Исследование функции одной переменной в Maple. Вычисление пределов, дифференцирование и интегрирование

- 1. Вычисление пределов.
- 2. Дифференцирование.
- 3. Исследование функции.
- 4. Интегрирование.

Всюду далее примеры работы пакета Maple будут приведены в режиме интерфейса Worksheet Mode с текстовым режимом ввода команд и выражений (Text Mode). При выполнении заданий и упражнений используйте режим интерфейса Worksheet Mode с режимом ввода «двумерной математики» Maple Math Mode или ввода в строку Text Mode.

§1. Вычисление пределов

В *Maple* для некоторых математических операций существует по две команды: одна прямого, а другая — отложенного исполнения. Имена команд состоят из одинаковых букв за исключением первой: команды прямого исполнения начинаются со строчной буквы, а команды отложенного исполнения — с заглавной. После обращения к команде отложенного действия математические операции (интеграл, предел, производная и т.д.) выводятся на экран в виде стандартной аналитической записи этой операции. Вычисление в этом случае сразу не производится. Команда прямого исполнения выдает результат сразу.

Для вычисления пределов имеются две команды:

1) прямого исполнения — limit(expr, x=a,par), где expr — выражение, предел которого следует найти, a — значение точки, для которой вычисляется предел, par — необязательный параметр для поиска односторонних пределов (left — слева, right — справа) или указание типа переменной (real — действительная, complex — комплексная).

Команду прямого исполнения **limit** можно также записать с помощью шаблона $\stackrel{\lim}{\longrightarrow} f$ на палитре Expressions.

2) отложенного исполнения — **Limit (expr, x=a,par)**, где параметры команды такие же, как и в предыдущем случае. Пример действий этих команд:

```
> Limit(\sin(2*x)/x, x=0); \lim_{x\to 0} \frac{\sin(2x)}{x} > limit(\sin(2*x)/x, x=0);
```

С помощью этих двух команд можно записывать математические выкладки в стандартном аналитическом виде, например:

$$\lim_{x \to -\infty} x \left(\frac{1}{2} \pi + \arctan(x) \right) = -1$$

Односторонние пределы вычисляются с указанием параметров: **left** — для нахождения предела слева и **righ** — справа. Например:

$$\lim_{x \to 0^{-}} \frac{1}{1 + e^{x}} = 1$$

$$\lim_{x \to 0+} \frac{1}{1+e^{\frac{1}{x}}} = 0$$

Задание 1.

1. Вычислить предел $\lim_{x\to 1} (1-x) \operatorname{tg} \frac{\pi x}{2}$. Наберите:

$$\lim_{x \to 1} (1 - x) \tan \left(\frac{1}{2} \pi x \right) = \frac{2}{\pi}$$

2. Найти односторонние пределы $\lim_{x\to 1^-} \operatorname{arctg} \frac{1}{1-x}$ и $\lim_{x\to 1^+} \operatorname{arctg} \frac{1}{1-x}$. Наберите:

$$limit(arctan(1/(1-x)), x=1, left);$$

$$\lim_{x \to 1^{-}} \arctan\left(\frac{1}{1-x}\right) = \frac{1}{2} \pi$$

> Limit(arctan(1/(1-x)),x=1,right)=

limit(arctan(1/(1-x)), x=1, right);

$$\lim_{x \to 1^+} \arctan\left(\frac{1}{1-x}\right) = -\frac{1}{2} \pi$$

§2. Дифференцирование

Вычисление производных.

Для вычисления производных в *Maple* имеются две команды:

- 1) прямого исполнения diff(f,x), где f функция, которую следует продифференцировать, x имя переменной, по которой производится
- дифференцирование. Аналогом команды $\mathbf{diff}(\mathbf{f}, \mathbf{x})$ является шаблон $\mathbf{diff}(\mathbf{f}, \mathbf{x})$ на палитре Expressions.
- 2) отложенного исполнения Diff(f,x), где параметры команды такие же, как и в предыдущей. Действие этой команды сводится к аналитической записи производной в

виде $\frac{\partial}{\partial x} f(x)$. После выполнения дифференцирования, полученное выражение желательно упростить. Для этого следует использовать команды **simplify factor** или **expand**, в зависимости от того, в каком виде вам нужен результат.

Пример:

> Diff(
$$\sin(x^2)$$
, x) = diff($\sin(x^2)$, x);

$$\frac{d}{dx}\sin(x^2) = 2\cos(x^2)x$$

Для вычисления производных старших порядков следует указать в параметрах **ж\$n**, где \mathbf{n} – порядок производной; например:

> Diff(cos(2*x)^2,x\$4) = diff(cos(2*x)^2,x\$4);

$$\frac{d^4}{dx^4} (\cos(2x)^2) = -128 \sin(2x)^2 + 128 \cos(2x)^2$$

Полученное выражение можно упростить двумя способами:

> simplify(%);

$$\frac{d^4}{dx^4} \left(\cos(2x)^2\right) = 256 \cos(2x)^2 - 128$$

> combine (rhs (%%));

$$128\cos(4x)$$

Дифференциальный оператор.

Для определения дифференциального оператора используется команда D(f) - f-функция. Например:

cos

Вычисление производной в точке:

-1

Оператор дифференцирования применяется к функциональным операторам

$$> f:=x-> ln(x^2)+exp(3*x):$$

$$x \rightarrow \frac{2}{x} + 3 e^{3x}$$

Задание 2.

1. Вычислить производную $f(x) = \sin^3 2x - \cos^3 2x$

> Diff (sin (2*x) ^3-cos (2*x) ^3,x) =
diff (sin (2*x) ^3-cos (2*x) ^3,x);

$$\frac{d}{dx} (\sin(2x)^3 - \cos(2x)^3)$$
= $6 \sin(2x)^2 \cos(2x)$
+ $6 \cos(2x)^2 \sin(2x)$

2. Вычислить
$$\frac{d^{24}}{dx^{24}}(e^{x}(x^{2}-1))$$
. Наберите:

> Diff (exp (x) * (x^2-1) , x\$24) = diff (exp (x) * (x^2-1) , x\$24);

$$\frac{d^{24}}{dx^{24}}(e^{x}(x^{2}-1)) = e^{x}(x^{2}-1)$$

$$+ 48 e^{x} x + 552 e^{x}$$
> collect(%, exp(x));
$$\frac{d^{24}}{dx^{24}}(e^{x}(x^{2}-1)) = (x^{2}+551 + 48 x) e^{x}$$

3. Вычислить вторую производную функции $y = \sin^2 x/(2 + \sin x)$ в точках $x = \pi/2$, $x = \pi$.

> y:=sin(x)^2/(2+sin(x)): d2:=diff(y,x\$2):
> d2y(Pi)=eval(d2, x = Pi);

$$\frac{d2y(\pi)}{1} = 1$$
> d2y(Pi/2)=eval(d2, x = Pi);

$$\frac{d2y(\pi)}{2} = 1$$

§3. Исследование функции

Исследование функции необходимо начинать с нахождения ее области определения, но, к сожалению, это трудно автоматизируемая операция. Поэтому при рассмотрении этого вопроса приходится решать неравенства. Однако, ответить на вопрос, определена ли функция на всей числовой оси, или нет, можно исследовав ее на непрерывность.

Непрерывность функции и точки разрыва.

Проверить непрерывность функции f(x) на заданном промежутке $[x_1,x_2]$ можно с помощью команды **iscont**(**f**,**x=x1..x2**). Если функция **f** непрерывна на этом интервале, то в поле вывода появится ответ true — (истина); если функция **f** не является непрерывной на этом интервале, то в поле вывода появится ответ false — (ложь). В частности, если задать интервал **x=-infinity..+infinity**, то функция **f** будет проверяться на всей числовой оси. В этом случае, если будет получен ответ true, то можно сказать, что функция определена и непрерывна на всей числовой оси. В противном случае следует искать точки разрыва. Это можно сделать двумя способами:

- 1) с помощью команды **discont(f,x)**, где **f** функция, исследуемая на непрерывность, **x** переменная. Эта команда пригодна для нахождения точки разрыва первого и второго родов.
- 2) с помощью команды **singular(f,x)**, где **f** функция, **x** переменная. Эта команда годится для нахождения точек разрыва второго рода как для вещественных значений переменной, так и для комплексных.

Обе эти команды выдают результаты в виде перечисления точек разрыва в фигурных скобках (в виде множества, set).

Задание 3.1.

1. Найдите точки разрыва функции $y = e^{\frac{1}{x+3}}$

Это означает, что функция не является непрерывной. Поэтому следует найти точки разрыва с помощью команды:

$$>$$
 discont(exp(1/(x+3)),x);

Ответ наберите в текстовом режиме в новой строке:

"Точка разрыва x=-3."

2. Найти точки разрыва функции $y = tg \frac{x}{2-x}$

> singular(tan(x/(2-x)),x);

$$\{x=2\},\ \left\{x=\frac{2\pi(2_Zl\sim+1)}{-2+2_Zl\sim\pi+\pi}\right\}$$

Здесь Z1 – целые числа. Ответ наберите в текстовом режиме в новой строке:

"Точки разрыва: x=2 и $x=2\pi(2n+1)/(\pi(2n+1)-2)$."

Экстремумы. Наибольшее и наименьшее значение функции.

В *Maple* для исследования функции на экстремум имеется команда **extrema(f,{cond},x,'s')**, где **f** - функция, экстремумы которой ищутся, в фигурных скобках **{cond}** указываются ограничения для переменной, **x** — имя переменной, по которой ищется экстремум, в апострофах 's' — указывается имя переменной, которой будет присвоена координата точки экстремума. Если оставить пустыми фигурные скобки **{}**, то поиск экстремумов будет производиться на всей числовой оси. Результат действия этой команды относится к типу *set*. Пример:

$$>$$
 extrema (arctan(x)-ln(1+x^2)/2,{},x,'x0');x0;

$$\{\frac{\pi}{4} - \frac{1}{2}\ln(2)\}\$$
$$\{\{x=1\}\}\$$

В первой строке вывода приводится экстремум функции, а во второй строке вывода – точка этого экстремума.

К сожалению, эта команда не может дать ответ на вопрос, какая из точек экстремума есть максимум, а какая — минимум. Для нахождения максимума функции f(x) по переменной x на интервале $x \in [x1, x2]$ используется команда **maximize(f,x,x=x1..x2)**, а для нахождения минимума функции f(x) по переменной x на интервале $x \in [x1, x2]$ используется команда **minimize(f, x, x=x1..x2)**. Если после переменной указать 'infinity' или интервал

x=-infinity..+infinity, то команды **maximize** и **minimize** будут искать, соответственно, максимумы и минимумы на всей числовой оси как во множестве вещественных чисел, так и комплексных. Если такие параметры не указывать, то поиск

максимумов и минимумов будет производиться только во множестве вещественных чисел. Пример:

$$>$$
 maximize (exp(-x^2),x);

1

Недостаток этих команд в том, что они выдают только значения функции в точках максимума и минимума, соответственно. Поэтому для того, чтобы полностью решить задачу об исследовании функции y=f(x) на экстремумы с указанием их характера (тах или min) и координат (x, y) следует сначала выполнить команду:

> extrema (f, {}, x, 's');s;

а затем выполнить команды maximize(f,x); minimize(f,x). После этого будут полностью найдены координаты всех экстремумов и определены их характеры (max или min).

Команды **maximize** и **minimize** быстро находят абсолютные экстремумы, но не всегда пригодны для нахождения локальных экстремумов. Команда **extrema** вычисляет также критические точки, в которых функция не имеет экстремума. В этом случае экстремальных значений функции в первой строке вывода будет меньше, чем вычисленных критических точек во второй строке вывода. Выяснить характер найденного экстремума функции f(x) в точке $x=x_0$ можно, если вычислить вторую производную в этой точке и по ее знаку сделать вывод: если $f''(x_0) > 0$, то в точке x_0 будет min, а если $f''(x_0) < 0$ — то max.

Координаты точек максимума или минимума можно получить, если в параметрах команд **maximize** и **minimize** после переменной записать через запятую новую опцию **location**. В результате в строке вывода после самого максимума (минимума) функции будут в фигурных скобках указаны координаты точек максимума (минимума). Например:

> minimize(x^4-x^2, x, location);

$$\frac{-1}{4}$$
, { $\left\{ \left\{ x = -\frac{1}{2}\sqrt{2} \right\}, -\frac{1}{4} \right\}, \left[\left\{ x = \frac{1}{2}\sqrt{2} \right\}, -\frac{1}{4} \right] \right\}$

В строке вывода получились координаты минимумов и значения функции в этих точках.

Задание 3.2.

- 1. Найти max и min $y = \frac{1}{2}(x^2 \frac{1}{2})\arcsin x + \frac{x}{4}\sqrt{1 x^2} \frac{\pi}{12}x^2$.
- $y := (x^2-1/2) \cdot arcsin(x)/2 + x \cdot sqrt(1-x^2)/4 Pi \cdot x^2/12$:
- > extrema(y, {}, x, 's'); s;

$$\left\{0, -\frac{1}{24}\pi + \frac{1}{16}\sqrt{3}\right\}$$
$$\left\{\left\{x = 0\right\}, \left\{x = \frac{1}{2}\right\}\right\}$$

После выполнения этих команд найдены экстремумы функции и точки экстремумов. Порядок следования x-координат экстремумов во второй строке вывода соответствует порядку следования значений экстремумов в первой строке вывода. Таким образом, найдены экстремумы в точках (0,0) и $(1/2, -\pi/24 + \sqrt{3}/16)$. Осталось выяснить, какая из них является максимумом, а какая — минимумом. Для этого используйте команды **maximize**

и **minimize**. Без указания интервала по x команды не вычисляют экстремумы (отметим, что область определения фукции y: D(y)=(-1,1).

> minimize(y);

Error, (in minimize/cell/univariate) cannot minimize over a complex valued function

> maximize(y);

Error, (in maximize) cannot minimize over a complex valued function

> ymax := maximize(y, x = -1 .. 1/2,location); $vmax := 0, \{ [\{x = 0\}, 0] \}$

> ymin := minimize(y, x = 1/2 .. 1, location); simplify(ymin[1]);
$$ymin := -\frac{1}{24} \pi + \frac{1}{32} \sqrt{3} \sqrt{4}, \left\{ \left[\left\{ x = \frac{1}{2} \right\}, -\frac{1}{24} \pi + \frac{1}{32} \sqrt{3} \sqrt{4} \right] \right\} - \frac{1}{24} \pi + \frac{1}{16} \sqrt{3}$$

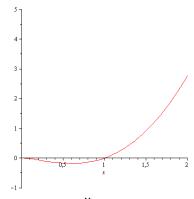
Ответ наберите в текстовом режиме в новой строке:

"Экстремумы: max y(x) = y(0) = 0, min $y(x) = y(1/2) = -\pi/24 + \sqrt{3}/16$."

Для набора математических символов и греческих букв в текстовом режиме можно использовать соответствующие шаблоны. Для возвращения в текстовый режим снова следует нажать на кнопку с буквой «Т».

- 2. Найдите наибольшее и наименьшее значение $f(x) = x^2 \ln x$ на интервале $x \in [1,2]$. Наберите:
 - $> f:=x^2*ln(x):$
 - > fmax:=maximize(f,x,x=1..2,location);evalf(fmax);
 - > fmin:=minimize(f,x,x=1..2,location);
 - > plot(f,x=0..2,-1..5);

fmax :=
$$4 \ln(2)$$
, {[{x = 2}, $4 \ln(2)$]}
2.772588722, {[{x = 2.}, 2.772588722]}
fmin := 0, {[{x = 1}, 0]}



Ответ наберите в текстовом режиме в новой строке:

"Наибольшее значение: $\max f(x) = 4\ln 2$, наименьшее значение $\min f(x) = 0$ ". Таким образом, минимум и максимум достигаются на концах отрезка [1,2].

- 3. Найти экстремумы функции $y = \frac{x^3}{4 x^2}$ и установить их характер с помощью второй производной. Наберите:
 - > restart:y:=x^3/(4-x^2):
 - > extrema (y, { } ,x, 's');s;

$$\{-3\sqrt{3}, 3\sqrt{3}\}\$$
 $\{\{x=0\}, \{x=-2\sqrt{3}\}, \{x=2\sqrt{3}\}\}\$

Получено два экстремума и три критические точки. Исследование можно продолжить с помощью второй производной:

> d2:=diff(y,x\$2): d2y(x)=eval(d2,x=0);
$$\frac{d2y(x)=0}{2y(x)=2*sqrt(3)); }$$
 > d2y(-2*sqrt(3))=eval(d2,x=-2*sqrt(3));
$$\frac{d2y(-2\sqrt{3})=\frac{3}{4}\sqrt{3}}{2y(2\sqrt{3})=-\frac{3}{4}\sqrt{3}}$$
 > d2y(2*sqrt(3))=eval(d2,x=2*sqrt(3));
$$\frac{d2y(2\sqrt{3})=-\frac{3}{4}\sqrt{3}}{2}$$

Так как y''(0) = 0, то в точке x = 0 нет экстремума; так как $y''(2\sqrt{3}) < 0$, то в точке $x = 2\sqrt{3}$ будет max; так как $y''(-2\sqrt{3}) > 0$, то в точке $x = -2\sqrt{3}$ будет min. Перейдите в текстовый режим и запишите ответ в виде:

"Максимум в точке ($2\sqrt{3}, 3\sqrt{3}$), минимум в точке ($-2\sqrt{3}, -3\sqrt{3}$)".

Исследование функции по общей схеме.

1. Область определения функции

Область определения функции f(x) — полностью может быть указана после исследования функции на непрерывность.

2. Непрерывность и точки разрыва

Непрерывность и точки разрыва функции f(x) исследуются по схеме:

> iscont(f, x=-infinity..infinity);
> d1:=discont(f,x);
> d2:=singular(f,x);

В результате наборам переменным **d1**и **d2** будут присвоены значения x-координат в точках разрыва 1 и 2-го родов (если они будут найдены).

3. Исследование функции на четность и нечетность.

Для определения четности функции (f(-x)=f(x)) служит команда **type(f, evenfunc(x))**, а установить нечетность функции (f(-x)=-f(x)) можно с помощью команды **type(f, oddfunc(x))**

4. Исследование функции на периодичность.

f(x)=f(x+T)

5. Асимптоты.

Точки бесконечных разрывов определяют графика f(x). Уравнение **вертикальной асимптоты** имеет вид:

$$> xr := d2;$$

Поведение функции f(x) на бесконечности характеризуется **наклонными** асимптотами (если они есть). Уравнение наклонной асимптоты $y_i = k_i x + b_i$, i = 1, 2, где коэффициенты вычисляются по формулам:

$$k_1 = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 и $b_1 = \lim_{x \to +\infty} (f(x) - k_1 x),$
 $k_2 = \lim_{x \to -\infty} \frac{f(x)}{x}$ и $b_2 = \lim_{x \to -\infty} (f(x) - k_2 x).$

Аналогичные формулы для $x \to -\infty$. Поэтому нахождение наклонных асимптот можно провести по следующей схеме:

```
> k1:=limit(f(x)/x, x=+infinity);

> b1:=limit(f(x)-k1*x, x=+infinity);

> k2:=limit(f(x)/x, x=-infinity);

> b2:=limit(f(x)-k2*x, x=-infinity);
```

Часто оказывается, что **k1=k2** и **b1=b2**, в этом случае будет одна асимптота при $x \to +\infty$ и при $x \to -\infty$. С учетом этого составляется уравнение асимптоты

```
> yn:=k1*x+b1;
```

6. Экстремумы, их характер, значения функции в точках экстремума.

Исследование функции f(x) на экстремумы можно проводить по схеме:

```
> extrema(f(x), {}, x, 's');
> s;
> fmax:=maximize(f(x), x);
> fmin:=minimize(f(x), x);
```

После выполнения этих команд будут найдены координаты (x, y) всех максимумов и минимумов функции f(x).

7. Построение графика функции с указанием координат экстремумов.

Построение графика функции f(x) — это окончательный этап исследования функции. На рисунке помимо графика исследуемой функции f(x) должны быть нанесены все ее асимптоты пунктирными линиями, подписаны координаты точек тах и тіп. Приемы построения графиков нескольких функций и нанесения надписей были рассмотрены в теме III.

Задание 3.3.

1. Провести полное исследование функции $f(x) = \frac{x^4}{(1+x)^3}$ по общей схеме. Сначала перейдите в текстовый режим и наберите "Исследование функции: ". Затем вернитесь в режим командной строки и наберите команды:

```
> f:=x^4/(1+x)^3:
```

В текстовом режиме наберите "Непрерывность функции". В режиме командной строки и наберите:

```
> iscont(f, x=-infinity..infinity);
false
```

Это означает, что функция не является непрерывной. Перейдите в текстовый режим и наберите "Нахождение точек разрыва". Вернитесь в режим командной строки и наберите:

```
>discont(f,x);
{-1}
```

Присвоим полученное значение точки разрыва переменной жг:

$$> xr := %[1];$$
 $xr := -1$

Перейдите в текстовый режим и наберите: "Получена точка бесконечного разрыва x=-1". С новой строки наберите: "Нахождение асимптот.". Перейдите на новую строку и

наберите "Уравнение вертикальной асимптоты: x = -1" (это можно сделать, поскольку вертикальные асимптоты возникают в точках бесконечного разрыва). С новой строки наберите: "Коэффициенты наклонной асимптоты:". Перейдите в режим командной строки и наберите:

В этом случае коэффициенты наклонных асимптот при $x \to +\infty$ и $x \to -\infty$ оказались одинаковыми. Поэтому перейдите в текстовый режим и наберите "Уравнение наклонной асимптоты:". Затем в новой строке прейдите в режим командной строки и наберите:

```
> ya=k1*x+b1;
```

$$ya = x - 3$$

В текстовом режиме наберите "Нахождение экстремумов". В новой строке наберите команды:

> extrema (f, {},x,'s');s;
$$\{ \frac{-256}{27}, 0 \}$$

$$\{ \{x=-4\}, \{x=0\} \}$$

Поскольку функция имеет разрыв, то при поиске максимума и минимума следует указать интервал, в который не должна входить точка разрыва.

> fmax:=maximize(f,x,x=-infinity..-2,location); $fmax := -\frac{256}{27}, \left\{ \left[\left\{ x = -4 \right\}, -\frac{256}{27} \right] \right\}$ > fmin:=minimize(f,x,x=-1/2..infinity,location); $fmin := 0, \left\{ \left[\left\{ x = 0 \right\}, 0 \right] \right\}$

В текстовом режиме наберите результат исследования в виде:

"Максимум в точке (-4, -256/27); минимум в точке (0, 0)."

2. Построить график функции $y = \operatorname{arctg}(x^2)$ и ее асимптоту, указать координаты точек экстремума. Оформление каждого этапа исследования функции проделать также как и при выполнении предыдущего задания.

```
> b2:=limit(y-k1*x, x=+infinity);
   > yh:=b1;
   > extrema (y, { } ,x, 's');s;
                                    {0}
                                  \{\{x=0\}\}
   > ymax:=maximize(y,x); ymin:=minimize(y,x);
                               ymax := \frac{1}{2} \pi
                                  ymin := 0
   > with(plots): yy:=convert(y,string):
   >p1:=plot(y,x=-5..5, linestyle=1, thickness=3, color=BLACK):
   >p2:=plot(yh,x=-5..5, linestyle=1,thickness=1):
   >t1:=textplot([0.2,1.7,"AcumnToTa:"], font=[TIMES, BOLD, 10],
     align=RIGHT):
   > t2:=textplot([3.1,1.7,"y=Pi/2"],font=[TIMES, ITALIC, 10],
     align=RIGHT):
   > t3:=textplot([0.1,-0.2,"min:(0,0)"], align=RIGHT):
   > t4:=textplot([2,1,yy], font=[TIMES, ITALIC,10],
align=RIGHT):
   > display([p1,p2,t1,t2,t3,t4]);
                                             v = Pi/2
                                    Асимптота:
                                 1.2
                                          arctan(x^2)
                                 0.8
```

§4. Интегрирование

-0.2 ⁴min: (0,0)

Аналитическое и численное интегрирование.

Неопределенный интеграл $\int f(x)dx$ вычисляется с помощью 2-х команд:

1) прямого исполнения — int(f, x), где f — подынтегральная функция, x — переменная интегрирования; команду прямого исполнения int(f, x) можно записать с помощью

шаблона $\int_{-\infty}^{\infty} f dx$ на палитре Expressions.

2) отложенного исполнения — Int(f, x) — где параметры команды такие же, как и в команде прямого исполнения int. Команда Int выдает на экран интеграл в аналитическом виде математической формулы.

Для вычисления определенного интеграла $\int_a^b f(x)dx$ в командах **int** и **Int** добавляются пределы интегрирования. Команду прямого исполнения для вычисления определенного интеграла **int(f, x=a..b)** можно записать с помощью шаблона

 $\int_{a}^{b} f \, \mathrm{d}x$

на палитре Expressions.

Рассмотрим пример:

> Int((1+cos(x))^2, x=0..Pi) = int((1+cos(x))^2, x=0..Pi);
$$\int_{0}^{\pi} (1+\cos(x))^2 dx = \frac{3}{2}\pi$$

Если в команде интегрирования добавить опцию **continuous: int(f, x, continuous)**, то *Maple* будет игнорировать любые возможные разрывы подынтегральной функции в диапазоне интегрирования. Это позволяет вычислять несобственные интегралы от неограниченных функций. Несобственные интегралы с бесконечными пределами интегрирования вычисляются, если в параметрах команды **int** указывать, например, $\mathbf{x} = \mathbf{0} \dots + \mathbf{infinity}$.

Численное интегрирование выполняется командой evalf(int(f, x=x1..x2), e), где e — точность вычислений (число знаков после запятой).

Интегралы, зависящие от параметра. Ограничения для параметров.

Если требуется вычислить интеграл, зависящий от параметра, то его значение может зависеть от знака этого параметра или каких-либо других ограничений. Рассмотрим в качестве примера интеграл $\int\limits_0^{+\infty} e^{-ax} dx \,,$ который, как известно из математического анализа,

сходится при a>0 и расходится при a<0. Если вычислить его сразу, то получится:

> Int (exp(-a*x), x=0..+infinity) = int(exp(-a*x), x=0..+infinity);
$$\int_{0}^{+\infty} e^{(-ax)} dx = \lim_{x \to \infty} -\frac{e^{(-ax)}-1}{a}.$$

Для получения явного аналитического результата вычислений следует сделать какиелибо предположения о значении параметров, то есть наложить на них ограничения. Это можно сделать при помощи команды assume (expr1), где expr1 — неравенство. Дополнительные ограничения вводятся с помощью команды additionally (expr2), где expr2 — другое неравенство, ограничивающее значение параметра с другой стороны.

После наложения ограничений на параметр Maple добавляет к его имени символ (\sim), например параметр **a**, на который были наложены некоторые ограничения, в сроке вывода будет иметь вид: $a\sim$.

Описание наложенных ограничений параметра **a** можно вызвать командой **about (a)**. Пример: наложить ограничения на параметр a такие, что a>-1, $a\le 3$:

```
> assume (a>-1); additionally (a<=3);  
> about (a);  
Originally a, renamed a~:  
is assumed to be: RealRange (Open (-1), 3)  
Вернемся к вычислению интеграла с параметром \int_{0}^{+\infty} e^{-ax} dx, которое следует
```

производить в таком порядке:

```
> assume (a>0);

> Int (exp(-a*x), x=0..+infinity) =

int(exp(-a*x), x=0..+infinity);

\int_{0}^{+\infty} e^{(-a \sim x)} dx = \frac{1}{a \sim a}
```

Обучение основным методам интегрирования.

В *Maple* имеется пакет **student**, предназначенный для обучения математике. Он содержит набор подпрограмм, предназначенных для выполнения расчетов шаг за шагом, так, чтобы была понятна последовательность действий, приводящих к результату. К таким командам относятся интегрирование по частям **inparts** и замена переменной **changevar**.

Формула интегрирования по частям:

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

Если обозначить подынтегральную функцию f=u(x)v'(x), то параметры команды интегрирования по частям такие: **intparts(Int(f, x), u)**, где **u** — именно та функция **u(x)**, производную от которой предстоит вычислить по формуле интегрирования по частям.

Если в интеграле требуется сделать замену переменных x=g(t) или t=h(x), то параметры команды замены переменных такие: **changevar(h(x)=t, Int(f, x),** t), где t — новая переменная.

Обе команды **intparts** и **changevar** не вычисляют окончательно интеграл, а лишь производят промежуточную выкладку. Для того, чтобы получить окончательный ответ, следует, после выполнения этих команд ввести команду **value(%)**; где % - обозначают предыдущую строку.

He забудьте, перед использованием описанных здесь команд обязательно загрузить пакет student командой with (student).

Задание 4.

1. Найти неопределенные интегралы: a) $\int \cos x \cos 2x \cos 3x dx$;

6)
$$\int \frac{3x^4 + 4}{x^2(x^2 + 1)^3} dx.$$
> Int (cos (x) *cos (2*x) *cos (3*x) , x) =

int(cos(x)*cos(2*x)*cos(3*x), x);

$$\int \cos(x)\cos(2x)\cos(3x)dx = \frac{1}{8}\sin(2x) + \frac{1}{16}\sin(4x) + \frac{1}{24}\sin(6x) + \frac{1}{4}x$$

> Int($(3*x^4+4)/(x^2*(x^2+1)^3),x$) = int($(3*x^4+4)/(x^2*(x^2+1)^3),x$);

$$\int \frac{3x^4 + 4}{x^2 (x^2 + 1)^3} dx = -\frac{25}{8} \frac{x}{x^2 + 1} - \frac{57}{8} \arctan(x) - \frac{4}{x} - \frac{7}{4} \frac{x}{(x^2 + 1)^2}$$

- 2. Найти определенный интеграл $\int\limits_0^{\pi/2} \frac{\sin x \cos x dx}{\left(a^2 \cos^2 x + b^2 \sin^2 x\right)^2},$ при условии a > 0, b > 0.
 - > assume (a>0,b>0); > Int($\sin(x)*\cos(x)/(a^2*\cos(x)^2+b^2*\sin(x)^2)^2,x=0..Pi/2$) = simplify(int($\sin(x)*\cos(x)/(a^2*\cos(x)^2+b^2*\sin(x)^2)^2,x=0..Pi/2$));

$$\int_{0}^{\frac{1}{2}\pi} \frac{\sin(x)\cos(x)}{\left(a^{2}\cos(x)^{2} + b^{2}\sin(x)^{2}\right)^{2}} dx = \frac{1}{2a^{2}b^{2}}$$

- 3. Найти несобственный интеграл $\int\limits_0^{+\infty} \frac{1-e^{-ax^2}}{xe^{x^2}} dx$, при a>-1
- > restart; assume(a>-1);
- > Int((1-exp(-a*x^2))/(x*exp(x^2)),

 $x=0..+infinity)=int((1-exp(-a*x^2))/(x*exp(x^2)),$ x=0..+infinity);

$$\int_0^\infty \frac{1 - e^{-a - x^2}}{x e^{x^2}} dx = \frac{1}{2} \ln(1 + a - 1)$$

- 4. Численно найти интеграл $\int_{\pi/6}^{\pi/4} \frac{\cos x}{x} dx$
- > Int(cos(x)/x, x=Pi/6..Pi/4)=evalf(int(cos(x)/x, x=Pi/6..Pi/4), 15);

$$\int_{\pi/6}^{\pi/4} \frac{\cos(x)}{x} dx = .322922981 \ 113732$$

- 5. Полностью проделать все этапы вычисления интеграла $\int x^3 \sin x dx$ по частям.
 - > restart; with(student): J=Int($x^3*sin(x),x$);

$$J = \int x^3 \sin(x) dx$$

> J=intparts(Int(x^3*sin(x),x),x^3);

$$J = -x^3 \cos(x) - \int -3x^2 \cos(x) dx$$

> intparts(%,x^2);

$$J = -x^{3}\cos(x) + 3x^{2}\sin(x) + \int -6x\sin(x)dx$$

> intparts(%,x);

$$J = -x^{3}\cos(x) + 3x^{2}\sin(x) + 6x\cos(x) - \int 6\cos(x)dx$$

> value(%);

$$J = -x^{3}\cos(x) + 3x^{2}\sin(x) + 6x\cos(x) - 6\sin(x)$$

- 6. Вычислить интеграл $\int_{-\pi/2}^{\pi/2} \frac{dx}{1+\cos x}$ с помощью универсальной подстановки $tg\frac{x}{2}=t$.
 - > J=Int(1/(1+cos(x)), x=-Pi/2..Pi/2);

$$J = \int_{-\pi/2}^{\pi/2} \frac{1}{1 + \cos(x)} dx$$

> J=changevar(tan(x/2)=t,Int(1/(1+cos(x)), x=-Pi/2..Pi/2), t);

$$J = \int_{-1}^{1} \frac{1}{(1 + \cos(2\arctan(t)))(1 + t^{2})} dt$$

> value (%);

J = 2