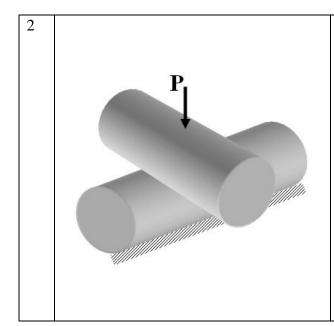
<u>Лабораторная работа № 4</u> Статическая задача о контакте двух трехмерных тел


Варианты заданий

Принять следующие материальные свойства: для первого материала — модуль Юнга $E_1=2\cdot 10^{11}\, \Pi$ а, коэффициент Пуассона $v_1=0.3$; для второго матерала — модуль Юнга $E_2=2.2\cdot 10^{11}\, \Pi$ а, коэффициент Пуассона $v_2=0.35$.

$$\eta = \frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}$$

<u>Указание</u>. В задачах с нагрузкой на единицу длины можно использовать команду F для задания сосредоточенной силы. При этом с помощью команды *GET,MY_NUM,NODE,,COUNT нужно сначала определить количество узлов на линии (число узлов будет храниться в параметре с именем MY_NUM, а затем в каждом узле задать силу величиной $q*L/MY_NUM$, где q — величина нагрузки на единицу длины, L — длина линии.

No	Схема	Геометрические размеры
1	Р	Контакт упругого параллелепипеда с высотой, шириной и длиной соответственно w =0.01 м, h =0.02 м и l =0.03 м с упругим шаром радиуса R =0.01 м. Нижняя поверхность параллелепипеда
		жестко закреплена, а на шар действует сосредоточенная сила P =225 H, линия действия которой проходит через центр шара и точку первоначального касания. По теории Герца величина наибольшего контактного напряжения: $\sigma_y = 0.5784 \sqrt[3]{\frac{P}{\eta^2 R^2}}$

Контакт двух упругих цилиндров длины l=0.07 м со взаимно перпендикулярными осями и равными радиусами R=0.01 м. Нижний цилиндр жестко закреплен, как показано на рисунке, а на верхний цилиндр действует нагрузка P=225 H, направленная вертикально вниз и линия действия которой проходит через точку первоначального касания.

По теории Герца величина наибольшего контактного напряжения:

$$\sigma_{y} = 0.5784 \sqrt[3]{\frac{P}{\eta^{2}R^{2}}}$$

Распределение вариантов

No	№ задания	ФИО студента
1	1	Гончаров Борис Константинович
2	2	Кубанцев Даниил Григорьевич