Algorithms and Data Structures

Module 1

Lecture 3
 Graphs: definitions, representations and basic operations

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru
adimg@yandex.ru

Graphs: definition

Graph G=(V,E)
$\checkmark V$ is a set of vertices ($v \in V$ - vertex, node). $|V|=n$.
$\checkmark E$ is a set of edges $(e=(v, w): v, w \in V-$ edge, arc). $|E|=m$

Undirected graph

Directed graph
(7)

Graphs: definition

$e=(v, w): v, w \in V$
$\checkmark e$ is incident to v and $w ; v(w)$ is incident to e;
$\checkmark v$ and w are adjacent; they are neighbours.

(7)

Graphs: definition

$v \in V:$
$\checkmark \operatorname{deg}(v)-$ degree of vertex $v=$ number of edges incident to v.

(7)

Graphs: definition

$v \in V:$
$\checkmark \operatorname{deg}(v)-$ degree of vertex $v=$ number of edges incident to v.
\checkmark outdeg (v) - out-degree of vertex $v=$ number of edges which start from v.
\checkmark indeg (v)-in-degree of vertex $v=$ number of edges which end at v.
$\checkmark v$ is a source iff indeg $(v)=0$
$\checkmark v$ is a sink iff outdeg $(v)=0$

Graphs: representations

Edge list
$E=\left\{e_{1}=\left(u_{1}, v_{1}\right), \ldots, e_{m}=\left(u_{m}, v_{m}\right)\right\}$

0	1	(0) (2)	(6)	(7)	0
0	4				0
1	3				1
1	4				4
2	4	(1) (3)	(5)		2
5	6				3

Graphs: representations

Edge list

$E=\left\{e_{1}=\left(u_{1}, v_{1}\right), \ldots, e_{m}=\left(u_{m}, v_{m}\right)\right\}$

Property	Complexity
out-deg(v)	$O(m)$
in-deg(v)	$O(m)$
deg(v)	$O(m)$
has_edge($\mathrm{v}, \mathrm{w})$	$O(m)$
is_source (v)	$O(m)$
is_sink(v)	$O(m)$

Graphs: representations

Adjacency matrix
$A=\left\{a_{i j}\right\}_{i, j=1}^{n}: a_{i j}=\left\{\begin{array}{l}1, \text { if }(i, j) \in E \\ 0, \text { otherwise }\end{array}\right.$

0	0	1	2	3	4
1	0	1	0	0	1
1	1	0	0	1	1
2	0	0	0	0	1
3	0	1	0	0	0
1	1	1	0	0	

Graphs: representations

Adjacency matrix
$A=\left\{a_{i j}\right\}_{i, j=1}^{n}: a_{i j}=\left\{\begin{array}{l}1, \text { if }(i, j) \in E \\ 0, \text { otherwise }\end{array}\right.$

	0	0	1	2	3
0	4				
1	0	1	0	0	1
2	0	0	0	1	0
2	0	0	0	0	1
3	0	0	1	0	0
0	1	0	0	0	

Graphs: representations

Adjacency matrix

$A=\left\{a_{i j}\right\}_{i, j=1}^{n}$ contains $O\left(n^{2}\right)$ entries.

- Space-efficient for dense graphs
($m \sim O\left(n^{2}\right)$).
- Is space-inefficient for sparse graphs ($m \sim O(n)$).
0
0
1
2
2

2 | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |

Graphs: representations

Adjacency matrix

Complete Graph

Dense Graph

Sparse Graph

Graphs: representations

Adjacency matrix

(b)

	0	1	2	3	4
0	∞	8	∞	9	4
1	∞	∞	1	∞	∞
2	∞	2	∞	3	∞
3	∞	∞	2	∞	7
4	∞	∞	1	∞	∞

Graphs: representations

Adjacency matrix

Property	Complexity
out-deg(v)	$O(n)$
in-deg(v)	$O(n)$
deg(v)	$O(n)$
has_edge(v,w)	$O(1)$
is_source(v)	$O(n)$
is_sink(v)	$O(n)$

0					
0	0	1	2	3	4
1	0	1	0	0	1
2	0	0	0	1	0
2	0	0	0	0	1
3	0	0	1	0	0
0	1	0	0	0	

Graphs: representations

Adjacency list

Space complexity: $O(n+m)$

Graphs: representations

Adjacency list

Graphs: representations

Adjacency list

Property	Complexity
out-deg (v)	$O(\max \operatorname{deg})=O(n)$
in-deg (v)	$O(n+m)=O(m)$
$\operatorname{deg}(\mathrm{v})$	$O(m)$
has_edge (v, w)	$O(\max \operatorname{deg})=O(n)$
is_source (v)	$O(m)$
is_sink (v)	$O(1)$

Space complexity: $O(n+m)$

Graphs: representations

Property	Edge list	Adjacency matrix	Adjacency list
out-deg(v)	$O(m)$	$O(n)$	$O(\max \operatorname{deg})=O(n)$
in-deg(v)	$O(m)$	$O(n)$	$O(n+m)=O(m)$
deg(v)	$O(m)$	$O(n)$	$O(m)$
has_edge(v,w)	$O(m)$	$O(1)$	$O(\max d e g)=O(n)$
is_source(v)	$O(m)$	$O(n)$	$O(m)$
is_sink(v)	$O(m)$	$O(n)$	$O(1)$
memory	$O(m)$	$O\left(n^{2}\right)$	$O(n+m)$

