
Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 17
Optimal binary search tree.



Binary search trees

Binary tree is a graph for which the following conditions hold:

a) It is a tree (=connected acyclic graph).

b) One vertex is marked as the root of the tree.

c) Each vertex has 0-2 children. Vertices with no children are 
called leaves.

d) For each non-leaf vertex, its children are marked as the left
child and the right child. Even if there is only one child, it is 
either the left or the right one.

Height of a binary tree is the maximum length of a path from a 
leaf to the root.
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Binary search trees

Binary search tree (BST) is a binary tree for which the following 
conditions hold:

a) Each vertex of BST keeps an item with attached numeric key.

b) BST property holds for each vertex with key K:

• All vertices in the left subtree keep keys which are less than K.

• All vertices in the right subtree keep keys which are greater than 
or equal to K.
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Binary search trees

4



Binary search trees

Summary of time complexity for BST: GetMin, DelMin, Add have 
time complexity 𝑂(ℎ), where ℎ is the height of the BST.

Height is 𝑂 log 𝑛 on average but 𝑂 𝑛 in the worst case 
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Balanced binary search trees

Conclusion: since the complexity of priority queue implementations 
using trees is 𝑂(ℎ), we need balanced trees implementation to 
achieve 𝑂 log 𝑛 worst case complexity for priority queue operations.

A tree is called balanced iff its height is 𝑂 log 𝑛 .

In order to build a balanced tree, we need to

1) Keep additional information (subtrees’ heights) for the vertices of 
the tree.

2) Rebuild (rebalance) the tree when it becomes unbalanced after 
some operations.
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Balanced binary search trees

Balanced trees types:

• AVL trees

• Red-black trees

• 2-3 trees

• …
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Optimal binary search trees
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A balanced binary search tree is time-optimal for all keys 
stored in the tree. 

There are applications, however, for which different keys 
have different probabilities / frequencies to be searched.

Examples:

• phonebooks, catalogs;

• dictionaries.



Optimal binary search trees
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Let us consider a problem of building an optimal catalog. 

1) The catalog must contain a set of objects, whose keys are 
known in advance: 𝐾 = {𝑘1, … , 𝑘𝑛}.

2) The catalog is built before using and is not modified after 
creation (or modifications are rare compared to search 
operations).

3) The frequencies (probabilities) of searching are known for 
all keys: 𝑝𝑖 is the probability of searching 𝑘𝑖. 



Optimal binary search trees

10

We want to build a catalog for which the searching time is the 
least with respect to the given frequencies.

One more issue should be considered: there may be searching 
for keys absent in 𝐾. We suppose that 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑛 and 
we know the probabilities 𝑞𝑖 (𝑖 = 1, … , 𝑛 − 1) of searching 
values between 𝑘𝑖 and 𝑘𝑖+1; 𝑞0 is the probability of searching 
for values less than 𝑘1 and 𝑞𝑛 is the probability of searching 
for values greater than 𝑘𝑛.



Optimal binary search trees
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Example (from [Cormen at al. ‘Introduction to algorithms’]): for the given frequencies, tree (a) has 
expected search cost 2.80 and tree (b) has expected search cost 2.75 and is the optimal BST. 

𝑑𝑖 represent ‘dummy keys’.



Optimal binary search trees

12

With these denotations, we have the following condition:



𝑖=1

𝑛

𝑝𝑖 +

𝑖=0

𝑛

𝑞𝑖 = 1

We want to build a tree that minimizes the expected search 
cost, that is the expected, with respect to the given 
frequencies, time complexity of a search operation.



Optimal binary search trees
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Let us estimate the time 
complexity of a key 𝑘.

• If 𝑘 = 𝑘𝑖 ∈ 𝐾, we need 
(𝑑𝑒𝑝𝑡ℎ 𝑘𝑖 + 1) 
comparisons.

• If 𝑘 = 𝑑𝑖 ∉ 𝐾, we need 
𝑑𝑒𝑝𝑡ℎ 𝑑𝑖 comparisons.



Optimal binary search trees
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Thus, the expected number of comparisons is

𝐸 𝐶𝑜𝑠𝑡 =

𝑖=1

𝑛

(𝑑𝑒𝑝𝑡ℎ 𝑘𝑖 + 1)𝑝𝑖 +

𝑖=0

𝑛

𝑑𝑒𝑝𝑡ℎ 𝑑𝑖 𝑞𝑖

We want to build a tree T that minimizes 𝐸 𝐶𝑜𝑠𝑡 .



Optimal binary search trees
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Let us analyze the structure of an optimal BST T*. 

Let 𝑇𝑖,𝑗 denote the optimal BST for keys {𝑘𝑖 , … , 𝑘𝑗}. This means 
that 𝑇∗ = 𝑇1,𝑛. Remember that we suppose that keys are 
numbered in ascending order: 𝑘1 < 𝑘2 < ⋯ < 𝑘𝑛.

We can formulate the principle of optimality: if key 𝑘𝑟 is at the 
root of 𝑇1,𝑛, then the left subtree is 𝑇1,𝑟−1 (an optimal BST for 
{𝑘1, … , 𝑘𝑟−1}) and the right subtree is 𝑇𝑟+1,𝑛 (an optimal BST 
for {𝑘𝑟+1, … , 𝑘𝑛})



Optimal binary search trees
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𝑘𝑟

𝑇1,𝑟−1 𝑇𝑟+1,𝑛

Note that for any 
vertex except the root
of depth of the vertex 
in the tree is its depth 
on the subtree +1.



Optimal binary search trees
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Let us denote 𝐸 𝐶𝑜𝑠𝑡 for a tree 𝑇𝑖,𝑗 as 𝑐𝑖,𝑗.

Also, we denote 𝑤𝑖,𝑗 = σ𝑙=𝑖
𝑗

𝑝𝑙 + σ𝑙=𝑖−1
𝑗

𝑞𝑙 and call it a ‘weight’ of 
the tree. Hence, 𝑤𝑖,𝑟−1 + 𝑝𝑟 +𝑤𝑟+1,𝑗 = 𝑤𝑖,𝑗.

We have the following, for any 𝑖 ≤ 𝑟 ≤ 𝑗:

𝑐𝑖,𝑗 =

𝑙=𝑖

𝑗

(𝑑𝑒𝑝𝑡ℎ 𝑘𝑙 + 1)𝑝𝑙 +

𝑙=𝑖

𝑗

𝑑𝑒𝑝𝑡ℎ 𝑑𝑙 𝑞𝑙

= 𝑐𝑖,𝑟−1 +𝑤𝑖,𝑟−1 + 𝑝𝑟 + 𝑐𝑟+1,𝑗 +𝑤𝑟+1,𝑗 = 𝑐𝑖,𝑟−1 + 𝑐𝑟+1,𝑗 +𝑤𝑖,𝑗



Optimal binary search trees
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Thus, we have the recurrence:
𝑐𝑖,𝑗 = min

𝑖≤𝑟≤𝑗
{𝑐𝑖,𝑟−1 + 𝑐𝑟+1,𝑗 + 𝑤𝑖,𝑗}

The base case is  𝑗 = 𝑖 − 1. In this case 𝑇𝑖,𝑗 contains one item 

(𝑑𝑖−1) only, hence 𝑐𝑖,𝑖−1 = 𝑞𝑖−1.

𝑐𝑖,𝑗 = ൝
𝑞𝑖−1, 𝑖𝑓 𝑗 = 𝑖 − 1
min
𝑖≤𝑟≤𝑗

{𝑐𝑖,𝑟−1 + 𝑐𝑟+1,𝑗 + 𝑤𝑖,𝑗} , 𝑖𝑓 𝑖 ≤ 𝑗



Optimal binary search trees
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We can implement this recurrence as a dynamic programming 
procedure.
// Create and fill in the helper matrix of weights.

// Actually, we need the right upper triangle 

// of this matrix: 𝑖 ≤ 𝑗.

w[1..n, 0..n]

// Create the cost matrix

c[1..n, 0..n]



Optimal binary search trees

20

Then, we need to fill in the matrix 
c[]. To calculate c[i,j], we need 
that values c[i,t]and c[s,j] be 
previously calculated, for 𝑡 = 𝑖 +
1,… , 𝑗 − 1 and 𝑠 = 𝑖 + 1,… , 𝑗 − 1.

Hence, we need to fill the matrix in 
an unusual order: diagonally, from 
the main diagonal to the right upper 
corner.



Optimal binary search trees
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Note that we need to fill the right 
upper triangle of the matrix.



Optimal binary search trees
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It is convenient to organize loops for filling diagonals in the 
matrix.

// Initialize the elements of the starting diagonal

for i=1 to n do: c[i,i-1] = q[i-1];



Optimal binary search trees
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// The outermost loop specifies the number of diagonal

for d=1 to n:

for i=1 to n:

j = i+d-1;

c[i,j] = +∞;

// find the minimum value

for r=i to j:

tmp = c[i,r-1]+c[r+1,j]+w[i,j];

if tmp < c[i,j] then

c[i,j] = tmp;



Optimal binary search trees
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When the matrix is completely filled, c[1,n] is the cost of 
the optimal BST.

To build the optimal BST, we need to store additional 
information during the calculations.

1. In the initializing step, create matrix root[1..n,1..n].

2. Within the loop for filling the matrix c[], store the optimal 
value of r.



Optimal binary search trees
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// The outermost loop specifies the number of diagonal

for d=1 to n:

for i=1 to n:

j = i+d-1;

c[i,j] = +∞;

// find the minimum value

for r=i to j:

tmp = c[i,r-1]+c[r+1,j]+w[i,j];

if tmp < c[i,j] then

c[i,j] = tmp;

root[i,j] = r;



Optimal binary search trees
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𝑘𝑟

𝑇1,𝑟−1 𝑇𝑟+1,𝑛

3) Build the optimal BST 
recursively:
• put r=root[1,n] at 

the root of 𝑇1,𝑛
• Recursively build 

optimal BSTs for 
𝑘1, … , 𝑘𝑟−1 and 
𝑘𝑟+1, … , 𝑘𝑛 .



Optimal binary search trees
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The time complexity of building an optimal binary search tree 
is 𝑂(𝑛3), since we need to calculate 𝑂(𝑛2) entries and we 
need 𝑂(𝑛) time to calculate each entry.

The space complexity is 𝑂 𝑛2 , since we need to store 𝑂 𝑛2

values in matrices w, c, root, for pairs of indices 𝑖, 𝑗 where 
𝑗 ≥ 𝑖 − 1.


