
Algorithms and Data Structures

Module 1

Lecture 6
Graph traversals: depth-first search,

breadth-first search and their applications.
Part 3

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

adimg@yandex.ru

DFS & BFS: applications

• DFS/BFS:

✓ Connected components detection (see lecture 4)

• BFS:

✓ Calculating distances (see lecture 5)

✓ Bipartiteness testing

• DFS:

✓ Detecting cycles

✓ Topological ordering (topological sort) of a DAG

2

BFS: Calculating distances

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(A,E) = 2

3

BFS: Calculating distances

4

Problem: for given 𝐺 𝑉, 𝐸 and a vertex 𝑠 ∈ 𝑉 find distances and the
shortest paths from 𝑠 to every other vertex.

DistancesBFS(G)

// Initialization

Create d[],p[]

For each 𝑣 ∈ 𝑉\{𝑠}:

d[u] = +∞;

p[u]= null;

d[s] = 0;

Enqueue(s)

BFS: Calculating distances

5

// Breadth-First Search

While (Queue is not empty):

v = Dequeue()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

if d[u] > d[v]+1:

d[u] = d[v]+1

p[u] = v

Enqueue(u)

BFS: Calculating distances

6

How do we construct a path from 𝑠 to 𝑣?

We start from 𝑣 and reconstruct the path

backward to 𝑠: we move from a current vertex 𝑢

to 𝑥 = 𝑝 𝑢 , then to 𝑦 = 𝑝 𝑥 ,… , until we

get 𝑠.

BFS: Bipartiteness check

7

Graph 𝐺(𝑉, 𝐸) is called bipartite iff its vertex set V can be partitioned
into two disjoint subsets (parts): 𝑉 = 𝐵 ∪ 𝑅 such that for each edge
𝑒 ∈ 𝐸 the endpoints of 𝑒 belong to different subsets.

BFS: Bipartiteness check

8

Theorem. Graph 𝐺(𝑉, 𝐸) is bipartite iff it has no cycles of odd length.

Corollary: trees and forests are bipartite graphs.

BFS: Bipartiteness check

9

Algorithm for bipartiteness check.

Let 𝐺 𝑉, 𝐸 be a connected graph.

1. 𝑅 = 𝐵 = ∅

2. Select any 𝑠 ∈ 𝑉. d[s]=0.

3. Calculate 𝑑[𝑣] - distances from s to all other vertices.

4. For each 𝑣 ∈ 𝑉:
if d[v] is odd: 𝑅 = 𝑅 ∪ {𝑣}

else: 𝐵 = 𝐵 ∪ {𝑣}

5. Scan thru 𝐸 and check whether the condition holds.

Time complexity: 𝑂(𝑉 + E)

BFS: Bipartiteness check

10

DFS: Detecting cycles

11

DAG = directed acyclic graph = directed graph with no directed
cycles.

DFS: Detecting cycles

12

DFS(v)

Mark v as ‘visited’

Mark v as ‘active’

For each u in Adj(v):

if u is unvisited:

DFS(u)

else if u is ‘active’:

a cycle found!!!

Mark v as ‘inactive’

DFS: Topological sort of a DAG

Topological ordering (sort) is vertex numbering 𝜏: 𝑉 ↔ 1,… , 𝑉 :
there are no edges (u,v) in G: 𝜏 𝑢 > 𝜏 𝑣 .

13

Graphs: definition (lecture 03)

𝑣 ∈ 𝑉 :

✓ deg(𝑣) – degree of vertex 𝑣 = number of edges incident to 𝑣 .

✓ outdeg 𝑣 – out-degree of vertex 𝑣 = number of edges which start from 𝑣 .

✓ indeg 𝑣 – in-degree of vertex 𝑣 = number of edges which end at 𝑣 .

✓ 𝑣 is a source iff indeg 𝑣 = 0

✓ 𝑣 is a sink iff outdeg 𝑣 = 0

14

DFS: Topological sort of a DAG

15

Assign a vertex ‘topological number’ just before leaving this
vertex: initialize CurTopNum with 𝑛 = |𝑉|, then run DFS:

DFS(v)

PreVisit(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited: DFS(u)

PostVisit(v)

PostVisit(v)

TopNum[v] = CurTopNum

CurTopNum--

DFS: Topological sort of a DAG

16

