Algorithms and Data Structures Module 4. NP-hard problems

Lecture 18 Algorithms for NP-hard problems. Travelling Salesman Problem.

Let's recall time complexities of algorithms we studied in this course.

Algorithm	Time complexity	Majorant	
Binary search	$O(\log n)$	O(n)	
Bubble/Insertion/Selection sort	$O(n^2)$	$O(n^2)$	
Merge sort	$O(n \log n)$	$O(n^2)$	
Graph connectivity components detection	O(m)	$O(n^2)$	
Kruskal's (with Union-Find Set data structure)	$O(m\log m) = O(n^2\log n)$	$O(n^{3})$	
Prim's (with binary heap as priority queue)	$O(m \log n) = O(n^2 \log n)$	$O(n^{3})$	
Karatsuba's integer multiplication	$\Theta(n^{\log_2 3})$	$O(n^2)$	
Strassen's matrix multiplication	$O(n^{\log_2 7})$	$O(n^{3})$	
Fast exponentiation	$O(\log n)$	O(n)	
(to be continued on the next slide.			

Algorithm	Time complexity	Majorant
		(continuation)
Dijkstra's algorithm for general case	O(nm)	$O(n^{3})$
Floyd-Warshall's	$O(n^3)$	$O(n^{3})$
Needleman-Wunsch (Levenshtein's edit distance)	O(nm)	$O(n^2)$
Longest common subsequence	O(nm)	$O(n^2)$
Optimal BST	$O(n^{3})$	$O(n^3)$

We see that for all the above algorithms there is a constant c such that the algorithm's time complexity is $O(n^c)$.

Such algorithms are called *polynomial time* algorithms.

For the problem of calculating Fibonacci numbers we discussed two algorithms:

- A dynamic programming algorithm with polynomial time complexity O(n).
- A recursive algorithm with time complexity $O(\varphi^n)$ for $\varphi = \frac{1+\sqrt{5}}{2}$.

The recursive algorithm is not polynomial time, it is an exponential time algorithm...

Let's consider two algorithms for a problem with time complexities O(n) and $O(2^n)$.

n	O(n)	O(2 ⁿ)	
50	1.00 sec	1 sec	
51	1.02 sec	2 sec	
52	1.04 sec	4 sec	
60	1.20 sec	17 min	
70	1.40 sec	12 days	
80	1.60 sec	34 years	
90	1.70 sec	~ 35 000 years	

That is why polynomial time algorithms are called *efficient*, whereas exponential time algorithms are considered *inefficient*.

For many problems no efficient algorithms are known... 🟵

Moreover, for most of these problems it was proved that if a polynomial time algorithm would be designed for one of these problems, this immediately imply polynomial time algorithms for all such problems.

Such problems are called *NP-hard*.

There are thousands of NP-hard problems...

One of the most famous NP-hard problems is the Travelling Salesman Problem (TSP).

Let G(V, E) be a connected graph, $w: E \rightarrow R_+$ be a weights function.

Definitions

- Cycle Z (path P) is called a *Hamiltonian cycle (Hamiltonian path)* on G iff Z (P) contains each vertex of G exactly once.
- G(V, E) is called a *Hamiltonian* (*semi-Hamiltonian*) graph iff there is a Hamiltonian cycle (path) on G.
- The weight of Z (or P) is defined as $w(Z) = \sum_{e \in Z} w(e)$.

Hamiltonian graph

Semi-hamiltonian graph

Nonhamiltonian graph

- <u>Decision problem</u>: is the given graph G(V, E) Hamiltonian?
- <u>Search problem</u>: build a Hamiltonian cycle on the given graph G(V, E) (return 'NULL' if G(V, E) is not Hamiltonian).
- <u>Optimization problem (=TSP)</u>: build a shortest Hamiltonian cycle on the given graph G(V, E)(return 'NULL' if G(V, E) is not Hamiltonian).

A graph and its optimal Hamiltonian cycle:

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Theorem 1: TSP is NP-hard.

Possible options for solving any NP-hard problem (e.g. TSP):

- Exactly but inefficiently:
 - ✓ exhaustive search (brute-force, backtracking)
 - ✓ smart search (branch-and-bound)
- Exactly, efficiently, but not universally:
 - \checkmark efficiently solvable special cases.
- Efficiently but inexactly:
 - ✓ approximate algorithms,
 - ✓ heuristics

<u>Definition</u>: TSP is called *metric* (MTSP) iff the weight function $w: E \rightarrow R_+$ is metric.

MTSP is an important special case of TSP.

An important special case of MTSP is Euclidean TSP (ETSP): vertices are points in \mathbb{R}^n and w is Euclidean distance.

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

Brute-force (exhaustive search) approach:

- Exact
- Universal
- Easily adaptable
- Very time-consuming; prohibitive time complexity even for small ($n \sim 100$) instances.

Principal idea:

- 1) Generate all feasible solutions.
- 2) For each feasible solutions calculate its cost (weight).
- 3) Select the best (minimum/maximum weight) feasible solution.

For TSP, feasible solutions are Hamiltonian cycles (paths).

Possible representations of a Hamiltonian cycle (path):

- Vertex permutation: list the vertices in the order the cycle/path passes them.
- Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit easier, since we just need to check that all neighbors in the permutation are neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is adjacent to the first one). For edge sequence representation checking validity is more complicated.

So, we need to generate all n! possible vertex permutations.

Generating permutations [Lectures Notes on Algorithm Analysis and Computational Complexity (Fourth Edition) - Ian Parberry: http://ianparberry.com/books/free/license.html].

Problem: given positive integer n, generate all possible permutations of $1, \ldots, n$.

Idea of the generation algorithm:

- Create array A [1..n].
- Initialization: for each i: A[i] = i.
- For each k successively swap A[k] with A[i] for i = 1, ..., k.

Call: ProcessPermutations (A, k)

```
Function ProcessPermutations(A,k)
if k = 1 then Process(A)
else
    ProcessPermutations(A, k-1);
    for i = k-1 downto 1 do
    {
        swap A[k] and A[i];
        ProcessPermutations(A, k-1);
        swap A[k] and A[i];
```


	n=4							
	3	4		1	4	3	2	
	3	4		4	1	3	2	
	3	4		1	4	3	2	
	2	4		1	3	4	2	
	2	4		3	1	4	2	
	2	4		1	3	4	2	
	3	4		1	4	3	2	
	1	4		3	4	1	2	
	1	4		4	3	1	2	
	1	4		3	4	1	2	
	3	4		1	4	3	2	
	4	3		1	2	3	4	
	4	3		4	2	3	1	
	4	3		2	4	3	1	
	2	3		4	2	3	1	
	2	3		4	3	2	1	
	2	3		3	4	2	1	
	4	3		4	3	2	1	
	1	3		4	2	3	1	
	1	3		3	2	4	1	
	1	3		2	3	4	1	
	4	3		3	2	4	1	
	3	4		4	2	3	1	
				1	2	3	4	

What the procedure Process () is for?

- Check whether the current permutation represents a feasible solution (Hamiltonian cycle).
- If it does, yield the current feasible solution (Hamiltonian cycle), calculate its weight and compare to the current champion.

Example:

- Generate 7! permutations, fix A as the 1st vertex.
- Permutation 'aBCDEFGH' is feasible, its weight is 11.
- Permutation 'aBCDE<u>FHG</u>' is not feasible because F and H are not adjacent in the graph.
- Permutation '<u>a</u>FEBCHG<u>D</u>' is not feasible (doesn't represent a Hamiltonian cycle) because D is not adjacent to A.