m-dimensional problems

Let Ω be bounded domain in \mathbb{R}^{m} with smooth boundary $\partial \Omega$. Functions f and g are continiously differentiable in Ω and continious up to the boundary:

$$
f, g \in C^{1}(\Omega) \cap C(\bar{\Omega})
$$

\bar{n} denotes the outward normal unit vector to $\partial \Omega$.
Then the integration by parts formula holds:

$$
\begin{equation*}
\int_{\Omega} \frac{\partial f}{\partial x_{k}} g(x) d x=-\int_{\Omega} f(x) \frac{\partial g}{\partial x_{k}} d x+\int_{\partial \Omega} f(x) g(x) n_{k} d S . \tag{1}
\end{equation*}
$$

$1 \leqslant k \leqslant m, n_{k}-k$-th coordinate of normal vector.

Problem 1

Using the integration by parts prove First Green's identity:

$$
\begin{equation*}
\int_{\Omega} \Delta f(x) \cdot g(x) d x=-\int_{\Omega}(\nabla f(x), \nabla g(x)) d x+\int_{\partial \Omega} \frac{\partial f(x)}{\partial n} g(x) d S . \tag{2}
\end{equation*}
$$

Prove Second Green's identity:

$$
\begin{equation*}
\int_{\Omega} \Delta f(x) \cdot g(x) d x=\int_{\Omega} f(x) \Delta g(x) d x+\int_{\partial \Omega}\left(\frac{\partial f(x)}{\partial n} g(x)-\frac{\partial g(x)}{\partial n} f(x)\right) d S . \tag{3}
\end{equation*}
$$

Prove an important formula:

$$
\begin{equation*}
\int_{\Omega} \Delta u(x) d x=\int_{\partial \Omega} \frac{\partial u(x)}{\partial n} d S \tag{4}
\end{equation*}
$$

Problem 2

Let $u \in \mathbb{C}^{2}(D) . D$ is bounded domain in $\mathbb{R}^{m}, \partial D \in \mathbb{C}^{1}$. Let $\left.u\right|_{\partial D}=0$. Prove:

$$
\begin{equation*}
\int_{D} \Delta u \cdot u d x \leqslant 0 . \tag{5}
\end{equation*}
$$

When does the equality take place?

Problem 3

Prove that, if

$$
\begin{equation*}
\Delta u+\lambda u=0, x \in D ;\left.\quad u\right|_{\partial D}=0 \tag{6}
\end{equation*}
$$

and u is non-trivial solution, then $\lambda>0$.

Problem 4

Prove that, if

$$
\begin{equation*}
\Delta u+\lambda u=0, x \in D ;\left.\quad \frac{\partial u}{\partial n}\right|_{\partial D}=0 \tag{7}
\end{equation*}
$$

and u is non-trivial solution, then $\lambda \geqslant 0$.

Problem 5

Deduce first Green's identity and second Green's identity for biharmonic operator $\Delta^{2} u$ in $D \subset \mathbb{R}^{m}$. Using Green's second identity find the adjoint differential expression for biharmonic operator.

Remark.

$$
\begin{equation*}
\Delta^{2}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots \frac{\partial^{2}}{\partial x_{m}^{2}}\right)^{2} \tag{8}
\end{equation*}
$$

Problem 6

Let $u \in \mathbb{C}^{4}(\Omega), \Omega$ is bounded domain in $\mathbb{R}^{m}, \partial \Omega \in \mathbb{C}^{1}$. Suppose that $\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0$. Prove:

$$
\begin{equation*}
\int_{\Omega} \Delta^{2} u \cdot u d x \geqslant 0 \tag{9}
\end{equation*}
$$

When does the equality take place?

Definition L^{*} is called the adjoint differential expression with respect to L, if following identity takes place:

$$
\int_{\Omega} L f(x) \cdot g(x) d x=\int_{\Omega} f(x) L^{*} g(x) d x+\int_{\partial \Omega} M(f(x), g(x)) d S .
$$

Problem 7

Find the adjoint differential expression for the heat operator

$$
\begin{equation*}
L u=u_{t}-\Delta u \tag{10}
\end{equation*}
$$

