Algorithms and Data Structures

Module 1

Lecture 6
Graph traversals: depth-first search, breadth-first search and their applications. Part 3

Adigeev Mikhail Georgievich

mgadigeev@sfedu.ru

DFS \& BFS: applications

- DFS/BFS:
\checkmark Connected components detection (see lecture 4)
- BFS:
\checkmark Calculating distances (see lecture 5)
\checkmark Bipartiteness testing
- DFS:
\checkmark Detecting cycles
\checkmark Topological ordering (topological sort) of a DAG

BFS: Calculating distances

Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
A distance between vertices u and v is the minimum length of the path between u and v. $\operatorname{dist}(\mathrm{A}, \mathrm{E})=2$

BFS: Calculating distances

Problem: for given $G(V, E)$ and a vertex $s \in V$ find distances and the shortest paths from s to every other vertex.

```
DistancesBFS (G)
// Initialization
Create d[],p[]
For each v\inV\{s}:
    d[u] = +\infty;
    p[u]= null;
d[s] = 0;
Enqueue(s)
```


BFS: Calculating distances

// Breadth-First Search
While (Queue is not empty):

$$
\mathrm{v}=\text { Dequeue () }
$$

if v is unvisited:
Mark v as 'visited'
For each u in Adj(v):

$$
\text { if } \begin{aligned}
& \mathrm{d}[\mathrm{u}]>\mathrm{d}[\mathrm{v}]+1: \\
& \mathrm{d}[\mathrm{u}]=\mathrm{d}[\mathrm{v}]+1 \\
& \mathrm{p}[\mathrm{u}]=\mathrm{v} \\
& \text { Enqueue }(\mathrm{u})
\end{aligned}
$$

BFS: Calculating distances

How do we construct a path from s to v ? We start from v and reconstruct the path backward to s : we move from a current vertex u to $x=p[u]$, then to $y=p[x], \ldots$, until we get s.

BFS: Bipartiteness check

Graph $G(V, E)$ is called bipartite iff its vertex set V can be partitioned into two disjoint subsets (parts): $V=B \cup R$ such that for each edge $e \in E$ the endpoints of e belong to different subsets.

BFS: Bipartiteness check

Theorem. Graph $G(V, E)$ is bipartite iff it has no cycles of odd length. Corollary: trees and forests are bipartite graphs.

BFS: Bipartiteness check

Algorithm for bipartiteness check.

Let $G(V, E)$ be a connected graph.

1. $R=B=\varnothing$
2. Select any $s \in V$. $\mathrm{d}[\mathrm{s}]=0$.
3. Calculate $d[v]$ - distances from s to all other vertices.
4. For each $v \in V$:
if $\mathrm{d}[\mathrm{v}]$ is odd: $R=R \cup\{v\}$
else: $B=B \cup\{v\}$
5. Scan thru E and check whether the condition holds.

Time complexity: $O(|V|+|\mathrm{E}|)$

BFS: Bipartiteness check

DFS: Detecting cycles

DAG = directed acyclic graph = directed graph with no directed cycles.

DFS: Detecting cycles

```
DFS (v)
Mark v as 'visited'
Mark v as 'active'
For each u in Adj(v):
    if u is unvisited:
        DFS (u)
    else if u is 'active':
    a cycle found!!!
Mark v as 'inactive'
```


DFS: Topological sort of a DAG

Topological ordering (sort) is vertex numbering $\tau: V \leftrightarrow\{1, \ldots,|V|\}$: there are no edges (u, v) in $G: \tau(u)>\tau(v)$.

Graphs: definition (lecture 03)

$v \in V:$
$\checkmark \operatorname{deg}(v)-$ degree of vertex $v=$ number of edges incident to v.
\checkmark outdeg (v) - out-degree of vertex $v=$ number of edges which start from v.
\checkmark indeg (v)-in-degree of vertex $v=$ number of edges which end at v.
$\checkmark v$ is a source iff indeg $(v)=0$
$\checkmark v$ is a $\sin k$ iff outdeg $(v)=0$

DFS: Topological sort of a DAG

Assign a vertex 'topological number' just before leaving this vertex: initialize CurTopNum with $n=|V|$, then run DFS:

```
DFS (v)
PreVisit(v)
Mark v as 'visited'
For each u in Adj(v):
    if u is unvisited: DFS(u)
PostVisit(v)
```


DFS: Topological sort of a DAG

