
Algorithms and Data Structures
Module 4. NP-hard problems

Lecture 18
Algorithms for NP-hard problems.

Travelling Salesman Problem.

Time complexity

Let’s recall time complexities of algorithms we studied in this course.

2

Algorithm Time complexity Majorant

Binary search 𝑂 log𝑛 𝑂(𝑛)

Bubble/Insertion/Selection sort 𝑂(𝑛2) 𝑂(𝑛2)

Merge sort 𝑂 𝑛 log𝑛 𝑂(𝑛2)

Graph connectivity components detection 𝑂(𝑚) 𝑂(𝑛2)

Kruskal’s (with Union-Find Set data structure) 𝑂 𝑚 log𝑚 = 𝑂 𝑛2 log 𝑛 𝑂(𝑛3)

Prim’s (with binary heap as priority queue) 𝑂 𝑚 log𝑛 = 𝑂 𝑛2 log 𝑛 𝑂(𝑛3)

Karatsuba’s integer multiplication Θ 𝑛log2 3 𝑂(𝑛2)

Strassen’s matrix multiplication 𝑂 𝑛log2 7 𝑂(𝑛3)

Fast exponentiation 𝑂(log 𝑛) 𝑂(𝑛)

(to be continued on the next slide…)

Time complexity

We see that for all the above algorithms there is a constant c such that
the algorithm’s time complexity is 𝑂 𝑛𝑐 .

Such algorithms are called polynomial time algorithms.

3

Algorithm Time complexity Majorant

(…continuation)

Dijkstra’s algorithm for general case 𝑂 𝑛𝑚 𝑂(𝑛3)

Floyd-Warshall’s 𝑂(𝑛3) 𝑂(𝑛3)

Needleman-Wunsch (Levenshtein’s edit distance) 𝑂 𝑛𝑚 𝑂(𝑛2)

Longest common subsequence 𝑂 𝑛𝑚 𝑂(𝑛2)

Optimal BST 𝑂(𝑛3) 𝑂(𝑛3)

Time complexity

For the problem of calculating Fibonacci numbers we discussed two
algorithms:

• A dynamic programming algorithm with polynomial time complexity
𝑂(𝑛).

• A recursive algorithm with time complexity 𝑂(𝜑𝑛) for 𝜑 =
1+ 5

2
.

The recursive algorithm is not polynomial time, it is an exponential
time algorithm…

4

Time complexity

Let’s consider two algorithms for a problem with time complexities
𝑂(𝑛) and 𝑂(2𝑛).

5

n O(n) O(2n)

50 1.00 sec 1 sec

51 1.02 sec 2 sec

52 1.04 sec 4 sec

60 1.20 sec 17 min

70 1.40 sec 12 days

80 1.60 sec 34 years

90 1.70 sec ~ 35 000 years

Time complexity

That is why polynomial time algorithms are called efficient, whereas
exponential time algorithms are considered inefficient.

For many problems no efficient algorithms are known…

Moreover, for most of these problems it was proved that if a
polynomial time algorithm would be designed for one of these
problems, this immediately imply polynomial time algorithms for all
such problems.

Such problems are called NP-hard.

6

Time complexity

There are thousands of NP-hard problems…

One of the most famous NP-hard problems is the Travelling Salesman
Problem (TSP).

7

TSP: definitions

Let 𝐺(𝑉, 𝐸) be a connected graph, 𝑤:𝐸 ⟶ 𝑅+ be a weights function.

Definitions

• Cycle 𝑍 (path 𝑃) is called a Hamiltonian cycle (Hamiltonian path) on
𝐺 iff 𝑍 (𝑃) contains each vertex of 𝐺 exactly once.

• 𝐺(𝑉, 𝐸) is called a Hamiltonian (semi-Hamiltonian) graph iff there is a
Hamiltonian cycle (path) on 𝐺.

• The weight of 𝑍 (or 𝑃) is defined as 𝑤 𝑍 = σ𝑒∈𝑍𝑤(𝑒) .

8

TSP: definitions

9

a b

c d

a b

c d

a b

c d

Hamiltonian graph

Semi-hamiltonian graph

Nonhamiltonian graph

TSP: definitions

•Decision problem: is the given graph 𝐺(𝑉, 𝐸)
Hamiltonian?

•Search problem: build a Hamiltonian cycle on the
given graph 𝐺 𝑉, 𝐸 (return ‘NULL’ if 𝐺(𝑉, 𝐸) is not
Hamiltonian).

•Optimization problem (=TSP): build a shortest
Hamiltonian cycle on the given graph 𝐺 𝑉, 𝐸
(return ‘NULL’ if 𝐺(𝑉, 𝐸) is not Hamiltonian).

10

TSP: definitions

11

A graph and its optimal Hamiltonian cycle:

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

TSP: solving

Theorem 1: TSP is NP-hard.

12

TSP: solving

Possible options for solving any NP-hard problem (e.g. TSP):

• Exactly but inefficiently:
✓exhaustive search (brute-force, backtracking)

✓smart search (branch-and-bound)

• Exactly, efficiently, but not universally:
✓efficiently solvable special cases.

• Efficiently but inexactly:
✓approximate algorithms,

✓heuristics

13

TSP: solving

Definition: TSP is called metric (MTSP) iff the weight function 𝑤:𝐸 ⟶
𝑅+ is metric.

MTSP is an important special case of TSP.

An important special case of MTSP is Euclidean TSP (ETSP): vertices are
points in 𝑅𝑛 and 𝑤 is Euclidean distance.

14

TSP: solving

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

15

TSP: brute force

Brute-force (exhaustive search) approach:
• Exact
• Universal
• Easily adaptable
• Very time-consuming; prohibitive time complexity even for small (𝑛~100)

instances.

Principal idea:
1) Generate all feasible solutions.
2) For each feasible solutions calculate its cost (weight).
3) Select the best (minimum/maximum weight) feasible solution.

16

TSP: brute force

For TSP, feasible solutions are Hamiltonian cycles (paths).

Possible representations of a Hamiltonian cycle (path):

• Vertex permutation: list the vertices in the order the cycle/path passes
them.

• Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit
easier, since we just need to check that all neighbors in the permutation are
neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is
adjacent to the first one). For edge sequence representation checking
validity is more complicated.

17

TSP: brute force

So, we need to generate all 𝑛! possible vertex permutations.
In case of cycle we need to generate 𝑛 − 1 !

permutations. AFEBCDGH
FEBCDGHA
EBCDGHAF
…

For an undirected graph: only
𝑛−1 !

2
:

AHGDCBEF
HGDCBEFA
…

18

TSP: brute force

Generating permutations [Lectures Notes on Algorithm Analysis and Computational

Complexity (Fourth Edition) - Ian Parberry: http://ianparberry.com/books/free/license.html].

Problem: given positive integer 𝑛, generate all possible permutations of
1,… , 𝑛.

Idea of the generation algorithm:

• Create array A[1..n].

• Initialization: for each i: A[i] = i.

• For each k successively swap 𝐴[𝑘] with 𝐴[𝑖] for 𝑖 = 1,… , 𝑘.

19

TSP: brute force

Call: ProcessPermutations(A,k)

Function ProcessPermutations(A,k)

if k = 1 then Process(A)

else

ProcessPermutations(A, k-1);

for i = k-1 downto 1 do

{

swap A[k] and A[i];

ProcessPermutations(A, k-1);

swap A[k] and A[i];

}

20

TSP: brute force

What the procedure Process() is for?

• Check whether the current permutation represents a feasible solution
(Hamiltonian cycle).

• If it does, yield the current feasible solution (Hamiltonian cycle),
calculate its weight and compare to the current champion.

21

TSP: brute force

Example:
• Generate 7! permutations, fix A as

the 1st vertex.
• Permutation ‘aBCDEFGH’ is feasible,

its weight is 11.
• Permutation ‘aBCDEFHG’ is not

feasible because F and H are not
adjacent in the graph.

• Permutation ‘aFEBCHGD’ is not
feasible (doesn’t represent a
Hamiltonian cycle) because D is not
adjacent to A.

22

