Algorithms and Data Structures

Module 1

Lecture 5
Graph traversals: depth-first search, breadth-first search and their applications. Part 2

Adigeev Mikhail Georgievich mgadigeev@sfedu.ru

Graph traversals

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

BFS: Breadth-First Search

Visiting a vertex v, visit each of its unvisited neighbors, then neighbors of the neighbors, etc.

https://en.wikipedia.org/wiki/Breadth-first_search

BFS: Breadth-First Search

For keeping this order of visiting, we need to store neighbor vertices until we get them for processing.

We need a queue.

https://en.wikipedia.org/wiki/Breadth-first_search

Queue: abstract data structure

Queue = abstract data structure with two principal operations:

- Enqueue(item)
- Dequeue()

FIFO $=$ First-In, First-Out

Queue: abstract data structure

Queue $=$ abstract data structure with two principal operations:

- Enqueue(item)

- Dequeue()

FIFO = First-In, First-Out

Queue: abstract data structure

```
// Abstract queue class
template <typename E> class Queue {
private:
    void operator =(const Queue&) {} // protect assignment
    Queue (const Queue&) {} // protect copy constructor
public:
    Queue () {} // Default
    virtual ~Queue() {} // Base destructor
    // Reinitialize the queue. The user is responsible for
    // reclaiming the storage used by the queue elements.
    virtual void clear() = 0;
    // Place an element at the rear of the queue.
    // it: The element being enqueued.
    virtual void enqueue(const E&) = 0;
    // Remove and return element at the front of the queue.
    // Return: The element at the front of the queue.
    virtual E dequeue() = 0;
    // Return: A copy of the front element.
    virtual const E& frontValue() const = 0;
    // Return: The number of elements in the queue.
    virtual int length() const = 0;
};

\section*{Queue: implementation}

A queue data structure can be implemented in different ways:
- Array-based
- linear array
o circular array
- Linked-list based

\section*{Queue: array-based implementation}

Array-based implementation: keep indices of the front and the back(rear) items of the queue.
front =0
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(20 ~\) \\
\hline & 5 & 12 & 7 & & & & \\
\hline 0 & 1 & 2 & 3 A & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}\(\quad\)

\section*{Queue: array-based implementation}

https://people.cs.vt.edu/~shaffer/Book/

\section*{Queue: circular array-based implementation}


\section*{Queue: circular array-based implementation}

Circular arrays implementation
We use an ordinary linear array ( \(E\) * or std: : vector \(\langle E\rangle\) ) and apply modular arithmetic when we increment / decrement indices.
Mathematical operation mod: \(12 \bmod 10=2 ; 99 \bmod 10=9\).
For an integer \(x\) and positive integer \(m, x\) mod \(m\) is an integer \(y \in\) \(\{0, \ldots, m-1\}\) such that \(x=y+k m\) for some integer \(k\).

In C++ we use \% operation.

\section*{Queue: circular array-based implementation}

\section*{Circular arrays implementation}
```

void enqueue (const E\& it) { // Put "it" in queue
Assert(((rear+2) % maxSize) != front, "Queue is full");
rear = (rear+1) % maxSize; // Circular increment
listArray[rear] = it;
}
E dequeue() { // Take element out
Assert(length() != 0, "Queue is empty");
E it = listArray[front];
front = (front+1) % maxSize; // Circular increment
return it;
}

```

\section*{Queue: circular array-based implementation}

There is a potential problem with this implementation. Lets look at two cases:
a) Empty queue => the 'back' index is just before the 'front' index => back \(=\) front -1 .
b) Full queue \(=>\) back \(=\) front \(+(\) size -1\()=>\) back \(=(\) front + \((\) size -1\()) \%\) size \(=>\) back \(=\) front -1 .
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}

\section*{Queue: circular array-based implementation}

\section*{Two possible solutions:}
1) Keep an explicit count of the items in the queue:
- Count = 0 => empty queue
- Count = Size => full queue
2) Use array of size \((\mathrm{n}+1)\) for keeping maximum \(n\) items:
- Empty queue:
- Full queue:


\section*{Queue: circular array-based implementation}
```

array<T> a;
int j;
int n;
bool add(T x) {
if (n + 1 > a.length) resize();
a[(j+n) % a.length] = x;
n++;
return true;
}
T remove() {
T x = a[j];
j = (j + 1) % a.length;
n--;
if (a.length >= 3*n) resize();
return x;
}
void resize() {
array<T> b(max (1, 2*n));
for (int k = 0; k < n; k++)
b[k] = a[(j+k)%a.length];
a = b;
j = 0;
}
// Array-based queue implementation
template <typename E> class AQueue: public Queue<E> \{ private
int maxSize; $\quad / /$ Maximum size of queue int front;
int rear;
E *listArray;

public:

AQueue (int size =defaultSize) \{ // Constructor
// Make list array one position larger for empty slot maxSize = size+1;
rear = 0; front $=1$;
listArray = new E[maxSize];
\}
~AQueue () \{ delete [] listArray; \} // Destructor
void clear () \{ rear = 0; front = 1; \} // Reinitialize
void enqueue (const $\mathrm{E} \&$ it) \mathfrak{i} // Put "it" in queue Assert (((reart2) \% maxSize) != front, "Queue is full") rear $=($ reart1) \% maxSize; $/ /$ Circular increment listArray[rear] = it;
\}
E dequeue() \{ // Take element out Assert (length() $!=0$, "Queue is empty"); Assert (length() $!=0$, Queue is empty")
E it $=$ listArray $[$ front];
front $=($ front +1) 8 maxSize; // Circular increment return it;
\}
const E\& frontValue() const $\{$ // Get front value Assert (length() ! $=0$, "Queue is empty"); return listArray[front]
\}
virtual int length() const // Return length f return ((rear+maxSize) - front + 1) \% maxSize; \};
https://people.cs.vt.edu/~shaffer/Book/

Queue: dynamic list-based implementation

A dynamic list data structure with 'front' and 'back' pointers.

BFS: queue-based implementation

```
BFS (G)
Select }s\in
Enqueue (s)
While (Queue is not empty):
    v = Dequeue()
    if v is unvisited:
    Mark v as 'visited'
    For each u in Adj (v):
                        Enqueue (u)
```


BFS: applications

1) Detecting connected components.
2) Calculating distances.

Principal idea: visiting a vertex v, visit each of its unvisited neighbors, then neighbors of the neighbors, etc.

BFS: applications

Graph G=(V,E).

A distance between vertices u and v is the minimum length of the path between u and v. $\operatorname{dist}(\mathrm{A}, \mathrm{E})=2$

BFS: applications

Weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), w: E \rightarrow R$
A distance between vertices u and v is the minimum weight (=sum of edges' weights) of the path between u and v.

$$
\operatorname{dist}(\mathrm{A}, \mathrm{E})=18
$$

BFS: applications

For unweighted graphs distances from $s \in V$ to all other vertices can be calculated using BFS.
For weighted graphs: Dijkstra algorithm works like a BFS and calculates distances (from $s \in V$ to all other vertices) on a graph.

