5. Definite integral and Darboux sums
Definite integral

The problem of finding the area
of a curvilinear trapezoid \2.4A/OO:OO (07:00) \

The basic concepts related to a definite integral can be considered by
the example of the geometric problem of finding the area of a curvilinear
trapezoid.

Let a function f(x) be defined on the segment (closed interval) [a, b] and
taking positive values on this segment: f(x) > 0, x € [a,b]. It is required
to find the area of the figure G bounded by the OX axis, the vertical lines
r = a and x = b, and the graph of the function y = f(z). Such a figure is
called a curvilinear trapezoid with the base [a, b] (Fig. 4).
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Fig. 4. Curvilinear trapezoid

How to find the approximate area of a curvilinear trapezoid?

Let us divide the segment [a, b] into smaller segments (not necessarily of
equal length) with endpoints a = xp < 71 < T3 < -+ < Ty_1 < T = b.
For brevity, we denote the obtained segments as follows: A; = [x; 1, z;],
1 =1,...,n. We also introduce the notation for the length of the segment A;:
Axi:xi—xi_l,izl,...,n.

Choose a point & on each of the segments A;: & € A;,i=1,...,n.


https://www.youtube.com/watch?v=TRBKy1OknMM&t=00m01s

Provided that the function f has sufficiently “good” properties, we can
assume that the area of the curvilinear trapezoid with the base A; will be
close to the area of the rectangle with the same base A; and a height equal
to the value of the function f at the point &. The area of this rectangle is
f(&)A;.

Summing up the areas of all such rectangles, we get the approximate value
of the area of the initial curvilinear trapezoid: Y., f(&)Ax; (see the left-

hand part of Fig. 5). —_—
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Fig. 5. Curvilinear trapezoid approximation by a set of rectangles

As the number of points z; increases, the resulting union of the rectangles
will be even closer to the initial curvilinear trapezoid (see the right-hand part
Q of Fig. 5). ( ,
If the expression > " | f(&)Az; has a limit as the number of points z;
:V unlimitedly increases (and, accordingly, asmength of all segments A; un-
('i)Ci’Himitedly decreases), then it is natural to consider this limit as the area of the
initial curvilinear trapezoid.

Q It is this limit that is called the definite integral of the function f over the
e ————
segment [a, b].
Definition of a definite integral \2 .4A/07:00 (14:01) \
DEFINITION.
Let the function f be defined on the segment [a, b]. The partition T of the
segment [a,b] is the set of points x;, ¢ = 0,...,n, which has the following
property:

a=x)0 <1 <Xy < -+ < Tp_1<xy,=0>.

For the segments [z;_1, ;] with endpoints at adjacent points of the parti-
tion T', as well as for their lengths x;—x;_1, we will use the notation introduced
above:


https://www.youtube.com/watch?v=TRBKy1OknMM&t=07m01s
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def def .
A =[xy, ], Ary=x;—xq, i=1,...,n.
— ————

Obviously, Ax; > 0.
The mesh of the partition T' (notation /(7)) is the maximum of the lengths
of the segments A;:
I(T) = max Auz;.

— 1=1,...,

A sample & constructed on the basis of a partition 7" is an arbitrary set of
pointsm, i=1,...,n.
The integral sum or(f,&) of the function f by the partition Z} and
sample § is the following expressign: 1 _ . A \el <
n 7 1+ o Jy

o at VAZ; 2evo Tgo 7.7
rifé) Z.:Zlf(&m " Vero I8 Ve ubxicd u(«\-1|<i~
—— %

A function f is called Riemann integrable on the segment [a,b] if there
existg apnumber I such tha.} — 7~
Ve>0 d6>0 VT,(T)<d, V& |op(f,§&)

(1) can be written using the limit notation:

I= 1 .
= l(T)l—I};)l,ié UT(fJ 5)

—I| <e.

The number [ is called the Riemann integral, or the definite integral, of
the function f over the segment [a, b], and it is denoted as follows: fab f(x)de.

So, the Riemann integral of the function f is the limit of the integral sums
or(f,&) as [(T) — 0, V&, if this limit exists:

/ flade™ |l ar(f.6)

T)—=0,V ¢

In what follows, Rlemann integrability and the Riemann integral will be
called simply integrability and integral, respectively.

REMARKS.

1. Although the limit of integral sums used in the definition of the inte-
gral I differs from the usual limit of a function at a point, it is easy to prove,
using condition (1), that this limit satisfies both the theorem on arithmetic
properties of the limit and the theorem on passing to the limit in the inequal-
ities. We will use these theorems in the next chapter to prove the properties
of a definite integral.

2. One can extend the class of integrable functions by giving another
definition of integrability. This version of integrability is called Lebesque
integrability. Lebesgue integrability is not considered in this book.

A

T = m
x doowea:N - |{(1\l< M £(~\>M
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A necessary condition for integrability \2 L4A/21:01 (11:50) \

THEOREM (A NECESSARY CONDITION FOR INTEGRABILITY).
If the function is integrable on a segment, then it is bounded on this
segment. L fi\' -N[,_&,g% ﬁf_a'ej> _— (I ic bowded QIQ'@7)
PROOF.
Let the function, f be integrable on the segmend [&;b]. This means that
there exists a numbéy [ for which condition f1) is satisfied. In this condition,
we choose the value of\¢, setting it equal tg 1. Then there exists a value 6 > 0
such that the following 8gtimate holds fgf any partition 7" of the segment [a, b]
) < ¢ and any sample £ constructed on

satisfying the additional cendition [
the basis the partition T

lor(f,€) — 1] < 1.

We select some partiffon T satisfing the condition ((T") < 6.

Let us prove the gfatement of the th
the function f is #ot bounded on [a, b].
at least one segment A; associated with the Rreviously selected partition 7.
For definitengSs, we assume that such a segment is the segment A;.

From the integral sum op(f, ), we extract the term associated with this
segment:

(2)

rem by contradiction: suppose that
s means that it is unbounded on

us fix the values &9, &3, ..., &, N t)s case, the second term on the right-hand
side of equality (3) will be uniq determined. Denote the value of this term



https://www.youtube.com/watch?v=TRBKy1OknMM&t=21m01s
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In this double inequality, all values are fixed except for the point &, which
can vary within the segiwent Xj. Thus, we have obtained that the double
inequality (4) holds for alh¢; € Aj, which implies that the function f is
bounded on the segment /A1 .\But this contradicts our assumption that the
function f is unbound egment. The obtained contradiction proves
the theorem. [

REMARKS.

1. Taking into account this theorem, we will consider only bounded func-

tions hereinafter, not always noting this condition.

2. The converse of the proved theorem is false: if the function is bounded,
then this does not follow that it is integrable. We give a corresponding ex-
ample at the end of this chapter.

Darboux sums and Darboux integrals

Definition of Darboux sums \2.4A/32:51 (05:52) \

DEFINITION.

Let the function f be defined and bounded on the segment [a, b].

We choose some partition 1" of thisse—mlt and introduce the following
notation: -

M; = sup f(x), m;= inf f(z), i=1,...,n \‘\ﬂl& ‘\/\L

.’IJEAi I'GAZ'

Since the function f is bounded on [a, ], the values M; and m; exist for
alli=1,...,n. £ A
The upper Darbouz sum S;(f) and the lower Darbouz sum S5 (f) are
defined as follows: -

wn
Sr(f) = zn:MiAxi, S(f) = En:mAi Q"_G)z) =>~E(T:\)A¢:

- Tee—
L=1

——

If it is clear which function f is associated with Darboux sums, then the
short notation SF and S can be used for them.

REMARK.

The main difference between Darboux sums and integral sums is that the
notion of sample £ is not used in the definition of Darboux sums: Darboux
sums depend only on the function f itself and the partition 7" of the initial
segment.


https://www.youtube.com/watch?v=TRBKy1OknMM&t=32m51s

=1~

The simplest properties
of Darboux sums 2.4A/38:43 (01:33), 2.4B/00:00 (12:05)

In the formulations of all properties, it is assumed that the function f is
defined and bounded on the segment [a, b].

1. Let T be some partition of the segment [a, b], £ be an arbitrary sample
associated with this partition. Then the following double inequality holds:

Se(f) < or(£,€) < SF(). T EA; 5)

dpremum M; and the infimum m;, it follows

A¥E

(6)

Given the definitions of the integral sum and Darboux sums, we ob-
tain (5). O

2. For a fixed partition T" of the segment [a,b], the following relations
hold; =

Sr(f)|Fsupor(f,§), Sp(f) = meT(f §).
“ _ O
PROOF.
Let us prove this property for the upper Darboux sum. Given the definition
of supremum, it is necessary to prove two statements:
1) VE or(f,§) < Sr(f),
2)Ve =0 3¢ or(J.8) > Si(f) ==

Statement 1 has already been proved (see property 1). Let us prove \ns’tate—

ment 2. From the definition of the supremum % it follows Z
Ve>0 3gen; fE)> M- c Vi SR (6
b—a L2y

Multiply both sides of inequality (7) by Az; > 0 and take a sum of all
inequahties fori=1,...,n:



https://www.youtube.com/watch?v=TRBKy1OknMM&t=38m43s
https://www.youtube.com/watch?v=a4gf4Temgug&t=00m01s
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Given the definitions of the integral sum and the upper Darboux sum, as

well as the fact that > 7" ;=Ax; = =37 Az; = ;=(b—a) = ¢, we
obtain statement 2.
The property for the lower Darboux sum is proved similarly, using the

definition of the infimum. [J

5t X o
Darboux sum property related o 4
to refinement of a partition \2.4B/12:O5 (15:11) \

Before stating the next property, we introduce the concept of refinement
of a partition.

DEFINITION.

The partition T is called the refinement of the partitio@ any element
of the partition 77 belongs to the partition 75, i. e., 71 C 157 In other words,
the refinement 75 of the partition 77 contains all points of the partition 7T}
and possibly some other points of the original segment.

@f If the partition T5 is a refinement of the partition 77, then the following
chain of 1nequa.d/1t1es\holds. T CTQ
Sp <S5, <S5, < S7 A

PROOF. B =T

in (8) immediately follows from property 1. Let us

(8)

The middle inequali
prove the right-hand inequality: S7, < S7..
It is enough for us to ®pnsider the case fthen the refinement 75 of the
partition 77 differs from 77 by\only one adddtional point. The case when there
are several additional points calbe redficed to the case with one point if we
add these points to the partition s¢quentiallyand apply the proved estimate
to the resulting refinements.
So, we assume that the » contains one additional point z':

We need to prove tha,

Sy, — Sgp, >7.


https://www.youtube.com/watch?v=a4gf4Temgug&t=12m05s

The indicated Darboux sums contain the coinciding terms M;Ax; for
1 = 2,...,n. After reduciyg these coficiding terms, the difference Sﬂ — S;CQ
takes the following form:

S;:l — S;:Q == Mlel
Since sup A < sup B for

(Azy + M{'AzY). (10)
B and in our case A] C Ay and A} C Ay,

we get
Mj < M,
Therefore, the fight-hand side 4f equality (10) can be estimated as follows:
MiAxy — VAZ) > MiAzy — (M Az + My AxY)
The right-hand siNe of th¢/last inequality is 0, since Azy = Az|+Ax]. We

inequality in (8).
The left-hand ine
the following propepty of the infimum: inf A > inf B for A C B. [

Darboux sums associated
with different partitions 2.4B/27:16 (05:14)

(4.)1f T' and T" are some partitions of the segment [a, b], then the estimate
holds:

-

S < St T ST s T (11)

Tmr Darboux sum of the function f is less than or equal to
any of its upper Darboux sums.

PROOF.

Consider the union of two given partitions{ T')= T" U T"”. The resulting
partition 7' is a refinement of both the partition 7" and the partition T”.

Therefore, applying prop 3, we obtain the following chain of inequalities:
( Sy < S; < S < St (12)

In this case, we applied the left-hand inequality from (8) for 7" and its
refinement 7', the middle inequality from (8) for 7', and the right-hand in-
equality from (8) for 7" and its refinement 7.

Consequently, the boundary terms of the obtained chain of inequalities (12)
satisfy inequality (11). O

Darboux integrals \2.4B/32:30 (07:05) \

— YREA —_
5. There exist values I~ (f) = supy Sy (f), I7(f) = infr ST (f) and the

following estimate holds for them: =

oty +
S—T—‘X\{S‘S‘T



https://www.youtube.com/watch?v=a4gf4Temgug&t=27m16s
https://www.youtube.com/watch?v=a4gf4Temgug&t=32m30s
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I°(f) < I7(f). (13)

PROOF.
Consider the previously proved inequality (11), fix the partition 7" in it,
and consider the arbitrary partition 7" of the segment [a, b] as the partition 7"

T (f) < Sp(f).
i

This inequality means that the set of all lower Darboux sums over arbitrary
partitions 7" is bounded from above by S7,(f). Therefore, the set of all lower
Darboux sums for the function f is bounded from above, which means that
it has the least upper bound I~ (f).

Since the value S7.,(f) is the upper bound for the set of all lower Darboux
sums and the value I~ (f) is the least upper bound for these sums, we obtain

the following inequality: -
I7(f) < Spa(f)-
In the last inequality, we can assume that 7" is an arbitrary partition

of the segment [a,b]. Therefore, the set of all upper Darboux sums of the
function f over an arbitrary partition 7" is bounded from below by the value
I7(f). So, this set has thew‘ceﬁ_]m@”bo\undfr(f).

The estimate (13) follows from the fact that the quantity I~ (f) is the
lower bound for the set of all upper Darboux sums and the value I7(f) is the
greatest lower bound for these sums.

DEFINITION.

The values I~ (f) and IT(f) are called the lower and upper Darboux inte-
grals for the function f on the segment [a, b], respectively. Thus, by virtue of
property 5, any bounded function has the lower and upper Darboux integrals
and inequality (13) holds for them.

Integrability criterion in terms of Darboux sums

Formulation of the integrability criterion \2.5A/OO:OO (09:13) \

THEOREM (INTEGRABILITY CRITERION IN TERMS OF DARBOUX
SUMS).

The function f is integrable on the segment [a, b] if and only if two condi-
tions are satisfied:

1) f is bounded on [a, b], Z{] I ]
)Ve>0 36>0 VT,U(T) <6, Si(f) W
(I’I} e

yizo 38v0 yTNR, Y3 |G (F)-T(<c



https://www.youtube.com/watch?v=oLRSzkV4FLo&t=00m01s
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REMARK.
Condition 2 of the theorem can be written as follows:

dm (SF(F) = S5() =0

Proof of necessity \2.5A/09:13 (09:43) \

Given: the function f is integrable on [a, b]. Prove: conditions 1 and 2 are
satisfied.
The validity of conditiyn 1 follows from t}e necessary condition for inte-
prove the val{dity of condition 2.
rable, the/following limit exists:

grability. It remains for us
Since the function f is int

li = 1.
uTﬁE&vgaT(f’g)

We choose some value of € > 7 Du to the integrability of the function f,

we obtain

— I < -. (14)

I—§<0T(f,§)<l+ . (15)

any sample &.
By property 2 of Darboux s

the least upper bound of t ms, we obtain the following chain of
inequalities:
€ _
-2 < Sp(f) < Si(f (16)
Since the distance betwe rms of the triple inequality (16)


https://www.youtube.com/watch?v=oLRSzkV4FLo&t=09m13s
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St =SpA < (1+7) - (1-3). (17)
Simplify the right-hakd side:
(I+§)—(I— :%<5.

We obtained an estimate from condition 2 of the theorem. The necessity
1s proven.

Proof of sufficiency \2.5A/18:56 (14:25) \

Given: conditions\l and 2 are satisfied. Proye: the function f is integrable
on [a, bl.
Condition 1 (i. e., th&\boundedness of yhe function f) is required only to
guarantee the existence of qwer and upper Darboux sums for the function f.

The left-hand side of the resulting inequality does not depend on €, there-

fore,l}hj_w&m be true for arbitrary e > 0 only if IT(f)—1—(f) =0,
Le IT(f)=1(f).\=

Thus, we have proved tllat, under condition 2 of the theorem, the lower
e denote their value by I and show



https://www.youtube.com/watch?v=oLRSzkV4FLo&t=18m56s
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We choose the value ¢ > 0 and select the value 6 > 0 from it using
condition 2 of the theorem. Then, for any partfion T satisfying the condition

I(T) < 9, estimate (18) holds.
Using property 1 okthe Darboux su
VE Sp(f) <or
In addition, by virtue of Wro
Sr(f) <T<SH(f
Thus, the values of #7(f, 5)
ST (f). Therefore, t ate is true:
VE or(f8) — 11 < S(f) — S (f).
Given that S5 (f) — S7(f) < &, we finlly get
V¢ or(f,§) —1I| <e.

We proved that condition (19) is satisfied for the function f; therefore, the
function f is integrable. []

., we obtain
tty 5 of the Darboux sums, we have

I are between the values of S, (f) and

Corollary of the criterion
and an example of a non-integrable function \2.5A/33:21 (08:48) \

COROLLARY.

If the function f is integrable on the segment [a, b], then its upper and lower
Darboux integrals coincide and, moreover, they are equal to the integral of
the function f over the segment [a, b].

PROOF.

If the function is integrable, then condition 2 of the theorem is fulfilled
for it, which implies both the coincidence of the upper and lower Darboux
mtegrals and their equality to the integral of this function (see the proof of

i Lt Ty = f vk dyoll

It follows from the corollary that if the upper and lower Darboux integrals
are different, then the function is not integrable.

AN EXAMPLE OF A BOUNDED FUNCTION THAT IS NOT INTEGRABLE.

We define the following function, called the Mlet function:

1, xeQ et T = 2ol
D — ) Y
(l’) {07 meR\Q == ——
Thus, the Dirichlet function is equal to 1 at rational points and > equal 1
to 0 at irrational points.

[D ()| <


https://www.youtube.com/watch?v=oLRSzkV4FLo&t=33m21s
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This function is bounded. However, it is not integrable on any segment oy
[a, b] of nonzero length. We show this for the segment [0, 1].

Let us accept without proof the following fact: in any arbitrarily small
neighborhood of any rational number, there exists some irrational number and T [O, '17
vice versa, in any arbitrarily small neighborhood of any irrational number, & 2
there exists some rational number. Therefore, any segment of nonzero length
necessarily contains both irrational and rational numbers. This means that?.,y' YRR
for any partition 7" of the segment [0, 1], the following relations hold: »

—

m; = inf D(z) =0, M,; = sup D(x)=1. .
TEA; ( ) TEA,; ( ) VAL g"ﬂ-e[.— 7:4:‘)
Then, for Darboux sums of the Dirichlet function over any partition 71" of
the segment [0, 1], we have 3 BG‘A - ;]é‘@\@
L

J

Similar relations hold for Darboux integrals:
- _ + _ _
I"(D) = 1rT1f S7(D) = 1rT1f1 =1
I~ (D) =sup Sy (D) =sup0 = 0.
T T -

We proved that I=(D) # I(D), therefore, the Dirichlet function is not
integrable on the interval [0, 1].
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