
Algorithms and Data Structures

Module 2

Lecture 7
Greedy algorithms.

Minimum Spanning Tree Problem.
Kruskal’s algorithm.

Greedy strategy

2

Problem types

•Decision problems: answer ‘true’ or ‘false’

•Search problems: answer is an object which
satisfies given conditions (a feasible solution)

•Optimization problems: answer is a feasible
solution which is optimal with respect to a
certain cost (weight) function.

3

Greedy algorithms

Key characteristics of a greedy algorithm:

•Can solve an optimization problem.

•Builds solution iteratively, adding one element after
another.

•At each step, adds the element which is the best at
the current situation.

•Does not revise the decisions (one-pass algorithm).

4

Greedy algorithms

•One can construct many different greedy algorithms
for a problem.

•Greedy solution may be bad (not optimal).

•Greedy algorithms are usually efficient.

5

MST: definition

6

MST stands for ‘Minimum Spanning Tree’.

•A tree is a graph which is connected and has no
(undirected) cycles.

MST: definition

7

MST stands for ‘Minimum Spanning Tree’.

• Spanning tree is a subgraph which is a
tree and contains (spans) all vertices of
the given graph.

MST: definition

8

MST stands for ‘Minimum Spanning Tree’.

•Minimum Spanning Tree is a spanning tree of a graph
which has the minimum weight among all spanning
trees of the graph.

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

Weight of a spanning tree: total weight of edges in the
tree.

MST: definition

9

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅 (weights, costs)

Weight of a spanning tree: total weight of edges in the
tree.

Weight = 3+2+2+8+8+7+4+1+3

= 38

MST: algorithms

10

How can we search for a MST for the given graph?

•Brute force.

Cayley’s formula: a complete graph with 𝑛 vertices
contains 𝑛𝑛−1 spanning trees.

•A greedy strategy: start with an empty subgraph; add
the lightest edge such that it does not create a cycle
on the subgraph.

MST: algorithms

11

A greedy strategy: start with an empty subgraph; add
the lightest edge such that it does not create a cycle on
the subgraph (the lightest safe edge).

•Kruskal’s algorithm: build a spanning forest, adding
edges until there is one component (tree).

•Prim’s algorithm: build the tree, adding edges until it
spans the graph.

MST: algorithms

12

Prim’s algorithm

Kruskal’s algorithm

http://jeffe.cs.illinois.edu/teaching/algorithms/

Kruskal’s algorithm

13

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).

Kruskal’s algorithm

14

Given a connected graph 𝐺 𝑉, 𝐸 , 𝑉 = 𝑛, |𝐸| = 𝑚.

1. 𝑇 = ∅

2. Sort the set of edges by increasing their weights.

3. Scan the sequence of edges. For each edge:
• If the current edge is safe: add this edge to T.
• Otherwise: just skip this edge (=do nothing with it).

𝑂(𝑛 log 𝑛)

m iterations
???

𝑂(𝑛)

Kruskal’s algorithm: safety check

15

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe
(=adding 𝑒 to T does not create a cycle)?

Red edges belong to T.

The blue and yellow edges are safe.

The green edge is unsafe.

Kruskal’s algorithm: safety check

16

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe?

Naïve approach: add the new edge and

check graph 𝐺 ∪ {𝑒} for presence of

cycles. Algorithm: a modification of DFS.

Complexity: 𝑂 𝑚 = 𝑂(𝑛2) for each check

and 𝑂 𝑚2 = 𝑂 𝑚4 for the total time.

Kruskal’s algorithm: safety check

17

Given the graph 𝐺 𝑉, 𝐸 , spanning forest T and the current
edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸, how can we check whether 𝑒 is safe
(=adding 𝑒 to T does not create a cycle)?

Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints

𝑢 and 𝑣 belong to different components

of T; otherwise 𝑒 is unsafe.

Kruskal’s algorithm: safety check

18

Theorem (properties of trees).
A graph 𝐺(𝑉, 𝐸) is a tree iff any of the following equivalent conditions
hold:

1) G is connected and acyclic (contains no cycles).

2) G is acyclic, and a simple cycle is formed if any edge is added to G.

3) G is connected, but would become disconnected if any single
edge is removed from G.

4) Any two vertices in G can be connected by a unique simple path.

5) G is connected and has n − 1 edges (𝑛 = |𝑉|).

6) G has no simple cycles and has n − 1 edges.

Kruskal’s algorithm: safety check

19

Rule: 𝑒 = 𝑢, 𝑣 is safe iff its endpoints 𝑢 and 𝑣 belong to different
components of T; otherwise 𝑒 is unsafe.

We need to keep a component ID for each vertex, and we also need to
update this information after adding a new edge to the forest.

We need a Union-Find (Merge-Find) data structure that keeps a
collection of disjoint subsets (components) of a set and implements
operations:
• MakeSet(v): creates a set {𝑣}.
• Find(v): returns the unique ID of the subset containing 𝑣.
• Union(u,v): unions (merges) subsets containing 𝑢 and 𝑣 to a single subset.

Kruskal’s algorithm: safety check

20

Simple implementation of Union-Find

Array Component[1..n], i-th item contains the ID of the
component currently containing the i-th vertex. We will use an index of
a certain vertex as the component’s ID.

• MakeSet(i): Component[i]=i.

• Find(i): return Component[i].

• Union(i,j): scan the array and for each k:
if Component[k]==Component[i] then Component[k]=Component[j]

Kruskal’s algorithm: safety check

21

Kruskal’s algorithm: safety check

22

• MakeSet(i): Component[i]=i.

• Find(i): return Component[i].

• Union(i,j): scan the array and for each k:
if Component[k]==Component[i] then Component[k]=Component[j]

For building MST we call Union 𝑂(𝑚) times => the total time for safety
check is 𝑂(𝑚𝑛).

The total time complexity of Kruskal’s algorithm: 𝑂 𝑚𝑛 .

𝑂(1)

𝑂(1)

𝑂(𝑛)

Kruskal’s algorithm: safety check

23

An improved version of the array-based implementation.

1) Explicitly maintain a list of vertices in each component. => create a
list of dynamic lists of vertex indices. When two components are
being merged, merge the corresponding lists as well (𝑂 1 time).

2) Explicitly count the sizes of components and when two components
are being merged, elements of the smaller component take the ID
of the larger component.

Kruskal’s algorithm: safety check

24

Kruskal’s algorithm: safety check

25

Theorem. For the improved version of the array-based implementation.

1) MakeSet takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

2) Find takes 𝑂(1) time / operation; total time is 𝑂 𝑚 .

3) Any sequence of k Union operations takes at most 𝑂 𝑘 log 𝑘
time; total time is 𝑂 𝑛 log 𝑛 .

NB: For (3) we consider amortized time complexity instead of worst-
case complexity of a single operation.

The total time complexity of Kruskal’s algorithm: 𝑂 𝑚 log𝑚 .

Kruskal’s algorithm: safety check

26

Reversed Trees – a better data structure for Union-Find

Keep a component as a dynamic tree structure:

• Each node of the tree represents a single element of the component
(= a vertex of graph G).

• Each node of the tree, except the root, has a pointer to its parent
node.

Kruskal’s algorithm: safety check

27

Kruskal’s algorithm: safety check

28

Union(2,5)

Kruskal’s algorithm: safety check

29

Theorem. For the reversed trees implementation:

1) MakeSet takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

2) Find takes 𝑂 log 𝑛 time / operation; total time is 𝑂 𝑚 log 𝑛 .

3) Union takes 𝑂(1) time / operation; total time is 𝑂 𝑛 .

The total time complexity of Kruskal’s algorithm: 𝑂 𝑚 log𝑚 .

