
1. Antiderivative and indefinite integral

Definition of an antiderivative
and indefinite integral 2.1A/00:00 (16:47)

Definition.
Let the function f be defined on the interval (a, b). Let the function F be

a differentiable function on this interval, with F ′(x) = f(x) for x ∈ (a, b).
Then the function F is called the antiderivative (or primitive function) of the
function f on a given interval.

The process of finding an antiderivative is called indefinite integration (or
antidifferentiation). If a function has an antiderivative on (a, b), then it is
called integrable on (a, b).

Hereinafter we, as a rule, will not specify interval on which the function is
integrable.

The question arises: how many different antiderivatives exist? Let F1 be
the antiderivative of the function f , that is, F ′1(x) = f(x). Let F2(x) =
= F1(x) + C, where C is a constant. Then the function F2 is also the
antiderivative of the function f , since

F ′2(x) =
(
F1(x) + C

)′
= F ′1(x) = f(x).

Therefore, if we add a constant to some antiderivative, then we will also
get a primitive function. So, there exists an infinite number of antiderivatives,
differing from each other by a constant term.

There are no other antiderivatives: all possible antiderivatives can be ob-
tained by adding a constant to some selected antiderivative. Let us formalize
this fact as a theorem.

Theorem (on antiderivatives of a given function).
Let F1 and F2 be antiderivatives of f on (a, b). Then there exists a constant

C ∈ R such that F2(x) = F1(x) + C.
Proof.
We introduce the auxiliary function h(x) = F2(x) − F1(x). The function

h(x) is differentiable on (a, b) as the difference of differentiable functions. Let
us find its derivative:

h′(x) =
(
F2(x)− F1(x)

)′
= F ′2(x)− F ′1(x) = f(x)− f(x) = 0.

https://www.youtube.com/watch?v=66lAeLxskVA&t=00m01s
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Thus, h′(x) is equal to 0 at any point x ∈ (a, b). Then, by corollary 1
of Lagrange’s theorem [1, Ch. 21], the function h(x) is a constant on the
interval (a, b):

h(x) = C, x ∈ (a, b).

Therefore, F2(x)− F1(x) = C, F2(x) = F1(x) + C. �
So, knowing one antiderivative, we can obtain all the other antiderivatives,

since they all differ from the chosen antiderivative by a constant term.
Definition.
The indefinite integral

∫
f(x) dx of the function f is the set of all its

antiderivatives: if F1 is some antiderivative of the function f (that is,
F ′1(x) = f(x)), then∫

f(x) dx
def
= {F1(x) + C, C ∈ R}.

The symbol
∫

is called the integral sign, the function f(x) is called the
integrand, and the expression f(x) dx under the integral sign is called the
element of integration.

As a rule, curly braces are not used and, moreover, it is not indicated
that C is an arbitrary real constant:∫

f(x) dx = F1(x) + C.

Table of indefinite integrals 2.1A/16:47 (12:44)∫
0 dx = C.∫
Adx = Ax+ C, A ∈ R.∫
xα dx =

xα+1

α + 1
+ C, x > 0, α ∈ R \ {−1}.∫

1

x
dx = ln |x|+ C, x 6= 0.

To prove the last formula, it suffices to differentiate the superposition
ln |x| = ln y ◦ |x| for x 6= 0:

(ln |x|)′ = (ln y)′|y=|x| · (|x|)
′ =

1

y

∣∣∣∣
y=|x|
· signx =

signx

|x|
=

1

x
.∫

ex dx = ex + C.

https://www.youtube.com/watch?v=66lAeLxskVA&t=16m47s
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∫
ax dx =

ax

ln a
+ C, a > 0, a 6= 1.∫

sinx dx = − cosx+ C.∫
cosx dx = sinx+ C.∫

1

cos2 x
dx = tanx+ C.∫

1√
1− x2

dx = arcsinx+ C.∫
1

1 + x2
dx = arctanx+ C.∫

sinhx dx = coshx+ C.∫
coshx dx = sinhx+ C.

The simplest properties of an indefinite integral
2.1A/29:31 (09:54), 2.1B/00:00 (02:28)

1. If the function f is integrable, then(∫
f(x) dx

)′
= f(x).

Proof.
Let F (x) be the antiderivative of the function f(x), then(∫

f(x) dx
)′

= (F (x) + C)′ = F ′(x) = f(x). �

2. If the function f is differentiable, then∫
f ′(x) dx = f(x) + C.

Proof.
In this case, f(x) is one of the antiderivatives of the function f ′(x), whence

the formula to be proved follows. �
3. Additivity of the indefinite integral.
Let f and g be integrable, then the function f + g is also integrable and

the formula holds:∫
(f + g) dx =

∫
f dx+

∫
g dx. (1)

https://www.youtube.com/watch?v=66lAeLxskVA&t=29m31s
https://www.youtube.com/watch?v=xzIopk1WCDM&t=00m01s
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Proof.
Equality (1) must be interpreted as the equality of two sets. Therefore,

we should prove that the set from the left-hand side of equality (1) is equal
to the set from the right-hand side of (1). Let F be some antiderivative of
the function f , G be some antiderivative of the function g. Then F + G is
the antiderivative of the function f + g, since (F + G)′ = F ′ + G′ = f + g.
Therefore, equality (1) can be rewritten in the form:

F +G+ C = (F + C1) + (G+ C2), C, C1, C2 ∈ R.
Obviously, if we choose the constants C1 and C2, that is, if we select some

element of the right-hand set, then this element will also belong to the left-
hand set (we can just put C = C1 + C2).

If we select some element F + G + C of the left-hand set, then, by rep-
resenting the constant C as the sum of two constants C1 and C2, we obtain
that this element also belongs to the right-hand set.

Thus, we have proved the equality of these sets. �
4. Homogeneity of the indefinite integral.
Let f be integrable, α ∈ R, α 6= 0. Then the function αf is integrable

and the formula holds:∫
αf dx = α

∫
f dx. (2)

Formula (2) means that the constant factor can be taken out of the integral
sign.

The proof is similar to the proof of property 3. �
Remark.
In the case of α = 0, formula (2) turns out to be incorrect, as we noted

earlier that
∫
0 dx = C.

If we combine the properties of additivity and homogeneity, then we get
the property of linearity.

5. Linearity of the indefinite integral.
Let f and g be integrable, α, β ∈ R, with α and β not turning into 0 at

the same time: |a| + |b| 6= 0. Then the function αf + βg is also integrable
and the formula holds:∫

(αf + βg) dx = α

∫
f dx+ β

∫
g dx.

Example.
Using the simplest properties of the indefinite integral and the table of

indefinite integrals, one can find the integrals of linear combinations of func-
tions, for example:
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∫
(5ex + 6 cosx) dx = 5

∫
ex dx+ 6

∫
cosx dx = 5ex + 6 sinx+ C.

To verify the resulting relation, it suffices to differentiate the expression
on the right-hand side.

Change of variables
in an indefinite integral 2.1B/02:28 (13:37)

Theorem (on the change of variables).
Let f(x) be an integrable function on (a, b) and one of its antiderivatives

is the function F (x). Let ϕ(t) be a differentiable function on the interval
(α, β) and ϕ(t) ∈ (a, b) as t ∈ (α, β). Then∫

f
(
ϕ(t)

)
ϕ′(t) dt = F

(
ϕ(t)

)
+ C. (3)

Proof.
It is enough for us to verify that the right-hand side of equality (3) is

the antiderivative of the integrand of the left-hand side of (3). We use the
superposition differentiation theorem and the condition that F ′(x) = f(x):(

F (ϕ(t))
)′
= F ′(x)|x=ϕ(t) ϕ

′(t) = f(x)|x=ϕ(t) ϕ
′(t) = f

(
ϕ(t)

)
ϕ′(t).�

Remark.
Considering that the expression ϕ′(t) dt is the differential of the function ϕ,

the left-hand side of equality (3) can be written as
∫
f(ϕ)dϕ.

If we assume that ϕ is an independent variable, then equality (3) turns
into the definition of an indefinite integral:∫

f(ϕ)dϕ = F (ϕ) + C. (4)

However, the proved theorem means that equality (4) also holds for the
case when ϕ is a dependent variable, that is, it represents a differentiable
function of some independent variable (for example, t). In this case, the
expression dϕ must be understood as the differential of the function.

The noted circumstance is an additional justification for including the
expression dx in the notation of the indefinite integral. It should be noted
that this notation is also convenient for calculating integrals by changing
variables.

An example of applying the variable changing theorem.
Find the integral

∫
tanx dx:∫

tanx dx =

∫
sinx dx

cosx
.

https://www.youtube.com/watch?v=xzIopk1WCDM&t=02m28s
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We introduce a new variable: y = cos x. The variable y is the func-
tion ϕ from the variable changing theorem, that is, we can assume that y
depends on x. Then dy is the differential of the function cosx, therefore
dy = − sinx dx. Thus, by virtue of the remark on the variable changing the-
orem, the expression in the numerator of the initial integral can be replaced
with −dy, and the expression in the denominator can be replaced with y. As
a result of changing the variable y = cosx, the initial integral is significantly
simplified and can now be found using the table of indefinite integrals:∫

sinx dx

cosx
=

∫
−dy
y

= −
∫
dy

y
= − ln |y|+ C.

It remains for us to return to the initial variable x. Finally we obtain∫
tanx dx = − ln | cosx|+ C.

Remarks.
1. When finding the last integral, we actually applied the formula (3),

representing the initial integral as follows:∫
tanx dx =

∫
f(cosx) · (cosx)′ dx, f(y) = −1

y
.

However, when performing a variable change in an indefinite integral, for-
mula (3) is not used. Instead, in the integral, both the initial variable x and
its differential dx are replaced, as was done in the above example.

2. Using a similar change of variable, one can also find the integral
∫

dx
sinx .

To do this, take into account that sinx = 2 sin x
2 cos

x
2 and additionally trans-

form the resulting expression to obtain the result of differentiation of the
function tan x

2 in it.
3. The resulting formula for the integral

∫
tanx dx makes sense on any

interval that does not contain points π
2 + πk, k ∈ Z, that is, points at which

the tangent function is not defined.

Formula of integration by parts

Derivation of the formula
of integration by parts 2.1B/16:05 (07:28)

The integral of the product of functions is not equal to the product of
the integrals. This is due to the more complicated form of the formula for
differentiating the product, compared with the formula for differentiating the
sum:

https://www.youtube.com/watch?v=xzIopk1WCDM&t=16m05s
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(uv)′ = u′v + uv′. (5)

Nevertheless, using formula (5) for differentiating the product, we can
obtain the formula of integration by parts, which in some cases allows us to
simplify the calculation of the integral of the product.

Let us express the product uv′ from equality (5):

uv′ = (uv)′ − u′v.

Integrating the last equality and using the linearity of the indefinite inte-
gral (the simplest property 5), we obtain∫

uv′ dx =

∫ (
(uv)′ − u′v

)
dx =

∫
(uv)′ dx−

∫
u′v dx. (6)

Given the simplest property 2 of the indefinite integral, we have∫
(uv)′ dx = uv + C.

Since the remaining term
∫
u′v dx on the right-hand side of equality (6)

also contains an arbitrary constant, we can add the constant C to this arbi-
trary constant and not specify it explicitly. Finally, we obtain the following
formula:∫

uv′ dx = uv −
∫
u′v dx.

This formula is called the formula of integration by parts. It holds if the
functions u and v are differentiable and there exists at least one of the integrals
included in it (in this case, there necessarily exists another integral).

So, the formula of integration by parts allows us to express the integral of
the product of the functions u and v′ in terms of the integral of the product
of u′ and v. It is used in situations where the integral on its right-hand side
is easier to find than the integral on the left-hand side.

The formula of integration by parts can also be written in the following
form: ∫

u dv = uv −
∫
v du.

Examples of applying the formula
of integration by parts 2.1B/23:33 (12:42)

1. Let us find the integral
∫
lnx dx. We put u(x) = lnx, dv = dx,

whence v(x) = x. Then

https://www.youtube.com/watch?v=xzIopk1WCDM&t=23m33s
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∫
lnx dx = x lnx−

∫
x(lnx)′ dx =

= x lnx−
∫
x · 1

x
dx = x lnx−

∫
dx = x lnx− x+ C.

2. Let us find the integral
∫
ex sinx dx.

We put u(x) = sinx, dv = ex dx, whence v(x) = ex. Then∫
ex sinx dx = ex sinx−

∫
ex cosx dx. (7)

Transform the integral on the right-hand side of (7) by the formula of
integration by parts with u(x) = cos x, v(x) = ex:∫

ex cosx dx = ex cosx−
∫
ex(− sinx) dx = ex cosx+

∫
ex sinx dx.

Substituting the found integral in (7), we obtain∫
ex sinx dx = ex sinx− ex cosx−

∫
ex sinx dx.

So, after completing two integrations by parts, we get the initial integral∫
ex sinx dx. If we denote one of the antiderivatives of the initial integrand

by the symbol I, then the last equality can be written as follows:

I = ex(sinx− cosx)− I. (8)

Solving equation (8) with respect to I, we obtain

I =
ex

2
(sinx− cosx).

The final formula takes the form∫
ex sinx dx =

ex

2
(sinx− cosx) + C.

A similar technique can be applied when integrating functions of a more
general form ebx sin ax and ebx cos ax.

Remark.
It is also advisable to apply the formula of integration by parts in the

case of an integrand of the form P (x)f(x), where P (x) is a polynomial and
f(x) is a function for which there exists a simple antiderivative (such as sinx,
cosx, ax). In this case, we put u(x) = P (x); as a result of differentiation
of the function u(x), a polynomial of a lesser degree will be obtained. The
integration by parts is again applied to the obtained integral, and the pro-
cess is repeated until the polynomial at the next differentiation turns into
a constant.
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If there is a function lnx in the integrand, we can put u(x) = lnx, since
we obtain a simpler function 1

x after differentiation.
Sometimes it is convenient to apply the formula of integration by parts,

not dividing the integrand into two factors, but setting dv = dx, v(x) = x
(as in example 1).
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