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19. Physical sense and geometric sense
of the derivative

Physical sense of the derivative 17B/16:45 (08:23)

For simplicity, we will consider one-dimensional motion, that is, displace-
ment along the OX axis. Let the law of motion be defined by the func-
tion S(t), where t is the time, and the value S(t) determines the position of
the point on the axis OX at the time t. Let us choose some initial moment
of time t0.

The simplest type of motion is uniform motion, that is, motion with a con-
stant velocity V . In this case, the law of motion has the form of a linear
function: S(t) = V (t − t0) + S(t0) and therefore, to find the velocity V it’s
enough to divide the distance traveled over a period of time from t0 to t by the
value of this time period:

V =
S(t)− S(t0)

t− t0
.

The expression on the right-hand side is the ratio of the increment of the
function to the increment of the argument, that is, it is an expression whose
limit (if it exists) is the derivative of the function S(t). However, in this
simplest case, it is not necessary to pass to the limit, since the expression on
the right-hand side, as well as on the left-hand side, is a constant V .

Now assume that the law of motion S(t) is not linear. In this case, we
cannot talk about a constant velocity of the motion, but we can find the
average velocity Vavr(t0, t) over a period of time from t0 to t:

Vavr(t0, t) =
S(t)− S(t0)

t− t0
.

This formula shows the velocity of uniform motion that allows us to move
from the point S(t0) to the point S(t) over a period of time from t0 to t.

If we move the value of t closer to t0 then we will obtain the average
velocity over a decreasing time interval (t0, t), and if there exists a limit as
t→ t0, then it is natural to call such a limit V (t0) the instantaneous velocity
at the time t0:

https://www.youtube.com/watch?v=K6kewoPcZug&t=16m45s
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V (t0) = lim
t→t0

S(t)− S(t0)

t− t0
.

The word “instantaneous” can be omitted and we can simply speak of the
velocity V (t0) at the time t0. Thus, we can determine the velocity at the
time t0 if the law of motion S(t) is a differentiable function at the point t0.
So, the velocity at a given time is equal to the derivative of the function S:

V (t0) = S ′(t0).

Therefore, the physical sense of the derivative is that the derivative of
a certain quantity determines the rate of change of this quantity.

The rate of change of velocity is called the acceleration. To find the accel-
eration a(t) for a given law of motion S(t), we must differentiate the function
V (t) = S ′(t), that is, find the second derivative of the function S(t) at the
given point (the higher-order derivatives will be considered in detail in the
next chapter):

a(t0) = V ′(t0) = (S ′(t0))
′.

Newton’s second law allows us to relate the force F (t) acting on the body
at a given time t and the acceleration a(t) with which the body moves under
the action of this force: F (t) = ma(t), where m is the mass of the body.
Thus, if we know the force acting on the body, then we know its acceleration,
and if we know the acceleration then, by performing the inverse operation
for differentiation, we can find the velocity of motion V (t). Then, applying
the inverse operation for differentiation once again to the velocity V (t), we
can find the motion law S(t) according to which the body moves, that is, we
can completely determine how the body behaves under the action of a given
force. Note that the inverse operation for differentiation is called integration.
Integration, like differentiation, is the subject of study of calculus.

Thus, thanks to differential and integral calculus, it is possible to solve
the problem of describing the motion of a body if the forces acting on it
are known. For this reason, differential and integral calculus plays such an
important role in various branches of physics.

Geometric sense of the derivative 17B/25:08 (08:08)

If the function f(x) is differentiable at the point x0 then the value of the
derivative f ′(x0) is an important characteristic of the graph of the function
at this point.

https://www.youtube.com/watch?v=K6kewoPcZug&t=25m08s
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Fig. 9. Secant and tangent to the graph of a function

Let the function f(x) be differentiable at the point x0, let y0 = f(x0). Let
us choose some other point x1 6= x0, denote y1 = f(x1), and draw a secant
line, i. e., a straight line passing through the points (x0, y0) and (x1, y1) (see
Fig. 9).

The secant equation can be represented as follows:

y − y0 =
y1 − y0
x1 − x0

(x− x0).

Indeed, this is a linear equation with respect to x, therefore it determines
a straight line, and it turns into an identity when the points (x0, y0) and
(x1, y1) are substituted into the equation.

If we will unlimitedly move the point x1 to the point x0 remaining all the
time on the graph graph (i. e., assuming that y1 = f(x1)), then the secant
will change its position. As a result, we get a line called the tangent line to
the graph of the function y = f(x) at the point x0 (Fig. 9).

The tangent equation can be obtained by passing to the limit, as x1 → x0,
on the right-hand side of the secant equation:

y − y0 = lim
x1→x0

y1 − y0
x1 − x0

(x− x0).

This limit exists because, by condition, the function f is differentiable at
the point x0:

lim
x1→x0

y1 − y0
x1 − x0

= lim
x1→x0

f(x1)− f(x0)

x1 − x0
= f ′(x0).

Thus, if the function f is differentiable at the point x0, then its graph at
the point (x0, y0), where y0 = f(x0), has a tangent line whose equation is as
follows:

y − y0 = f ′(x0)(x− x0).
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The derivative f ′(x0) is the slope of the equation of the tangent line to the
graph of the function f at the point x0. Since the slope is equal to the tangent
of the angle of inclination of the straight line, we obtain that, knowing the
derivative f ′(x0), we can find the angle of inclination of the tangent line at x0.
To do this, we simply should find arctan f ′(x0). It is natural to call this value
the angle of inclination of the graph of the function f at the point x0.

In particular, if f ′(x0) = 0, then this means that at this point the angle of
inclination of the graph is also 0, that is, the tangent line to it is horizontal.
If the derivative is equal to infinity then, given that limy→±∞ arctan y = ±π

2 ,
we obtain that in this case the tangent line to the graph is vertical.

Thus, the geometric sense of the derivative is that the derivative at a given
point is equal to the tangent of the angle of inclination of the tangent line to
the graph of the given function at this point.

Note that it is possible to talk about the tangent line to the graph of
a function at a given point only if the function is differentiable at this point
(that is, it has a finite derivative) or if its derivative has an infinite value at
this point (in this case, the tangent line is vertical). If there is no finite or
infinite derivative, then the graph has no tangent line. For example, there is
no tangent line to the graph of the function signx at the point x = 0.
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