Algorithms and Data Structures

Module 1

Lecture 3

Graphs: definitions, representations and basic operations

Adigeev Mikhail Georgievich

mgadigeev@sfedu.ru

adimg@yandex.ru

Graph G=(V,E)

- ✓ V is a set of *vertices* ($v \in V$ vertex, node). |V|=n.
- ✓ *E* is a set of *edges* (e = (v, w): $v, w \in V$ edge, arc). |E|=m

Undirected graph

Directed graph

 $e = (v, w): v, w \in V$

 $\checkmark e$ is *incident* to ν and w; ν (w) is incident to e;

✓ v and w are *adjacent*; they are *neighbours*.

 $v \in V$:

✓ deg(v) – *degree* of vertex v = number of edges incident to v.

 $v \in V$:

- ✓ deg(v) *degree* of vertex v = number of edges incident to v.
- ✓ outdeg(v) out-degree of vertex v = number of edges which start from v.
- ✓ indeg(v) in-degree of vertex v = number of edges which end at v.
- $\checkmark v$ is a *source* iff indeg(v) = 0
- $\checkmark v$ is a *sink* iff outdeg(v) = 0

Edge list $E = \{e_1 = (u_1, v_1), \dots, e_m = (u_m, v_m)\}$

Edge list

$$E = \{e_1 = (u_1, v_1), \dots, e_m = (u_m, v_m)\}$$

Property	Complexity
out-deg(v)	O(m)
in-deg(v)	O(m)
deg(v)	O(m)
has_edge(v,w)	O(m)
is_source(v)	O(m)
is_sink(v)	O(m)

Adjacency matrix $A = \{a_{ij}\}_{i,j=1}^{n} : a_{ij} = \begin{cases} 1, if (i,j) \in E \\ 0, otherwise \end{cases}$

Adjacency matrix $A = \{a_{ij}\}_{i,j=1}^{n} : a_{ij} = \begin{cases} 1, if (i,j) \in E \\ 0, otherwise \end{cases}$

	0	1	2	3	4
0	0	1	0	0	1
1	0	0	0	1	0
2	0	0	0	0	1
3	0	0	1	0	0
4	0	1	0	0	0

- $A = \{a_{ij}\}_{i,j=1}^{n}$ contains $O(n^2)$ entries.
- Space-efficient for <u>dense</u> graphs $(m \sim O(n^2))$.
- Is space-inefficient for <u>sparse</u> graphs $(m \sim O(n))$.

	0	1	2	3	4
0	0	1	0	0	1
1	0	0	0	1	0
2	0	0	0	0	1
3	0	0	1	0	0
4	0	1	0	0	0

Property	Complexity
out-deg(v)	O(n)
in-deg(v)	O(n)
deg(v)	O(n)
has_edge(v,w)	0(1)
is_source(v)	O(n)
is_sink(v)	O(n)

	0	1	2	3	4
0	0	1	0	0	1
1	0	0	0	1	0
2	0	0	0	0	1
3	0	0	1	0	0
4	0	1	0	0	0

Adjacency list

Space complexity: O(n + m)

Adjacency list

Adjacency list

Property	Complexity
out-deg(v)	$O(\max deg) = O(n)$
in-deg(v)	O(n+m) = O(m)
deg(v)	O(m)
has_edge(v,w)	$O(\max deg) = O(n)$
is_source(v)	O(m)
is_sink(v)	0(1)

Space complexity: O(n + m)

Property	Edge list	Adjacency matrix	Adjacency list
out-deg(v)	O(m)	O(n)	$O(\max deg) = O(n)$
in-deg(v)	O(m)	O(n)	O(n+m) = O(m)
deg(v)	O(m)	O(n)	O(m)
has_edge(v,w)	O(m)	0(1)	$O(\max deg) = O(n)$
is_source(v)	O(m)	O(n)	O(m)
is_sink(v)	O(m)	O(n)	0(1)
memory	O(m)	$O(n^2)$	O(n+m)