Algorithms and Data Structures

Module 2

Lecture 12 'Divide-and-Conquer' strategy. Multiplication.

Multiplication problem

Given two integer numbers x and y, calculate $z = x \cdot y$. Numbers can be represented in either decimal or binary form.

Multiplication: standard algorithm

	23958233					
×	5830					
		_				
	00000000	(=	23,958,233	×	0)
	71874699	(=	23,958,233	×	30)
	191665864	(=	23,958,233	×	800)
+	119791165	(=	23,958,233	×	5,000)

139676498390 (= 139,676,498,390

Time complexity: $(O(n) multiplications + O(n) additions) \cdot n = O(n^2)$ for multiplying *n*-digit numbers.

Lets apply 'Divide-and-Conquer' approach to the problem of multiplication.

x =ab
$$23958233$$
 $10^{n/2}a + b$ y =cd 00005830 $10^{n/2}c + d$

Thus,
$$z = x \cdot y = \left(10^{\frac{n}{2}}a + b\right) \cdot \left(10^{\frac{n}{2}}c + d\right) = 10^{n}ac + 10^{\frac{n}{2}}(ad + bc) + bd.$$

We have 4 multiplications and 3 additions.

 $z = x \cdot y = \left(10^{\frac{n}{2}}a + b\right) \cdot \left(10^{\frac{n}{2}}c + d\right) = 10^{n}ac + 10^{\frac{n}{2}}(ad + bc) + bd.$ We have 4 multiplications and 3 additions. We can use a recursive function to compute the product.

Function RecursiveProduct (x, y, n):

- 1. Base case: if n < 2 then return $x \cdot y$.
- 2. Divide the factors into parts: a, b, c, d.
- 3. Recursively calculate:

p = RecursiveProduct(a, c, n/2)

q = RecursiveProduct (a, d, n/2)

r = RecursiveProduct(b, c, n/2)

s = RecursiveProduct(b, d, n/2)

4. Return $10^n p + 10^{\frac{n}{2}}(q+r) + s$.

$$z = x \cdot y = \left(10^{\frac{n}{2}}a + b\right) \cdot \left(10^{\frac{n}{2}}c + d\right) = 10^{n}ac + 10^{\frac{n}{2}}(ad + bc) + bd.$$

Let $T(n)$ denote the time for multiplying two *n*-digit numbers.
We have 4 multiplications and 3 additions in each recursive call.
Each multiplication takes $T\left(\frac{n}{2}\right)$ time, each addition takes $O(n)$ time.
Thus, $T(n) = 4 \cdot T\left(\frac{n}{2}\right) + O(n).$

Divide-and-Conquer: Master Theorem (simplified version)

The **Master Theorem (simplified version)**: if T(n) satisfies the following recurrence

$$T(n) = \begin{cases} c, & for \quad n = 1\\ a \cdot T\left(\frac{n}{b}\right) + d \cdot n, & for \quad n > 1 \end{cases}$$

Then there are 3 cases:

- 1) If a < b, then $T(n) = \Theta(n)$.
- 2) If a = b, then $T(n) = \Theta(n \log n)$.

3) If
$$a > b$$
, then $T(n) = \Theta(n^{\log_b a})$.

In
$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + O(n)$$
 we have: $a = 4, b = 2$.
Thus: $T(n) = \Theta\left(n^{\log_b a}\right) = \Theta\left(n^{\log_2 4}\right) = \Theta(n^2)$.

This version of Divide-and-Conquer algorithm does not reduce the overall time complexity. ⊗

But the Master Theorem gives us the cue: to reduce time complexity, we need to reduce the number of *multiplications*, even at the expense of increasing the number of *additions*.

Multiplication: Karatsuba's algorithm

Standard multiplication scheme:

 $z = x \cdot y = \left(10^{\frac{n}{2}}a + b\right) \cdot \left(10^{\frac{n}{2}}c + d\right) = 10^{n}ac + 10^{\frac{n}{2}}(ad + bc) + bd.$ We have 4 multiplications and 3 additions.

Karatsuba's multiplication scheme: $z = x \cdot y = 10^{n}ac + 10^{\frac{n}{2}} ((a \pm b)(a \pm d) - ac - bd) + bd = 10^{\frac{n}{2}} ((a + b)(c + d) - ac - bd) + bd.$

This scheme has 3 multiplications and 6 additions/subtractions.

Multiplication: Karatsuba's algorithm

The time complexity of Karatsuba's algorithm:

$$T(n) = 3 \cdot T\left(\frac{n}{2}\right) + O(n).$$

Thus: $a = 3, b = 2 \Rightarrow T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3}) = \Theta(n^{1.58496}).$

After the problem of multiplication, let us consider the exponentiation problem.

<u>Problem</u>: given integers x and n, calculate $y = x^n$.

The naïve algorithm:

```
y = x;<br/>for i=2 to n:<br/>y = y \cdot x;<br/>return y.
```

Time complexity: O(n) multiplications.

Time complexity of the naïve algorithm: O(n) multiplications.

For numeric exponentiation, the complexity of one multiplication operation grows with the size of y. But there are many practical problems for which the complexity of a multiplication operation depends on the size of x only: matrix multiplication, multiplication in modular arithmetic, etc.

Can we calculate powers with less than O(n) multiplications?

Let's consider binary representation of *n*:

$$n = \sum_{i=0}^{L-1} n_i \cdot 2^i$$
 where $L = \lceil \log_2 n \rceil, n_i \in \{0,1\}.$

Thus,

$$x^{n} = x^{\sum_{i=0}^{L-1} n_{i} \cdot 2^{i}} = \prod_{i=0}^{L-1} x^{n_{i} \cdot 2^{i}} = \prod_{n_{i}=1}^{L-1} x^{2^{i}}$$

This expression contains only $L = \log_2 n$ operations of *squaring*.

Let's consider binary representation of *n*:

$$n = \sum_{i=0}^{L-1} n_i \cdot 2^i,$$
 where $L = \lceil \log_2 n \rceil, n \in \{0,1\}.$

Thus,

$$x^{n} = x^{\sum_{i=0}^{L-1} n_{i} \cdot 2^{i}} = \prod_{i=0}^{L-1} x^{n_{i} \cdot 2^{i}} = \prod_{n_{i}=1}^{L-1} x^{2^{i}}$$

This expression contains only $L = \log_2 n$ operations of *squaring*.

$$x^n = \prod_{n_i=1} x^{2^i}$$

The 'exponentiation by squaring' algorithm:

$$y = 1;$$

$$s = x;$$

for i=0 to L-1:
if $n_i = 1$ then $y = y \cdot s;$

$$s = s \cdot s;$$

return y.

Time complexity: $O(\log n)$ multiplications.

We can rewrite this algorithm in a recursive form:

```
FastExponentiationRecursive(x,n)
if n=1 than return x;
else
    s = FastExponentiationRecursive(x,[n/2]);
    if n is even than return s \cdot s;
    else return s \cdot s \cdot x.
```

Time complexity: $O(\log n)$ multiplications.

Matrix multiplication

Let us consider one more multiplication problem. **Problem**: given two $n \times n$ matrices X and Y, calculate their dotproduct $Z = X \cdot Y$.

Direct calculation

$$z_{ij} = \sum_{k=1}^{n} x_{ik} \cdot y_{kj}$$

needs $O(n^3)$ time (n^2 entries, each entry is calculated in O(n) time).

Matrix multiplication

Let us apply the 'Divide-and-Conquer' approach. We represent both tables in block form:

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, Y = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$$

where A, ..., H are $\frac{n}{2} \times \frac{n}{2}$ matrices.

The direct formula leads to the form

$$\mathbf{X} \cdot \mathbf{Y} = \begin{pmatrix} \mathbf{A} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{G} & \mathbf{A} \cdot \mathbf{F} + \mathbf{B} \cdot \mathbf{H} \\ \mathbf{C} \cdot \mathbf{E} + \mathbf{D} \cdot \mathbf{G} & \mathbf{C} \cdot \mathbf{F} + \mathbf{D} \cdot \mathbf{H} \end{pmatrix}$$

which also has $O(n^3)$ time complexity, since $T(n) = 8 \cdot T\left(\frac{n}{2}\right) + O(n)$.

Matrix multiplication: Strassen algorithm

Strassen algorithm calculates block matrix multiplication using 7 (instead of 8) submatrix multiplications:

 $P_1 = A \cdot (F - H)$ $P_2 = (A + B) \cdot H$ $P_3 = (C + D) \cdot E$ $P_4 = D \cdot (G - E)$ $P_5 = (A + D) \cdot (E + H)$ $P_6 = (B - D) \cdot (G + H)$ $P_7 = (A - C) \cdot (E + F).$

$$\mathbf{X} \cdot \mathbf{Y} = \begin{pmatrix} \mathbf{A} \cdot \mathbf{E} + \mathbf{B} \cdot \mathbf{G} & \mathbf{A} \cdot \mathbf{F} + \mathbf{B} \cdot \mathbf{H} \\ \hline \mathbf{C} \cdot \mathbf{E} + \mathbf{D} \cdot \mathbf{G} & \mathbf{C} \cdot \mathbf{F} + \mathbf{D} \cdot \mathbf{H} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{P}_5 + \mathbf{P}_4 - \mathbf{P}_2 + \mathbf{P}_6 & \mathbf{P}_1 + \mathbf{P}_2 \\ \hline \mathbf{P}_3 + \mathbf{P}_4 & \mathbf{P}_1 + \mathbf{P}_5 - \mathbf{P}_3 - \mathbf{P}_7 \end{pmatrix}$$

Matrix multiplication: Strassen algorithm

The complexity of Strassen algorithm can be expressed as $T(n) = 7 \cdot T\left(\frac{n}{2}\right) + O(n).$

Thus, $T(n) = O(n^{\log_2 7}) = O(n^{2.8074}).$