other cases, the cosigelincreases to
O(nlogyn).

Example 13.4. This example illustrates the convergence behavior of tloydle
multigrid for solving a model Poisson problem with Dirichleoundary conditions
in two-dimensional space. The problem considered is ofdha f

— Au = 13sin(27z) X sin(37y) (13.47)

and has the exact solutiar{x, y) = sin(27x) x sin(37y). The Poisson equation is
set on a square grid and discretized using= n, = 33 points, including the two

13.4. STANDARD MULTIGRID TECHNIQUES 445

lev=1p=1 lev=2p=1 lev=3,=1 lev=4,=1
lev=1,=2 lev=2,=2 lev=3,y=2

WA

Figure 13.6: Representations of Various V-cycles and Wesyc

boundary points in each direction. This leads to a lineatesyf dimensionV =

312 = 961. The V-cycle multigrid was tested with three smoothersT{i¢ weighted
Jacobi relaxation wittv = 2/3; (2) Gauss-Seidel relaxation, and (3) the red-black
Gauss-Seidel relaxation. Various values/pfandrs, the number of pre- and post-
smoothing steps, respectively, were used. Tabld 13.1 sti@wsonvergence factors
p as estimated from the expression,

_ () Hm\lz)
p = exp og
®Jlroll2

for each of the smoothers. Hekeis the total number of smoothing steps taken.
The convergence was stopped as soon as the 2-norm of thealkesials reduced by
a factor oftol = 10~%. The overall winner is clearly the Red-Black Gauss Seidel
smoother. It is remarkable that even with a number of totalathning steps, + v»

as small as two, a reduction factor of less than 0.1 is actiexth RB-GS. Also,

it is worth pointing out that whemw; + 1» is constant, the red-black Gauss-Seidel
smoother tends to perform better whgrandwvs are more or less balanced (compare
the casgvy,12) = (0,2) versus(vy,12) = (1,1) for example). In the asymptotic
regime (or very largé), the two ratios should be identical in theory. |

446 CHAPTER 13. MULTIGRID METHODS

(v1,v2) smoother P (v1,v2) smoother P
(0,1) w-Jac 0.570674 (1,1) w-Jac 0.387701
(0,1 GS 0.308054 (1,1) GS 0.148234

0,1) RB-GS 0.17063% (1,1) RB-GS 0.08751(

(0,2) w-Jac 0.358478 (1,2) w-Jac 0.240107
(0,2) GS 0.138477 (1,2) GS 0.107802
(0,2) RB-GS 0.12289% (1,2) RB-GS 0.069331

(0,3) w-Jac 0.213354 (1,3) w-Jac 0.155938
(0,3) GS 0.105081 (1,3) GS 0.083473
(0,3) RB-GS 0.095490 (1,3) RB-GS 0.05548(

Table 13.1: Tests with V-cycle multigrid for a model Poissmuation using three
smoothers and various number of pre-smoothing stgpsdnd post-smoothing steps

(v2).

It is important to determine the iteration operator coroggjing to the applica-
tion of one Multigrid loop. We start with the 2-grid operatseen earlier, which
is

My = SPIT - T AG T AS)

The only difference between this operator and the sought M&ator is that the
inverse ofAys is replaced by an application ofsteps of MG on the grif;;. Each
of these steps is of the forfa(13145). However, the aboveldt@mses the inverse of
Ap, so itis necessary to replack; by the corresponding3-form (preconditioned
form) of the MG operator, which, according {0 {13.42) is givsy

(I — M)Ay .
Therefore,

My, = SP[I— 141 — M)A T A)S)
= S — I A T Ay 4+ T My A TE Ay S
= M} + ST My AR IH A, S)

showing that the MG operatal/;, can be viewed as a perturbation of the 2-grid
operator)Mj.

13.4. STANDARD MULTIGRID TECHNIQUES 447

W NN

lev=2=1 lev=3,y=1

lev=3,=2

Figure 13.7:Representation of various FMG cycles (wjth= 1). The doubled lines
correspond to the FMG interpolation.

13.4.4 Full Multigrid

The Full Multigrid (FMG), sometimes also referred to as edsiteration, takes a
slightly different approach from the MG algorithms seen hie previous section.
FMG can be viewed as an improvement of nested iteration sadirrevhereby the
smoothing step in Line 5 is replaced by an MG cycle. The dsffiee in viewpoint is
that it seeks to find an approximation to the solution withyatie sweep through the
levels, going from bottom to top. The error of the resultipg@ximation is guaran-
teed, under certain conditions, to be of the order of therélimation. In practice, no
more accuracy than this should ever be required. The atgoiig described below.

ALGORITHM 13.5 Full Multigrid

Seth := hy. SolveA,u" = f"
Forl=1,...,p, Do
uh/? = j}f;/Quh
h:=h/2;
= MGH(Ap,u", [v1,10,7)
End

S hAWNR

Notice that the interpolation operator in Line 2 is denotétth\a hat. This is in order
to distinguish it from the interpolation operator used ia MG loop, which is some-
times different, typically of a lower order. The tasks arahsfer operations of FMG
are illustrated in FigureT3.7. The MG iteration requires skandard parameters
nuy, v, gamma, in addition to the other choices of smoothers and interiaip-
erators.

In the followingu” represents the exact (discrete) solution of the problenridn g
Qy, anda” will be the approximation resulting from the FMG cycle on tived €,.

448 CHAPTER 13. MULTIGRID METHODS

Thus, " is the result of Line 5 in AlgorithriI3l5. One of the main asgtions made
in analyzing FMG is that the exact solution of the discretedir systemd,u” = f
is close, within the discretization accuracy, to the exakit®on of the PDE problem:

Ju — u|| < ch”. (13.48)

The left-hand side represents the norm of the differencedet the exact solution
u" of the discrete problem and the solution of the continuooslem sampled at the
grid points of2;,. Any norm on¢2; can be used, and the choice of the norm will
reexamined shortly. Using an argument based on the triangdpiality, a particular
consequence of the above assumption isahand %« should also be close since
they are close to the same (continuous) function Specifically, the assumption

(@I323) is replaced by: A
[u" — Ifu|| < b (13.49)

A bound of this type can be shown by making a more direct assampn the
interpolation operator, see Exerc[sg 17. The next impbdasumption to make is
that the MG iteration operator is uniformly bounded,

M| < £<1. (13.50)

Finally, the interpolatiorfl’; must also be bounded, a condition which is convenient
to state as follows,
7] < e227" . (13.51)

Theorem 13.2 Assume thaf I3 39 (13150), ahd (13.51) are satisfied tlaaid. is
sufficiently large that

ot < 1. (13.52)
Then the FMG iteration produces approximatiois which at each level satisfy,
luh — @] < eserh” (13.53)
with
c3 =& /(1 — €. (13.54)

Proof. The proof is by induction. At the lowest level, equatién B®. is clearly
satisfied because the solutia#t is exact at the coarsest level and so the error is
zero. Consider now the problem associated with the meshsinel assume that the
theorem is valid for the mesh siZé. The error vector is given by

ul —ah = (M) (u —). (13.55)
The initial guess is defined by} = I;a'’. Therefore,

[—ugll = fu" = Ifu + I (u =)

[= g™ ||+ | T (™ — @]
b + |1 ||leiesH® (by (I349) and induction hypothesis
hH(Cl + 2_“02H“6163) (by M)
hncl(l + 6263) .

VAN VAN VAN VAN

13.4. STANDARD MULTIGRID TECHNIQUES 449

Combining the above with {I3b5) arld{13.50) yields
|u — ah|| < E*hfer(1 + caes) .

From the relation{13.34), we g€t = c3/(1+c2c3) and this shows the resulf{13]153)
for the next level and completes the induction proof. |

In practice it is accepted that taking= 1 is generally sufficient to satisfy the as-
sumptions of the theorem. For exampleilff},” <1, andx = 1, thency = 4. Inthis
case, withy = 1, the result of the theorem will be valid providéd 0.25, which is
easily achieved by a simple V-cycle using Gauss-Seidel fmeos

Example 13.5. This example illustrates the behavior of the full multigdgcle
when solving the same model Poisson problem as in Examplk 23 before, the
Poisson equation is set on a square grid and discretizedcetitered differences.
The problem is solved using the mesh sirgs=n, = 9,17, 33, 65, and129 points
(including the two boundary points) in each direction. Thies example, the last
problem leads to a linear system of dimensién= 1272 = 16, 129.

Figure[I3B shows in log scale the 2-norm of the actual ecbieaed for three
FMG schemes as a function bfg(n, — 1). It also shows the 2-norm of the dis-
cretization error. Note that whemn, = 9, all methods show the same error as the
discretization error because the system is solved exattlyeacoarsest level, i.e.,
whenn, = 9. The first FMG scheme uses a weighted Jacobi iteration weh th
weightw = 2/3, and(v1,12) = (1,0). As can be seen the error achieved becomes
too large relative to the discretization error when the nends levels increases. On
the other hand, the other two schemes, RB-GS wiihv») = (4,0) and GS with
(v1,12) = (2,0) perform well. It is remarkable that the error achieved by 88-s
actually slightly smaller than the discretization errgeif. |

The result of the above theorem is valid in any norm. Howavesimportant to
note that the type of bound obtained will depend on the nomal.us

Example 13.6. Itis useful to illustrate the basic discretization erroubd [13.48)
for the 1-D model problem. As before, we abuse the notatighty by denoting by
u the vector in();, whose values at the grid points are the values of the (camiisju
solution u of the differential equation{13.[=I8.2). Now the discrétenorm on
2y, denoted byj|v|;, will be used. In this particular case, this norm is also edqoal
h'/2||v]|2, the Euclidean norm scaled kyh. Then we note that,

uh —ully = [(Ap) " Ap(u — w)|ln = [[(AR) 7 F" — A |ln
(AR a1 = Apullp - (13.56)

IN

Assuming that the continuousis in C*, (four times differentiable with continuous
fourth derivative), Equatior.{Z12) from Chapter 2 gives
h2

2
(f — Apu)i = fi +u(z) + %U(4) (&) = EU(‘Q (&)

450 CHAPTER 13. MULTIGRID METHODS

Discretization & FMG errors vs mesh-size n

10" ¢

10

-
L =,
-~

-~ -,

Error Norm
=
o\
'N

10

|| =@= Discr. error norm

"' FMG error, w—Jac(1,0)

| =O= FMG error, GS(2,0)

-6~ FMG error, RB-GS(4,0)
| |

-4

10

3 35 4 4.5 55 6 6.5 7

5
Iog2 (nx—l)

Figure 13.8: FMG error norms with various smoothers versasliscretization error
as a function of the mesh size.

whereg; is in the interval(z; — h, z;+h). Sinceu € C*(Q2), we havdu® (&)| < K
whereK is the maximum of,(Y over(, and therefore,

I (&),

This provides the bounflif” — Ajul|;, < Kh?/12 for the second term ifi{13.56).
The norm||(A)~ |, in (3EB8) can be computed by noting that

1(AR) " ln = [1(AR) " 2 = 1/ Amin(An) -
According to [1377),

Amin(Ap) = % sin?(wh/2) = n*

I < B2 ()i, e <K

sin?(7h/2)

(mh/2)?
It can be shown that when, for example,< 1, then1 > sin(x)/z > 1 — 2%/6.
Therefore, whemh < 2, we have

1 _
5 <A <

1
 (1-§ (%

>

~—
[\
~———

13.5. ANALYSIS FOR THE TWO-GRID CYCLE 451

Putting these results together yields the inequality:
K

t2a2 (1= § (")

Exercisd 2D considers an extension of this argument to 2ebl@ms. ExercisE21

explores what happens if other norms are used. |

[u — |, < h?.

13.5 Analysis for the two-grid cycle

The two-grid correction cycle is at the basis of most of theermmplex multigrid
cycles. For example, it was seen that the general MG cyclebeaniewed as a
perturbation of a 2-Grid correction cycle. Similarly, ptieaal FMG schemes use a
V-cycle iteration for their inner loop. This section willka a in-depth look at the
convergence of the 2-grid cycle, for the case when the camig@roblem is defined
by the Galerkin approximatiof . {I3139). This case is imparia particular because
it is at the basis of all the algebraic multigrid techniquésacl will be covered in the
next section.

13.5.1 Two important subspaces

Consider the two-grid correction operatff’ defined by [I3.43). As was seen in
Sectio 13212, see Lemmall3. 1, this istaporthogonal projector onto the subspace
Qy,. Itis of the formI — @Q;, where

Qn=I3AG T Ay .

Clearly,), is also anA;,-orthogonal projector (sincé— @, is, see Chapter 1), and
we have

Q, = Ran(Qp) ® Null(Qp,) = Ran(Qp) ® Ran(I — Qy,) . (13.57)
The definition of@;, implies that
Ran(Qp,) € Ran(I%) .

As it turns out, the inclusion also holds in the other dimctiwhich means that the
two subspaces are the same. To show this, take a vedtothe range ofl?,, so
z = Ity foracertaing € Q. Remembering thatl;y = I}1 A, 1%, we obtain

Qnz = I Ay Iy An Thyy = Ty = = |
which shows that belongs tdRan((Q},). Hence,

Ran(Qp,) = Ran(I%) .

452 CHAPTER 13. MULTIGRID METHODS

This says thaty;, is the A;- orthogonal projector onto the spaﬁan(lﬁ,), while

T;LH is the Aj,- orthogonal projector onto the orthogonal complement.sTthog-
onal complement, which is the range bt @)}, is also the null space d@p; ac-
cording to the fundamental relatiof {1158) of Chapter 1.afynthe null space of
Qy, is identical with the null space of the restriction operaiﬁr. It is clear that
Null(I#) ¢ Null(Qy). The reverse inclusion is not as clear and may be derived
from the fundamental relatiof . (T]18) seen in Chapter 1. fidaion implies that

QO = Ran(Il) & Null ((Jﬁ,)T) = Ran(Qy) ® Null ((Jﬁ,)T) .

However, by [I337)Null (1)) = Null(Z}’). Comparing this with the decom-
position [I3.5)), it follows that

Null(Qp,) = Null(/H) .
In summary, if we set
S;, = Ran(Qy) , T, = Ran(T}) (13.58)

then the following relations can be stated:

O = SLoeT, (13.59)
S, = Ran(Qp) = Null(T,) = Ran(I}) (13.60)
7, = Null(Qn) = Ran(T}) = Null(I}!) . (13.61)

These two subspaces are fundamental when analyzing MG dsethduitively,
it can be guessed that the null spacéﬁf is somewhat close to the space of smooth
modes. This is because it is constructed so that its desitémzhaon a smooth com-
ponent is to annihilate it. On the other hand it should leavesxillatory component
more or less unchanged. dfis a smooth mode andan oscillatory one, then this
translates into the rough statements,

THs~o0, THt~t.
Clearly, opposite relations are true with,, namelyQ,t ~ 0 andQys ~ s.
Example 13.7. Consider the case when the prolongation operﬁﬁ[’ocorresponds
to the case of full weighting in the one-dimensional casenstter the effect of this

operator on any eigenmode{;, which has componentsn(j6;) for j = 1,...,n.
wheref, = kn/(n + 1). Then, according td{13.B3)

1. . e . .
(IHwlh),;, = 1 [sin((25 — 1)0k) + 2sin(256;) + sin((25 + 1)0%)]
= % [2sin (250}) cos Oy + 2sin(256y)]

— %(1 + cos 0,) sin(256y)

= cos? <9—2k> sin(276y,) -

13.5. ANALYSIS FOR THE TWO-GRID CYCLE 453

Consider a modey, wherek is large, i.e., close ta. Then,f;, =~ =. In this case, the
restriction operator will transform this mode into a constémes the same mode on
the coarser grid. The multiplicative constant, whichds?(6;/2), is close to zero
in this situation, indicating thai{fwk ~ 0, i.e., thatwy, is near the null space of
I,{{. Oscillatory modes are close to being in the null spacéfbfor equivalently the
range of ;7.

When k is small, i.e., for smooth modes, the constamt?(6,/2) is close to
one. In this situation the interpolation produces the ejaivt smooth mode iy
without damping it. |

13.5.2 Convergence analysis

When analyzing convergence for the Galerkin case,Aheorm is often used. In
addition, 2-norms weighted b§'/2, or D~'/2, whereD is the diagonal of4, are
convenient. For example, we will use the notation,

|z = (D,)"/ = | D'z .
The following norm also plays a significant role,
lella, p-14, = (D™ Ape, Ape)’? = || Apel p-1 -

To avoid burdening the notation unnecessarily we simply|usge|| o1 to denote
this particular norm of. It can be shown that standard 2-grid cycles satisfy an
inequality of the form,

1Sne" %, < lle* (1%, — all A ¥ e ey (13.62)

independently oh. This is referred to as thremoothing property

In addition to the above requirement which characterizessthoother, another
assumption will be made which characterizes the disctetizaThis assumption is
referred to as thapproximation propertyand can be stated as follows:

min " — Ife™ B < Blle" %, | (13.63)
uHEQH
where does not depent ofa In the following theorem, it is assumed théis SPD,
and that the restriction and prolongation operators aketlby a relation of the form
@331), withI? being of full rank.

Theorem 13.3 Assume that inequalitieE {13162) ald (13.63) are satisbed ter-
tain smoother, wheree > 0 and 8 > 0. Thena < [, the two-level iteration
converges, and the norm of its operator is bounded as follows

e}
1SR T 4, < 4/1— 5" (13.64)

454 CHAPTER 13. MULTIGRID METHODS

Proof. It was seen in the previous section tiRatn(77) = 7 is Aj,-orthogonal to
Ran(I%) = Sp,. As aresult(e”, I%ef!) 4, = 0 for anye” € Ran(T}7), and so,

leb|3, = (Aneh el — Ihet) Vet e Ran(TH).
For anye" ¢ Ran(T,{{), the cauchy-schwarz inequality gives
"%, = (D72 A€, D2 (" — Tjpe™))

< ||ID7M2Apeh|s | DYR (M — Iie)|
= | Ape"|p-1 le" — ITEe || .

By (L363), this implies thale” || 4, < V/B|Ane”||p-1 for anye” € Ran(Th), or
equivalently,|| 77 e"||%, < B||ApTe" (|3, for anye™ in Q. The proof is com-
pleted by exploiting the smoothing property, i.e., inegydl[3.62),

0 < |ISaTi'e"|%, < ITp'e" A, — all ATy e |5

h a h
< |, —EIITfe %,

« H h2
(1 - 5) \TH M,

(1 - %) I,

The fact thatf,fH is an Ay -orthogonal projector was used to show the last stefi]

IN

Example 13.8. As an example, we will explore the smoothing propdiy (1IBi62
the case of the weighted Jacobi iteration. The intlég now dropped for clarity.
From [I3IP) the smoothing operator in this case is

Sw)y=I-wD1A.

When A is SPD, then the weighted Jacobi iteration will converge(fox w <
2/p(D~'A). For any vectoe we have

IS@)elys = (AU —wD A)e, (T - wD 1 Ae))
= (Ae,e) —2w(AD ' Ae,e) + w?(AD ! Ae, D71 Ae)
= (Ae,e) — 2w(D_%Ae,D_%Ae) + w? ((D_%AD_%)D_%Ae, D_%Ae>
= (Ae,e) — <[w(2] - wD_%AD_%)] D_%Ae,D_%Ae)
< lellf = Amin [w(21 = D=3 AD™3)] |l de] . . (13.65)

Lety = p(D‘%AD‘%) = p(D~'A). Then the above restriction an implies
that2 — wy > 0, and the matrix in the brackets IR {13 65) is positive dedimith
minimum eigenvalues(2 — w). Then, it suffices to take

a=w(2—wy)

13.6. ALGEBRAIC MULTIGRID 455

to satisfy the requiremenf{13]62). Note tHaf{IB.62) is alslid with « replaced
by any positive number that does not exceed the above valliéndguality which
would result would be less sharp. Exercisé 19 explores thee sguestion when
Richardson’s iteration is used instead of weighted Jacobi. |

13.6 Algebraic Multigrid

Throughout the previous sections of this chapter, it was e multigrid methods
depend in a fundamental way on the availability of an undeglymesh. In addi-
tion to this, the performance of multigrid deteriorates fiooblems with anisotropic
coefficients or discontinuous coefficients. It is also diffico define multigrid on
domains that are not rectangular, especially in three déinas. Given the success
of these techniques, it is clear that it is important to codesalternatives which use
similar principles which do not face the same disadvantagdgebraic multigrid
methods have been defined to fill this gap. The main strateggt usBAMG is to
exploit the Galerkin approach, see Equation {(113.39), irctvitihe interpolation and
prolongation operators are defined in an algebraic waypoindy from the knowledge
of the matrix.

In this section the matrixd is assumed to be positive definite. Since meshes
are no longer available, the notation must be changed, erprgted differently, to
reflect levels rather than grid sizes. Heérés no longer a mesh-size but an index to
a certain level, and{ is used to index a coarser level. The mé&shis now replaced
by a subspac&;, of R™ at a certain level and’;; denotes the subspace of the coarse
problem. Since there are no meshes, one might wonder hove#isecproblems can
be defined.

In AMG, the coarse problem is typically defined using the @ateapproach,
which we restate here:

Ag =T ApTyy, P =1f " (13.66)

where[f the restriction operator, anff; the prolongation operator, both defined
algebraically. The prolongation and restriction operatre now related by transpo-
sition:
=T . (13.67)
A minimum assumption made on the prolongation operatorasithis of full rank.
It can therefore be said that only two ingredients are reguio generalize the
multigrid framework:

1. A way to define the ‘coarse’ subspa&g; from a fine subspacy;
2. A way to define the interpolation operatt{i{ from X, to Xg.

In other words, all that is required is a schemedoarseninga fine space along with
an interpolation operator which would map a coarse nodeatitoe one.

456 CHAPTER 13. MULTIGRID METHODS

In order to understand the motivations for the choices madéiG when defin-
ing the above two components, it is necessary to extend ttiennof smooth and
oscillatory modes. This is examined in the next section.

Note that Lemm&Z3l1 is valid and it implies tHBf' is a projector, which is
orthogonal when thel;, inner product is used. The corresponding relati@ns—(13.59
—[I3.61) also hold. Therefore, Theor€m13.3 is also validthisdis a fundamental
tool used in the analysis of AMG.

13.6.1 Smoothness in AMG

By analogy with multigrid, an error is decomposed into srhaotd oscillatory com-
ponents. However, these concepts are now defined with retgpie ability or in-
ability of the smoother to reduce these modes. Specifiaherror is smooth when
its convergence with respect to the smoother is slow. Thenommway to state this
is to say that, for a smooth errer

[Shslla = llslla -

Note the use of the energy norm which simplifies the analybithe smoother sat-
isfies the smoothing propert {13162), then this means tited mooth errog, we
would have

[As] p-1 < Is]la, -

Expanding the norms and using the Cauchy-Schwarz ineyugies

Is|%, = (D7Y2Ays,D'2s)
< ||ID7M2As|2 |DY 5]

= [[Anslp-1 lIslp -
Since||As||p-1 < ||s] 4, this means thafs|| 4, < |s|/p, or
(As,s) < (Ds,s) . (13.68)
It simplifies the analysis to set= D'/2s. Then,
(D_%AD_%’U,U) < (v,0) .

The matrixA = D=3 AD~3 is a scaled version ofl in which the diagonal entries
are transformed into ones. The above requirement statethth&ayleigh quotient
of D'/2s is small. This is in good agreement with standard multigitte, a small
Rayleigh quotient implies that the vectors a linear combination of the eigenvectors
of A with smallest eigenvalues. In particulérls, s) ~ 0 also implies thatds ~ 0,
ie.,

AiiS; ~ — Zaijsj . (1369)

j#i

13.6. ALGEBRAIC MULTIGRID 457

It is also interesting to see how to interpret smoothnessrimg of the matrix coeffi-
cients. A common argument held in AMG methods exploits thieviong expansion
of (As, s):

(As,s) = Z a;jSiS;
Y]

1,
= 5 Z — Q5 ((S] — Si)2 — S? — S?)
.3

= %Z‘aij(sj —5i)? + Z Zaij 57 .
i,j { J

The condition [[I3.88) can be rewritten @és, s) = ¢(Ds, s), in which0 < e < 1.
For the special case when the row-sums of the matrix are aatbthe off-diagonal
elements are negative, then this gives,

1 ai;| ((si—s;\?

5 E]aij](sj—si)z =€ E CLZ‘Z‘SZZ — E CLZ‘Z‘SZZ E M <u> — 2| =0.
— - - —. (ig Si
%] ? i J#i

A weighted sum, with nonnegative weights, of the brackegeth must vanish. It
cannot be rigorously argued that the bracketed term must the @rder2e¢, but one
can say thabn averagehis will be true, i.e.,

) M(M) <1. (13.70)
— Qi S;
J#i

For the above relation to holgs; — s;|/|s;| must be small whefu;;/a;;| is large. In
other words, the components of/ary slowly in the direction of the strong connec-
tions. This observation is used in AMG when defining integtion operators and
for coarsening.

13.6.2 Interpolation in AMG

The argument given at the end of the previous section is dtdbis of many AMG
techniques. Consider a coarse nadend its adjacent nodes i.e., those indices
such thaiz;; # 0. The argument followind{I3.70) makes it possible to dgtish
between weak coupling$q;;/ai;| is smaller than a certain threshaid and strong
couplings, when it is larger. Therefore, there are threesypf nodes among the
nearest neighbors of a fine nodd~irst there is a set of coarse nodes, denoted’by
Then among the fine nodes we have aSgtbof nodes that are strongly connected
with 4, and a set;” of nodes that are weakly connected withAn illustration is
shown in Figuré_13]9. The smaller filled circles represeeffithe nodes, and the thin
dashed lines represent the weak connections. The thickdiidmes represent the
strong connections.

458 CHAPTER 13. MULTIGRID METHODS

According to the argument given above, a good criterion fatifig an interpola-
tion formula is to use the relatiof {13169) which heuridticaharacterizes a smooth
error. This is because interpolation should average aut,eéliminate, highly oscil-
latory elements inX;,, and produce a function that is smooth in the coarser space.
Then we rewrite[(13.89) as

A;;S; ~ — E QiS5 — E QiS5 — E Q555 - (1371)
JjeC; jEFy jery

Consider eliminating the weak connections first. Instegdsifremoving them from
the picture, it is natural to lump their action and add theliteato the diagonal term,
in a manner similar to the compensation strategy used in Tk gives,

a; + Z Q5 | S =~ — Z Q585 — Z Ai5Sj - (1372)

jery j€C j€Fy

Figure 13.9: Example of nodes adjacent to a fine no@enter). Fine mesh nodes
are labeled with F, coarse nodes with C.

The end result should be a formula in which the right-hand dighends only on
coarse points. Therefore, there remains to express eatte ¢étms of the second
sum in the right-hand side of the above equation, in termshfes at coarse points.
Consider the term; for j € F;°. Atnodey, the following expression can be written
that is similar to[[13.99)

AjjSj ~ — Z aj18] — Z aj1S] — Z a;1S] -

L€y leF? LeFy

If the aim is to invoke only those nodes @}, then a rough approximation is to
remove all other nodes from the formula, so the first sum iogg by a sum over

13.6. ALGEBRAIC MULTIGRID 459

all £ € C; (in effect! will belong toC; N C}), and write
AjjS; ~ — Z aj51S] -
leC;

However, this would not be a consistent formula in the semseitwould lead to in-
correct approximations for constant functions. To reméds; &,; should be changed
to the opposite of the sum of the coefficients. This gives,

aj .
~ ~ J . —
— E ajr | ;= — E ;S| - 5= E 5. S with 53 = E a; -

lec; lec; tec; V leC;

Substituting this into[{13.12) yields,

ajj + Z 5 | 8i = — Z ;585 — Z ajj Z %sl. (13.73)
J

jery jeC; jEFy leC;

This is the desired formula since it expresses the new finevalin terms of coarse
valuess; ands;, for j,1in C;. Alittle manipulation will help put it in a ‘matrix-form’
in which s; is expressed as a combination of thés for j ¢ Ci:

g @ity
aij + 2k e ps T,

(4773 + Zk c Fiw Al

s; = Z W;jSj with Wij = — (13.74)

Jjeq;

Once the weights are determined, the resulting intermuidtrmula generalizes
the formulas seen for standard multigrid:

A28 35 e ¢, wijz; otherwise

Example 13.9. Consider the situation depicted in Figlire T8.10 which cameeo
spond to a 9-point discretization of some convection-difin equation on a regular
grid. The coarse and fine nodes can be obtained by a red-kdémhkng of the cor-
responding 5-point graph. For example black nodes can beotdrse nodes and red
nodes the fine nodes.

460 CHAPTER 13. MULTIGRID METHODS

NW 3 N s NE
LN @ Va
\ /
\ /
N\, .2 -2 7
4 N -4 '/ 4
\, 7
\, 4
N\, e 3
3
wo 20 § O E
-
4 1 -4 4
3 3
o @ 0
sw I3 SE

Figure 13.10: Darker filled circles represent the fine nodesck dash-dot lines
represent the strong connections. Values on edges atg;theThe value 20 at the
center (fine) point is;.

In this case, Equatiofi(13]73) yields,

1 sy +4s 3sy +4s
s; = E[485+48N+33W4'38E+2 N7 Y42 N7 E]

1 12 8 8
= E |:4SS+<4+7> SN+<3+?> 3W+<3+?>3E:| .

Notice that, as is expected from an interpolation formuia,weights are all nonneg-
ative and they add up to one. O

13.6.3 Defining coarse spaces in AMG

Coarsening, i.e., the mechanism by which the coarse subspads defined from

X}, can be achieved in several heuristic ways. One of the simplethods, men-
tioned in the above example, uses the ideas of multicolppngndependent set or-
derings seen in Chapter 3. These techniques do not utiliaemiation about strong
and weak connections seen in the previous section. A detdéscription of these
techniques is beyond the scope of this book. However sontee@juiding principles
used to defined coarsening heuristics are formulated below.

e When defining the coarse problem, it is important to ensuatithvill provide
a good representation of smooth functions. In additiorrpulation of smooth
functions should be accurate.

e The number of points is much smaller than on the finer problem.

e Ensure that strong couplings are not lost in coarsening.ekample, ifi is
strongly coupled withy thenj must be either &' node or anf’ node that is
strongly coupled with &'-node.

13.6. ALGEBRAIC MULTIGRID 461

e The process should reach a balance between the siXe;@&nd the accuracy
of the interpolation/ restriction functions.

13.6.4 AMG via Multilevel ILU

It was stated in the introduction of this section that thermiagredients needed for
defining an Algebraic Multigrid method are a coarsening sahand an interpola-
tion operator. A number of techniques have been recentlgldped which attempt
to use the framework of incomplete factorizations to defidd@ preconditioners.
Let us consider coarsening first. Coarsening can be achlaveding variations of
independent set orderings which were covered in Chapterf@en@he independent
set is called the fine set and the complement is the coarstgagh this naming is
now somewhat arbitrary.

Recall that independent set orderings transform the aidjimear system into a

system of the form p
B F x
<E7 C) <y> B <9> (13.79)

in which the B block is a diagonal matrix. A block LU factorization will hekstab-
lish the link with AMG-type methods.

B F\ _ I 0 B F
E C) \EB!' I 0 S
where$ is the Schur complement,
S=C—-EB'F.

The above factorization, using independent sets, was agttis of the ILU factoriza-
tion with Multi-elimination (ILUM) seen in Chapter 12. Sia¢he Schur complement
matrix S is sparse and the above procedure can be repeated regufsivefew lev-
els. Clearly, dropping is applied each time to prune the ScbhmplementS which
becomes denser as the number of levels increases. In thisnse@ consider this
factorization again from the angle of AMG and will define ltageneralizations.

N
‘ ‘ * No Coupling

Figure 13.11: Group- (or Block-) -Independent sets.

462 CHAPTER 13. MULTIGRID METHODS

Figure 13.12: Group-independent set reorderings of a Btpoatrix: Left: Small
groups (fine-grain), Right: large groups (coarse-grain).

Factorizations that generalize the one shown above are oosidered in which
B is not necessarily diagonal. Such generalizations useotiheept ofblockor group
independent sets which generalize standard independisntAsgroup-independent
set is a collection of subsets of unknowns such that ther® isoupling between
unknowns of any two different groups. Unknowns within theneagroup may be
coupled. An illustration is shown in Figure T3111.

If the unknowns are permuted such that those associatedheitiroup-independent
set are listed first, followed by the other unknowns, theinabcoefficient system
will take the form [I3.7b) where now the matriX is no longer diagonal but block
diagonal. An illustration of two such matrices is given imiie[I3.IP. Consider
now an LU factorization (exact or incomplete) Bf

B=LU+R.

Then the matrix4d can be factored as follows,

B F L 0 I 0 U L'F
<E C>%<EU‘1 I> (0 S><O I) (13.76)

The above factorization, which is of the for= LDU, gives rise to an analogue of
a 2-grid cycle. Solving with th€ matrix, would take a vector with componentsy

in the fine and coarse space, respectively to produce thervggt= y — EU 'u

in the coarse space. The Schur complement system can nowvee $0 some
unspecified manner. Once this is done, we need to back-sathetive 2/ matrix.
This takes a vector from the coarse space and produces\hgable from the fine
spacey :=u — L™ Fy.

ALGORITHM 13.6 Two-level Block-Solve

13.6. ALGEBRAIC MULTIGRID 463

1. fi=L"'f

2. g:=g—FEU'f
3. SolveSy = g

4. fi=f—L'Fy
5. r=U"'f

The above solution steps are reminiscent of the two-gritecgigorithm (Algo-
rithm [L32). The interpolation and restriction operati@me replaced by those in
lines 2 and 4, respectively.

A few strategies have recently been developed based ondtadigd between a
recursive ILU factorization and AMG. One such techniquehis Algebraic Recur-
sive Multilevel Solver[[258]. In ARMS, the block factorizah (I3.76) is repeated
recursively on the Schur complemefiwhich is kept sparse by dropping small ele-
ments. At the-th level, we would write

B F\ _ Ly 0 I 0 U L'F
<El Cl>N<Esz1 I>X<0 Al+1>x< 0 1) (1377
whereL,U; ~ By, andA,41 =~ C — (B, U (L1 F).

In a nutshell the ARMS procedure consists of essentiallgelsteps: first, obtain
a group-independent set and reorder the matrix in the foB®); second, obtain
an ILU factorizationB; ~ L;U; for By; third, obtain approximations to the matrices
L7'F, U, and A4, and use these to compute an approximation to the Schur
complementA4;, . The process is repeated recursively on the matgix; until a
selected number of levels is reached. At the last level, alsith UT factorization,
possibly with pivoting, or an approximate inverse methoul loa applied.

Each of theA;’s is sparse but will become denser as the number of levels in-
creases, so small elements are dropped in the block faatiorizto maintain sparsity.
The matrices s, = ElUl‘l, andW; = Ll‘lFl are only computed in order to obtain
the Schur complement

A = Cp— G (13.78)

OnceA;, is available,W; andG; are discarded to save storage. Subsequent opera-
tions WithLl_lFl andElUl‘1 are performed using;, L; and the blocksy; and F;. It
is important to distinguish between possible variants. difarm with the Galerkin
approach, we may elect not to drop terms oAge; is obtained from[[13.48). In this
case[(IT3.78) is not an approximation but an exact equality.

There are also many possible variations in the solution ehasich can be
viewed as a recursive version of Algoritim~13.6. Step 3 ofaigerithm now reads

3. SolveAl+1yl =g

which essentially meansolve in some unspecified wapt the [-th level, this re-
cursive solution step, which we call RSolve for referenceuld be replaced by a
sequence of statements like

464 CHAPTER 13. MULTIGRID METHODS

3.0 Iflev = last

3.1 SOlVEAH_lyl =g
3.2 Else

3.3 RSolve ﬂl-ﬁ-la q1)
3.4 End

Iterative processes can be used in step 3.3. The precorgtitior this iterative pro-
cess can, for example, be defined using the riéxt,2)-th level (without iterating at
each level). This is the simplest approach. Itis also ptessibuse an iterative proce-
dure at each level preconditioned (recursively) with theM&Rpreconditioner below
that level. This variation leads to a procedure similar th@-bcle, if the number
of stepsy is specificed. Finally, the locdB; block can be used to precondition the
system of thé-th level.

13.7 Multigrid vs Krylov methods

The main differences between preconditioned Krylov subspaethods and the
multigrid approach may now have become clearer to the reddedoroef, Krylov
methods take a matrid and a right-hand sideand try to produce a solution, using
no other information. The termolack boxis often used for those methods which re-
quire minimal input from the user, a good example being thaparse direct solvers.
Preconditioned Krylov subspace methods attempt to duplites attribute of direct
solvers, but they are not ‘black-box’ solvers since theyinegparameters and do not
always succeed in solving the problem.

The approach taken by Multigrid methods is to tackle theioaigproblem, e.g.
the PDE, directly instead. By doing so, it is possible to exkgiroperties which are
not always readily available from the da#ab. For example, what makes multigrid
work in the Poisson equation case, is the strong relatiowd®t eigenfunctions of
the iteration matrix)\/ and the mesh. It is this strong relation that makes it passibl
to take advantage of coarser meshes and to exploit a divide@nquer principle
based on the spectral decompositionddf AMG methods try to recover similar
relationships directly fromd, but this is not always easy.

The answer to the question “which method to use?”, cannotdamjpple one be-
cause it is related to two other important and subjectivesiclemations. The first is
the cost of the coding effort. Whether or not one is willingsigend a substantial
amount of time coding and testing, is now a factor. The set®hdw important it is
to develop an “optimal” code for the problem at hand. If thalgs to solve a single
linear system then a direct solver (assuming enough mersayailable) or a pre-
conditioned Krylov solver (in case memory is an issue) malydst. Here, optimality
is a secondary consideration. On the other extreme, thepbsstble performance
may be required from the solver if it is meant to be part of gdasimulation code
which may take, say, days on a high-performance computesrtplete one run. In
this case, it may be worth the time and cost to build the bégéspossible, because
this cost will be amortized over the lifetime of the simuteticode. Here, multi-
level techniques can constitute a significant part of thet&wsi scheme. A wide grey

13.7. MULTIGRID VS KRYLOV METHODS 465

zone lies in between these two extremes wherein Krylov saadesmethods are often
invoked.

It may be important to comment on another practical conataar, which is that
most industrial solvers are not monolithic schemes basednensingle approach.
Rather, they are comprised of building blocks which includels extracted from
various methodologies: direct sparse techniques, mudtilmethods, ILU type pre-
conditioners, as well as strategies that exploit the spé#yifof the problem. For
example, a solver could utilize the knowledge of the probtemeduce the system
by eliminating part of the unknowns, then invoke an AMG or tignid scheme to
solve the resulting reduced system in cases when it is knowe Poisson-like and an
ILU-Krylov approach combined with some reordering schefffiesn sparse direct
solvers) in other cases. Good iterative solvers must relg battery of techniques
if they are to be robust and efficient at the same time. To ensbustness, indus-
trial codes may include an option to resort to direct solVershose, hopefully rare,
instances when the main iterative scheme fails.

PROBLEMS

P-13.1 The following notation will be used. Given a vectoof sizen.m denote by

7Z = [2lnm

)

the matrix of dimensiom x m with entriesZ;; = z(;_1).n4- When there is no ambiguity
the subscripts:, m are omitted. In other words consecutive entries of will form the
columns ofZ. The opposite operation, which consists of stacking theseoutive columns
of a matrix~Z into a vectorz, is denoted by

Z:Z‘.

a. Letu € R™, v € R™. Whatis the matrixZ = [z],, ,, Wwhenz = v ® v?
b. Show that

(I®A)z= (A.[z])‘ and (A®I)z= ([z].AT)‘
c. Show, more generally, that
(A® B)z = (B.[z].AT)|
d. What becomes of the above relation wher v ® v? Find an eigenvector ol ® B
based on this.
e. ShowthatA ® B)T = (AT @ BT).

P-13.6 Establish that the eigenvectors of the Gauss-Seidel apegaten by [I3.20) are
indeed a set of linearly independent vectors. (Hint: notice that the eigdmes other than
for k = (n + 1)/2 are all double, it suffices to show that the two eigenvectefsdd by

the formula are independent.) What happens if the absohltees are removed from the

expression{13.29)?

466 CHAPTER 13. MULTIGRID METHODS

P-13.7 Consider the Gauss-Seidel iteration as a smoother for thenbdel problem, when

n = 11 (spectrum illustrated in Figufe_I3.4.) For each eigenvectof the original matrix

A, compute the norm reductidfGu;||/||u:||, whereG is the Gauss-Seidel iteration matrix.
Plot these ratios againgtin a way that is similar to FiguleZI3.4. What can you concfuide
Repeat for the poweis?, andG*, andG®. What can you conclude (see the statement made
at end of Sectiof’13.4.3)?

P-13.8 Show relation[[I331). Consider as an example a5 grid and illustrate for this
case the semi-interpolation operatéfs,, andl/,,. Then derive the relation by seeing how
the 2-D interpolation operator was defined in Sediion 1B.3.1

P-13.9 Show the relationl{I3:B8). Consider first as an examplexa grid and illustrate
for this case the semi-restriction operatdfsl and Ig’; Then use[[I331) (see previous
exercise) and part (e) of Exerc[3e 1.

P-13.10 What is the matrix/{? A, I}, for the 2-D model problem when Full Weighting is
used? [Hint: Use the tensor product notation and the restiEgercise§9 and 8.]

P-13.11 Consider the matrix/,, given by [I3.2D). Show that it is possible to find> 1
such thaip(J,,) > 1. Similar question fow < 0.

P-13.12 Derive the full weighting formula by applying the trapezalidule to approximate
the numerator and denominator in the following approxiorati
@ Sty at
Jo0, Lt
P-13.13 Derive theB-form (or preconditioning form, se€{13141)) of the weighfiacobi
iteration.

P-13.14 Do the following experiment using an interactive packagehsas Matlab - (or
code in FORTRAN or C). Consider the linear systetm = 0 where A arises from the
discretization of~«" on [0, 1] using 64 internal points. Take, to be the average of the two
modesu,, 4 = u1s andus,, /4 = ugg. Plotthe initial error (Hint: the error is jusl), then the
error after 2 steps of the Richardson process, then the &fteir5 steps of the Richardson
process. Plot also the components of the final error aftes tRiehardson steps, with respect
to the eigenbasis. Now obtain the residual on the €¥gd, and plot the residual obtained
after 2 and 5 Richardson steps on the coarse-grid probleaw 8lso the components of the
error in the eigenbasis of the original problem (on the finsmeFinally, interpolate to the
fine grid and repeat the process again, doing 2 and then 5aftéps Richardson process.

P-13.15 Repeat Exercide14 using the Gauss-Seidel iteration ihstithe Richardson iter-
ation.

P-13.16 Consider the cost of the general MG algorithm as given byebanrence formula
({@I32%). Solve the recurrence equation (in terms) @ind~) for the 1-D case. You may
assume that = 2* 4 1 and that the maximum number of levels are used so that thetost
the last system to solve is zero. For the 2-D case, you maymasthatn = m = 28 + 1.
Under which condition is the cos?(nlogn) wheren is the size of the finest grid under
consideration? What would be the situation for 3-D probléms

P-13.17 It was stated in Sectidn 13.3.4 that conditibn {TB.48) iepthe conditior{13.39)
provided an assumption is made on the interpolatjpnProve a rigorous bound of the type

@329) (i.e., find:;) by assuming the conditions{1314BY{13.51) and

|u— Iful| < esh”

13.7. MULTIGRID VS KRYLOV METHODS 467

in which as before: represents the discretization of the the solution of thdéicaous prob-
lem (i.e., the continuous solution sampled at the grid moiif2;, or Qg).

P-13.18 Justify the definition of the normjv||;, in Example I3 by considering that the

integral)
/ v(t)? dt
0

is approximated by the Trapezoidal rule. It is assumediheag) = v(x,+1) = 0 and the
composite trapezoidal rule uses all poings. . . , £, 1.

P-13.19 Find the constant in the smoothing propertf {13162), for the case of Richaiglon
iteration whenA is SPD. [Hint: Richardson’s iteration is like a Jacobi iteva where the
diagonal is replaced by the identity.]

P-13.20 Extend the argument of Examdle_1I3.6 to the 2-D case. Stalt thi¢ case of

the squarg0, 1)? which uses the same discretization in each direction. Tloasider the

more general situation. Define the nofimi|;, from the discretd., norm (see also previous
exercise).

P-13.21 Establish a bound of the type shown in Exanfple]L3.6 usingtherth instead of
the discretd., norm. What if theA4;, norm is used?

P-13.22 The energy norm can be used to establish a result similaatafiTheorenl 1312
leading to a slightly simpler argument. It is now assumet@&.249) is satisfied with respect
to the A;,-norm, i.e., that

|u* = Tu™) a, < ™.

a. Show that for any vectarin Q2 we have
1150l A, = [[0]l Ay -

b. Letu{ the initial guess at grif, in FMG and assume that the error achieved by the
system at levell = 2h satisfies|u — @7 4,, < cic3H", in which c; is to be
determined. Follow the argument of the proof of TheorEmdA)L8nd use the relation
established in (a) to show that

" = uglla, < llu" = Igua, + u™ =@ |4, < ek +eresH" .

c. Show a result analogous to that of Theofeml13.2 which tee4;t-norm, i.e., findes
such that|u” — @"|| 4, < c1c3h”, on each grid.

P-13.4 Starting from the relatiod {13V 3), establiEh {1B.74).

NOTES AND REFERENCES The material presented in this chapter is based on sewmrales. Fore-
most among these are the referenes[65, 2017 [168[286, 8bidhly recommended reference is the
“Multigrid tutorial, second edition” by Briggs, Van Hanseand Mc Cormick[[6b], for its excellent
introduction to the subject. This tutorial includes enotlgeory to understand how multigrid meth-
ods work. More detailed volumes include the books by Mc Coknait al. [207], Hackbusch [162],
Hackbusch([163], Wesseling1311], and the more recent bgokrbttenberg and al[1286].

Early work on multigrid methods dates back to the 1960s atiddies the papers by Brakhafiel[46],
Fedorenko[[124.125], Bakhvalol/ 23], and Kronsj6 and Dafdt [193]. However, Multigrid meth-
ods have seen much of their modern development in the 19%Deaty 1980s, essentially under the
pioneering work of Brandf[84.55.56]. Brandt played a kelg in promoting the use of MG by estab-
lishing their overwhelming superiority over existing tedjues for elliptic PDEs and by introducing

468 CHAPTER 13. MULTIGRID METHODS

many new concepts which are now widely use in MG literaturégeBraic multigrid methods were
later developed to attempt to obtain similar performandeese methods were introduced[inl[58] and
analyzed in a number of papers, see elgl,[[57, 235].

Closely related to the multigrid approach is the Aggregaflisaggregation technique which is
popular in Markov chain modeling. A recommended book fostheethods and others used in the
context of Markov chain modeling i512I75].

Today MG methods are still among the most efficient techricaailable for solving Elliptic
PDEs on regularly structured problems. Their Algebraidards do not seem to have proven as ef-
fective and the search for the elusive “black-box” iteratsolver is still under way, with research on
multilevel methods in general and AMG in particular stilliguactive. With computer power con-
stantly improving, problems are becoming larger and moregtex, and this makes mesh-independent
convergence look ever more attractive.

The paper[[253] describes a scalar version of the AlgebraituRsive Multilevel Solver and the
report [208] describes a parallel implementation. Theteelanethod named MLILU described [n]28]
also exploits the connection between ILU and AMG. The pafairsion of ARMS (called pARMS)
is available from the author’s web siteww . cs.umn. edu/~saad.

Resources for Multigrid are available #ww.mgnet . org which provides bibliographical refer-
ences, software, and a newsletter. In particular, ExanffEB$ andCI315 have been run with the
MGLAB matlab codes (contributed by James Bordner and F&a#d) available from this site. A
parallel code named HYPRE which is available from the Laweehivermore National Lab, includes
implementations of AMG. |

Chapter 14

DOMAIN DECOMPOSITION METHODS

As multiprocessing technology is steadily gaining ground, new classes of numerical methods
that can take better advantage of parallelism are emerging. Among these techniques, domain
decomposition methods are undoubtedly the best known and perhaps the most promising for
certain types of problems. These methods combine ideas from Partial Differential Equations,
linear algebra, mathematical analysis, and techniques from graph theory. This chapter is devoted
to “decomposition” methods, which are based on the general concepts of graph partitionings.

14.1 Introduction

Domain decomposition methods refer to a collection of teples which revolve
around the principle of divide-and-conquer. Such methal® been primarily de-
veloped for solving Partial Differential Equations ovegians in two or three dimen-
sions. However, similar principles have been exploitedthencontexts of science
and engineering. In fact, one of the earliest practical émedomain decomposition
approaches was in structural engineering, a disciplinehmisinot dominated by Par-
tial Differential Equations. Although this chapter coresisl these techniques from a
purely linear algebra view-point, the basic concepts, dbagethe terminology, are
introduced from a model Partial Differential Equation.

Consider the problem of solving the Laplace Equation on ah&ped domain
Q partitioned as shown in Figufe_Th.1. Domain decompositipsubstructuring
methods attempt to solve the problem on the entire domain

from problem solutions on the subdomains There are several reasons why such
techniques can be advantageous. In the case of the aboueepiahe obvious rea-
son is that the subproblems are much simpler because of#wtgngular geometry.
For example, fast Poisson solvers can be used on each suindionthis case. A
second reason is that the physical problem can sometimeglibeaurally into a
small number of subregions where the modeling equationditieeent (e.g., Euler’s
equations on one region and Navier-Stokes in another).

Substructuring can also be used to develop “out-of-cordlitiem techniques.
As already mentioned, such techniques were often used ipatieto analyze very

469

470 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

I'i3

971 a2 Qo

Figure 14.1: An L-shaped domain subdivided into three suoiaips.

large mechanical structures. The original structure isitiared intos pieces, each

of which is small enough to fit into memory. Then a form of blégkussian elim-

ination is used to solve the global linear system from a secgi®f solutions using

s subsystems. More recent interest in domain decomposiidnniques has been
motivated by parallel processing.

14.1.1 Notation

In order to review the issues and techniques in use and tdinte some notation,
assume that the following problem is to be solved:

Au = finQ
u = wuponl = o0N.

Domain decomposition methods are all implicitly or exflicibased on different
ways of handling the unknown at the interfaces. From the P@ift pf view, if the
value of the solution is known at the interfaces between ifierent regions, these
values could be used in Dirichlet-type boundary conditiansl we will obtains
uncoupled Poisson equations. We can then solve these @ugi&i obtain the value
of the solution at the interior points. If the whole domairdiscretized by either
finite elements or finite difference techniques, then thisasily translated into the
resulting linear system.

Now some terminology and notation will be introduced for tls®ughout this
chapter. Assume that the problem associated with domainrsho Figure[T41L is
discretized with centered differences. We can label thesbdg subdomain as shown

14.1. INTRODUCTION 471

in Figure[T4.B. Note that the interface nodes are labeldéd Agsa result, the matrix
associated with this problem will have the structure shawRigure[T4.H.

For a general partitioning inte subdomains, the linear system associated with
the problem has the following structure:

By Eq x1 i
By Es T2 Ip)
' : =1 (14.1)
By FE T fs
n K --- F, C Yy g

where eacly; represents the subvector of unknowns that are interior id@main
Q; andy represents the vector of all interface unknowns. It is Udefexpress the
above system in the simpler form,

A(“";) _ <£> with A:(? g) (14.2)

Thus, E represents the subdomain to interface coupling seen frersuhdomains,
while F' represents the interface to subdomain coupling seen framntierface
nodes.

@) (b)

|
P N D
XO, a0——ad ! © 19 & {12
| | | yd
I I I ,
| | | U yd
| : | = e \’/ e
-\ () [\ (¢
16, O ——70) ®, (& 6 7) (®
| | | !
: : Ny .
e
I I I ¢
(c)
N o
© a9 1 &
O
~ 7 7
® 6 7) (®
Qs
e, (2) 3 O

Figure 14.2: (a) Vertex-based, (b) edge-based, and (c)eglebased partitioning of
a4 x 3 mesh into two subregions.

472 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

14.1.2 Types of Partitionings

When partitioning a problem, it is common to use graph regregions. Since the
subproblems obtained from a given partitioning will everifube mapped into dis-
tinct processors, there are some restrictions regardentyfie of partitioning needed.
For example, in Element-By-Element finite element techesut may be desirable
to map elements into processors instead of vertices. lcésis, the restriction means
no element should be split between two subdomains, i.einfalimation related to
a given element is mapped to the same processor. Theseopangs are termed
element-based. A somewhat less restrictive class of ipaitigs are the edge-based
partitionings, which do not allow edges to be split betweeo subdomains. These
may be useful for finite volume techniques where computatiare expressed in
terms of fluxes across edges in two dimensions. Finallyexdrased partitionings
work by dividing the origin vertex set into subsets of vegi@nd have no restrictions
on the edges, i.e., they allow edges or elements to stradtleebn subdomains. See
Figure[IZP, (a), (b), and (c).

14.1.3 Types of Techniques

The interface values can be obtained by employing a formadiGaussian elimi-
nation which may be too expensive for large problems. In seimgle cases, using
FFT's, it is possible to explicitly obtain the solution oktproblem on the interfaces
inexpensively.

Other methods alternate between the subdomains, solviegvgroblem each
time, with boundary conditions updated from the most resebdomain solutions.
These methods are call&thwarz Alternating Proceduresafter the Swiss math-
ematician who used the idea to prove the existence for aicolof the Dirichlet
problem on irregular regions.

The subdomains may be alloweddwerlap This means that th@,’s are such
that

Q= J o anQ# ¢
i=1,s
For a discretized problem, it is typical to quantify the extef overlapping by the
number of mesh-lines that are common to the two subdomairibelparticular case
of Figure[T4.B, the overlap is of order one.
The various domain decomposition techniques are distshguai by four features:

1. Type of Partitioning.For example, should partitioning occur along edges, or
along vertices, or by elements? Is the union of the subdsregual to the
original domain or a superset of it (fictitious domain metkad

2. Overlap. Should sub-domains overlap or not, and by how much?

3. Processing of interface values-or example, is the Schur complement ap-
proach used? Should there be successive updates to tHadatealues?

14.1. INTRODUCTION 473

4. Subdomain solution.Should the subdomain problems be solved exactly or
approximately by an iterative method?

B @@
%)@

@B

W———G @@
O—O—O—E—a6—a)—a
OO OB
OO @@ W@

Figure 14.3: Discretization of problem shown in Figlire 4.1

Figure 14.4: Matrix associated with the finite differencesmef Figurd_1413.

474 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

The methods to be discussed in this chapter will be classifiddur distinct
groups. First, direct methods and the substructuring agabrare useful for intro-
ducing some definitions and for providing practical insigh¢cond, among the sim-
plest and oldest techniques are the Schwarz Alternatingeldtwes. Then, there are
methods based on preconditioning the Schur complemerdraysthe last category
groups all the methods based on solving the linear systeimtétmatrixA, by using
a preconditioning derived from Domain Decomposition cqtse

14.2 Direct Solution and the Schur Complement

One of the first divide-and-conquer ideas used in structamalysis exploited the
partitioning [IZ1) in a direct solution framework. Thispapach, which is covered
in this section, introduces the Schur complement and expkome of its properties.

14.2.1 Block Gaussian Elimination
Consider the linear system written in the fodm {14.2), inethB is assumed to be
nonsingular. From the first equation the unknawean be expressed as

=B (f - Ey). (14.3)

Upon substituting this into the second equation, the falhgweduced systens ob-
tained:
(C—FB 'E)y=g—FB7!f. (14.4)

The matrix
S=C-FB'E (14.5)

is called theSchur complemenatrix associated with the variable. If this matrix
can be formed and the linear systdm (14.4) can be solvededihterface variables
y will become available. Once these variables are known,gheiming unknowns
can be computed, vi&{13.3). Because of the particulartsteiof B, observe that
any linear system solution with it decouplessiseparate systems. The parallelism
in this situation arises from this natural decoupling.

A solution method based on this approach involves four steps

1. Obtain the right-hand side of the reduced sysfem14.4).
2. Form the Schur complement matiix{14.5).

3. Solve the reduced system (114.4).

4. Back-substitute usin§g{14.3) to obtain the other unkreown

One linear system solution with the matriX can be saved by reformulating the
algorithm in a more elegant form. Define

E'=B7'E and f'=B7'}.

14.2. DIRECT SOLUTION AND THE SCHUR COMPLEMENT 475

The matrixE’ and the vectoy’ are needed in steps (1) and (2). Then rewrite step (4)
as
x=B"'f-B'Ey=f —Ey,

which gives the following algorithm.

ALGORITHM 14.1 Block-Gaussian Elimination

SolveBE' = E, andBf' = f for E' andf’, respectively
Computey = g — Ff’

Computes = C — FE’

SolveSy = ¢

Computer = ' — E'y.

SN i

In a practical implementation, all th8; matrices are factored and then the sys-
temsB;E! = E; and B, f/ = f; are solved. In general, many columnski will
be zero. These zero columns correspond to interfaces #habaadjacent to subdo-
maini. Therefore, any efficient code based on the above algoritionld start by
identifying the nonzero columns.

14.2.2 Properties of the Schur Complement

Now the connections between the Schur complement and sth@daissian elimi-
nation will be explored and a few simple properties will béabished. Start with
the block-LU factorization of4,

B E I O\(B E
(F C>:<FB_1 1)(0 S> (14.6)

which is readily verified. The Schur complement can theeefog regarded as the
(2,2) block in thelJ part of the block-LU factorization ofi. From the above relation,
note that ifA is nonsingular, then so iS. Taking the inverse ol with the help of
the above equality yields

B E\ ' (B! —BlES! I 0
F C -) S—1 —FB™1 T
B '+ B lES-'FB-1 _B-l1ES-1
(—S_lFB_l S_l > . (14-7)

Observe thats—! is the (2,2) block in the block-inverse of. In particular, if the
original matrix A is Symmetric Positive Definite, then sods™'. As a result,S is
also Symmetric Positive Definite in this case.

Although simple to prove, the above properties are nonessdmportant. They
are summarized in the following proposition.

476 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Proposition 14.1 Let A be a nonsingular matrix partitioned as iR-{I#.2) and such
that the submatrix3 is nonsingular and lef?, be the restriction operator onto the
interface variables, i.e, the linear operator defined by

n(:)s

Then the following properties are true.
1. The Schur complement matixis nonsingular.

2. If Ais SPD, thensoi§.
1, _ ~1(0
3. Foranyy, S~y = R,A (y) .

The first property indicates that a method that uses the abloak Gaussian
elimination algorithm is feasible sincg is nonsingular. A consequence of the sec-
ond property is that whed is positive definite, an algorithm such as the Conjugate
Gradient algorithm can be used to solve the reduced sy&ié@)(Finally, the third
property establishes a relation which may allow precooddfs forS to be defined
based on solution techniques with the maitix

14.2.3 Schur Complement for Vertex-Based Partitionings

The partitioning used in Figufe13.3 is edge-based, meahiiga given edge in the
graph does not straddle two subdomains, or that if two \&staze coupled, then they
cannot belong to the two distinct subdomains. From the gtiapbry point of view,
this is perhaps less common than vertex-based partitisnmghich a vertex is not
shared by two partitions (except when domains overlap). réexebased partitioning
is illustrated in Figur€I4l5.

We will call interface edges all edges that link verticed tianot belong to the
same subdomain. In the case of overlapping, this needficdion. An overlapping
edge or vertex belongs to the same subdomain. Interfaces edlgeonly those that
link a vertex to another vertex which is not in the same sulalpralready, whether in
the overlapping portion or elsewhere. Interface verticedlaose vertices in a given
subdomain that are adjacent to an interface edge. For tmepteaf the figure, the
interface vertices for subdomain one (bottom, left subsgjuare the vertices labeled
10 to 16. The matrix shown at the bottom of Figlire_114.5 diffeosn the one of
Figure[IZ1, because here the interface nodes are notlesdabe last in the global
labeling as was done in FigureI¥.3. Instead, the interfaces are labeled as the
last nodes in each subdomain. The number of interface nedemut twice that of
the edge-based partitioning.

Consider the Schur complement system obtained with thislaleling. It can
be written similar to the edge-based case using a reordertimdnich all interface
variables are listed last. The matrix associated with thealo partitioning of the
variables will have a naturatblock structure where is the number of subdomains.

ar7

14.2. DIRECT SOLUTION AND THE SCHUR COMPLEMENT

Figure 14.5: Discretization of problem shown in Figlire Jldntl associated matrix.

478 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

For example, wher = 3 (as is the case in the above illustration), the matrix has the
block structure defined by the solid lines in the figure, i.e.,

A A Ags
A= Ay Ay Ag |, (14.8)
Az Az As

In each subdomain, the variables are of the form

=)
(2 yz b

wherez; denotes interior nodes whilg denotes the interface nodes associated with
subdomaini. Each matrix4; will be called the local matrix.
The structure of4; is as follows:

B; E;

A; = (E CZ-> (14.9)
in which, as before3; represents the matrix associated with the internal nodes of
subdomain andE; andF; represent the couplings to/from local interface nodes. The
matrix C; is the local part of the interface matrix defined before, and represents the
coupling between local interface points. A careful lookre matrix in Figuré_1415
reveals an additional structure for the blocks j # 7. PartitioningA;; according
to the variables:;, y; on the one hand (rows) and, y; on the other, reveals that it is
comprised of only one nonzero block. Indeed, there is no louypetween:; and
x;, betweenr; andy;, or betweeny; andx;. Therefore, the submatri®;; has the

following structure,
0 0
A = <O Eij> . (14.10)

In addition, most of the;; matrices are zero since only those indigesf the sub-
domains that have couplings with subdomaiill yield a nonzeroFE;;.
Now write the part of the linear system that is local to subdiomj, as

Bizi + Eyi = fi

. 14.11
Fixi + Cuyi + zjeN,L-Eijyj = 9 ()

The term[;;y; is the contribution to the equation from the neighboringdsrbain
numberyj, and NV; is the set of subdomains that are adjacent to subdoma#s-
suming thatB; is nonsingular, the variable; can be eliminated from this system by
extracting from the first equatian; = B; ' (f; — E;;) which yields, upon substitu-
tion in the second equation,

Swi+ > Eijyi=gi—FEB'fi, i=1,...s (14.12)
JEN;

in which S; is the “local” Schur complement

S;=C; — F;B;'E;. (14.13)

14.2. DIRECT SOLUTION AND THE SCHUR COMPLEMENT 479

When written for all subdomains the equationd{1Z4.12) yield a system of equations

which involves only the interface pointg, j = 1,2,...,s and which has a natural
block structure associated with these vector variables
S1 Eip Ei3 -+ Eig
Eo Sy Exz --- Ey
S = : K : (14.14)
Esl EsZ E83 e SS

The diagonal blocks in this system, namely, the matriggsare dense in general,
but the offdiagonal blockgv;; are sparse and most of them are zero. Specifically,
E;; # 0 only if subdomains and; have at least one equation that couples them.

A structure of the global Schur complemeéfihas been unraveled which has the
following important implication:For vertex-based patrtitionings, the Schur comple-
ment matrix can be assembled from local Schur complememicem(thesS;'s) and
interface-to-interface information (th&);;'s). The term “assembled” was used on
purpose because a similar idea will be exploited for finiegrednt partitionings.

14.2.4 Schur Complement for Finite-Element Partitionings

In finite-element partitionings, the original discrete Qas subdivided intes subsets
Q;, each consisting of a distinct set of elements. Given a felg#enent discretiza-
tion of the domair(?2, a finite dimensional spadé, of functions over? is defined,
e.g., functions that are piecewise linear and continuouQ,amd that vanish on the
boundaryl” of 2. Consider now the Dirichlet problem dhand recall that its weak
formulation on the finite element discretization can beestas follows (see Section
23):
Find « €V}, suchthat a(u,v) = (f,v), V v €&V,

where the bilinear forma(., .) is defined by

Oou Ov Oou Ou
= [Vu. dr = — — +— — | dx.
a(u,v) /Q u.Vu dx /Q<8x1 s +8x2 a@) x
It is interesting to observe that since the set of the elesnefthe different(2;’s are
disjoint, a(.,.) can be decomposed as

a(u,v) = Zai(u,v),
i=1

where
a;(u,v) :/ Vu.Vv dz.
Q;

In fact, this is a generalization of the technique used terabte the stiffness ma-
trix from element matrices, which corresponds to the ex¢re&@se where eadh;
consists of exactly one element.

480 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

If the unknowns are ordered again by subdomains and thdangenodes are
placed last as was done in Sectlon14.1, immediately themsyshows the same
structure,

By Ey x1 J1
By Ey) f2
' = (14.15)
B, FE; T fs
Br K - F, C Yy g

where eachB; represents the coupling between interior nodesandnd F; repre-
sent the coupling between the interface nodes and the nog®i toS2;. Note that
each of these matrices has been assembled from elememntenatrid can therefore
be obtained from contributions over all subdom&inthat contain any node 6t;.

In particular, assume that the assembly is considered oitly ne@spect to(2;.
Then the assembled matrix will have the structure

(B E;
AZ - (E CZ> 9
where(; contains only contributions from local elements, i.e.peats that are in
;. Clearly,C is the sum of the&’;’s,

S
C=> C.
i=1
The Schur complement associated with the interface vasablsuch that

S = C-FB'E
S
= C-> FB'E
=1
S S
= ZCZ' - ZFz‘BflEi
i=1 =1

s

= Y [Ci- FB'E].
=1
Therefore, ifS; denotes théocal Schur complement
S;=C;— F;B;'E;,
then the above proves that,

S=>"5; (14.16)
i=1

showing again that the Schur complement can be obtainely &asn smaller Schur
complement matrices.

14.2. DIRECT SOLUTION AND THE SCHUR COMPLEMENT 481

Another important observation is that the stiffness mattjx defined above by
restricting the assembly 1, solves a Neumann-Dirichlet problem 6. Indeed,

consider the problem
By, Ek> (%) <fk>
= . 14.17
< Fy Cy Yk Ik ()

The elements of the submatii, are the termsa,(¢;, ¢;) whereg;, ¢; are the basis
functions associated with nodes belonging to the interfaceAs was stated above,
the matrixC' is the sum of these submatrices. Consider the problem oingptiie
Poisson equation oft;, with boundary conditions defined as follows: @Oy, the
part of the boundary which belongs 1g,, use the original boundary conditions;
on the interfaced’;; with other subdomains, use a Neumann boundary condition.
According to Equation[{Z47) seen in Sect[onl 2.3, fk& equation will be of the
form,

Vu.Vo; dx:/ f%dx—l—/ qzﬁj% ds. (14.18)
Qy Qp I n

This gives rise to a system of the form_{14.17) in which ghepart of the right-hand
side incorporates the Neumann data related to the secagtahbn the right-hand
side of [I4.1B).

It is interesting to note that if a problem were to be solvethwll-Dirichlet con-
ditions, i.e., if the Neumann conditions at the interfaceseweplaced by Dirichlet
conditions, the resulting matrix problem would be of thenfor

By Ej v\ [fr
(5) G- () 1419

where g, represents precisely the Dirichlet data. Indeed, accgrtbnwhat was
seen in Sectioh 2.3, Dirichlet conditions are handled syl replacing equations
associated with boundary points by identity equations.

14.2.5 Schur Complement for the model problem

An explicit expression for the Schur complement can be faartde simple case of
a rectangular region partitioned into two sub-domains lastiiated in Figuré_I416.
The figure shows a vertex based partitioning but what follmaadso valid for edge-
based partitionings since we will only compute the localiBdomplements,, S,
from which the the global Schur complement is constituteat.&f edge-based parti-
tioning, the Schur complementis the sum of the local Schur complemestsand
S,. For a vertex-based partitioning,is of the form [I4.IK), withs = 2.

482 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

®
®
®
S

Figure 14.6: A two-domain partitioning of the model problem a rectangular
domain.

To determineS,, start by writing the discretized matrix for the model pexil
in the subdomaif:

B -1 4 -1
-1 B -1 -1 4 -1
T T with B = A
-1 B -1 -1 4 -1
-1 B -1 4

A=

Assume that the size of each block (i.e., the number of pairttse vertical direction
in £21) is m with the number of blocks (i.e., the number of points in theizomtal
direction in{2,) is n. Also the points are ordered naturally, with the last vaitime
forming the interface. Thed is factored in the following block LU decomposition:

I T -1
-1t I T, —I
A — . i
-T2 1 Ty —1
The matriced; satisfy the recurrence:

Ty = B; Tyy1=B-T;"', k=1,...,n—1 (14.20)

It can easily be shown that the above recurrence does ndt dosen, i.e., that each
inverse does indeed exist. Also, the maffixis the desired local Schur complement
S1.

EachTy, is a rational function ofB, i.e., T, = fi(B) where f; is a rational

function defined by)

Jerr(p) = p— m

14.2. DIRECT SOLUTION AND THE SCHUR COMPLEMENT 483

To each eigenvalug of B, is associated an eigenvaldg. This sequence of eigen-
values satisfies the recurrence

1
Akt1 = p — /\—k

To calculatef,, it is sufficient to calculate\; in terms ofu. The above difference
equation, differs from the ones we have encountered in athapters, in that it is
nonlinear. It can be solved by defining the auxiliarly unkmow

By definition \o = 1, A\; = p so thatny = 1,71 = p. The sequence;, satisfies the
recurrence:

Nk+1 = KNk — Mk—1
which is now a linear difference equation. The characieristots of the equation
are(u + /p? —4)/2. Let p denote the largest root and note that the other root is
equal tol /p. The general solution of the difference equation is thegesfo

k
pt =4 = uz—ﬂ
—— EVE T

k

me=ap" +Bp " =a +

2

The condition at = 0 yieldsa+ 3 = 1. Then, writing the conditiom; = p, yields,

2 2
e =44+ we—4—pn

) =

2/ 2 —4 2/ p?—4

a

Therefore,)
[pk+1 _p—k—l} .

"

The sequencgy, is nx /nx—1, which yields,

1 — p20k+1)
>\k: =p 1_ p_gk
This gives the desired expression fr, andT,,. Specifically, if we define
S_B+¢W—u
D —

then,

S =T,=5X where X = (I — 3_2(k+1)> <I_ B_%) B

Despite the apparent nonsymmetry of the above expressisnyarth noting that the
operator thus defined is symmetric positive definite. In thalali the factorX is usu-
ally very close to the identity matrix because the powrs’ decay exponentially
to zero (the eigenvalues @&f are all larger then 2).

484 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

The result can be stated in terms of the one dimensional @liffexence operator
T instead of B becauseB = T + 2I. Either way, the final expression is a rather
complex one, since it involves a square root, even whieiie approximation tc;
is used. It is possible, however, to use FFTs or sine tramsfdo perform a solve
with the matrix 5. This is because if the spectral decompositionBofs written
asB = QAQT, thenS; = Qf,(A)QT, and the products witkp) andQ” can be
performed with FFT, see Sectibn 212.6.

14.3 Schwarz Alternating Procedures

The original alternating procedure described by SchwadBir0 consisted of three
parts: alternating between two overlapping domains, sgltihe Dirichlet problem
on one domain at each iteration, and taking boundary cemditbased on the most
recent solution obtained from the other domain. This praoeds called the Multi-
plicative Schwarz procedure. In matrix terms, this is veamniniscent of the block
Gauss-Seidel iteration with overlap defined with the helprajectors, as seen in
Chaptelb. The analogue of the block-Jacobi procedure isvkras the Additive
Schwarz procedure.

14.3.1 Multiplicative Schwarz Procedure

In the following, assume that each subdom@inextends into its neighboring sub-
domains by one level, which will be used as a boundaryfpr The boundary of
subdomair?; that is included in subdomainis denoted by’;;.

I's o

I'io a1 o Qo 20

Figure 14.7: An L-shaped domain subdivided into three eygring subdomains.

This is illustrated in FigurEZT4.7 for the L-shaped domaiaraple. A more spe-

14.3. SCHWARZ ALTERNATING PROCEDURES 485

cific illustration is in Figure[(I4]5), where, for example,, = {29, 30, 31,32} and
I's; = {13,14,15,16}. CallT'; the boundary of2; consisting of its original bound-
ary (which consists of th&';y pieces in the figure) and thg;’s, and denote by:;;
the restriction of the solution to the boundary;;. Then the Schwarz Alternating
Procedure can be described as follows.

ALGORITHM 14.2 SAP

1. Choose an initial guessto the solution

2. Until convergence Do:

3. Fori=1,---,s Do:

4. SolveAu = fin Q; withu = w;; inTy;
5. Updateu values ol j;, Vj

6. EndDo

7. EndDo

The algorithm sweeps through thesubdomains and solves the original equation in
each of them by using boundary conditions that are updated the most recent
values ofu. Since each of the subproblems is likely to be solved by saenative
method, we can take advantage of a good initial guess. Itisaldo take as initial
guess for a given subproblem the most recent approximati®oing back to the
expression[[14.11) of the local problems, observe that efttie solutions in line 4
of the algorithm will be translated into an update of the form

w; = u; + 04,
where the correction; solves the system
Alél =T;.

Here,r; is the local part of the most recent global residual veéter Az, and the
above system represents the system associated with thkemprat line 4 of the
algorithm when a nonzero initial guess is used in some itergirocedure. The
matrix A; has the block structur€{14.9). Writing

() o=n)e =)
U; = 5 5! = ’ 5 Ty = ’ 5
Yi 5y7i Ty

the correction to the current solution step in the algoriteads to

-1
xT; 7 Bi Ei T
<%> o (yz> * (E CZ-> <TW_> - (14.21)

After this step is taken, normally a residual vectowould have to be computed
again to get the components associated with domainl and to proceed with a
similar step for the next subdomain. However, only thoselted components that
have been affected by the change of the solution need to keegdSpecifically,

486 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

employing the same notation used in equation (14.11), weseaply update the
residualr, ; for each subdomain for whichi € IN; as

Ty = Tyj — Ejily,.

This amounts implicitly to performing Step 5 of the aboveoaitinm. Note that since
the matrix pattern is assumed to be symmetric, then the sdtiodices; such that
i € Nj, ie,N={jl|i € N;}, isidentical toN;. Now the loop starting in line 3
of Algorithm[IZ42 and calledomain sweepan be restated as follows.

ALGORITHM 14.3 Multiplicative Schwarz Sweep — Matrix Form

Fori=1,---,s Do:
SolveA;d; = r;
Computer; := x; + 5;571', Y; = Yi + 5y72', and set; == 0
Foreach € N; Computer, ; :=r,; — FE;;dy;
EndDo

OO =

Considering only the iterates, the above iteration would resemble a form of Gauss
Seidel procedure on the Schur complement mafrix(14.14fadn it is mathemati-
cally equivalent, provided a consistent initial guesslk&ta This is stated in the next
result established by Chan and Goovaérts$ [73]:
O

Theorem 14.2 Let the guess< (0)> for the Schwarz procedure in each subdomain
be chosen such that

2 = B[, - B (14.22)

Then they iterates produced by the AlgoritHmIH.3 are identical tostof a Gauss-
Seidel sweep applied to the Schur complement syEiem1(14.12)

Proof. We start by showing that with the choide(14.22), theomponents of the
initial residuals produced by the algorithm are identicathtose of the Schur com-
plement systenT(14.12). Refer to Section 14.2.3 and theaelfZ.10) which de-

fines theE;;'s from the block structure[{14.8) of the global matrix. Ofvsethat

Ajju; = E_Qy and note from[[I4.11) that for the global systemgt@mponents

of the initial reS|duaI vectors are

0
l(ll) = FfL' - zyl Z Ezyy]
JEN;
_ 0)
= i — EB 1[f Ezyz(zyz Z Ezyyj
]EN
= i FiB_lfi - zyz Z Ezﬂ/j
JEN;

This is precisely the expression of the residual vector@atad with the Schur com-
plement systen{14.12) with the initial gueﬁg).

14.3. SCHWARZ ALTERNATING PROCEDURES 487

Now observe that the initial guess has been selected sm&iﬁat: 0 for all <.
Because only thge components of the residual vector are modified, accordiigeo
4 of Algorithm[IZ3, this property remains valid throughth# iterative process. By
the updating equatiol {I4121) and the relatlon{[14.7), we ha

yi =y + S; 'y,

which is precisely a Gauss-Seidel step associated withyitera [T4.IK). Note that
the update of the residual vector in the algorithm resulteénsame update for the
components as in the Gauss-Seidel iteration[for(14.14). O

It is interesting to interpret Algorithin14.2, or ratherdiscrete version, in terms
of projectors. For this we follow the model of the overlagpbiiock-Jacobi technique
seen in the previous chapter. L&tbe an index set

Si = {j17j27"' 7jni}7

where the indiceg; are those associated with the mesh points of the interior of
the discrete subdomain,. Note that as before, thg’s form a collection of index

sets such that
U si={1,....n}

i=1,...,s

and theS;’s are not necessarily disjoint. Lé; be arestriction operatorfrom
to ;. By definition, R;z belongs tof); and keeps only those components of an
arbitrary vectorz that are in);. It is represented by am; x n matrix of zeros and
ones. The matriceR; associated with the partitioning of Figure~14.4 are represt
in the three diagrams of FiguteTK.8, where each squaresesigea nonzero element
(equal to one) and every other element is a zero. These emttepend on the
ordering chosen for the local problem. Here, boundary nadedabeled last, for
simplicity. Observe that each row of eafl) has exactly one nonzero element (equal
to one). Boundary points such as the nodes 36 and 37 are egfgdsseveral times
in the matricesR;, Ry, and R3 because of the overlapping of the boundary points.
Thus, node&36 is represented in matricd®; and Ry, while 37 is represented in all
three matrices.

From the linear algebra point of view, the restriction opara?; is ann; x n
matrix formed by the transposes of columnsof then x n identity matrix, where
j belongs to the index s&;. The transposeRiT of this matrix is aprolongation
operatorwhich takes a variable frof?; andextendst to the equivalent variable in
Q. The matrix

A; = R;ART

of dimensionn; x n; defines a restriction ofl to 2;. Now a problem associated with
A; can be solved which would update the unknowns in the dofiainWith this
notation, the multiplicative Schwarz procedure can be ritesd as follows:

488 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

1. Fori =1,...,s Do

2. z:=x+RIA;'R;(b— Ax)

3. EndDo
Rl - ..l .
Ry =
R3 — ..l.

Figure 14.8: Patterns of the three matrideésassociated with the partitioning of

Figure[1Zh.

We change notation and rewrite step 2 as
Tpew = T+ RFATIR; (b — Ax). (14.23)

If the errorsd = z, — z are considered where, is the exact solution, then notice
thatb — Az = A(x, — x) and, at each iteration the following equation relates the
new errord,,.,, and the previous erraf,

dpew = d — R} A7 R; Ad.

Starting from a givenry whose error vector igy = z, — x, each sub-iteration
produces an error vector which satisfies the relation

di = diy — R A7 RiAd; .,
fori=1,...,s. Asaresult,

di = —P)di—1

14.3. SCHWARZ ALTERNATING PROCEDURES 489

in which
P, = RTATIR;A. (14.24)

Observe that the operatét = RZ-TA; L R; A is a projector since
(RFAT'R;A)? = RFATY(R,ART)AT 'R, A = RIAT R A
Thus, one sweep produces an error which satisfies the relatio
dy = (I — P,)(I — Ps_y)...(I - Py)do. (14.25)
In the following, we use the notation

Qs=(I—P)I—P)...(I-P). (14.26)

14.3.2 Multiplicative Schwarz Preconditioning

Because of the equivalence of the multiplicative Schwaredure and a block
Gauss-Seidel iteration, it is possible to recast one Midtdfive Schwarz sweep in
the form of a global fixed-point iteration of the form,..,, = Gx + f. Recall that
this is a fixed-point iteration for solving thEreconditionedsystemM —' Az = M ~1b
where the preconditioning matrix and the matrixG are related by = I— M1 A.
To interpret the operation associated with—, it is helpful to identify the re-
sult of the error vector produced by this iteration with tloat(IZ2%), which is
Tnew — Tx = Qs(x — x4). This comparison yields,

Tnew = QsT + (I - Qs)x*a
and therefore,

G=Qs f=-Qs)r.
Hence, the preconditioned matrix id~'A = I — Q,. This result is restated as
follows.

Proposition 14.3 The multiplicative Schwarz procedure is equivalent to adfixe
point iteration for the “preconditioned” problem

M~YAz = M~ 'b,
in which
M™'A = T-Q, (14.27)
M™% = (I-Qs)x.=(I—Q,)A™ . (14.28)
The transformed right-hand side in the proposition is naivikm explicitly since it
is expressed in terms of the exact solution. However, a poeecan be found to
compute it. In other words, it is possible to operate withr! without invoking

A=l Note thatM ! = (I — Q,)A~!. As the next lemma indicateg/ !, as well
asM~'A, can be computed recursively.

490 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Lemma 14.4 Define the matrices

7 = I[—Q; (14.29)
M; = Z;A™1 (14.30)
T, = PA'=RIAT'R, (14.31)

fori =1,...,s. ThenM~! = M,, M—'A = Z,, and the matricesZ; and M;
satisfy the recurrence relations

Zl = P17
Zi = Z;q —|—H(I—ZZ'_1), 1=2,...,8 (1432)
and
Ml = T17
M, = M;_1+ TZ(I — AMi—l)a 1=2,...,8. (1433)

Proof. It is clear by the definitiond{1Z:P9) and (14.30) tdd; = M ! and that
My =T, Z1 = P,. For the cases > 1, by definition ofQ; andQ;_1

Zi=1—-I-DP)I—-2i1) =P+ Zi1 — PZ;_1, (14.34)
which gives the relatior . {IZB2). Multiplyin§{12]134) taethight by A~ yields,
M; =T, + M; 1 — P,M;_4.
Rewriting the termP; asT; A above yields the desired formul@a{14.33). |

Note that [T43R) yields immediately the important relatio
Zi =Y PiQj-1. (14.35)
j=1

If the relation [I4:3B) is multiplied to the right by a vectoand if the vectoi\/;v is
denoted by;, then the following recurrence results.

zi = zi—1 + Ti(v — Azi—1).

Sincezs = (I — Qs)A v = M~1v, the end result is that/ ~'v can be computed
for an arbitrary vecton, by the following procedure.

ALGORITHM 14.4 Multiplicative Schwarz Preconditioner

Input:v; Output:z = M~1v.

z:=Thw

Fori =2,...,s Do:
z:=z+Ti(v— Az)

EndDo

A WNR

14.3. SCHWARZ ALTERNATING PROCEDURES 491

By a similar argument, a procedure can be found to computwngeof the form
z = M~!Av. In this case, the following algorithm results:

ALGORITHM 14.5 Multiplicative Schwarz Preconditioned Operator

Input:v, Output:z = M~ Aw.
z:= P
Fori=2,...,s Do

z:=2z+ Pj(v—2)
EndDo

OO R

In summary, the Multiplicative Schwarz procedure is ed@rato solving the
“preconditioned system”
(I-Qsz=g (14.36)

where the operation = (I — Q);)v can be computed from Algorithli14.5 apd=
M~'b can be computed from AlgorithiiI3.4. Now the above procesicae be used
within an accelerator such as GMRES. First, to obtain thiet#gind sidey of the
preconditioned systerfi (14136), Algoritim 14.4 must beiapb the original right-
hand sideh. Then GMRES can be applied 10 {14.36) in which the precaomnkiil
operationsl — @, are performed by Algorithia T4.5.

Another important aspect of the Multiplicative Schwarzgadure is that multi-
coloring can be exploited in the same way as it is done t@aditly for block SOR.
Finally, note that symmetry is lost in the preconditionedteyn but it can be recov-
ered by following the sweep 1, 2,.,s by a sweep in the other direction, namely,
s—1,s—2,...,1. Thisyields a form of the block SSOR algorithm.

14.3.3 Additive Schwarz Procedure

The additive Schwarz procedure is similar to a block-Jad@ation and consists
of updating all the new (block) components from the samealuadi Thus, it differs
from the multiplicative procedure only because the comptsa each subdomain
are not updated until a whole cycle of updates through allalosare completed.
The basic Additive Schwarz iteration would therefore bedds\vs:

Fori =1,...,s Do

Computes; = RF A7 R; (b — Ax)
EndDo
Tpew = T + Zle 52

AWOWNR

The new approximation (obtained after a cycle of theubsteps in the above
algorithm are applied) is

Tnew =T+ ¥ RI AT Ri(b— Ax).
i=1

492 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Each instance of the loop redefines different componentseohéw approximation
and there is no data dependency between the subproblenhgeithin the loop.

The preconditioning matrix is rather simple to obtain foe tdditive Schwarz
procedure. Using the matrix notation defined in the previmetion, notice that the
new iterate satisfies the relation

Tnew :x—I—ZS:TZ-(b—A:U) = (I—ES:PZ) x+§:Tib.
i=1 i=1 i=1

Thus, using the same analogy as in the previous sectiornitgtasion corresponds to
a fixed-point iterationc,,.,, = Gx + f with

G:I—ZS:PZ-, f:zs:ﬂb.
=1 =1

With the relationG = I — M~ A, betweenG and the preconditioning matrix/,
the result is that

M~'A=3 P,
=1
and . i
M7= PAT =T,
=1 =1
Now the procedure for applying the preconditioned operafor' becomes clear.

ALGORITHM 14.6 Additive Schwarz Preconditioner

Input:v; Output:z = M~1v.

Fori =1,...,s Do:
Computez; := Tiv

EndDo

Computez :== z1 + zo... + zs.

OO =

Note that the do loop can be performed in parallel. Step 5 aymtbe vectors;
in each domain to obtain a global vectar In the nonoverlapping case, this step is
parallel and consists of just forming these different congras since the addition is
trivial. In the presence of overlap, the situation is sim@acept that the overlapping
components are added up from the different results obtamedch subdomain.

The procedure for computing/ —! Av is identical to the one above except that
T; inline 3 is replaced by’;.

14.3.4 Convergence

Throughout this section, it is assumed thhis Symmetric Positive Definite. The
projectorsP; defined by [I4.24) play an important role in the convergeheerty of
both additive and multiplicative Schwarz. A crucial obsgion here is that these

14.3. SCHWARZ ALTERNATING PROCEDURES 493

projectors are orthogonal with respect to #ienner product. Indeed, it is sufficient
to show thatP; is self-adjoint with respect to th&-inner product,

(Piw,y)a = (AR] AT RiAz,y) = (Az, RT A7 RiAy) = (, Py) a.
Consider the operator,

Ay = Zp (14.37)
i=1

Since eaclP; is self-adjoint with respect to thé-inner product, i.e.A-self-adjoint,
their sumA ; is also A-self-adjoint. Therefore, it will have real eigenvalues n-
mediate consequence of the fact that #s are projectors is stated in the following
theorem.

Theorem 14.5 The largest eigenvalue of; is such that
)\max(AJ) <s,

wheres is the number of subdomains.

Proof. For any matrix norm\,,..(A;) < [[As[|. In particular, if theA-norm is
used, we have

S
/\mam(AJ) < Z ||PZ||A
i=1
Each of thed-norms ofP,; is equal to one sincg; is an A-orthogonal projector. This
proves the desired result. O

This result can be improved substantially by observing thatprojectors can be
grouped in sets that have disjoint ranges. Graph coloricignigues seen in Chap-
ter 3 can be used to obtain such colorings of the subdomaigsume that sets

of indices©;,7 = 1,...,c are such that all the subdomaifis for j € ©; have no
intersection with one another. Then,
Po,= Y P (14.38)
JjEO;

is again an orthogonal projector.
This shows that the result of the previous theorem can beowegrrtrivially into
the following.

Theorem 14.6 Suppose that the subdomains can be colored in such a waybat t
subdomains with the same color have no common nodes. Thkdarghst eigenvalue
of A; is such that

Amax(AJ) § c,

wherec is the number of colors.

In order to estimate the lowest eigenvalue of the precamitl matrix, an assump-
tion must be made regarding the decomposition of an arpitrectorz into compo-
nents of(2;.

494 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Assumption 1. There exists a constahl, such that the inequality

s

Z(Aui,ui) < Ko(Au,u),
i=1

is satisfied by the representatiomofe 2 as the sum

u = Zui, u; € €.
i=1
The following theorem has been proved by several autholgintly different forms

and contexts.

Theorem 14.7 If Assumption 1 holds, then

1
. >
>\mm(AJ) el KO

Proof. Unless otherwise stated, all summations in this proof amfr to s. Start
with an arbitraryu decomposed as =) u; and write

(w,u)a =Y (ui,u)a =Y (P, u)a = > (us, Pu)a.

The last equality is due to the fact thBt is an A-orthogonal projector ontf; and
it is therefore self-adjoint. Now, using Cauchy-Schwarquality, we get

(u,u)a = Z(Ui,Pz‘U)A < <Z(’LM,U2‘)A>1/2 (Z(HU,Pz‘U)A>

By Assumption 1, this leads to

1/2

1/2 1/2
el < Ko ulla (3P, Pau)a)
which, after squaring, yields
lull < KoY (Piu, Pu) a.

Finally, observe that since eaéh is anA-orthogonal projector, we have

Z(Piu,Piu)A = Z(Piu,u)A = (Z Pm,u)A

Therefore, for any:, the inequality
1
(Aju,u)y > E(Ua u)A

holds, which yields the desired upper bound by the min-mesrém. |

14.3. SCHWARZ ALTERNATING PROCEDURES 495

Note that the proof uses the following form of the Cauchys&mfz inequality:

P P /2 s p 1/2

i=1 i=1 i=1

See ExercisEl 1 for a proof of this variation.
We now turn to the analysis of the Multiplicative Schwarzgadure. We start
by recalling that the error after each outer iteration (yéegiven by

d = Qydy.

We wish to find an upper bound f§Qs|| 4. First note thatl{I4.32) in Lemnia1#.4
results in

Qi = Qi—1 — PQi_1,

from which we get, using thd-orthogonality ofP;,

1QivllA = 1Qi—1v]1% — I1PQi—1v][-

The above equality is valid far = 1, provided@)y = I. Summing these equalities
from ¢ = 1 to s gives the result,

1Qsvllh = ol = D [1PQi—1vl%: (14.39)
i=1

This indicates that thel-norm of the error will not increase at each substep of the
sweep.
Now a second assumption must be made to prove the next lemma.

Assumption 2. For any subse$ of {1,2,...,s}? andu;,v; € (, the following
inequality holds:

1/2

S 1/2 S
> (P, Puj)a < Ky (Z HH’U@II%) S IPwla | . (14.40)
j=1

(i) € S =1

Lemma 14.8 If Assumptions 1 and 2 are satisfied, then the following is,tru

STl < 1+ K1) Y 1PQio1vl (14.42)
i=1 =1

Proof. Begin with the relation which follows from the fact th&f is an A-orthogonal
projector,

(Pi’U, PiU)A = (})Z'Uv HQi—lv)A + (Pi’U, (I - Qi—l)v)Ay

496 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

which yields, with the help of{14.35),

s 1—1

ZHPUHA—ZPU PQi- IUA+ZZ (Pv, PjQj-1v)a. (14.42)

i=1 j=1
For the first term of the right-hand side, use the Cauchy-&chimequality to obtain

s 1/2

12 , o
> (P, PQi1v)a < <ZHPU”A> (ZHPiQi—lv”z%&)
i=1

i=1

For the second term of the right-hand side[of (TK.42), useassamption[[I4.40) to
get

s i—1 1/2 s 1/2
> (P, PiQjav)a < K (Z HPUIIA)> (Z Pijwi)) :
j=1

=1 j=1

Adding these two inequalities, squaring the result, andgu§I4.4?) leads to the
inequality [TZ.21). O
From [I4.3D), it can be deduced that if Assumption 2 hold=n th

1 S
1Qsvl% < [vll% — AT K)? Z [Pl (14.43)
i=1

Assumption 1 can now be exploited to derive a lower bound¥n, || P;v|%. This
will yield the following theorem.

Theorem 14.9 Assume that Assumptions 1 and 2 hold. Then,

1 1/2
1Qslla < {1 TR +K1)2] : (14.44)

Proof. Using the notation of Sectidn IZ:8.3, the relatjdRv||% = (Piv,v)4 yields

ZHPUHA—<ZPU U) (Ajv,v)4.

A
According to Theorefd T4 2,,,;,(Ay) > KLO,Which implies(Ajv,v)4 > (v,v)4/Kp.

Thus,
° (v,v)4
> |[Poll% > =,
i=1 Ko

which upon substitution intd.{TZ}3) gives the inequality

2
Qi 1
ol Kol + K1)

The result follows by taking the maximum over all vectors |

14.4. SCHUR COMPLEMENT APPROACHES 497

This result provides information on the speed of convergesfdhe multiplica-
tive Schwarz procedure by making two key assumptions. Tagsemptions are not
verifiable from linear algebra arguments alone. In otherdspgiven a linear sys-
tem, it is unlikely that one can establish that these assomgphre satisfied. How-
ever, they are satisfied for equations originating from didtement discretization
of elliptic Partial Differential Equations. For detailsfer to Dryja and Widlund

[102,[103[104] and XU [320].

14.4 Schur Complement Approaches

Schur complement methods are based on solving the redusesfI4.}) by some
preconditioned Krylov subspace method. Procedures ofythesinvolve three steps.

1. Get the right-hand sidg = g — FB~'f.
2. Solve the reduced systesy = ¢’ via an iterative method.
3. Back-substitute, i.e., computevia (I4.3).

The different methods relate to the way in which step 2 isqueréd. First
observe that the matri& need not be formed explicitly order to solve the reduced
system by an iterative method. For example, if a Krylov salbspmethod without
preconditioning is used, then the only operations that egaired with the matrix
S are matrix-by-vector operations = Sv. Such operations can be performed as
follows.

1. Computa)/ = Ewv,
2. SolveBz =/
3. Computev = Cv — Fz.

The above procedure involves only matrix-by-vector miitggions and one lin-
ear system solution witl3. Recall that a linear system involving translates into
s-independent linear systems. Also note that the linearesystwith B must be
solved exactly, either by a direct solution technique or yt@rative technique with
a high level of accuracy.

While matrix-by-vector multiplications witty cause little difficulty, it is much
harder to precondition the matri&, since this full matrix is often not available ex-
plicitly. There have been a number of methods, derived masgiing arguments
from Partial Differential Equations to precondition theh8ccomplement. Here, we
consider only those preconditioners that are derived frdimear algebra viewpoint.

14.4.1 Induced Preconditioners

One of the easiest ways to derive an approximatio$i i®to exploit Propositio 1411
and the intimate relation between the Schur complement anc$tan elimination.

498 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

This proposition tells us that a preconditioning operatbto S can be defined from
the (approximate) solution obtained with To precondition a given vectar, i.e.,
to computew = M ~'v, wherelM is the desired preconditioner £ first solve the

system
A<w>:<0>, (14.45)
Y v

then takew = y. Use any approximate solution technique to solve the abgsters.
Let M4 be any preconditioner foA. Using the notation defined earlier, |&t,
represent the restriction operator on the interface visalas defined in Proposition
IZ1. Then the preconditioning operation fwhich is induced from\/ 4 is defined
by

Mg'v = R,M;* (2) = RyM;'R]v.

Observe that when/ 4 is an exact preconditioner, i.e., whéih, = A, then accord-
ing to Propositio_T4]11)/s is also an exact preconditioner, i.84s = S. This
induced preconditioner can be expressed as

Ms = (R,M;'RT)™". (14.46)

It may be argued that this uses a preconditioner relatedet@tiginal problem to
be solved in the first place. However, even though the prettonohg on.S may be
defined from a preconditioning of, the linear system is being solved for the inter-
face variables. That is typically much smaller than theinablinear system. For
example, GMRES can be used with a much larger dimension dfiylev subspace
since the Arnoldi vectors to keep in memory are much smafl&so note that from
a Partial Differential Equations viewpoint, systems of tem (IZ.4%) correspond
to the Laplace equation, the solutions of which are “Harmbhinctions. There are
fast techniques which provide the solution of such equatinaxpensively.

In the case wheré/ 4 is an ILU factorization ofd4, Mg can be expressed in an
explicit form in terms of the entries of the factors &f,4. This defines a precondi-
tioner to S that is induced canonically from an incomplete LU factdtiiza of A.
Assume that the preconditionéf 4 is in a factored form\i4 = LU 4, where

(L 0 (U LGZ'E
LA_(FUjg1 Lg> UA_(0 Us)°
Then, the inverse ai/ 4 will have the following structure:

MXl _ UZ1LZ1
* * * 0
= -1 -1
0 Ug * Ly
B * *
o * Us_ngl

where a star denotes a matrix whose actual expression igortamt. Recall that by
definition,
R,=(0 I),

14.4. SCHUR COMPLEMENT APPROACHES 499

where this partitioning conforms to the above ones. Thismadaat
RyM;'R] =Ug'Lg'

and, therefore, according b {(14148),s = LsUg. This result is stated in the fol-
lowing proposition.

Proposition 14.10 Let M4 = LA U4 be an ILU preconditioner ford. Then the
preconditionerM for S induced byM 4, as defined byf(IZ}6), is given by

Mg = LsUs, with Lg=R,LsR,, Us=R,UsR,.

In words, the proposition states that the L and U factors\igrare the(2, 2) blocks

of the L and U factors of the ILU factorization of. An important consequence of
the above idea is that the parallel Gaussian eliminatiorbeagxploited for deriving
an ILU preconditioner forS by using a general purpose ILU factorization. In fact,
the L andU factors of M 4 have the following structure:

A = LpUy— R with,

Ly
Ly
La =
LS
Ut RUSY - FUTY L
Uy Ll_lEl
Uy Ly By
Ua = 5
U, L;7'E,

U

EachL;, U; pair is an incomplete LU factorization of the loda] matrix. These ILU
factorizations can be computed independently. Simildhg, matricesLZ.‘lEi and
FZ-U[1 can also be computed independently once the LU factors @aagmeld. Then
each of the matrices

S;=C; -~ FU'L7'E;,
which are the approximate local Schur complements, is oéthiNote that since an

incomplete LU factorization is being performed, some droategy is applied to the
elements inS;. LetT; be the matrix obtained after this is done,

T; = Si — Ri.

Then a final stage would be to compute the ILU factorizatiothef matrix [14.14)
where eaclb; is replaced byr;.

500 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

14.4.2 Probing

To derive preconditioners for the Schur complement, amajbaeral purpose tech-
nique exploits ideas used in approximating sparse Jac®hbiben solving nonlinear
equations. In generak is a dense matrix. However, it can be observed, and there
are physical justifications for model problems,

that its entries decay away from the main diagonal. AssuraeS$hs nearly
tridiagonal, i.e., neglect all diagonals apart from themdiagonal and the two codi-
agonals, and write the corresponding tridiagonal appration toS as

ap by

Then, it is easy to recovél by applying it to three well-chosen vectors. Consider
the three vectors

w; = (1,0,0,1,0,0,1,0,0,...,)7,
wy; = (0,1,0,0,1,0,0,1,0,...,)%,
w3 = (0,0,1,0,0,1,0,0,1,...,)%.
Then we have
Twy = (a1, c2,bs,a4,¢5,...,b3i41,a3i41,C3i42,--.)"
Twy = (b, a2,¢3,b5,a5,C6,-- -, 03142, 3142, C3i13,---) "
TUJ3 = (bg,a3,64,b6,a6,67,...,bgi,agi,63i+1,...)T.

This shows that all the coefficients of the matfixare indeed all represented in the
above three vectors. The first vector contains the nonzeraeits of the columns
1,4,7 ...,3i+ 1, ..., in succession written as a long vector. Similaflyw,
contains the columng, 5,8, ..., andTws contains the column3,6,9,.... We can
easily computeSw;,7 = 1,3 and obtain a resulting approximatidnwhich can be
used as a preconditioner 1 The idea can be extended to compute any banded
approximation taS. For details and analysis séel[74].

14.4.3 Preconditioning Vertex-Based Schur Complements

We now discuss some issues related to the preconditionirglin€ar system with
the matrix coefficient offl{I4.14) associated with a vertagda partitioning. As was
mentioned before, this structure is helpful in the diredutson context because it
allows the Schur complement to be formed by local piecesceSincomplete LU
factorizations will utilize the same structure, this carelploited as well.

Note that multicolor SOR or SSOR can also be exploited andgizgph color-
ing can be used to color the interface valggsn such a way that no two adjacent

14.5. FULL MATRIX METHODS 501

interface variables will have the same color. In fact, tleis be achieved by coloring
the domains. In the course of a multicolor block-SOR iterata linear system must
be solved with the diagonal blocks. For this purpose, it is helpful to interpret the
Schur complement. CalP the canonical injection matrix from the local interface
points to the local nodes. H; points are local and ifr; is the number of the local
interface points, thef® is ann; x m; matrix whose columns are the last columns
of then; x n; identity matrix. Then it is easy to see that

S; = (PTA ! pP)~L. (14.47)

loc,i

If A;ocs = LU is the LU factorization of4,,. ; then it can be verified that
St =PTUu~'L~'Pp=PTU'PPTL7'P, (14.48)

which indicates that in order to operate witH L~! P, the lastm; x m; principal
submatrix ofL must be used. The same is true f&f U~ P which requires only a
back-solve with the last; x m; principal submatrix of/. Therefore, only the LU
factorization of4,,.; is needed to solve a system with the maf§ix Interestingly,
approximate solution methods associated with incompéatefizations of4;,. ; can
be exploited.

14.5 Full Matrix Methods

We call any technique that iterates on the original sysfeffljlafull matrix method
In the same way that preconditioners were derived from thefddtbrization of A
for the Schur complement, preconditioners focan be derived from approximating
interface values.

Before starting with preconditioning techniques, we dighla few simple rela-
tions between iterations involving andS.

Proposition 14.11 Let

I O B E
LA:<FB_1 1>’ UA:<O 1) (14.49)

and assume that a Krylov subspace method is applied to tignatisystem[{14]1)
with left preconditioningl 4 and right preconditionindg’ 4, and with an initial guess

of the form !
(9“0) _ (B (f = Ey0)> . (14.50)
Yo Yo
Then this preconditioned Krylov iteration will producertges of the form
—1 o
<$m> _ (B (f Eym)> (14.51)
Ym Ym

in which the sequencg,, is the result of the same Krylov subspace method applied
without preconditioning to the reduced linear systéin= ¢’ withg’ = g— FB~'f
starting with the vectoy,.

502 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Proof. The proof is a consequence of the factorization

B E I O\(I O\(B E
(F C>:<FB_1 1)(0 S> <0 1)' (14.52)

Applying an iterative method (e.g., GMRES) on the origingtem, preconditioned
from the left byL 4 and from the right byl/ 4, is equivalent to applying this iterative
method to

o S
The initial residual for the preconditioned system is

a

Ly AU = (I O> =A (14.53)

L AU YU <x°>
(Ly AU)Ua o

- (—F;‘l ?> <<£> B (FB‘l(f —nyo>+0yo>>
B (g’—OSyo>E<v?o>'

As a result, the Krylov vectors obtained from the precoondiéd linear system asso-
ciated with the matrixd’ have the form

0 0 0
<T0> , <Sm> <Sm_1m> (14.54)

and the associated approximate solution will be of the form

Gr) = G+ (%0 7% %) (stsin)
(B‘l(f — Eyo) — B~ E(ym — yo_)>
_ (B‘l(f—Eym)Z;m‘

Ym

Finally, the scalargy; that express the approximate solution in the Krylov basss ar
obtained implicitly via inner products of vectors among Weetor sequenc&€{14154).
These inner products are identical to those of the sequencgry, ---, S lry.
Therefore, these coefficients will achieve the same result@same Krylov method
applied to the reduced systefly = ¢/, if the initial guess gives the residual guess
To- O

A version of this proposition should allo®to be preconditioned. The following
result is an immediate extension that achieves this goal.

Proposition 14.12 Let S = LsUs — R be an approximate factorization ¢f and

define
I O B E
La= (FB—l L5>’ Uy = (O Us>' (14.55)

14.5. FULL MATRIX METHODS 503

Assume that a Krylov subspace method is applied to the afigystem[{14]1) with
left preconditioningL 4 and right preconditioning’ 4, and with an initial guess of

the form
Yo Yo ' '

Then this preconditioned Krylov iteration will producertges of the form

(:cm) _ (B‘l(f - Eym)> ' (14.57)

Ym Ym

Moreover, the sequenagg, is the result of the same Krylov subspace method applied
to the reduced linear systesy = g — FB~f, left preconditioned with.g, right
preconditioned witlUg, and starting with the vectay.

Proof. The proof starts with the equality

B E I oN/I O B E
(F C>_<FB‘1 LS> <o L§1SUS‘1><O US>' (14.58)

The rest of the proof is similar to that of the previous reaultl is omitted. |

Also there are two other versions in whic¢his allowed to be preconditioned
from the left or from the right. Thus, i#/s is a certain preconditioner fdf, use the
following factorizations

B FE I 19) I 0 B E
<F C> N (FB_1 MS> (O M§15> (O I) (14.59)

I O\(I o© B E
- (FB—l I><O SM§1><O MS>’ (14.60)

to derive the appropriate left or right preconditioners.s@tve that when the precon-
ditioner Mg to S is exact, i.e., whed/ = S, then the block preconditiondr 4, U 4
to A induced fromMg is also exact.

Although the previous results indicate that a Preconditib§chur Complement
iteration is mathematically equivalent to a certain pretitioned full matrix method,
there are some practical benefits in iterating with the mdunced system. The main
benefit involves the requirement in the Schur Complemehtiigoes to comput8z
exactly at each Krylov subspace iteration. Indeed, theim&trepresents the coeffi-
cient matrix of the linear system, and inaccuracies in th&imhby-vector operation
may result in loss of convergence. In the full matrix teclueis, the operatioSz is
never needed explicitly. In addition, this opens up the ibid&g of preconditioning
the original matrix with approximate solves with the matin the preconditioning
operationL 4 andU 4.

504 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

14.6 Graph Partitioning

The very first task that a programmer faces when solving al@mlon a parallel
computer, be it a dense or a sparse linear system, is to deoidéo subdivide and
map the data into the processors. Distributed memory campatiow mapping the
data in an arbitrary fashion but this added flexibility pute burden on the user to
find good mappings. When implementing Domain DecomposkHitype ideas on a
parallel computer, efficient techniques must be availaimgértitioning an arbitrary
graph. This section gives an overview of the issues and s@a/&w techniques.

14.6.1 Basic Definitions

Consider a general sparse linear system whose adjacengh & = (V, E).
Graph partitioning algorithms aim at subdividing the amali linear system into
smaller sets of equations which will be assigned to diffeqgocessors for their
parallel solution.

This translates into partitioning the graph intgubgraphs, with the underlying
goal to achieve a good load balance of the work among the gsoce as well as
ensure that the ratio of communication over computatiomialkfor the given task.
We begin with a general definition.

Definition 14.13 We call a map oV, any seti;, V5, ..., V;, of subsets of the vertex
setV, whose union is equal t@':

viev, Ju=v

i=1,s

When all theV; subsets are disjoint, the map is called a proper partititmeraise
we refer to it as an overlapping partition.

The most general way to describe a node-to-processor nEby setting up
a list for each processor, containing all the nodes that aeped to that processor.
Three distinct classes of algorithms have been developguhftitioning graphs. An
overview of each of these three approaches is given next.

© @9 ap @
Py
Py
® (6) @ (8)
Py
Py
S O————®

Figure 14.9: Mapping of a simple x 3 mesh to 4 processors.

14.6. GRAPH PARTITIONING 505

14.6.2 Geometric Approach

The geometric approach works on the physical mesh and e=gilie coordinates of
the mesh points. In the simplest case, for a 2-dimensioctmgular grid, stripes in
the horizontal and vertical direction can be defined to gaetsg subregions which
have roughly the same number of points. Other techniqukzeutiotions of moment
of inertia to divide the region recursively into two roughdgual-sized subregions.

Next is a brief description of a technique based on work byavjilTeng, Thur-
ston, and Vavasi$ [211]. This technique finds good separéor@ mesh using pro-
jections into a higher space. Given a meskffthe method projects the mesh points
into a unit sphere centered at the origifRifit 1. Stereographic projection is used: A
line is drawn from a given point in the plane to the North Pol@, . .. , 0, 1) and the
stereographic projection @fis the point where this line intersects the sphere. In the
next step, &enterpointof the projected points is found. A centerpointf a discrete
setS is defined as a point where every hyperplane passing through divide S
approximately evenly.

Once the centerpoint is found, the points of the sphere dete so that the
centerpoint is aligned with the North Pole, i.e., so thatrdowtes ofc are trans-
formed into(0, ..., 0, 7). The points are further transformed by dilating them so that
the centerpoint becomes the origin. Through all these foamsitions, the point
remains a centerpoint. Therefore, if any hyperplane isrtakat passes through the
centerpoint which is now the origin, it should cut the sphate two roughly equal-
sized subsets. Any hyperplane passing through the oridinntérsect the sphere
along a large circl€'. Transforming this circle back into the original space wille
a desired separator. Notice that there is an infinity of eg¢b choose from.

One of the main ingredients in the above algorithm is a hgarfer finding
centerpoints iR? space (actuallyR¢*! in the algorithm). The heuristic that is used
repeatedly replaces randomly chosen sets-pR2 points by their centerpoint, which
are easy to find in this case. There are a number of interesgmgdts that analyze
the quality of geometric graph partitionings based on sgpes. With some minimal
assumptions on the meshes, it is possible to show that tkeste'good” separators.
In addition, the algorithm discussed above constructs sapharators. We start with
two definitions.

Definition 14.14 A k-ply neighborhood system iR¢ is a set ofn closed disksD;,
i=1,...,ninR%such that no point ilR? is (strictly) interior to more tharik disks.

Definition 14.15 Leta > 1 and letDq, ..., D,, be ak-ply neighborhood system in
R, The(w, k)-overlap graph for the neighborhood system is the graph wttiex
setV = {1,2,...,n} and edge set, the subsetlofx V defined by

{(i,5) : (Din(a.Dj) # ¢) and(D; N (a.Di) # ¢)}.

A mesh inR? is associated with an overlap graph by assigning the coateliof the
centerg; of diski to each nodé of the graph. Overlap graphs model computational
meshes inil dimensions. Indeed, every mesh with boun@dsgect ratioelements

506 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

(ratio of largest to smallest edge length of each elemerdpmsained in an overlap
graph. In addition, any planar graph is an overlap graph. maim result regarding
separators of overlap graphs is the following theoremi[211]

Theorem 14.16 Let G be ann-vertex(«, k) overlap graph ind dimensions. Then
the vertices of7 can be partitioned into three set§ B, andC such that:

1. No edge joinsl and B.
2. A and B each have at most(d + 1)/(d + 2) vertices.
3. C has onlyO(a k'/4n(d=1/) vertices.

Thus, ford = 2, the theorem states that it is possible to partition thetyraf two
subgraphsi and B, with a separato€’, such that the number of nodes for eactiof
and B does not exceeén vertices in the worst case and such that the separator has
a number of nodes of the ordé(« k'/2n'/2).

14.6.3 Spectral Techniques

Spectral bisectiomefers to a technique which exploits some known properti¢iseo
eigenvectors of theaplacean of a graphGiven an adjacency grapgh = (V, E),

we associate to it a Laplacian matrixwhich is a sparse matrix having the same
adjacency grapli” and defined as follows:

-1 if(Ui,Uj) € Fandi#j
lij =4 deg(i) ifi=jy

0 otherwise.
These matrices have some interesting fundamental preperivhen the graph is
undirected is symmetric. It can be shown to be alsegative semi definitésee
Exercise1ll). Zero is an eigenvalue and it is the smallest é&meeigenvector as-
sociated with this eigenvalue is any constant vector, aisdeienvector bears little
interest. The second smallest eigenvector, called-ibdler vector has the useful
property that the signs of its components divide the donraim ioughly two equal
subdomains.

The Recursive Spectral Bisection (RSB) algorithm congiésorting the com-
ponents of the Fiedler vector and assigning the first halhefdorted vertices to
the first subdomain and the second half to the second subdorie two subdo-
mains are then partitioned in two recursively, until a dddie number of domains is
reached.

ALGORITHM 14.7 RSB (Recursive Spectral Bisection)

Compute the Fiedler vectgrof the graph’.

Sort the components ¢f e.g., increasingly.

Assign firstin /2| nodes td/;, and the rest t& .

Apply RSB recursively t&1, Vs, until the desired number of partitions
is reached.

Ok ODN R

14.6. GRAPH PARTITIONING 507

The main theoretical property that is exploited here is thatdifferences be-
tween the components of the Fiedler vector represent sorhefatistance between
the corresponding nodes. Thus, if these components aexisby would be effec-
tively grouping the associated node by preserving neardessther interesting fact
is that the algorithm will also tend to minimize the numigrof edge-cutsi.e., the
number of edgesuv;, v;) such thaty; € V; andv; € V5. Assume thal/; and Vs
are of equal size and defingpartition vectordefinep whosei-th component ist+1
if v; € Vi,and—1if v; € V5. By the assumptions the sum of glls is zero. Then
notice that

(Lp,p) = 4n., (p,e) =0.

Ideally, the objective functioLp, p) should be minimized subject to the constraint
(p,e) = 0. Herepis a vector of signs. If, instead, the objective functidmn:,)/ (x, x)
were minimized forz real, subject tqz, e) = 0, the solution would be the Fiedler
vector, sincee is the eigenvector associated with the eigenvalue zero. Flgwier
vector can be computed by the Lanczos algorithm or any ottethad efficient for
large sparse matrices. Recursive Specrtal Bisection gxeslent partitionings. On
the other hand, it is rather unattractive because it reg@ioenputing an eigenvector.

14.6.4 Graph Theory Techniques

A number of other techniques exist which, like spectral meghes, are also based
on the adjacency graph only. The simplest idea is one thabriowed from the
technique ofnested dissectiom the context of direct sparse solution methods, see
Sectiond3.6]12 arld3:3.3. An initial node is given which titutes the level zero.
Then, the method recursively traverses ki level (¢ > 1), which consists of the
neighbors of all the elements that constitute lévell. A simple idea for partitioning
the graph in two traverses enough levels to visit about Ha#llothe nodes. The
visited nodes will be assigned to one subdomain and the othidrconstitute the
second subdomain. The process can then be repeated rebuimiveach of the
subdomains.

A key ingredient for this technique to be successful is tedrine a good initial
node from which to start the traversal. Often, a heuristiosed for this purpose.
Recall thatd(z,y) is the distance between verticesand y in the graph, i.e., the
length of the shortest path betweemndy.

If the diameter of a graph is defined as

(G) = max{d(z,y) |z € V,y € V}

then, ideally, one of two nodes in a péir, y) that achieves the diameter can be used
as a starting node. Thegeripheral nodesare expensive to determine. Instead, a
pseudo-peripherahode, as defined through the following procedure, is often em

ployed [144]

508 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

Figure 14.10: The RGB algorithm (top) and the double-stgpalgorithm (bottom)
for partitioning a graph into 16 subgraphs.

14.6. GRAPH PARTITIONING 509

ALGORITHM 14.8 Pseudo-Peripheral Node

Select an initial node. Seto = 0.
Do a level set traversal from
Select a nodg in the last level set, with minimum degree
If d(z,y) > then
Setr := y andé := d(x,y)
GoTo 2
Else Stop: is a pseudo-peripheral node.
EndIf

PONODOAWNR

The distancel(z, y) in line 5 is the number of levels in the level set traversaldeee
in Step 2. The algorithm traverses the graph from a node ofastelevel in the
previous traversal, until the number of levels stabilizéisis easy to see that the
algorithm does indeed stop after a finite number of stepgdilp small.

A first heuristic approach based on level set traversalsisdbursive dissection
procedure mentioned above and described next.

ALGORITHM 14.9 Recursive Graph Bisection

SetG, := G, S :={G}, ngom :=1

Whileng,,, < s Do:
Select inS the subgrapli:,. with largest size.
Find a pseudo-peripheral noplén G, and
Do a level set traversal from Letlev := number of levels.
LetG, the subgraph of:, consisting of the firstev /2

levels, andx, the subgraph containing the rest®f.

Removes,, from S and add>, andGs to it
Ndom = Ndom + 1

EndWhile

The cost of this algorithm is rather small. Each traversa gfaphG = (V, E) costs

around|E|, where|E| is the number of edges (assuming tfiat = O(|E|)). Since

there ares traversals of graphs whose size decreases by 2 at eacht stepear that

the cost iSO (| E|), the order of edges in the original graph. As can be expetted,
results of such an algorithm are not always good. Typicallyy qualities that are
measured are the sizes of the domains as well as the numbdgetets.

Ideally, the domains should be equal. In addition, sincevéthees at the interface
points should be exchanged with those of neighboring psarsstheir total number,
as determined by the number of edge-cuts, should be as ssrjadisaible. The first
measure can be easily controlled in a recursive Graph Biseétigorithm — for
example, by using variants in which the number of nodes efibto be exactly half
that of the original subdomain. The second measure is méieudtito control.

As an example, the top part of Figure14.10 shows the resuleoRGB algo-
rithm on a sample finite-element mesh. Thus, the top partagfrefTZ.ID shows the
result of the RGB algorithm on a sample finite-element me#iis i a vertex-based
partitioning. The dashed lines represent the edge-cuts.

SOLONO>OAMWNR

=~

510 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

An approach that is competitive with the one described al®vbat of dou-
ble striping This method uses two parameters p» such thatp;p. = s. The
original graph is first partitioned intp; large partitions, using one-way partition-
ing, then each of these partitions is subdivided iptopartitions similarly. One-
way partitioning intop subgraphs consists of performing a level set traversal om
pseudo-peripheral node and assigning each set of roughlgonsecutive nodes in
the traversal to a different subgraph. The result of this@ggh withp; = ps =4 is
shown in Figuré_TZ10 on the same graph as before.

As can be observed, the subregions obtained by both mettan@sdiongated
and twisted shapes. This has the effect of giving a largerbeurof edge-cuts. There
are a number of heuristic ways to remedy this. One stratelggdged on the fact that
a level set traversal frorh nodes can be defined instead of only one node. These
nodes are called theentersor sites Each subdomain will expand from one of these
k centers and the expansion will stop when it is no longer ptes$d acquire another
point that is not already assigned. The boundaries of eatiaithchat are formed this
way will tend to be more “circular.” To smooth the boundareésn initial partition,
find some center point of each domain and perform a level getresion from the set
of points. The process can be repeated a few times.

ALGORITHM 14.10 Multinode Level-Set Expansion Algorithm

in the traversal with the same label as its parent.
Fork =1,...,s setGy:= subgraph of all nodes having label
EndDo

1. Find a partitionS = {G1,G3,...,Gs}.

2. Foriter = 1, ..., nouter Do:

3. Fork =1,...,s Do:

4. Find a centee, of Gy.. Setlabel(cy) = k.

5. EndDo

6. Do a level set traversal froffty, co, . .., cs}. Label each child
7.

8.

9.

For this method, a total number of edge-cuts equal to 548 aradhar small
standard deviation of 0.5 are obtained for the example sadiere Still to be decided
is how to select the center nodes mentioned in line 4 of theridign. Once more,
the pseudo-peripheral algorithm will be helpful. Find ayzk® peripheral node, then
do a traversal from it until about one-half of the nodes hasenbtraversed. Then,
traverse the latest level set (typically a line or a very eargraph), and take the
middle point as the center.

A typical number of outer stepsiouter, to be used in line 2, is less than five.
This heuristic works well in spite of its simplicity. For exple, if this is applied to
the graph obtained from the RGB algorithm, withuter = 3, the partition shown
in Figure[T4.T1l is obtained. With this technique, the résgiltotal number of edge-
cuts is equal to 441 and the standard deviation is 7.04. Amiew/hat expected, the
number of edge-cuts has decreased dramatically, whilednelad deviation of the
various sizes has increased.

14.6. GRAPH PARTITIONING 511

Figure 14.11: Multinode expansion starting with the pamitobtained in Figure
I4.70.

PROBLEMS

P-14.1 In the proof of Theorefa 14 7, the following form of the CaueBghwarz inequality

was used: 12 12
D (@) < (Z(l’iaﬂ?z‘)) <Z(yi,yi)> :

=1 =1 =1
(a) Prove that this result is a consequence of the standardh@e5chwarz inequality. (b)
Extend the result to thd-inner product. (c) Assume that thg's andy;’s are the columns
of twon x p matrix X andY". Rewrite the result in terms of these matrices.

P-14.2 Using LemmdIZ14, write explicitly the vectas —1b for the Multiplicative Schwarz
procedure, in terms of the matrix and theR;’s, whens = 2, and then whes = 3.

P-14.3 Justify Algorithm [IZF), i.e., show that it does indeed guite the vectod] —! Av
for an input vectow, where M is the multiplicative Schwarz preconditioner. Then find a
similar algorithm which computed M ~!v (right preconditioning).

P-14.4

P-14.5 (a) Show that in the multiplicative Schwarz procedure, tegidual vectors; =
b — Ax; obtained at each step satisfy the recurrence,

T p—1
r, =Ti—1 — ARZ Az Rﬂ’l',1

512 CHAPTER 14. DOMAIN DECOMPOSITION METHODS

fori =1,...,s. (b) Consider the operatd); = ART A; ' R;. Show that); is a projector.
(c) Is@; an orthogonal projector with respect to thenner product? With respect to which
inner product is it orthogonal?

P-14.6 The analysis of the Additive Schwarz procedure assumesAfats “exact,” i.e.,
that linear systemg;z = b are solved exactly, each timg.‘1 is applied. Assume that; !
is replaced by some approximati@)‘l. (a) Is P; still a projector? (b) Show that ®; is
Symmetric Positive Definite, then so 3. (c) Now make the assumption thaf, ... (P;) <
wx. What becomes of the result of TheorEm14.5?

P-14.7 In Element-By-Element (EBE) methods, the extreme casekeofAdditive or the
Multiplicative Schwarz procedures are considered in whighsubdomain partition corre-
sponds to taking?; to be an element. The advantage here is that the matricest haveto
be assembled. Instead, they are kept in unassembled foer temtef?). Assume that Pois-
son’s equation is being solved. (a) What are the matric&s (b) Are they SPD? (c) Write
down the EBE preconditioning corresponding to the multigive Schwarz procedure, its
multicolor version, and the additive Schwarz procedure.

P-14.8 TheorenZIZ]2 was stated only for the multiplicative versibthe Schwarz proce-
dure. There is a similar result for the additive Schwarz pdage. State this result and prove
it.

P-14.9 Show that the matrix defined by (14138) is indeed a projedsoit possible to for-
mulate Schwarz procedures in terms of projection processesen in ChaptEl 5?

P-14.10 It was stated at the end of the proof of Theofem114.7 that if

1
(AJU" u)A 2 a(u’ U)A

for any nonzera, then\,,;, (45) > % (a) Prove this result without invoking the min-max
theory. (b) Prove a version of the min-max theorem withAhimner product, i.e., prove that
the min-max theorem is valid for any inner product for whitlis self-adjoint.

P-14.11 Consider the Laplacean of a graph as defined in Selcfioh 14dv that
(Lz,z) = Z (z; —x)%
(i.j) € E
P-14.12 Consider a rectangular finite difference mesh, with mesd &iz = h in the z-
direction andAy = h closest to the-direction.

a. To each mesh poipt= (z;,y;), associate the closed digk;; of radiush centered at
pi. What is the smallest such that the family D;; } is ak-ply system?

b. Answer the same question for the case where the radiudused toh /2. What is the
overlap graph (and associated mesh) for arsyich that

1< <\/§?
— (6] —
2 2

What about wheiaw = 2?
P-14.3 Determine the cost of a level set expansion algorithm sigftomyp distinct centers.

P-14.4 Write recursive versions of the Recursive Graph Partitigralgorithm and Recur-
sive Spectral Bisection algorithm. [Hint: Recall that auesive program unit is a subpro-
gram or function, sayoo, which calls itself, sdoo is allowed to make a subroutine call to

14.6. GRAPH PARTITIONING 513

foo within its body.] (a) Give a pseudo-code for the RGB algarittvhich processes the
subgraphs in any order. (b) Give a pseudo-code for the RG&itligh case when the larger
subgraph is to be processed before the smaller one in arsct@s. Is this second version
equivalent to Algorithni.1419?

P-14.5 Write a FORTRAN-90 subroutine or (C function) which implemt®the Recursive
Graph Partitioning algorithm.

NOTES AND REFERENCES To start with, the original paper by Schwarz is the refeed@61], but an
earlier note appeared in 1870. In recent years, researcloorald Decomposition techniques has been
very active and productive. This rebirth of an old technifae been in large part motivated by parallel
processing. However, the first practical use of Domain Demusition ideas has been in applications
to very large structures; see[230] 41], and elasticity lerols; see, e.g.[1284283, 269] 40] for
references.

The book by Smith, Bjarstad, and Grofn. [268] gives a thonaigvey of domain decomposition
methods. Two other monographs, one by P. Le Tallecl[198],thacbther by C. Farhat and J. X.
Roux [123], describe the use of Domain Decomposition agresispecifically for solving problems in
structural mechanics. Survey papers include those by Kaya&roppl[189] and by Chan and Matthew
[75]. The volume[[190] discusses the various uses of “dorhaed” parallelism in computational
sciences and engineering.

The bulk of recent work on Domain Decomposition methods teenlgeared toward a Partial
Differential Equations viewpoint. Often, there appearbeca dichotomy between this viewpoint and
that of “applied Domain Decomposition,” in that the good haets from a theoretical point of view are
hard to implement in practice. The additive Schwarz proogdwith overlapping, represents a com-
promise between good intrinsic properties and ease of imgatéation. For example, Venkatakrishnan
concludes in[[295] that although the use of global coarsehamemay accelerate convergence of local,
domain-based, ILU preconditioners, it does not necegsariluce the overall time to solve a practical
aerodynamics problem.

Much is known about the convergence of the Schwarz procetkfier in particular to the work by
Widlund and co-author§ 42,102, 103.7104] 70]. The convergeesults of Sectidn 1Z4.8.4 have been
adapted from Xul[320] as well as HackbusEh [163]. The resulthe equivalence between Schwarz
and Schur complement iterations stated in Thedrenl 14.2sstehave been originally proved by Chan
and Goovaertd 73], see also the more recent article by Véilded Brakkee[[315]. The results on
the equivalence between the full matrix techniques and teiiSmatrix techniques seen in Section
[IZ13 have been adapted from results by S. E. Eisenstatteedar[189]. These connections are rather
interesting and useful in practice since they provide somelility on ways to implement a method.
A number of preconditioners have also been derived usingasiconnections in the PDE framework
(28,147 [49[5D51].

Research on graph partitioning has slowed in recent yearslonbt due to the appearance of
Metis, a well-designed and efficient graph partitioningeB%]. Variations of the Recursive Spectral
Bisection algorithm[[229] seem to give the best results imeof overall quality of the subgraphs.
However, the algorithm is rather expensive, and the lesfycasiltilevel techniques such as the ones
in the codes Metis[[185] and Chado [166], are usually preterrThe description of the geometric
partitioning techniques in Secti@n14.2 is based on tipesa[14%] and[[211]. Earlier approaches
have been developed inJd1.182] 83]. [|

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

J. ABAFFY AND E. SPEDICATO, ABS Projection Methodslalstead Press, 1989.

L. M. ADAMS, Iterative algorithms for large sparse linear systems ongbet com-
puters PhD thesis, Applied Mathematics, University of Virgin@@harlottsville, VA,
1982. Also NASA Contractor Report 166027.

L. M. ADAMS AND H. JORDAN, Is SOR color-blind?SIAM Journal on Scientific
and Statistical Computing, 6 (1985), pp. 490-506.

L. M. ADAMS AND J. ORTEGA, A multi-color SOR Method for Parallel Computers
in Proceedings of the 1982 International Conference onr®égbProcessing, 1982,
pp. 53-56.

J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ, A Lanczos-type
algorithm for multiple starting vectorsTech. Rep. Numerical Analysis Manuscript
No 95-11, AT&T Bell Laboratories, Murray Hill, NJ, 1995.

F. L. ALVARADO, Manipulation and visualization of sparse matric€&RSA Journal
on Computing, 2 (1990), pp. 186-206.

E. C. ANDERSON Parallel implementation of preconditioned conjugate gead
methods for solving sparse systems of linear equatitesh. Rep. 805, CSRD, Uni-
versity of lllinois, Urbana, IL, 1988. MS Thesis.

E. C. ANDERSON ANDY. SAAD, Solving sparse triangular systems on parallel com-
puters, International Journal of High Speed Computing, 1 (198p),43—96.

W. E. ARNOLDI, The principle of minimized iteration in the solution of thatnix
eigenvalue problenQuart. Appl. Math., 9 (1951), pp. 17-29.

C. C. ASHCRAFT AND R. G. GRIMES, On vectorizing incomplete factorization
and SSOR preconditionerSIAM Journal on Scientific and Statistical Computing,
9 (1988), pp. 122-151.

O. AXELSSON A generalized SSOR meth®lIT, 12 (1972), pp. 443-467.

, Conjugate gradient type-methods for unsymmetric and isistant systems of
linear equationsLinear Algebra and its Applications, 29 (1980), pp. 1-16.

, A generalized conjugate gradient, least squares metNanerische Mathe-
matik, 51 (1987), pp. 209-227.

[14] ——, Iterative Solution Method<Cambridge University Press, New York, 1994.

[15]

O. AXELSSON ANDV. A. BARKER, Finite Element Solution of Boundary Value Prob-
lems Academic Press, Orlando, FL, 1984.

515

516 BIBLIOGRAPHY

[16] O. AXELSSON, S. BRINKKEMPER, AND V. P. ILL’N, On some versions of incomplete
block-matrix factorization iterative methodsinear Algebra and its Applications, 58
(1984), pp. 3-15.

[17] O. AXELSSON ANDM. NEYTCHEVA, Algebraic multilevel iteration method for stielt-
jes matricesNumer. Linear Algebra Appl., 1 (1994), pp. 213-236.

[18] O. AXELSSON AND B. POLMAN, A robust preconditioner based on algebraic sub-
structuring and two-level grigsn Robust multigrid methods. Proc., Kiel, Jan. 1988.,
W. Hackbusch, ed., Notes on Numerical Fluid Mechanics, Md23, Vieweg, Braun-
schweig, 1988, pp. 1-26.

[19] O. AXELSSON AND P. VASSILEVSKI, Algebraic multilevel preconditioning methods.
I, Numer. Math., 56 (1989), pp. 157-177.

[20] ——, A survey of multilevel preconditioned iterative metho8$T, 29 (1989),
pp. 769-793.
[21] ——, Algebraic multilevel preconditioning methods, 81AM J. Numer. Anal., 27

(1990), pp. 1569-1590.

[22] O. AXELSSON AND P. S. \AssILEVSKI, A block generalized conjugate gradient
solver with inner iterations and variable step precondiiiog, SIAM Journal on Ma-
trix Analysis and Applications, 12 (1991).

[23] N. S. BakHvVALOV, On the convergence of a relaxation method with natural con-
straints on the elliptic operaterU.S.S.R Computational Math. and Math. Phys., 6
(1966), pp. 101-135.

[24] S. BALAY, W. D. GROPR L. C. MCINNES, AND B. F. SMiTH, PETSc 2.0 users man-
ual, Tech. Rep. ANL-95/11 - Revision 2.0.24, Argonne Nationabbratory, 1999.

[25] R. BANK, T. DUPONT, AND H. YSERENTANT, The hierarchical basis multigrid
method Numer. Math., 52 (1988), pp. 427-458.

[26] R. BANK AND J. Xu, The hierarchical basis multigrid method and incomplete LU
decompositiontech. rep., U.C. San Diego, Dept. of Math., 1994.

[27] R. E. BaANK AND T. F. CHAN, An analysis of the composite step biconjugate gradient
method Numerische Mathematik, 66 (1993), pp. 259-319.

[28] R. E. BaNK AND C. WAGNER, Multilevel ILU decompositionNumerische Mathe-
matik, 82 (1999), pp. 543-576.

[29] T. BARTH AND T. MANTEUFFEL, Variable metric conjugate gradient methods
Advances in Numerical Methods for Large Sparse Sets of riBgaations, Number
10, Matrix Analysis and Parallel Computing, PCG 94, Keio \#msity, Yokohama,
Japan, 1994, pp. 165-188.

[30] D. BAXTER, J. SALTZ, M. H. SCHULTZ, S. C. HESENSTAT, AND K. CROWLEY, An
experimental study of methods for parallel preconditioi@glov methodsin Pro-
ceedings of the 1988 Hypercube Multiprocessors ConfereRasadena, CA, Jan.
1988, pp. 1698-1711.

[31] M. BENANTAR AND J. E. R AHERTY, A six color procedure for the parallel so-
lution of Elliptic systems using the finite quadtree strugtun Proceedings of the
Fourth SIAM Conference on Parallel Processing for Scien@omputing, J. Don-
garra, P. Messina, D. C. Sorenson, and R. G. Voigt, eds.,, 1#0@30-236.

BIBLIOGRAPHY 517

[32] M. BENzI, J. C. Haws, AND M. TuMA, Preconditioning highly indefinite and non-
symmetric matricesSIAM Journal on Scientific Computing, 22 (2000), pp. 1333-
1353.

[33] M. BENZI, J. MARIN, AND M. TUMA, A two-level parallel preconditioner based on
sparse approximate inversen lterative Methods in Scientific Computation, I, D. R.
Kincaid and A. C. Elster, eds., IMACS, 1999, pp. xx—xx+10.

[34] M. BENzI, C. D. MEYER, AND M. TUMA, A sparse approximate inverse precondi-
tioner for the conjugate gradient methd8lAM Journal on Scientific Computing, 17
(1996), pp. 1135-1149.

[35] M. BENzI, D. B. &YLD, AND A. VAN DUIN, Orderings for incomplete factoriza-
tions of nonsymmtric matriceSIAM Journal on Scientific Computing, 20 (1999),
pp. 1652-1670.

[36] M. BENZI AND M. TUMA, A sparse approximate inverse preconditioner for nonsym-
metric linear systemsSIAM Journal on Scientific Computing, 19 (1998), pp. 968—
994.

[37] H. BERRYMAN, J. SALTZ, W. GROPR AND R. MIRCHANDANEY, Krylov methods
preconditioned with incompletely factored matrices on@é-2, Journal of Parallel
and Distributed Computing, 8 (1990), pp. 186-190.

[38] G. BIRKHOFF, R. S. \ARGA, AND D. M. YOUNG, Alternating direction implicit
methodsin Advances in Computers, F. Alt and M. Rubinov, eds., NewkYd962,
Academic Press, pp. 189-273.

[39] A. BJORCK AND T. ELFVING, Accelerated projection methods for computing pseudo-
inverse solutions of systems of linear equatjdi3, 19 (1979), pp. 145-163.

[40] P. E. BIGRSTAD AND A. HVIDSTEN, Iterative methods for substructured elasticity
problems in structural analysjsn Domain Decomposition Methods for Partial Dif-
ferential Equations, R. Glowinski, G. H. Golub, G. A. Meutgand J. Périaux, eds.,
Philadelphia, PA, 1988, SIAM.

[41] P. E. BIBRSTAD AND O. B. WIDLUND, Solving elliptic problems on regions parti-
tioned into substructuresn Elliptic Problem Solvers II, G. Birkhoff and A. Schoen-
stadt, eds., New York, NY, 1984, Academic Press, pp. 245-256

[42] , Iterative methods for the solution of elliptic problems @gions partitioned

into substructuresSIAM Journal on Numerical Analysis, 23 (1986), pp. 109320.1

[43] E. BODEWIG, Matrix Calculus North-Holland, Amsterdam, 1956.

[44] M. BOLLHOFER A robust ILU with pivoting based on monitoring the growth loé t
inverse factorsLinear Algebra and its Applications, 338 (2001), pp. 2013-2

[45] E. BOTTA, A. PLOEG, AND F. WuBS, Nested grids ILU-decomposition (NGILLY).
Comp. Appl. Math., 66 (1996), pp. 515-526.

[46] H. BRAKHAGE, Uber die numerische Behandlung von integralgleichungeshrer
Quadratureformelmethogd®umerische Mathematik, 2 (1960), pp. 183-196.

[47] J. H. BRAMBLE, J. E. ASCIAK, AND A. H. SCHATZ, The construction of precon-
ditioners for elliptic problems by substructuring,Mathematics of Computation, 47
(1986), pp. 103-134.

518 BIBLIOGRAPHY

[48] , An iterative method for elliptic problems on regions paetited into substruc-
tures Mathematics of Computation, 46 (1986), pp. 361-369.

[49] , The construction of preconditioners for elliptic problebyssubstructuring, 1l
Mathematics of Computation, 49 (1987), pp. 1-16.

[50] , The construction of preconditioners for elliptic problelbyssubstructuring, Il
Mathematics of Computation, 51 (1988), pp. 415-430.

[51] , The construction of preconditioners for elliptic problebyssubstructuring, 1Y

Mathematics of Computation, 53 (1989), pp. 1-24.

[52] R. BRAMLEY AND A. SAMEH, Row projection methods for large nonsymmetric
linear systemsSIAM Journal on Scientific and Statistical Computing, 1392),
pp. 168-193.

, A robust parallel solver for block tridiagonal systenis Proceedings of the
International Conference on Supercomputing, ACM, July8L$®. 39-54.

[53]

[54] A. BRANDT, Multi-level adaptive technique (MLAT) for fast numericaligions to
boundary problems.in Proc. 3rd Int. Conf. Numer. Methods in Fluid Mechanics,
Paris, 1972, H. Cabannes and R. Temam, eds., Berlin, 197iBg8p Verlag, pp. 82—
89.

[55] , Multi-level adaptive solutions to boundary value problemathematics of

Computation, 31 (1977), pp. 333-390.

[56] , A guide to multigrid developmenin Multigrid methods, W. Hackbusch and

U. Trottenberg, eds., Berlin, 1982, Springer Verlag, p@-2212.

[57] ——, Algebraic multigrid theory: The symmetric cas&ppl. Math. Comp., 19
(1985).

[58] A. BRANDT, S. F. Mc CorMICK, AND J. RUGE, Algebraic multigrid (amg) for
sparse matrix equationg Sparsity and its applications, D. J. Evans, ed., Canglerid
1984, Cambridge Univ. Press.

[59] C. BREzINSKI, Pace Type Approximation and General Orthogonal Polynomials
Birkhauser-Verlag, Basel-Boston-Stuttgart, 1980.

[60] C. BREZINSKI AND M. REDIVO ZAGLIA, Extrapolation Methods: Theory and Prac-
tice, North-Holland, Amsterdam, 1991.

[61] C. BREZINSKI AND M. REDIVO-ZAGLIA, Hybrid procedures for solving systems of
linear equationsNumerische Mathematik, 67 (1994), pp. 1-19.

[62] C. BREZzINSKI, M. REDIVO-ZAGLIA, AND H. SADOK, Avoiding breakdown
and near-breakdown in Lanczos-type algorithrisimerical Algorithms, 1 (1991),
pp. 261-284.

[63] , A breakdown-free Lanczos-type algorithm for solving linegstems Nu-

merische Mathematik, 63 (1992), pp. 29-38.

[64] R. BRIDSON AND W. P. TANG, Ordering, anisotropy, and factored sparse approxi-
mate inversesSIAM Journal on Scientific Computing, 21 (1999).

[65] W. L. BRIGGS, V. E. HENSON, AND S. F. Mc CoRrmICK, A multigrid tutorial,
SIAM, Philadelphia, PA, 2000. Second edition.

BIBLIOGRAPHY 519

[66] P. N. BROWN, A theoretical comparison of the Arnoldi and GMRES algorishm
SIAM Journal on Scientific and Statistical Computing, 12910 pp. 58-78.

[67] P. N. BROwWN AND A. C. HINDMARSH, Matrix-free methods for stiff systems of
ODEs SIAM Journal on Numerical Analysis, 23 (1986), pp. 610-638

[68] N. I. BULEEV, A numerical method for the solution of two-dimensional amee-
dimensional equations of diffusipMath. Sb, 51 (1960), pp. 227-238. (in Russian).

[69] O. BUNEMAN, A compact non-iterative Poisson soly&ech. Rep. 294, Stanford Uni-
versity, Stanford, CA, 1969.

[70] X. C. Cal AND O. WIDLUND, Multiplicative Schwarz algorithms for some nonsym-
metric and indefinite problemSIAM Journal on Numerical Analysis, 30 (1993).

[71] L. CEesARI, Sulla risoluzione dei sistemi di equazioni lineari per apggimazioni
successiveAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., Sea, @5 (1937),
pp. 422-428.

[72] T. F. CHAN, E. GALLOPOULOS, V. SIMONCINI, T. SZETO, AND C. TONG, A quasi-
minimal residual variant of the Bi-CGSTAB algorithm for sgmmetric systems
SIAM Journal on Scientific Computing, 15 (1994), pp. 338-=347

[73] T. F. CHAN AND D. GOOVAERTS On the relationship between overlapping and
nonoverlapping domain decomposition methd&AM Journal on Matrix Analysis
and Applications, 13 (1992), pp. 663—-670.

[74] T. F. CHAN AND T. P. MATHEW, The interface probing technique in domain decom-
position SIAM Journal on Matrix Analysis and Applications, 13 (1992p. 212—-238.

[75] ——, Domain decomposition algorithm&cta Numerica, (1994), pp. 61-143.

[76] H. C. CHEN AND A. SAMEH, A matrix decomposition method for orthotropic elastic-
ity problems SIAM Journal on Matrix Analysis and Applications, 10 (1989p. 39—
64.

[77] C. C. CHENEY, Introduction to Approximation TheorcGraw Hill, NY, 1966.

[78] E. CHoOw AND Y. SAAD, Approximate inverse techniques for block-partitioned ma-
trices SIAM Journal on Scientific Computing, 18 (1997), pp. 165574.

[79] , ILUS: an incomplete LU factorization for matrices in spade/line format
International Journal for Numerical Methods in Fluids, 2997), pp. 739—-748.
[80] , Approximate inverse preconditioners via sparse-spagaiions SIAM Jour-

nal on Scientific Computing, 19 (1998), pp. 995-1023.

[81] N. CHRISOCHOIDES G. FOX, AND J. THOMPSON MENUS-PGG mapping environ-
ment for numerical unstructured and structured paralldtiggenerationin Proceed-
ings of the Seventh International Conference on Domain Byosition Methods in
Scientific and Engineering Computing, 1993.

[82] N. CHRISOCHOIDES C. E. HousTIs, E. N. HousTis, P. N. RpPACHIOU, S. K.
KORTESIS AND J. RceE, DOMAIN DECOMPOSER: a software tool for mapping
PDE computations to parallel architectureis Domain Decomposition Methods for
Partial Differential Equations, R. G. et. al., ed., SIAM fioations, 1991, pp. 341-
357.

520 BIBLIOGRAPHY

[83] N. CHRISOCHOIDES E. HousTIs, AND J. RCE, Mapping algorithms and soft-
ware environment for data parallel PDE iterative solve¥surnal of Parallel and Dis-
tributed Computing, 21 (1994), pp. 75-95.

[84] P. G. QARLET, The finite element method for elliptic problem®orth-Holland, Am-
sterdam, 1978.

[85] G. CimmINO, Calcolo approssimato per le soluzioni dei sistemi di eqoaizineari,
Ricerca Scientifica, Il, 9 (1938), pp. 326—333.

[86] A. CLAYTON, Further results on polynomials having least maximum maoslaler an
ellipse in the complex plan@ech. Rep. AEEW-7348, UKAEA, Harewell-UK, 1963.

[87] S. CLIFT AND W. TANG, Weighted graph based ordering techniques for precondi-
tioned conjugate gradient methqd& T, 35 (1995), pp. 30-47.

[88] P. Concus AND G. H. GoLusB, A generalized conjugate gradient method for non-
symmetric systems of linear equatipis Computing Methods in Applied Sciences
and Engineering, R. Glowinski and J. L. Lions, eds., New YAa%76, Springer Ver-
lag, pp. 56—65.

[89] P. Concus, G. H. GoLuB, AND G. MEURANT, Block preconditioning for the con-
jugate gradient methqdSIAM Journal on Scientific and Statistical Computing, 6
(1985), pp. 220-252.

[90] T. H. CorMEN, C. E. LEISERSON AND R. L. RIVEST, Introduction to Algorithms
Mc Graw Hill, New York, 1990.

[91] J. D. F. @sGRoOVE J. C. DAz, AND A. GRIEWANK, Approximate inverse precon-
ditioning for sparse linear systemmterernaitonal Journal of Computational Mathe-
matics, 44 (1992), pp. 91-110.

[92] J. QuLLuM AND A. GREENBAUM, Relations between Galerkin and norm-minimizing
iterative methods for solving linear systen®8AM Journal on Matrix Analysis and
Applications, 17 (1996), pp. 223-247.

[93] B. N. DATTA, Numerical Linear Algebra and Applications, second editiShAM,
Philadelphia, PA, 2010.

[94] P. J. Dnvis, Interpolation and ApproximatiarBlaisdell, Waltham, MA, 1963.

[95] T. A. DaAvis, A parallel algorithm for sparse unsymmetric LU factorizats PhD
thesis, University of lllinois at Urbana Champaign, Urbalha, 1989.

[96] E. F. D’AZEVEDO, F. A. FORSYTH, AND W. P. TANG, Ordering methods for pre-
conditioned conjugate gradient methods applied to unstmed grid problemsSIAM
Journal on Matrix Analysis and Applications, 13 (1992), §p4—-961.

[97] ——, Towards a cost effective ILU preconditioner with high lelel BIT, 31 (1992),
pp. 442-463.

[98] M. A. DELONG AND J. M. ORTEGA, SOR as a preconditioneApplied Numerical
Mathematics, 18 (1995), pp. 431-440.

[99] J. W. DeEmMMEL, Applied Numerical Linear Algebr&IAM, Philadelphia, PA, 1997.

[100] P. DEUFLHARD, R. W. FREUND, AND A. WALTER, Fast secant methods for the
iterative solution of large nonsymmetric linear systemdPACT of Computing in
Science and Engineering, 2 (1990), pp. 244-276.

BIBLIOGRAPHY 521

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

J. J. DDNGARRA, |. S. DUFF, D. SORENSEN AND H. A. VAN DER VORST, Solving
Linear Systems on Vector and Shared Memory Compu$fsVl, Philadelphia, PA,
1991.

M. DRYJA AND O. B. WIDLUND, Some domain decomposition algorithms for elliptic
problems in Iterative Methods for Large Linear Systems, L. Hayes Bn&incaid,
eds., New York, NY, 1989, Academic Press, pp. 273-291.

, Towards a unified theory of domain decomposition algoritiforselliptic
problemsin Third International Symposium on Domain Decomposifibethods for
Partial Differential Equations, held in Houston, TX, MargB-22, 1989, T. Chan,
R. Glowinski, J. Périaux, and O. Widlund, eds., Philad&pRA, 1990, SIAM.

, Additive Schwarz methods for elliptic finite element proiden three dimen-
sions in Fifth International Symposium on Domain Decompositiethods for Par-
tial Differential Equations, T. F. Chan, D. E. Keyes, G. A.\Mant, J. S. Scroggs, and
R. G. \oigt, eds., Philadelphia, PA, 1992, SIAM.

P. F. DuBoIs, A. GREENBAUM, AND G. H. RODRIGUE, Approximating the inverse
of a matrix for use on iterative algorithms on vectors prams Computing, 22
(1979), pp. 257-268.

I. S. DUFF, A survey of sparse matrix researéh Proceedings of the IEEE, 65, New
York, 1977, Prentice Hall, pp. 500-535.

I. S. DUFF, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices
Clarendon Press, Oxford, 1986.

I. S. DUFF, R. G. QRIMES, AND J. G. LEWIS, Sparse matrix test problemaCM
Transactions on Mathematical Software, 15 (1989), pp. 1-14

I. S. DUFF AND J. KOSTER The design and use of algorithms for permuting large
entries to the diagonal of sparse matricdAM Journal on Matrix Analysis and
Applications, 20 (1999), pp. 889-901.

—, On algorithms for permuting large entries to the diagonabaparse matrix
SIAM Journal on Matrix Analysis and Applications, 22 (200p. 973—996.

I.S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate
gradients BIT, 29 (1989), pp. 635-657.

L. C. DuTTO, The effect of reordering on the preconditioned GMRES atgorifor
solving the compressible Navier-Stokes equatibrisrnational Journal for Numerical
Methods in Engineering, 36 (1993), pp. 457-497.

T. EIROLA AND O. NEVANLINNA , Accelerating with rank-one updatdsnear Alge-
bra and its Applications, 121 (1989), pp. 511-520.

S. HSENSTAT, Efficient implementation of a class of conjugate gradienthoes
SIAM Journal on Scientific and Statistical Computing, 2 (82%p. 1-4.

S. C. BSENSTAT, M. H. SCHULTZ, AND A. H. SHERMAN, Algorithms and data
structures for sparse symmetric Gaussian eliminagtiShPAM Journal on Scientific
Computing, 2 (1981), pp. 225-237.

H. C. BE.LMAN, A stability analysis of incomplete LU factorizatigridathematics of
Computation, 47 (1986), pp. 191-217.

522 BIBLIOGRAPHY

[117] H. C. EEMAN AND E. AGRON, Ordering techniques for the preconditioned conju-
gate gradient method on parallel compute@omputer Physics Communications, 53
(1989), pp. 253-269.

[118] H. C. EEMAN AND G. H. GoLUB, Inexact and preconditioned Uzawa algorithms for
saddle point problemsSIAM Journal on Numerical Analysis, 31 (1994), pp. 1645—
1661.

[119] H. C. EEMAN AND D. J. SLVESTER, Fast nonsymmetric iteration and precondition-
ing for Navier-Stokes equationSIAM Journal on Scientific Computing, 17 (1996),
pp. 33-46.

[120] M. ENGLEMAN, FIDAP manualsTech. Rep. Vol. 1, 2, and 3, Fluid Dynamics Inter-
national, Evanston, IL, 1986.

[121] V. FABER AND T. MANTEUFFEL, Necessary and sufficient conditions for the ex-
istence of a conjugate gradient meth@&lAM Journal on Numerical Analysis, 21
(1984), pp. 352-361.

[122] K. FaN, Note onM -matrices Quarterly Journal of Mathematics, Oxford series (2),
11 (1960), pp. 43-49.

[123] C. FARHAT AND F. X. Roux, Implicit parallel processing in structural mechanjcs
Computational Mechanics Advances, 2 (1994), pp. 1-124.

[124] R. P. EDORENKOQ, A relaxation method for solving elliptic difference eqoat
U.S.S.R Computational Math. and Math. Phys., 1 (1962), pp241096.

, The speed of convergence of one iterative pracelsS.S.R Computational
Math. and Math. Phys., 4 (1964), pp. 227-235.

[126] R. M. FERENCZ Element-by-element preconditioning techniques for lacae vec-
torized finite element analysis in nonlinear solid and stwal mechanicsPhD thesis,
Department of Applied Mathematics, Stanford, CA, 1989.

[125]

[127] B. ASCHER AND R. W. FREUND, On the constrained Chebyshev approximation
problem on ellipseslournal of Approximation Theory, 62 (1990), pp. 297-315.

[128] , Chebyshev polynomials are not always optindalirnal of Approximation The-

ory, 65 (1991), pp. 261-272.

[129] B. FISCHER AND L. REICHEL, A stable Richardson iteration method for complex
linear systemsNumerische Mathematik, 54 (1988), pp. 225-241.

[130] R. FLETCHER, Conjugate gradient methods for indefinite systeim&roceedings of
the Dundee Biennal Conference on Numerical Analysis 1974, @atson, ed., New
York, 1975, Springer Verlag, pp. 73-89.

[131] I. T. FosTER Designing and Building Parallel Programs: Concepts and [$dor
Parallel Software Engineeringhddison-Wesley, 1995.

[132] R. W. FRREUND, Conjugate gradient-type methods for linear systems withpex
symmetric coefficient matriceSIAM Journal on Scientific and Statistical Computing,
13 (1992), pp. 425—-448.

, Quasi-kernel polynomials and convergence results for gomsimal residual
iterations in Numerical Methods of Approximation Theory, Vol 9, D. Bss and
L. L. Schumaker, eds., International series of numericaheraatics, Basel, 1992,
Birkhauiser Verlag, pp. 1-19.

[133]

BIBLIOGRAPHY 523

[134] , A Transpose-Free Quasi-Minimal Residual algorithm for sidg@rmitian linear

systemsSIAM Journal on Scientific Computing, 14 (1993), pp. 470248

[135] R. W. FRREUND, M. H. GUTKNECHT, AND N. M. NACHTIGAL, An implementation
of of the Look-Ahead Lanczos algorith®IAM Journal on Scientific and Statistical
Computing, 14 (1993), pp. 470-482.

[136] R. W. FREUND AND N. M. NACHTIGAL, QMR: a quasi-minimal residual method
for non-Hermitian linear systemslumerische Mathematik, 60 (1991), pp. 315-339.

[137] K. GALLIVAN , A. SAMEH, AND Z. ZLATEV, A parallel hybrid sparse linear system
solver, Computing Systems in Engineering, 1 (June 1990), pp. 183-1

[138] E. GALLOPOULOS AND Y. SAAD, Parallel block cyclic reduction algorithm for the
fast solution of elliptic equation®arallel Comput., 10 (1989), pp. 143-160.

[139] F. R. ®ANTMACHER, The Theory of Matricehelsea, New York, 1959.
[140] N. GASTINEL, Analyse Nur@rique Lireaire Hermann, Paris, 1966.

[141] W. GAauTscCHI, On generating orthogonal polynomialSIAM Journal on Scientific
and Statistical Computing, 3 (1982), pp. 289-317.

[142] A. GEORGE Computer implementation of the finite element methtmth. Rep.
STAN-CS-208, Stanford University, Department of Comp&eience, 1971.

[143] A. GEORGE ANDJ. W.-H. Liu, The evolution of the minimum degree ordering algo-
rithm, SIAM Review, 31 (March 1989), pp. 1-19.

[144] J. A. GEORGE ANDJ. W. Liu, Computer Solution of Large Sparse Positive Definite
SystemgsPrentice-Hall, Englewood Cliffs, NJ, 1981.

[145] J. R. GLBERT, G. L. MILLER, AND S.-H. TENG, Geometric mesh partitioning:
Implementation and experiments IPPS 94, Submitted to SIAM SISC, 1995.

[146] J. R. GLBERT AND T. PEIERLS, Sparse partial pivoting in time proportional to ar-
tithmetic operationsSIAM Journal on Scientific Computing, 9 (1988), pp. 862-874

[147] S. K. GobuNoV AND G. P. RRopPkoPOV, A method of minimal iteration for eval-
uating the eigenvalues of an elliptic operat@h. Vichsl. Mat. Mat. Fiz., 10 (1970),
pp. 1180-1190.

[148] T. GOEHRING AND Y. SAAD, Heuristic algorithms for automatic graph partitioning
Tech. Rep. umsi-94-29, University of Minnesota Supercaaplnstitute, Minneapo-
lis, MN, February 1994.

[149] G. H. GoLuB AND C. F. V. LoAN, Matrix ComputationsJohns Hopkins University
Press, Baltimore, MD, 3rd ed., 1996.

[150] G. H. GoLuB AND M. L. OVERTON, The convergence of inexact Chebyshev and
Richardson iterative methods for solving linear systelsmerische Mathematik, 53
(1988), pp. 571-593.

[151] G. H. GoLuB AND R. S. \WRGA, Chebyshev semi iterative methods successive
overrelaxation iterative methods and second order Rickandterative method®u-
merische Mathematik, 3 (1961), pp. 147-168.

[152] G. H. GoLuB AND A. J. WATHENS, An iteration for indefinite systems and its ap-
plication to the Navier-Stokes equatioi @AM Journal on Scientific Computing, 19
(1998), pp. 530-539.

524 BIBLIOGRAPHY

[153] G. H. GoLuB AND Q. YE, Inexact preconditioned conjugate gradient method with
inner-outer iterationsSIAM Journal on Scientific Computing, 21 (1999).

[154] A. GREENBAUM, Iterative Methods for Solving Linear Syster8$AM, Philadelpha,
PA, 1997.

[155] A. GREENBAUM, C. LI, AND H. Z. CHAO, Parallelizing preconditioned conjugate
gradient algorithmsComputer Physics Communications, 53 (1989), pp. 295-309.

[156] W. GROPR E. LUSK, AND A. SKJELLUM, Using MPI: Portable Parallel Program-
ming with the Message Passing InterfabdT press, 1994.

[157] M. GROTE AND T. HUCKLE, Effective parallel preconditioning with sparse approxi-
mate inversesn Proceedings of the Seventh SIAM Conference on Paraiteld3sing
for Scientific Computing, D. H. Bailey, ed., Philadelphi@9b, SIAM, pp. 466—471.

[158] M. GROTE AND H. D. SIMON, Parallel preconditioning and approximate inverses on
the connection machina Parallel Processing for Scientific Computing — vol. 2FR.
Sincovec, D. E. Keyes, L. R. Petzold, and D. A. Reed, eds.\V58992, pp. 519-523.

[159] M. J. GROTE AND T. HUCKLE, Parallel preconditionings with sparse approximate
inverses SIAM Journal on Scientific Computing, 18 (1997), pp. 838385

[160] M. H. GUTKNECHT, A completed theory of the unsymmetric Lanczos process and
related algorithms. Part |.SIAM Journal on Matrix Analysis and Applications, 13
(1992), pp. 594-639.

, A completed theory of the unsymmetric Lanczos process datdealgo-
rithms. Part 1, SIAM Journal on Matrix Analysis and Applications, 15 (1994
pp. 15-58.

[161]

[162] W. HAckBUSCH, Multi-Grid Methods and Applicationsol. 4 of Springer Series in
Computational Mathematics, Springer-Verlag, Berlin,3.98

[163] W. HACKBUSCH, lterative Solution of Large Linear Systems of Equatj@ringer
Verlag, New York, 1994.

[164] P. R. HALMOS, Finite-Dimensional Vector SpaceSpringer Verlag, New York, 1958.

[165] S. HAMMOND AND R. SCHREIBER, Efficient iccg on a shared memory multipro-
cessor Tech. Rep. 89. 24, RIACS, NASA Ames research center, Mffietd CA.,
1989.

[166] B. HENDRICKSON AND R. LELAND, The Chaco User's Guide Version 3andia
National Laboratories, Albuquerque NM, 1994,

[167] M. R. HESTENES ANDE. L. STIEFEL, Methods of conjugate gradients for solving
linear systemsJournal of Research of the National Bureau of Standardgid®eB,
49 (1952), pp. 409-436.

[168] C. HiIrscH, Numerical Computation of Internal and External Flgwshn Wiley and
Sons, New York, 1988.

[169] R. W. HOCKNEY, A fast direct solution of Poisson’s equation using Fouriaalysis
J. Assoc. Comput. Mach., 12 (1965), pp. 95-113.

[170] ——, The potential calculation and some applicatiprideth. Comput. Phy., 9
(1970), pp. 135-211.

BIBLIOGRAPHY 525

[171] ——, The potential calculation and some applicatipidethods Comput. Phys., 9
(1970), pp. 135-211.

[172] R. A. HORN AND C. R. DHNSON, Matrix Analysis Cambridge University Press,
Cambridge, 1985.

[173] A. S. HOUSEHOLDER Theory of Matrices in Numerical AnalysBlaisdell Pub. Co.,
Johnson, CO, 1964.

[174] T.J. R. HUGHES, R. M. FERENCZ AND J. O. HALLQUIST, Large-scale vectorized
implicit calculations in solid mechanics on a Cray X-MP/4#izring EBE precondi-
tioned conjugate gradient€omputer Methods in Applied Mechanics and Engineer-
ing, 61 (1987), pp. 215-248.

[175] K. JBiLOU, Projection minimization methods for nonsymmetric linegstems To
appear, Linear Algebra and its Applications.

[176] K. JBILOU, A. MESSAOUDI, AND H. SADOK, Global FOM and GMRES algorithms
for matrix equationsApplied Numerical Mathematics, 31 (1999), pp. 49-63.

[177] K. JBILOU AND H. SADOK, Analysis of some vector extrapolation methods for solv-
ing systems of linear equatiofsumerische Mathematik, (1995), pp. 73—-89.

[178] K. C. EA AND D. M. YOUNG, Generalized conjugate gradient acceleration of
nonsymmetrizable iterative methodtlinear Algebra and its Applications, 34 (1980),
pp. 159-194.

[179] C. HNsoN Numerical Solutions of Partial Differential Equations thetFinite EI-
ement MethodCambridge University Press, Cambridge, UK, 1987.

[180] O. G. HHNSON, C. A. MICCHELLI, AND G. PauL, Polynomial preconditionings
for conjugate gradient calculationSIAM Journal on Numerical Analysis, 20 (1983),
pp. 362-376.

[181] S. KaczmAaRz, Angeréherte aufbsung von systemen linearer gleichungBalletin
international de I’Académie polonaise des Sciences etrdstlll, class A (1937),
pp. 355-357.

[182] C. KAMATH AND A. SAMEH, A projection method for solving nonsymmetric linear
systems on multiprocesspRarallel Computing, 9 (1988), pp. 291-312.

[183] R. M. KaRrP, Reducibility among combinatorial problemis Complexity of Com-
puter Computations, New York, 1972, Plenum Press, pp. 856-10

[184] T. I. KARUSH, N. K. MADSEN, AND G. H. RODRIGUE, Matrix multiplication by
diagonals on vector/parallel processoiech. Rep. UCUD, Lawrence Livermore Na-
tional Lab., Livermore, CA, 1975.

[185] G. KaRYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partition-
ing irregular graphs SIAM Journal on Scientific Computing, 20 (1999), pp. 359239

[186] C. T. KELLY, Iterative methods for linear and nonlinear equatip8$AM, Philadel-
phia, 1995.

[187] D. S. KERsSHAW, The incomplete Choleski conjugate gradient method fortérative
solution of systems of linear equatiodsurnal of Computational Physics, 26 (1978),
pp. 43-65.

526 BIBLIOGRAPHY

[188] R. KETTLER, Analysis and comparison of relaxation schemes in robustignial and
preconditioned conjugate gradient methpufsMultigrid methods: Proc., Koln-Porz,
Nov. 1981, W. Hackbusch and U. Trottenberg, eds., Lectutesnim Math. 1228,
Springer Verlag, Berlin, 1982, pp. 502-534.

[189] D. E. KEYES ANDW. D. GROPR, A comparison of domain decomposition techniques
for elliptic partial differential equations and their pallal implementation SIAM
Journal on Scientific and Statistical Computing, 8 (198),9166—s202.

[190] D. E. KEYES, Y. SAAD, AND D. G. TRUHLAR, Domain-Based Parallelism and
Problem Decomposition Methods in Computational ScienceEargineeringSIAM,
Philadelphia, PA, 1995. (Conference proceedings).

[191] L. Y. KOLOTILINA AND A. Y. Y EREMIN, On a family of two-level preconditionings
of the incomplete block factorization typgoviet Journal of Numerical Analysis and
Mathematical Modeling, 1 (1986), pp. 293-320.

[192] M. A. KRASNOSELSKII ET AL, Approximate Solutions of Operator Equations
Wolters-Nordhoff, Groningen, 1972.

[193] L. KRONSD AND G. DAHLQUIST, On the design of nested iterations for elliptic
difference equation®IT, 11 (1971), pp. 63—71.

[194] V. KUMAR, A. GRAMA, A. GUPTA, AND G. KAPYRIS, Parallel Computing, 2nd
edition, Benjamin Cummings, Redwood City, CA, 2003.

[195] C. LaNczos, An iteration method for the solution of the eigenvalue peotbbf linear
differential and integral operatorsJournal of Research of the National Bureau of
Standards, 45 (1950), pp. 255-282.

[196] , Chebyshev polynomials in the solution of large-scale lirsstemsin Pro-

ceedings of the ACM, 1952, pp. 124-133.

[197] , Solution of systems of linear equations by minimized itenat Journal of

Research of the National Bureau of Standards, 49 (195233¢53.

[198] P. LETALLEC, Domain decomposition methods in computational mechaGospu-
tational Mechanics Advances, 1 (1994), pp. 121-220.

[199] R. LEUZzE, Independent set orderings for parallel matrix factorizeis by Gaussian
elimination Parallel Computing, 10 (1989), pp. 177-191.

[200] J. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm for reordering
sparse matrices for parallel factorizationSIAM Journal on Scientific and Statistical
Computing, 6 (1989), pp. 1146-1173.

[201] J. G. LEwis AND H. D. SIMON, The impact of hardware scatter-gather on sparse
Gaussian elimination SIAM Journal on Scientific and Statistical Computing, 9
(1988), pp. 304-311.

[202] N. LI, Y. SAAD, AND E. CHOw, Crout versions of ILU for general sparse matrices
SIAM Journal on Scientific Computing, 25 (2003), pp. 716-=728

[203] Z. LI, Y. SAAD, AND M. SOSONKINA, pARMS: a parallel version of the algebraic re-
cursive multilevel solveiTech. Rep. umsi-2001-100, Minnesota Supercomputer Insti
tute, University of Minnesota, Minneapolis, MN, 2001. Apped in NLAA, 10:485-
509 (2003).

BIBLIOGRAPHY 527

[204] J. W.-H. Liu, Modification of the minimum degree algorithm by multiplergfiation
ACM Transactions on Mathematical Software, 11 (1985), gd-153.

[205] S. Ma, Parallel block preconditioned Krylov subspace methodsHartial Differ-
ential Equations PhD thesis, Department of Computer Science, Minneapdlis,
1993.

[206] T. A. MANTEUFFEL, Anincomplete factorization technique for positive deditiitear
systemsMathematics of Computation, 34 (1980), pp. 473—-497.

[207] S. F. Mc CorMICK, ed.,Multigrid Methods Philadelphia, PA, 1987, SIAM.

[208] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for
linear systems of which the coefficient matrix is a symm#ftrimatrix, Mathematics
of Computation, 31 (1977), pp. 148-162.

[209] G. MEURANT, Computer solution of large linear systenisorth-Holland, Amster-
dam, 1999. Vol 28, Studies in Mathematics and its Appliaatio

[210] C. D. MEYER, Matrix Analysis and Applied Linear Algebr&lAM, Philadelphia, PA,
2000.

[211] G. L. MILLER, S. H. TENG, W. THURSTON, AND S. A. VAVASIS, Automatic mesh
partitioning, in Sparse Matrix Computations: Graph Theory Issues andmithlgnms,
A. George, J. Gilbert, and J. Liu, eds., 1993. IMA Volumes iathematics and Its
Applications.

[212] N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by paieon
tioned conjugate gradient methoACM Transactions on Mathematical Software, 6
(1980), pp. 206-219.

[213] N. M. NACHTIGAL, A look-ahead variant of the Lanczos Algorithm and its agplic
tion to the Quasi-Minimal Residual method for non-Hernmitimear systemsPhD
thesis, Applied Mathematics, Cambridge, 1991.

[214] Y. NoTAY, Flexible conjugate gradienSIAM Journal on Scientific Computing, 22
(2000), p. 1444=1460.

[215] D. O’LEARY, The block conjugate gradient algorithm and related methadgisear
Algebra and its Applications, 29 (1980), pp. 243-322.

[216] C. W. OCOSTERLEE ANDT. WASHI0, An evaluation of parallel multigrid as a solver
and a preconditioner for singularly perturbed problens8AM Journal on Scientific
and Statistical Computing, 19 (1991), pp. 87-110.

[217] J. ORTEGA, Efficient implementation of certain iterative methp8$AM Journal on
Scientific and Statistical Computing, 9 (1988), pp. 882-891

[218] , Orderings for conjugate gradient preconditionin@AM Journal on Scientific

and Statistical Computing, 12 (1991), pp. 565-582.

[219] J. M. ORTEGA, Introduction to Parallel and Vector Solution of Linear Sysis
Plenum Press, New York, 1988.

[220] J. M. ORTEGA AND R. G. VOIGT, Solution of partial differential equations on vector
and parallel computersSIAM Review, 27 (1985), pp. 149-240.

[221] O. OSTERBY AND Z. ZLATEV, Direct Methods for Sparse MatriceSpringer Verlag,
New York, 1983.

528 BIBLIOGRAPHY

[222] C. C. RIGE, Computational variants of the Lanczos method for the eigdripm
Journal of the Institute of Mathematics and its Applicatiph0 (1972), pp. 373-381.

[223] C. C. RAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear
equationsSIAM Journal on Numerical Analysis, 12 (1975), pp. 617-624

[224] B. N. RRLETT, The Symmetric Eigenvalue Probleno. 20 in Classics in Applied
Mathematics, SIAM, Philadelphia, 1998.

[225] B. N. RRLETT, D. R. TAYLOR, AND Z. S. Liu, A look-ahead Lanczos algorithm
for nonsymmetric matrice$lathematics of Computation, 44 (1985), pp. 105-124.

[226] D. PEACEMAN AND H. RACHFORD, The numerical solution of elliptic and parabolic
differential equationsJournal of SIAM, 3 (1955), pp. 28—41.

[227] S. RSSANETZKY, Sparse Matrix Technologcademic Press, New York, 1984.

[228] E. L. PooLE AND J. M. ORTEGA, Multicolor ICCG methods for vector computers
SIAM Journal on Numerical Analysis, 24 (1987), pp. 1394-8.41

[229] A. POTHEN, H. D. SIMON, AND K. P. Liou, Partitioning sparse matrices with eigen-
vectors of graphsSIAM Journal on Matrix Analysis and Applications, 11 (1990
pp. 430-452.

[230] J. S. RzEMIENIECKI, Matrix structural analysis of substructureAm. Inst. Aero.
Astro. J., 1 (1963), pp. 138-147.

[231] J. K. ReID, On the method of conjugate gradients for the solution ofdasgarse
systems of linear equatiofis Large Sparse Sets of Linear Equations, J. K. Reid, ed.,
Academic Press, 1971, pp. 231-254.

[232] T. J. RvLIN, The Chebyshev Polynomials: from Approximation Theory teBda
and Number Theornd. Wiley and Sons, New York, 1990.

[233] D. J. Rose ANDR. E. TARJAN, Algorithmic aspects of vertex elimination on directed
graphs SIAM J. Appl. Math., 34 (1978), pp. 176-197.

[234] F. X. Roux, Acceleration of the outer conjugate gradient by reorthcglaation for a
domain decomposition method for structural analysis peois in Proceedings of the
Third International Symposium on Domain Decomposition ivels, Houston March
20-22 1989, T. Chan and R. Glowinski, eds., Philadelphig, 1220, SIAM.

[235] A. RUGE AND K. STUBEN, Algebraic multigrid in Multigrid Methods, S. Mc-
Cormick, ed., vol. 3 of Frontiers in Applied MathematicsA$1, 1987, ch. 4.

[236] A. RuHE, Implementation aspects of band Lanczos algorithms for coatipn of
eigenvalues of large sparse symmetric matriddsithematics of Computation, 33
(1979), pp. 680-687.

[237] H. RuTISHAUSER Theory of gradient methodsin Refined Iterative Methods
for Computation of the Solution and the Eigenvalues of 3elfeint Boundary
Value Problems, Basel-Stuttgart, 1959, Institute of AggliMathematics, Zurich,
Birkhauser Verlag, pp. 24-49.

[238] Y. SaaD, Krylov subspace methods for solving large unsymmetricalirsystems
Mathematics of Computation, 37 (1981), pp. 105-126.

BIBLIOGRAPHY 529

[239] , The Lanczos biorthogonalization algorithm and other obégprojection meth-
ods for solving large unsymmetric syste®@BAM Journal on Numerical Analysis, 19

(1982), pp. 470-484.

, Iterative solution of indefinite symmetric systems by neghusing orthogonal
polynomials over two disjoint intervglSIAM Journal on Numerical Analysis, 20
(1983), pp. 784-811.

, Practical use of polynomial preconditionings for the caygte gradient
method SIAM Journal on Scientific and Statistical Computing, 6§89 pp. 865—
881.

[240]

[241]

[242] , Least squares polynomials in the complex plane and theifarsmlving sparse
nonsymmetric linear systemS&IAM Journal on Numerical Analysis, 24 (1987),

pp. 155-169.

, On the Lanczos method for solving symmetric linear systathseweral right-
hand sidesMathematics of Computation, 48 (1987), pp. 651-662.

[243]

[244] , Krylov subspace methods on supercomput®r8M Journal on Scientific and

Statistical Computing, 10 (1989), pp. 1200-1232.

[245] ——, SPARSKIT: A basic tool kit for sparse matrix computatjdeeh. Rep. RIACS-
90-20, Research Institute for Advanced Computer Scieng&SMANAmes Research
Center, Moffett Field, CA, 1990.

[246] ——, Numerical Methods for Large Eigenvalue Probleidalstead Press, New York,
1992.

, A flexible inner-outer preconditioned GMRES algorith81AM Journal on
Scientific and Statistical Computing, 14 (1993), pp. 4619-46

[247]

[248] , Highly parallel preconditioners for general sparse maticin Recent Ad-
vances in Iterative Methods, IMA Volumes in Mathematics dtsdApplications,
G. Golub, M. Luskin, and A. Greenbaum, eds., vol. 60, New Yd%94, Springer

Verlag, pp. 165-199.

, ILUT: a dual threshold incomplete ILU factorizatipNumerical Linear Alge-
bra with Applications, 1 (1994), pp. 387—402.

[250] ——, Analysis of augmented Krylov subspace technig@&8M J. Matrix Anal.
Appl., 18 (1997), pp. 435-449.

[251] Y. SAAD AND M. H. ScHuULTZ, GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systen®AM Journal on Scientific and Statistical
Computing, 7 (1986), pp. 856—869.

, Parallel implementations of preconditioned conjugate diemt methodsin
Mathematical and Computational Methods in Seismic Expionaand Reservoir
Modeling, W. E. Fitzgibbon, ed., Philadelphia, PA, 1986ARI

[249]

[252]

[253] Y. SAAD AND B. SucHOMEL, ARMS: An algebraic recursive multilevel solver for
general sparse linear systepddumerical Linear Algebra with Applications, 9 (2002).

[254] Y. SAAD AND H. A. VAN DER VORST, Iterative solution of linear systems in the 20th
century Journal of Computational and Applied Mathematics, 1239®0pp. 1-33.

530 BIBLIOGRAPHY

[255] Y. SAAD AND K. Wu, DQGMRES: a direct quasi-minimal residual algorithm based
on incomplete orthogonalizatipNumerical Linear Algebra with Applications, 3
(1996), pp. 329-343.

[256] H. SaDok, Méthodes de projection pour les gystes ligaires et non libaires Uni-
versity of Lille 1, Lille, France, 1994. Habilitation Thesi

[257] J. ALTZ, R. MIRCHANDANEY, AND K. CROWLEY, Run-time paralellization and
scheduling of loopdEEE Trans. Comput., 40 (1991), pp. 603-612.

[258] J. H. S\LTZ, Automated problem scheduling and reduction of synchrdioizalelay
effects Tech. Rep. 87-22, ICASE, Hampton, VA, 1987.

[259] W. SCHONAUER, The efficient solution of large linear systems, resultirarfrthe
fdm for 3-d PDE’s, on vector computerdn Proceedings of the 1-st International
colloguium on vector and parallel computing in Scientifiplgations - Paris March
1983, 1983.

[260] W. SCHONAUER, Scientific Computing on Vector Computelorth-Holland, New
York, 1987.

[261] H. A. ScHwWARz, Gesammelte Mathematische Abhandlungeh 2, Springer Verlag,
Berlin, Germany / Heidelberg, Germany / London, UK/ etc9Q8p. 133-143. First
published in Vierteljahrsschrift der Naturforschenders@lschaft in Zurich, volume
15, 1870, pp. 272—-286.

[262] F. SHAKIB, Finite element analysis of the compressible Euler and NaStekes
Equations PhD thesis, Department of Aeronautics, Stanford, CA, 1989

[263] A. SiDI, Extrapolation vs. projection methods for linear systemsapfationsJournal
of Computational and Applied Mathematics, 22 (1988), pp-88L

[264] D. SLVESTER AND A. WATHEN, Fast iterative solution of stabilized Stokes prob-
lems. part ii: using block preconditionerSIAM Journal on Numerical Analysis, 30
(1983), pp. 143-144.

[265] H. D. SmoN, Incomplete LU preconditioners for conjugate gradient tyjeeative
methodsin Proceedings of the SPE 1985 reservoir simulation symapgsDallas,
TX, 1988, Society of Petroleum Engineers of AIME, pp. 3026-30Paper number
13533.

[266] V. SIMONCINI AND E. GALLOPOULOS, Convergence properties of block GMRES
and matrix polynomiald_inear Algebra and its Applications, 247 (1996), pp. 975:12

[267] ——, An iterative method for nonsymmetric systems with multiglt-hand sides
SIAM Journal on Scientific Computing, 16 (July 1995), pp. 9933.

[268] B. SMITH, P. BIBRSTAD, AND W. GROPR Domain decomposition: Parallel multi-
level methods for elliptic partial differential equatignSambridge University Press,
New-York, NY, 1996.

[269] B. F. SviTH, An optimal domain decomposition preconditioner for thedielement
solution of linear elasticity problem$&IAM Journal on Scientific and Statistical Com-
puting, 13 (1992), pp. 364-378.

[270] D. A. SviTH, W. F. FORD, AND A. SIDI, Extrapolation methods for vector se-
quencesSIAM review, 29 (1987), pp. 199-233.

BIBLIOGRAPHY 531

[271] D. C. SMOLARSKI AND P. E. \YLOR, An optimum iterative method for solving any
linear system with a square matriRIT, 28 (1988), pp. 163—-178.

[272] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric lineaesys
SIAM Journal on Scientific and Statistical Computing, 10828 pp. 36-52.

[273] G. W. STEWART, Introduction to Matrix ComputationgAcademic Press, New York,
1973.

[274] ——, Matrix Algorithms, volumes 1 to, SIAM, Philadelphia, 2002.

[275] W. J. SSTEWART, Introduction to the Numerical Solution of Markov Chaifsinceton
University Press, Princeton, NJ, 1994.

[276] E. L. STiEFEL, Kernel polynomials in linear algebra and their applicatgrl. S.
National Bureau of Standards, Applied Mathematics Sedi@$1958), pp. 1-24.

[277] G. STRANG AND G. J. FX, An analysis of the finite element meth&dentice Hall,
Englewood Cliffs, NJ, 1973.

[278] K. STUBEN AND U. TROTTENBERG Multi-grid methods: Fundamental algorithms,
model problem analysis and applicatigris Multigrid Methods, W. Hackbusch and
U. Trottenberg, eds., vol. 960, Berlin, 1982, Springer &grl

[279] P. N. SNVARTZRAUBER, A direct method for the discrete solution of separable gdip
equationsSIAM Journal on Numerical Analysis, 11 (1974), pp. 113650.1

, The methods of cyclic reduction, Fourier analysis, and tARER algorithm for
the discrete solution of Poisson’s equation on a rectang§l&M review, 19 (1977),
pp. 490-501.

[281] R. SWEET, A parallel and vector variant of the cyclic reduction algiwin Super-
computer, 22 (1987), pp. 18-25.

[282] D. B. SYLD AND J. A. VOGEL, FQMR: A flexible quasi-minimal residual method
with inexact preconditionerSIAM Journal on Scientific Computing, 23 (2001),
pp. 363-380.

[283] P. L. TALLEC, Y.-H. D. ROECK, AND M. VIDRASCU, Domain-decomposition meth-
ods for large linearly elliptic three dimensional problendeurnal of Computational
and Applied Mathematics, 34 (1991). Elsevier Science Bhbtis, Amsterdam.

[280]

[284] D. TAYLOR, Analysis of the look-ahead Lanczos algoritthD thesis, Department
of Computer Science, Berkeley, CA, 1983.

[285] L. N. TREFETHEN Approximation theory and numerical linear algebreech. Rep.
Numerical Analysis Report 88-7, Massachussetts Institti@chnology, Cambridge,
MA, 1988.

[286] U. TROTTENBERG C. OOSTERLEE AND A. SCHULLER, Multigrid, Academic
Press, New York, 2001.

[287] R. UNDERWOOD, An iterative block Lanczos method for the solution of langarse
symmetric eigenproblem$ech. Rep. Stan-CS74-469, Stanford University, Stanford
CA, 1975.

[288] H. A. VAN DER VORST, The performance of FORTRAN implementations for pre-
conditioned conjugate gradient methods on vector compuRarallel Computing, 3
(1986), pp. 49-58.

532 BIBLIOGRAPHY

[289] H. A. vAaN DER VORST, Large tridiagonal and block tridiagonal linear systems on
vector and parallel computer®arallel Computing, 5 (1987), pp. 303-311.

[290] H. A. vAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG for the solution of non-symmetric linear syste®\M Journal on Scientific and
Statistical Computing, 12 (1992), pp. 631-644.

[291] H. A. VAN DER VORST AND C. VUIK, GMRESR: a family of nested GMRES meth-
ods Numerical Linear Algebra with Applications, 1 (1994), 369-386.

[292] R. S. \ARGA, Factorizations and normalized iterative methpdsBoundary Prob-
lems in Differential Equations, Madison, WI, 1960, Univigrof Wisconsin Press,
pp. 121-142.

[293] ——, Matrix Iterative AnalysisPrentice Hall, Englewood Cliffs, NJ, 1962.

[294] V. VENKATAKRISHNAN, Preconditioned Conjugate Gradient methods for the com-
pressible Navier Stokes equatio®$AA Journal, 29 (1991), pp. 1092-1100.

, Parallel implicit methods for aerodynamic applications emstructured grids
in Domain-Based Parallelism and Problem Decompositiorhiglgs in Computational
Science and Engineering, D. E. Keyes, Y. Saad, and D. G. drudds., Philadelphia,
PA, 1995, SIAM, pp. 57-74.

[296] V. VENKATAKRISHNAN AND D. J. MAVRIPLIS, Implicit solvers for unstructured
meshesJournal of Computational Physics, 105 (1993), pp. 83-91.

[297] V. VENKATAKRISHNAN, H. D. SMON, AND T. J. BARTH, A MIMD Implementation
of a Parallel Euler Solver for Unstructured Grid$he Journal of Supercomputing, 6
(1992), pp. 117-137.

[298] P. K. W. ViNsoME, ORTHOMIN, an iterative method for solving sparse sets of si-
multaneous linear equations; Proceedings of the Fourth Symposium on Resevoir
Simulation, Society of Petroleum Engineers of AIME, 1976, p49-159.

[299] V. V. VOEVODIN, The problem of a non-selfadjoint generalization of the ogage
gradient method has been closéSSR Computational Mathematics and Mathemat-
ical Physics, 23 (1983), pp. 143-144.

[300] E. L. WACHSPRESS lterative Solution of Elliptic Systems and Applicationshe
Neutron Equations of Reactor Physi&entice Hall, Englewood Cliffs, NJ, 1966.

[295]

[301] C. WAGNER, Introduction to Algebraic Multigrid - Course Notes of an Alyaic
Multigrid Course at the University of Heidelberg in the Wirdemester 1998/99

[302] C. WAGNER, W. KINZELBACH, AND G. WITTUM, Schur-complement multigrid, a
robust method for groundwater flow and transport problelismer. Math., 75 (1997),
pp. 523-545.

[303] H. F. WALKER, Implementation of the GMRES method using Householderftrans
mations SIAM Journal on Scientific Computing, 9 (1988), pp. 152-163

[304] X. WANG, K. GALLIVAN, AND R. BRAMLEY, CIMGS: An incomplete orthogo-
nal factorization preconditiongiSIAM Journal on Scientific Computing, 18 (1997),
pp. 516-536.

[305] A. WATHEN AND D. SILVESTER, Fast iterative solution of stabilized Stokes prob-
lems. part i: using simple diagonal preconditione&IAM Journal on Numerical
Analysis, 30 (1983), pp. 143-144.

BIBLIOGRAPHY 533

[306] J. W. WATTS IlI, A conjugate gradient truncated direct method for the itemaiso-
lution of the reservoir simulation pressure equati@ociety of Petroleum Engineers
Journal, 21 (1981), pp. 345-353.

[307] R. WEIss, Convergence behavior of generalized conjugate gradienhods PhD
thesis, Karlsruhe, Germany, 1990.

[308] , A theoretical overview of Krylov subspace methadsSpecial Issue on Itera-
tive Methods for Linear Systems, W. Schonauer and R. Weiss, Applied Numeri-

cal Methods, 1995, pp. 33-56.

[309] P. WESSELING A robust and efficient multigrid methpidn Multigrid methods: Proc.,
Koln-Porz, Nov. 1981, W. Hackbusch and U. Trottenberg, dd=:ture notes in Math.
1228, Springer Verlag, Berlin, 1982, pp. 614-630.

, Theoretical and practical aspects of a multigrid meth&IAM J. Sci. Stat.
Comp., 3 (1982), pp. 387-407.

[311] ——, An Introduction to Multigrid Methodslohn Wiley and Sons, Chichester, 1992.

[312] P. WESSELING AND P. SONNEVELD, Numerical experiments with a multiple-grid
and a preconditioned Lanczos-type methaul. 771 of Lecture notes in mathematics,
Springer Verlag, Berlin. Heidelberg, New-York, 1980, pp35562.

[313] O. WIbLUND, A Lanczos method for a class of non-symmetric systems af kogia-
tions SIAM Journal on Numerical Analysis, 15 (1978), pp. 801-812

[314] L. B. WIGTON, Application of MACSYMA and sparse matrix technology to imult
element airfoil calculationsin Proceedings of the AIAA-87 conference, Honolulu,
Hawai, June 9-11, 1987, New York, 1987, AIAA, pp. 444—-45hé&aumber AIAA-
87-1142-CP.

[310]

[315] P. WiLDERS AND W. BRAKKEE, Schwarz and Schur: an algebraic note on equiva-
lence propertiesSIAM Journal on Scientific Computing, 20 (1999), pp. 229302

[316] B. WILKINSON AND C. M. ALLEN, Parallel Programming: Techniques and Appli-
cations Using Networked Workstations and Parallel Compferentice Hall, 1998.

[317] J. H. WILKINSON, The Algebraic Eigenvalue ProblenClarendon Press, Oxford,
1965.

[318] O. WING AND J. W. HUANG, A computation model of parallel solution of linear
equations|EEE Transactions on Computers, C-29 (1980), pp. 632—638.

[319] C. H. WU, A multicolor SOR method for the finite-element meftdadirnal of Com-
putational and Applied Mathematics, 30 (1990), pp. 283-294

[320] J. Xu, Iterative methods by space decomposition and subspaceatiom SIAM
Review, 34 (1992), pp. 581-613.

[321] Q. YE, A breakdown-free variation of the Lanczos algorithviathematics of Com-
putation, 62 (1994), pp. 179-207.

[322] D. M. YOUNG, lterative Solution of Large Linear System&cademic Press, New
York, 1971.

[323] D. P. YOUNG, R. G. MELVIN, F. T. DHNSON, J. E. BJSSOLETT|, L. B. WIGTON,
AND S. S. \MANT, Application of sparse matrix solvers as effective prectonéers
SIAM Journal on Scientific and Statistical Computing, 10§28 pp. 1186—1199.

534 BIBLIOGRAPHY

[324] L. ZHOU AND H. F. WALKER, Residual smoothing techniques for iterative methods
SIAM Journal on Scientific Computing, 15 (1994), pp. 297-312

[325] Z. ZLATEV, Use of iterative refinement in the solution of sparse lingatemsSIAM
Journal on Numerical Analysis, 19 (1982), pp. 381-399.

Index

A

A-norm,[33 131214

Adams, L. M. [TOWZ22

additive projection procedure. 148
ADI, 27

Peaceman-Rachford algorithin, 128

adjacency grapi,¥7
of PDE matriced,_48
adjoint of a matrix[J7
AINV, B48
algebraic multigridZZ94=264
algebraic multiplicity[Ib
Aliga, J. |.,[256
Allen, M. C.,[332
Alternating Direction ImplicitseeADI
AMG, seealgebraic multigrid
coarsenind. 485
Anderson, E[Z392

B
Bakhvalov, N. S[2d7
banded matriceE] 5
bandwidth
of a bus[37B
of a matrix [
Bank, R.[46B
Barker, V. A. [Z73[38l7
Barth, T. J.[256
basis of a subspade.]10
BCG,[Z33E230
algorithm[23b
transpose-free varianfs, 241=P54
BCR, seeblock cyclic reduction
Benantar, M[_104
Benzi, M. 328354387
BFS
see Breadth First Sear¢h] 83

angle between a vector and a subsp@acd, 14BICGSTAB,[243

anisotropic mediuni, 39
Approximate Inverse
AINV, BZ23

approximate inverse preconditiondrs, 1336

column-oriented-339

global iteration[(337

for improving a preconditiond, 348
approximate inverse techniquEs. #17
Arnldi, W.E.,[T&D
Arnoldi's method[CTRETT1

basic algorithn[ZId0

breakdown of 181

Biconjugate GradiengeeBCG
bidiagonal matrice§]5
bilinear form[GB

binary search treeE_332
biorthogonal baseE, 136
biorthogonal vector§ 36, 2B0
biorthogonalizatiod, 229
bipartite grapi 3@ 1283b2
bipartite matchind, 332
bipartite transversdl,_3b2
Birkhoff, G.,[I29

Bjork, A.,Z72

with Householder orthogonalizatidn,16Bjgrstad, PI.513

for linear system$_165
lucky breakdowr 142
with Modified Gram-SchmidE_18$2
practical implementatiof 152
Arrow-Hurwicz’s Algorithm [271
assembled matrik_ 68
assembly proceds,J66
Axelsson, O[T, 2217 2PE. 367

block Arnoldi
algorithm[2TIP
Ruhe’s varian{-220
block cyclic reductio 39
Buneman’s varianf_61
block diagonal matriceE] 5
block FOM [2ZP
block Gaussian eliminatiof - 412=475
algorithm[47b

535

536 INDEX
block GMRES[2Z2PE223 algorithm [2GB
multiple right-hand side§ 2P2 optimality,[268
block Gram-SchmidE-219 CGNR[266
block independent sefs, 462 algorithm[26b
block Jacobi 112 optimality, 266
as a preconditiond_3P4 CGS[Z41E744
block Krylov subspace methods_148, P18- algorithm[24B
CGW algorithm[Z29p
block preconditioner§,3b4 Chan, T. F[234. 236, 5D0, 913
block relaxation[ZI08 characteristic polynomidl] 3
block tridiagonal matrice§] 5.-3b4 Chebyshev
preconditioning 354 acceleratior[_399
Bodewig, E.[387 Chebyshev polynomialE 2110=21Z P 7 1396—
Boley, D. L. [25® zoa
Bollhofer, M.,[36Y complex2ZIN 237
bottleneck transvers&l_-353 and ellipsed 210
boundary condition§_38. 19 optimality, ZT1 EZIB
Dirichlet,[29 for preconditioning-396
mixed [49 real [209
Neumann[Z9 Cheney, C. C[_Z10
Brakhage, H[247 Chow, E.[33P[3d7
Brakkee, W.[R1I13 Ciarlet, P. G4
Bramble, J. H[S13 Cimmino’s method 243
Bramley, R.[Z7K Cimmino, G.[27k
Brandt, A.[46¥ circuit switching[[37B

Breadth First Search. B3
Brezinski, C.[2ZEd_237
Brinkkemper, S[2387

Brown, P. N.[I8A_T3¢ 22210
Buleev, N. I.[381

Buneman'’s algorithni_ 81
Buneman, O[d0

C
cache memor{, 313
canonical form[ZT5

Jordan[Ib

Schur[I¥
Cauchy-Schwartz inequalifyl @, 8
Cayley-Hamilton theoreni_Th8
cell-centered schemgl71
cell-vertex schem&_¥1
centered difference approximati¢n] 51
centered difference formula 151
centerpoinf 505
Cesari, L.[3671422
CG algorithm,seeConjugate Gradient algo-

rithm

CG for normal equationg.Zb6., 267
CGNE [Z&Y

coarse grid correctiof, 442
coarse-graif. 393
coarsenind 235461
coefficient matrix[CZI05
coloring verticed. 90
column reorderind, 80
Complex GMRES 133
Compressed Sparse Column storageCSC
Compressed Sparse Row storaggeCSR
Concus, Golub, and Widlund algorithin, 292
Concus, P[2292.367
condition numbef 41
for normal equation systenfs, 260
condition numbers and CG202
Conjugate Gradient algorithfd 195=203
algorithm[I9P
alternative formulation§ 200
convergenc&, 218215
derivation[I9H 199
eigenvalue estimatds, 201
for the normal equationE, 265
preconditioned, 216
Conjugate Gradient SquareskeCGS
Conjugate Residual algorithin, 203
consistent matrix normgl] 9

INDEX

consistent orderingE IAZ=127
control volume[ZZD
convection-diffusion equatioh. 9
convergence
factor[TT6
general[I76
specific[TIb
of GMRES[ZTh
of the Minimal Residual methol_T46
rate [T1b
of relaxation method&.T1L4
of Schwarz procedurds, 492
COO storage schenie]]92
coordinate storage formateeCOO
Cormen, T. H[E332
Cosgrove, J. D. H. 367
Courant characterization.127
Craig’s method2d8
CSC storage formdf. D3
matvecs in[-348
CSR storage formdi, PB._305
matvecs in[-348
Cullum, J.[18F
Cuthill-McKee ordering 84
queue implementatiof, B5

D
Dahlquist, G.[ZG7
data coherencE3I73
data-paralle[=342
Datta, B. N.[4b
Davis, T. A.[Z2P
defective eigenvalugE 16
Delong, M. A.[Z42P
Demmel, J[45
derogatory[16
determinan{3
Deuflhard, PIZ287
DIA storage forma{_94.380
matvecs in[2331
diagonal
compensatio,319
dominancd 119
form of matrices[_Tl6
matrices[b
diagonal storage formageeDIA
diagonalizable matriX_16
diagonally dominant matrix_T19
diagonally structured matricds,]93
diameter of a grap_31E 507

537

diameter of a triangl€_$5
Diaz, J. C.[387
difference equatiol, 483
DIOM, 68T [T96
algorithm[T7D
direct IOM, seeDIOM
direct sum of subspacds]{0] 35
directed grapti 17
Dirichlet boundary conditionE, #B. 19
distributed
computing[3Z71L
LU, E14
memory[371
sparse matriceE, 383,414
divergence of a vectdr, #9
divergence operatdr, 19
domain decomposition
convergencé, 492
and direct solutior 274
full matrix methods[501
induced preconditionefs. 2197
Schur complement approaches. 497
Schwarz alternating procedufe. #84
domain sweel. 486
double orthogonalizatiof, Tb2
double-striping 5110
DQGMRES[TEDETE$.T90. 2P0
algorithm T8I
Dryja, M.,[297
Duff, I. S.,[TOD[TOM 3G 1222

E
EBE preconditionef 417
EBE regularizatior[218
edge in a grapi 17
edge-cut{, 507
eigenspac& 11
eigenvalued]3
definition[3
from CG iteration[201
index [T
of an orthogonal projectdr, B9
eigenvectofl3
left,@
right,@
Eisenstat’s implementatioin, 240, 295
Eisenstat’s trickseeEisenstat’'s implementa-
tion

Eisenstat, S. C[. ZPE. 334

538

INDEX

Element-By-Element preconditionsgeEBE finite volume method, 89

preconditioner
Elfving, T.,.273
ELL storage formaf 94
matvecs in[2331
Ell storage formaf 381
elliptic operatord,_47

Ellpack-Itpack storage formageeELL stor-

age format
Elman, H. C.[3611432
energy normi-34TB7.2H6. 368
Erisman, A. M.[IOK
error projection methodg 1139
Euclidean inner produdi] 7
Euclidean nornfl7

F
Faber, V2O 208 227
Faber-Manteuffel theoreld_206
FACR,[G2
factored approximate inver§e,_345
Fan, K.[30P
fan-in
in multigrid,[439
fan-out
in multigrid,[239
Farhat, C[213
Fast Poisson Solvels]40] $8162. 1469
Block cyclic reduction[39
Buneman'’s algorithni 81
FACR,[G2
FFT based 3¢ 59
Fedorenko, R. AL 467
FFT,29[48K
FFT solvers 58
FGMRES[Z8IFEZ90
algorithm 28V
fictitious domain methodE_4I7 2
Fiedler vecto 206
field of values[ZI3
fill-factor,
fill-in elements[307
fill-path, 313
fine-grain algorithm¢§_393
finite difference schemE_b0
for 1-D problems 53
for 2-D problemd[36
for the Laplaceal, %2
upwind scheme§ 54
finite element methof_#Z162

Fischer, B.[Z214. 227
Fix, G. J.[7h
Flaherty, J. E[.T04
Fletcher, R[Z342%6
flexible GMRES seeFGMRES
flexible iteration[287
flux vector[G9
FMG,2Z1 [Z4y
FOM, 155

algorithm 166

with restarting[ZIa7
Foster, I. T.[39P
FPS,seeFast Poisson Solvers
Freund, R. W[ZI84 21 B 217 247 2E6. P57
Frobenius nornf]9
frontal method4_a§-417
full matrix methods 201=503
full multigrid, B4 [24Y
Full Orthogonalization MethodeeFOM
full weighting [Z38
full wrighting, 239
Fw, 238

G
Galerkin conditiond 135
Galerkin projectior{-240
in multigrid,[240
Gallopoulos, E[A4. 227, 26
Gastinel's method_Th1
Gastinel, N.I5H. 227
gather operatiof,_3¥9
Gauss-Seidel iteratiop. 105
backward[ZTQ7
for normal equation§, 261
in parallel[22D
symmetric[IOl
Gaussian eliminatiof 68147, 302=H06.1311,
BT8,E3T8309.321. 400,410,370
block,[Z72
frontal methodd, 417
IKJ variant[30b
in IOM and DIOM,[I70
in Lanczos procesE,_1198
parallel [Z9P
parallelism in[ZB
reordering in(8R
in skyline format[333D
sparsel_16
Gautschi, WI935

INDEX

GCR [ZO3EZ06
Generalized Conjugate Residus¢eGCR
geometric multiplicity[T
George, A BAITTOE3NETF07
Gershgorin disc§, 120
Gershgorin’s theorerf,_TIB 120
Gilbert, J. R.[33R
Gilbert-Peierls algorithnf, 332
global iteration[331=338. 314
global reduction operatiorfs, 378
GMRES[IZIETS1. 206, 2N5-218
algorithm[I7P
block algorithm[Z22R
breakdown_TA$_TT9
convergenc&, 215
flexible variantCZ8_Z3 =290
Householder versiof 172
lucky breakdowr 119

with polynomial preconditionind, 204

practical implementatiof, 1y 4
relation with FOM[I8H_T39
with restarting[ZI79
stagnatior 149
truncated 180
via residual smoothinfL_IP1
GMRES:complex versiolf, 193
Godunov, S. K[2237
Golub, G. H.[ZB 291296, 3B5, 367
Goovaerts, D[486. 513
grade of a vectoE 158
Gram-Schmidt algorithni, 1 [=NP 359
block,[ZT9
cancellations i 182
modified [T
standard 11
graph[Z¥
bipartite [9D[352
coloring [QD[Z31B
diameter 314
directed[7l
edges 77
Laplacean of 4 506
partitioning [Z6P[503
geometric[204
graph theory techniquds, 307
spectral techniquels, 506
type 271
separatof g5
undirected 47
vertices[7l

graph separatdr, B5
Greenbaum, AL_I37.3b2
grid transfed”230

Griewank, A.[36I

Gropp, W. D.[37H 513
Grote, M. 36V

group independent sefs. 362
Gutknecht, M. H[236

H

Hackbusch, W[Z8T7. 513

Halmos, P. R[17

Hankel matrix[23B

harmonic function§.49

Harwell-Boeing collectio_9§_T0D0

Hausdorff’s convex hull theored, P4

Haws, J. C[333

heap-sort, in ILUT[326

heapd 332

Hendrickson, B[.213

Hermitian inner produckl6

Hermitian matrice€14, 24

Hermitian Positive Definitd_32

Hessenberg matricdd, 5

Hesteness, M. RL_2P6

high frequency-429

high frequency modeE. 2R3

high moded 429

Hindmarsh, A. C[237

Hirsch, C.[7h

Hockney, R. WK

Holder norms18

Horn, R. A.[7%

Householder algorithnfi, 12

Householder orthogonalization
in Arnoldi's method[(T63

Householder reflectorg 112

Householder, A. SL_I55

HPD, seeHermitian Positive Definite

Huckle, T.[36Y

hypercubd 315

I

idempoteniZIIC-34

if and only if,[3

iff, seeif and only if

ln, v. P., B&4

ILQ
factorization[23860
preconditioning-399

539

540

ILU,
Crout variantZ332
distributed[41K
factorization[301
instability in,[3Z8[33b
general algorithn =303
IKJ version[30b
ILUC, B32
ILUS, B30E33P
algorithm 331
modified [3TPE3A1
preconditionef 301
for Schur complemeri Zb9
reordering[Z349
static patterf 306
with thresholdseelLUT and ILUTP
with multi-elimination,seelLUM
zero patterf 303
ILU(0), 297,300 (307309
algorithm30¥
distributed factorizatiol, 216
for distributed sparse matricés, 214
for red-black orderind Z07
ILU(1),B13
ILUM, E17, 261
ILUT, BZIH3ZY
algorithm 321
analysis[323
implementation_325
with pivoting, seelLUTP
ILUTP,BZ1
for normal equation§.3%56
incomplete
orthogonalization
algorithm 168
incomplete factorizatiof, 297301
Gram-Schmid{-3d0
ILQ, B53,[38D
QR,[36D
incomplete Gram-Schmidf 361
Incomplete LQseelLQ
Incomplete LU seelLU

INDEX

induced preconditioner§_ 297
inhomogeneous mediuin,]49
injection [438
inner productd.15

indefinite [Z3B
inner-products

B-inner product—34
invariant subspacE T 141
inverse LU factord_34%,_316
IOM,

algorithm[16B

direct version[Z188
irreducibility,[30
irreducible[Z2B
isometry[8
iteration matrixCTIH_T14
iterations:RirchadsofTIL6

J
j-diagonal[(38R
Jacobi iteratio_I05
for the normal equationE. 263
JAD storage formal_382
definition [38P
in level schedulind 390
matvecs in[Z383
jagged diagonal formaseeJAD storage for-
mat
jagged diagonalE3B2
Jbilou, K. 2Z¥
Jea, K. C.. 204227
Johnson, C[_14
Johnson, C. R[24
Johnson, O. G[401
Jordan bloc 7
Jordan box{ 117
Jordan canonical forfi L6
Jordan submatrik 17
Jordan, H[T04
Joukowski mappindg. 210

K

Incomplete Orthogonalization Methcgeiom<@czmarz, SL214

indefinite inner producE233

independent set orderings] 87, 161

independent sets, 7,410
maximal[88

index of an eigenvalug L7

indirect addressin{_¥6

induced norn{18

Kamath, C..Z2714
Karp, R. M. [88
Karush, T. |.[(39X 422
Karypis, G.[5IB
kernel[1TD

Kershaw, D. S[387
Keyes, D. E[R13

INDEX

Kolotolina, L. Y.,[36T

Koster, J.[367

Kranoselskii, M. A.[I5b

Kronsjo, L. [46F

Krylov subspacd, 138
dimension of d_198
invariant[I5D
methods[_137

Krylov subspace method

vs multigrid [463
Krylov subspace methods. 229
Kumar, V. [392[51R

L
Lanczos algorithm
breakdown
serious[232
look-ahead versioi, ZB2
Lanczos algorithnf_T98_TP4
algorithm [TOH[Z229
biorthogonalizatior, 229
breakdown[231
incurable[23R
lucky,[232
for linear system$, 2383
look-ahead versiof, ZB2
loss of orthogonality, 195

modified Gram-Schmidt versiofp,_1194

nonsymmetrid_229
and orthogonal polynomiaE. 195
partial reorthogonalizatiof_IP5
practical implementationE_2132
selective reorthogonalizatidn, 195
symmetric cas¢._193
Lanczos, C[224, 2BH, 2HG, 422
LaplaceanseelLaplacean operator
Laplacean operatdr, ¥9.162
of a graph[506
Le Tallec, P.[R113
least-squares polynomials, 400
least-squares problem. 259
left eigenvectol 4
left versus right preconditioninfg._2B6
Leisersen, C. EL.3B2
Leland, R.[RIB
Leuze, R.[Z22
level of fill-in, BT1
level schedulind 38 T=3P0
for 5-point matriced,_ 387
for general matrice§._3B8

541

level set ordering§-BEBD7

Lewis, J. G.(394 4232

line relaxation_I09

linear mapping€]2

linear sparl110

linear systen_3¢_105
existence of a solutiof 10
right-hand side of 439
singular[ZD
unknown of a[z39

linked lists[96

Liou, K. P.[5IB

Liu, J. W-H.,[0T (313507

Liu, Z. S.[Z33

local Schur complemedi, B0

Look-ahead Lanczos algorithfin, 232

low frequency mode§,4P3

lower triangular matrice§] 5

LQ factorization[350
algorithm 36D

lucky breakdownd$. 1862

Lusk, E.[376

M

M-matrix,[22

Manteuffel, T.[20208, 22 2H6. 367

Marin, J.[36lF

mask[36b

matching[(35R

Mathew, T. PR3

matrix,[1
addition[2
adjoint of a[¥
banded b
bidiagonal[b
canonical formd 15
characteristic polynomidl] 3
diagonal[®
diagonal dominanE_119
diagonal form[Ilb
diagonalizabld. 716
Hermitian 3 2124
Hessenberd]5
irreducible[@D
Jordan canonical forfiJL6
M-, 21
multiplication 2
nonnegativel 427
nonsingulal 13
norm of a[B

542

normal [3[Z1L
orthogonalllb

outer produc{15
positive definite[34=34
powers of a[19
reduction[Ib

Schur form[Il
self-adjoint[¥[Z93
singular[B
skew-Hermitian[4
skew-symmetrid]4
spectral radiug]4
spectrum{13

squarel B

symmetric[}
Symmetric Positive Definit€ _BP_T22
trace[¥

transposd,]2
transpose conjugafg, 2
triangular[®
tridiagonal[b

unitary[3

matrix norm[®

matrix-by-vector producE_3T8
dense matriceE_3I78
for distributed matrice§_385
in DIA format,[380
in Ellpack format[Z381
in triad form [381

maximum transversd[_3b2

Mc Cormick, S. F.[437

Meijerink, J. A.[29b[367

mesh generatiof, 59

mesh refinemeni_69

mesh sizd_@5

message passirig. 374

Meurant, G. A.[387

Meyer, C. D.[Zb

Micchelli, C. A.,[Z01

Miller, G. L., E03 [506

MILU, BT9H321

Minimal Residual iteratiof_145
algorithm[TZb
convergencé, 136

Minimal Residual Smoothin§,_TPD=193

minimum degree orderinfL BB, 350

min-max theorenf_25

mixed boundary conditionE, MB.149

M-matrix,[ZT [30P[335

modified Gram-Schmidi—162

INDEX

Modified ILU, seeMILU
Modified Sparse Row storageeeMSR
molecule[BlL
moment matrix_233
in Lanczos procedurE 233
moment of intertia 505
MR iteration,seeMinimal Residual iteration
MRS,[190[2ZD
MSR storage formaf 93
multi-elimination [Z0P[ZT]0
multicolor orderingd 90
multicoloring [Z06E409
for general sparse matric€s, %08
multifrontal methodd, 422
multigrid methodd, Z33=465
algebraic multigrid 235
AMG,
FMG,Z4T1
full multigrid, 244
Galerkin projectior{-240
nested iteratiod, 43 [217
V-cyle,[243
W-cyle,[243
multinode expansion algorithiin, 310
multiple eigenvalud. 15
multiple vector pipeline§3T1
multiplicative projection process. 150
multiplicative Schwarz preconditioning, 489
multiprocessind. 311
Munksgaard, N[-387

N
Nachtigal, N. M.I8U 22 T 256
natural orderind, 37
near singularityi-41
Nested dissectiof, 350
nested iteratio ZA [2U7
nested-dissection orderirig]96
Neumann boundary conditiods]48] 49
Neumann polynomialg._3D6
nonnegative matrix]]4€ 27
nonsingular matrix13
norm
A-norm,energy norni_34
energy norm, A-norni_T37
Euclidean[I7
Holder [3
induced[B
of matrices[B
p-norm [B

INDEX

of vectors[b
normal derivative[_93
normal equation§. 259
normal matrixChZ21
Notay, Y. [29b
null spacel 10

of a projectof 3435
numerical radiu§_24

0]
O’Leary, D.[22¥
obligue projection methods. 229
oblique projectol-37
operator
elliptic, 22
Laplacear(49

optimality of projection methodE_IB7

order relation for matriceE. R7
Ortega, J[295
Ortega, J. MI[_T04.222
ORTHODIR [ZO#E206
orthogonal
complemen{lI1
matrix,[3
projector[INL[37
vectors[IIL
orthogonal baseE 111
orthogonality[Tl
between vectorf 11
of a vector to a subspade]il
ORTHOMIN,[Z03£20b
orthonormall Il
orthonormal baseE 111
oscillatory mode4, 223
Osterby, O.[104.387
outer product matriceEl] 5
overdetermined systenis, 259
overlapping domaing 4¥2
over-relaxatio 147
Overton, M. L.[2Z9b

P
p-norm[B
packet switchind 314
Paige, C. C[CI982p7
parallel architectureE_3F1
parallel sparse techniqués] 79
parallelism[3710
forms of [370
Parlett, B. N.CT6H_T9%.2BP. 233

543

partial differential equationE. 17
partial Schur decompositioln, 119
partition [TT1
partition vector 507
partitioning [Z71L
Pasciak, J. EL513
Paul, G.[Z01
PDE,seepartial differential equations
PE,seeProcessing Element
Peaceman, DL_TPB. 1132
Peaceman-Rachford algorithili, 128
Peacman, D[_I27
Peierls, T332
peripheral nodd, 507
permutation matriceg] . BO
permutationd._49
Perron-Frobenius theorem]28
perturbation analysiE_ %0
Petrov-Galerkin conditionE_TBEB=135
Peyton, B. W.[222
physical mesh versus grajihl 79
pipelining (370
polynomial approximatior, 158
polynomial preconditionind.39B.305-406
Poole, E. L.[TOA 422
positive definite matrix 14 2€ BPI34
positive matrix[2I
positive real matrixseepositive definite ma-
trix
positive semidefinitd, 26
Pothen, A[Z24,513
preconditioned
CG,[ZB
efficient implementationE. 2¥9
left, 271
for the normal equationg. 2190
parallel implementatiof, 376
split, 273
symmetry in[276
fixed-point iteration[T3
GMRES[Z81
comparisor 285
flexible variant28d, 287
left preconditioning 282
right preconditionind. 293
split preconditionind. 284
preconditionef 113
preconditioningd AL T80, 275
approximate inversg,_3B6
block,[353

544

by ILQ,[E23
EBE,[ZIT
incomplete LUC30IL
induced[Z397
Jacobi[Z98

left, 279

INDEX
Q
QMR,[Z33£23P
algorithm[23¥
approximatior[-237

QMR:from residual smoothin§. 210
QMR:peaks and plateaus of residuf[S.]240

normalequationsfor normal equations. J8R4R S [T9P

polynomial [39bE406

QR decompositio,12

with Chebyshev polynomialE.3P6 quasi minimal residual smoothifg, 240
with least-squares polynomials, 400 Quasi-GMRESTd0

with Neumann polynomial§_3P6
and relaxation scheme113

right, 27%
SOR[Z98B
split, 27%
SSOR[Z8B
probing [49P
Processing Element (PEL371
profile,[B®
projection
operatorseeprojector
orthogonal to[=35
parallel to[3b
projection method§_183
additive[TZB
approximate problerf B4
definitions[13B
error boundd.T39
general 133
matrix representatiofi,_IB5
multiplicative [I50
oblique [T3B[229
one-dimensional 142
optimality,[I3Y
orthogonal 134135
prototype[I3b
residualI3B
theory[T3b
projector[IDCM=3E. T 1
existencd 36
matrix representatiof, B6
oblique [3¥
orthogonall =37
eigenvalue§39
properties 38
prolongation operatdt, Tl 487
property ATZP[TA3
Propkopov, G. PL 227
Przemieniecki, J. 4,513
pseudo-peripheral node, 307

algorithm[I8D
direct version 180
DQGMRES[TED
Quasi-Minimal ResiduakeeQMR
quasi-minimal residual smoothirfg. 192
quasi-residual norni,_TB2
guasi-residual smoothing, 240
quasi-Schur forn[19
quick-split, in ILUT,[32%
quotient grapH._19

R
Rachford, H.CI21 128,182
range[2[T0
of a projecto-3U_35
rank,[T0
full, 0
Rapid elliptic solversseeFast Poisson Solvers
Rayleigh quotien{2E 25
RCM, 350
real Schur formZ19
recursive graph bisectioin, 309
red-black orderind. 206
Redivo Zaglia, M.[256
reduced systerl, 3b3, 474
reducible[ZB
reduction of matrice§ 15
reduction operationE._3Ir7
refinemen{ 69
reflectors[IR
regular splitting[CTTI8
regularization 241
Reid, J. K.[TOW 237
relaxation methods
block,[103
convergencé, 114
reordering[BII-329
for ILU, B49
reordering rows, columng.J79
reorthogonalizatiof, 11

INDEX

residual norm steepest desc&€nf]147
residual projection methods. 138
residual smoothing._IP0
restarted FOM_187
restriction[43B
restriction operatof_T1 [Z2B7
reverse Cuthill McKee ordering. 360
Richardson’s iteratiol, 116,264
Richardsons iteratiof, 4P8
right versus left preconditioninfg.—2B6
right-hand sidd_3¥_T05
multiple, 222
Rivest, R. L.[33P
Rivlin, T. J..2Z11
Rose-Tarjan theorefn, 313
Roux, J. X.[5IB
row projection method§ 2B, 419
parallel [ZIP
row reordering-80
row sum[32D
Ruge, A.[46B
Ruhe, A.[ZIP
Rutishauser, HL_Z22

S
saddle-point problemE_268
Sadok, H.[221256
Saltz, J. 39
Sameh, A[274
Saunders, M. A[198
SAXPY,IZ22[34D[347
parallel [37¥
sparsd 340

scatter and gather operatiofs. 137934380

Schonauer, ML 22 2b6
Schultz, M. H.[334
Schur complemerf 4¥ 4
approache§ 297
and direct solutio_4T4

for finite-element partitioningE_4¥79

local [Z78

methods[-497

for model problem¢$. 481

properties 245

for vertex partitioningd_ 416
Schur form[IlF

example[ZIB

nonuniquenesg. L9

partial [T9

quasi[IP

real [I9

Schwarz alternating proceduke #72.1484

additive [Z91L
algorithm[48b
multiplicative [Z8%
Schwarz, H. A[X113
search subspade. 133
section of an operatdr,_1b9
self preconditionind. 340
convergence behavidr,_342
self-adjoint[¥[Z93
semisimplel_Tl6
separator§, 505
set decompositiof, TIL1
shared memory computefs_B72
Sherman, A. H[Z334
Sidi, A.,251
similarity transformatior 15
Simon, H. D.[36392, 513
Simoncini, V.[22V[296
simple eigenvalu€. 15
singular matrix B
singular value€]9
sites (in graph partitioninglL, 510
skew-Hermitian
matrices[U221 208
part[3B
skew-symmetric matricel] 4
Skjellum, A. [376
skyline solverd, 87
Smith, B.[5IB
smooth mode§ZP3
smootherl240
smoothing operatdr, 240
smoothing propertf, 453
Sonneveld, P23 2b6
SOR[TOB
convergenc& 122
iteration [10b
multicolor sweep 209
for SPD matriced 122
span ofg vectors[ID
sparse 86
sparse Gaussian eliminati¢n] F&] 96
sparse matrices
adjacency grapb. YE177
basic operationE. $5
direct method$.96
graph representation,]76
matrix-by-vector operatiolf, 95

546 INDEX

permutation and reorderinig179

storage[“94=95

sparse matrix-by-vector produEf]95

symmetric Gauss Seid€[107
symmetric matrice§] 4
Symmetric Positive Definit€ _BP_T22

sparse skyline storage formageSSK Symmetric SORseeSSOR
sparse triangular system solutignl 96 symmetric squaring,_360

sparse-sparse mode computati@ns] 339 symmetry in preconditioned CG 276
sparse-sparse mode computati@ns] 339 Szyld, D. B.[29H 387

sparsity[7b
SPARSKIT[SBEITOO

SPD,seeSymmetric Positive Definite

spectral bisectiol, 506
spectral radiug]4
spectrum of a matrix]3
split preconditionind 216
splitting,CIOY
square matriceg] 3
SSK storage formdf_3B0
SSOR[I0OB
Stuben, K.[Z68
steepest descehf, 142
stencil[B1
stereographic projectiof, 505
Stewart, G. W45
Stewart, W. J[248
Stiefel, E. L.[2ZP 394,422
Stieljes algorithn{_I95
stiffness matrix_6d. 48
Stokes problenf 210
storage format

COoOo 32

CSC[3TB

CSR[3UB[30b

ELL,B4

MSR,[33

SSK,[33D
storage of sparse matricgsl B2-95
Strang, G-l
structural nonsingularitf,_352
structured sparse matrlxJ75
subdomair 414
subspacd. 10

direct sum[ZID

of approximantd,_T33

of constraintd 133

orthogonall T

sum[TID
Successive Over-RelaxatiseeSOR
Swartzrauber, P. NL_62
Sweet, R[4
symbolic factorizatio{_ 96

T
Tang, W. P.33G7
Taylor, D. R.[Z3P[233
Teng, S. H[B04.506
tensor producE 427
tensor suni 427
test problem¢$.98
TFQMR,ZZY
algorithm[25P
topological sortind. 398
trace[#
Transpose-Free QMReeTFQMR
transversal-332
triad operation 391
triangular system§,_3B6
distributed[416
level schedulind =338
sparse 346
tridiagonal matrice$l]5
Trottenberg, U447
Tlma, M. 36V
Ttma, M. T.[32B333

U

unassembled matrik, 58
under-determine@ 2b9
undirected grapfi_T8

unitary matriced15
unstructured sparse matix]75
upper triangular matrice§l 5

upwind scheme§ 54
Uzawa’'s method Z68_2b9
\%

van der Vorst, H. A[244 255205, 367 892
Varga, R. S[AL 2L TPO T B67 122

variable preconditiond, ZB7
Vassilevski, P[295
Vavasis, S. A 50%, 506
vector
computerd3141
operationd_317

INDEX

orthogonality[L
processor§, 371
of unknowns[ZT05
updated T4 3Y7
parallel [37¥
vertex (in a graph[_17
Vinsome, P. K. W[227
Voevodin, V. V.[22¥

W

Wachspress, E. LL_TB2
Wagner, C[2891468
Walker, H. F.CI6H T3 22 2U0, 456
Walter, A. [25¥

Wang, X.[36P[(368
Wathens, A. J[Z387
Watts, J. W.[3G7
wavefronts[Z388

weak formulation[63
weakly diagonally dominant matrik 19
Weiss, R[CI90

Weiss, R.[Z21.296
Wesseling, PL.2%6.4b7
Widlund, O. B.[2Z9P[497
Wigton, L. B.,[36Y
Wilders, P.[5IB
Wilkinson, B.,[39P
Wilkinson, J. H.[2Z2I1232
Winget regularizatiorf 218
Wu, C. H.[T0Oh

X
Xu, J.,[49Y 213

Y
Ye, Q.[2Z9%
Yeremin, A. Y.[36V

Young, D. M. [IZWT2d. 129, TBI. 206,422

Young, D. P.33G7

Z

Zarantonello’s lemm& 211
Zhou, L.[IA22A12340. 256
Zlatev, Z.[T0W[367

547

	
	
	

	Background in Linear Algebra
	Matrices
	Square Matrices and Eigenvalues
	Types of Matrices
	Vector Inner Products and Norms
	Matrix Norms
	Subspaces, Range, and Kernel
	Orthogonal Vectors and Subspaces
	Canonical Forms of Matrices
	Reduction to the Diagonal Form
	The Jordan Canonical Form
	The Schur Canonical Form
	Application to Powers of Matrices

	Normal and Hermitian Matrices
	Normal Matrices
	Hermitian Matrices

	Nonnegative Matrices, M-Matrices
	Positive-Definite Matrices
	Projection Operators
	Range and Null Space of a Projector
	Matrix Representations
	Orthogonal and Oblique Projectors
	Properties of Orthogonal Projectors

	Basic Concepts in Linear Systems
	Existence of a Solution
	Perturbation Analysis

	Discretization of PDEs
	Partial Differential Equations
	Elliptic Operators
	The Convection Diffusion Equation

	Finite Difference Methods
	Basic Approximations
	Difference Schemes for the Laplacean Operator
	Finite Differences for 1-D Problems
	Upwind Schemes
	Finite Differences for 2-D Problems
	Fast Poisson Solvers

	The Finite Element Method
	Mesh Generation and Refinement
	Finite Volume Method

	Sparse Matrices
	Introduction
	Graph Representations
	Graphs and Adjacency Graphs
	Graphs of PDE Matrices

	Permutations and Reorderings
	Basic Concepts
	Relations with the Adjacency Graph
	Common Reorderings
	Irreducibility

	Storage Schemes
	Basic Sparse Matrix Operations
	Sparse Direct Solution Methods
	Minimum degree ordering
	Nested Dissection ordering

	Test Problems

	Basic Iterative Methods
	Jacobi, Gauss-Seidel, and SOR
	Block Relaxation Schemes
	Iteration Matrices and Preconditioning

	Convergence
	General Convergence Result
	Regular Splittings
	Diagonally Dominant Matrices
	Symmetric Positive Definite Matrices
	Property A and Consistent Orderings

	Alternating Direction Methods

	Projection Methods
	Basic Definitions and Algorithms
	General Projection Methods
	Matrix Representation

	General Theory
	Two Optimality Results
	Interpretation in Terms of Projectors
	General Error Bound

	One-Dimensional Projection Processes
	Steepest Descent
	Minimal Residual (MR) Iteration
	Residual Norm Steepest Descent

	Additive and Multiplicative Processes

	Krylov Subspace Methods Part I
	Introduction
	Krylov Subspaces
	Arnoldi's Method
	The Basic Algorithm
	Practical Implementations

	Arnoldi's Method for Linear Systems (FOM)
	Variation 1: Restarted FOM
	Variation 2: IOM and DIOM

	GMRES
	The Basic GMRES Algorithm
	The Householder Version
	Practical Implementation Issues
	Breakdown of GMRES
	Variation 1: Restarting
	Variation 2: Truncated GMRES Versions
	Relations between FOM and GMRES
	Residual smoothing
	GMRES for complex systems

	The Symmetric Lanczos Algorithm
	The Algorithm
	Relation with Orthogonal Polynomials

	The Conjugate Gradient Algorithm
	Derivation and Theory
	Alternative Formulations
	Eigenvalue Estimates from the CG Coefficients

	The Conjugate Residual Method
	GCR, ORTHOMIN, and ORTHODIR
	The Faber-Manteuffel Theorem
	Convergence Analysis
	Real Chebyshev Polynomials
	Complex Chebyshev Polynomials
	Convergence of the CG Algorithm
	Convergence of GMRES

	Block Krylov Methods

	Krylov Subspace Methods Part II
	Lanczos Biorthogonalization
	The Algorithm
	Practical Implementations

	The Lanczos Algorithm for Linear Systems
	The BCG and QMR Algorithms
	The Biconjugate Gradient Algorithm
	Quasi-Minimal Residual Algorithm

	Transpose-Free Variants
	Conjugate Gradient Squared
	BICGSTAB
	Transpose-Free QMR (TFQMR)

	Methods Related to the Normal Equations
	The Normal Equations
	Row Projection Methods
	Gauss-Seidel on the Normal Equations
	Cimmino's Method

	Conjugate Gradient and Normal Equations
	CGNR
	CGNE

	Saddle-Point Problems

	Preconditioned Iterations
	Introduction
	Preconditioned Conjugate Gradient
	Preserving Symmetry
	Efficient Implementations

	Preconditioned GMRES
	Left-Preconditioned GMRES
	Right-Preconditioned GMRES
	Split Preconditioning
	Comparison of Right and Left Preconditioning

	Flexible Variants
	Flexible GMRES
	DQGMRES

	Preconditioned CG for the Normal Equations
	The Concus, Golub, and Widlund Algorithm

	Preconditioning Techniques
	Introduction
	Jacobi, SOR, and SSOR Preconditioners
	ILU Factorization Preconditioners
	Incomplete LU Factorizations
	Zero Fill-in ILU (ILU(0))
	Level of Fill and ILU(p)
	Matrices with Regular Structure
	Modified ILU (MILU)

	Threshold Strategies and ILUT
	The ILUT Approach
	Analysis
	Implementation Details
	The ILUTP Approach
	The ILUS Approach
	The Crout ILU Approach

	Approximate Inverse Preconditioners
	Approximating the Inverse of a Sparse Matrix
	Global Iteration
	Column-Oriented Algorithms
	Theoretical Considerations
	Convergence of Self Preconditioned MR
	Approximate Inverses via bordering
	Factored inverses via orthogonalization: AINV
	Improving a Preconditioner

	Reordering for ILU
	Symmetric permutations
	Nonsymmetric reorderings

	Block Preconditioners
	Block-Tridiagonal Matrices
	General Matrices

	Preconditioners for the Normal Equations
	Jacobi, SOR, and Variants
	IC(0) for the Normal Equations
	Incomplete Gram-Schmidt and ILQ

	Parallel Implementations
	Introduction
	Forms of Parallelism
	Multiple Functional Units
	Pipelining
	Vector Processors
	Multiprocessing and Distributed Computing

	Types of Parallel Architectures
	Shared Memory Computers
	Distributed Memory Architectures

	Types of Operations
	Matrix-by-Vector Products
	The CSR and CSC Formats
	Matvecs in the Diagonal Format
	The Ellpack-Itpack Format
	The Jagged Diagonal Format
	The Case of Distributed Sparse Matrices

	Standard Preconditioning Operations
	Parallelism in Forward Sweeps
	Level Scheduling: the Case of 5-Point Matrices
	Level Scheduling for Irregular Graphs

	Parallel Preconditioners
	Introduction
	Block-Jacobi Preconditioners
	Polynomial Preconditioners
	Neumann Polynomials
	Chebyshev Polynomials
	Least-Squares Polynomials
	The Nonsymmetric Case

	Multicoloring
	Red-Black Ordering
	Solution of Red-Black Systems
	Multicoloring for General Sparse Matrices

	Multi-Elimination ILU
	Multi-Elimination
	ILUM

	Distributed ILU and SSOR
	Other Techniques
	Approximate Inverses
	Element-by-Element Techniques
	Parallel Row Projection Preconditioners

	Multigrid Methods
	Introduction
	Matrices and spectra of model problems
	Richardson's iteration
	Weighted Jacobi iteration
	Gauss-Seidel iteration

	Inter-grid operations
	Prolongation
	Restriction

	Standard multigrid techniques
	Coarse problems and smoothers
	Two-grid cycles
	V-cycles and W-cycles
	Full Multigrid

	Analysis for the two-grid cycle
	Two important subspaces
	Convergence analysis

	Algebraic Multigrid
	Smoothness in AMG
	Interpolation in AMG
	Defining coarse spaces in AMG
	AMG via Multilevel ILU

	Multigrid vs Krylov methods

	Domain Decomposition Methods
	Introduction
	Notation
	Types of Partitionings
	Types of Techniques

	Direct Solution and the Schur Complement
	Block Gaussian Elimination
	Properties of the Schur Complement
	Schur Complement for Vertex-Based Partitionings
	Schur Complement for Finite-Element Partitionings
	Schur Complement for the model problem

	Schwarz Alternating Procedures
	Multiplicative Schwarz Procedure
	Multiplicative Schwarz Preconditioning
	Additive Schwarz Procedure
	Convergence

	Schur Complement Approaches
	Induced Preconditioners
	Probing
	Preconditioning Vertex-Based Schur Complements

	Full Matrix Methods
	Graph Partitioning
	Basic Definitions
	Geometric Approach
	Spectral Techniques
	Graph Theory Techniques

	 References
	 Index

