
Процедуры в Maple

1. Функциональные операторы.

2. Общие сведения о процедуре Maple.

3. Вывод описания процедуры на экран.

4. Локальные и глобальные переменные

5. Работа с аргументами процедуры

6. Рекурсивные процедуры.

7. Вывод сообщений об ошибках, выход из процедуры.

§1. Функциональные операторы

Процедура – это подпрограмма, состоящая из команд и выражений Maple. По сути, процедура

также является командой Maple, но не встроенной, а созданной пользователем. Упрощенным

понятием процедуры является функциональный оператор.

Синтаксис функционального оператора

f:=var -> result

f:=(var1,var2,..)->result

С помощью функционального оператора можно задавать функции одной и многих переменных, а

также вектор-функции:

f:=x -> x^2 – функция одной переменной R→R

f:=(x,y) -> x^2 + y^2 – функция двух переменных R2→R

f:= x -> (2*x, 3*x^4) – вектор-функция одной переменной R→R2

f:= (x,y,z) -> (x*y, y*z) – вектор-функция трех переменных R3→R2

Примеры

> g := (x,y) -> sin(x)*cos(y) + x*y; g(Pi/2,Pi);

Вызов функционального оператора для определенных значений x = π/2, y = π;

> g(Pi/2,Pi);

С помощью функционального оператора можно создавать небольшие процедуры:

> p:=x-> if x<0 then -x; else sqrt(x); end if: p(-2); p(2);

Создание функционального оператора из выражения и входящих в него переменных

unapply(expression, x,y…,);

unapply(expression, list of variables);

Примеры

> p := x^2 + sin(x) + 1; f := unapply(p,x); f(Pi/6);

 2

> q:=a-b;g:=unapply(q,a,b);

> q :=x^2+y^3+1; g:=unapply(q,[x,y]); g(2,3);

§2. Общие сведения о процедуре Maple

Процедура – это пользовательская команда Maple. Процедура может не иметь аргументов, иметь

один аргумент или иметь несколько аргументов. Если процедура имеет несколько аргументов, то

они перечисляются через запятую.

Важно: все описание процедуры должно находиться в одной выполнимой группе (execution

group, символ). В этом случае для перехода на новую строку следует нажимать Shift+Enter.

Краткий синтаксис процедуры

proc_name:=proc (parameterSequence)

statementSequence;

end proc;

Cлова, выделенные синим, являются необязательными и могут отсутствовать.

proc_name – имя процедуры

proc … end proc – служебные слова, которыми должна начинаться и заканчиваться процедура

statementSequence – последовательность выражений, реализующих тело процедуры. По

умолчанию процедура возвращает значение последнего выражения из этой последовательности.

Пример простейшей процедуры без аргументов

Вызов и выполнение процедуры:

>

Полный синтаксис процедуры

 3

proc_name:=proc (parameterSequence :: type) :: returnType;

local localSequence;

global globalSequence;

option optionSequence;

description descriptionSequence;

uses usesSequence;

statementSequence;

end proc;

Слова, выделенные синим, могут отсутствовать.

parameterSequence – последовательность формальных параметров (аргументов) процедуры.

Каждому формальному параметру можно предписать (декларировать) определенный тип данных

с помощью оператора двойного двоеточия :: и следующего за ним названия типа данных type. При

вызове процедуры в случае несоответствия какого-либо параметра его заявленному типу будет

выдаваться системное сообщение об ошибке. Для параметров можно также задать значения по

умолчанию.

returnType – необязательный предполагаемый тип возвращаемого значения процедуры. По

умолчанию, если тип возвращаемого значения не соответствует предполагаемому, ошибки не

происходит.

local – служебное слово для описания последовательности локальных переменных localSequence.

Локальными называются переменные, которые используются только внутри данной процедуры.

Для локальных переменных можно задавать тип в виде :: returnType.

global – служебное слово для описания последовательности глобальных переменных

globalSequence. Глобальными называются переменные, которые не являются локальными, но

также используются данной процедурой. Описание глобальных переменных используется в том

случае, если этим переменным внутри процедуры будут присвоены какие-то значения. Для

глобальных переменных нельзя задать тип внутри процедуры.

option – служебное слово для описания последовательности опций процедуры optionSequence. В

качестве опций используются специальные слова, например, arrow (стрелка), builtin (встроенная

процедура), operator (оператор), remember (опция для эффективной работы рекурсивных

процедур) , `Copyright...` и некоторые другие.

description – служебное слово, за которым следуют комментарии descriptionSequence о назначении

процедуры и ее работе (одна или несколько строк). В отличие от комментариев, задаваемых

символом #, данная информация выводится на экран при печати процедуры.

uses – служебное слово для описания последовательности usesSequence связанных имен и

модулей, которые будут использованы в теле процедуры. Может быть использовано для

подключения пакетов, например: uses StringTools;

Пример процедуры с аргументами

>

 4

Возвращаемым значением процедуры является значение последней команды в теле процедуры.

Кроме того, важен порядок следования аргументов при вызове процедуры.

Вызов и выполнение процедуры (обратите внимание на результат!):

>

>

Параметры, перечисленные в описании последовательности аргументов процедуры, являются

обязательными для вызова процедуры. По умолчанию в процедуру передаются все аргументы,

содержащиеся в ее вызове, даже если их количество превосходит количество обязательных

параметров.

Избыточное количество аргументов при вызове процедуры – ошибки не происходит:

>

Недостаточное количество аргументов при вызове процедуры – выдается сообщение об ошибке:

>

Error, invalid input: p uses a 2nd argument, b, which is missing

Пример процедуры с декларированием типов аргументов

>

>

>

Error, invalid input: f expects its 1st argument, a, to be of type

integer, but received 2.5

Пример процедуры с декларированием нескольких типов данных для аргументов

Если для параметра требуется задать несколько типов данных, то задается набор данных,

например

>

>

Error, invalid input: f expects its 2nd argument, b, to be of type

integer, but received 2.5

>

Пример процедуры с декларированием типов аргументов и их значений по умолчанию

>

Сначала происходит проверка типа аргументов. Вообще говоря, значения по умолчанию для

аргументов процедуры могут не соответствовать декларированным типам данных.

 5

Параметры, у которых в описании последовательности аргументов процедуры есть значения по

умолчанию, являются необязательными при вызове процедуры.

>

>

>

Пример процедуры с опциями функционального оператора (использование option)

> f := proc(x) option operator, arrow; x^2-1 end proc;

Процедура задает функциональный оператор, ее запись эквивалента команде:

> f := x -> x^2-1;

Пример процедуры с комментарием о ее назначении (использование description)

> lc := proc(s, u, t, v)

 description "forms a linear combination of the arguments";

 s * u + t * v

end proc:

Вывод на экран комментариев к процедуре

> Describe(lc);

forms a linear combination of the arguments lc(s, u, t, v)

Пример процедуры с подключением пакета (использование uses)

> LastWord:=proc(s::string)

uses StringTools;

Split(s);%[-1];

end proc:
> LastWord("Hello world!");

> LastWord(a);

Error, invalid input: LastWord expects its 1st argument, s, to be of

type string, but received a

Пример. Возврат нескольких значений

Процедура находит все простые числа на заданном интервале и выводит их количество и сами

числа в виде списка.

Обычный вызов
>

 6

Определение двух возвращаемых значений и их вывод
>
>

>

Вызов процедуры и вывод первого значения
>

Вызов процедуры и вывод второго значения
>

§3. Вывод описания процедуры на экран

Вывод описания пользовательской процедуры на экран

print(proc_name);

eval(proc_name);

Пример пользовательской процедуры

> lc := proc(s, u, t, v)

 description "forms a linear combination of the arguments";

 s * u + t * v

end proc:

> eval(lc);

Вывод описания процедуры из библиотеки Maple на экран

(не работает для встроенных процедур, с опцией builtin)

interface(‘verboseproc’=2): print(proc_name);

interface(‘verboseproc’=2): eval(proc_name);

 7

Пример процедуры из библиотеки Maple

> print(issqr);

> interface('verboseproc' = 2):print(issqr);

Пример встроенной процедуры из библиотеки Maple

> interface('verboseproc' = 2):print(conjugate);

§4. Локальные и глобальные переменные

Пример процедуры с локальными переменными

Процедура maximum, находит максимум из заданного списка целых чисел.

> maximum := proc (s::(list(integer)))

local max, i;

 max := s[1];

 for i to nops(s) do

 if s[i]>max then

 max := s[i]

 end if;

 end do;

 max;

end proc;

> maximum([4,1,8,-100]);

> maximum(4,1,8,-100);

Error, invalid input: maximum expects its 1st argument, s, to be of

type list(integer), but received 4
> maximum([4,1,8,z]);

Error, invalid input: maximum expects its 1st argument, s, to be of

type list(integer), but received [4, 1, 8, z]

 8

Если в описании процедуры удалить строку описания локальных переменных, то будут выведены

предупреждения о том, что в процедуре используются переменные max и i, которые будут

декларироваться локальными:

>

Warning, `max` is implicitly declared local to procedure `maximum`

Warning, `i` is implicitly declared local to procedure `maximum`

Различие между локальными и глобальными переменными

1) Декларирование локальной переменной

> my_pi:=3.14:

> CircleArea1:=proc(r)

local my_pi;

my_pi:=evalf(Pi,10);

my_pi*r^2;

end proc:
> CircleArea1(5);

> my_pi; r:=5: my_pi*r^2;

2) Декларирование глобальной переменной

> my_pi:=3.14:

> CircleArea2:=proc(r)

global my_pi;

my_pi:=evalf(Pi,10);

my_pi*r^2;

end proc:
> CircleArea2(5);

> my_pi; r:=5: my_pi*r^2;

§5. Работа с аргументами процедуры

Для работы с переданными аргументами процедуры есть несколько зарезервированных имен.

_passed – последовательность всех аргументов, переданных процедуре при ее вызове (устаревший

вариант: args), имеет тип exprseq

_npassed – число всех аргументов, переданных процедуре при ее вызове (устаревший вариант:

nargs)

 9

Пример процедуры с использованием имен _passed и _npassed

Процедура находит максимум из произвольной последовательности чисел.

> maximum := proc () local max, i;

 max := _passed[1];

 for i from 2 to _npassed do

 if _passed[i] > max then

 max := _passed[i]

 end if

 end do;

 max;

end proc:

>

Если при вызове процедуры число переданных аргументов больше числа обязательных

параметров, то доступ к оставшимся «лишним» аргументам можно получить с помощью

следующих имен:

_rest – последовательность «лишних» аргументов, переданных процедуре при ее вызове, имеет

тип exprseq

_nrest – число «лишних» аргументов, переданных процедуре при ее вызове

Пример процедуры с использованием имени _rest

>

>

>

>

Error, invalid input: f uses a 2nd argument, b, which is missing

§6. Рекурсивные процедуры

Рекурсивной называется процедура, которая сама себя вызывает.

Пример рекурсивной процедуры

 10

>

>

Использование опции remember для рекурсивных процедур

Пример. Вычисление n-го числа Фибоначчи. Числа Фибоначчи задаются формулой fn = fn 1 + fn 2

для n≥2, f0=0, f1=1.

>

>

>

>

Проверим с помощью команды fibonacci(n) из пакета combinat.

>

Вычислим время работы процедур:
>

§5. Вывод сообщений об ошибках, выход из процедуры

Выдача сообщения об ошибке и аварийный выход из процедуры

С помощью команды error пользователь может написать для своей процедуры свои сообщения об

ошибках. При выполнении команды error все оставшиеся команды в теле процедуры

игнорируются.

error “Message %1….String…%2….”,par1,par2,…

 11

В строке сообщения об ошибке вместо %1 подставляется значение par1, вместо %2 подставляется

значение par2 и т. д.

Пример

Вызов и выполнение процедуры.

>

>

>

Error, (in sq) Неверный аргумент: -2

(выдается пользовательское сообщение об ошибке)

>

Error, invalid input: sq expects its 1st argument, x, to be of type

numeric, but received b

(выдается системное сообщение об ошибке при проверке типа аргумента)

Выход из процедуры в любом месте ее тела и присвоение результату ее работы различных

значений

Для выхода из процедуры в любом месте ее тела и возврата значений используется команда

return. При выполнении команды return все оставшиеся команды в теле процедуры

игнорируются.

return exp1,expr2,,…

Пример

>

>

>

Error, invalid input: sq1 expects its 1st argument, x, to be of type

numeric, but received a

>

