Algorithms and Data Structures

Module 2

Lecture 11
'Divide-and-Conquer' strategy. MergeSort.

Greedy algorithms (reminder)

Key characteristics of a greedy algorithm:

- Can solve an optimization problem.
- Builds solution iteratively, adding one element after another.
- At each step, adds the element which is the best at the current situation.
- Does not revise the decisions (one-pass algorithm).

Divide-and-Conquer strategy

A 'Divide-and-Conquer' strategy:

1. Divide the given instance of the problem into several independent smaller instances of the same problem. Division does not necessarily means dividing the dataset into disjoint datasets; it can mean a more general sort of reduction.
2. Solve all smaller instances. Usually we recursively use the same algorithm for solving smaller instances.
3. Combine the solutions of the smaller instances into the solution of the initial problem instance.

Divide-and-Conquer strategy

A 'Divide-and-Conquer' algorithm is usually implemented as a recursive function.
The run of a recursive algorithm can be represented as a recursion tree.

MergeSort

Task: given an array $A[0 . . n-1]$, sort it in ascending order. MergeSort:

1. [Divide] Divide the array into two subarrays each of size approximately $n / 2$.
2. [Solve] Recursively sort both subarrays, using MergeSort.
3. [Combine] Merge the sorted subarrays into the resulting sorted array.

MergeSort: steps' implementation

Divide:

Just divide the array $A[0 . . n-1]$ into two subarrays.
This can be made in an 'in-place' manner if we let the subarrays to be the segments $A\left[0 . \cdot \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2} . . n-1\right]$.

Time complexity: $O(1)$.

MergeSort: steps' implementation

Solve:

Recursive call the MergeSort procedure.
!! For any recursive procedure we must provide a non-recursive branch. For MergeSort, we process short arrays nonrecursively. Options:

- For cases $n=0$ and $n=1$ no sorting needed.
- For small arrays (say, $n \leq 100$) running non-recursive sorting procedure (e.g. bubble sort) is more efficient.

Time complexity: depends on complexity of the 'Combine' step.

MergeSort: steps' implementation

Combine:

Given two sorted subarrays, how can we get one single sorted array? We compare the first items of subarrays.

MergeSort: steps' implementation

Combine:

We put the least item to the target array and move the pointer in it's subarray to the next position.

MergeSort: steps' implementation

Combine:

Then we repeat this procedure...

MergeSort: steps' implementation

Combine:

... until one of the subarrays becomes empty.

MergeSort: steps' implementation

Combine:

As a result we get the sorted array!

MergeSort: time complexity

Let's evaluate the total time complexity of the MergeSort procedure.

Divide: takes O (1) time.
Solve: ???
Combine: takes $O(n)$ comparisons and assignments.

Let $T(n)$ be the time complexity of merge sorting for an array of size n.

MergeSort: time complexity

Let $T(n)$ be the time complexity of merge sorting for an array of size n.

$$
T(n)= \begin{cases}c, & \text { for } n=1 \\ 2 T\left(\frac{n}{2}\right)+d n, & \text { for } n>1\end{cases}
$$

After solving this recurrence, we get $T(n)=O\left(n \cdot \log _{2} n\right)$.

Divide-and-Conquer: Master theorem

Consider a recursive algorithm of this form:

```
procedure p(input x of size n):
    if n < some constant k:
        Solve x directly without recursion
    else:
        Create a subproblems of x, each having size n/b
        Call procedure p recursively on each subproblem
        Combine the results from the subproblems
        f(n)
```

https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)

Divide-and-Conquer: Master Theorem

Time complexity of this procedure is

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

The Master Theorem: there are 3 cases:

1) If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and $f(n)$ satisfies the regularity condition, then $T(n)=\Theta(f(n))$.
2) If $f(n)=\Omega\left(n^{\log _{b} a}(\log n)^{k}\right)$ for $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a}(\log n)^{k+1}\right)$.
3) If $f(n)=\Omega\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

The regularity condition: $a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n.

Divide-and-Conquer: Master Theorem

There is a simplified version of the Master Theorem for the case $f(n)=O(n)$.

The Master Theorem (simplified version): there are 3 cases:

1) If $a<b$, then $T(n)=\Theta(n)$.
2) If $a=b$, then $T(n)=\Theta(n \log n)$.
3) If $a>b$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Divide-and-Conquer: Master Theorem

Let's consider the simplified case. For simplicity let $n=b^{k}$.

$$
T(n)= \begin{cases}c, & \text { for } n=1 \\ a T\left(\frac{n}{b}\right)+d n, & \text { for } n>1\end{cases}
$$

Hence, $T(n)=a T\left(\frac{n}{b}\right)+d n=a\left[a T\left(\frac{n}{b^{2}}\right)+d \cdot \frac{\mathrm{n}}{b}\right]+d n=a^{2} \cdot T\left(\frac{n}{b^{2}}\right)+d n$.

$$
\left(\frac{a}{b}+1\right)=\cdots=a^{k} \cdot T\left(\frac{n}{b^{k}}\right)+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}=a^{k} c+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}
$$

Divide-and-Conquer: Master Theorem

$$
T(n)=\cdots=a^{k} c+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i} .
$$

Case 1: $a<b$

In this case $\sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i} \rightarrow$ const, hence $T(n)=\Theta\left(a^{k}\right)+\Theta(n)=$ $\Theta\left(b^{k}\right)+\Theta(n)=\Theta(n)$.

Divide-and-Conquer: Master Theorem

$$
T(n)=\cdots=a^{k} c+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i} .
$$

Case 2: $a=b$
In this case $\frac{a}{b}=1$ and $\sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}=k$, hence $T(n)=\Theta\left(a^{k}\right)+$ $\Theta(n \cdot k)=\Theta(n)+\Theta(n \cdot \log n)=\Theta(n \log n)$.

Divide-and-Conquer: Master Theorem

$T(n)=\cdots=a^{k} c+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}$.
Case 3: $a>b$
Treat $\sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}$ as the partial sum of the geometric sequence: $\sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}=\frac{\left(\frac{a}{b}\right)^{k}-1}{\frac{a}{b}-1}=$.
$\frac{a^{k}-b^{k}}{a-b} \frac{1}{b^{k}}=\Theta\left(\frac{a^{k}}{b^{k}}\right)$. Recall that $b^{k}=n$, hence $T(n)=a^{k} c+d n \cdot \sum_{i=0}^{k-1}\left(\frac{a}{b}\right)^{i}=a^{k} c+d n$.
$\Theta\left(\frac{a^{k}}{n}\right)=a^{k} c+\Theta\left(a^{k}\right)=\Theta\left(a^{k}\right)=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)$.

Divide-and-Conquer: Master Theorem

Algorithm	Recurrence relationship	Run time
Binary search	$T(n)=T\left(\frac{n}{2}\right)+O(1)$	$O(\log n)$
Merge sort	$T(n)=2 T\left(\frac{n}{2}\right)+O(n)$	$O(n \log n)$

