Algorithms and Data Structures

Module 1

Lecture 1
 Introduction to algorithmic complexity

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru
adimg@yandex.ru

Problems and algorithms

- What is an 'algorithm'?
- Algorithms solve problems.
- Unsolvable problems.
- Classes and instances of problems.
- Tractable vs intractable problems.

Algorithmic/Computational complexity

Informal definition:
Complexity of an algorithm is the amount of resources the algorithm needs to successfully solve the problem.

Resource types:

- Time
- Space
- ...

Algorithmic/Computational complexity

- Let x be an instance of a problem.
- $T(x)=$ time spent by the algorithm to solve instance x.
- $T(x)$ depends on the size (length) of x. Size of $x=|x|=n$.

Column addition:
$\mathrm{x}=(\mathrm{a}, \mathrm{b})$
$T(x)=\min \{|a|,|b|\}+1$
$T(x)=\max \{|a|,|b|\}+1$

- In general case, $|\mathrm{x}|=$ number of bits needed to represent x (=bit length of x).
- But for practical purposes other measures are often used.

Algorithmic/Computational complexity

- $\mathrm{T}(n)=\mathrm{T}(\mathrm{x})$ where $|x|=n$.
- Problem: find element b in the given array A. $|A|=n . T(n)=$?
- Worst case complexity: $T(n)=\max \{T(x):|x|=n\}$
- Average complexity: $T_{\mathrm{avg}}(n)=\sum T(x) \cdot p(x)$
- Which one is more useful for practical computations?

Algorithmic/Computational complexity

- How do we measure time complexity?
\checkmark milliseconds, seconds, hours
\checkmark number of basic operations
- Why bother with number of operations?
\checkmark Implementation issues
\checkmark Moore's law

Algorithmic/Computational complexity

Asymptotic evaluation. $\mathrm{O}(\Omega, \Theta)$ notation

$$
\begin{aligned}
& \checkmark T(n)=O(f(n)) \Leftrightarrow \text { for sufficiently large } n, T(n) \text { is bounded above by } c \cdot f(n) . \\
& \checkmark T(n)=\Omega(f(n)) \Leftrightarrow \text { for sufficiently large } n, T(n) \text { is at least } c \cdot f(n) . \\
& \checkmark T(n)=\Theta(f(n)) \Leftrightarrow \text { both } T(n)=O(f(n)) \text { and } \Omega(f(n))
\end{aligned}
$$

Examples: $O(n), O(n \cdot \log n), O\left(n^{2}\right), O\left(2^{n}\right), O(n!), O\left(n^{n}\right)$.

Why can we omit multiplication constant?

Algorithmic/Computational complexity

Let us consider two algorithms for a problem with time complexities $O(n)$ and $O\left(2^{n}\right)$.

n	$O(n)$	$O\left(2^{n}\right)$
50	1.00 sec	1 sec
51	1.02 sec	2 sec
52	1.04 sec	4 sec
60	1.20 sec	17 min
70	1.40 sec	12 days
80	1.60 sec	34 years
90	1.70 sec	~ 35000 years

