
5. Definite integral and Darboux sums

Definite integral

The problem of finding the area
of a curvilinear trapezoid 2.4A/00:00 (07:00)

The basic concepts related to a definite integral can be considered by
the example of the geometric problem of finding the area of a curvilinear
trapezoid.

Let a function f(x) be defined on the segment (closed interval) [a, b] and
taking positive values on this segment: f(x) > 0, x ∈ [a, b]. It is required
to find the area of the figure G bounded by the OX axis, the vertical lines
x = a and x = b, and the graph of the function y = f(x). Such a figure is
called a curvilinear trapezoid with the base [a, b] (Fig. 4).

Fig. 4. Curvilinear trapezoid

How to find the approximate area of a curvilinear trapezoid?
Let us divide the segment [a, b] into smaller segments (not necessarily of

equal length) with endpoints a = x0 < x1 < x2 < · · · < xn−1 < xn = b.
For brevity, we denote the obtained segments as follows: ∆i = [xi−1, xi],
i = 1, . . . , n. We also introduce the notation for the length of the segment ∆i:
∆xi = xi − xi−1, i = 1, . . . , n.

Choose a point ξi on each of the segments ∆i: ξi ∈ ∆i, i = 1, . . . , n.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=00m01s
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Provided that the function f has sufficiently “good” properties, we can
assume that the area of the curvilinear trapezoid with the base ∆i will be
close to the area of the rectangle with the same base ∆i and a height equal
to the value of the function f at the point ξi. The area of this rectangle is
f(ξi)∆xi.

Summing up the areas of all such rectangles, we get the approximate value
of the area of the initial curvilinear trapezoid:

∑n
i=1 f(ξi)∆xi (see the left-

hand part of Fig. 5).

Fig. 5. Curvilinear trapezoid approximation by a set of rectangles

As the number of points xi increases, the resulting union of the rectangles
will be even closer to the initial curvilinear trapezoid (see the right-hand part
of Fig. 5).

If the expression
∑n

i=1 f(ξi)∆xi has a limit as the number of points xi
unlimitedly increases (and, accordingly, as the length of all segments ∆i un-
limitedly decreases), then it is natural to consider this limit as the area of the
initial curvilinear trapezoid.

It is this limit that is called the definite integral of the function f over the
segment [a, b].

Definition of a definite integral 2.4A/07:00 (14:01)

Definition.
Let the function f be defined on the segment [a, b]. The partition T of the

segment [a, b] is the set of points xi, i = 0, . . . , n, which has the following
property:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.
For the segments [xi−1, xi] with endpoints at adjacent points of the parti-

tion T , as well as for their lengths xi−xi−1, we will use the notation introduced
above:

https://www.youtube.com/watch?v=TRBKy1OknMM&t=07m01s
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∆i
def
= [xi−1, xi], ∆xi

def
= xi − xi−1, i = 1, . . . , n.

Obviously, ∆xi > 0.
The mesh of the partition T (notation l(T )) is the maximum of the lengths

of the segments ∆i:

l(T )
def
= max

i=1,...,n
∆xi.

A sample ξ constructed on the basis of a partition T is an arbitrary set of
points ξi ∈ ∆i, i = 1, . . . , n.

The integral sum σT (f, ξ) of the function f by the partition T and the
sample ξ is the following expression:

σT (f, ξ)
def
=

n∑
i=1

f(ξi)∆xi.

A function f is called Riemann integrable on the segment [a, b] if there
exists a number I such that

∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε. (1)

Briefly, condition (1) can be written using the limit notation:

I = lim
l(T )→0,∀ ξ

σT (f, ξ).

The number I is called the Riemann integral, or the definite integral, of
the function f over the segment [a, b], and it is denoted as follows:

∫ b
a f(x) dx.

So, the Riemann integral of the function f is the limit of the integral sums
σT (f, ξ) as l(T )→ 0, ∀ ξ, if this limit exists:∫ b

a

f(x)dx
def
= lim

l(T )→0,∀ ξ
σT (f, ξ).

In what follows, Riemann integrability and the Riemann integral will be
called simply integrability and integral, respectively.

Remarks.
1. Although the limit of integral sums used in the definition of the inte-

gral I differs from the usual limit of a function at a point, it is easy to prove,
using condition (1), that this limit satisfies both the theorem on arithmetic
properties of the limit and the theorem on passing to the limit in the inequal-
ities. We will use these theorems in the next chapter to prove the properties
of a definite integral.

2. One can extend the class of integrable functions by giving another
definition of integrability. This version of integrability is called Lebesgue
integrability. Lebesgue integrability is not considered in this book.
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A necessary condition for integrability 2.4A/21:01 (11:50)

Theorem (a necessary condition for integrability).
If the function is integrable on a segment, then it is bounded on this

segment.
Proof.
Let the function f be integrable on the segment [a, b]. This means that

there exists a number I for which condition (1) is satisfied. In this condition,
we choose the value of ε, setting it equal to 1. Then there exists a value δ > 0
such that the following estimate holds for any partition T of the segment [a, b]
satisfying the additional condition l(T ) < δ and any sample ξ constructed on
the basis the partition T :

|σT (f, ξ)− I| < 1. (2)

We select some partition T satisfying the condition l(T ) < δ.
Let us prove the statement of the theorem by contradiction: suppose that

the function f is not bounded on [a, b]. This means that it is unbounded on
at least one segment ∆i associated with the previously selected partition T .
For definiteness, we assume that such a segment is the segment ∆1.

From the integral sum σT (f, ξ), we extract the term associated with this
segment:

σT (f, ξ) = f(ξ1)∆x1 +
n∑
i=2

f(ξi)∆xi. (3)

Let us fix all the elements of the sample ξ except for the first one, i. e., let
us fix the values ξ2, ξ3, . . . , ξn. In this case, the second term on the right-hand
side of equality (3) will be uniquely determined. Denote the value of this term
by A:

A =
n∑
i=2

f(ξi)∆xi.

Then inequality (2) can be transformed as follows:

I − 1 < σT (f, ξ) < I + 1,

I − 1 < f(ξ1)∆x1 + A < I + 1.

In the resulting relation, we move A from the middle part to the left-hand
and right-hand part, after which we divide all parts of the double inequality
by ∆x1 (this can be done since ∆x1 > 0):

I − 1− A
∆x1

< f(ξ1) <
I + 1− A

∆x1
. (4)

https://www.youtube.com/watch?v=TRBKy1OknMM&t=21m01s
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In this double inequality, all values are fixed except for the point ξ1, which
can vary within the segment ∆1. Thus, we have obtained that the double
inequality (4) holds for all ξ1 ∈ ∆1, which implies that the function f is
bounded on the segment ∆1. But this contradicts our assumption that the
function f is unbounded on this segment. The obtained contradiction proves
the theorem. �

Remarks.
1. Taking into account this theorem, we will consider only bounded func-

tions hereinafter, not always noting this condition.
2. The converse of the proved theorem is false: if the function is bounded,

then this does not follow that it is integrable. We give a corresponding ex-
ample at the end of this chapter.

Darboux sums and Darboux integrals

Definition of Darboux sums 2.4A/32:51 (05:52)

Definition.
Let the function f be defined and bounded on the segment [a, b].
We choose some partition T of this segment and introduce the following

notation:

Mi = sup
x∈∆i

f(x), mi = inf
x∈∆i

f(x), i = 1, . . . , n.

Since the function f is bounded on [a, b], the values Mi and mi exist for
all i = 1, . . . , n.

The upper Darboux sum S+
T (f) and the lower Darboux sum S−T (f) are

defined as follows:

S+
T (f)

def
=

n∑
i=1

Mi∆xi, S−T (f)
def
=

n∑
i=1

mi∆xi.

If it is clear which function f is associated with Darboux sums, then the
short notation S+

T and S−T can be used for them.
Remark.
The main difference between Darboux sums and integral sums is that the

notion of sample ξ is not used in the definition of Darboux sums: Darboux
sums depend only on the function f itself and the partition T of the initial
segment.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=32m51s
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The simplest properties
of Darboux sums 2.4A/38:43 (01:33), 2.4B/00:00 (12:05)

In the formulations of all properties, it is assumed that the function f is
defined and bounded on the segment [a, b].

1. Let T be some partition of the segment [a, b], ξ be an arbitrary sample
associated with this partition. Then the following double inequality holds:

S−T (f) ≤ σT (f, ξ) ≤ S+
T (f). (5)

Proof.
From the definition of the supremum Mi and the infimum mi, it follows

∀ ξi mi ≤ f(ξi) ≤Mi. (6)

Multiply all parts of the double inequality (6) by ∆xi > 0 and take a sum
of all inequalities for i = 1, . . . , n:

n∑
i=1

mi∆xi ≤
n∑
i=1

f(ξi)∆xi ≤
n∑
i=1

Mi∆xi.

Given the definitions of the integral sum and Darboux sums, we ob-
tain (5). �

2. For a fixed partition T of the segment [a, b], the following relations
hold:

S+
T (f) = sup

ξ
σT (f, ξ), S−T (f) = inf

ξ
σT (f, ξ).

Proof.
Let us prove this property for the upper Darboux sum. Given the definition

of supremum, it is necessary to prove two statements:
1) ∀ ξ σT (f, ξ) ≤ S+

T (f),
2) ∀ ε > 0 ∃ ξ′ σT (f, ξ′) > S+

T (f)− ε.
Statement 1 has already been proved (see property 1). Let us prove state-

ment 2. From the definition of the supremum Mi, it follows

∀ ε > 0 ∃ ξ′i ∈ ∆i f(ξ′i) > Mi −
ε

b− a
. (7)

Multiply both sides of inequality (7) by ∆xi > 0 and take a sum of all
inequalities for i = 1, . . . , n:

n∑
i=1

f(ξ′i)∆xi >
n∑
i=1

Mi∆xi −
n∑
i=1

ε

b− a
∆xi.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=38m43s
https://www.youtube.com/watch?v=a4gf4Temgug&t=00m01s
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Given the definitions of the integral sum and the upper Darboux sum, as
well as the fact that

∑n
i=1

ε
b−a∆xi = ε

b−a
∑n

i=1 ∆xi = ε
b−a(b − a) = ε, we

obtain statement 2.
The property for the lower Darboux sum is proved similarly, using the

definition of the infimum. �

Darboux sum property related
to refinement of a partition 2.4B/12:05 (15:11)

Before stating the next property, we introduce the concept of refinement
of a partition.

Definition.
The partition T2 is called the refinement of the partition T1 if any element

of the partition T1 belongs to the partition T2, i. e., T1 ⊂ T2. In other words,
the refinement T2 of the partition T1 contains all points of the partition T1

and possibly some other points of the original segment.
3. If the partition T2 is a refinement of the partition T1, then the following

chain of inequalities holds:

S−T1 ≤ S−T2 ≤ S+
T2
≤ S+

T1
. (8)

Proof.
The middle inequality in (8) immediately follows from property 1. Let us

prove the right-hand inequality: S+
T2
≤ S+

T1
.

It is enough for us to consider the case when the refinement T2 of the
partition T1 differs from T1 by only one additional point. The case when there
are several additional points can be reduced to the case with one point if we
add these points to the partition sequentiallyand apply the proved estimate
to the resulting refinements.

So, we assume that the refinement T2 contains one additional point x′:
T1 = {xi, i = 0, . . . , n} , T2 = T1∪{x′}. For definiteness, we also assume that
x′ ∈ ∆1, i. e., x0 < x′ < x1. We also introduce the following notation:

∆′1 = [x0, x
′], ∆x′1 = x′ − x0, M ′

1 = sup
x∈∆′

1

f(x),

∆′′1 = [x′, x1], ∆x′′1 = x1 − x′, M ′′
1 = sup

x∈∆′′
1

f(x).

We need to prove that

S+
T1
− S+

T2
≥ 0. (9)

https://www.youtube.com/watch?v=a4gf4Temgug&t=12m05s
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The indicated Darboux sums contain the coinciding terms Mi∆xi for
i = 2, . . . , n. After reducing these coinciding terms, the difference S+

T1
− S+

T2
takes the following form:

S+
T1
− S+

T2
= M1∆x1 − (M ′

1∆x
′
1 +M ′′

1 ∆x′′1). (10)
Since supA ≤ supB for A ⊂ B and in our case ∆′1 ⊂ ∆1 and ∆′′1 ⊂ ∆1,

we get
M ′

1 ≤M1, M ′′
1 ≤M1.

Therefore, the right-hand side of equality (10) can be estimated as follows:
M1∆x1 − (M ′

1∆x
′
1 +M ′′

1 ∆x′′1) ≥M1∆x1 − (M1∆x
′
1 +M1∆x

′′
1).

The right-hand side of the last inequality is 0, since ∆x1 = ∆x′1+∆x′′1. We
proved the validity of inequality (9) and thereby the validity of the right-hand
inequality in (8).

The left-hand inequality in (8) is proved similarly, by taking into account
the following property of the infimum: inf A ≥ inf B for A ⊂ B. �

Darboux sums associated
with different partitions 2.4B/27:16 (05:14)

4. If T ′ and T ′′ are some partitions of the segment [a, b], then the estimate
holds:

S−T ′ ≤ S+
T ′′. (11)

Thus, any lower Darboux sum of the function f is less than or equal to
any of its upper Darboux sums.

Proof.
Consider the union of two given partitions: T = T ′ ∪ T ′′. The resulting

partition T is a refinement of both the partition T ′ and the partition T ′′.
Therefore, applying property 3, we obtain the following chain of inequalities:

S−T ′ ≤ S−T ≤ S+
T ≤ S+

T ′′. (12)
In this case, we applied the left-hand inequality from (8) for T ′ and its

refinement T , the middle inequality from (8) for T , and the right-hand in-
equality from (8) for T ′′ and its refinement T .

Consequently, the boundary terms of the obtained chain of inequalities (12)
satisfy inequality (11). �

Darboux integrals 2.4B/32:30 (07:05)

5. There exist values I−(f) = supT S
−
T (f), I+(f) = infT S

+
T (f) and the

following estimate holds for them:

https://www.youtube.com/watch?v=a4gf4Temgug&t=27m16s
https://www.youtube.com/watch?v=a4gf4Temgug&t=32m30s
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I−(f) ≤ I+(f). (13)

Proof.
Consider the previously proved inequality (11), fix the partition T ′′ in it,

and consider the arbitrary partition T of the segment [a, b] as the partition T ′:

S−T (f) ≤ S+
T ′′(f).

This inequality means that the set of all lower Darboux sums over arbitrary
partitions T is bounded from above by S+

T ′′(f). Therefore, the set of all lower
Darboux sums for the function f is bounded from above, which means that
it has the least upper bound I−(f).

Since the value S+
T ′′(f) is the upper bound for the set of all lower Darboux

sums and the value I−(f) is the least upper bound for these sums, we obtain
the following inequality:

I−(f) ≤ S+
T ′′(f).

In the last inequality, we can assume that T ′′ is an arbitrary partition
of the segment [a, b]. Therefore, the set of all upper Darboux sums of the
function f over an arbitrary partition T ′′ is bounded from below by the value
I−(f). So, this set has the greatest lower bound I+(f).

The estimate (13) follows from the fact that the quantity I−(f) is the
lower bound for the set of all upper Darboux sums and the value I+(f) is the
greatest lower bound for these sums.

Definition.
The values I−(f) and I+(f) are called the lower and upper Darboux inte-

grals for the function f on the segment [a, b], respectively. Thus, by virtue of
property 5, any bounded function has the lower and upper Darboux integrals
and inequality (13) holds for them.

Integrability criterion in terms of Darboux sums

Formulation of the integrability criterion 2.5A/00:00 (09:13)

Theorem (integrability criterion in terms of Darboux
sums).

The function f is integrable on the segment [a, b] if and only if two condi-
tions are satisfied:

1) f is bounded on [a, b],
2) ∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, S+

T (f)− S−T (f) < ε.

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=00m01s
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Remark.
Condition 2 of the theorem can be written as follows:

lim
l(T )→0

(
S+
T (f)− S−T (f)

)
= 0.

Proof of necessity 2.5A/09:13 (09:43)

Given: the function f is integrable on [a, b]. Prove: conditions 1 and 2 are
satisfied.

The validity of condition 1 follows from the necessary condition for inte-
grability. It remains for us to prove the validity of condition 2.

Since the function f is integrable, the following limit exists:

lim
l(T )→0,∀ ξ

σT (f, ξ) = I.

We choose some value of ε > 0. Due to the integrability of the function f ,
we obtain

∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε

3
. (14)

Let us show that the choice of the same value δ ensures the fulfillment of
condition 2 of the theorem.

Transform estimate (14) as follows:

I − ε

3
< σT (f, ξ) < I +

ε

3
. (15)

This double estimate is valid for any sample ξ. Thus, we have lower and
upper bounds for the set of integral sums σT (f, ξ) for a fixed partition T and
any sample ξ.

By property 2 of Darboux sums, we have

S+
T (f) = sup

ξ
σT (f, ξ), S−T (f) = inf

ξ
σT (f, ξ).

Since the expressions I − ε
3 and I + ε

3 are, by virtue of (15), the lower
and upper bounds of the integral sums, respectively, and S−T (f) and S+

T (f)
are, by virtue of property 2 of Darboux sums, the greatest lower bound and
the least upper bound of the integral sums, we obtain the following chain of
inequalities:

I − ε

3
≤ S−T (f) ≤ S+

T (f) ≤ I +
ε

3
. (16)

Since the distance between the internal terms of the triple inequality (16)
cannot exceed the distance between its external terms, the following estimate
follows from this triple inequality:

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=09m13s
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S+
T (f)− S−T (f) ≤

(
I +

ε

3

)
−
(
I − ε

3

)
. (17)

Simplify the right-hand side:(
I +

ε

3

)
−
(
I − ε

3

)
=

2ε

3
< ε.

Thus, estimate (17) can be rewritten in the form

S+
T (f)− S−T (f) < ε.

We obtained an estimate from condition 2 of the theorem. The necessity
is proven.

Proof of sufficiency 2.5A/18:56 (14:25)

Given: conditions 1 and 2 are satisfied. Prove: the function f is integrable
on [a, b].

Condition 1 (i. e., the boundedness of the function f) is required only to
guarantee the existence of lower and upper Darboux sums for the function f .

By condition 2, for any ε > 0, there exists a value δ > 0 such that, for all
partitions T with mesh l(T ) < δ, the estimate holds:

S+
T (f)− S−T (f) < ε. (18)

On the other hand, for any partition T , by virtue of property 5 of the
Darboux sums, the following triple estimate holds:

S−T (f) ≤ I−(f) ≤ I+(f) ≤ S+
T (f).

This estimate implies the inequality

I+(f)− I−(f) ≤ S+
T (f)− S−T (f).

Given (18), we obtain

I+(f)− I−(f) < ε.

The left-hand side of the resulting inequality does not depend on ε, there-
fore, this inequality can be true for arbitrary ε > 0 only if I+(f)−I−(f) = 0,
i. e., I+(f) = I−(f).

Thus, we have proved that, under condition 2 of the theorem, the lower
and upper Darboux integrals coincide. We denote their value by I and show
that the value of I is equal to the integral of the function f on the segment
[a, b], i. e., that the following condition is true:

∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε. (19)

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=18m56s
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We choose the value ε > 0 and select the value δ > 0 from it using
condition 2 of the theorem. Then, for any partition T satisfying the condition
l(T ) < δ, estimate (18) holds.

Using property 1 of the Darboux sums, we obtain

∀ ξ S−T (f) ≤ σT (f, ξ) ≤ S+
T (f).

In addition, by virtue of property 5 of the Darboux sums, we have

S−T (f) ≤ I ≤ S+
T (f).

Thus, the values of σT (f, ξ) and I are between the values of S−T (f) and
S+
T (f). Therefore, the following estimate is true:

∀ ξ |σT (f, ξ)− I| ≤ S+
T (f)− S−T (f).

Given that S+
T (f)− S−T (f) < ε, we finally get

∀ ξ |σT (f, ξ)− I| < ε.

We proved that condition (19) is satisfied for the function f ; therefore, the
function f is integrable. �

Corollary of the criterion
and an example of a non-integrable function 2.5A/33:21 (08:48)

Corollary.
If the function f is integrable on the segment [a, b], then its upper and lower

Darboux integrals coincide and, moreover, they are equal to the integral of
the function f over the segment [a, b].

Proof.
If the function is integrable, then condition 2 of the theorem is fulfilled

for it, which implies both the coincidence of the upper and lower Darboux
integrals and their equality to the integral of this function (see the proof of
sufficiency). �

Remark.
It follows from the corollary that if the upper and lower Darboux integrals

are different, then the function is not integrable.
An example of a bounded function that is not integrable.
We define the following function, called the Dirichlet function:

D(x) =

{
1, x ∈ Q,
0, x ∈ R \Q.

Thus, the Dirichlet function is equal to 1 at rational points and is equal
to 0 at irrational points.

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=33m21s
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This function is bounded. However, it is not integrable on any segment
[a, b] of nonzero length. We show this for the segment [0, 1].

Let us accept without proof the following fact: in any arbitrarily small
neighborhood of any rational number, there exists some irrational number and
vice versa, in any arbitrarily small neighborhood of any irrational number,
there exists some rational number. Therefore, any segment of nonzero length
necessarily contains both irrational and rational numbers. This means that,
for any partition T of the segment [0, 1], the following relations hold:

mi = inf
x∈∆i

D(x) = 0, Mi = sup
x∈∆i

D(x) = 1.

Then, for Darboux sums of the Dirichlet function over any partition T of
the segment [0, 1], we have

S+
T (D) =

n∑
i=1

Mi∆xi =
n∑
i=1

1 ·∆xi =
n∑
i=1

∆xi = 1,

S−T (f) =
n∑
i=1

mi∆xi =
n∑
i=1

0 ·∆xi = 0.

Similar relations hold for Darboux integrals:

I+(D) = inf
T
S+
T (D) = inf

T
1 = 1,

I−(D) = sup
T
S−T (D) = sup

T
0 = 0.

We proved that I−(D) 6= I+(D), therefore, the Dirichlet function is not
integrable on the interval [0, 1].
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