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21. The basic theorems of differential calculus

Local extrema of functions. Fermat’s theorem

Local extrema of functions 18A/37:04 (12:31)

Definition.
Let f act from E to R, let the point x0 ∈ E be the limit point of the set E.

It is said that the point x0 is the local minimum point of the function f if there
exists a neighborhood Ux0

of the point x0 such that for any x ∈ Ux0
∩ E the

inequality f(x) ≥ f(x0) holds:

∃Ux0
∀x ∈ Ux0

∩ E f(x) ≥ f(x0).

The value of the function f at the point x0 is called the local minimum.
The local maximum point is defined similarly. The point x0 is called the

local maximum point of the function f if

∃Ux0
∀x ∈ Ux0

∩ E f(x) ≤ f(x0).

The value of the function f at the local maximum point is called the local
maximum.

We also introduce the concepts of strict local maximum and minimum.
Definition.
Let f act from E to R, let the point x0 ∈ E be the limit point of the set E.

The point x0 is called the point of a strict local minimum of the function f if
there exists a punctured neighborhood

◦
Ux0

of the point x0 such that for any

x ∈
◦
Ux0
∩ E the inequality f(x) > f(x0) holds:

∃
◦
Ux0

∀x ∈
◦
Ux0
∩ E f(x) > f(x0).

The point of a strict local maximum is defined similarly. The point x0 is
called the point of a strict local maximum of the function f if

∃Ux0
∀x ∈

◦
Ux0
∩ E f(x) < f(x0).

It should be noted that when we give definitions of the points of strict
local minimum and maximum, punctured neighborhoods of these points are

https://www.youtube.com/watch?v=iFFa4qHZIeg&t=37m04s
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considered, since strict inequalities of the form f(x) > f(x0) or f(x) < f(x0)
cannot be fulfilled for x = x0.

The points of local minima and maxima are called the points of local
extrema, and the values at these points are called the local extrema of this
function. As for minima and maxima, strict and non-strict local extrema can
be defined.

Definition.
The point x0 is called the interior point of the set E if the set E contains

some neighborhood of this point:

∃Vx0
Vx0
⊂ E.

Definition.
Let f act from E to R, x0 ∈ E. It is said that the point x0 is a point of

an interior local minimum, maximum or extremum if it is a point of a local
minimum, maximum or extremum and at the same time it is an interior point
of the set E.

Fermat’s theorem 18A/49:35 (02:40), 18B/00:00 (13:02)

Theorem (Fermat’s theorem on interior local extrema).
Let the function f be defined in some neighborhood Vx0

of the point x0
and x0 be the local extremum point of the function f . Let the function f be
differentiable at the point x0. Then f ′(x0) = 0.

Remark.
Under the conditions of the theorem, it is not assumed that the point x0 is

a point of strict local extremum, but it is required that it is a point of interior
local extremum.

Proof1.
Denote f ′(x0) = A. By definition of the derivative, we have:

lim
x→x0

f(x)− f(x0)
x− x0

= A.

Since the specified limit exists, we obtain, by virtue of the criterion for
the existence of the limit in terms of one-sided limits, that the left-hand and
right-hand limits also exist and are equal to A:

lim
x→x0−0

f(x)− f(x0)
x− x0

= lim
x→x0+0

f(x)− f(x0)
x− x0

= A.

Let the point x0 be a local minimum point. This means that there exists
a neighborhood Ux0

⊂ Vx0
for which the following condition holds:

1 In video lectures, a more complicated method of proof is given.

https://www.youtube.com/watch?v=iFFa4qHZIeg&t=49m35s
https://www.youtube.com/watch?v=pw09UNC0zUE&t=00m01s
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∀x ∈ Ux0
f(x) ≥ f(x0).

Then for the left-hand neighborhood U−x0
, we have f(x) − f(x0) ≥ 0,

x− x0 < 0, whence f(x)−f(x0)
x−x0

≤ 0. Passing to the limit, as x → x0 − 0, and
using the first theorem on passing to the limit in inequalities for functions (its
version for one-sided limits), we obtain limx→x0−0

f(x)−f(x0)
x−x0

≤ 0, i. e., A ≤ 0.
For the right-hand neighborhood U+

x0
, we have f(x)−f(x0) ≥ 0, x−x0 > 0,

whence f(x)−f(x0)
x−x0

≥ 0. Passing to the limit, as x → x0 + 0, and using the
same theorem, we obtain limx→x0+0

f(x)−f(x0)
x−x0

≥ 0, i. e., A ≥ 0.
It follows from the inequalities A ≤ 0 and A ≥ 0 that A = 0, i. e.,

f ′(x0) = 0. We have proved the statement of the theorem for the case of
a local minimum.

If x0 is the local maximum point of the function f , then this point is the
local minimum point of the function −f . Using the result already proved for
a local minimum, we obtain (−f)′(x0) = 0, whence f ′(x0) = 0. �

Rolle’s theorem, Lagrange’s theorem,
and Cauchy’s mean value theorem

Rolle’s theorem 18B/13:02 (11:12)

Theorem (Rolle’s theorem).
Let the function f be defined and continuous on the segment [a, b] and

differentiable on the interval (a, b). Let the function take the same values
at the endpoints of the segment: f(a) = f(b). Then there exists a point
ξ ∈ (a, b) for which f ′(ξ) = 0.

Proof.
Since the function f is continuous on the segment, it attains its maxi-

mum M and minimum m values on this segment, by virtue of the second
Weierstrass theorem:

∃x1 ∈ [a, b] f(x1) = max
x∈[a,b]

f(x) =M ,

∃x2 ∈ [a, b] f(x2) = min
x∈[a,b]

f(x) = m.

Two cases are possible.
Case 1: M = m. This means that the function f is constant: f(x) = M

for all x ∈ [a, b]. Since the derivative of the constant function is 0, we can
choose any point in the interval (a, b) as ξ: f ′(ξ) = 0 for all ξ ∈ (a, b).

https://www.youtube.com/watch?v=pw09UNC0zUE&t=13m02s
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Case 2: M > m. Then, due to the condition f(a) = f(b), at
least one of the points x1 or x2 belongs to the interval (a, b). Indeed, if
points x1 and x2 coincide with the endpoints of the segment [a, b], then
M = f(x1) = f(x2) = m, which contradicts our assumption M > m.

Let, for definiteness, such a point be x1: x1 ∈ (a, b). Then the point x1
is the point of the interior global maximum, therefore, it is also the point of
the interior local maximum. In addition, by the condition of the theorem,
the function f is differentiable at the point x1. Thus, all the conditions of
Fermat’s theorem are satisfied for the point x1. Therefore, f ′(x1) = 0. �

Lagrange’s theorem 18B/24:14 (09:45)

Theorem (Lagrange’s theorem).
Let the function f be defined and continuous on the segment [a, b] and

differentiable on the interval (a, b). Then there exists a point ξ ∈ (a, b) for
which the following relation holds:

f(b)− f(a) = f ′(ξ)(b− a). (1)

Remark 1.
Lagrange’s theorem is a generalization of Rolle’s theorem, since in the case

f(a) = f(b) the left-hand side of equality (1) turns to 0, which immediately
implies that f ′(ξ) = 0.

Remark 2 (geometric sense of Lagrange’s theorem).
Equality (1) can be rewritten as follows:

f(b)− f(a)
b− a

= f ′(ξ). (2)

In studying the geometric sense of the derivative, we obtained the equa-
tions of the secant line and the tangent line to the graph of the function, and
at the same time established that the slope of the secant line passing through
the points

(
x1, f(x1)

)
and

(
x2, f(x2)

)
is the number f(x2)−f(x1)

x2−x1
, and the slope

of the tangent line at the point
(
x0, f(x0)

)
is f ′(x0).

Therefore, equality (2) means that the slope of the secant line passing
through the points

(
a, f(a)

)
and

(
b, f(b)

)
is equal to the slope of the tangent

line at some point
(
ξ, f(ξ)

)
, where ξ ∈ (a, b).

Taking into account that the slope of the straight line is equal to the
tangent of its angle of inclination, we obtain that there exists a tangent line
to the graph of the function on the interval (a, b), whose angle of inclination
coincides with the angle of inclination of the secant line passing through the
endpoints of the graph of the function on the segment [a, b] (Fig. 10).

https://www.youtube.com/watch?v=pw09UNC0zUE&t=24m14s
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Fig. 10. Geometric sense of Lagrange’s theorem

Proof.
Introduce the auxiliary function

F (x) = f(x)− f(b)− f(a)
b− a

(x− a).

The function F is a linear combination of the function f and the linear
function; therefore, it is continuous on the segment [a, b] and differentiable
on the interval (a, b). In addition, the function F takes the same values at
the endpoints of the segment:

F (a) = f(a)− f(b)− f(a)
b− a

(a− a) = f(a)− 0 = f(a),

F (b) = f(b)− f(b)− f(a)
b− a

(b− a) = f(b)−
(
f(b)− f(a)

)
= f(a).

Thus, for the function F , all the conditions of Rolle’s theorem are satisfied.
By virtue of this theorem, we obtain that there exists a point ξ ∈ (a, b) for
which

F ′(ξ) = 0. (3)

Let us find the derivative of the function F :

F ′(x) = f ′(x)− f(b)− f(a)
b− a

. (4)

From relations (3) and (4), we obtain:

f ′(ξ)− f(b)− f(a)
b− a

= 0.

If we move the second term of the last equality to the right-hand side and
multiply both sides by (b− a), we get (1). �
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Corollaries of Lagrange’s theorem 19A/00:00 (18:01)

Corollary 1.
If the function f is defined and continuous on the segment [a, b], differen-

tiable on the interval (a, b), and ∀x ∈ (a, b) f ′(x) = 0, then the function f
is a constant on the segment [a, b]:

∀x ∈ [a, b] f(x) = c.

Remark.
The converse statement (that the derivative of the constant function van-

ishes) follows directly from the definition of the derivative; this statement was
proved in the last section of Chapter 16.

Proof.
Let x1, x2 ∈ [a, b] be arbitrarily chosen different points. For definiteness,

suppose that x1 < x2.
Then the function f has the same properties on the segment [x1, x2] as

on the segment [a, b], that is, it is continuous on [x1, x2], differentiable on
(x1, x2) and ∀x ∈ (x1, x2) f

′(x) = 0. Apply Lagrange’s theorem for the
segment [x1, x2]. By virtue of this theorem, there exists a point ξ ∈ (x1, x2)
for which the following relation holds:

f(x2)− f(x1) = f ′(ξ)(x2 − x1). (5)

But by condition, f ′(ξ) = 0, therefore equality (5) implies the equality
f(x2)− f(x1) = 0, or f(x2) = f(x1).

Since x1 and x2 were arbitrarily selected points from the segment [a, b], we
obtain that the function f is a constant function on this segment. �

Corollary 2.
If the function f is defined and continuous on the segment [a, b], differen-

tiable on the interval (a, b), and ∀x ∈ (a, b) f ′(x) ≥ 0, then the function f
is non-decreasing on the segment [a, b].

Proof.
As in the proof of corollary 1, we arbitrarily choose points x1, x2 ∈ [a, b],

x1 < x2, and apply Lagrange’s theorem for the segment [x1, x2]:

∃ ξ ∈ (x1, x2) f(x2)− f(x1) = f ′(ξ)(x2 − x1). (6)

By condition, f ′(ξ) ≥ 0, moreover, the estimate x2 − x1 > 0 holds for
the difference x2 − x1, therefore the right-hand side of equality (6) is non-
negative. Therefore, the left-hand side of equality (6) is also non-negative:
f(x2) − f(x1) ≥ 0, or f(x1) ≤ f(x2). Since the points x1 and x2 satisfying

https://www.youtube.com/watch?v=mh6Kd-O1c-Q&t=00m01s
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the inequality x1 < x2 were chosen arbitrarily from the segment [a, b], we
obtain that the function f is non-decreasing on this segment. �

Remark.
The following three statements can be proved in a similar way. It is as-

sumed in each of these statements that the function f is defined and contin-
uous on the segment [a, b] and differentiable on the interval (a, b).

1. If ∀x ∈ (a, b) f ′(x) ≤ 0, then the function f is non-increasing on the
segment [a, b].

2. If ∀x ∈ (a, b) f ′(x) > 0, then the function f is increasing on the
segment [a, b].

3. If ∀x ∈ (a, b) f ′(x) < 0, then the function f is decreasing on the
segment [a, b].

Corollary 3.
Let the function f be defined and continuous on the segment [a, b], differen-

tiable on the interval (a, b), its derivative does not vanish on the interval (a, b)
and is continuous on this interval. Then the function f is strictly monotonous
on the segment [a, b] and has the inverse function f−1 acting from the segment
[c, d] = f([a, b]) into the segment [a, b]. The inverse function is continuous
on the segment [c, d], differentiable on the interval (c, d), and has the same
monotonicity type as the function f .

Proof.
Since the function f ′(x) is continuous on (a, b) and for all x ∈ (a, b)

f ′(x) 6= 0, we obtain, by virtue of the intermediate value theorem, that the
function f ′(x) preserves the sign on the interval (a, b), that is, one of the
following two situations is possible: either f ′(x) > 0 for all x ∈ (a, b) or
f ′(x) < 0 for all x ∈ (a, b). Indeed, if it turned out that at some points x1
and x2 from (a, b) the function f ′ takes values of different signs, then, by the
intermediate value theorem, there would be a point x0 ∈ (x1, x2) such that
f ′(x0) = 0, which contradicts the condition.

If any of two possible situations is fulfilled, we obtain, by virtue of the
remark to corollary 2, that the function f is strictly monotonous on the
segment [a, b].

Therefore, if we assume that the function f acts from the segment [a, b]
into the image f([a, b]) of this segment, then it is one-to-one and, therefore,
has the inverse function f−1, and the function f−1 has the same monotonicity
type as the function f (by the first part of the inverse function theorem).

Since, by condition, the function f is continuous on the segment [a, b], we
conclude, by virtue of the second part of the inverse function theorem, that
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the image f([a, b]) is the segment [c, d] and the function f−1 is continuous on
the segment [c, d].

Since, by condition, the function f is differentiable on the interval (a, b)
and f ′(x) 6= 0 for any point x ∈ (a, b), we conclude, by virtue of the the-
orem on the differentiation of an inverse function, that the function f−1 is
differentiable on the interval (c, d). �

Cauchy’s mean value theorem 19A/18:01 (13:01)

Theorem (Cauchy’s mean value theorem).
Let two functions x(t) and y(t) be defined and continuous on the segment

[α, β], differentiable on the interval (α, β), and, in addition, x′(t) 6= 0 for
x ∈ (α, β). Then there exists a point τ ∈ (α, β) for which the following
relation holds:

y(β)− y(α)
x(β)− x(α)

=
y′(τ)

x′(τ)
. (7)

Remark.
This theorem is a generalization of Lagrange’s theorem, since a formula

similar to formula (1) for Lagrange’s theorem can be obtained from for-
mula (7) if we put y(t) = f(t), x(t) = t in formula (7).

Proof.
First of all, note that the denominator x(β) − x(α) in formula (7) does

not turn into 0. This follows from Lagrange’s theorem for the function x and
the condition x′(t) 6= 0, which holds for all t ∈ (α, β), thus, for some value
ξ ∈ (α, β), we obtain:

x(β)− x(α) = x′(ξ)(β − α) 6= 0.

Now, as in the proof of Lagrange’s theorem, introduce the following aux-
iliary function:

F (t) = y(t)− y(β)− y(α)
x(β)− x(α)

(
x(t)− x(α)

)
.

This function is continuous on the segment [α, β] and differentiable on
the interval (α, β). In addition, the function F takes the same values at the
endpoints of the segment:

F (α) = y(α)− y(β)− y(α)
x(β)− x(α)

(
x(α)− x(α)

)
= y(α)− 0 = y(α),

F (β) = y(β)− y(β)− y(α)
x(β)− x(α)

(
x(β)− x(α)

)
=

https://www.youtube.com/watch?v=mh6Kd-O1c-Q&t=18m01s
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= y(β)−
(
y(β)− y(α)

)
= y(α).

Thus, all the conditions of Rolle’s theorem are satisfied for the function F .
By virtue of this theorem, we obtain that there exists a point τ ∈ (α, β) for
which

F ′(τ) = 0. (8)

Let us find the derivative of the function F :

F ′(t) = y′(t)− y(β)− y(α)
x(β)− x(α)

x′(t). (9)

From relations (8) and (9), we obtain:

y′(τ)− y(β)− y(α)
x(β)− x(α)

x′(τ) = 0.

If we move the second term in the last equality to the right-hand side and
divide both sides by x′(τ), we get (7). �
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