



**ИНСТИТУТ** МАТЕМАТИКИ МЕХАНИКИ КОМПЬЮТЕРНЫХ НАУК

имени И.И. Воровича —

### Numerical Methods of Linear Algebra for Sparse Matrices

**Discretization of partial differential equations** 

#### Anna Nasedkina

Department of Mathematical Modeling Institute of Mathematics, Mechanics and Computer Science Southern Federal University

#### **Discretization of PDEs**

Discretization of partial differential equations (summary). Finite differences for 1D and 2D problems

Finite element method: assembly process

## Discretization of Partial Differential Equations

Methods

- Finite differences
- Finite elements
- Finite volumes

Finite differences: derivatives for univariate functions

- Forward difference  $F'(x) = \frac{F(x+h) F(x)}{h} + O(h)$
- Backward difference  $F'(x) = \frac{F(x) F(x-h)}{h} + O(h)$

• Centered difference  $F'(x) = \frac{F(x+h) - F(x-h)}{2h} + O(h^2)$ 

• Centered difference for 2<sup>nd</sup> derivative

$$F''(x) = \frac{F(x+h) - 2F(x) + F(x-h)}{h^2} + O(h^2)$$

### Finite differences: derivatives for bivariate functions

$$\begin{split} F_{x}(x,y) &\approx \frac{F(x+h,y) - F(x-h,y)}{2h} \\ F_{y}(x,y) &\approx \frac{F(x,y+k) - F(x,y-k)}{2k} \\ F_{xx}(x,y) &\approx \frac{F(x+h,y) - 2F(x,y) + F(x-h,y)}{h^{2}} \\ F_{yy}(x,y) &\approx \frac{F(x,y+k) - 2F(x,y) + F(x,y-k)}{k^{2}} \\ F_{xy}(x,y) &\approx \frac{F(x+h,y+k) - F(x+h,y-k) - F(x-h,y+k) + F(x-h,y-k)}{4hk} \end{split}$$

# Finite differences for 1D Poisson's equation

$$-u''(x) = f(x)$$
 for  $x \in (0,1)$   
 $u(0) = u(1) = 0.$ 

$$x_i = i \times h, \ i = 0, \dots, n+1$$
  
 $-u_{i-1} + 2u_i - u_{i+1} = h^2 f_i$ 

• Matrix of the system Ax = f

$$A = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 & \\ & & & -1 & 2 & -1 \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2 \end{pmatrix}$$

# Finite differences for 2D Poisson's equation

$$-\left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2}\right) = f \quad \text{in } \Omega = (0, l_1) \times (0, l_2)$$
$$u = 0 \quad \text{on } \Gamma$$

 $x_{1,i} = i \times h_1, i = 0, \dots, n_1 + 1$   $x_{2,j} = j \times h_2, j = 0, \dots, n_2 + 1$ 

$$h_1 = \frac{l_1}{n_1 + 1} \quad h_2 = \frac{l_2}{n_2 + 1}$$

when  $h_1 = h_2 = h$ 

Discretized equation

$$-u_{i-1,j} + 4u_{i,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} = h^2 f_{i,j} + h^2 \tau_{i,j}$$

# Finite differences for 2D Poisson's equation

• Matrix of the system Ax = f

$$A = \frac{1}{h^2} \begin{pmatrix} B & -I & \\ -I & B & -I \\ & -I & B \end{pmatrix}$$



|            | ( 4 | -1 | 0  | 0  | $\begin{pmatrix} 0\\ 0\\ 0\\ -1\\ 4 \end{pmatrix}$ |
|------------|-----|----|----|----|----------------------------------------------------|
|            | -1  | 4  | -1 | 0  | 0                                                  |
| <i>B</i> = | 0   | -1 | 4  | -1 | 0                                                  |
|            | 0   | 0  | -1 | 4  | -1                                                 |
|            | 0   | 0  | 0  | -1 | 4 )                                                |









## Mesh refinement in finite element method



#### Original mesh and assembled matrix

Refined mesh and assembled matrix





