Cyclone V Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and I/O timing for Cyclone[®] V devices.

Cyclone V devices are offered in commercial and industrial grades. Commercial devices are offered in –C6 (fastest), –C7, and –C8 speed grades. Industrial devices are offered in the –I7 speed grade. Automotive devices are offered in the –A7 speed grade.

 For more information about the densities and packages of devices in the Cyclone V family, refer to the Cyclone V Device Overview.

Electrical Characteristics

The following sections describe the electrical characteristics of Cyclone V devices.

Operating Conditions

Cyclone V devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Cyclone V devices, you must consider the operating requirements described in this datasheet.

www.altera.com

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone V devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms.

The functional operation of the device is not implied for these conditions.

Conditions other than those listed in Table 1 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1 lists the Cyclone V absolute maximum ratings.

Table 1. Absolute Maximum Ratings for Cyclone V Devices—Preliminary

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	-0.5	1.35	V
V _{CCPGM}	Configuration pins power supply	-0.5	3.75	V
V _{CC_AUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	I/O pre-driver power supply	-0.5	3.75	V
V _{CCIO}	I/O power supply	-0.5	3.9	V
V _{CCA_FPLL}	PLL analog power supply	-0.5	3.75	V
V _{CCH_GXB}	Transceiver high voltage power	-0.5	3.75	V
V _{CCE_GXB}	Transceiver power	-0.5	1.21	V
V _{CCL_GXB}	Clock network power	-0.5	1.21	V
VI	DC input voltage	-0.5	4	V
V _{CC_HPS}	Core voltage power supply	-0.5	1.35	V
V _{CCPD_HPS}	I/O pre-driver power supply	-0.5	3.75	V
V _{CCIO_HPS}	I/O power supply	-0.5	3.9	V
V _{CCRSTCLK_HPS}	Configuration pins power supply	-0.5	3.75	V
V _{CCPLL_HPS}	PLL analog power supply	-0.5	3.75	V
I _{OUT}	DC output current per pin	-25	40	mA
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (No bias)	-65	150	°C

During transitions, input signals may overshoot to the voltage listed in Table 2 and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 3.95 V can only be at 3.95 V for ~5% over the lifetime of the device; for a device lifetime of 10 years, this amounts to half a year.

Table 2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime.

Table 2. Maximum Allowed Overshoot During Transitions for Cyclone V Devices—*Preliminary*

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		3.7	100	%
		3.75	59.79	%
		3.8	33.08	%
	AC input voltage	3.85	18.45	%
Vi (AC)		3.9	10.36	%
		3.95	5.87	%
		4	3.34	%
		4.05	1.92	%
		4.1	1.11	%

Recommended Operating Conditions

Recommended operating conditions are the functional operation limits for the AC and DC parameters for Cyclone V devices.

Table 3 lists the steady-state voltage values expected from Cyclone V devices. Power supply ramps must all be strictly monotonic, without plateaus.

Table 3. Recommended Operating Conditions for Cyclone V Devices—Preliminary

Symbol	Description	Condition	Minimum	Typical	Maximu m	Unit
V _{CC}	Core voltage, periphery circuitry power supply, transceiver physical coding sublayer (PCS) power supply, and transceiver PCI Express [®] (PCIe [®]) hard IP digital power supply	_	1.07	1.1	1.13	V
V _{CC_AUX}	Auxiliary supply	_	2.375	2.5	2.625	V
	I/O pre-driver (3.3 V) power supply	_	3.135	3.3	3.465	V
V _{CCPD} (1)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (3.3 V) power supply	_	3.135	3.3	3.465	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	_	2.375	2.5	2.625	V
V	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
V CCIO	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.35 V) power supply	_	1.283	1.35	1.418	V
	I/O buffers (1.25 V) power supply	_	1.19	1.25	1.31	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.3 V) power supply	—	3.135	3.3	3.465	V
V	Configuration pins (3.0 V) power supply		2.85	3.0	3.15	V
V CCPGM	Configuration pins (2.5 V) power supply	—	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_FPLL} (2)	PLL analog voltage regulator power supply		2.375	2.5	2.625	V
V _{CCBAT} (3)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.0	V
VI	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
		Commercial	0	_	85	°C
TJ	Operating junction temperature	Industrial	-40	_	100	°C
		Automotive	-40	—	125	°C
+	Dower oundly rome time	Standard POR	200 µs	—	100 ms	—
^L RAMP	rower supply ramp unie	Fast POR	200 µs	—	4 ms	—

Notes to Table 3:

(1) VCCPD must be 2.5 V when VCCIO is 2.5, 1.8, 1.5, 1.35, 1.25 or 1.2 V. VCCPD must be 3.0 V when VCCIO is 3.0 V.

(2) PLL digital voltage is regulated from $V_{\mbox{\scriptsize CCA_FPLL}}.$

(3) If you do not use the design security feature in Cyclone V devices, connect V_{CCBAT} to a 1.5-V, 2.5-V, or 3.0-V power supply. The power-on reset (POR) circuitry monitors V_{CCBAT}. Cyclone V devices do not exit POR if V_{CCBAT} stays low.

Table 4 lists the transceiver power supply recommended operating conditions for Cyclone V GX devices.

Tab	e 4.	Transceiver l	Power Supply	y Operating	Conditions fo	or Cyclone V G	X Devices—P	reliminary
-----	------	---------------	--------------	-------------	---------------	----------------	-------------	------------

Symbol	Description	Minimum	Typical	Maximum	Unit
V _{CCH_GXBL}	Transceiver high voltage power (left side)	2.375	2.5	2.625	V
V _{CCE_GXBL}	Transmitter and receiver power (left side)	1.07	1.1	1.13	V
V _{CCL_GXBL}	Clock network power (left side)	1.07	1.1	1.13	V

Table 5 lists the steady-state voltage values expected from Cyclone V system-on-a-chip (SoC) FPGA with ARM[®]-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus.

Table 5. HPS Power Supply Operating Conditions for Cyclone V SE, SX, and ST Devices ⁽¹⁾—Preliminary

Symbol	Description	Minimum	Typical	Maximum	Unit
V _{CC_HPS}	HPS core voltage and periphery circuitry power supply	1.07	1.1	1.13	V
	HPS I/O pre-driver (3.3 V) power supply	3.135	3.3	3.465	V
V_{CCPD_HPS}	HPS I/O pre-driver (3.0 V) power supply	2.85	3.0	3.15	V
	HPS I/O pre-driver (2.5 V) power supply	2.375	2.5	2.625	V
	HPS I/O buffers (3.3 V) power supply	3.135	3.3	3.465	V
	HPS I/O buffers (3.0 V) power supply	2.85	3.0	3.15	V
V	HPS I/O buffers (2.5 V) power supply	2.375	2.5	2.625	V
VCCIO_HPS	HPS I/O buffers (1.8 V) power supply	1.71	1.8	1.89	V
	HPS I/O buffers (1.5 V) power supply	1.425	1.5	1.575	V
	HPS I/O buffers (1.2 V) power supply	1.14	1.2	1.26	V
	HPS reset and clock input pins (3.3 V) power supply	3.135	3.3	3.465	V
V	HPS reset and clock input pins (3.0 V) power supply	2.85	3.0	3.15	V
VCCRSTCLK_HPS	HPS reset and clock input pins (2.5 V) power supply	2.375	2.5	2.625	V
	HPS reset and clock input pins (1.8 V) power supply	1.71	1.8	1.89	V
V _{CCPLL_HPS}	HPS PLL analog voltage regulator power supply	2.375	2.5	2.625	V

Note to Table 5:

(1) Refer to Table 3 for the steady-state voltage values expected from the FPGA portion of the Cyclone V system-on-a-chip (SoC) FPGAs.

DC Characteristics

This section lists the following specifications:

- Supply Current and Power Consumption
- I/O Pin Leakage Current
- Bus Hold Specifications
- OCT Specifications
- Pin Capacitance
- Hot Socketing

Supply Current and Power Consumption

Standby current is the current drawn from the respective power rails used for power budgeting.

Altera offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Quartus[®] II PowerPlay Power Analyzer feature.

Use the Excel-based Early Power Estimator (EPE) before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the resources you use.

The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yields very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

I/O Pin Leakage Current

Table 6 lists the Cyclone V I/O pin leakage current specifications.

Table 6. I/O Pin Leakage Current for Cyclone V Devices—Preliminary

	Symbol	Description	Conditions	Min	Тур	Max	Unit
I	1	Input pin	$V_{I} = 0 V to V_{CCIOMAX}$	-30	_	30	μA
I	0Z	Tri-stated I/O pin	$V_0 = 0 V$ to $V_{CCIOMAX}$	-30	_	30	μA

Bus Hold Specifications

Table 7 lists the Cyclone V device bus hold specifications.

			V _{CCI0} (V)												
Parameter	Symbol	Conditions	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold, low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	8	_	12	_	30	_	50	_	70	_	70	_	μA
Bus-hold, high, sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μA
Bus-hold, low, overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}		125		175	_	200	_	300		500		500	μΑ
Bus-hold, high, overdrive current	I _{odh}	0V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500	_	-500	μA
Bus-hold trip point	V _{TRIP}	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 7. Bus Hold Parameters for Cyclone V Devices (1)—Preliminary

Note to Table 7:

(1) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

OCT Specifications

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

Table 8 lists the Cyclone V OCT termination calibration accuracy specifications.

Table 8.	OCT Calibration Accu	racy Specifications	for Cyclone	V Devices ⁽¹⁾ —	-Preliminary
----------	----------------------	---------------------	-------------	----------------------------	--------------

Ormhal	Description	Oanditions (11)	Calibration Accuracy			
Symbol	Description	Conditions (V)	- C 6	- C 7, -I7	- C 8, -A7	Unit
$25-\Omega R_S$	Internal series termination with calibration (25-Ω setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
50-Ω R _S	Internal series termination with calibration $(50-\Omega \text{ setting})$	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%
34- Ω and 40- Ω R _S	Internal series termination with calibration (34-Ω and 40-Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25, 1.2	±15	±15	±15	%
48-Ω, 60-Ω, and 80-Ω R _S	Internal series termination with calibration $(48-\Omega, 60-\Omega, and 80-\Omega$ setting)	V _{CCI0} = 1.2	±15	±15	±15	%
$50-\Omega R_T$	Internal parallel termination with calibration (50- Ω setting)	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	-10 to +40	-10 to +40	-10 to +40	%
20-Ω, 30-Ω, 40-Ω, 60-Ω, and 120-Ω R _T	Internal parallel termination with calibration (20-Ω, 30-Ω, 40-Ω, 60-Ω, and 120-Ω setting)	V _{CCIO} = 1.5, 1.35, 1.25	-10 to +40	-10 to +40	-10 to +40	%
60- Ω and 120- Ω R _T	Internal parallel termination with calibration (60-Ω and 120-Ω setting)	V _{CCI0} = 1.2	-10 to +40	-10 to +40	-10 to +40	%
$25-\Omega R_{S_left_shift}$	Internal left shift series termination with calibration (25- $\Omega R_{S_{left_{shift}}}$ setting)	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	±15	±15	±15	%

Note to Table 8:

(1) OCT calibration accuracy is valid at the time of calibration only.

Calibration accuracy for the calibrated on-chip series termination (R_S OCT) and on-chip parallel termination (R_T OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change. Table 9 lists the Cyclone V OCT without calibration resistance to PVT changes.

Table 9.	OCT Without Calibration	Resistance To	olerance Spe	ecifications for	Cyclone V	Devices—	Preliminary

Cumhal	Description	Conditions (11)	Resistance Tolerance				
Symbol	Description	Conditions (V)	-C6	- C 7, -I7	-C8, -A7	UNIT	
$25-\Omega R_S$	Internal series termination without calibration (25-Ω setting)	$V_{CCI0} = 3.0$ and 2.5	±30	±40	±40	%	
25-Ω R _S	Internal series termination without calibration (25-Ω setting)	$V_{CCI0} = 1.8$ and 1.5	±30	±40	±40	%	
$25-\Omega R_S$	Internal series termination without calibration (25-Ω setting)	V _{CCI0} = 1.2	±35	±50	±50	%	
50-Ω R _S	Internal series termination without calibration (50- Ω setting)	$V_{CCI0} = 3.0$ and 2.5	±30	±40	±40	%	
$50-\Omega R_S$	Internal series termination without calibration (50-Ω setting)	$V_{CCIO} = 1.8$ and 1.5	±30	±40	±40	%	
50-Ω R _S	Internal series termination without calibration (50-Ω setting)	V _{CCI0} = 1.2	±35	±50	±50	%	
100-Ω R _D	Internal differential termination (100-Ω setting)	V _{CCI0} = 2.5	±25	TBD	TBD	%	

Use Table 10 to determine the OCT variation after power-up calibration and Equation 1 to determine the OCT variation without recalibration.

Equation 1. OCT Variation Without Recalibration ^{(1), (2), (3), (4), (5), (6)}—Preliminary

$$R_{OCT} = R_{SCAL} \left(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \right)$$

Notes to Equation 1:

- (1) The R_{OCT} value calculated from Equation 1 shows the range of OCT resistance with the variation of temperature and V_{CCIO} .
- (2) R_{SCAL} is the OCT resistance value at power-up.
- (3) ΔT is the variation of temperature with respect to the temperature at power up.
- (4) ΔV is the variation of voltage with respect to V_{CCI0} at power up.
- (5) dR/dT is the percentage change of R_{SCAL} with temperature.
- (6) dR/dV is the percentage change of R_{SCAL} with voltage.

Table 10 lists the OCT variation after the power-up calibration.

Symbol	Description	V _{CCIO} (V)	Typical	Unit	
		3.0	0.0297		
		2.5	0.0344		
dR/dV	OCT variation with voltage without recalibration	1.8	0.0499	%/mV	
		1.5	0.0744		
		1.2	0.1241		
		3.0	0.189		
		2.5	0.208		
dR/dT	OCT variation with temperature without recalibration	1.8	0.266	%/°C	
		1.5	0.273		
		1.2	0.317		

Table 10. OCT	Variation after	Power-Up	Calibration	for Cyclone	V Devices (1)-	-Preliminary
---------------	-----------------	----------	-------------	-------------	----------------	--------------

Note to Table 10:

(1) Valid for a V_{CCIO} range of $\pm 5\%$ and a temperature range of 0° to 85°C.

Pin Capacitance

Table 11 lists the Cyclone V device family pin capacitance.

Table 11. Pin Capacitance for Cyclone V Devices

Symbol	Description	Value	Unit
C _{IOTB}	Input capacitance on top and bottom I/O pins	5.5	pF
C _{IOLR}	Input capacitance on left and right I/O pins	5.5	рF
C _{OUTFB}	Input capacitance on dual-purpose clock output and feedback pins	5.5	pF

Hot Socketing

Table 12 lists the hot socketing specifications for Cyclone V devices.

Table 12. Hot Socketing Specifications for Cyclone V Devices—Preliminary

Symbol	Description	Maximum
I _{IOPIN (DC)}	DC current per I/O pin	300 μA
I _{IOPIN (AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVR-TX (DC)}	DC current per transceiver transmitter (TX) pin	100 mA
I _{XCVR-RX (DC)}	DC current per transceiver receiver (RX) pin	50 mA

Note to Table 12:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which C is the I/O pin capacitance and dv/dt is the slew rate.

Internal Weak Pull-Up Resistor

Table 13 lists the weak pull-up resistor values for Cyclone V devices.

Table 13.	Internal Weak Pull-U	p Resistor Values for C	yclone V Devices (1), (⁽²⁾ —Preliminary
-----------	----------------------	-------------------------	-------------------------	-----------------------------

Symbol	Description	Conditions (V) ⁽³⁾	Typ ⁽⁴⁾	Unit
		$V_{CCI0} = 3.3 \pm 5\%$	25	kΩ
		$V_{CCIO} = 3.0 \pm 5\%$	25	kΩ
		$V_{CCI0} = 2.5 \pm 5\%$	25	kΩ
P	Value of the I/O pin pull-up resistor before and during	$V_{CCI0} = 1.8 \pm 5\%$	25	kΩ
при	programmable pull-up resistor option.	$V_{CCI0} = 1.5 \pm 5\%$	25	kΩ
		V _{CCI0} = 1.35 ±5%	25	kΩ
		V _{CCI0} = 1.25 ±5%	25	kΩ
		$V_{CCI0} = 1.2 \pm 5\%$	25	kΩ

Notes to Table 13:

(1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins.

(2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

(3) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

(4) These specifications are valid with ±10% tolerances to cover changes over PVT.

I/O Standard Specifications

Table 14 through Table 19 list the input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Cyclone V devices.

For an explanation of terms used in Table 14 through Table 19, refer to "Glossary" on page 1–44.

I/O	V	CCIO (V	/)		V _{IL} (V)	V _{IH}	(V)	V _{ol} (V)	V _{OH} (V)	IOL	I _{oh}
Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
3.3-V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V Lvcmos	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	$V_{CCIO} - 0.2$	2	-2
3.0-V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
3.0-V Lvcmos	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	0.1	-0.1
3.0-V PCI	2.85	3	3.15	—	$0.3 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	—	$0.35 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	$0.1 \times V_{CCIO}$	$0.9 \times V_{CCIO}$	1.5	-0.5
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	V _{CCI0} + 0.3	0.45	$V_{CCI0} - 0.45$	2	-2
1.5 V	1.425	1.5	1.575	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	V _{CCI0} + 0.3	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2
1.2 V	1.14	1.2	1.26	-0.3	$0.35 \times V_{CCIO}$	$0.65 \times V_{CCIO}$	V _{CCI0} + 0.3	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	2	-2

Table 14. Single-Ended I/O Standards for Cyclone V Devices—*Preliminary*

I/O		V _{ccio} (V)			V _{REF} (V)			V _{TT} (V)	
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.71	1.8	1.89	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-15 Class I, II	1.425	1.5	1.575	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}	0.49 x V _{ccio}	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}
SSTL-135 Class I, II	1.283	1.35	1.418	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}	0.49 x V _{ccio}	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}
SSTL-125 Class I, II	1.19	1.25	1.26	$0.49 \times V_{CCIO}$	$0.5 \times V_{CCIO}$ 0.51 × V _{CCIO}		0.49 x V _{ccio}	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	_	V _{CCI0} /2	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.68	0.68 0.75		_	V _{CCI0} /2	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.47 x V _{CCIO}	0.5 x V _{CCIO}	0.53 x V _{CCIO}	_	V _{CCI0} /2	_
HSUL-12	1.14	1.2	1.3	0.49 x V _{CCIO}	$0.5 \times V_{CCIO}$	0.51 x V _{CCIO}	_		

Table 15. Single-Ended SSTL and HSTL I/O Reference Voltage Specifications for Cyclone V Devices—Preliminary

 Table 16. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone V Devices—*Preliminary* (Part 1 of 2)

I/O	V	_{IL(DC)} (V)	V _{IH(DC}	_{C)} (V)	V _{IL(AC)} (V)	V _{IH(AC)} (V)	V _{ol} (V)	V _{oh} (V)	I _{ol}	I _{oh}
Standard	Min	Max	Min	Max	Max	Min	Max	Min	(mA)	(mÄ)
SSTL-2 Class I	-0.3	$V_{REF} - 0.15$	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} – 0.31	V _{REF} + 0.31	V _{TT} - 0.608	V _{TT} + 0.608	8.1	-8.1
SSTL-2 Class II	-0.3	V _{REF} - 0.15	V _{REF} + 0.15	V _{CCI0} + 0.3	V _{REF} - 0.31	V _{REF} + 0.31	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL-18 Class I	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} - 0.25	V _{REF} + 0.25	V _{TT} – 0.603	V _{TT} + 0.603	6.7	-6.7
SSTL-18 Class II	-0.3	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCI0} + 0.3	V _{REF} - 0.25	V _{REF} + 0.25	0.28	V _{CCI0} - 0.28	13.4	-13.4
SSTL-15 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	0.2 x V _{CCIO}	0.8 x V _{CCIO}	8	-8
SSTL-15 Class II	_	V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} – 0.175	V _{REF} + 0.175	$0.2 \times V_{CCIO}$	$0.8 \times V_{CCIO}$	16	-16
SSTL-135	—	$V_{REF} - 0.09$	V _{REF} + 0.09	—	$V_{REF} - 0.16$	V _{REF} + 0.16	TBD (1)	TBD (1)	TBD (1)	TBD (1)
SSTL-125	—	$V_{REF} - 0.85$	V _{REF} + 0.85	—	$V_{REF} - 0.15$	V _{REF} + 0.15	TBD (1)	TBD (1)	TBD (1)	TBD (1)
HSTL-18 Class I	_	V _{REF} - 0.1	V _{REF} + 0.1	_	V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	8	-8
HSTL-18 Class II		V _{REF} - 0.1	V _{REF} + 0.1		V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	16	-16
HSTL-15 Class I	_	$V_{REF} - 0.1$	V _{REF} + 0.1	—	V _{REF} - 0.2	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	8	-8

I/O	V	V _{IL(DC)} (V)		V _{IH(DC)} (V)		V _{IH(AC)} (V)	V _{ol} (V)	V _{OH} (V)	I _{ol}	I _{oh}
Standard	ndard Min Max		Min Max		Max	Min	Max	Min	(mA)	(mA)
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	$V_{REF} - 0.2$	V _{REF} + 0.2	0.4	$V_{CCIO} - 0.4$	16	-16
HSTL-12 Class I	-0.1 5	V _{REF} -0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	8	-8
HSTL-12 Class II	-0.1 5	V _{REF} -0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	V _{REF} – 0.15	V _{REF} + 0.15	$0.25 \times V_{CCIO}$	$0.75 \times V_{CCIO}$	16	-16
HSUL-12		V _{REF} -0.13	V _{REF} + 0.13		V _{REF} – 0.22	V _{REF} + 0.22	0.1 x V _{CCIO}	$0.9 \times V_{CCIO}$	TBD (1)	TBD (1)

 Table 16. Single-Ended SSTL and HSTL I/O Standards Signal Specifications for Cyclone V Devices—*Preliminary* (Part 2 of 2)

Note to Table 16:

(1) Pending silicon characterization.

Table 17. Differential SSTL I/O Standards for Cyclone V Devices—*Preliminary*

I/O		V _{ccio} (V	/)	V _{SWIN}	_{G(DC)} (V)		V _{X(AC)} (V)	V _{SWING}	_{i(AC)} (V)		V _{ox(AC)} (V)
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.3	V _{CCIO} + 0.6	V _{CCI0} /2 - 0.2	_	V _{CCI0} /2 + 0.2	0.62	V _{CCI0} + 0.6	V _{CCI0} /2 - 0.15	_	V _{CCI0} /2 + 0.15
SSTL-18 Class I, II	1.71	1.8	1.89	0.25	V _{CCI0} + 0.6	V _{CCI0} /2 - 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI0} + 0.6	V _{CCI0} /2 - 0.125	_	V _{CCI0} /2 + 0.125
SSTL-15 Class I, II	1.425	1.5	1.575	0.2	-0.2	-0.15	_	0.15	-0.35	0.35	_	V _{CCI0} /2	_
SSTL-135	1.283	1.35	1.45	0.2	-0.2	V _{REF} – 0.135	V _{CCI0} /2	V _{REF} + 0.135	TBD (1)	TBD (1)	V _{REF} - 0.15	_	V _{REF} + 0.15
SSTL-125	1.19	1.25	1.31	TBD (1)	_	TBD (1)	V _{CCI0} /2	TBD (1)	TBD (1)	_	TBD (1)	TBD (1)	TBD (1)

Note to Table 17:

(1) Pending silicon characterization.

I/O	V _{CCIO} (V)			V _{DIF(DC)} (V)			_{X(AC)} (V)			/ _{см(DC)} (\	/)	V _{DIF(AC)} (V)	
Standard	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78		1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5 x V _{CCI0}	_	0.4 x V ccio	0.5 x V _{CCI0}	0.6 x V _{CCIO}	0.3	V _{CCI0} + 0.48
HSUL-12	1.14	1.2	1.3	0.26	0.26	0.5 x V _{CCIO} - 0.12	0.5 x V _{CCIO}	0.5 x V _{CCI0} +0.12	0.4 x V ccio	0.5 x V _{CCIO}	0.6 x V _{CCIO}	0.44	0.44

Table 18. Differential HSTL I/O Standards for Cyclone V Devices—*Preliminary*

1/0 Standard	V _{CCIO} (V)			V _{ID} (mV) ⁽¹⁾		V _{ICM(DC)} (V)			V _{od} (V) ⁽³⁾			V _{ocm} (V) ⁽³⁾			
i/U Stanuaru	Min	Тур	Max	Min	Condition	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
PCML (2)	L ⁽²⁾ Transmitter, receiver, and input reference clock pins of high-speed transceivers use the PCML I/O standard. For transmitter, receiver, and reference clock I/O pin specifications, refer to Table 20 on page 1–15.														
2 5 V I VDS (4)	2 375	25	2 625	100	V _{CM} =	$V_{CM} = 0$ 1.25 V 1	0.05	<700 Mbps	1.80	0.247		0.6	1 1 2 5	1 25	1 375
2.5 V LVD5()	2.070	2.0	2.025	100	1.25 V	1.05	>700 Mbps	1.55	0.247		0.0	1.125	1.25	1.070	
RSDS (HIO) ⁽⁵⁾	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.25	_	1.45	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (HIO) ⁽⁶⁾	2.375	2.5	2.625	200	_	600	0.300	_	1.425	0.25	_	0.6	1	1.2	1.4
	2 375	25	2 625	300			0.60	<700 Mbps	1.80						
	2.075	2.5	2.025	300		-	1.00	>700 Mbps	1.60						
SLVS	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.05	_	1.8						

Notes to Table 19:

(1) The minimum V_{ID} value is applicable over the entire common mode range, V_{CM}

(2) The transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–15.

(3) RL range: 90 \leq RL \leq 110 Ω

(4) For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rate above 700 Mbps and 0.00 V to 1.85 V for data rate below 700 Mbps.

(5) For optimized **RSDS** receiver performance, the receiver voltage input range must be within 0.25 V to 1.45 V.

(6) For optimized mini-LVDS receiver performance, the receiver voltage input range must be within 0.300 V to 1.425 V.

(7) For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rate above 700 Mbps and 0.45 V to 1.95 V for data rate below 700 Mbps.

Switching Characteristics

This section provides performance characteristics of Cyclone V core and periphery blocks for commercial grade devices.

Transceiver Performance Specifications

This section describes transceiver performance specifications.

Table 20 lists the Cyclone V GX transceiver specifications.

 Table 20. Transceiver Specifications for Cyclone V GX Devices—Preliminary (Part 1 of 3)

Symbol/	Ocuditions		- C 6			- C 7, -I7			- C 8, -A7		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock	•										
Supported I/O Standards	1.2	V PCML	., 1.5 V P	CML, 2.5	V PCML,	, Differen	tial LVPEC	CL (1), HC	SL, and I	VDS	
Input frequency from REFCLK input pins	—	27	_	550	27	_	550	27	_	550	MHz
Duty cycle	—	45		55	45	_	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to 0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	—	_	100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	—		1.1		1.1			1.1		V	
V _{ICM} (DC coupled)	HCSL I/O standard for the PCIe reference clock	250	_	550	250	_	550	250	_	550	mV
R _{REF}	_	_	2000 ±1%		_	2000 ±1%		_	2000 ±1%		Ω
Transceiver Clocks					•						
fixedclk Clock frequency	PCIe Receiver Detect	_	125	_		125	_	_	125		MHz
Avalon [®] Memory- Mapped (Avalon-MM) PHY management clock frequency		1			< 150						MHz

Symbol/	Qanditiana		- C 6			–C7, –ľ	7	- C 8, -A7			11
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Receiver											
Supported I/O Standards			1.5	V PCML,	2.5 V PC	ML, LVP	ECL, and L	VDS			
Data rate	—	614	—	3125	614	_	3125	614		2500	Mbps
Absolute V _{MAX} for a receiver pin ⁽²⁾	_	_	_	1.2	_	_	1.2	_	_	1.2	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	-0.4	_	—	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) after device configuration	_	_	_	2.2	_	_	2.2	_	_	2.2	V
Minimum differential eye opening at the receiver serial input pins ⁽³⁾	_	85	_	_	85	_	_	85	_	_	mV
	85- Ω setting	—	85			85		—	85		Ω
Differential on-chip	100- Ω setting	-	100	_	_	100		-	100	_	Ω
termination resistors	120- Ω setting	—	120	_	_	120	_	—	120	—	Ω
	150- Ω setting	—	150		_	150		—	150		Ω
Differential and common mode return loss	PCIe Gen1, GIGE		Compliant							_	
Programmable PPM detector ⁽⁴⁾	—		±62.5, 100, 125, 200, 250, 300, 500, and 1000							ppm	
Run Length	—	—	—	200		—	200	—		200	UI
Programmable equalization (AC) and DC gain	_		Refer to Figure 1 and Figure 2							dB	

Table 20. Transceiver Specifications for Cyclone V GX Devices—Preliminary (Part 2 of 3)

Table 20. Transceiver Specifications for Cyclone V GX Devices—*Preliminary* (Part 3 of 3)

Symbol/	Oanditiana		- C 6			–C7, –I	7	- C 8, -A7			Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter			<u>.</u>		<u>.</u>	·		<u>.</u>	• •	<u>.</u>	
Supported I/O Standards					1.5 V	PCML					
Data rate	—	614		3125	614		3125	614		2500	Mbps
V _{OCM}	—	_	650	—	_	650	—	_	650	—	mV
	85- Ω setting	—	85	—	—	85	_	—	85	—	Ω
Differential on-chip	100- Ω setting	_	100	—	—	100		—	100	—	Ω
termination resistors	120- Ω setting	_	120	—	—	120	—	—	120	—	Ω
	150- Ω setting	_	150	—	—	150	—	—	150	—	Ω
Rise time ⁽⁵⁾	—	30		160	30		160	30		160	ps
Fall time ⁽⁵⁾	—	30		160	30		160	30		160	ps
CMU PLL	•										
Supported data range	—	614		3125	614		3125	614		2500	Mbps
Transceiver-FPGA Fabri	c Interface										
Interface speed (single-width mode)	_	25	_	187.5	25	_	163.84	25	_	156.25	MHz
Interface speed (double-width mode)	_	25	_	163.84	25	_	163.84	25	_	156.25	MHz

Notes to Table 20:

(1) Differential LVPECL signal levels must comply to the minimum and maximum peak-to-peak differential input voltage specified in this table.

(2) The device cannot tolerate prolonged operation at this absolute maximum.

(3) The differential eye opening specification at the receiver input pins assumes that you have disabled the Receiver Equalization feature. If you enable the Receiver Equalization feature, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

(4) The rate matcher supports only up to ± 300 parts per million (ppm).

(5) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

Table 21 lists the Cyclone V GX transceiver block jitter specifications.

Symbol/	Oanditiana		- C 6		- C 7, -I7				llnit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Transmit Jitte	r Generation ⁽¹⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Tolerance ⁽¹⁾											
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6			> 0.6		UI
GIGE Transmit Jitter Generation ⁽²⁾											
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	_	_	0.14	UI
Total jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitte	r Tolerance ⁽²⁾										
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66		> 0.66			> 0.66			UI

Table 21.	Transceiver Block	Jitter Specifications	for Cyclone V	GX Devices-	-Preliminary
-----------	-------------------	------------------------------	---------------	-------------	--------------

Notes to Table 21:

(1) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(2) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Figure 1 shows the continuous time-linear equalizer (CTLE) response for Cyclone V devices with data rates > 3.25 Gbps.

Figure 1. CTLE Response for Cyclone V Devices with Data Rates > 3.25 Gbps

Figure 2 shows the CTLE response for Cyclone V devices with data rates \leq 3.25 Gbps.

Figure 2. CTLE Response for Cyclone V Devices with Data Rates \leq 3.25 Gbps

Table 22 lists the TX V_{OD} settings for Cyclone V transceiver channels.

Symbol	V _{oD} Setting ⁽¹⁾	V _{oD} Value (mV)	V _{oD} Setting ⁽¹⁾	V _{op} Value (mV)
	0	0	32	640
	1	20	33	660
	2	40	34	680
	3	60	35	700
	4	80	36	720
	5	100	37	740
	6	120	38	760
	7	140	39	780
	8	160	40	800
	9	180	41	820
	10	200	42	840
	11	220	43	860
	12	240	44	880
	13	260	45	900
	14	280	46	920
V_{0D} differential peak to peak	15	300	47	940
typical	16	320	48	960
	17	340	49	980
	18	360	50	1000
	19	380	51	1020
	20	400	52	1040
	21	420	53	1060
	22	440	54	1080
	23	460	55	1100
	24	480	56	1120
	25	500	57	1140
	26	520	58	1160
	27	540	59	1180
	28	560	60	1200
	29	580	61	1220
	30	600	62	1240
	31	620	63	1260

Table 22. Typical TX V_{\text{OD}} Setting for Cyclone V Transceiver Channels = 100 $\Omega\text{---}Preliminary$

Note to Table 22:

(1) Convert these values to their binary equivalent form if you are using the dynamic reconfiguration mode for PMA analog controls.

Table 23 lists the simulation data on the transmitter pre-emphasis levels in dB for the first post tap under the following conditions:

- Low-frequency data pattern—five 1s and five 0s
- Data rate—2.5 Gbps

The levels listed are a representation of possible pre-emphasis levels under the specified conditions only and the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Cyclone V HSSI HSPICE models.

Table 23. Transmitter Pre-Emphasis Levels for Cyclone V Devices (1), (2), (3), (4)—Preliminary (Part 1 of 2)

Quartus II 1st Post Tan			Quar	tus II V _{od} Se	tting			
Pre-Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit
0	0	0	0	0	0	0	0	dB
1	1.97	0.88	0.43	0.32	0.24	0.19	0.13	dB
2	3.58	1.67	0.95	0.76	0.61	0.5	0.41	dB
3	5.35	2.48	1.49	1.2	1	0.83	0.69	dB
4	7.27	3.31	2	1.63	1.36	1.14	0.96	dB
5	—	4.19	2.55	2.1	1.76	1.49	1.26	dB
6	—	5.08	3.11	2.56	2.17	1.83	1.56	dB
7	—	5.99	3.71	3.06	2.58	2.18	1.87	dB
8	—	6.92	4.22	3.47	2.93	2.48	2.11	dB
9	—	7.92	4.86	4	3.38	2.87	2.46	dB
10	—	9.04	5.46	4.51	3.79	3.23	2.77	dB
11	—	10.2	6.09	5.01	4.23	3.61	—	dB
12	—	11.56	6.74	5.51	4.68	3.97	—	dB
13	—	12.9	7.44	6.1	5.12	4.36	—	dB
14	—	14.44	8.12	6.64	5.57	4.76	—	dB
15	—	—	8.87	7.21	6.06	5.14	—	dB
16	—	—	9.56	7.73	6.49	—	—	dB
17	—	—	10.43	8.39	7.02	—	—	dB
18	—	—	11.23	9.03	7.52	—	—	dB
19	—	—	12.18	9.7	8.02	—	—	dB
20	—	—	13.17	10.34	8.59	—	—	dB
21			14.2	11.1				dB
22			15.38	11.87				dB
23				12.67			_	dB
24				13.48				dB

Table 23. Transmitter Pre-Emphasis Levels for Cyclone V Devices (1), (2), (3), (4)—Preliminary (Part 2 of 2)

Questue II 1et Peet Ten		Quartus II V _{oD} Setting							
Pre-Emphasis Setting	10 (200 mV)	20 (400 mV)	30 (600 mV)	35 (700 mV)	40 (800 mV)	45 (900 mV)	50 (1000 mV)	Unit	
25	—	—	—	14.37	—	—	—	dB	
26	—	—	—	—	—	—	—	dB	
27	—	—	—	—	—	—	—	dB	
28	—	—	—	—	—	—	—	dB	
29	—	—	—	—	—	—	—	dB	
30	_	_	—	—	—	_		dB	
31		_	_	—	—	—	_	dB	

Notes to Table 23:

- The 1st post tap pre-emphasis settings must satisfy |B| + |C| ≤60 |B| = V_{0D} setting with termination value, R_{TERM} = 100 Ω |C| = 1st post tap pre-emphasis setting
- (2) |B| |C| > 5 for data rates < 5 Gbps and |B| |C| > 8.25 for data rates > 5 Gbps.
- (3) $(V_{MAX}/V_{MIN} 1)\% < 600\%$, where $V_{MAX} = |B| + |C|$ and $V_{MIN} = |B| |C|$.
- (4) For example, when $V_{0D} = 800 \text{ mV}$, the corresponding V_{0D} value setting is 40. To check the validity of the 1st post tap pre-emphasis setting = 2 $|B| + |C| \leq 60 \rightarrow 40 + 2 = 42$ $|B| - |C| > 5 \rightarrow 40 - 2 = 38$ $(V_{MAX}/V_{MIN} - 1)\% < 600\% \rightarrow (42/38 - 1)\% = 10.52\%$ Therefore, the 1st post tap pre-emphasis setting = 2 is a valid condition.

June 2012 Altera Corporation

Core Performance Specifications

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), and memory block specifications.

Clock Tree Specifications

Table 24 lists the clock tree specifications for Cyclone V devices.

Table 24. Clock Tree Performance for Cyclone V Devices—*Preliminary*

Performance								
Symbol –C6 –C7, –I7 –C8, –A7								
Global clock and Regional clock	550	550	460	MHz				
Peripheral clock	155	155	155	MHz				

PLL Specifications

Table 25 lists the Cyclone V PLL specifications when operating in the commercial (0° to 85°C), industrial (–40° to 100°C), and automotive (–40° to 125°C) junction temperature ranges.

Table 25. PLL Specifications for Cyclone V Devices ⁽¹⁾—Preliminary (Part 1 of 3)

Symbol	Parameter		Min	Тур	Max	Unit
		–C6 speed grade	5	—	670 ⁽²⁾	MHz
f _{IN}	Input clock frequency	–C7, –I7 speed grades	5		622 ⁽²⁾	MHz
		-C8, -A7 speed grades	5		500 ⁽²⁾	MHz
f _{INPFD}	Integer input clock frequency to the I	PFD	5		325	MHz
f _{FINPFD}	Fractional input clock frequency to th	e PFD	50	—	TBD (1)	MHz
		-C6 speed grade	600	—	1600	MHz
f _{VCO}	PLL VCO operating range	–C7, –I7 speed grades	600	—	1400	MHz
		-C8, -A7 speed grades	600		1300	MHz
t _{einduty}	Input clock or external feedback cloc	40	—	60	%	
f _{ouт}		-C6 speed grade	—		550 <i>(4)</i>	MHz
	Output frequency for internal global or regional clock	–C7, –I7 speed grades		—	550 ⁽⁴⁾	MHz
		–C8, –A7 speed grades		—	460 ⁽⁴⁾	MHz
		–C6 speed grade	—		667 ⁽⁴⁾	MHz
f _{OUT_EXT}	Output frequency for external clock	–C7, –I7 speed grades	—		667 ⁽⁴⁾	MHz
		-C8, -A7 speed grades	_		533 ⁽⁴⁾	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensatio	n time		—	10	ns
t _{CONFIGPHASE}	Time required to reconfigure phase s	hift		—	TBD (1)	-
t _{dyconfigclk}	Dynamic configuration clock		—	—	100	MHz
t _{LOCK}	Time required to lock from end-of-de deassertion of areset	red to lock from end-of-device configuration or n of areset			1	ms
t _{DLOCK}	Time required to lock dynamically (at reconfiguring any non-post-scale configuring any non-po	ter switchover or Inters/delays)		_	1	ms

Symbol	Parameter	Min	Тур	Max	Unit
	PLL closed-loop low bandwidth	—	0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5	—	MHz
	PLL closed-loop high bandwidth ⁽⁹⁾	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10	—	—	ns
+ (5) (6)	Input clock cycle-to-cycle jitter ($F_{REF} \ge 100 \text{ MHz}$)	_	—	0.15	UI (p-p)
LINCCJ (19)	Input clock cycle-to-cycle jitter (F _{REF} < 100 MHz)	_	—	±750	ps (p-p)
+ (7)	Period jitter for dedicated clock output ($F_{\text{OUT}} \geq 100 \text{ MHz})$	_	—	TBD (1)	ps (p-p)
OUTPJ_DC	Period jitter for dedicated clock output (F _{OUT} < 100 MHz)	—	—	TBD (1)	mUI (p-p)
+ (7)	Cycle-to-cycle jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	TBD (1)	ps (p-p)
toutccj_dc (**	Cycle-to-cycle jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)
+ (7) (10)	Period jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	TBD (1)	ps (p-p)
LOUTPJ_IO	Period jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_		TBD (1)	mUI (p-p)
+ (7) (10)	Cycle-to-cycle jitter for clock output on regular I/O $(F_{\text{OUT}} \geq 100 \text{ MHz})$	_	_	TBD (1)	ps (p-p)
	Cycle-to-cycle jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	TBD (1)	mUI (p-p)
t _{outpj_dc_f}	Period jitter for dedicated clock output in fractional mode	_	_	TBD (1)	_
t _{outccj_dc_f}	Cycle-to-cycle jitter for dedicated clock output in fractional mode	_	_	TBD (1)	—
t _{OUTPJ_IO_F}	Period jitter for clock output on regular I/O in fractional mode	_	—	TBD (1)	
t _{outccj_io_f}	Cycle-to-cycle jitter for clock output on regular I/O in fractional mode	_	_	TBD (1)	_
t _{casc_outpj_dc}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \geq 100 \text{ MHz})$	_	_	TBD (1)	ps (p-p)
(7), (8)	Period jitter for dedicated clock output in cascaded PLLs (F_{OUT} < 100 MHz)			TBD (1)	mUI (p-p)

Table 25. PLL Specifications for Cyclone V Devices (1)-Preliminary (Part 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DRIFT}	Frequency drift after PFDENA is disabled for a duration of 100 μs	_	_	±10	%
dK _{BIT}	Bit number of Delta Sigma Modulator (DSM)	—	24		Bits
k _{VALUE}	Numerator of Fraction	TBD (1)	8388608	TBD (1)	_
f _{RES}	Resolution of VCO frequency (f _{INPFD} =100 MHz)	—	5.96		Hz

Table 25. PLL Specifications for Cyclone V Devices ⁽¹⁾—Preliminary (Part 3 of 3)

Notes to Table 25:

- (1) Pending silicon characterization.
- (2) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (3) The VCO frequency reported by the Quartus II software takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (4) This specification is limited by the lower of the two: I/O f_{MAX} or F_{OUT} of the PLL.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source < 120 ps.
- (6) F_{REF} is $f_{IN/N}$ when N = 1.
- (7) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 31 on page 1–30.
- (8) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 MHz dJpstream PLL BW < 1 MHz</p>
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (9) High bandwidth PLL settings are not supported in external feedback mode.
- (10) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 31 on page 1–30.

DSP Block Specifications

Table 26 lists the Cyclone V DSP block performance specifications.

Table 26. DSP Block Performance Specifications for Cyclone V Devices—Preliminary

Mada		Performance		Unit
Mode	-C6	-C7, -I7	- C 8, -A7	Unit
Modes using One DSP Block	•		•	
Independent 9 x 9 Multiplication	340	300	260	MHz
Independent 18 x 19 Multiplication	287	250	200	MHz
Independent 18 x 18 Multiplication	287	250	200	MHz
Independent 27 x 27 Multiplication	250	200	160	MHz
Independent 18 x 25 Multiplication	310	250	200	MHz
Independent 20 x 24 Multiplication	310	250	200	MHz
Two 18 x 19 Multiplier Adder Mode	310	250	200	MHz
18 x 18 Multiplier Added Summed with 36-bit Input	310	250	200	MHz
Modes using Two DSP Blocks				
Complex 18 x 19 multiplication	310	250	200	MHz

Memory Block Specifications

Table 27 lists the Cyclone V memory block specifications.

Maman	Mode	Resour	rces Used		IIit		
Memory	Mone	ALUTs	Memory	- C 6	C7 , -I7	-C8, -A7	Umit
	Single port, all supported widths	0	1	450	380	330	MHz
MLAR	Simple dual-port, all supported widths	0	1	450	380	330	MHz
	Simple dual-port with read and write at the same address	0	1	350	300	250	MHz
	ROM, all supported width	0	1	450	380	330	MHz
M10K Block	Single-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port, all supported widths	0	1	315	275	240	MHz
	Simple dual-port with the read-during-write option set to Old Data, all supported widths	0	1	275	240	180	MHz
	True dual port, all supported widths	0	1	315	275	240	MHz
	ROM, all supported widths	0	1	315	275	240	MHz
-	Min Pulse Width (clock high time)			1,450	1,550	1,650	ps
	Min Pulse Width (clock low time)	—		1,000	1,200	1,350	ps

Table 27. Memory Block Performance Specifications for Cyclone V Devices (1), (2) — Preliminary

Notes to Table 27:

(1) To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to **50**% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

(2) When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f_{MAX}.

Periphery Performance

This section describes periphery performance and the high-speed I/O and external memory interface.

Actual achievable frequency depends on design- and system-specific factors. You must perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 28 lists high-speed I/O timing for Cyclone V devices.

Table 28. High-Speed I/O Specifications for Cyclone V Devices (1), (2), (3)—Preliminary (Part 1 of 2)

Cumhal	Conditions		- C 6			- C7 , -	·17	-C8, -A7		11	
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_in} (input clock frequency) True Differential I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5	_	437.5	5	_	420	5	_	320	MHz
f _{HSCLK_in} (input clock frequency) Single Ended I/O Standards	Clock boost factor W = 1 to 40 $^{(4)}$	5	_	320	5	_	320	5	_	275	MHz
f _{HSCLK_OUT} (output clock frequency)	_	5	_	420	5	_	370	5	_	320	MHz
Transmitter											
True Differential I/O	SERDES factor J = 4 to 10	(5)	—	840	(5)	—	740	(5)	—	640	Mbps
Standards - f _{HSDR} (data rate)	SERDES factor J = 1 to 2, Uses DDR Registers	(5)	-	(7)	(5)	—	(7)	(5)	—	(7)	Mbps
Emulated Differential I/O Standards with Three External Output Resistor Networks - f _{HSDR} (data rate) ⁽⁶⁾	SERDES factor J = 4 to 10	(5)		640	(5)		640	(5)		550	Mbps
Emulated Differential I/O Standards with One External Output Resistor Network - f _{HSDR} (data rate) ⁽⁶⁾	SERDES factor J = 4 to 10	(5)		170	(5)		170	(5)	_	170	Mbps
t _{x Jitter} - True Differential I/O	Total Jitter for Data Rate, 600 Mbps - 840 Mbps	_	_	330	_	_	TBD	_	_	TBD	ps
Standards	Total Jitter for Data Rate, < 600 Mbps	_	_	0.1	_	_	TBD	_	_	TBD	UI
t _x Jitter - Emulated Differential I/O Standards with Three External Output Resistor Networks	Total Jitter for Data Rate < 640 Mbps	_	_	TBD			TBD	_		TBD	UI
t _{x Jitter} - Emulated Differential I/O Standards with One External Output Resistor Network	Total Jitter for Data Rate < 640 Mbps	_	_	TBD	_		TBD	_	_	TBD	UI

Gumbal	Conditions	- C 6		- C 7, -I7			- C 8, -A7			11	
Ioamye	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
touty	TX output clock duty cycle for both True and Emulated Differential I/O Standards	45	50	55	45	50	55	45	50	55	%
t _{rise &} t _{fall}	True Differential I/O Standards	_	_	200	_	_	200	_	_	200	ps
	Emulated Differential I/O Standards with Three External Output Resistor Networks	_	_	250	_	_	250	_	_	300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network		_	300	_		300		_	300	ps
	True Differential I/O Standards	_	_	200	_	_	250	_	_	250	ps
TCCS	Emulated Differential I/O Standards with Three External Output Resistor Networks	_	_	300	_	_	300	_	_	300	ps
	Emulated Differential I/O Standards with One External Output Resistor Network	_		300			300	_	_	300	ps
Receiver											
	SERDES factor J = 4 to 10	(5)	—	875 ⁽⁶⁾	(5)	—	840 <i>(6)</i>	(5)	—	640 <i>(6)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 1 to 2, Uses DDR Registers	(5)	_	(7)	(5)	_	(7)	(5)	_	(7)	Mbps
Sampling Window	—	—	—	350	—		350	_	—	350	ps

Table 28. High-Speed I/O Specifications for Cyclone V Devices (1), (2), (3)-Preliminary (Part 2 of 2)

Notes to Table 28:

(1) When J = 1 or 2, bypass the serializer/deserializer (SERDES) block.

(2) For LVDS applications, you must use the PLLs in integer PLL mode.

(3) This is achieved by using the LVDS clock network.

(4) Clock Boost Factor (W) is the ratio between the input data rate and the input clock rate.

(5) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.

(6) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

(7) The maximum ideal frequency is the SERDES factor (J) x PLL max output frequency (f_{out}), provided you can close the design timing and the signal integrity simulation is clean. You can estimate the achievable maximum data rate by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.

DLL Range, DQS Logic Block and Memory Output Clock Jitter Specifications

Table 29 lists the DLL operating frequency range specifications for Cyclone V devices.

land is set operating i requeries inange operatione is eyerene i series	Table 29.	DLL Operating	Frequency	Range Specifications	for Cyclone V	Devices
---	-----------	----------------------	-----------	-----------------------------	---------------	---------

Parameter	-C6	C7 , - I7	-C8	Unit
DLL operating frequency range	167 – 400	167 – 400	167 – 400	MHz

Table 30 lists the DQS phase shift error for Cyclone V devices.

Table 30. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Cyclone V Devices ^{(1), (2)} — *Preliminary*

Number of DQS Delay Buffers	-C6	–C7, –I7	-C8	Unit
2	40	80	80	ps

Notes to Table 30:

(1) The numbers are preliminary pending silicon characterization.

(2) This error specification is the absolute maximum and minimum error.

Table 31 lists the memory output clock jitter specifications for Cyclone V devices.

Table 31. Memory Output Clock Jitter Specification for Cyclone V Devices (1), (2), (3) — Preliminary

Paramotor	Clock	Symbol	- C 6		-C7	, –17	Т	Ilnit	
F al alligigi	Network	Symbol	Min	Max	Min	Max	Min	Max	Unit
Clock period jitter	PHYCLK	$t_{JIT(per)}$	-90	90	-90	90	-90	90	ps
Cycle-to-cycle period jitter	PHYCLK	$t_{\rm JIT(cc)}$	180		180		180		ps

Notes to Table 31:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) Altera recommends using the UniPHY intellectual property (IP) with PHYCLK connections that has better jitter performance.

(3) The memory output clock jitter is applicable when an input jitter of 30 ps (p-p) is applied with bit error rate (BER) -12, equivalent to 14 sigma.

OCT Calibration Block Specifications

Table 32 lists the OCT calibration block specifications for Cyclone V devices.

Table 32.	OCT Calibration E	lock Specifications	for Cyclone V Devices-	-Preliminary
-----------	--------------------------	---------------------	------------------------	--------------

Symbol	Description	Min	Тур	Max	Unit
OCTUSRCLK	Clock required by OCT calibration blocks	—	—	20	MHz
T _{OCTCAL}	Number of OCTUSRCLK clock cycles required for $R_{S}\text{OCT}/R_{T}\text{OCT}$ calibration	_	1000	—	Cycles
T _{OCTSHIFT}	Number of OCTUSRCLK clock cycles required for OCT code to shift out	_	32	—	Cycles
T _{RS_RT}	Time required between the $\tt dyn_term_ctrl$ and $\tt oe$ signal transitions in a bidirectional I/O buffer to dynamically switch between R_S OCT and R_T OCT		2.5		ns

Figure 3 shows the timing diagram for the oe and dyn_term_ctrl signals.

Figure 3. Timing Diagram for the oe and dyn_term_ctrl Signals

Duty Cycle Distortion (DCD) Specifications

Table 33 lists the worst-case DCD for Cyclone V devices.

 Table 33. Worst-Case DCD on I/O Pins for Cyclone V Devices—Preliminary

Symbol	-	C6	-C7	′, –I7	- C 8	, - A7	Unit
Symbol	Min	Max	Min	Max	Min	Max	UIIIL
Output Duty Cycle	45	55	45	55	45	55	%

Configuration Specification

This section provides configuration specifications and timing for Cyclone V devices.

POR Specifications

Table 34 lists the specifications for fast and standard POR delay for Cyclone V devices.

Table 34. Fast and Standard POR Delay Specification for Cyclone V Devices (1)

POR Delay	Minimum (ms)	Maximum (ms)
Fast ⁽²⁾	4	12
Standard	100	300

Notes to Table 34:

(1) Select the POR delay based on the MSEL setting as described in the "Configuration Schemes for Cyclone V Devices" table in the *Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices* chapter.

JTAG Configuration Timing

Table 35 lists the JTAG timing parameters and values for Cyclone V devices.

Table 35.	JTAG Timing	Parameters a	nd Values fo	r Cyclone V	Devices-	-Preliminary
-----------	--------------------	--------------	--------------	-------------	----------	--------------

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30		ns
t _{JCP}	TCK clock period	167 ⁽¹⁾	_	ns
t _{JCH}	TCK clock high time	14	_	ns
t _{JCL}	TCK clock low time	14		ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	_	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	_	ns
t _{JPH}	JTAG port hold time	5		ns
t _{JPCO}	JTAG port clock to output	_	11 ⁽²⁾	ns
t _{JPZX}	JTAG port high impedance to valid output	_	14 ⁽²⁾	ns
t _{JPXZ}	JTAG port valid output to high impedance	_	14 <i>(2)</i>	ns

Notes to Table 35:

(1) The minimum TCK clock period is 167 nS if V_{CCBAT} is within the range 1.2 V – 1.5 V when you perform the volatile key programming.

(2) A 1 ns adder is required for each V_{CCI0} voltage step down from 3.0 V. For example, t_{JPC0} = 12 ns if V_{CCI0} of the TDO I/O bank = 2.5 V, or 13 ns if it equals 1.8 V.

⁽²⁾ The maximum pulse width of the fast POR delay is 12 ms, providing enough time for the PCIe hard IP to initialize after the POR trip.

FPP Configuration Timing

This section describes the fast passive parallel (FPP) configuration timing parameters for Cyclone V devices.

DCLK-to-DATA[] Ratio (r) for FPP Configuration

FPP configuration requires a different DCLK-to-DATA[] ratio when you turn on encryption or the compression feature.

Table 36 lists the DCLK-to-DATA[] ratio for each combination.

Configuration Scheme	Encryption	Compression	DCLK-to-DATA[] ratio (r)
	Off	Off	1
FDD (8-bit wide)	On	Off	1
	Off	On	2
	On	On	2
	Off	Off	1
EDD (16 bit wide)	On	Off	2
	Off	On	4
	On	On	4

Table 36. DCLK-to-DATA[] Ratio for Cyclone V Devices ⁽¹⁾—Preliminary

Note to Table 36:

(1) Depending on the DCLK-to-DATA [] ratio, the host must send a DCLK frequency that is r times the DATA [] rate in byte per second (Bps) or word per second (Wps). For example, in FPP x16 where the r is 2, the DCLK frequency must be 2 times the DATA [] rate in Wps. Cyclone V devices use additional clock cycles to decrypt and decompress the configuration data.

If the DCLK-to-DATA[] ratio is greater than 1, at the end of configuration, you can only stop the DCLK (DCLK-to-DATA[] ratio – 1) clock cycles after the last data is latched into the Cyclone V device.

P

FPP Configuration Timing when DCLK to DATA[] = 1

Figure 4 shows the timing waveform for an FPP configuration when using a MAX[®] II device as an external host. This waveform shows timing when the DCLK-to-DATA[] ratio is 1.

When you enable decompression or the design security feature, the DCLK-to-DATA[] ratio varies for FPP x8 and FPP x16. For the respective DCLK-to-DATA[] ratio, refer to Table 36 on page 1–33.

Notes to Figure 4:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power up, the Cyclone V device holds **nSTATUS** low for the time of the POR delay.
- (3) After power up, before and during configuration, CONF DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) For FPP x16, use DATA [15..0]. For FPP x8, use DATA [7..0]. DATA [15..0] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings.
- (6) To ensure a successful configuration, send the entire configuration data to the Cyclone V device. CONF_DONE is released high when the Cyclone V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, INIT DONE goes low.

Table 37 lists the timing parameters for Cyclone V devices for an FPP configuration when the DCLK-to-DATA[] ratio is 1.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 ⁽²⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 <i>(3)</i>	μs
t _{CF2CK}	nCONFIG high to first rising edge on DCLK	1506	_	μs
t _{ST2CK}	$\operatorname{nSTATUS}$ high to first rising edge of DCLK	2	—	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	_	ns
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	_	S
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	_	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency (FPP x8 and x16)	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽⁴⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	_	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408	_	Cycles

Table 37. DCLK-to-DATA[] FPP Timing Parameters for Cyclone V Devices When the Ratio is 1 ⁽¹⁾—Preliminary

Notes to Table 37:

(1) Use these timing parameters when the DCLK-to-DATA [] ratio is 1. To find the DCLK-to-DATA [] ratio for your system, refer to Table 36 on page 1-33.

(2) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) You can obtain this value if you do not delay configuration by externally holding nSTATUS low.

(4) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

FPP Configuration Timing when DCLK to DATA[] > 1

Figure 5 shows the timing waveform for an FPP configuration when using a MAX II device or microprocessor as an external host. This waveform shows timing when the DCLK-to-DATA [] ratio is more than 1.

Notes to Figure 5:

- (1) To find the DCLK-to-DATA [] ratio for your system, refer to Table 36 on page 1–33.
- (2) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (3) After power up, the Cyclone V device holds nSTATUS low for the time as specified by the POR delay.
- (4) After power up, before and during configuration, CONF DONE is low.
- (5) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (6) "r" denotes the DCLK-to-DATA [] ratio. For the DCLK-to-DATA [] ratio based on the decompression and the design security feature enable settings, refer to Table 36 on page 1–33.
- (7) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA [15..0] pins prior to sending the first DCLK rising edge.
- (8) To ensure a successful configuration, send the entire configuration data to the Cyclone V device. CONF_DONE is released high after the Cyclone V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (9) After the option bit to enable the INIT_DONE pin is configured into the device, INIT_DONE goes low.

Table 38 lists the timing parameters for Cyclone V devices when the DCLK-to-DATA[] ratio is more than 1.

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nconfig low to nstatus low	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μs
t _{status}	nSTATUS low pulse width	268	1506 ⁽²⁾	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	—	1506 <i>(3)</i>	μs
t _{CF2CK}	nCONFIG high to first rising edge on DCLK	1506	—	μs
t _{ST2CK}	${\tt nSTATUS}$ high to first rising edge of ${\tt DCLK}$	2	—	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	_	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	N – 1/f _{DCLK} ⁽⁴⁾	—	S
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	—	S
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency (FPP x8 and x16)	—	125	MHz
t _R	Input rise time	—	40	ns
t _F	Input fall time	—	40	ns
t _{CD2UM}	CONF_DONE high to user mode ⁽⁵⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 × maximum DCLK period	—	—
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	_	_
T _{init}	Number of clock cycles required for device initialization	17,408	-	Cycles

Table 38. DCLK-to-DATA[] FPP Timing Parameters for Cyclone V Devices when the Ratio is > 1 ⁽¹⁾—Preliminary

Notes to Table 38:

(1) Use these timing parameters when you use decompression and the design security features.

(2) This value can be obtained if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(3) This value can be obtained if you do not delay configuration by externally holding nSTATUS low.

(4) N is the DCLK-to-DATA[] ratio and f_{DCLK} is the DCLK frequency of the system.

(5) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

AS Configuration Timing

Figure 6 shows the timing waveform for the active serial (AS) x1 mode and AS x4 mode configuration timing.

Notes to Figure 6:

- (1) The AS scheme supports standard and fast POR delay (t_{POR}). For t_{POR} delay information, refer to "POR Delay Specification" in the *Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices* chapter.
- (2) If you are using AS x4 mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle.
- (3) The initialization clock can be from the internal oscillator or the CLKUSR pin.
- (4) After the option bit to enable the INIT_DONE pin is configured into the device, INIT_DONE goes low.

Table 39 lists the timing parameters for AS x1 and AS x4 configurations in Cyclone V devices.

Table 39. AS Timing Parameters for AS x1 and x4 Configurations in Cyclone V Devices (1), (2)—Preliminary

Symbol	Parameter	Minimum	Maximum	Unit
t _{CO}	DCLK falling edge to the AS_DATA0/ASDO output	—	4	μs
t _{SU}	Data setup time before the falling edge on DCLK	1.5	—	ns
t _H	Data hold time after the falling edge on ${\tt DCLK}$	0	—	ns
t _{CD2UM}	CONF_DONE high to user mode	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 x maximum DCLK period	—	_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR	t _{CD2CU} + (T _{init} x CLKUSR	_	_
		period)		
T _{init}	Number of clock cycles required for device initialization	17,408		Cycles

Notes to Table 39:

(1) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for initializing the device.

(2) The t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , and t_{CF2ST1} timing parameters are identical to the timing parameters for passive serial (PS) mode listed in Table 41 on page 1–40.

Table 40 lists the internal clock frequency specification for the AS configuration scheme.

Table 40. DCLK Frequency Specification in the AS Configuration Scheme for Cyclone V Devices $^{(1),\ (2)}$ —Preliminary

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz
10.6	15.7	25.0	MHz
21.3	31.4	50.0	MHz
42.6	62.9	100.0	MHz

Notes to Table 40:

(1) This applies to the DCLK frequency specification when using the internal oscillator as the configuration clock source.

(2) The AS multi-device configuration scheme does not support DCLK frequency of 100 MHz.

PS Configuration Timing

Figure 7 shows the timing waveform for a PS configuration when using a MAX II device or microprocessor as an external host.

Figure 7. PS Configuration Timing Waveform for Cyclone V Devices (1)

Notes to Figure 7:

- (1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE are at logic high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.
- (2) After power up, the Cyclone V device holds nSTATUS low for the time of the POR delay.
- (3) After power up, before and during configuration, CONF_DONE is low.
- (4) Do not leave DCLK floating after configuration. You can drive it high or low, whichever is more convenient.
- (5) DATA0 is available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings in the **Device and Pins Option**.
- (6) To ensure a successful configuration, send the entire configuration data to the Cyclone V device. CONF_DONE is released high after the Cyclone V device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode.
- (7) After the option bit to enable the INIT DONE pin is configured into the device, INIT DONE goes low.

Table 41 lists the PS timing parameter for Cyclone V devices.

Table 41. PS Timing Parameters for Cyclone V Devices—Preliminary

Symbol	Parameter	Minimum	Maximum	Unit
t _{CF2CD}	nCONFIG low to CONF_DONE low	—	600	ns
t _{CF2ST0}	nCONFIG IOW to nSTATUS IOW	_	600	ns
t _{CFG}	nCONFIG low pulse width	2	—	μs
t _{STATUS}	nSTATUS low pulse width	268	1506 <i>(1)</i>	μs
t _{CF2ST1}	nCONFIG high to nSTATUS high	_	1506 ⁽²⁾	μs
t _{CF2CK}	$\tt nCONFIG$ high to first rising edge on $\tt DCLK$	1506	—	μs
t _{ST2CK}	nSTATUS high to first rising edge of DCLK	2	—	μs
t _{DSU}	DATA[] setup time before rising edge on DCLK	5.5	—	ns
t _{DH}	DATA[] hold time after rising edge on DCLK	0	—	ns
t _{CH}	DCLK high time	0.45 x 1/f _{MAX}	—	S
t _{CL}	DCLK low time	0.45 x 1/f _{MAX}	—	S
t _{CLK}	DCLK period	1/f _{MAX}	—	S
f _{MAX}	DCLK frequency	_	125	MHz
t _{CD2UM}	CONF_DONE high to user mode ⁽³⁾	175	437	μs
t _{CD2CU}	CONF_DONE high to CLKUSR enabled	4 x maximum DCLK period		_
t _{CD2UMC}	CONF_DONE high to user mode with CLKUSR option on	t _{CD2CU} + (T _{init} x CLKUSR period)	—	
T _{init}	Number of clock cycles required for device initialization	17,408	_	Cycles

Notes to Table 41:

(1) You can obtain this value if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.

(2) You can obtain this value if you do not delay configuration by externally holding ${\tt nSTATUS}$ low.

(3) The minimum and maximum numbers apply only if you chose the internal oscillator as the clock source for initializing the device.

Initialization

Table 42 lists the initialization clock source option, the applicable configuration schemes, and the maximum frequency for Cyclone V devices.

Initialization Clock Source	Configuration Schemes	Maximum Frequency (MHz)	Minimum Number of Clock Cycles
Internal Oscillator	AS, PS, and FPP	12.5	т
CLKUSR	AS, PS, and FPP (1)	125	l init

Table 42. Initialization Clock Source Option and the Maximum Frequency for Cyclone V Devices

Note to Table 42:

(1) To enable CLKUSR as the initialization clock source, turn on the **Enable user-supplied start-up clock (CLKUSR)** option in the Quartus II software from the **General** panel of the **Device and Pin Options** dialog box.

Configuration Files

Use Table 43 to estimate the file size before design compilation. Different configuration file formats, such as a hexadecimal file (.hex) or tabular text file (.ttf) format, have different file sizes.

For the different types of configuration file and file sizes, refer to the Quartus II software. However, for a specific version of the Quartus II software, any design targeted for the same device has the same uncompressed configuration file size.

Table 43 lists the uncompressed raw binary file (.rbf) sizes for Cyclone V devices.

 Table 43. Uncompressed .rbf Sizes for Cyclone V Devices — Preliminary

Variant	Member Code	Configuration .rbf Size (bits)	IOCSR .rbf Size (bits)
	A2	16,000,000	114,971
Cyclone V E ⁽¹⁾	A4	38,000,000	190,686
	A5	38,000,000	297,791
	A7	56,167,328	399,315
	A9	114,000,000	788,500
Cyclone V GX	C3	16,000,000	413,032
	C4	38,000,000	1,026,160
	C5	38,000,000	1,026,160
	C7	56,167,328	1,986,848
	C9	114,000,000	3,970,538
	D5	38,000,000	297,791
Cyclone V GT	D7	56,167,328	399,315
	D9	114,000,000	788,500

Note to Table 43:

(1) No PCIe hard IP, configuration via protocol (CvP) is not supported in this family.

Remote System Upgrades Circuitry Timing Specification

Table 44 lists the timing parameter specifications for the remote system upgrade circuitry.

Table 44. Remote System Upgrade Circuitry Timing Specification for Cyclone V Devices— Preliminary

Parameter	Minimum	Maximum	Unit
t _{MAX_RU_CLK} (1)	—	40	MHz
t _{RU_nCONFIG} ⁽²⁾	250	_	ns
t _{RU_nRSTIMER} ⁽³⁾	250		ns

Notes to Table 44:

- (1) This clock is user-supplied to the remote system upgrade circuitry. If you are using the ALTREMOTE_UPDATE megafunction, the clock user-supplied to the ALTREMOTE_UPDATE megafunction must meet this specification.
- (2) This is equivalent to strobing the reconfiguration input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "Remote System Upgrade State Machine" section in the *Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices* chapter.
- (3) This is equivalent to strobing the reset timer input of the ALTREMOTE_UPDATE megafunction high for the minimum timing specification. For more information, refer to the "User Watchdog Timer" section in the *Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices* chapter.

User Watchdog Internal Oscillator Frequency Specification

Table 45 lists the frequency specifications for the user watchdog internal oscillator.

Table 45. User Watchdog Internal Oscillator Frequency Specifications for Cyclone V Devices— Preliminary

Minimum	Typical	Maximum	Unit
5.3	7.9	12.5	MHz

I/O Timing

Altera offers two ways to determine I/O timing—the Excel-based I/O Timing and the Quartus II Timing Analyzer.

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis.

The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

The Excel-based I/O Timing spreadsheet will be available in the future release of the Quartus II software.

Programmable IOE Delay

Table 46 lists the Cyclone V IOE programmable delay settings.

Table 46. IOE Programmable Delay for Cyclone V Devices (1)

Parameter Availa Settin	Available Mi	Available Minimum		Model	Slow Model			Unit
	Settings	ttings Offset	Industrial	Commercial	-C6	- C 7, -I7	- C 8, -A7	UIII
D1	31	0	TBD	TBD	TBD	TBD	TBD	ns
D3	7	0	TBD	TBD	TBD	TBD	TBD	ns
D4	31	0	TBD	TBD	TBD	TBD	TBD	ns
D5	31	0	TBD	TBD	TBD	TBD	TBD	ns

Note to Table 46:

(1) Pending data extraction from the Quartus II software.

Programmable Output Buffer Delay

Table 47 lists the delay chain settings that control the rising and falling edge delays of the output buffer. The default delay is 0 ps.

Table 47.	Programmable Out	put Buffer Delay fo	Cyclone V Devices	(1),	⁽²⁾ —Preliminary
-----------	------------------	---------------------	-------------------	------	-----------------------------

Symbol	Parameter	Typical	Unit
		0 (default)	ps
D	Rising and/or falling edge delay	50	ps
DOUTBUF		100	ps
		150	ps

Notes to Table 47:

(1) Pending data extraction from the Quartus II software.

(2) You can set the programmable output buffer delay in the Quartus II software by setting the Output Buffer Delay Control assignment to either positive, negative, or both edges, with the specific values stated here (in ps) for the Output Buffer Delay assignment.

Glossary

Table 48 lists the glossary for this datasheet.

Table 48. Glossary Table (Part 1 of 4)

Letter	Subject	Definitions
A B	_	_
C		
D	Differential I/O Standards	Receiver Input Waveforms Single-Ended Waveform Positive Channel (p) = V _{IL} V _{CM} Ground Differential Waveform V_{ID} V _{ID} $p - n = 0 V$ Transmitter Output Waveforms Single-Ended Waveform V _{CM} Positive Channel (p) = V _{OL} V _{OD} V _{OD} V _{CM} Positive Channel (p) = V _{OL} Ground Ground Differential Waveform Positive Channel (n) = V _{OL} Ground Ground V _{CM} Positive Channel (n) = V _{OL} V _{OD} Positive Channel (n) = V _{OL} V _{OD} Positive Channel (n) = V _{OL}
F		
-	fuscur	Left/right PLL input clock frequency
F	f _{HSDR}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block—Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.
G H I	_	—

Table 48. Glossary Table (Part 2 of 4)

Letter	Subject	Definitions
	J	High-speed I/O block—Deserialization factor (width of parallel data bus).
J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI t_{JCP} t_{JCH} t_{JPZX} t_{JPCO} t_{JPCO} t_{JPXZ} t_{JPXZ}
K L M N O	_	_
Ρ	PLL Specifications	Diagram of PLL Specifications (1)
	Preliminary	Some tables show the designation as "Preliminary". Preliminary characteristics are created using simulation results, process data, and other known parameters. Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no preliminary designations on finalized tables.
Q	—	
R	RL	Receiver differential input discrete resistor (external to the Cyclone V device).

Table 48. Glossary Table (Part 3 of 4)

Letter	Subject	Definitions		
	Sampling window (SW)	Timing Diagram—the period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window, as shown: Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM		
S	Single-ended voltage referenced I/O standard	The JEDEC standard for the SSTL and HSTL I/O defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the AC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing, as shown: Single-Ended Voltage Referenced I/O Standard		
	t _C	High-speed receiver/transmitter input and output clock period.		
	TCCS (channel- to-channel-skew)	The timing difference between the fastest and slowest output edges, including the t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under SW in this table).		
т	t _{duty}	High-speed I/O block—Duty cycle on high-speed transmitter output clock. Timing Unit Interval (TUI) The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)		
	t _{FALL}	Signal high-to-low transition time (80-20%)		
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input		
	t _{outpj_io}	Period jitter on the general purpose I/O driven by a PLL		
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL		
	t _{RISE}	Signal low-to-high transition time (20–80%)		
U	_	—		

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage—The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage—Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage— Minimum DC input differential voltage required for switching.
	V _{IH}	Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage
	V _{IH(DC)}	High-level DC input voltage
V	V _{IL}	Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage
	V _{IL(DC)}	Low-level DC input voltage
	V _{OCM}	Output common mode voltage—The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
	V _{SWING}	Differential input voltage
	V _X	Input differential cross point voltage
	V _{OX}	Output differential cross point voltage
W	W	High-speed I/O block—Clock Boost Factor
X		
Y	_	_
Z		

Document Revision History

Table 49 lists the revision history for this document.

Table 49. Document Revision History

Date	Version	Changes
		Updated for the Quartus II software v12.0 release:
		 Restructured document.
		 Removed "Power Consumption" section
June 2012	2.0	 Updated Table 1, Table 3, Table 19, Table 20, Table 25, Table 27, Table 28, Table 30, Table 31, Table 34, Table 36, Table 37, Table 38, Table 39, Table 41, Table 43, and Table 46.
		 Added Table 22, Table 23, and Table 29.
		 Added Figure 1 and Figure 2.
		 Added "Initialization" and "Configuration Files" sections.
	1.2	 Added automotive speed grade information.
		 Added Figure 2–1.
February 2012		 Updated Table 2–3, Table 2–8, Table 2–9, Table 2–19, Table 2–20, Table 2–21, Table 2–22, Table 2–23, Table 2–24, Table 2–25, Table 2–26, Table 2–27, Table 2–28, Table 2–30, Table 2–35, and Table 2–43.
		 Minor text edits.
November 2011	11	Added Table 2–5.
	1.1	■ Updated Table 2–3, Table 2–4, Table 2–11, Table 2–13, Table 2–20, and Table 2–21.
October 2011	1.0	Initial release.