
Algorithms and Data Structures
Module 4. NP-hard problems

Lecture 19
Branch-and-Bound approach.

TSP: brute force

Call: ProcessPermutations(A,k)

Function ProcessPermutations(A,k)

if k = 1 then Process(A)

else

ProcessPermutations(A, k-1);

for i = k-1 downto 1 do

{

swap A[k] and A[i];

ProcessPermutations(A, k-1);

swap A[k] and A[i];

}

2

TSP: brute force

Let’s consider this graph:

The optimal Hamiltonian cycle: 0,1,4,3,2,0

3

0

4 1

23

100 1

1

1

1

1 9

9

9

9

Brute force

A brute-force algorithm generates and checks variants in a standard
order which does not take into consideration features of the specific
problem instance. This leads to a lot of unnecessary job.

Idea 1: if we design an algorithm that uses instance specific
information, it can avoid this unnecessary job and thus speed-up
calculations.

Idea 2: for many problems, including TSP, we can reject unpromising
solutions based on analysis of a part of this solution (partial solution).

4

Branch-and-Bound approach

How can we detect unpromising partial solutions?

Let us suppose that we have a solution (current record-holder).

If the current partial solution cannot be augmented to a solution which
is better than the current record, we can (should) reject this partial
solution.

Thus, we save time by not processing any of the solutions that augment
the current partial solution (the current branch).

5

Branch-and-Bound approach

6

Notice that just 28 partial solutions are
considered, instead of the 7! = 5,040 that
would arise in a brute-force search.

Branch-and-Bound approach

So, we need a method to check, whether the current partial solution
cannot be augmented to a solution which is better than the current
record. This can be done with a bound function.

The type of the bound depends on the type of the problem.

• For minimization problem we need a lower bound.

• For maximization problem we need an upper bound.

For TSP we need a method to calculate a lower bound.

7

Branch-and-Bound approach

For TSP we need a method to calculate a lower bound.

There is a plenty of such methods.

1) LowerBound = the weight of the current partial solution (path).
This method is the simplest one. But it is the weakest one as well,
since it does not reject many branches.

2) LowerBound = the weight of the current partial solution + 𝑛 − 𝑘 ⋅
𝑤𝑚𝑖𝑛. In this formula 𝑘 is the number of edges in the current partial
solution and 𝑤𝑚𝑖𝑛 is the minimum weight of the edges still not in
the solution.

8

Branch-and-Bound approach

2) LowerBound = the weight of the current partial
solution + 𝑛 − 𝑘 ⋅ 𝑤𝑚𝑖𝑛. In this formula 𝑘 is the
number of edges in the current partial solution and
𝑤𝑚𝑖𝑛 is the minimum weight of the edges still not in
the solution.

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 𝑤 𝑎, 𝑏 + 𝑤 𝑏, 𝑑 + 3 ⋅ 𝑤(𝑎, 𝑐)

9

Branch-and-Bound approach

3) LowerBound = the sum of the weights of two
proper edges incident to each vertex, divided by 2.

What edges are proper?

a) If a vertex is incident to two edges included in the
partial solution, both of them are proper.

b) If a vertex is incident to only one edge from the
partial solution, this edge is proper. The another
proper edge is the lightest of the other incident
edges.

c) If a vertex is not incident to edges from the partial
solution, the two lightest incident edges are
proper edges.

10

Branch-and-Bound approach

4) Let x be the start of the current partial solution, y
be the end of the current partial solution. And let U
denote the vertices that are not included in the
current partial solution.

LowerBound = the weight of the current partial
solution + the sum of the following:

• The lightest weight of an edge from x to a vertex in
U.

• The lightest weight of an edge from y to a vertex in
U.

• The minimum spanning tree on the subgraph
induced by U. Why is it so?

11

Branch-and-Bound approach

We see that there may be several
different ways to calculate a bound for
a particular problem. These ways differ
in both accuracy and time complexity.
Thus, we need an optimal trade-off.

A possible option is to use several
bound functions on different phases of
the process:

• More accurate though more time
consuming bounds are used at the
higher levels of the backtracking tree.

• Less accurate but more fast bounds
are used at the lower levels.

12

Branch-and-Bound approach

So, a branch-and-bound algorithm recursively decomposes the set of all
possible solutions into subsets (branches), calculates bounds for
branches and rejects unpromising branches.

13

Branch-and-Bound approach

Such decomposition is performed ‘virtually’, without explicit generating
and storing the subsets of solutions. A branch is represented as a set of
restrictions which the possible solutions must satisfy.

How can we generate branches? The concrete algorithm is problem
specific and interdependent with the representation of solutions.

For TSP, a possible solution can be represented as either vertex
permutation or a sequence of edges.

14

Branch-and-Bound approach

For vertex permutation
representation, a branch
is specified as a prefix (the
starting part) of the path.

http://algorithmics.lsi.upc.edu/docs/

Dasgupta-Papadimitriou-Vazirani.pdf

15

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf
http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

Branch-and-Bound approach

For edge sequence
representation, a branch
is specified as a set of
conditions like

‘tours with <edge>’ and
‘tours without <edge>’ .

http://lcm.csa.iisc.ernet.in/dsa/node187.html

16

http://lcm.csa.iisc.ernet.in/dsa/node187.html

Branch-and-Bound approach

What data structures do we need to implement a branch-and-bound
algorithm? For the ‘standard’ form of a B&B algorithm we need a stack
to store partial solutions.

17

Branch-and-Bound approach

If we employ a stack, we virtually
traverse the solutions’ tree in a depth-
first manner.

18

Branch-and-Bound approach

If we employ a priority queue instead
of a stack, we process branches (partial
solutions) in a best-first manner.

This option can speed-up calculations,
since we have more chances to find
better solution faster. And the better
current record-holder we have, the
more branches we reject.

But this version requires more memory
for storing branches.

19

Branch-and-Bound approach

Summary:

1) A branch-and-bound algorithm recursively decomposes the set of all possible
solutions into subsets (branches), calculates bounds for branches and rejects
unpromising branches.

2) Branching is performed virtually, without explicit generating and storing the
subsets of solutions. A branch is represented as a set of restrictions which the
possible solutions must satisfy.

3) Both branching and bounding are problem specific. For a problem there are
usually several ways to perform branching and to calculate bounds.

4) A good decision is to use several bound functions on different phases of the
process: more accurate though more time consuming bounds are used at the
higher levels of the backtracking tree; less accurate but more fast bounds are
used at the lower levels.

20

Branch-and-Bound approach

Summary:

5) We can use a stack to implement a standard B&B algorithm or a
priority queue to implement a time-optimized version.

6) B&B needs exponential time in the worst case  For many practical
problems, however, it works fast on the average, due to good
rejecting rules.

A branch-and-bound algorithm can be stopped before exploring all
promising branches. In this case it will need little time but will yield a
heuristic (approximate), rather than exact solution…

21

