Лабораторная работа № 5

Нелинейная динамическая контактная задача о падении массивного тела на деформируемую балку (в двумерной постановке)

Варианты заданий

Принять следующие материальные свойства: для балки — модуль Юнга $E=1.2\cdot10^{11}~{\rm H/m^2}$, коэффициент Пуассона v=0.33, плотность $\rho=8900~{\rm кг/m^3}$; для груза — модуль Юнга $E=2\cdot10^{11}~{\rm H/m^2}$, коэффициент Пуассона v=0.29, плотность $\rho=7880~{\rm kr/m^3}$. Принять следующие геометрические размеры балки и груза: ширина балки $b_l=1~{\rm cm}$, толщина балки $h_l=2.5~{\rm cm}$, толщина груза $h_a=2~{\rm cm}$. Подобрать число конечных элементов тела и балки и шаги интегрирования по времени для сходимости результатов. Посмотреть, как изменятся результаты, в зависимости от размеров конечных элементов и шагов по времени. Сравнить результаты и определить оптимальный размер конечного элемента и шага по времени. Важно обеспечить сходимость решения. Если с определенного момента времени решение не сходится, то необходимо уменьшать минимальный шаг по времени для последнего временного интервала. Проанализировать результаты и оформить отчет.

Требования к отчету.

Отчет должен содержать ФИО студента, полное описание задачи, а также результаты, полученные с помощью конечно-элементного комплекса ANSYS. В качестве результатов приведите:

- полученную конечно-элементную сетку с изображением граничных условий
- анимационный файл движения системы
- построенные в постпроцессоре /POST26 графики смещений во времени вершин груза и точки балки, на которую падает груз. Рассмотреть перемещения U_y и U_x
- выводы по результатам вычислительных экспериментов по определению оптимального размера конечного элемента и шага по времени
- вывести в постопроцессоре несколько картин деформированной формы для различных моментов времени, сравнить величины расчетного (T_DROP) и практическое время падения тела на балку (по картинам деформированных форм или по графику смещения точки груза).

№	Схема	Геометрические размеры
1	l_1 h l	Падающее тело – ромб с диагоналями a =18 см и b =24 см h =250 см, l =280 см, l 1=188 см Концы балки жестко закреплены.
2	l_1 l_1 l	Падающее тело — равнобедренный треугольник с основанием a =18 см и высотой b =12 см h =240 см, l =300 см, l 1=200 см Правый конец балки жестко закреплен. Левый конец закреплен по оси Oy .

Распределение вариантов

№	№ задания	ФИО студента
1	1	Гончаров Борис Константинович
2	2	Кубанцев Даниил Григорьевич