Numerical Methods of Linear Algebra for Sparse Matrices

Discretization of partial differential equations

Anna Nasedkina

Department of Mathematical Modeling
Institute of Mathematics, Mechanics and Computer Science
Southern Federal University

Discretization of PDEs

Discretization of partial differential equations
(summary).
Finite differences for 1D and 2D problems
Finite element method: assembly process

Discretization of Partial Differential Equations

Methods

- Finite differences
- Finite elements
- Finite volumes

Finite differences: derivatives for univariate functions

- Forward difference $\quad F^{\prime}(x)=\frac{F(x+h)-F(x)}{h}+O(h)$
- Backward difference $F^{\prime}(x)=\frac{F(x)-F(x-h)}{h}+O(h)$
- Centered difference $F^{\prime}(x)=\frac{F(x+h)-F(x-h)}{2 h}+O\left(h^{2}\right)$
- Centered difference for $2^{\text {nd }}$ derivative

$$
F^{\prime \prime}(x)=\frac{F(x+h)-2 F(x)+F(x-h)}{h^{2}}+O\left(h^{2}\right)
$$

Finite differences: derivatives for bivariate functions

$$
\begin{aligned}
& F_{x}(x, y) \approx \frac{F(x+h, y)-F(x-h, y)}{2 h} \\
& F_{y}(x, y) \approx \frac{F(x, y+k)-F(x, y-k)}{2 k} \\
& F_{x x}(x, y) \approx \frac{F(x+h, y)-2 F(x, y)+F(x-h, y)}{h^{2}} \\
& F_{y y}(x, y) \approx \frac{F(x, y+k)-2 F(x, y)+F(x, y-k)}{k^{2}} \\
& F_{x y}(x, y) \approx \frac{F(x+h, y+k)-F(x+h, y-k)-F(x-h, y+k)+F(x-h, y-k)}{4 h k}
\end{aligned}
$$

Finite differences for 1D Poisson's equation

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \text { for } x \in(0,1) \\
u(0)=u(1) & =0 . \\
x_{i}=i \times h, i & =0, \ldots, n+1 \\
-u_{i-1}+2 u_{i} & -u_{i+1}=h^{2} f_{i}
\end{aligned}
$$

- Matrix of the system $A x=f$

$$
A=\frac{1}{h^{2}}\left(\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & -1 & 2 & -1 & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right)
$$

Finite differences for 2D Poisson's

 equation$$
\begin{aligned}
-\left(\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}\right) & =f \quad \text { in } \Omega=\left(0, l_{1}\right) \times\left(0, l_{2}\right) \\
u & =0 \quad \text { on } \Gamma
\end{aligned}
$$

$$
x_{1, i}=i \times h_{1}, i=0, \ldots, n_{1}+1 \quad x_{2, j}=j \times h_{2}, j=0, \ldots, n_{2}+1
$$

$$
h_{1}=\frac{l_{1}}{n_{1}+1} \quad h_{2}=\frac{l_{2}}{n_{2}+1}
$$

when $h_{1}=h_{2}=h$

- Discretized equation
$-u_{i-1, j}+4 u_{i, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}=h^{2} f_{i, j}+h^{2} \tau_{i, j}$

Finite differences for 2D Poisson's equation

- Matrix of the system $A x=f$
$A=\frac{1}{h^{2}}\left(\begin{array}{ccc}B & -I & \\ -I & B & -I \\ & -I & B\end{array}\right)$

$$
B=\left(\begin{array}{ccccc}
4 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & 0 \\
0 & -1 & 4 & -1 & 0 \\
0 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & -1 & 4
\end{array}\right)
$$

Finite element method and

 assembly processElement stiffness matrix for triangle
$A_{K}=\left(\begin{array}{ccc}a_{K}\left(\phi_{i}, \phi_{i}\right) & a_{K}\left(\phi_{i}, \phi_{j}\right) & a_{K}\left(\phi_{i}, \phi_{k}\right) \\ a_{K}\left(\phi_{j}, \phi_{i}\right) & a_{K}\left(\phi_{j}, \phi_{j}\right) & a_{K}\left(\phi_{j}, \phi_{k}\right) \\ a_{K}\left(\phi_{k}, \phi_{i}\right) & a_{K}\left(\phi_{k}, \phi_{j}\right) & a_{K}\left(\phi_{k}, \phi_{k}\right)\end{array}\right)$
Assembly process $A=\sum_{e=1}^{n e l} A^{[e]}$

$$
A^{[e]}=P_{e} A_{K_{e}} P_{e}^{T}
$$

Mesh refinement in
finite element method

Original mesh and assembled matrix

Refined mesh and assembled matrix

