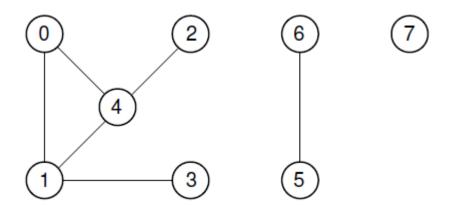
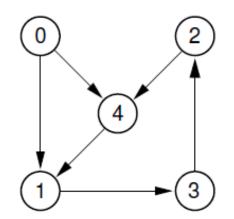
Algorithms and Data Structures

Module 1

Lecture 3 **Graphs: definitions, representations and**

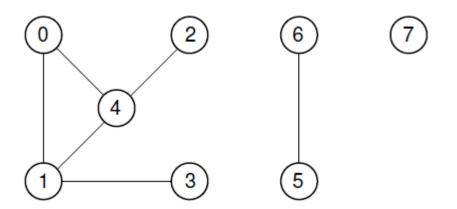

basic operations

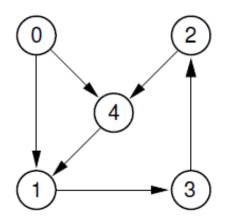
Adigeev Mikhail Georgievich mgadigeev@sfedu.ru


Graph G=(V,E)

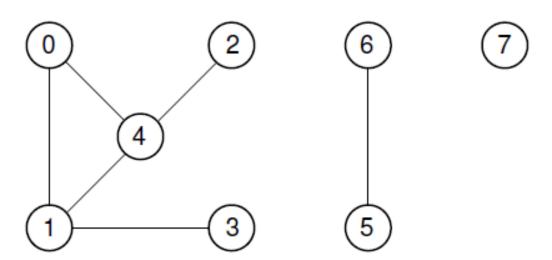
- ✓ V is a set of *vertices* ($v \in V$ vertex, node). |V| = n.
- ✓ E is a set of *edges* (e = (v, w): $v, w \in V$ edge, arc). |E| = m

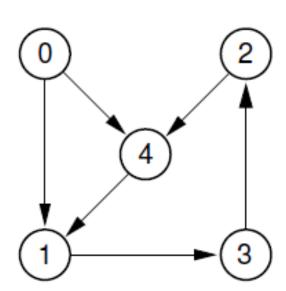
Undirected graph



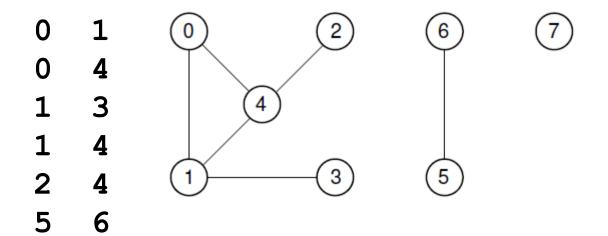

Directed graph

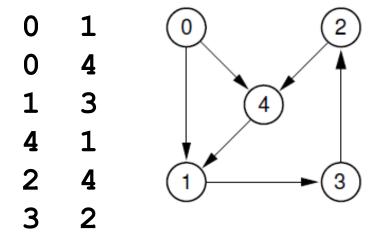
$$e = (v, w) : v, w \in V$$


- \checkmark e is *incident* to v and w; v (w) is incident to e;
- $\checkmark v$ and w are *adjacent*; they are *neighbours*.


```
v \in V:
```

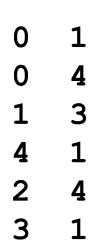
 $\checkmark \deg(v) - \operatorname{degree} of \operatorname{vertex} v = \operatorname{number} of \operatorname{edges} \operatorname{incident} \operatorname{to} v$.

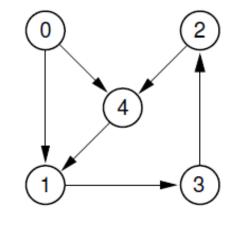

$v \in V$:


- $\checkmark \deg(v) \operatorname{degree} \operatorname{of} \operatorname{vertex} v = \operatorname{number} \operatorname{of} \operatorname{edges} \operatorname{incident} \operatorname{to} v$.
- ✓ outdeg(v) out-degree of vertex v = number of edges which start from v.
- ✓ indeg(v)- in-degree of vertex v = number of edges which end at v .
- $\checkmark v$ is a **source** iff indeg(v) = 0
- $\checkmark v$ is a *sink* iff outdeg(v) = 0

Edge list

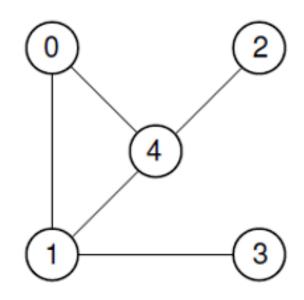
$$E = \{e_1 = (u_1, v_1), \dots, e_m = (u_m, v_m)\}$$

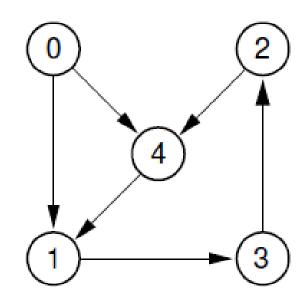




Edge list

$$E = \{e_1 = (u_1, v_1), \dots, e_m = (u_m, v_m)\}$$

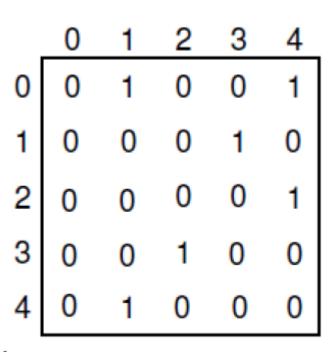

Property	Complexity
out-deg(v)	O(m)
in-deg(v)	O(m)
deg(v)	O(m)
has_edge(v,w)	O(m)
is_source(v)	O(m)
is_sink(v)	O(m)


Adjacency matrix
$$A = \{a_{ij}\}_{i,j=1}^{n} : a_{ij} = \begin{cases} 1, if \ (i,j) \in E \\ 0, \ otherwise \end{cases}$$

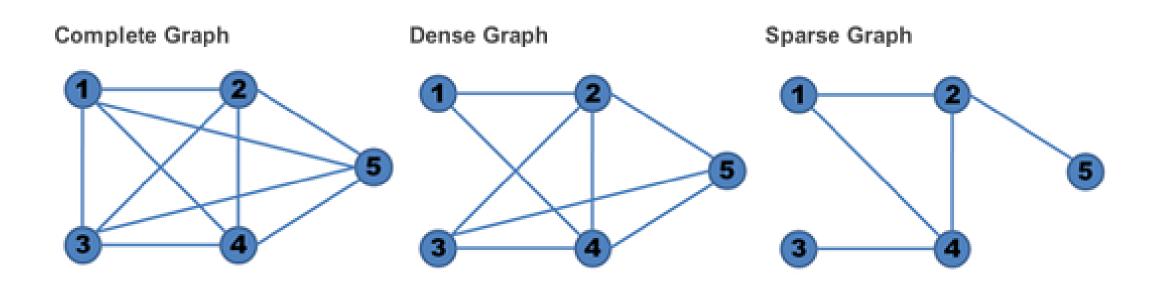
	0	1	2	3	4
0	0	1	0	0	1
1	1	0	0	1	1
2 3	0	0	0	0	1
3	0	1	0	0	0
4	1	1	1	0	0

Adjacency matrix
$$A = \{a_{ij}\}_{i,j=1}^{n} : a_{ij} = \begin{cases} 1, if \ (i,j) \in E \\ 0, \ otherwise \end{cases}$$

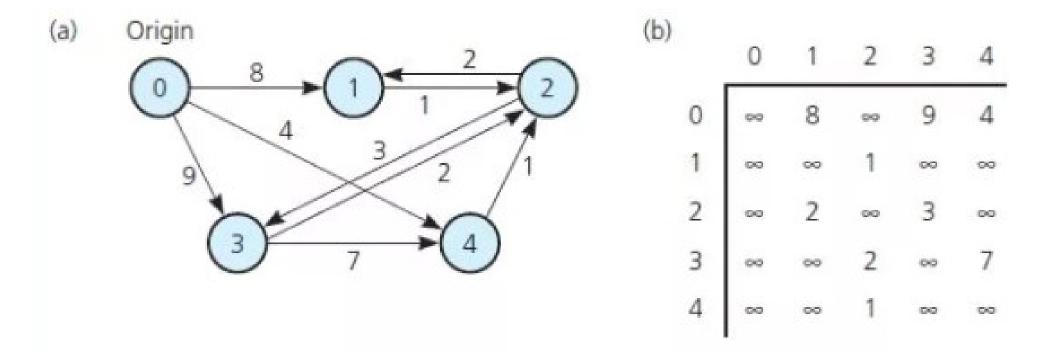
-	0	1	2	3	4
0	0	1	0	0	1
1	0	0	0	1	0
2	0	1 0 0 0	0	0	1
3	0	0	1	0	0
4	0	1	0	0	0



Adjacency matrix

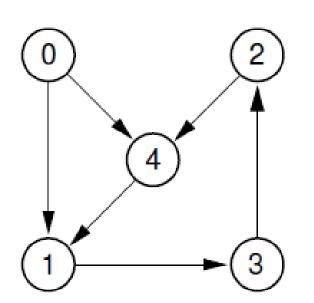

$$A = \{a_{ij}\}_{i,j=1}^n$$
 contains $O(n^2)$ entries.

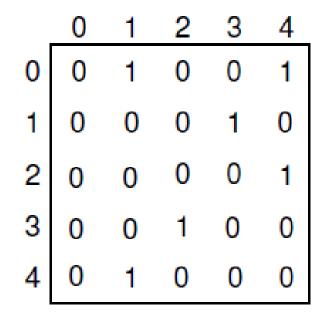
• Space-efficient for <u>dense</u> graphs $(m \sim O(n^2))$.

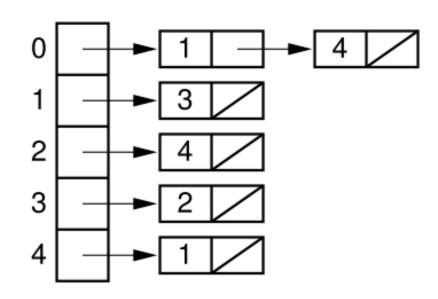

• Space-inefficient for *sparse* graphs $(m \sim O(n))$.

Adjacency matrix

Adjacency matrix

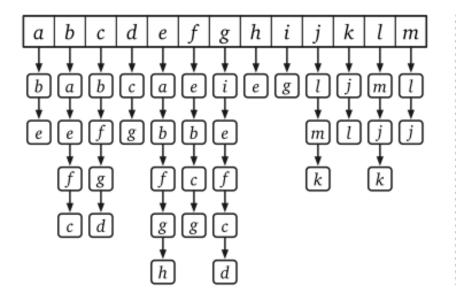


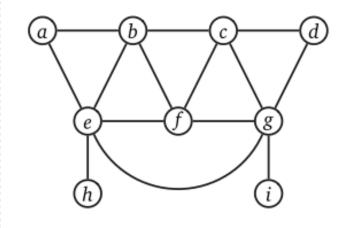

Adjacency matrix

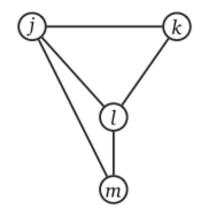

Property	Complexity
out-deg(v)	O(n)
in-deg(v)	O(n)
deg(v)	O(n)
has_edge(v,w)	0(1)
is_source(v)	O(n)
is_sink(v)	O(n)

Ī	0	1	2	3	4
0	0	1	0	0	1
1	0	0	0	1	0
0 1 2 3 4	0 0 0 0	0	0	0	1
3	0	0	1	0	0
4	0	1	0	0	0

Adjacency list

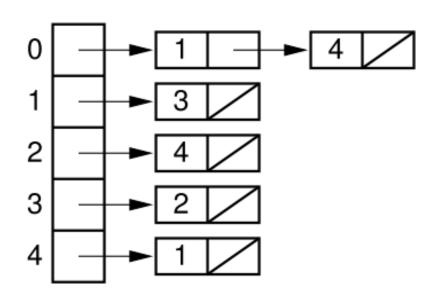






Space complexity: O(n + m)

Adjacency list



Adjacency list

Property	Complexity
out-deg(v)	$O(\max deg) = O(n)$
in-deg(v)	O(n+m) = O(m)
deg(v)	O(m)
has_edge(v,w)	$O(\max deg) = O(n)$
is_source(v)	O(m)
is_sink(v)	0(1)

Space complexity: O(n + m)

Property	Edge list	Adjacency matrix	Adjacency list
out-deg(v)	O(m)	O(n)	$O(\max deg) = O(n)$
in-deg(v)	O(m)	O(n)	O(n+m) = O(m)
deg(v)	O(m)	O(n)	O(m)
has_edge(v,w)	O(m)	0(1)	$O(\max deg) = O(n)$
is_source(v)	O(m)	O(n)	O(m)
is_sink(v)	O(m)	O(n)	0(1)
memory	O(m)	$O(n^2)$	O(n+m)