

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Механика»

РАСЧЁТ ФЕРМ С ПОМОЩЬЮ ANSYS

РГР №1 ПО КУРСУ «ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЁТА В ИНЖЕНЕРНЫХ ЗАДАЧАХ»

Самара 2014

УДК 531

Расчёт с помощью пакета ANSYS ферм. Расч. граф. раб №1 по курсу «Численные методы расчёта в инженерных задачах» / Сост. В.Г. Фокин, - Самара, Самар. гос. техн. ун – т, 2014. - 14 с.

В расчётно-графической работе моделируется напряжённое состояние фермы в среде ANSYS. Дана инструкция по моделированию плоской статически определимой фермы в интерактивном режиме. Имеется 20 вариантов заданий.

Работа предназначена для студентов, изучающих курс «Численные методы расчёта в инженерных задачах»

Ил.12. Библиогр: 2 назв.

Составитель канд. техн. наук В.Г. Фокин Рецензент канд. техн. наук .

© В.Г. Фокин, составление. 2014
© Самарский государственный технический университет, 2014

введение

Цель лабораторной работы – познакомить учащихся с основными приёмами компьютерного моделирования напряжённо деформированного состояния ферм в среде профессионального программного комплекса ANSYS.

Фермой называется неизменяемая конструкция из прямых стержней, соединённых между собой шарнирами. Силы прикладываются к шарнирам - узлам фермы. Закрепления осуществляются также в узлах. В стержнях фермы действуют только продольные (нормальные к поперечным сечениям) внутренние силы.

Статический расчёт фермы заключается в определении перемещений узлов, реакций опор, усилий в стержнях, напряжений и деформаций стержней.

Реальная стержневая конструкция с жёсткими узлами – сварными, болтовыми или заклёпочными соединениями - может рассматриваться как ферма, если размеры узлов значительно меньше расстояний между узлами. В таких конструкциях, как и в фермах, вдали от узлов действуют только продольные внутренние силы. В области жёстких узлов картина внутренних сил более сложная и может исследоваться только приближёнными методами сопротивления материалов или теории деформированного твёрдого

тела.

Р и с. 1. Конечно элементная модель фермы

Рассмотрим ферму, показанную на рыс. 1, имеющую *n* узлов и

т стержней, у которой оси стержней и силы лежат в одной плоскости. Перемещения также ограничим этой плоскостью. Такая ферма называется плоской, или двумерной.

Ферму сразу можно анализировать как конечно-элементную модель. Стержни являются одномерными конечными элементами, испытывающими только деформацию растяжения – сжатия, их называют ферменными конечными элементами. Шарнирные соединения являются узлами конечно-элементной модели. В качестве степеней свободы берутся узловые перемещения, которые полагаются малыми.

Ферменный (одномерный) конечный элемент показан на рис.2. С ним связана местная (локальная) система координат $\overline{x,y}$. Общая (глобальная) для всей фермы система координат x,y перенесена параллельным переносом в узел *i*.

Векторы узловых перемещений и узловых сил элемента в местной системе координат:

Р и с.2. Ферменный (одномерный) конечный элемент

Векторы узловых перемещений и узловых сил элемента в общей системе координат:

Вектор узловых перемещений всей фермы в общей системе координат:

$$\{U\} = \begin{cases} U_1 \\ \dots \\ U_i \\ \dots \\ U_n \end{cases}$$
, где блок матрицы $\{U_i\} = \begin{cases} U_{ix} \\ U_{iy} \end{cases}$;

Вектор всех внешних узловых сил, действующих на ферму, в общей системе координат:

$$\{P\} = \begin{cases} P_1 \\ \cdots \\ P_i \\ \cdots \\ P_n \end{cases}$$
, где блок матрицы $\{P_i\} = \begin{cases} P_{ix} \\ P_{iy} \end{cases}$.

В теории метода конечных элементов (МКЭ) [1,2] устанавливается связь между векторами узловых перемещений и узловых сил элемента в виде матричного соотношения

$$\begin{bmatrix} K \end{bmatrix}_e \{ U \}_e = \{ F \}_e , \qquad (1)$$

где [K]_e -матрица жёсткости элемента.

Условия равновесия узлов фермы с учётом предыдущего выражения порождают разрешающую систему уравнений МКЭ:

$$[K] \{ U \} = \{ P \}, \qquad (2)$$

где [*K*] -глобальная матрица жёсткости всей конечно-элементной модели, которая формируется из матриц жёсткости элементов.

Для однозначного решения уравнений (2) необходимо в них учесть граничные условия по перемещениям, в частности, закрепления. Конструкция должна закрепляться так, чтобы было невозможным перемещение её как твёрдого тела.

В результате решения системы уравнений (2) определяются узловые перемещения $\{U\}$, через которые по формулам теории упругости вычисляются все другие искомые величины.

1.ПОСТАНОВКА ЗАДАЧИ

Конструкция, закрепления и нагрузки исследуемой фермы показаны на рис 1. *P*=1000 H, *a*=2 м, *b*=3м, *h*=2м, Площадь сечения стержней *S*=10 мм² = 10⁻⁵ м².Материал: сталь, модуль упругости $E=2*10^{11}$ H/м², коэффициент Пуассона v=0,3.

Нужно определить перемещения фермы, усилия и напряжения в стержнях, а также реакции опор.

2. МОДЕЛИРОВАНИЕ В ANSYS.

Задаче присваивается имя ferma:

U.M. > File > Change Jobname > [/FILNAM] = ferma New log.= Y > ok.

Выбирается тип анализа:

MM >Preference > Y structural >ok.

2.1. Операции моделирование в препроцессоре

Выбирается тип элемента – стержень Link 1 с плоским перемещением 2D:

M.M.> Prepr.> Element Type > Add/Edit/ > Add > Link > 2D spar 1 > ok. Закрывается окно Element Types > close.

Задаются константы (площадь сечения *S* для элементов):

M.M.> Prepr.> Real Const.>Add/Edit >Add > (Type1 Link1) > ok. В появившемся окне вводится площадь AREA =1.e -5 > ok. За-крывается окно SET 1 > close.

Задается тип материала и его свойства:

M.M.> Prepr. > Material Props > Materials Models >Structural (click)-linear(click)>Elastic(click)-Isotropic > набираются EX = 2.e11 (модуль упругости), PRXY = 0.3 (коэффициент Пуассона) > ok. Закрывается окно Define Materials > Materials >Exit.

Сохраняется модель в бинарном файле ferma.db: Ans.Toolbar > SAVE_DB.

Построение конечноэлементной модели прямым методом

Строятся узлы:

M.M.> Preper >Modeling > Create > Nodes > in Active CS >

NODE = 1 > X, Y, Z = 0. 0. > Apply;

NODE = 2 > X,Y,Z = 2. 2. > Apply; и т.д. > ok.

Строятся элементы-стержни:

M.M > Prepr > Modeling > Creat > Elements > Auto Numbered > Tru Nodes >

Click узел 1 > click узел 3 > Apply (на панели Elem.from.);

Click узел 3 > click узел 2 > Apply, и т.д. строятся все элементы стержни согласно рис.1 > ok.

Нумерация узлов и элементов:

U.M.> Plot Ctrls > Numbering > Y NODE > Elem/At.> Elem numbers > ok.

Присвоение элементам атрибутов (в данной задаче выполняется по умолчанию и можно эту операцию пропустить): M.M > Prepr > Modeling > Create > Elements > Elem Attributes > TYPE=1 LINK1, MAT=1, REAL=1, ESYS = 0 > ok.

Coxpaняется модель: Ans.Toolbar > SAVE_DB.

2.2. Операции моделирования в процессоре Solution

Задаётся типа анализа (можно пропустить т.к. данный тип анализа принимается по умолчанию):

M.M > Solution > Analysis Type > New Analysis > ANTYPE = static > ok

Ферма закрепляется:

M.M > Solution >Define Loads> Apply > Structural > Diplasment > On nodes > Click узел 1 > apply > в появившемся окне выбирается All DOF, const val, VALUE = 0 > apply,

Click узел 6 > apply > в появившемся окне выбирается UY, const val, VALUE = 0 > ok..

Прикладываются нагрузки:

M.M.> Solution > Define Load > Apply > Structural > Forse > on Nodes >

Click узел 2 >Apply > FY > Const Value,VALVE =-1.e3, Apply, Clcik узел 5 > ok > FY > Const Value ,VALVE =-1.e3, ok.

Изображение опор и нагрузок:

U.M > ProtCtrl > Sumbol > /PBC = All BC+Reaction > ok.

Coxpaнeнue модели: *Ans*.Toolbar > SAVE_DB.

Решение задачи:

M.M > Solution > Solve > Carent LS >

Закрывается панель /STATUS > File > Exit > закрывается панель Solve > ok.

Сообщение Solution is done! (решение выполнено) > close (закрывается информационное окно).

Coxpaнeнue модели: Ans.Toolbar >SAVE_DB.

2.3. Просмотр результатов в постпроцессоре.

Анализ перемещений фермы:

General Postproc > Plot Resalts > deform. Shape > KUND = def + undef > ok

U.M.> Plot > Replot. Появляется рисунок.

Сохранение рисунка в графическом файле в рабочей папке:

General Postproc > PlotContrls > Hard Copy > to file появляется панель > устанавливаются флажки Jpeg, Reverse Video и имя файла в окне save to > ok

Анализ реакций:

General Postproc.> List Results > Reaction Solu > Lab = All items > ok. Появляется таблица реакций, выход - file > close. Если требуется сохранить таблицу в файле, то производятся команды - file > Save as > указывается папка и имя файла > нажимается кнопка «сохранить».

Анализ усилий и напряжений в стержнях.

General Post..> Elem. Table > Define Table > Add > в появившихся окнах набирается Lab = sila, Item = By seguence > SMISC,1 (код для вывода сил) > Apply,

Lab = Napr, Item = By seguence > LS,1 (код для вывода напряжений) >ok. Закрывается панель Elem.Table > close.

Просмотр таблицы усилий и напряжений: General Post. > Elem.Table > List Elem.Table > Lab 1-9 = sila, Napr > ok > Появляется таблица сил и напряжений. Выход из таблицы или её сохранение производятся так же, как в случае просмотра таблицы реакций.

Графическое представление сил в стержнях фермы:

General Postproc > Plot Resalts > Contour Plot > Elem Table > всплывает панель > устанавливается itlab item to be Plotted = sila > Apply > появляется рисунок фермы, где цветом определены силы в стержнях.

Графическое представление напряжений в стержнях:

General Postproc > Plot Resalts > Contour Plot > Elem Table > всплывает панель > устанавливается itlab item to be Plotted = Napr > Apply > появляется рисунок фермы, где цветом определены напряжения в стержнях.

3. ВЫПОЛНЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

По образцу предыдущего примера требуется выполнить моделирование деформированного состояния своего варианта фермы, номер которого задаётся преподавателем. Схемы ферм для различных вариантов даны на рис.3 - 12. Необходимые параметры для разных вариантов задания приведены в таблице.

4. ОФОРМЛЕНИЕ ОТЧЁТА.

Отчёт должен включать следующие пункты.

- 1. Постановка задачи для своего варианта:
 - 1.1. Силовая схема (конструкция, закрепления, силы);
 - 1.2. Исходные данные (величины сил, свойства материала);
 - 1.3. Что требуется найти.
- 2. Короткое описание процедуры моделирования в ANSYS.
- 3. Результаты решения задачи в ANSYS:
 - Схема деформированной конструкции, наложенная на схему недеформированной фермы, с указанием наибольшего смещения;
 - 3.2. На силовой схеме нужно показать распределение реакций и указать величин реакции;
 - 3.3. Таблица реакций.
 - 3.4. Таблица сил и напряжений в стержнях;
- 4. Составить 3 уравнения равновесия плоской фермы и из этих уравнений найти реакции опор. Сравнить эти реакции с найденными ранее при моделировании задачи в среде ANSYS.

5.КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какая конструкция называется фермой.
- 2. Как нагружается и закрепляется ферма.
- 3. Какой конечный элемент используется для расчёта ферм.
- 4. Какие деформации имеет ферменный конечный элемент.

- 5. Степени свободы узла фермы.
- 6. Векторы степеней свободы ферменных элементов и фермы.
- 7. Векторы узловых сил ферменных элементов.
- 8. Матричная запись разрешающей системы уравнений МКЭ.
- 9. Основные операции моделирования фермы в препроцессоре.
- 10. Основные операции расчёта фермы в процессоре-решателе.
- 11. Основные операции анализа фермы в постпроцессоре.
- 12. Как определяется опасный стержень фермы.
- 13. Каковы условия равновесия узла фермы.
- 14. Условия равновесия плоской фермы как твёрдого тела.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *А.Б. Каплун, Е.М. Морозов, М.А. Олферьева*. ANSYS в руках инженера. Практическое руководство.- М.: Едиториал УРСС, 2003.-272 с.

2. *Я.М. Клебанов, В.Г. Фокин, А.Н. Давыдов.* Современные методы компьютерного моделирования процессов деформирования конструкций: Учеб. Пособие. / Самар. Гос. Техн. Ун-т, Самара, 2004.-100 с.

Таблица

N⁰	N⁰	Размеры фермы, м					Углы, град		Силы, кН		
ва-	Фер-	а	b	c	d	1	α	β	P ₁	P ₂	P ₃
ри-	МЫ										
анта											
1	1	1	1	2			30	45	2	3	4
2	1	2	3	1			60	30	3	2	5
3	2	2	2	3	2		45	60	1	2	3
4	2	1	1	4	3		30	45	3	1	2
5	3	2	2	1	3		60	45	2	1	3
6	3	1	1	1	2		30	60	1	3	2
7	4	2	2	1	1		60	30	1	2	3
8	4	3	1	2	2		30	45	3	4	2
9	5	1	1	1	1	2	45	60	4	2	1
10	5	2	1	1	2	1	60	30	3	3	2
11	6	2	2	1	1		30	45	2	1	1
12	6	3	3	2	1		45	60	1	2	2
13	7	1	2	4	2		60	30	3	1	2
14	7	2	2	3	1		30	45	2	4	1

ЗАДАНИЯ К РАСЧЁТУ ФЕРМ

15	8	1	1	1	2	1	45	30	1	2	1
16	8	2	2	1	1	2	60	45	1	3	2
17	9	1	2	1	1		30	60	1	3	1
18	9	2	3	1	2		45	30	2	1	3
19	10	2	2	3			60	45	3	4	1
20	10	1	3	2			30	60	1	2	3

КОНСТРУКТИВНЫЕ СХЕМЫ ФЕРМ

Рис. 3. Ферма №1

Рис. 7. Ферма №5

Рис. 4. Ферма №2

Рис. 8. Ферма №6

Рис. 10. Ферма №8

Рис. 11. Ферма №9

Рис. 12. Ферма №10

Расчёт ферм с помощью программы ANSYS. РГР №2 по курсу «Численные методы расчёта в инженерных задачах»

Составитель Фокин Владимир Григорьевич

Редактор Технический редактор

Подписано в печать Формат 60х84 1/16. Бум. типогр. №2. Печать офсетная. Усл. П.л. 0,56 Усл. Кр. – отт. 0.56. Уч.- изд. Л. 0.6. Тираж 50 экз. С –

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный технический университет»

443100 Самара, ул. Молодогвардейская, 244